PROMISES

A promise is a proxy for a value which is not necessarily known when the promise is created. Promises
lets the asynchronous methods returns value like synchronous methods but instead of final values, the
asynchronous methods returns a promise for a value in some time in future.

In simple terms “A promise is a word taken for some action, the other party who gave the promise can
fulfil or deny it”. In case of fulfilling the promise gets resolved or it gets rejected.

e Any promise that performs async operations should call any one of the two methods resolve or
reject.

e The code which uses a promise should call then function on that promise. It takes 2 functions as
parameters. The first function executes if the promise is resolved and the second function
executes if the promise is rejected.

e The promise will be in pending state if we try to access the value from promise before it is
resolved or rejected.

Creating a Promise:
We can create a promise in Node JS program using a new constructor.

var myPromise = new Promise(function(resolve, reject) {

Y

Code Example:
We will be using the Github REST api to fetch details about users, repositories.

https://api.qgithub.com/users/Gaurav-Walia

If you make a HTTP GET request with this URL, you will receive a JSON with all the information about my
github account like repos, followers etc.

For making HTTP GET request, we are installing a small package request

npm install request --save

e options object is used to set URL and Headers for request
e request.get makes a GET request to the Github API

https://api.github.com/users/Gaurav-Walia

e body consists of the JSON response from the server

We are calling resolve method to pass data back to the handler which implements then on the
promise.

IS promisesjs @

request = require(’request’);
userDetails;

return Promise((resolve, reject) {
request.get(options, resp, body) {
if{err) {
reject{err);
} else {

resolve(JSON. parse(body));

main() {
initializePromise = initialize();
initializePromise.then((result) {
userDetails = result:;
i ized user details');

. log(userDetails);

(err) {

:_log{err);

T
J

main{);

Result:

avatar_url:
gravatar_id:
url:

html_wrl:
followers url:
following_url:

gists url:
starred_url:

subscriptions_url:
organizations_url:
repos_url:
events_url:

received events_url:
type: s
site_admin: false,
name:

compary :
blog: "°,
location:

email: null,
hireable: true,
bio: null,
public_repos: 17,
public pists: @,
followers: 1,
following: @,
created at:
updated at:

Suppose you want to perform an operation after a promise is fulfilled use another then method to -
transform the data you obtained from the promise.

main() {
initializePromise = initialize();
initializePromise.then({result) {

userDetails = result;
console.log(Initialized user details');
return userDetails;
(err) {
le.log(err);
(result) {

PROMISE.ALL

e Promise.all function which takes a list of promises in the given order and returns another
promise which we can use a then method to conclude the logic.

e We should use Promise.all when we don’t care about the order of execution.

e Promise.all fails if any one of the Promise got rejected.

promise_1 =
setTimeout(()

1)

promise_2 =
setTimeout(()

printResult = (results)

main() {
=.gll{[promise_1, promise_2, promise
all{[promise_. mise 1, promise
11{[promise_3, mise_2, promise_1]).then{printResult);

Ydell\Documentsy Tutorialsy

>

