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ALTERNATING CURRENT AND 
ELECTRICAL MACHINES 

7.1 Introduction: We have gone through the D.C. current due to batteries/dynamos and the circuit 
applications of it. We came to known during electromagnetism that an emf may be induced / produced 
in a rotating coil inside a constant uniform magnetic field but the nature of this induced emf is 
alternating in nature, i.e. it changes its polarity after each half cycle and repeats its waveform over the 
time period again and again. The nature of induced emf, so produced, is alternating and sinusoidal. We 
will discuss the alternating current and its generation in this chapter. We will also go through the nature 
and performance of an a.c. circuit containing various elements like resistors, inductors and capacitors. 

7.2 Alternating Current: We know from our knowledge of batteries and d.c. current that, a direct current 
(D.C.) has a constant positive value at all the times, as shown in the Fig. 7.1 (a). 

 On the other hand, the magnitude of an alternating current (A.C.) changes continuously with respect 
to time and its polarity reverses after every half cycle. The positive half cycle and negative half cycle 
are mirror images of each other, and the same waveform repeats itself over the time period again and 
again. Some of the 
waveforms for 
alternating currents are 
shown in the Fig. 7.1 (b), 
(c), (d), (e) and (f). The 
waveforms shown in the 
Fig. 7.1 (e) and (f) are 
alternating currents 
which are varying in 
sinusoidal manner over 
the time, and may be 
produced in a rotating 
coil rotating at a constant 
angular speed in a 
constant uniform 
magnetic field. 

 We know from our previous knowledge gathered in Electromagnetic Induction that, the induced emf in 
a rotating coil which is rotating at a constant angular speed inside a constant uniform magnetic field 
may be given as: 

  e = E0 sin ωt                                (or, Emax sin ωt) (7.1) 

 If this emf is applied across a pure resistor of value R, the current flowing through the circuit may be 
given as: 

  i = 0E
R

 sin ωt = I0 sin ωt              (or, Imax sin ωt) (7.2) 

 So, the value of maximum / peak current in the circuit may be given as: 

  I0 = 0E
R

 (7.3) 

7.3 Generation of Single Phase Alternating EMF: We know very well that when a coil is being rotated in 
a constant uniform magnetic field at a constant angular speed (ω), the change in flux linkages of the coil 
is sinusoidal and hence a sinusoidal alternating emf is induced in the coil according to the Faraday’s law 
of electromagnetic induction, which may be given by: 
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   e = – N d
d t
  = – N d

d t   
(ɸ0 cos ωt) = N ω ɸ0 sin ωt 

  or, e = N ω ɸ0 sin ωt = e0 sin ωt = e0 sin (2 π f) t (7.4) 

  (So, induced emf lags the flux by an angle of 90°) 

  Where, e = instantaneous value of emf induced, 

   e0 = maximum value of emf induced, 

   ω = angular speed (frequency) = 2 π f, 

   f = supply frequency [frequency of sinusoidal emf / voltage (wave) generated] 

 Alternating Quantity (Voltage or Current): An alternating quantity changes continuously its sign 
(positive –to– negative and vice–versa) after a fixed time interval and repeats its shortest cycle over the 
time period again and again. 

 Waveform (of Voltage or Current): When magnitude of a voltage or current is plotted against the time 
(or angle of rotating coil) over a graph paper, it is known as the waveform of the quantity. 

 Instantaneous Value: The value of any alternating quantity at a particular instant of time is known as 
its instantaneous value. This instantaneous value may be determined from the waveform of the quantity 
or from the equation of the waveform. 

 Amplitude (Maximum Value, I0 or Imax): The maximum value of the alternating quantity in either 
direction (positive or negative) is known as amplitude of the quantity. 

 Cycle: The smallest set of all positive and negative values of an alternating quantity, which repeats 
itself over the time period again and again, is known as one cycle of the alternating quantity. 

 Time-period (T): The time taken to complete one cycle of an alternating quantity is known as time 
period (T) of the alternating quantity (wave). 

 Frequency (f): The number of cycles completed per second by an alternating quantity is known as its 
frequency. It is equal to the reciprocal of time period. 

  Frequency,  f = 1
T

 Hz (7.5) 

 Angular Speed (ω) and Supply Frequency (f): Each cycle has one time period (T) and an angular 
span of 2π radians. 

  Angular speed, ω = 2π
T

 = 2 π f rad / sec (7.6) 

7.4 Average Value of Alternating Current: It is equal to the value of D.C. current, which when flowing 
through the same element for the same time period transfers the same amount of charge. 
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 We may assume the current constant over very small time period dt, the amount of charge transferred 

during this period may be given as: 

  dq = i dt = I0 sin ωt dt 

 The total charge that flows through the circuit over a complete cycle of the alternating quantity may be 
given as: 

  q = 
0

q
d q  = 0

0
sin ω

T
I t d t   (7.8) 

 Now, the average value of the A.C. current flowing through the circuit may be given as: 

  Iavg = q
T

 = 1
T

 × 0
0

sin ω
T

I t d t  (7.9) 

 Average Value of Alternating Current over Complete Cycle: The average value of an A.C. current 
over the complete cycle may be determined as: 

   Iavg = 1
T

 × 0
0

sin ω
T

I t d t  = 0I
T

 × 1
ω

 ×  0cos ω Tt  = 0I
T

 × 
2 π
T  × 

02πcos ×
T

t
T

 
  

 

   = 0

2 π
I  × 2π 2πcos ×0 cos ×T

T T
   

 = 0

2 π
I  × [cos 0 – cos 2π]  

 or, Iavg = 0

2 π
I  × [1 – 1] = 0 (7.10) 

 This is not an unusual / unexpected result, as the charge transferred in forward direction during positive 
half cycle is equal to the charge transferred in backward direction during negative half cycle.  

 But, the transferring charge in forward direction (in positive half cycle) and then in backward direction 
(in negative half cycle) is doing some useful work in the electrical circuit during each half cycle. So, the 
average value of an alternating quantity is to be obtained by doing the average over half cycle. 

 Average Value of Alternating Current over Half Cycle: The average value of an A.C. current over 
the half cycle may be determined as: 

   Iavg = 1
( / 2)T

 × 
2

0
0

sin ω

T

I t d t  = 02 I
T

 × 1
ω

 ×  2
0cos ω
T

t  = 02 I
T

 × 
2 π
T  × 

0

2

2 πcos ×
T

t
T

 
  

 

   = 0

π
I  × 2 π 2 πcos ×0 cos ×

2
T

T T
   

 = 0

π
I  × [cos 0 – cos π]  

 or, Iavg = 0

π
I  ×[1 – (– 1)] = 02

π
I  (7.11) 

 Similarly, Eavg = 02
π
E   (7.12) 



4 
 
7.5 RMS (Root Mean Square) or Virtual or Effective Value of Alternating Current: It is equal to the 

value of D.C. current, which when flowing through the same element for the same time period produces 
the same amount of heat. 

   Irms = 
2 2 2 2
1 2 3 ........ ni i i i
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Equation of wave d variable
n 

 (7.13) 

 The alternating current at any instant of time may be given as: 

  i = I0 sin ωt 

 We may assume the current constant over very small time period dt, the small amount of heat produced 
during this period may be given as: 

  dH = i 2 R dt  (7.14) 

 If the time period of the alternating current is T, the heat produced during one cycle may be given as: 

  H = 
0

H
d H  = 2

0

T
i R d t  = R × 2

0

T
i d t  (7.15) 

 If Irms be the effective value of the alternating current, the heat produced by this current in the duration T 
may be given as: 

  H = 2
rmsI  R T (7.16) 

 If heat produced in both the cases is same: 

  H = 2
rmsI  R T = R × 2

0

T
i d t  

 or, 2
rmsI  = 1

T
 × 2

0

T
i d t  

 or, Irms = 2

0

1 T
i d t

T
     (7.17) 

 Now, Irms = 2
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 or, Irms = 0

2
I

  (7.18) 

7.6 RMS (Root Mean Square) or Virtual or Effective Value of Alternating Emf: It is equal to the value 
of D.C. emf which when applied across the same element for the same time period produces the same 
amount of heat. 

   Erms = 
2 2 2 2
1 2 3 ........ ne e e e

n
   

 = 2

0

1 ( ) ( )
n

Equation of wave d variable
n 

 (7.19) 

 The alternating emf at any instant of time may be given as: 

  e = E0 sin ωt 

 We may assume the emf constant over very small time period dt, the small amount of heat produced 
during this period may be given as: 

  dH = 
2e

R
 dt  (7.20) 

 If the time period of the alternating emf is T, the heat produced during one cycle may be given as: 

  H = 
0

H
d H  = 

2

0

T e d t
R

 = 1
R

 × 2
0

T
e d t  (7.21) 

 If Erms be the effective value of the alternating emf, the heat produced by this emf in the duration T may 
be given as: 

  H = 
2
rmsE
R

 × T (7.22) 

 If heat produced in both the cases is same: 

  H = 
2
rmsE
R

 × T = 1
R

 × 2
0

T
e d t  

 or, 2
rmsE  = 1

T
 × 2

0

T
e d t  

 or, Erms = 2

0

1 T
e d t

T
     (7.23) 

 So, as similar to the current, we may directly write the RMS value of alternating emf as: 

  Erms = 0

2
E

   (7.24) 

 **: All the electrical measuring instruments give the RMS value of any A.C. quantity on their displays. So, 
always remember that the default given value (without mentioning the name of the value, which 
value is mentioned) of any A.C. quantity is its RMS value.  

Problem 7.1: The electric mains in a house is marked as 220 V, 50 Hz. Write down the equation for 
instantaneous voltage of the voltage. [CBSE 1994-95, Haryana 2001-02] 
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Solution: Erms = 220 V,            f = 50 Hz 

 The expression for the rms value of alternating emf may be given as: 

  Erms = 0

2
E

                 or,                  E0 = 2  Erms = 2  × 220 = 200 2  V 

 Now, the equation for instantaneous voltage / emf may be given as: 

  e = E0 sin ωt = E0 sin 2 π f t = 200 2  sin (2 π × 50 × t) = 200 2  sin (100 π t) Volts  

Problem 7.2: An electric lamp operates at 12 V d.c. If this lamp is to be connected to an a.c. source and the 
normal brightness is required, determine the peak value of the a.c. source. 

Solution: Ed.c. = 12 V 

 In order to get the normal brightness, the a.c. voltage applied across the lamp must have same 
rms value as that of the d.c. emf. 

 So, Erms = Ed.c. = 12 = 0

2
E

 

 or, E0 = 2  × 12 = 16.97 V 

Problem 7.3: The peak value of an alternating voltage applied to a 50 Ω resistor is 10 V. Determine the rms 
current, if the voltage frequency is 100 Hz, write down the expression for the instantaneous 
current. 

Solution: R = 50 Ω,            E0 = 10 V,            f = 100 Hz 

 Peak value of the resultant current in the resistor may be given as: 

  I0 = 0E
R

 = 10
50

 = 0.2 A = 200 mA 

 The rms value of the resultant current may be given as: 

  Irms = 0

2
I

 = 200
2

 = 100 2  mA 

 The expression for the instantaneous value of the current may be given as: 

  i = I0 sin ωt = I0 sin (2 π f t) = 200 sin (2 π × 100 × t) = 200 sin (200 π t) m-Amp 

Problem 7.4: Determine the rms value of the current shown in the Fig. 7.3.  [CBSE 1997-98] 

Solution: I0 = 2 A 

 The rms value of the given rectangular waveform may be 
given as: 

  Irms = 
2 2 2
1 2 3

3
I I I   = 

2 2 2(2) ( 2) (2)
3

    = 2 A 

Problem 7.5: The electric current in a circuit is given as: i = i0 (t / τ) at some instant of time. Determine the 
rms current for the period t = 0 to t = τ. 
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Solution: Given:  i = i0 τ
t 

 
 

 

 The rms value of the current may be given as: 

  Irms = 
2τ

0
0

1
τ τ

ti d t   
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τ2
20

3
0τ

i t d t   = 
τ2 3

0
3

0
3τ

i t 
  
 

 = 
2 3 3
0
3

τ 0
3τ

i  
  
   

= 0

3
i

 

Problem 7.6: If the effective value of the current in 50 Hz a.c. circuit is 5 A. Determine i) the peak value of 

current, ii) the mean value of current over a half cycle, iii) the value of current after 1
300

 sec of 

its zero value first time. 

Solution: f = 50 Hz,            Irms = 5 A,            t = 
1

300
 sec 

 The expression for rms value of the current may be given as: 

  Irms = 0

2
I

  

 or, I0 = 2  Irms = 2 × 5 = 7.071 A 

 The mean value of the current over a half cycle may be given as: 

  Iavg = 02
π
I  = 2 7.071

π
  = 4.502 A 

 The instantaneous value of the current at t = 1
300

 sec may be given as: 

  i = I0 sin ωt = I0 sin (2 π f t) = 7.071 × sin 12 π 50
300

   
 

 = 6.124 A 

 **: Remember that π = 3.14 rad or 180° (put according to unit used).  

Problem 7.7: The instantaneous value of an alternating voltage across an electrical circuit is given by the 
expression e = 140 sin 300t Volts, where t is in seconds. Determine: i) the peak value of the 
voltage, ii) the rms value, iii) frequency of the supply. 

Solution: e = 140 sin 300t Volts 

 Writing the expression of the instantaneous value of alternating emf in standard form: 

  e = 140 sin 3002 π
2 π

t
 

  
 

 = 140 sin (2 π × 47.746 × t) Volts 

 Comparing it with the standard expression: e = e0 sin (2 π f t) 

  E0 = 140 V,                  f = 47.746 Hz 

 The rms value of the voltage may be given as: 
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  Erms = 0

2
E

 = 140
2

 = 98.995 V  

Problem 7.8: A resistance of 40 Ω is connected to an a.c. source of 220 V, 50 Hz. Determine: i) the rms 
current, ii) the maximum instantaneous current in the resistor, iii) the time taken by the current 
to change from its maximum value to the rms value. 

Solution: R = 40 Ω,            Vrms = 220 V,            f = 50 Hz 

 The rms value of the current through the resistor may be given as: 

  Irms = rmsV
R

 = 220
40

 = 5.5 A 

 The maximum value of the instantaneous current may be given as: 

  I0 = 2 × Irms = 2 × 5.5 = 7.778 A 

 The expression for the instantaneous current may be written as: 

  i = I0 sin ωt = 7.778 sin (2 π × 50 × t) = 7.778 sin (100 π t) Amp 

 Since, we have to determine the time taken by the current to change from its maximum value to 

the rms value, shifting the origin to π
2

 radian. So, the expression 

of the current becomes: 

  i = 7.778 sin (100 π t + π/2) = 7.778 cos (100 π t) Amp 

 The time taken may be calculated as: 

  Irms = 7.778 cos (100 π t) = 5.5 

 or, t = 1
100π

 × 1 5.5cos
7.778

  
 
 

 = 2.5 × 10−3 sec = 2.5 m-sec  

 **: Remember that π = 3.14 rad or 180° (put according to unit used).  

Problem 7.9: The instantaneous emf of an a.c. source is given as: e = 300 sin 314t Volts. Determine the rms 
value of the emf. [CBSE 1995-96, 1999-2000] 

Solution: e = 300 sin 314t Volts 

 So, E0 = 300 V 

 The rms value of the emf may be given as: 

  Erms = 0

2
E

 = 300
2

 = 212.132 V  

Problem 7.10: The instantaneous emf of an a.c. source is given as: e = 300 sin 314t Volts. Determine the peak 
value of the emf and frequency of the source. [CBSE 1992-93] 

Solution: e = 300 sin 314t Volts 

 Writing the expression of the instantaneous value of alternating emf in standard form: 

+ 0e

- 0e

ωt

e

0
3 /2π

π
2π

1 - Cycle

π/2

e0  tsin ω

e0 cos ωt

 
Fig. 7.4 
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  e = 300 sin 3142 π
2 π

t
 

  
 

 = 300 sin (2 π × 50 × t) Volts 

 Comparing it with the standard expression: e = e0 sin (2 π f t) 

  E0 = 300 V,                  f = 50 Hz 

Problem 7.11: The instantaneous current from an a.c. source is given as: i = 5 sin 314t Amp. Determine the 
rms value of current and frequency of the source. [CBSE PMT 1999-2000] 

Solution: i = 5 sin 314t Amp 

 Writing the expression of the instantaneous value of alternating current in standard form: 

  i = 5 sin 3142 π
2 π

t
 

  
 

 = 5 sin (2 π × 50 × t) Amp 

 Comparing it with the standard expression: i = I0 sin (2 π f t) 

  I0 = 5 A,                  f = 50 Hz 

 Now, the rms value of the current may be given as: 

  Irms = 0

2
I

 = 5
2

 = 3.536 A  

Problem 7.12: An alternating current is given as: i = 50 sin (400 πt + ɸ) Amp. Determine the frequency and 
the rms value of the current.   

Solution: i = 50 sin (400 πt + ɸ) Amp 

 Writing the expression of the instantaneous value of alternating current in standard form: 

  i = 50 sin 400 π2 π
2 π

t
 

    
 

 = 50 sin (2 π × 200 × t) Amp 

 Comparing it with the standard expression: i = I0 sin (2 π f t) 

  I0 = 50 A,                  f = 200 Hz 

 Now, the rms value of the current may be given as: 

  Irms = 0

2
I

 = 50
2

 = 25 2  A = 35.36 A  

Problem 7.13: An alternating emf of peak value 350 V is applied across a resistor of 100 Ω through an a.c. 
ammeter. Determine the reading of the ammeter.   

Solution: E0 = 350 V,            R = 100 Ω 

 The peak value of the current through the ammeter and the resistor may be given as: 

  I0 = 0E
R

 = 350
100

 = 3.5 A 

 Since, all the measuring instruments show the rms value on their displays. So, the reading of the 
ammeter may be given as: 
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  Irms = 0

2
I

 = 3.5
2

 = 2.475 A   

Problem 7.14: The effective value of the current in a 50 Hz a.c. circuit is 5 A. Determine the value of current 

after 1
300

 sec from its zero value and increasing in positive direction.   [Punjab 1993-94] 

Solution: f = 50 Hz,            Irms = 5 A,            t = 1
300

 sec (from zero value) 

 The instantaneous value of the current may be given as: 

  i = I0 sin ωt = 2  Irms sin (2 π f t) = 2  × 5 × sin 12 π 50
300

   
 

 = 6.124 A 

Problem 7.15: The peak value of an alternating current of frequency 50 Hz is 14.14 A. Determine its rms 
value. How much time will the current take in reaching from 0 A to its maximum value?    

Solution: f = 50 Hz,            I0 = 14.14 A 

 The rms value of the current may be given as: 

  Irms = 0

2
I

 = 14.14
2

 = 10 A 

 The time taken by the current in reaching from 0 A to its maximum value is quarter of its time 
period. 

 So, t = 
4
T  = 1

4 f
 = 1

4 50
 = 5 × 10−3 sec = 5 m-sec 

 Alternatively: 

  i = 14.14 sin (2 π × 50 × t) = 14.14 

 or, t = 1
100π

 × 1 14.14sin
14.14

  
 
 

 = 5 × 10−3 sec = 5 m-sec 

Problem 7.16: A 100 Ω iron is connected to a 220 V, 50 Hz supply. Determine: i) peak potential difference 
across the iron, ii) average potential difference across the iron, iii) rms value of current drawn 
by the iron.    

Solution: R = 100 Ω,            Vrms = 220 V,            f = 50 Hz 

 The peak value of potential difference across the iron may be given as: 

  V0 = 2 × Vrms = 2 × 220 = 311.127 V 

 The average potential difference across the iron may be given as: 

  Vavg = 02
π
V  = 2 311.127

π
  = 198.07 V 

 The rms value of the current drawn by the iron may be given as: 
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  Irms = rmsV
R

 = 220
100

 = 2.2 A   

Problem 7.17: The expression for a.c. current flowing through an electrical circuit is i = 50 sin 100πt Amp. 
Determine: i) frequency of the supply, ii) mean value of the a.c. current over positive half cycle, 

iii) rms value of the current, iv) the value of current after 1
300

 sec from the instant when it was 

zero ampere.    

Solution: i = 50 sin (100 π t) Amp 

 Writing the expression of the instantaneous value of alternating current in standard form: 

  i = 50 sin 100π2 π
2 π

t
 

  
 

 = 5 sin (2 π × 50 × t) Amp 

 Comparing it with the standard expression: i = I0 sin (2 π f t) 

  I0 = 50 A,                  f = 50 Hz 

 The mean value of the current over positive half cycle may be given as: 

  Iavg = 02
π
I  = 2 50

π
  = 31.83 A  

 The rms value of the current may be given as: 

  Irms = 0

2
I

 = 50
2

 = 35.36 A  

 The instantaneous value of the current may be given as: 

  i = I0 sin ωt = I0 sin (2 π f t) = 50 × sin 12 π 50
300

   
 

 = 43.3 A 

Problem 7.18: An alternating current of frequency 60 Hz has a maximum value of 120 A. Write down the 
equation for its instantaneous value. Find the time taken to reach 96 A for the first time. 

Solution: f = 60 Hz,               I0 = 120 A 

 The expression for the instantaneous value of current may be given as:  

  i = I0 sin 2π f t = 120 sin (2 π × 60 t) = 120 sin (120 π t) Amp 

 Now for time taken: 

  i = 120 sin (120 π t) = 96 

 or, 120 π t = 1 96sin
120

  
 
 

 = 53.13° = 0.927 radians   

  or, t = 53.13
120 180


 

 = 0.927
120×(22/7)

 = 2.46 milli-sec 

7.7 Phasor Diagram of Sinusoidal A.C. Quantities: Any sinusoidal A.C. quantity is equivalent to a 
rotating vector at a constant angular speed (ω) and its instantaneous value is equal to the projection of 
that rotating vector at y-axis at any instant of time (as shown in Fig. 7.5 just like the true S.H.M.).  
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 So, they may be represented by stationary vectors on a diagram known as phasor diagram, if and only 

if all the vectors are rotating at the same constant 
angular speed (ω), so that they are stationary 
w.r.t. each other. This is the reason of 
standardizing the frequency of supply in India at 
50 Hz and at 50 / 60 Hz in other countries.  

 All phasor diagrams for practical purposes are 
drawn using RMS (effective) values of A.C. 
quantities.  

 Phase: Phase of an ac quantity means “the time period which has been elapsed after the origin when the 
a.c. quantity passes through the zero value first time after the origin and increasing in positive direction 
there-afterwards”. [Fig. 7.6(a)] 

 Phase Angle: “Angle between the phasor of an a.c. quantity and 
the reference line is known as phase angle” of that a.c. quantity 
[Fig. 7.6(b)]. So, phase and phase angle of an a.c. quantity are 
same. 

 Phase Difference: Angle between two A.C. quantities is known 
as the phase difference between these A.C. quantities. 

 e.g. If, v = V0 sin ωt ,  and i1 = I01 sin (ωt – 60°), and i2 = I02 sin (ωt – 100°) 

 Refer to Fig. 7.7: 

 Phase of v = 0°, Phase of i1 = – 60°, Phase of i2 = – 100°  

 Phase difference between v and i1 = 0° – (– 60°) = 60° (i1 lagging behind v) 

 and, Phase difference between i1 and i2 = – 60° – (– 100°) = 40° (i2 lagging behind i1) 

7.8 Purely Resistive Circuit: In a purely resistive circuit applied voltage and the current 
in circuit are co-phasor (in same phase, refer to Fig. 7.8) and as explained below:  

  Applied voltage is, v = V0 sin ωt  (7.25) 

  Now, v = V0 sin ωt = i R  

  or, i = 0V
R

 sin ωt = I0 sin ωt (7.26) 

  **: Note that the phase angle of voltage as well as 
current wave is zero, as shown in the Fig. 7.9 
(a) and (b). So, the phase difference between 
voltage and current wave is also zero, i.e. 
voltage and current are co-phasor.  

  Examining equations (7.25) and (7.26) and the 
Phasor Diagram in Fig. 7.9 (b): The reader may 
easily conclude that: 

   I0 = 0V
R

 and angle between v and i = 0° (7.27) 

V

I1
I2

60°

100°
40°

 
Fig. 7.7 

ωt

e

t t0 12, t0 t1

t7

t2

t8

t3

t9
t4

t10

t5

t11

t6

t12
t6

t11

t3

t9

t4

t8

t5

t7

ω
t2

t1

t10  
Fig. 7.5 

V I

ϕ
Phase

(a)

ϕ
V

I

Phase
Angle

(b)  
Fig. 7.6 

v = V  t0 sin ω

i
R

VI

 
Fig. 7.8 

VI

ϕ = 0°

(b)

ωt0 π/2
3 /2π

π
2π

E
I

E0
I0

(a)  
Fig. 7.9 



13 
 
  Power Consumed in a Purely Resistive Circuit: The instantaneous power in the circuit may be given 

by the product of instantaneous voltage and instantaneous current: 

   p = v i = V0 sin ωt × I0 sin ωt = V0 I0 sin2 ωt = V0 I0 
1 cos 2ω

2
t 

 
 

 

  Now, Pavg = 1
π

 × 
π

0 0
0

1 cos 2ω (ω )
2

tV I d t 
 
 

  = 0 0
2 π

V I
 × 

π

0

sin 2ωω
2

tt   
 

    = 0 0
2 π

V I
 × [(π − 0) – (0 − 0)] = 0 0

2
V I

 = 0
2

V
 × 0

2

I
 = Vrms Irms  

  or, Pavg = V I Watts (7.28) 

7.9 Purely Inductive Circuit: When an alternating current flows through a coil (pure 
inductor), the coil is associated with the alternating flux produced due to the 
alternating current flowing through itself. So, in a purely inductive circuit an emf is 
being induced in the coil (pure inductor), which is directly proportional to the rate of 
change of flux and hence the rate of change of current flowing through itself.  

  Applied voltage and emf induced in the inductor are same (refer to Fig. 7.10).   

   v = V0 sin ωt = vL  d
d t
   d i

d t
 

  or, V0 sin ωt = vL = L × d i
d t

    (7.29) 

  (Where, L is proportionality constant and is known as self 
inductance of the coil / inductor). 

  Now, i = 1
Lv d t

L
   

    = 1
L

 × 0 sin ωV t d t  = − 0
ω

V
L

 cos ωt     

  or, i = 0
ω

V
L

 × sin πω
2

t  
 

 = 0

L

V
X

 × sin πω
2

t  
 

 = I0 sin πω
2

t  
 

 (7.30) 

  Examining equation (7.29) and (7.30) and the Phasor Diagram in Fig. 7.11 (b): The reader may 
easily conclude that:  

   I0 = 0
ω

V
L

 = 0

L

V
X

     and      ɸ = π
2

= 90° (lagging) (7.31) 

  XL = ω L = 2π f L; is the inductive reactance (reactance offered by the inductor to flow of current). 

  Also, current lags behind the voltage by 90°. Variation of the inductive reactance (XL) w.r.t. the supply 
frequency is also shown in the Fig. 7.11 (c). 

v V t =  sin 0 ω

i

VL
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  Note that: If the power supply across the inductor is d.c., i.e. the supply frequency f = 0 then, the 

inductive reactance XL = ω L = 2π f L = 0. So, an inductor behaves as short circuit for the d.c. supply 
at its steady state operation. 

  Power Consumed in a Purely Inductive Circuit: The instantaneous power in the circuit may be given 
by the product of instantaneous voltage and instantaneous current: 

   p = v i = V0 sin ωt × I0 cos ωt = 0 0
2

V I
 sin 2ωt  

  Now,  Pavg = 1
π

 × 
π

0 0

0
sin 2ω (ω )

2

V I
t d t

 
 
  
  = 0 0

2 π

V I
 × 

π

0

cos 2ω
2

t   
               

    = 0 0
4π

V I
 × 0

π[cos 2ω ]t  = 0 0
4 π

V I
 × [cos 0 – cos π] = 0 0

4 π

V I
 × [1 − 1] = 0 Watts 

  So, Pavg = 0 Watts (7.32) 

  Hence, no power is being dissipated in a purely inductive circuit. Although, inductive power is there in 
the circuit, oscillating at the double of the supply frequency (2ω), but average power dissipated is zero. 
So, an inductor is an energy storing device, which stores the power in half cycle and returns it back to 
the circuit in next half cycle. 

  The current in the circuit is lagging behind the supply voltage by 90°, and the power dissipated in the 
circuit due to this current is zero. So, this current is known as wattles current / virtual current.  

7.10 Purely Capacitive Circuit: In a purely capacitive circuit opposite charges are being 
stored on the plates of the capacitor due to the flow of an alternating current, the 
applied alternating voltage and the charge stored on the capacitor plates may 
respectively be given as: (refer to Fig. 7.12).  

   vC = V0 sin ωt (7.33) 

  and, q = C vC  

  and, i = d q
d t

 = d
d t

(C V0 sin ωt) = ω C V0 cos ωt 

  or, i = 0
(1/ ω )

V
C

 × sin πω
2

t  
 

 = 0

C

V
X

 × sin πω
2

t  
 

  

  or, i = I0 sin πω
2

t  
 

 (7.34) 

  Examining equation (7.33) and (7.34) and the Phasor Diagram in Fig. 7.13 (b): The reader may 
easily conclude that:  

   I0 = 0
(1/ ω )

V
C

 = 0

C

V
X

     (7.35.1) 

v v t =  sin m ω

i

VC

I

vC
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  and,    ɸ = π
2

 = 90° (leading) (7.35.2) 

  XC = 1
ωC

 = 1
2 π f C

; is capacitive reactance (reactance offered by the capacitor to flow of current). 

  Also, current leads the voltage by 90°. Variation of the capacitive reactance (XC) w.r.t. the supply 
frequency is shown in Fig. 7.13 (c). 

  Note that: If the power supply across the capacitor is d.c., i.e. the supply frequency f = 0 then, the 

capacitive reactance XC = 1
ωC

 = 1
2 π f C

 = ∞. So, a capacitor behaves as open circuit for the d.c. 

supply at its steady state operation. 

  Power Consumed in a Purely Capacitive Circuit: The instantaneous power in the circuit may be 
given by the product of instantaneous voltage and instantaneous current: 

   p = v i = V0 sin ωt × I0 cos ωt = 0 0
2

V I
 sin 2ωt  

  Now,  Pavg = 1
π

 × 
π

0 0

0
sin 2ω (ω )

2

V I
t d t

 
 
  
  = 0 0

2 π

V I
 × 

π

0

cos 2ω
2

t   
 

    = 0 0
4 π

V I
 × 0

π[cos 2ω ]t  = 0 0
4 π

V I
 × [cos 0 – cos π] = 0 0

4 π

V I
 × [1 – 1] = 0 Watts 

  So, Pavg = 0 Watts (7.36) 

  Hence, no power is being dissipated in a purely capacitive circuit, as similar to a purely inductive 
circuit. Although, capacitive power is there in the circuit, oscillating at the double of the supply 
frequency (2ω), but average power dissipated is zero. So, a capacitor is also an energy storing device, 
which stores the power in half cycle and returns it back to the circuit in next half cycle. 

  The current in the circuit is leading the supply voltage by 90°, and the power dissipated in the circuit 
due to this current is zero. So, this current is known as wattles current / virtual current.  

 Effect of a Capacitor in D.C. Circuit: When a capacitor is connected across a d.c. supply source, it 
starts to get charged due to unidirectional current flowing through the capacitor due to the d.c. supply 
source.  

 Consider the capacitor connected across a d.c. battery through a resistor 
(R), a tapping switch (S) and an ammeter (A), as shown in the Fig. 7.14. 
As soon as the switch S is closed, the electrons from the plate P of the 
capacitor starts to flow through the circuit towards the plate Q of the 
capacitor under the influence of electric field due to the emf of the 
battery. So, the plate P of the capacitor gets to acquire a positive charge, 
while the plate Q of the capacitor gets to acquire an equal negative 
charge. The capacitor starts charging in this way and a new electric 
field, due to the positive charge on plate P and the negative charge on plate Q, builds up in the opposite 
direction of the electric field due to battery. So, the current in the circuit decreases with elapsing time, 
and finally becomes zero, when the electric field due to charge on capacitor plates becomes equal to the 
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electric field due to emf of the battery. It again proves that a capacitor behaves as open circuit for a d.c. 
supply source at its steady state operation. 

 The individual voltages across the two elements (resistor and capacitor) may respectively be given as: 

  VR = i R (7.37) 

 and, VC = q
C

  (7.38) 

 Now, applying Kirchhoff’s Voltage Law in the circuit: 

  E = VR + VC = i R + q
C

 = R d q
d t

 + q
C

 

 or, C E q
C
  = R d q

d t
 

 or, d t = RC
C E q

 d q  (7.39) 

 Integrating above equation: 

  t = – R C ln (C E – q) + A (7.40) 

 Now at the time t = 0, the charge deposited on the capacitor is zero, i.e. q = 0. Putting these values in 
equation (7.40): 

  0 = – R C ln (C E – 0) + A 

 or, A = R C ln (C E)  (7.41) 

 So, t = – R C ln (C E – q) + R C ln (C E) = – R C [ln (C E – q) – ln (C E)] 

 or, − t
RC

 = ln C E q
C E

 
 
 

 

 or, e− (t / RC) = C E q
C E
  = 1 – q

C E
  

 So, q = C E (1 − e− (t / RC)) (7.42) 

 The current through the circuit may be given as: 

  i = d q
d t

 = d
d t

 [C E (1 − e− (t / RC))] = C E ( / )10 t RCe
RC

        
 

 or, i = E
R

 × e− (t / RC) =  E
R

 × e− (t / τ) (7.43) 

 Where, τ = time constant of the (RC) circuit = RC 

 At a time t = τ: 

  q = C E (1 − e− (t / RC)) = C E (1 − e− (τ / τ)) = C E (1 − e− 1) = C E 11
e

  
 

 = C E 1e
e
 

 
 

 

 or, q = 0.632 × C E = 0.632 × q0 = 0.632 × steady state charge on the capacitor   
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 SO, “the time constant may be defined as the time taken by the capacitor to charge 0.632 times the 

steady state charge on the capacitor”. 

 At a sufficiently large time, i.e. at t = ∞. 

  i (t) = E
R

 × e– (∞ / RC) = E
R

 × ( / )
1

R Ce   = E
R

 × 1


 = 0 

 i.e. the capacitor behaves as open circuit after getting fully charged to the source voltage and hence 
current becomes zero in the circuit at steady state. 

Problem 7.19: A 100 Hz a.c. supply source is applied across a 14 mH coil. Determine the reactance of the coil 
offered to the flow of current.  [Haryana 1997-98] 

Solution: f = 100 Hz,               L = 14 mH 

 The reactance offered by the inductor to flow of current may be given as: 

  XL = ω L = 2 π f L = 2 π × 100 × 14 × 10−3 = 8.797 Ω  

Problem 7.20: A pure inductor of 25 mH is connected to a source of 220 V, 50 Hz. Determine the inductive 
reactance and rms current flowing through the circuit.  [NCERT] 

Solution: L = 25 mH,               V = 220 V,            f = 50 Hz 

 The reactance offered by the inductor to flow of current may be given as: 

  XL = ω L = 2 π f L = 2 π × 50 × 25 × 10−3 = 7.854 Ω 

 So, the rms value of the current flowing through the circuit may be given as: 

  I = rms

L

V
X

 = 220
7.854

 = 28.011 A  

Problem 7.21: Determine the maximum value of current when an inductance of 1 H is connected to an a.c. 
source of 200 V, 50 Hz.  [CBSE 1994-95, Punjab 1999-2000] 

Solution: L = 1 H,               V = 200 V,            f = 50 Hz 

 The maximum value of the current flowing through the inductor may be given as: 

  I0 = 2 × Irms = 2  × rms

L

V
X

 = 2  × 
2 π

rmsV
f L

 = 2  × 200
2π 50 1 

 = 0.9 A     

Problem 7.22: A coil has an inductance of 1 H. Determine: i) the required frequency, when it offers an 
inductive reactance of 3142 Ω to the flow of current, ii) the value of capacitance, which has the 
same reactance at this frequency.  [CBSE 1994-95] 

Solution: L = 1 H,               XL = 3142 Ω 

 The expression for inductive reactance offered by an inductor to the flow of current may be 
given as: 

  XL = 2 π f L 

 or, f = 
2π

LX
L

 = 3142
2 π 1 

 = 500 Hz 

 The expression for capacitive reactance offered by a capacitor to the flow of current may be 
given as: 

  XC = 1
2 π f C
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 or, C = 1
2π Cf X

 = 1
2 π 500 3142 

 = 101.31 × 10−9 F = 101.31 nF  

Problem 7.23: An a.c. circuit consists of only an inductor of inductance 2 H. If the current through it is 
represented by a sine wave of amplitude 0.25 A with a frequency of 60 Hz, determine the 
effective potential difference across the inductor. 

Solution: L = 2 H,               I0 = 0.25 A,            f = 60 Hz 

 The effective (rms) value of potential difference across the inductor may be given as: 

  Vrms = 0

2
V

 = 0

2
LI X

 = 0 (2π )
2

I f L
 = 0.25 (2 π 60 2)

2
    = 133.286 V  

Problem 7.24: An alternating emf e = 220 sin (100 π t) Volts is applied across an inductor of 1
π

 H. Write down 

an equation for instantaneous current through the circuit. Also, determine the reading of an a.c. 
ammeter, if connected in the circuit. 

Solution: e = 220 sin (100 π t) Volts,            L = 1
π

 H 

 Comparing above equation with: e = E0 sin ωt 

  E0 = 220 V,            ω = 100 π rad/sec 

 The instantaneous current through the circuit may be given as: 

  i = 
L

e
X

 = 
ω
e
L

 = 220
100 π (1/ π)

 sin (100 π t) = 2.2 sin (100 π t) Amp 

 Since, all the measuring instruments give the rms value on their displays, so the reading of the 
ammeter may be given as: 

  Irms = 0

2
I

 = 2.2
2

 = 1.556 A 

Problem 7.25: An inductor of inductance 200 mH is connected to an a.c. source of peak emf 210 V, 50 Hz. 
Determine the peak current through the inductor. Also, determine the value of instantaneous 
voltage across the inductor at the instant when the instantaneous current is at its peak value.  

Solution: L = 200 mH,            V0 = 210 V,            f = 50 Hz 

 The value of the peak current through the inductor may be given as: 

  I0 = 0

L

V
X

 = 0

2 π
V

f L
 = 210

2 π 50 0.200 
 = 3.342 A 

 Since the current through the purely inductive circuit lags behind the supply voltage by 90°, so 
the value of instantaneous voltage at the instant when the instantaneous current is at its peak 
value may be given as: 

  v(when i is at its peak value) = 0 Volt   

Problem 7.26: A 15 µF capacitor is connected across a 220 V, 50 Hz source. Determine the capacitive 
reactance and the current (rms and peak value) flowing through the circuit. If the frequency of 
the supply source is doubled, what happens to the capacitive reactance and the current?
 [NCERT] 

Solution: C = 15 µF,            V = 220 V,            f = 50 Hz 
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 The capacitive reactance offered by a capacitor to the flow of current may be given as: 

  XC = 1
2 π f C

 = 6
1

2 π 50 15 10  
 = 212.21 Ω 

 The rms value of the current flowing through the circuit may be given as: 

  Irms = rms

C

V
X

 = 220
212.21

 = 1.037 A  

 The peak value of the current flowing through the circuit may be given as: 

  I0 = 2 × Irms = 2 × 1.037 = 1.467 A 

 If the frequency got doubled, the capacitive reactance (being XC  1
f

) becomes halved of the 

earlier value, and the current (being I  1

CX
  f) becomes double of the earlier value. 

 So, 'CX  = 
2
CX  = 212.21

2
 = 106.105 Ω 

 and, 'rmsI  = 2 × Irms = 2 × 1.037 = 2.074 A   

 and, 0'I  = 2 × I0 = 2 × 1.467 = 2.934 A 

Problem 7.27: A 1 µF capacitor is connected across a supply source having emf e = 250 sin (100 π t) Volts. 
Write down the expression for the instantaneous current flowing through the circuit and 
determine the reading of an a.c. ammeter connected in the circuit.  

Solution: C = 1 µF,            e = 250 sin (100 π t) Volts 

 Comparing above equation with: e = E0 sin ωt 

  E0 = 250 V,            ω = 100 π rad/sec 

 The instantaneous current through the circuit may be given as: 

  i = 
C

e
X

 = ω C e = 100 π × 1 × 10−6 × 250 sin (100 π t)  

 or, i = 0.0785 sin (100 π t) Amp = 78.5 sin (100 π t) m-Amp 

 Since, all the measuring instruments give the rms value on their displays, so the reading of the 
ammeter may be given as: 

  Irms = 0

2
I

 = 78.5
2

 = 55.51 mA 

Problem 7.28: Determine the inductive reactance of a coil, if current flowing through it is 800 mA when an a.c. 
source of 40 V is applied across it. [Haryana 1990-91] 

Solution: I = 800 mA,            V = 40 V 

 The expression for the voltage across an inductor may be given as: 

  V = I XL  

 or, XL = V
I

 = 40
0.800

 = 50 Ω 
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Problem 7.29: Determine the value of current flowing through an inductor of 2 H and negligible resistance, 

when connected across an a.c. source of 150 V, 50 Hz. [Punjab 1991-92] 

Solution: L = 2 H,            V = 150 V,            f = 50 Hz 

 The current flowing through an inductor may be given as: 

  I = 
L

V
X

 = 
2 π

V
f L

 = 150
2 π 50 2 

 = 0.239 A   

Problem 7.30: An inductor having an inductive reactance of 22 Ω at 200 Hz and a negligible resistance is 
connected across 220 V, 50 Hz a.c. supply source. Determine the value of inductance and 
reactance at this new frequency. 

Solution: XL1 = 22 Ω (at f1 = 200 Hz),            V = 220 V,            f2 = 50 Hz 

 The expression for the inductive reactance may be given as: 

  XL1 = 2 π f1 L 

 or, L = 1

12 π
LX
f

 = 22
2π 200

 = 17.5 mH (inductance is independent of frequency) 

 The ratio inductive reactance at two different frequencies may be given as: 

  2

1

L

L

X
X

 = 1

2

2 π
2 π

f L
f L

 = 1

2

f
f

 

 So, XL2 = 1

2

f
f

 × XL1 = 50
200

 × 22 = 5.5 Ω    

Problem 7.31: An inductive coil has inductive reactance of 88 Ω at 50 Hz. Determine the self inductance of the 
coil.  

Solution: XL = 88 Ω (at f = 50 Hz) 

 The expression for the inductive reactance may be given as: 

  XL = 2 π f L 

 or, L = 
2 π

LX
f

 = 88
2 π 50

 = 280.112 mH 

Problem 7.32: Determine the maximum current through an inductor of 2 H connected across an a.c. source of 
150 V, 50 Hz.  [Punjab 1996-97] 

Solution: L = 2 H,            V = 150 V,            f = 50 Hz 

 The maximum value of the current may be given as: 

  I0 = 2 × Irms = 2  × rms

L

V
X

 = 2  × 
2 π

rmsV
f L

 = 2  × 150
2 π 50 2 

 = 0.338 A  

Problem 7.33: Determine the required frequency at which the inductive reactance of 0.7 H inductor is 220 Ω.  

Solution: L = 0.7 H,            XL = 220 Ω 

 The expression for the inductive reactance may be given as: 

  XL = 2 π f L 
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 or, f = 
2π

LX
L

 = 220
2π 0.7

 = 50.02 Hz 

Problem 7.34: Determine the capacitive reactance of a 5 µF capacitor, when it is connected across a supply 
source of frequency: i) 50 Hz, ii) 106 Hz.  [Haryana 1994-95] 

Solution: C = 5 µF,            f1 = 50 Hz,            f2 = 106 Hz 

 The capacitive reactance may be given as: 

  XC1 = 
1

1
2 π f C

 = 6
1

2 π 50 5 10  
 = 636.62 Ω  

 and, XC2 = 
2

1
2 π f C

 = 6 6
1

2 π 10 5 10  
 = 31.83 mΩ  

Problem 7.35: A capacitor has a capacitance of 1
π

 µF. Determine its reactance, when it is connected across a 

supply source of frequency: i) 50 Hz, ii) 106 Hz.  

Solution: C = 1
π

 µF,            f1 = 50 Hz,            f2 = 106 Hz 

 The capacitive reactance may be given as: 

  XC1 = 
1

1
2 π f C

 = 6
1

2 π 50 (1/ π) 10  
 = 10 kΩ  

 and, XC2 = 
2

1
2 π f C

 = 6 6
1

2 π 10 (1/ π) 10  
 = 0.5 Ω  

Problem 7.36: A 1.5 µF capacitor has a capacitive reactance of 12 Ω. Determine the frequency of the supply 
source. If the frequency of the supply source is doubled, determine the new capacitive 
reactance.   

Solution: C = 1.5 µF,            XC1 = 12 Ω,            f2 = 2 f1    

 The expression for the capacitive reactance offered by a capacitor to the flow of current may be 
given as: 

  XC = 1
2 π f C

  

 or, f = 1
2πCX C

 = 6
1

12 2π 1.5 10  
 = 8841.9 Hz 

 If the frequency got doubled, the capacitive reactance (being XC  1
f

) becomes halved of the 

earlier value. 

 So, XC2 = 
2
CX  = 12

2
 = 6 Ω 

Problem 7.37: A 10 µF capacitor is connected to an oscillator with an output voltage e = 10 sin ωt Volts. If the 
angular frequency ω = 10 rad/sec, determine the peak current in the circuit.   

Solution: C = 10 µF,            e = 10 sin ωt Volts            ω = 10 rad/sec 
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 The value of peak current flowing through the circuit may be given as: 

  I0 = 0

C

E
X

 = 0

(1/ ω )
E

C
 = ω C E0 = 10 × 10 × 10−6 × 10 = 1 × 10−3 A = 1 mA    

Problem 7.38: A capacitor has a capacitive reactance of 100 Ω at 50 Hz. Determine the reactance at a 
frequency of 125 Hz.   

Solution: XC1 = 100 Ω (at f1 = 50 Hz),            f2 = 125 Hz 

 We know that the capacitive reactance is inversely proportional to the supply frequency,  

 i.e.  XC  1
f
So,                  2

1

C

C

X
X

 = 1

2

f
f

 

 or, XC2 = 2

1

f
f

 × XC1 = 50
125

 × 100 = 40 Ω 

7.11 Resistance – Inductance (R-L) Series Circuit: Refer to Fig. 7.15 (a), which shows an R-L series 
circuit in which a resistor and an inductor are connected in series carrying the same current I. So, the 
current vector is same for both the elements [note the direction of current vector drawn above resistor 
and inductor in Fig. 7.15 (a) is same]. Voltage across the 
resistor (VR) is co-phasor with the current vector [see 
above the resistor in the Fig. 7.15 (a)], and voltage across 
the inductor (VL) is 90° ahead of current vector [see above 
the inductor in the Fig. 7.15 (a)], as current lags the 
voltage by 90° in a pure inductor. Now, a phasor diagram 
of three voltages in the circuit V, VR and VL may be drawn 
as in Fig. 7.15 (b), known as “Voltage Triangle”. The 
vectors I and VR are in phase, VL is 90° ahead of I and the 
resultant of VR and VL is V. Angle between the resultant 
(applied) voltage V and I is power factor angle (ɸ); the 
line current I is lagging behind the supply voltage V by an 
angle ɸ. So, if supply voltage is given as: 

    v = V0 sin ωt   (7.44) 

  Circuit current may be given as: i = I0 sin (ωt – ɸ)  (7.45) 

  Power Consumed in a Resistance – Inductance (R-L) Series Circuit: The instantaneous power in the 
circuit may be given by the product of instantaneous voltage and instantaneous current: 

   p = v i = V0 sin ωt × I0 sin (ωt – ɸ)  

    = 0 0
2

V I
 [cos {ωt – (ωt – ɸ)} – cos {ωt + (ωt – ɸ)} = 0 0

2
V I

 [cos ɸ – cos (2ωt – ɸ)]  

  Now,  Pavg = 1
π

 × 
π

0 0

0
{cos cos (2ω )} (ω )

2

V I
t d t

 
    

  
  = 0 0

2π
V I

 × 
π

0

sin (2ω )(ω ) cos
2

tt      
 

    = 0 0
2 π

V I
 × sin (2π ) sin (2 0 )π cos 0 cos

2 2
                 
      

V

I R L

I I

VR

VR

VL

VL
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I Z
2
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I R
2
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ϕ
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ϕ
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ϕ

(b)

I c
os ϕ

I sin ϕ

 
Fig. 7.15 
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  or, Pavg = 0 0
2 π

V I
 × ( sin ) ( sin )π cos 0

2 2
              
      

    = 0 0
2 π

V I
 × sin sinπ cos

2 2
      

 = 0 0
2

V I
 × cos ɸ = 0

2

V
 × 0

2

I
 × cos ɸ 

  So, Pavg = V I cos ɸ Watts (7.46) 

 **:- cos ɸ (always, – 1 < cos ɸ < + 1) is the factor by which the power is being reduced in an A.C. circuit 
than that in case of a D.C. circuit (V I Watts), that is why cos ɸ is known as “Power Factor (P.F.)”. 

  If the circuit current I, shown in the phasor diagram in Fig. 7.15 (b), is resolved along the supply voltage 
(I cos ɸ) and along a perpendicular direction to supply voltage (I sin ɸ). The reader may observe from 
the equation (7.46) that: 

 i)  The component I cos ɸ is responsible for the power losses in the circuit, hence is known as       
Watt-Full Current.  

 ii) On the other hand, the component I sin ɸ is not responsible for any power loss in the circuit, hence 
is known as Watt-Less Current.  

  Impedance Triangle: If we divide the voltage triangle [Fig. 7.15 (b)] by the circuit current I, we will 
get another similar triangle [Fig. 7.15 (c)] known as “Impedance Triangle”. Refer to impedance 
triangle in Fig. 7.15 (c): (This impedance triangle along with voltage triangle and power triangle is 
very handy, tricky and useful for solving the numerical problems of single-phase A.C. circuits). 

  Clearly,   R = Z cos ɸ,       and,        XL = Z sin ɸ [Always remember XL is (+)ve] (7.47) 

   Z = (R + i XL)    and,    Z = 2 2
LR X    and,   ɸ = tan−1 LX

R
 
  
 

 = cos−1 R
Z

 
 
 

 (7.48) 

  Power Triangle: If we multiply the voltage triangle [Fig. 7.15 (b)] by the circuit current I, we will get 
another similar triangle [Fig. 7.15 (d)] known as “Power Triangle”. Refer to power triangle in Fig. 7.15 
(d): (This power triangle is very important. Also it is very handy, tricky and useful for solving the 
numerical problems of single-phase A.C. circuits.) 

  Apparent Power (I 2 Z or VI, its unit is kVA): The hypotenuse of the power triangle is the apparent 
power used in the circuit. Its unit is Volt-Amp (VA) or Kilo-Volt-Amp (kVA). 

   Apparent Power = V I = I 2 Z (kVA) (7.49) 

  True Power (I 2 R or V I cos ɸ, its unit is kW): The base of the power triangle is the power dissipated 
in the resistance and is true / real power, as power dissipates in resistance only. Its unit is Watt (W) or 
Kilo-Watt (kW). 

   True Power = V I cos ɸ = I 2 R (kW) (7.50) 

  Reactive Power (I 2 XL or V I sin ɸ, its unit is kVAR): The perpendicular of the power triangle is the 
power stored and returned in the reactance and is known as reactive power as power is not being 
dissipated in the reactance. Its unit is Volt-Amp-Reactive (VAR) or Kilo-Volt-Amp-Reactive (kVAR). 

   Reactive Power = V I sin ɸ = I 2 XL (kVAR) (7.51) 

  It can clearly be observed from above discussion and the power triangle, that: 
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   (Apparent Power)2 = (True Power)2 + (Reactive Power)2 

  or, (kVA)2 = (kW)2 + (kVAR)2 (7.52) 

Problem 7.39: If an inductor and a resistor are connected in series across a 12 V, 50 Hz supply source, a 
current of 0.5 A is flowing through them. The phase difference between the applied voltage and 

the circuit current is π
3

 rad. Determine the value of R and L in the circuit. [CBSE 2005-06]    

Solution: An R-L Series Circuit: V = 12 V,             f = 50 Hz,            I = 0.5 A,            ɸ = π
3

 rad = 60° 

 The impedance of the circuit may be given as: 

  Z = V
I

 = 12
0.5

 = 24 Ω 

 So, the circuit elements (resistance and inductor in the 
circuit) may respectively be given, using the impedance 
triangle, as: 

  R = Z cos ɸ = 24 × cos 60° = 24 × 0.5 = 12 Ω 

 and, XL = Z sin ɸ = 24 × sin 60° = 24 × 3
2

 = 20.785 Ω = 2 π f L 

 So, L = 
2 π

LX
f

 = 20.785
2 π 50

 = 66.16 mH 

Problem 7.40: A lamp of resistance 10 Ω, in series with an inductor L, is connected across a supply source of 

100 V, 50 Hz. If the phase angle between the applied voltage and the circuit current is π
4

 rad, 

determine the value of inductance (L). Also determine the value of current flowing through the 
circuit.  [CBSE 2000-01]    

Solution: An R-L Series Circuit: R = 10 Ω,        V = 10 V,        V = 100 V,         f = 50 Hz,        ɸ = π
4

 rad 

 Using the impedance triangle: 

  XL = 2 π f L = R tan ɸ = 10 × tan 45° = 10 Ω 

 or, L =  10
π 50 

 = 31.83 mH 

 The current flowing through the circuit may be given as: 

  I = V
Z

 = 
2 2

100

(10) (10)
 = 100

10 2
 = 5 2  A = 7.071 A 

Problem 7.41: A coil having a resistance of 300 Ω and inductance 1 H is connected across an alternating 

supply source of 900 2  V, 300
2 π

 Hz. Determine the current flowing through the circuit and the 

phase difference between the supply voltage and the current.     
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Solution: An R-L Series Circuit: R = 300 Ω,            L = 1 H,            V = 900 2  V,            f = 300
2 π

 Hz 

 The inductive reactance of the coil may be given as: 

  XL = 2 π f L = 2 π × 300
2 π

 × 1 = 300 Ω 

 The current flowing through the circuit may be given as: 

  I = V
Z

 = 
2 2

900 2

(300) (300)
 = 900 2

300 2
 = 3 A 

 The phase difference between the supply voltage and the current may be given as: 

  ɸ = tan−1 LX
R

 
 
 

 = tan−1 300
300

 
 
 

 = 45° 

Problem 7.42: A coil when connected across a 10 V d.c. supply draws a current of 2 A. When the same coil is 
connected across 10 V, 50 Hz a.c. supply source, it draws a current of 1 A. Explain the reason 
why it draws a smaller current on a.c. and determine the parameter due to which it is drawing a 
smaller current from a.c.      [CBSE 2002-03] 

Solution: An R-L Series Circuit: Vd.c. = 10 V (d.c.),     Id.c. = 2 A,    Va.c. = 10 V (50 Hz, a.c.),     Ia.c. = 1 A 

 A coil connected across a d.c. source acts as a pure resistor at steady state, as the inductance of 
the coil behaves as short circuit for d.c. supply source at steady state of the circuit, while the 
same coil connected across an a.c. supply source acts as impedance due to the resistance as well 
as the inductive reactance offered by the coil to flow of the current. So, a coil draws a smaller 
current, when it is connected across an a.c. supply source. 

 The resistance of the coil may be given as: 

  R = . .

. .

d c

d c

V
I

 = 10
2

 = 5 Ω 

 The impedance of the coil may be given as: 

  Z = . .

. .

a c

a c

V
I

 = 10
1

 = 10 Ω 

 So, the inductive reactance offered by the coil to the flow of current may be given as: 

  XL = 2 2Z R  = 2 2(10) (5)  = 75  = 8.66 Ω = 2 π f L 

 or, L = 8.66
2 π f

 = 8.66
2 π 50

 = 27.57 mH  

Problem 7.43: An 80 V, 800 W heater is to be operated on a 100 V, 50 Hz supply. Determine the inductance of 
the choke coil required for the purpose.      [CBSE 1990-91, Haryana 2001-02] 

Solution: Heater = 80 V, 800 W,            V = 100 V,            f = 50 Hz 

 The choke coil is required in series with the heater in order to share the excess voltage above the 
rated voltage of the heater. The setup is shown in the Fig. 7.19 (a), and the corresponding 
phasor diagram is shown in the Fig. 7.19 (b). 

 The rated current of the heater may be given as:  
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  Irated = rated

rated

P
V

 = 800
80

 = 10 A  

 The voltage across the choke coil, according to phasor diagram shown in the Fig. 7.19 (b), may 
be given as: 

  VL = 2 2
RV V  = 2 2(100) (80)  = 60 V 

 The inductive reactance of the choke coil required for the 
purpose may be given as: 

  XL = L

rated

V
I

 = 60
10

 = 6 Ω = 2 π f L 

 So, L = 6
2 π f

 = 6
2 π 50

 = 19.1 mH 

Problem 7.44: A student connects a long air core coil of manganin wire to a 100 V d.c. source and records a 
current of 1.5 A. When the same coil is connected across 100 V, 50 Hz a.c. source the current 
reduces to 1 A. i) Explain the reason for this observation. ii) Determine the value of the 
reactance and inductance of the coil.  [CBSE 1993-94] 

Solution: An R-L Series Circuit: Vd.c. = 100 V (d.c.),   Id.c. = 1.5 A,  Va.c. = 100 V (50 Hz, a.c.),  Ia.c. = 1 A 

 A coil connected across a d.c. source acts as a pure resistor at steady state, as the inductance of 
the coil behaves as short circuit for d.c. supply source at steady state of the circuit, while the 
same coil connected across an a.c. supply source acts as impedance due to the resistance as well 
as the inductive reactance offered by the coil to flow of the current. So, a coil draws a smaller 
current, when it is connected across an a.c. supply source. 

 The resistance of the coil may be given as: 

  R = . .

. .

d c

d c

V
I

 = 100
1.5

 = 66.667 Ω 

 The impedance of the coil may be given as: 

  Z = . .

. .

a c

a c

V
I

 = 100
1

 = 100 Ω 

 So, the inductive reactance offered by the coil to the flow of current may be given as: 

  XL = 2 2Z R  = 2 2(100) (66.667)  = 74.534 Ω = 2 π f L 

 or, L = 75.535
2 π f

 = 75.535
2 π 50

 = 240.435 mH  

Problem 7.45: When a 200 V d.c. supply is connected across a coil, a current of 2 A flows through it. When the 
same coil is connected across a 200 V, 50 Hz a.c. supply the current through the coil is 
observed to be 1 A only. Determine the resistance, impedance and inductance of the coil.  
 [CBSE 1994-95] 

Solution: An R-L Series Circuit: Vd.c. = 200 V (d.c.),   Id.c. = 2 A,  Va.c. = 200 V (50 Hz, a.c.),   Ia.c. = 1 A 

 A coil connected across a d.c. source acts as a pure resistor at steady state, as the inductance of 
the coil behaves as short circuit for d.c. supply source at steady state of the circuit, while the 
same coil connected across an a.c. supply source acts as impedance due to the resistance as well 
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as the inductive reactance offered by the coil to flow of the current. So, a coil draws a smaller 
current, when it is connected across an a.c. supply source. 

 The resistance of the coil may be given as: 

  R = . .

. .

d c

d c

V
I

 = 200
2

 = 100 Ω 

 The impedance of the coil may be given as: 

  Z = . .

. .

a c

a c

V
I

 = 200
1

 = 200 Ω 

 So, the inductive reactance offered by the coil to flow of current may be given as: 

  XL = 2 2Z R  = 2 2(200) (100)  = 173.21 Ω = 2 π f L 

 or, L = 173.21
2π f

 = 173.21
2 π 50

 = 551.345 mH  

Problem 7.46: A 60 V, 10 W lamp is to be operated on 100 V, 60 Hz mains. i) Determine the inductance of the 
choke coil required for the purpose. ii) If a resistance is to be used in place of the choke coil to 
achieve the same result, determine its value.   [CBSE 1996-97] 

Solution: Lamp = 60 V, 10 W,            V = 100 V,            f = 60 Hz 

 The rated current of the lamp may be given as: 

  Irated = rated

rated

P
V

 = 10
60

 = 0.167 A 

 Using Choke Coil: The connection diagram is shown 
in the Fig. 7.22 (a), and the voltage across the choke 
coil, according to phasor diagram shown in the Fig. 
7.22 (b), may be given as: 

  VL = 2 2
LampV V  = 2 2(100) (60)  = 80 V 

 The inductive reactance of the coil may be given as: 

  XL = L

rated

V
I

 = 80
0.167

 = 479.04 Ω = 2 π f L 

 So, L = 479.04
2 π f

 = 479.04
2 π 60

 = 1.272 H 

 Using Resistor: The connection diagram is shown in the Fig. 7.22 (c), and the voltage across 
the resistor R, according to phasor diagram shown in the Fig. 7.22 (d), may be given as: 

  VR = V – VLamp = 100 – 60 = 40 V   

 The required resistance may be given as: 

  R = R

rated

V
I

 = 40
0.167

 = 239.52 Ω 
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Problem 7.47: A 12 Ω resistor in series with an inductance of 0.05
π

 H is connected across a 130 V, 50 Hz a.c. 

source. Determine: i) the current flowing through the circuit, ii) phase difference between the 
applied voltage and the current flowing through the circuit.   [Haryana 2002-03] 

Solution: R = 12 Ω,            L = 0.05
π

 H,           V = 130 V,            f = 50 Hz 

 The inductive reactance offered by the inductance to the 
flow of current may be given as: 

  XL = 2 π f L = 2 π × 50 × 0.05
π

 = 5 Ω 

 So, the current flowing through the circuit may be given 
as: 

  I = V
Z

 = 
2 2

L

V

R X
 = 

2 2

130

(12) (5)
 = 10 A 

 The phase difference between the applied voltage and the current flowing through the circuit 
may be given as: 

  ɸ = tan−1 LX
R

 
 
 

 = tan−1 5
12
 
 
 

 = 22.62°  

Problem 7.48: The circuit shown in the Fig. 7.24 has VR = 160 V and VL = 120 V. Determine the value of 
applied voltage (V) across the circuit. If the current flowing in the circuit is 1 A, determine the 
impedance of the circuit. If a d.c. supply source is applied across the circuit to flow the same 
current through the circuit, what must be the potential difference across the circuit.  

Solution: VR = 160 V,            VL = 120 V,           I = 1 A 

 The applied voltage (V) across the circuit, according to the 
phasor diagram shown in the Fig. 7.24 (b), may be given 
as: 

  V = 2 2
R LV V  = 2 2(160) (120)  = 200 V 

 The impedance of the circuit may be given as: 

  Z = V
I

 = 200
1

 = 200 Ω 

 The potential difference across the circuit, in case the same d.c. current is flowing through the 
circuit, may be given as: 

  V = VR = 160 V  

 (Since, there will be no induced emf across the inductor because of f = 0 Hz and XL = 0 Ω due to 
d.c. current)   

Problem 7.49: The circuit shown in the Fig. 7.25 has VR = 90 V and VL = 120 V. Determine the value of 
applied voltage (V) across the circuit. If the current flowing in the circuit is 3 A determine the 
impedance of the circuit and the phase angle between the applied voltage and the current 
flowing through the circuit. [CBSE 2003-04]  
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Solution: VR = 90 V,            VL = 120 V,           I = 3 A 

 The applied voltage (V) across the circuit, according to the 
phasor diagram shown in the Fig. 7.25 (b), may be given 
as: 

  V = 2 2
R LV V  = 2 2(90) (120)  = 150 V 

 The impedance of the circuit may be given as: 

  Z = V
I

 = 150
3

 = 50 Ω 

 The phase angle between the applied voltage and the current flowing through the circuit may be 
given as: 

  ɸ = tan−1 L

R

V
V
 
 
 

 = tan−1 120
90

 
 
 

 = 53.13° 

Problem 7.50: Determine the impedance of a coil of resistance 3 Ω and reactance 4 Ω.  

Solution: R = 3 Ω,            XL = 4 Ω 

 The impedance of the coil may be given as: 

  Z = 2 2
LR X  = 2 2(3) (4)  = 5 Ω 

Problem 7.51: An inductive coil has a resistance of 100 Ω. When an a.c. signal of frequency 1000 Hz is 
applied to the coil, the applied voltage leads the resultant current by an angle of 45°. Determine 
the self inductance of the coil. [CBSE 1997-98]   

Solution: R = 100 Ω,            f = 1000 Hz,            ɸ = 45° (current is lagging) 

 The reactance of the coil, according to the impedance triangle, may be given as: 

  XL = R tan ɸ = 100 tan 45° = 100 Ω = 2 π f L 

 or, L = 100
2 π f

 = 100
2 π 1000

 = 15.92 mH 

Problem 7.52: An a.c. source of 100 V, 50 Hz is connected across 20 Ω resistor and 20 mH inductor connected 
in series. Determine: i) impedance of the circuit, ii) r.m.s. current in the circuit. [CBSE 1992-93]   

Solution: V = 100 V (r.m.s.),            f = 50 Hz,            R = 20 Ω,            L = 20 mH 

 The impedance of the circuit may be given as: 

  Z = 2 2
LR X  = 2 2(2 π )R f L  

   = 2 3 2(20) (2 π 50 20 10 )     = 20.964 Ω 

 The r.m.s value of the current through the circuit may be 
given as: 

  I = V
Z

 = 100
20.964

 = 4.77 A 
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Problem 7.53: An a.c. source of 100 V, 50 Hz is connected to a series combination of an inductor of 100 mH 

and a resistance of 20 Ω. Determine the magnitude and phase angle of the current flowing 
through the circuit. [CBSE 1990-91]   

Solution: V = 100 V (r.m.s.),   f = 50 Hz,   L = 100 mH,   R = 20 Ω 

 The reactance offered by the inductor may be given as: 

  XL = 2 π f L = 2 π × 50 × 0.100 = 31.42 Ω  

 The impedance of the circuit may be given as: 

  Z = 2 2
LR X  = 2 2(20) (31.42)  

   = 37.245 Ω 

 The magnitude of the current flowing through the circuit may be given as: 

  I = V
Z

 = 100
37.245

 = 2.685 A 

 The phase angle of the current flowing through the circuit may be given as: 

  ɸ = tan−1 LX
R

 
 
 

 = tan−1 31.42
20

 
 
 

 = 57.52° (lagging) 

Problem 7.54: A current of 11 A flows through a coil, when connected across a 110 V d.c. source. When the 
same coil is connected across a 110 V, 50 Hz a.c. source, the current through the circuit is 
found to be 0.5 A only. Determine: i) impedance, ii) resistance, iii) inductance of the coil. 
 [CBSE 1991-92]   

Solution: Id.c. = 11 A,            Vd.c. = 110 V,            Va.c. = 110 V,            f = 50 Hz,            I = 0.5 A 

 A coil connected across a d.c. source acts as a pure resistor at steady state, as the inductance of 
the coil behaves as short circuit for d.c. supply source at steady state of the circuit, while the 
same coil connected across an a.c. supply source acts as impedance due to the resistance as well 
as the inductive reactance offered by the coil to flow of the current. So, a coil draws a smaller 
current, when it is connected across an a.c. supply source. 

 The resistance of the coil may be given as: 

  R = . .

. .

d c

d c

V
I

 = 110
11

 = 10 Ω 

 The impedance of the coil may be given as: 

  Z = . .

. .

a c

a c

V
I

 = 110
0.5

 = 220 Ω 

 The reactance of the coil may be given as: 

  XL = 2 2(220) (10)  = 219.77 = 2 π f L 

 or, L = 219.77
2 π f

 = 219.77
2 π 50

 = 0.7 H = 700 mH 

Problem 7.55: An arc lamp takes a rated current of 10 A at a rated voltage of 80 V. Determine the inductance, 
which must be connected in series with the arc lamp to work the lamp on the correct voltage 
while connected to a 220 V, 50 Hz a.c. source.   
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Solution: Irated = 10 A,            Vrated = 80 V,            V = 220 V,            f = 50 Hz 

 The voltage across the inductor connected in series with the arc lamp, according to the phasor 
diagram in Fig. 7.30 (b), may be given as: 

  VL = 2 2
ArcV V  = 2 2(220) (80)   

   = 204.94 V 

 So, the required inductive reactance in series with the 
arc lamp may be given as: 

  XL = LV
I

 = 204.94
10

 = 20.494 Ω = 2 π f L 

 or, L = 20.494
2 π f

 = 20.494
2 π 50

 = 0.06523 H = 65.23 mH     

Problem 7.56: A current of 2 A is flowing through an R-L series circuit shown in the Fig. 7.31. If the voltage 
across the resistor (R) is 100 V and that across the inductor (L) is 240 V, determine the voltage 
of the a.c. source and the impedance of the circuit.   

Solution: I = 2 A,            VR = 100 V,            VL = 240 V 

 The voltage across the supply source may, according to the phasor diagram drawn in the Fig. 
7.31 (b), may be given as: 

  V = 2 2
R LV V  = 2 2(100) (240)  = 260 V 

 The impedance of the circuit may be given as: 

  Z = V
I

 = 260
2

 = 130 Ω  

Problem 7.57: Determine the impedance and the r.m.s. value of the current flowing through an R-L series 
circuit in which a resistance of 30 Ω and an inductor of 100 mH are connected in series across 
a voltage source of v = 200 sin 400t Volts.   

Solution: R = 30 Ω,            L = 100 mH,            v = 200 sin 400t Volts 

 Comparing the given expression of emf with the standard equation: v = V0 sin ωt 

  V0 = 200 V,            ω = 400 rad/sec  

 The impedance of the circuit may be given as: 

  Z = 2 2
LR X  = 2 2(ω )R L   

   = 2 2(30) (400 0.100)   = 50 Ω 

 The r.m.s. value of the current flowing through the circuit 
may be given as: 

  Irms = rmsV
Z

 = 0

2
V

Z
 = 200

2 50
 = 2 2  A = 2.828 A 

Problem 7.58: The current flowing through an R-L series circuit, connected across an a.c. source of 200 V,   
50 Hz,  is 1 A and the voltage across the resistor is 120 V. Determine: i) the voltage across the 
inductor (L), ii) the impedance of the circuit, iii) the value of the resistance, iv) the reactance 
and inductance of the coil.   
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Solution: V = 200 V,            f = 50 Hz,            I = 1 A,            VR = 120 V 

 The voltage across the inductor may, according to the phasor diagram drawn in the Fig. 7.33 
(b), may be given as: 

  VL = 2 2
RV V  = 2 2(200) (120)  = 160 V 

 The impedance of the circuit may be given as: 

  Z = V
I

 = 200
1

 = 200 Ω 

 The value of the resistance may be given as: 

  R = RV
I

 = 120
1

 = 120 Ω  

 The value of the reactance of the coil may be given as: 

  XL = LV
I

 = 160
1

 = 160 Ω 

 The value of the inductance of the coil may be given as: 

  L = 
2 π

LX
f

 = 160
2 π 50

 = 509.3 mH 

Problem 7.59: A circuit containing a resistor of 50 Ω and an inductor of 1
π

 H in series is connected across a 

200 V, 60 Hz a.c. mains. Determine: i) the reactance and the impedance of the circuit, ii) the 
magnitude and phase angle of the current flowing through the circuit.   

Solution: R = 50 Ω,        L = 1
π

 H,        V = 200 V,         f = 60 Hz 

 The inductive reactance of the circuit may be given as: 

  XL = 2 π f L = 2 π × 60 × 1
π

 = 120 Ω 

 The impedance of the circuit may be given as: 

  Z = 2 2
LR X  = 2 2(50) (120)  = 130 Ω 

 The magnitude of the current flowing through the circuit may be given as: 

  I = V
Z

 = 200
130

 = 1.538 A 

 The phase angle of the current flowing through the circuit may be given as: 

  ɸ = tan−1 LX
R

 
 
 

 = tan−1 120
50

 
 
 

 = 67.38° (lagging)    

Problem 7.60: An a.c. circuit consists of a 220 V, 50 Hz supply source connected across a 100 Ω resistor. 
Determine the value of inductance to be connected in the circuit in series with the resistance, so 
that the current is reduced to half of the original value.   
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Solution: V = 220 V,        f = 50 Hz,        R = 100 Ω,        I2 = 1

2
I

 

 The current flowing through the resistor connected alone across the source may be given as: 

  I1 = V
R

 = 220
100

 = 2.2 A 

 Let the inductor connected in series be L. The current flowing through the series combination 
may now be given as: 

  I2 = V
Z

 = 
2 2(2π )

V

R f L
  

   = 
2 2

220

(100) (2π 50 )L  
 = 2.2

2
 

 or, (100)2 + (2 π × 50 × L)2 = 
2220

1.1
 
 
 

 = (200)2 

 or, L = 
2 2(200) (100)

2 π 50



 = 551.33 mH 

Problem 7.61: A long solenoid draws a steady state current of 2 A when connected across a 12 V d.c. source. If 
the same solenoid is connected across a 12 V, 50 Hz a.c. source, it draws a current of 1 A from 
the source. Determine the inductance of the solenoid.    

Solution: Id.c. = 2 A,        Vd.c. = 12 V,            Va.c. = 12 V,            f = 50 Hz,        Ia.c. = 1 A 

 A solenoid connected across a d.c. source acts as a pure resistor at steady state, as the 
inductance of the solenoid behaves as short circuit for d.c. supply source at steady state of the 
circuit, while the same solenoid connected across an a.c. supply source acts as impedance due to 
the resistance as well as the inductive reactance offered by the solenoid to flow of the current. 
So, a solenoid draws a smaller current, when it is connected across an a.c. supply source. 

 The resistance of the solenoid may be given as: 

  R = . .

. .

d c

d c

V
I

 = 12
2

 = 6 Ω 

 The impedance of the solenoid may be given as: 

  Z = . .

. .

a c

a c

V
I

 = 12
1

 = 12 Ω 

 So, the inductive reactance of the coil, according to the phasor diagram drawn in the Fig. 7.36 
(b), may be given as: 

  XL = 2 2Z R  = 2 2(12) (6)  = 10.392 Ω = 2 π f L 

 or, L = 10.392
2 π f

 = 10.392
2 π 50

 = 33.08 mH   

Problem 7.62: A choke coil and a resistor are connected in series across a supply source of 130 V, 50 Hz. If 
the potential difference across the resistor is 50 V, determine the potential difference across the 
choke coil.    
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Solution: V = 130 V,        f = 50 Hz,            VR = 50 V 

 The potential difference across the choke coil, according 
to the phasor diagram drawn in the Fig. 7.37 (b), may be 
given as: 

  VL = 2 2
RV V  = 2 2(130) (50)  

   = 120 V 

Problem 7.63: A source of emf e = 200 sin 377t Volts is applied across a coil of inductance L having a 
resistance of 1 Ω. The maximum value of the current is found to be 10 A. Determine the value of 
self inductance of the coil (L).    

Solution: e = 200 sin 377t Volts,            R = 1 Ω,            I0 = 10 A 

 Comparing the given emf expression with the standard emf equation, we get: 

  E0 = 200 V,            ω = 377 rad/sec 

 The expression for the maximum value of the current flowing through the inductive coil may be 
given as: 

  I0 = 0E
Z

 = 0
2 2( ) (ω )

E

R L
  

   = 
2 2

200

(1) (377 )L 
 = 10 

 or, (1)2 + (377 × L)2 = 
2200

10
 
 
 

 = (20)2 

 or, L = 
2 2(20) (1)

377


 = 52.984 mH  

Problem 7.64: An electric circuit containing a resistor R and an inductor L in series has an impedance of 50 Ω 
at 100 Hz and an impedance of 100 Ω at 500 Hz. Determine the value of R and L.    

Solution: Z1 = 50 Ω (at f1 = 100 Hz),            Z2 = 100 Ω (at f2 = 500 Hz) 

 The expressions for the impedance of the circuit at two different frequencies, according to 
impedance triangle shown in the Fig. 7.39, may respectively be given as: 

  Z1 = 2 2( ) (2 π )R f L  = 50 

 or, (R)2 + (2 π × 100 × L)2 = (50)2 

 or, R2 + 394784.176 L2 = 2500  (7.53) 

 and, Z2 = 2 2( ) (2 π )R f L  = 100 

 or, (R)2 + (2 π × 500 × L)2 = (100)2 

 or, R2 + 9869604.401 L2 = 10000  (7.54) 

 Equation (7.54) – (7.53): 

  9474820.225 L2 = 7500 
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 or, L = 7500
9474820.225

 = 28.135 mH 

 Putting the value of L in equation (7.53): 

  R = 22500 394784.176 (0.028135)   = 46.771 Ω 

Problem 7.65: An R-L circuit, having a resistance of 30 Ω and an inductive reactance of 40 Ω in series, is 
connected across a peak emf of 220 V. Determine the: i) impedance of the circuit, ii) phase 
difference between the applied emf and the resulting current in the circuit, iii) the peak value of 
the current flowing through the circuit.     

Solution: R = 30 Ω,            XL = 40 Ω,            E0 = 220 V 

 The impedance of the circuit, according to the impedance triangle shown in the Fig. 7.40 (b), 
may be given as: 

  Z = 2 2
LR X  = 2 2(30) (40)  = 50 Ω 

 The phase difference between the applied emf and the 
resulting current in the circuit, according to the 
impedance triangle shown in the Fig. 7.40 (b), may be 
given as: 

  ɸ = tan−1 LX
R

 
 
 

 = tan−1 40
30

 
 
 

  

   = 53.13° (lagging) 

 The peak value of the current flowing through the circuit may be given as: 

  I0 = 0E
Z

 = 220
50

 = 4.4 A  

7.12 Resistance – Capacitance (R-C) Series Circuit: Refer to Fig. 7.41 (a), which shows an R-C series 
circuit in which a resistor and a capacitor are connected in series carrying the same current I. So, the 
current vector is same for both the elements [note the 
direction of current vector drawn above resistor and 
capacitor in Fig. 7.41 (a) is same]. Voltage across the resistor 
(VR) is co-phasor with the current vector [see above the 
resistor in the Fig. 7.41 (a)], and voltage across the capacitor 
(VC) is 90° behind the current vector [see above the capacitor 
in the Fig. 7.41 (a)], as current leads the voltage by 90° in a 
pure capacitor. Now, a phasor diagram of three voltages in the 
circuit V, VR and VC can be drawn as in Fig. 7.41 (b), known 
as “Voltage Triangle”. The vectors I and VR are in same 
phase, VC is 90° behind the current I and resultant of VR and 
VC is V. Angle between the resultant (applied) voltage V and 
the current I is power factor angle, here I is leading the supply 
voltage V by an angle ɸ. So, if supply voltage is given as: 

    v = V0 sin ω t   (7.55) 

  Circuit current may be given by: i = I0 sin (ω t + ɸ)  (7.56) 

  Power Consumed in a Resistance-Capacitance (R-C) Series Circuit: The instantaneous power in the 
circuit may be given by the product of instantaneous voltage and instantaneous current: 
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   p = v × i = V0 sin ω t × I0 sin (ω t  + ɸ) 

   = 0 0
2

V I
 × [cos {ωt – (ωt + ɸ)} − cos {ωt + (ωt + ɸ)}] = 0 0

2
V I

 × [cos ɸ − cos (2ωt + ɸ)]  

  So, Pavg = 1
π

 ×  
π

0 0

0
cos cos (2ω ) (ω )

2
V I

t d t       

   = 0 0
2 π

V I
 × 

π

0

sin (2ω )(ω ) cos
2

tt       
 

   = 0 0
2 π

V I
 × sin (2 π ) sin (0 )(π) cos (0) cos

2 2
                
    

 

   = 0 0
2 π

V I
 × sin sin(π) cos 0

2 2
            
    

 

   = 0 0
2 π

V I
 × (π) cos ɸ = 0 0

2
V I

 × cos ɸ = 0
2

V
 × 0

2

I
 × cos ɸ 

  or, Pavg = V I cos ɸ Watts (7.57) 

 **:- cos ɸ (always, – 1 < cos ɸ < + 1) is the factor by which the power is being reduced in an A.C. circuit 
than that in case of a D.C. circuit (V I Watts), that is why cos ɸ is known as “Power Factor (P.F.)”. 

  If the circuit current I, shown in the phasor diagram in Fig. 7.41 (b), is resolved along the supply voltage 
(I cos ɸ) and along a perpendicular direction to supply voltage (I sin ɸ). The reader may observe from 
the equation (7.57) that: 

 i)  The component I cos ɸ is responsible for the power losses in the circuit, hence is known as       
Watt-Full Current.  

 ii) On the other hand, the component I sin ɸ is not responsible for any power loss in the circuit, hence 
is known as Watt-Less Current.  

  Impedance Triangle: If we divide the voltage triangle [Fig. 7.41 (b)] by the circuit current I, we will 
get another similar triangle [Fig. 7.41 (c)] known as “Impedance Triangle”. Refer to impedance 
triangle in Fig. 7.41 (c): (This impedance triangle along with voltage triangle and power triangle is 
very handy, tricky and useful for solving the numerical problems of single-phase A.C. circuits). 

  Clearly,  R = Z cos ɸ,        and,        XC = Z sin ɸ [Always remember XC is (–)ve] (7.58) 

   Z = (R – i XC)     and,     Z = 2 2
CR X    and,   ɸ = tan−1 CX

R
 
  
 

 = cos−1 R
Z

 
 
 

 (7.59) 

  Power Triangle: If we multiply the voltage triangle [Fig. 7.41 (b)] by the circuit current I, we will get 
another similar triangle [Fig. 7.41 (d)] known as “Power Triangle”. Refer to power triangle in          
Fig. 7.41 (d): (This power triangle is very important. Also it is very handy, tricky and useful for solving 
the numerical problems of single-phase A.C. circuits) 

  Apparent Power (I 2 Z or V I, its unit is kVA): The hypotenuse of the power triangle is the apparent 
power used in the circuit. Its unit is Volt-Amp or Kilo-Volt-Amp. 
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   Apparent Power = V I = I 2 Z (kVA) (7.60) 

  True Power (I 2 R or V I cos ɸ, its unit is kW): The base of the power triangle is the power dissipated 
in the resistance and is true power as power dissipates in resistance only. Its unit is Watt or Kilo-Watt. 

   True Power = V I cos ɸ = I 2 R (kW) (7.61) 

  Reactive Power (I 2 XC or V I sin ɸ, its unit is kVAR): The perpendicular of the power triangle is the 
power stored and returned in the reactance and is known as reactive power as power is not dissipated in 
reactance. Its unit is Volt-Amp-Reactive or Kilo-Volt-Amp-Reactive. 

   Reactive Power = V I sin ɸ = I 2 XC (kVAR) (7.62) 

  It can clearly be observed from above discussion and the power triangle, that: 

   (Apparent Power)2 = (True Power)2 + (Reactive Power)2 

  or, (kVA)2 = (kW)2 + (kVAR)2 (7.63) 

Problem 7.66: Determine the magnitude and phase angle of a.c. current flowing through a circuit containing  
R = 10 Ω and C = 50 µF connected in series across an a.c. source of 200 V, 50 Hz.  
 [CBSE 1992-93]     

Solution: R = 10 Ω,       C = 50 µF,       V = 200 V,       f = 50 Hz 

 The value of capacitive reactance offered by the 
capacitor to the flow of current may be given as: 

  XC = 1
2 π f C

 = 6
1

2 π 50 50 10  
  

   = 63.662 Ω  

 The value of the impedance of circuit, according to the 
impedance triangle shown in the Fig. 7.42 (b), may be given as: 

  Z = 2 2
CR X  = 2 2(10) (63.662)  = 64.443 Ω 

 The value of a.c. current flowing through the circuit may be given as: 

  I = V
Z

 = 200
64.443

 = 3.104 A 

 The phase angle of the current flowing through the circuit, according to the phasor diagram 
drawn in the Fig. 7.42 (b), may be given as: 

  ɸ = tan−1 CX
R

 
 
 

 = tan−1 63.662
10

 
 
 

 = 81.07° (leading) 

Problem 7.67: When an alternating voltage of 220 V is applied across a device X, a current of 0.5 A flows 
through the circuit which is in phase with the applied voltage. When the same voltage is applied 
across another device Y, the same current flows through the circuit but it leads the applied 
voltage by (π / 2) rad .Determine the: i) nature of device X and Y, ii) current flowing through 
the circuit, when same voltage is applied across the series combination of the devices X and Y. 
 [CBSE 1996-97]     

Solution: V = 220 V,            IX = IY = 0.5 A,            ɸY = (π / 2) rad (leading) 

 The current flowing through the device X is co-phasor with the applied voltage, so the device X 
is purely resistive in nature. 
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 On the other hand, the current flowing through the device Y is leading the applied voltage by 

exactly 90°, so the device Y is purely capacitive in nature. 

 The resistance of the device X and the capacitive 
reactance of the device Y may be given as: 

  R = XC = V
I

 = 220
0.5

 = 440 Ω 

 The setup for both the devices (X and Y) connected in 
series across the supply source is shown in the Fig. 
7.43 (a), and the corresponding phasor diagram is 
shown in the Fig. 7.43 (b). 

 The current flowing through the series combination of the devices X and Y may be given as: 

  I = V
Z

 = 
2 2

220

(440) (440)
 = 0.3536 A   

Problem 7.68: An alternating current of 1.5 mA (rms) and angular frequency ω = 100 rad/sec flows through a 
10 kΩ resistor and 0.50 µF capacitor connected in series. Determine the impedance of the 
circuit and the value of rms voltage across the capacitor. [CBSE 1992-93]     

Solution: I = 1.5 mA,            ω = 100 rad/sec,            R = 10 kΩ,            C = 0.50 µF 

 The capacitive reactance offered by the capacitor to the flow of current may be given as: 

  XC = 1
ωC

 = 6
1

100 0.5 10 
  

   = 20000 Ω = 20 kΩ  

 The impedance of the circuit, according to the 
impedance triangle shown in the Fig. 7.44, may be 
given as: 

  Z = 2 2
CR X  = 2 2(10) (20)   

   = 22.361 kΩ 

 The rms value of the voltage across the capacitor may be given as: 

  VC = I × XC = 1.5 × 10−3 × 20 × 103 = 30 V  

Problem 7.69: A series circuit containing a resistor of 20 Ω, a capacitor C and an ammeter of negligible 
resistance is connected across a 220 V, 50 Hz supply source. If the reading of the ammeter is 
2.5 A, determine the reactance and capacitance of the capacitor.  [Punjab 1998-99]     

Solution: R = 20 Ω,            V = 220 V,            f = 50 Hz,            I = 2.5 A 

 The expression for the current flowing through an R-C series circuit may be given as: 

  I = V
Z

 = 
2 2

C

V

R X
 

 or, R 2 + 2
CX  = 

2V
I

 
 
 

 

XC
Z

I
ϕ

(c)

R

V

I R C

I
I

VR

VR

VC

VC

(a)  
Fig. 7.43 

XC
Z

I
ϕ

(c)

R

V

I R C

I
I

VR

VR

VC

VC

(a)  
Fig. 7.44 



39 
 

 So, XC = 
2

2V R
I

   
 

 = 
2

2220 (20)
2.5

   
 

 = 85.697 Ω 

 or, 1
2 π f C

 = 85.697 

 So, C = 1
2 π 85.697f 

 = 1
2 π 50 85.697 

 = 37.144 µF  

Problem 7.70: A 5 W, 20 V lamp is to be operated on 200 V, 50 Hz a.c. mains. Determine the value of the 
capacitance required to run the lamp on the rated voltage and the rated current. 

Solution: Lamp = 5 W, 20 V,        V = 200 V,        f = 50 Hz 

 The required setup to operate the lamp on rated voltage and rated current, while it is connected 
across the given source, is shown in the Fig. 7.45 (a) and the corresponding phasor diagram is 
drawn in the Fig. 7.45 (b). Let the capacitor connected in series with the lamp is C. 

 The rated current of the lamp may be given as: 

  Irated = P
V

 = 5
20

 = 0.25 A 

 The voltage across the capacitor, according to the 
phasor diagram drawn in the Fig. 7.45 (b) may be 
given as: 

  VC = 2 2
LampV V  = 2 2(200) (20)   

   = 198.998 V 

 So, the value of the capacitive reactance required for the purpose may be given as: 

  XC = C

rated

V
I

 = 198.998
0.25

 = 795.992 Ω = 1
2 π f C

 

 or, C = 1
2 π 795.992f 

 = 1
2 π 50 795.992 

 = 3.9989 μF ≈ 4 μF 

Problem 7.71: A resistor of 200 Ω and a capacitor of 15 µF are connected in series across a 220 V, 50 Hz a.c. 
source. Determine the: i) current flowing through the circuit, ii) voltage across the resistor and 
the capacitor. Is the algebraic sum of voltages across them is more than the source voltage? If 
yes, resolve the paradox. [NCERT, CBSE 2007-08]  

Solution: R = 200 Ω,        C = 15 µF,        V = 220 V,     f = 50 Hz 

 The capacitive reactance offered by the capacitor to the 
flow of current may be given as: 

  XC = 1
2 π f C

 = 6
1

2 π 50 15 10  
 = 212.21 Ω  

 The impedance of the circuit, according to the 
impedance triangle shown in the Fig. 7.46, may be 
given as: 

  Z = 2 2
CR X  = 2 2(200) (212.21)  = 291.604 Ω 
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 The current flowing through the circuit may be given as: 

  I = V
Z

 = 220
291.604

 = 0.754 A  

 The individual voltage across the resistor and the capacitor may respectively be given as: 

  VR = I × R = 0.754 × 200 = 150.8 V  

  VC = I × XC = 0.754 × 212.21 = 160.01 V 

 So, the algebraic sum of the voltages across the resistor and the capacitor may be given as: 

  Valgebric sum = 150.8 + 160.01 = 310.81 > 220 V (the supply voltage) 

 This is due to the fact that the supply voltage is vector sum of the individual voltages across the 
resistor and the capacitor.  

Problem 7.72: In an R-C series circuit; R = 30 Ω, C = 0.25 µF, V = 100 V and ω = 10,000 rad/sec. Determine 
the value of current through the circuit and the voltage across the individual circuit elements. Is 
the algebraic sum of voltages across them is more than the source voltage? If yes, resolve the 
paradox. [CBSE 2003-04]  

Solution: R = 30 Ω,            C = 0.25 µF,            V = 100 V,            ω = 10,000 rad/sec 

 The capacitive reactance offered by the capacitor to the flow of current may be given as: 

  XC = 1
ωC

 = 6
1

10000 0.25 10 
 = 400 Ω  

 The impedance of the circuit, according to the 
impedance triangle shown in the Fig. 7.47, may be given 
as: 

  Z = 2 2
CR X  = 2 2(30) (400)  = 401.123 Ω 

 The current flowing through the circuit may be given as: 

  I = V
Z

 = 100
401.123

 = 0.249 A  

 The individual voltage across the resistor and the capacitor may respectively be given as: 

  VR = I × R = 0.249 × 30 = 7.47 V  

  VC = I × XC = 0.249 × 400 = 99.6 V 

 So, the algebraic sum of the voltages across the resistor and the capacitor may be given as: 

  Valgebric sum = 7.47 + 99.6 = 107.07 > 100 V (the supply voltage) 

 This is due to the fact that the supply voltage is vector sum of the individual voltages across the 
resistor and the capacitor.  

Problem 7.73: An a.c. circuit consists of a series combination of circuit elements X and Y. The current through 
the circuit is ahead of the voltage by an angle of (π / 4) radians. If element X is a pure resistor 
of value 100 Ω. Determine the: i) the nature of the circuit element Y, ii) rms value of the current 
flowing through the circuit, if rms value of the voltage is 141 V. [CBSE 2003-04]  

Solution: ɸ = π
4

 radians (leading),            R = 100 Ω,            V = 141 V 
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 Since the current through the circuit is leading ahead of the applied voltage, so the element Y 

may be a pure capacitor or the combination of a capacitor and resistor. Let us assuming, for the 
time being, that the element Y is a pure capacitor. 

 The power factor, according to the impedance triangle shown in the Fig.7.48, may be given as: 

    cos ɸ = R
Z

 

 So,  Z = 
cos

R


 = 100
cos 45

 = 100 2  = 141.42 Ω 

 So, the current flowing through the circuit may be given as: 

  I = V
Z

 = 141
141.42

 = 0.997 A ≈ 1 A  

Problem 7.74: A circuit containing a 20 Ω resistor and 0.1 µF capacitor in series is connected across a 230 V 
a.c. supply of angular frequency 100 rad/sec. Determine the impedance of the circuit, the 
magnitude and the phase angle of the current flowing through the circuit.  [CBSE 1989-90] 

Solution: R = 20 Ω,            C = 0.1 µF,            V = 230 V,            ω = 100 rad/sec 

 The value of the capacitive reactance offered by the capacitor to the flow of current may be 
given as: 

  XC = 1
ωC

 = 6
1

100 0.1 10 
 =  100,000 Ω = 100 kΩ 

 The impedance of the circuit, according to the impedance triangle shown in 
the Fig. 7.49, may be given as: 

  Z = 2 2
CR X  = 2 2(20) (100000) = 105 Ω = 100 kΩ 

  The value of the current flowing through the circuit may be given as: 

  I = V
Z

 = 3
230

100 10
 = 2.3 × 10−3 A = 2.3 mA 

 The phase angle of the current flowing through the circuit may be given as: 

  ɸ = tan−1 CX
R

 
 
 

 = tan−1 100000
20

 
 
 

 = 89.989° ≈ 90°  

Problem 7.75: A circuit consists of a resistor 10 Ω and a capacitor of 0.1 µF in series. If an alternating emf of 
100 V, 50 Hz is applied across the combination, determine the current flowing through the 
circuit.  [Haryana 1991-92] 

Solution: R = 10 Ω,            C = 0.1 µF,            V = 100 V,            f = 50 Hz 

 The current flowing through the circuit may be given as: 

  I = V
Z

 = 
2 2

C

V

R X
 = 

2
2 1

2 π

V

R
f C

 
  
 

 = 
2

2
6

100

1(10)
2 π 50 0.1 10

 
  

   

  

   = 3.14 × 10−3 A = 3.14 mA  

Problem 7.76: A 20 W, 50 V filament is connected in series with a capacitor to an a.c. mains of 250 V, 50 Hz. 
Determine the value of the capacitor required to operate the filament on correct voltage and the 
current. 
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Solution: Filament = 20 W, 50 V,            V = 250 V,            f = 50 Hz 

 The rated current of the filament may be given as: 

  Irated = P
V

 = 20
50

 = 0.4 A 

 The voltage across the capacitor, according to the 
phasor diagram drawn in the Fig. 7.50 (b), may be 
given as: 

  VC = 2 2
FilamentV V  = 2 2(250) (50)  

   = 244.95 V 

 The value of the capacitive reactance required may be given as: 

  XC = C

rated

V
I

 = 244.95
0.4

 = 612.35 Ω = 1
2 π f C

 

 or, C = 1
2 π 612.35f 

 = 1
2 π 50 612.35 

 = 5.198 µF 

Problem 7.77: A 1 µF capacitor is connected to 220 V, 50 Hz a.c. source. Determine the current through the 
capacitor. Also, determine the peak value of the voltage across the capacitor. 

Solution: C = 1 µF,            V = 220 V,            f = 50 Hz 

 The current through the capacitor may be given as: 

  I = V
Z

 = 
C

V
X

 = 
(1/ 2 π )

V
f C

 = V × 2 π f C  

   = 220 × 2 π × 50 × 1 × 10−6 = 69.12 mA 

 The voltage across the capacitor is same as that of the applied voltage, as the capacitor is the 
only element across the supply source. So, the peak value of the voltage across the capacitor 
may be given as: 

  V0 = 2  × Vrms = 2  × 220 = 311.13 V   

Problem 7.78: Determine the impedance of the circuit shown in the Fig. 7.52, for: i) direct current at steady 
state, ii) alternating current of frequency (10 / π) kHz. 

Solution: R = 20 Ω,            C = 2 µF,            f = 10
π

 kHz  

 The capacitor behaves as open circuit for the d.c. currents at steady state 
1 0 . .Cas X and f for d c currents
f

 
  

 
. 

 So, the impedance of the circuit for d.c. currents may be given as: 

  Zd.c. current = ∞ 

 The impedance of the circuit for an a.c. current may be given as: 

  Za.c. current = 2 2
CR X  = 

2
2 1

2π
R

f C
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   = 
2

2
3 6

1(20)
2π (10/ π) 10 2 10

 
       

 = 32.02 Ω  

Problem 7.79: A capacitor of reactance 40 Ω in series with a resistor of 30 Ω is connected to a.c. mains. 
Determine the phase difference between the supply voltage and the current flowing through the 
circuit. 

Solution: XC = 40 Ω,            R = 30 Ω 

 The phase difference between the supply voltage and the current flowing 
through the circuit, according to the phasor diagram drawn in the Fig. 7.53, 
may be given as: 

  ɸ = tan−1 CX
R

 
 
 

 = tan−1 40
30

 
 
 

 = 53.13° (leading) 

Problem 7.80: A circuit has a resistance of 100 Ω and a capacitor in series. If the impedance of the circuit is   
100 2  Ω, determine the reactance of the circuit. 

Solution: R = 100 Ω,            Z = 100 2  Ω 

 The capacitive reactance of the circuit, according to the impedance triangle 
shown in the Fig. 7.54, may be given as: 

  XC = 2 2Z R  = 2 2(100 2) (100)  = 100 Ω  

7.13 Resistance – Inductance – Capacitance (R-L-C) Series Circuit: Refer to the Fig. 7.55 (a), which 
shows an R-L-C series circuit in which a resistor, an inductor and a capacitor are connected in series 
carrying the same current I. So the current vector is same for all three elements [note the direction of 
current vector drawn above the resistor, inductor and capacitor in Fig. 7.55 (a) is same]. Voltage 
across the resistor (VR) is co-phasor with the current 
vector [see above the resistor in the Fig. 7.55 (a)], 
voltage across the inductor (VL) is 90° ahead of the 
current vector [see above the inductor in the Fig. 7.55 
(a)] and voltage across the capacitor (VC) is 90° 
behind the current vector [see above the capacitor in 
the Fig. 7.55 (a)]. Now, a phasor diagram of four 
voltages in the circuit V, VR, VL and VC can be drawn 
as in Fig. 7.55 (b), known as “Voltage Triangle”. The 
vectors I and VR are in phase, VL is 90° ahead of I, VC 
is 90° behind the current I and the resultant of VR, VL 
and VC is V. Angle between the resultant voltage V and 
I is power factor angle, here I is lagging behind the 
supply voltage V by an angle ɸ. So, if supply voltage is given as: 

   v = V0 sin ωt   (7.64) 

  the Circuit current may be given as: 

   i = I0 sin (ωt – ɸ)  (7.65) 
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  Power Consumed in a Resistance – Inductance – Capacitance (R-L-C) Series Circuit: The 

instantaneous power in the circuit may be given by the product of instantaneous voltage and 
instantaneous current: 

   p = v i = V0 sin ωt × I0 sin (ωt – ɸ)  

    = 0 0
2

V I
 × [cos {ωt – (ωt – ɸ)} – cos {ωt + (ωt – ɸ)}] = 0 0

2
V I

 [cos ɸ – cos (2ωt – ɸ)]  

  Now,  Pavg = 1
π

 × 
π

0 0

0
{cos cos (2ω )} (ω )

2

V I
t d t

 
    

  
  = 0 0

2π
V I

 × 
π

0

sin (2ω )(ω ) cos
2

tt      
 

    = 0 0
2 π

V I
 × sin (2π ) sin (2 0 )π cos 0 cos

2 2
                 
      

    = 0 0
2 π

V I
 × ( sin ) ( sin )π cos 0

2 2
              
      

    = 0 0
2 π

V I
 × sin sinπ cos

2 2
      

 = 0 0
2

V I
 × cos ɸ = 0

2

V
 × 0

2

I
 × cos ɸ 

  So, Pavg = V I cos ɸ Watts (7.66) 

 **:- cos ɸ (always, – 1 < cos ɸ < + 1) is the factor by which the power is being reduced in an A.C. circuit 
than that in case of a D.C. circuit (V I Watts), that is why cos ɸ is known as “Power Factor (P.F.)”. 

  If the circuit current I, shown in the phasor diagram in Fig. 7.55 (b), is resolved along the supply voltage 
(I cos ɸ) and along a perpendicular direction to supply voltage (I sin ɸ). The reader may observe from 
the equation (7.66) that: 

 i)  The component I cos ɸ is responsible for the power losses in the circuit, hence is known as       
Watt-Full Current.  

 ii) On the other hand, the component I sin ɸ is not responsible for any power loss in the circuit, hence 
is known as Watt-Less Current.  

  Impedance Triangle: If we divide the voltage triangle [Fig. 7.55 (b)] by the circuit current I, we will 
get another similar triangle [Fig. 7.55 (c)] known as impedance triangle. Refer to impedance triangle in 
Fig. 7.55 (c): (This impedance triangle along with voltage triangle and power triangle is very handy, 
tricky and useful for solving the numerical problems of single-phase AC circuits) 

  Clearly,    R = Z cos ɸ,                        and,            X = Z sin ɸ (7.67) 

   Z = [R + i (XL – XC)]            and,            Z = 2 2( )L CR X X   (7.68) 

   ɸ = tan−1 
( )L CX X

R
 

  
 = cos−1 

R
Z

 
 
 

 (7.69) 

  Power Triangle: If we multiply the voltage triangle [Fig. 7.55 (b)] by the circuit current I, we will get 
another similar triangle [Fig. 7.55 (d)] known as power triangle. Refer to power triangle in Fig. 7.55 (d): 
(This power triangle is very important. Also it is very handy, tricky and useful for solving the numerical 
problems of single-phase AC circuits). 
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  Apparent Power (I 2 Z or V I, its unit is kVA): The hypotenuse of the power triangle is the apparent 

power used in the circuit. Its unit is Volt-Amp or Kilo-Volt-Amp. 

   Apparent Power = V I = I 2 Z (kVA) (7.70) 

  True Power (I 2 R or V I cos ɸ, its unit is kW): The base of the power triangle is the power dissipated 
in the resistance and is true power as power dissipates in resistance only. Its unit is Watt or Kilo-Watt. 

   True Power = V I cos ɸ = I 2 R (kW) (7.71) 

  Reactive Power (I 2 X or V I sin ɸ, its unit is kVAR): The perpendicular of the power triangle is the 
power stored and returned in the reactance and is known as reactive power as power is not dissipated in 
reactance. Its unit is Volt-Amp-Reactive or Kilo-Volt-Amp-Reactive. 

   Reactive Power = V I sin ɸ = I 2 X (kVAR) (7.72) 

  It can clearly be observed from above discussion and the power triangle, that: 

   (Apparent Power)2 = (True Power)2 + (Reactive Power)2 

  or, (kVA)2 = (kW)2 + (kVAR)2 (7.73) 

 Susceptance: The reciprocal of the reactance of an a.c. circuit is known as susceptance. Its SI unit is 
Siemens (S) or Ohm−1. 

 Admittance: The reciprocal of the impedance of an a.c. circuit is known as admittance. Its SI unit is 
Siemens (S) or Ohm−1. 

7.14 Resonance in Series R-L-C Circuit (Voltage Resonance / Selector Circuit): If the applied voltage 
(V) and the circuit current (I) becomes co-phasor in an R-L-C (Series / Parallel) circuit, the condition 
is said to be the resonance condition in the R-L-C (Series / Parallel) circuit. 

   Consider the Fig. 7.56, which shows a series R-L-C circuit along with its voltage triangle and 
impedance triangle. The impedance of a series R-L-C circuit may be given as:  

   Z = 2 2( )L CR X X   (7.74) 

  If this circuit has, XL = XC, i.e. 2 π f0 L = 
0

1
2 π f C

 for certain 

value of frequency, f0.  

  Then, Z = R, and the circuit current (I) becomes co-phasor 
with the applied voltage (V), as VL = I XL and VC = I XC will 
cancel out each other. 

  This is the required condition for series or voltage resonance. 
  So, if, XL = XC 

  or, 2 π f0 L = 
0

1
2 π f C

 

  or, f0 = 1
2π LC

, where f0 = fr = resonance frequency.  (7.75) 

  Here are few important points about series R-L-C (Voltage) resonance / selector circuit: 
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 i) As, XL = XC at resonance, XL – XC = 0, hence net reactance of the circuit is zero at resonance. 

 ii) Impedance of the circuit Z = R at the resonance and this is the minimum value of impedance for this 
circuit. 

 iii) Power factor of the load and hence of the circuit is unity. 

 iv) The current flowing through the circuit 0
V VI
Z R

   
 

 at resonance is maximum value of current for this 

circuit. 

 v) The power supplied by the source, P = V I0, as p.f. (cos ɸ) of the load / circuit is unity. 

  Current -vs- Frequency Curve: Fig 7.57 shows the graph of current drawn for a series R-L-C circuit 
against frequency of the applied voltage. The current attains the maximum value only at unity power 
factor, i.e. resonance frequency (f0). The current decreases on either side of this unity power factor point 
(resonance frequency, f0).  

  Half Power Frequencies: Half power frequencies are the frequencies (f1 and f2) at which power 
dissipated in the circuit is half of that the power dissipated at the resonance frequency (the maximum 
power dissipates in the circuit at the resonance frequency, f0). 

  Power dissipated in the circuit at resonance frequency, P = 2
0I R  

  If the current corresponding to half of the power dissipated at resonance 
frequency is say I', the power dissipated at half power frequencies may be 
given by: 

   1
2

P 
 
 

  = (I')2 × R = 
2
P

 = 
2
0

2
I R  = 

2
0

2
I R   

 
       

  So, I′ = 0

2
I

  (7.76) 

  The line corresponding to the current 0

2
I

 on the graph Current –vs– frequency intersects it at 

frequencies f1 and f2, hence these two frequencies are known as half power frequencies. 

  And, impedance of the circuit corresponding to this current 0'
2

II  
 

 at half power frequencies may be 

given as: 

   1
2

Z 
 
 

 = 
'

V
I

 = 
0( / 2)
V

I
 = 2  × 

0

V
I

 = 2  × R                   (As 
0

V
I

 = R, at resonance frequency) 

  Significance of Half Power Frequencies: These half power frequencies has a special significance: 
“Any signal, having the near-by frequency for which circuit is resonating, has sufficient power 
within these half power frequencies and can be analyzed or listened (e.g. in case of radio-sets, mobile 
phones and televisions) after proper amplification for information hidden in the signal.  

  R-L-C Series Circuit as Selector / Acceptor Circuit: There are several radio signals in the air, e.g. 
various radio stations, various television channels, mobile communication, internet signals etc. at 
different frequencies [various separate frequency bands (known as band width) are allotted to them, the 
reader must be heard about 2G-spectrum scam], which are to be separated from other frequencies / 
signals for retrieving the information hidden inside them. So, a circuit is designed to resonate at the 
frequency to which we are trying to select. Now the current, for the signal having resonance frequency, 

f1

I0/√2

I0

f0 f2

Current

Frequency ( )f

Half Power
Points

∆ f

Fig. 7.57 
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in the circuit attains the maximum value (while all other signals have very less current in the circuit at 
this frequency) and has sufficient strength in between the half power frequencies to be amplified and 
analysis of the information hidden in it. So, the voltage or series resonance circuit is also known as 
selector circuit. 

  As discussed earlier also, the impedance of the circuit at half power frequencies may be given as, 

   1
2

Z 
 
 

 = 2 2( )L CR X X   = 2  × R
 
 (7.77) 

  or, R 2 + (XL – XC)2 = 2 R 2               or,            (XL – XC)2 = R 2 

  So, (XL – XC)2 = 
2

1ω
ω

L
C

 
 

 
 = ± R 2   

  or, 1
1

1ω
ω

L
C

 
  

 
 = – R   (7.78) 

  and, 2
2

1ω
ω

L
C

 
  

 
 = + R (7.79) 

  Equation (7.78) + (7.79): 

   (ω1 + ω2) × L − 1
C

 × 
1 2

1 1
ω ω

 
  

 
 = 0 

  or, (ω1 + ω2) × L − 1
C

 × 1 2

1 2

ω ω
ω ω

 
   

  = 0 

  or, L − 1
C

 × 
1 2

1
ω ω

 = 0 

  or, 
1 2

1
ω ω

 = L C            or,           1
LC

 = ω0 = 1 2ω ω  (7.80) 

  Equation (7.79) – (7.78): 

   (ω2 – ω1) × L + 1
C

 × 
1 2

1 1
ω ω

 
  

 
 = 2R 

  or, (ω2 – ω1) × L + 1
C

 × 2 1

1 2

ω ω
ω ω

 
  
 

 = (ω2 – ω1) × 
1 2

1 1
ω ω

L
C

 
   

 
 = 2R 

  or, (ω2 – ω1) × 
LCL
C

  
 

  = (ω2 – ω1) × (L + L) = 2 L × (ω2 – ω1) = 2 R 

  or, (ω2 – ω1) = R
L

 

  or, (f2 – f1) = 
2π

R
L

 = Band Width (Δ f) (7.81) 
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  Now, It can easily be interpreted from the current –vs– frequency graph that: 

  Half of the Band Width, 
2
f  = f2 – f0 = f0 – f1 = 

2π
R

L
 × 1

2
 = 

4π
R

L
 

 So, half power frequencies may now be given by: 

  f2 = f0 + 
4

R
L

              and,              f1 = f0 – 
4

R
L

 

  or, in general we may write it as: 

  f(Half Power) = f0 ± 
4π

R
L

 (7.82) 

  Quality Factor of Series (Voltage) Resonance Circuit: We have seen that in the series R-L-C 
resonance circuit the voltage across inductor and the voltage across the capacitor cancel out each other 
at the time of resonance. So, the supply voltage appears across resistance, i.e. VL = VC and V = VR. So, 
we can increase the voltage across inductor and capacitor to any finite value choosing appropriate 

values of inductance and capacitance keeping the condition of series resonance 0
1

2π
f

LC

 
  

 
 

satisfied with-out any damage to the circuit. “So, series resonance (circuit) is also known as voltage 
resonance (circuit), as voltage amplification occurs during series resonance”. 

  “The ratio (amount) of voltage amplification in the series resonance circuit is known as quality factor 
of the series resonant circuit”. The high quality factor indicates the high sharpness of the resonance, as 
the current curve has a sharper peak for an R-L-C series circuit having high quality factor. 

  Quality factor for a series R-L-C circuit may be given as:  

   Q = LV
V

 = LI X
I R

 = LX
R

 = ωL
R

 = 02 π f L
R

 

    = f0 × 2 π L
R

 = 1
2 π LC

 × 2 π L
R

 = 1
R

L
C

 (7.83) 

  Also, Q = f0 × 2 π L
R

 = 0

( / 2π )
f

R L
 = 0f

f
 = Resonance Frequency

Band Width
 

  So, Q = ωL
R

 = 1
R

L
C

 = 0f
f

 (7.84) 

  Another definition of quality factor: Ratio of resonance frequency (f0) to bandwidth (Δ f) is known as 
the quality factor of series (Voltage) resonance circuit. 

   Q = Resonance Frequency
B.W.

 = 0f
f

 = 1
2 π LC

 × 2 π L
R

 = 1
R

L
C

 (7.85) 

  The quality factor of the circuit may be increased by decreasing the band width (Δ f) of the circuit. So, 
narrow bandwidth indicates more sharpness at the resonance. 

  Selectivity of R-L-C series Circuit: It is directly proportional to the quality factor of the circuit, the 
high quality factor means the higher selectivity of the circuit. The selectivity of the series resonance 
circuit may be defined as, “The ability to discriminate a particular signal of certain frequency from 
various mixed signals of many frequencies”. 
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Problem 7.81: Determine the impedance of an R-L-C series circuit having R = 40 Ω, XL = 220 Ω and             

XC = 250 Ω. [CBSE 1993-94]  

Solution: R = 40 Ω,            XL = 220 Ω,            XC = 250 Ω 

 The impedance triangle for the given R-L-C circuit is drawn in the 
Fig. 7.58. Now, the impedance of the circuit, according to the 
impedance triangle, may be given as: 

  Z = 2 2( )C LR X X   = 2 2(40) (250 220)   = 50 Ω 

Problem 7.82: Determine the readings of the voltmeter and ammeter shown in the circuit diagram given in the 
Fig. 7.59.  

Solution: R = 45 Ω,            XL = XC = 4 Ω,            V = 90 V 

 The reader may easily observe that, the inductive and the capacitive reactance are equal, i.e.    
XL = XC in the given circuit. So, the circuit is resonating at the given frequency. Hence, the two 
voltages across the inductor (VL = I XL) and that across the capacitor (VC = I XC) are equal in 
magnitude. 

 So, the reading of the voltmeter, according to the phasor 
diagram drawn in the Fig. 7.59 (b), may be given as: 

  V = VL – VC = 0   

 So, the impedance of the circuit may be given as: 

  Z = R 

 and, the current through the circuit (reading of the 
ammeter) may be given as: 

  I = V
Z

 = V
R

 = 90
45

 = 2 A 

 The reader may cross check that the reading of the 
voltmeter may also be given as: 

  V = (VL – VC) = I × (XL − XC) = 2 × (4 – 4) = 0 

Problem 7.83: A 0.3 H inductor, a 60 µF capacitor and a 50 Ω resistor are connected in series with a          
120 V, 60 Hz supply. Determine the: i) impedance of the circuit, ii) magnitude and phase angle 
of the current flowing through the circuit. [CBSE 1993-94]  

Solution: L = 0.3 H,            C = 60 µF,            R = 50 Ω,            V = 120 V,            f = 60 Hz 

 The reactance offered by the circuit to the flow of the current may be given as: 

  X = XL – XC = 2 π f L – 1
2 π f C

 = 2 π × 60 × 0.3 – 

6
1

2 π 60 60 10  
 

   = 113.097 – 44.21 = 68.887 Ω 

 Now, the impedance of the circuit may be given as: 

  Z = 2 2( )L CR X X    

XL
R

XC
Z

ϕ
I

X X = ( C - )XL
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   = 2 2(50) (68.887) = 85.12 Ω 

 So, the magnitude of the current flowing through the circuit may be given as: 

  I = V
Z

 = 120
85.12

 = 1.41 A 

 The phase angle of the current flowing through the circuit, according to the phasor diagram 
drawn in the Fig. 7.60 (b), may be given as: 

  ɸ = tan−1 L CX X
R
 

 
 

 = tan−1 68.887
50

 
 
 

 = 54.03° 

Problem 7.84: A resistor of 50 Ω, an inductor of (20 / π) H, and a capacitor of (5 / π) µF are connected in 
series across a 230 V, 50 Hz a.c. source. Determine the impedance of the circuit and the 
magnitude and phase angle of the current flowing through the circuit.  [CBSE 1985-86]  

Solution: R = 50 Ω,            L = 20
π

 H,            C = 5
π

 µF,            V = 230 V,            f = 50 Hz 

 The impedance triangle for the given R-L-C circuit is drawn in the Fig. 7.61. Now, the 
impedance of the circuit, according to the impedance triangle, may be given as: 

  Z = 2 2( )C LR X X   = 
2

2 12π
2 π

R f L
f C

 
  
 

  

   = 
2

2
-6

20 1(50) 2π 50
π 2π 50 (5 / π)×10

 
       

  

   = 2 2(50) (2000 2000)   = 50 Ω 

 Since, XL = XC for the given circuit, so the circuit is resonating and the frequency 50 Hz is 
resonance frequency for the given circuit. 

Problem 7.85: A 100 mH inductor, a 20 µF capacitor and a 10 Ω resistor are connected in series across a   
100 V, 50 Hz a.c. source. Determine the: i) resonance frequency, ii) impedance of the circuit at 
resonance, iii) current at resonance.    

Solution: L = 100 mH,            C = 20 µF,            R = 10 Ω,            V = 100 V,            f = 50 Hz 

 The resonance frequency for an R-L-C series circuit may be given as: 

  f0 = 1
2 π LC

 = 
3 6

1

2 π 100 10 20 10   
 = 112.54 Hz 

 The impedance of the circuit at resonance (XL = XC, or XL – XC = 0) may be given as: 

  Z = R = 10 Ω 

 The current flowing through the circuit at resonance may be given as: 

  I = V
Z

 = V
R

 = 100
10

 = 10 A  

Problem 7.86: A resistor of 12 Ω, a capacitor of 227.36 µF and a pure inductor of 100 mH are connected in 
series and placed across a 200 V, 50 Hz a.c. supply. Determine: i) the current flowing through 

XL
Z R = 

XC

I
X X = ( L - ) = 0XC

 
Fig. 7.61 
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the circuit, ii) the phase angle between the applied voltage and the current flowing through the 
circuit.   

Solution: R = 12 Ω,            C = 227.36 µF,            L = 0.1 H,            V = 200 V,            f = 50 Hz 

 The reactance offered by the circuit to the flow of the current may be given as: 

  X = XL – XC = 2 π f L – 1
2 π f C

  

   = 2 π × 50 × 0.1 – 6
1

2 π 50 227.36 10  
 

   = 31.416 – 14 = 17.416 Ω (inductive) 

 Now, the impedance of the circuit may be given as: 

  Z = 2 2( )L CR X X   = 2 2(12) (17.416)  

   = 21.15 Ω 

 So, the magnitude of the current flowing through the circuit may be 
given as: 

  I = V
Z

 = 200
21.15

 = 9.46 A 

 The phase angle of the current flowing through the circuit, according to the phasor diagram 
drawn in the Fig. 7.62 (b), may be given as: 

  ɸ = tan−1 L CX X
R
 

 
 

 = tan−1 17.416
12

 
 
 

 = 55.43° (lagging) 

Problem 7.87: An R-L-C series circuit is consisting of a resistance of 10 Ω, an inductor of unknown inductance 
and a capacitor of 26.526 µF. This combination is found to be resonating, when connected 
across a 300 V, 100 Hz a.c. source. Determine: i) the value of inductance connected in the 
circuit, ii) the current in the circuit at resonance. [CBSE 1993-94]       

Solution: R = 10 Ω,            C = 26.526 µF,            V = 300 V,            f = 100 Hz 

 The expression for the resonance frequency of an R-L-C series circuit may be given as: 

  f0 = 1
2 π LC

  

 or, L = 2
1

(2 π )f C
 = 2 6

1
(2π 100) 26.526 10  

 = 95.49 mH 

 The impedance of the circuit at resonance (XL = XC, or XL – XC = 0) may be given as: 

  Z = R = 10 Ω 

 So, the current flowing through the circuit at resonance may be given as: 

  I = V
Z

 = V
R

 = 300
10

 = 30 A  

Problem 7.88: An inductor coil connected to a 6 V battery draws a steady current of 12 A from the battery. The 
coil is then connected in series with a capacitor and then connected across a 6 V a.c. source. If 
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the current through the circuit is co-phasor with the applied voltage, determine the rms value of 
the current. 

Solution: Vd.c. = 6 V,            Id.c. = 12 A,            Va.c. = 6 V,            ɸ = 0 

 When an inductive coil is connected across a d.c. source, the only active component of the coil 
at steady state is the resistance of the coil as inductor behaves as short circuit for a d.c. source. 
So, the resistance of the coil may be given as: 

  R = . .

. .

d c

d c

V
I

 = 6
12

 = 0.5 Ω 

 If the phase angle between the applied a.c. voltage and the circuit current is zero, it indicates 
that the circuit is resonating at this particular frequency. The impedance of an a.c. electrical 
circuit at resonance may be given as: 

  Z = R = 0.5 Ω 

 So, the current through the a.c. circuit may be given as: 

  Irms = rmsV
Z

 = rmsV
R

 = 6
0.5

 = 12 A (i.e. same as that in case of its d.c. operation) 

Problem 7.89: A radio wave of wavelength 300 m can be transmitted by a transmission center. A condenser of 
capacity 2.4 µF is available. Determine the inductance of required coil for analysis of the 
transmitted signal. 

Solution: λ = 300 m,            C = 2.4 µF 

 The frequency of the transmitted signal may be given as: 

  f = 
λ
c  = 

83 10
300
  = 1 MHz 

 If the resonance frequency of the designed circuit will be equal to the frequency of the 
transmitted signal, it can be analyzed easily after amplification. 

 So, f0 = 1
2 π LC

 = 1 × 106 

 or, L = 2
1

(2 π )f C
 = 6 2 6

1
(2π 1 10 ) 2.4 10   

 = 1.055 × 10−8 H = 10.55 nH 

Problem 7.90: A 25 µF capacitor, a 100 mH inductor and a 25 Ω resistor are connected in series across an 
a.c. source of emf e = 310 sin 314t Volts. Determine: i) frequency of the source, ii) reactance of 
the circuit, iii) impedance of the circuit, iv) magnitude of the current flowing through the 
circuit, v) phase angle of the current flowing through the circuit, vi) expression for the 
instantaneous value of the current flowing through the circuit, vii) individual voltages across 
the resistor, inductor and capacitor, viii) draw a phasor diagram for all these quantities, ix) the 
value of inductance which will make the resultant impedance of the circuit to be minimum.  

Solution: C = 25 µF,            L = 0.1 H,            R = 25 Ω,            e = 310 sin 314t Volts 

 Comparing the expression for the given emf with the standard emf expression: 

  E0 = 310 V,            ω = 314 rad/sec 

 So, f = ω
2 π

 = 314
2 π

 = 49.975 Hz ≈ 50 Hz XL
R

XC
Z

ϕ
I

X X = ( C - )XL

 
Fig. 7.63 
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 The inductive reactance and capacitive reactance in the circuit may respectively be given as: 

  XL = ω L = 314 × 0.1 = 31.4 Ω 

  XC = 1
ωC

 = 6
1

314 25 10 
 = 127.39 Ω 

 So, the net reactance of the circuit may be given as: 

  X = L CX X  = 31.4 127.39  = 95.99 Ω (capacitive)  

 The net impedance of the circuit may be given as: 

  Z = 2 2R X  = 2 2(25) (95.99)  = 99.19 Ω  

 The current flowing through the circuit may be given as: 

  I = rmsE
Z

 = 0

2
E

Z
 = 310

2 99.19
 = 2.21 A 

 The phase angle of the current may be given as: 

  ɸ = tan−1 X
R

 
 
 

 = tan−1 95.99
25

 
 
 

 = 75.4° (leading) = 75.4° × π
180

 = 1.32 rad (leading) 

 The expression for the instantaneous value of the current flowing through the circuit may be 
given as: 

  i = I0 sin (314 t + 1.31) = 2 × Irms sin (314 t + 1.31)  

   = 2 × 2.21 sin (314 t + 1.31) = 3.125 sin (314 t + 1.31) Amp 

 The voltage across individual circuit elements may be given as: 

  VR = I × R = 2.21 × 25 = 55.25 V 

  VL = I × XL = 2.21 × 31.4 = 69.394 V 

  VC = I × XC = 2.21 × 127.39 = 281.532 V 

 The phasor diagram for the various voltages and current flowing through the circuit is drawn in 
the Fig. 7.64. 

 The minimum impedance of the circuit implies the resonance in the circuit. So, the value of 
required inductance may be given by the expression: 

  f0 = 1
2 π LC

  

 or, L = 2
1

(2 π )f C
 = 2 6

1
(314) 25 10 

 = 0.40569 H = 405.69 mH 

Problem 7.91: A 2 µF capacitor, a 100 Ω resistor and an 8 H inductor are connected in series across an a.c. 
source of emf having a peak value of 200 V, and the current drawn by the circuit is maximum 
current. Determine for maximum current: i) the inductive and capacitive reactance for the 
circuit, ii) total impedance of the circuit, iii) peak value of current in the circuit, iv) phase 
difference between voltage across the inductor and resistor, v) phase difference between voltage 
across the inductor and capacitor.  [ISCE 1997-98] 

Solution: C = 2 µF,            R = 100 Ω,            L = 8 H,            E0 = 200 V 

VL
VR

VC
E

ϕ
I

( CV V - )L

 
Fig. 7.64 
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 Since, the current drawn by this circuit is maximum current from the a.c. source, it indicates that 

the circuit is resonating. So the frequency of the source is resonance frequency of the circuit 
which may be given as: 

  f0 = 1
2 π LC

 = 
6

1

2 π 8 2 10 
 = 39.79 Hz 

 So, the inductive and capacitive reactance (although equal in magnitude) in the circuit may 
respectively be given as: 

  XL = 2 π f L = 2 π × 39.79 × 8 = 2000 Ω 

 And, XC = 1
2 π f C

 = 6
1

2 π 39.79 2 10  
 = 2000 Ω 

 The peak value of the current flowing through the circuit (at resonance) 
may be given as: 

  I0 = 0E
Z

 = 0E
R

 = 200
100

 = 2 A 

 The phase difference between the voltages across inductor and resistor may be given as: 

  ɸRL = 90° (voltage across the inductor leading) 

 The phase difference between the voltages across inductor and capacitor may be given as: 

  ɸLC = 180° (voltage across the inductor leading) 

Problem 7.92: In a series R-L-C circuit the resonance frequency is 800 Hz. The half power frequencies are 
obtained at frequencies 745 Hz and 855 Hz. Determine the Q-factor of the circuit. Also 
determine the bandwidth of the circuit.  

Solution: f0 = 800 Hz,            f1 = 745 Hz,            f2 = 855 Hz 

 The band width of the circuit may be given as: 

  B.W. = Δ f = f2 – f1 = 855 – 745 = 110 Hz 

 The quality factor of the circuit may be given as: 

  Q = 0f
f

 = 800
110

 = 7.273 

Problem 7.93: A resistor of 40 Ω, an inductor of 3 mH and a capacitor of 2 µF are connected in series across 
a 110 V, 5000 Hz a.c. source. Determine the value of current flowing through the circuit.   

Solution: R = 40 Ω,            L = 3 mH,            C = 2 µF,            V = 110 V,            f = 5000 Hz 

 The impedance of the circuit may be given as: 

  Z = 2 2( )L CR X X   = 
2

2 12π
2 π

R f L
f C

 
  
 

  

 or, Z = 
2

2 3
6

1(40) 2π 5000 3 10
2π 5000 2 10




 
         

  

   = 2 2(40) (94.248 15.916)   = 87.954 Ω 
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ϕ
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 The current flowing through the circuit may be given as: 

  I = V
Z

 = 110
87.954

 = 1.25 A 

Problem 7.94: A resistor of 10 Ω, an inductor of 200 mH and a capacitor C are connected in series across a 
100 V, 50 Hz a.c. source. If the applied voltage and the current flowing through the circuit are 
co-phasor, determine the capacitance C.  [CBSE 2005-06] 

Solution: R = 10 Ω,            L = 200 mH,            V = 100 V,            f = 50 Hz,            ɸ = 0° 

 Since, the applied voltage and the current flowing through the circuit are co-phasor, so the 
circuit is resonating for the given frequency and the value of the capacitance C may be given by 
the relationship: 

  f0 = 1
2 π LC

  

 or, C = 2
1

(2 π )f L
 = 2 3

1
(2 π 50) 200 10  

 = 50.66 µF 

Problem 7.95: A 48 Ω resistor, a 50 mH inductor and a 50 µF capacitor are connected in series across an a.c. 
source of emf e = 310 sin 314t Volts. Determine the net reactance of the circuit and tell its 
nature. Also determine the phase angle between the applied voltage and the current flowing 
through the circuit.   

Solution: R = 48 Ω,            L = 50 mH,            C = 50 µF,            e = 310 sin 314t Volts 

 Comparing the expression for the emf with standard emf expression: 

  E0 = 310 V,            ω = 314 rad/sec 

 The inductive reactance and the capacitive reactance in the circuit may respectively be given as: 

  XL = ω L = 314 × 50 × 10−3 = 15.7 Ω 

  XC = 1
ωC

= 6
1

314 50 10 
 = 63.694 Ω 

 So, the net reactance of the circuit may be given as: 

  X = XC – XL = 63.694 – 15.7 = 47.994 Ω (capacitive) 

 The phase angle between the applied voltage and the current flowing through the circuit, 
according to the phasor diagram drawn in the Fig. 7.66, may respectively be given as: 

  ɸ = tan−1 X
R

 
 
 

 = tan−1 47.994
48

 
 
 

 ≈ 45° (leading)  

  Irms = rmsE
Z

 = 0

2
E

Z
 = 0

2 22

E

R X 
 = 

2 2

310

2 (48) (47.994) 
 = 3.229 A 

Problem 7.96: An R-L-C series circuit with R = 120 Ω, L = 100 mH and C = 100 µF is connected across an 
a.c. source of emf e = 30 sin 100t Volts. Determine the impedance, peak value of the current 
flowing through the circuit and the resonance frequency for the circuit.     

Solution: R = 120 Ω,            L = 100 mH,            C = 100 µF,            e = 30 sin 100t Volts 

 Comparing the expression for the emf with standard emf expression: 

  E0 = 30 V,            ω = 100 rad/sec 

XL
R

XC
Z

ϕ
I

X X = ( C - )XL

  
Fig. 7.66 
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 The inductive reactance and the capacitive reactance in the circuit may respectively be given as: 

  XL = ω L = 100 × 100 × 10−3 = 10 Ω 

  XC = 1
ωC

= 6
1

100 100 10 
 = 100 Ω 

 So, the net impedance of the circuit may be given as: 

  Z = 2 2( )C LR X X   = 2 2(120) (100 10)   = 150 Ω 
(capacitive) 

 The peak value of current flowing through the circuit may be given as: 

  I0 = 0E
Z

 = 30
150

 = 0.2 A 

 The resonance frequency for the circuit may be given as: 

  fr = 1
2 π LC

 = 
3 6

1

2 π 100 10 100 10   
 =50.33 Hz 

Problem 7.97: A 12 Ω resistor and an inductor of (0.05 / π) H with negligible resistance are connected in 
series. The combination is connected across a 130 V, 50 Hz a.c. source. Determine the current 
flowing through the circuit and the potential difference across the individual circuit elements.
 [CBSE 1999-2000] 

Solution: R = 12 Ω,            L = 0.05
π

 H,            V = 130 V,            f = 50 Hz 

 The inductive reactance offered by the inductor to the flow of current may be given as: 

  XL = 2 π f L = 2 π × 50 × 0.05
π

  = 5 Ω 

 The impedance of the circuit may be given as: 

  Z = 2 2
LR X  = 2 2(12) (5)  = 13 Ω 

 The current flowing through the circuit may be given as: 

  I = V
Z

 = 130
13

 = 10 A 

 The potential difference across the individual circuit elements may be given as: 

  VR = I × R = 10 × 12 = 120 V  

  VL = I × XL = 10 × 5 = 50 V  

Problem 7.98: A resistor of 5 Ω, an inductor of 50 mH and a capacitor C are connected in series across an a.c. 
source of 100 V, 50 Hz. The current flowing through the circuit is found to be co-phasor with 
the supply voltage, determine the capacitance in the circuit and the impedance of the circuit.
 [CBSE 1998-99] 

Solution: R = 5 Ω,            L = 50 mH,            V = 100 V,            f = 50 Hz 

 If the phase angle between the applied a.c. voltage and the circuit current is zero, it indicates 
that the circuit is resonating at this particular frequency. The capacitance C in the circuit may be 
given by the expression: 

XL
R

XC
Z

ϕ
I

X X = ( C - )XL

  
Fig. 7.67 
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  fr = 1
2 π LC

 

 or, C = 2
1

(2π )f L
 = 2 3

1
(2 π 50) 50 10  

 = 202.64 µF 

 The impedance of the circuit at resonance (XL = XC, i.e. XL – XC =0) may be given as: 

  Z = R = 5 Ω 

Problem 7.99: A resistor R, an inductor of (1 / π) H and a capacitor (1 / π) µF are connected in series across 
an a.c. source of constant voltage but variable frequency. Determine the frequency for which 
the voltage across the resistance is maximum. 

Solution: L = 1
π

 H,            C = 1
π

 µF,            V = Constant,            f = Variable 

 We know that the supply voltage appears across the resistor at resonance in an R-L-C series 
circuit, which is the maximum voltage that can appear across the resistance. So, the required 
frequency is the resonance frequency for this circuit and may be given as: 

  fr = 1
2 π LC

 = 
6

1
1 12 π 10
π π

 
 = 500 Hz   

Problem 7.100: An a.c. source of frequency 50 Hz is connected to the series combination of a 50 mH inductor 
and a lamp. Determine the required capacitance in series with this combination in order that 
the lamp glows with maximum brightness. [CBSE 1999-2000] 

Solution: f = 50 Hz,            L = 50 mH 

 The lamp will glow with maximum brightness, only when the voltage across the lamp will 
become maximum. We know that the supply voltage appears across the resistor at resonance 
in an R-L-C series circuit, which is the maximum voltage that can appear across the lamp. So, 
the circuit must be resonating at the given frequency. The value of the required capacitance 
may be given by the expression: 

  fr = 1
2 π LC

 

 or, C = 2
1

(2π )f L
 = 2 3

1
(2 π 50) 50 10  

 = 202.64 µF 

Problem 7.101: A 200 km long telegraph wire has a capacitance of 0.014 µF/km. If it carries an alternating 
current of frequency 50 kHz, determine the value of inductance required in series with the 
wire to bring the impedance of the line to its minimum value. [CBSE 1991-92] 

Solution: l = 200 km,            c = 0.014 µF/km,            f = 50 kHz 

 The total capacitance of the line may be given as: 

  C = c × l = 0.014 × 200 = 2.8 µF 

 The impedance of the line will be minimum (Z = R), if the circuit is resonating for the given 
frequency. So, the value of required inductance in series with the line may be given by the 
expression: 
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  fr = 1
2 π LC

 

 or, L = 2
1

(2 π )f C
 = 3 2 6

1
(2 π 50 10 ) 2.8 10   

 = 3.619 µH 

Problem 7.102: An R-L-C series circuit, having R = 40 Ω, L = 4 H and C = 100 µF, is connected across an 
a.c. source of 220 V but of variable frequency. Determine: i) resonance frequency for this 
circuit, ii) the impedance of circuit and the amplitude of the current flowing through the 
circuit at resonance, iii) r.m.s. potential drop across inductor. [CBSE 1994-95] 

Solution: R = 40 Ω,            L = 4 H,            C = 100 µF,            V = 220 V,            f = variable 

 The resonance frequency for this circuit may be given as: 

  f0 = 1
2 π LC

 = 
6

1

2 π 4 100 10 
 = 7.958 Hz 

 The impedance of the circuit at resonance may be given as: 

  Z = R = 40 Ω 

 The amplitude of the current flowing through the circuit at resonance may be given as: 

  I0 = 2  Irms = 2  × V
Z

 = 2  × V
R

 = 2  × 220
40

 = 7.778 A 

 The r.m.s. value of the potential drop across the inductor may be given as: 

  VL = Irms × XL = 0

2
I

 × (2 π f L) = 7.778
2

 × (2 π × 7.958 × 4) = 1100 V   

Problem 7.103: An R-L-C series circuit, having R = 25 Ω, L = 0.12 H and C = 0.48 mF, is connected across 
an a.c. source of 220 V but of variable frequency. Determine the frequency at which the 
current flowing through the circuit will become maximum. [Haryana 2001-02] 

Solution: R = 25 Ω,            L = 0.12 H,            C = 0.48 mF,            V = 220 V,            f = variable 

 We know that the current will become maximum through the circuit only at resonance, and 
the resonance frequency may be given as: 

  f0 = 1
2 π LC

 = 
3

1

2 π 0.12 0.48 10 
 = 20.97 Hz ≈ 21 Hz 

Problem 7.104: Determine the capacitive reactance of 10 µF capacitor at a frequency of 1000 cycles/sec. 
Also, determine the inductance required in series with the capacitor to produced resonance in 
the circuit. [Haryana 2001-02] 

Solution: C = 10 µF,            f = 1000 Hz 

 The capacitive reactance of the capacitor may be given as: 

  XC = 1
2 π f C

 = 6
1

2 π 1000 10 10  
 = 15.92 Ω 

 The required inductance in series with the capacitor to produce the resonance in the circuit 
may be given by the expression: 
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  fr = 1
2 π LC

 

 or, L = 2
1

(2 π )f C
 = 2 6

1
(2 π 1000) 10 10  

 = 2.533 mH 

Problem 7.105: Determine the resonance frequency and the Quality factor of an R-L-C series circuit, having 
R = (10 / 3) Ω, L = 4 H and C = 36 µF. How can the sharpness of the resonance of the circuit 
be improved by a factor of 2 by reducing its full width at half maximum. 

Solution: R = 10 / 3 Ω,            L = 4 H,            C = 36 µF 

 The resonance frequency of the circuit may be given as: 

  fr = 1
2 π LC

 = 
6

1

2 π 4 36 10 
 = 13.267 Hz 

 The Quality factor of the circuit may be given as: 

  Q = 1
R  

L
C

 = 1
(10 / 3)

 × 6
4

36 10
 = 100 

 Since, the sharpness is to be increased only and without disturbing the resonance frequency. 
So, we cannot alter the value of L and C. In that case, we may alter the value of R only. So, 
the value of R must be halved to double the sharpness at the resonance.  

7.15 Choke Coil: A choke coil is a simple device, an inductor with a large inductance but a smaller (as 
small as possible) resistance, which is generally used to reduce and smoothen the current in an a.c. 
circuit without any appreciable loss of energy in the circuit. 

 Construction: A choke coil is made up of a large number of turns of thick copper conductor (very low 
resistance due to its thicker cross section) over a laminated iron core (to reduce eddy current losses in 
the core). The choke coil offers a high inductive reactance (XL = 2 π f L) to the flow of the a.c. current, 
so that the current reduces considerably through the circuit. The losses in the choke coil are very small 
due to its negligible resistance and the laminated iron core. 

 Working Principle: A choke coil is based on the basic principle that, 
when an a.c. current flows through a choke coil it offers a high 
reactance to the flow of current resulting in a smaller current in the 
circuit and the power dissipated in the choke coil is almost zero as 
the current flowing in the circuit lags the voltage of the choke coil by 
almost 90°, i.e. Pchoke coil = VL I cos 89.999° ≈ 0. 

 A choke coil (having very small resistance in series with a high 
inductance, i.e. R ≪ L) connected alone across an a.c. supply source 
is shown in the Fig. 7.68. 

 If the rms value of the supply voltage is V and the rms value of current flowing through the choke coil is 
I, the power dissipated in the circuit (choke coil) may be given as: 

  Pchoke coil = V × I × cos ɸ = I Z × I × R
Z

 = I 2 R (7.85) 

 Preference of Choke Coil Over the Ohmic Resistance: Since, the resistance of the choke coil is very 
small (as small as possible), so the power dissipated in the choke coil is almost negligible. On the 
other hand, the impedance of the coil Z = 2 2 LR X  is quite large due to a large inductance of the 

(b)

VLV

I

ϕ

VRV

I

R L

VR VL

I IVR
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Coil

 
Fig. 7.68 
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coil, this helps the choke coil to reduce the circuit current considerably without any appreciable 
power consumption in the choke coil. 

 The use of choke coil is always preferred over the use of high resistances in the circuit for reducing / 
controlling the circuit currents, due to the reasons given above.  

7.16 Energy Associated with a Pure Inductor: We have already discussed in detail that the power 
dissipated in an inductor is zero due to the fact that a wattles current / virtual current flows through the 
inductor (lagging the applied voltage by 90°). Since, a virtual current is flowing through the inductor, so 
it must be drawing / delivering some virtual power from / to the supply source. We have to investigate 
further into it to understand its exact behavior. 

  Let us consider the wave form of the applied voltage across a pure 
inductor and that of the current flowing through the same inductor, 
lagging the applied voltage by 90°, as shown in the Fig. 7.69. The 
wave form of voltage (V, dotted line) and of current (I, thicker 
line) are shown in the Fig 7.69. The current lags behind the voltage 
by an angle of 90°, for a purely inductive circuit. As, we already 
know that: P = V I cos ɸ, the power consumed in the circuit will be 
zero, whenever either of V or I becomes zero. The points O, π/2, π, 
3π/2 and 2π are such instants / points on the waveform shown in 
the Fig 7.69, where either V or I is zero. So, the power waveform 
may be drawn as shown by the thickest line in the Fig. 7.69. We 
have divided two cycles of power in four zones 1, 2, 3 and 4, each 
zone lying between two consecutive points where power becomes 
zero.  

 i) Now observe the zone 1, where voltage is positive but current is negative. As the instantaneous power in 
any a.c. circuit may always be given by p = v i, so power is negative in zone 1. 

 ii) Now observe the zone 2, where voltage and current both are positive. So, the power is positive in      
zone 2. 

 iii) Now observe the zone 3, where voltage is negative but current is positive. So, the power is again 
negative in zone 3. 

 iv) Now observe the zone 4, where voltage and current both are negative. So, the power is again positive in 
zone 4.  

 So, the reader may conclude that inductor is behaving as energy storing device, which is taking energy 
from the supply source in one half of the cycle while returning it back to the circuit during another half 
of the cycle. In this process the power is pulsating with a frequency double of the frequency of supply 
source.   

 We know that the emf induced across an inductor may be given as: 

  E = – N × d
d t
  = – L × d I

d t
   (7.86) 

 The work done by the supply source against the induced emf in small time dt may be given as: 

  dW = P dt = – E I dt = L I × d I
d t

 dt = L I  d I (7.87) 

 So, the energy stored (magnetic energy) in the inductor may be given as: 

  UB = dW  = 
0

0

I

L I d I  = L × 
02

0
2

I
I 

 
 

 = 1
2

 L 2
0I  

ωt

π 2π

V
I

π/2 3 /2π

0

1 2 3 4
P

 
Fig. 7.69 
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 So, UB = 1
2

 L 2
0I  (7.88) 

7.17 Energy Associated with a Pure Capacitor: We have already discussed in detail that the power 
dissipated in a capacitor is zero due to the fact that a wattles current / virtual current flows through the 
capacitor (leading the applied voltage by 90°). Since, a virtual current is flowing through the capacitor, 
so it must be drawing / delivering some virtual power from / to the supply source. We have to 
investigate further into it to understand its exact behavior. 

  Let us consider the wave forms of the applied voltage across a pure 
capacitor and the current flowing through the same capacitor, 
leading the applied voltage by 90°, as shown in the Fig. 7.70. The 
wave form of voltage (V, dotted line) and of current (I, thicker 
line) shown in the Fig 7.70. The current leads the voltage by an 
angle of 90° for a purely capacitive circuit. As, we already know 
that: p = v i, the power consumed in the circuit will be zero, 
whenever either of V or I becomes zero. The points O, π/2, π, 3π/2 
and 2π are such instants / points in the waveform shown in the Fig 
7.70, where either V or I is zero. So, the power waveform may be 
drawn as shown by the thickest line in the Fig. 7.70. We have 
divided two cycles of power in four zones 1, 2, 3 and 4, each zone 
lying between two consecutive points where power becomes zero.  

 i) Now observe the zone 1, where voltage and current both are positive. As instantaneous power in any 
a.c. circuit may always be given as p = v i, so power is positive in zone 1. 

 ii) Now observe the zone 2, where voltage is positive but the current is negative. So, the power is negative 
in zone 2. 

 iii) Now observe the zone 3, where voltage and current both are negative. So, the power is again positive in 
zone 3. 

 iv) Now observe the zone 4, where voltage is negative but current is positive. So, the power is again 
negative in zone 4.  

 So, the reader may conclude that capacitor is behaving as energy storing device, which is taking energy 
from the supply source in one half of the cycle while returning it back to the circuit during another half 
of the cycle. In this process the power is pulsating with a frequency double of the frequency of supply 
source.   

 Let us assume that the displacement of charge q from one plate to another has already been set up a 
potential difference V between the plates of the capacitor. 

 So, V = q
C

  (7.89) 

 The work done by the supply source to transfer a further small charge dq from one plate of the capacitor 
to another plate of the capacitor against the potential difference V may be given as: 

  dW = V dq = q
C

 dq (7.90) 

 So, the energy stored (electrostatic energy) in the capacitor may be given as: 

  UE = dW  = 
0

0

q q d q
C  = 1

C
 × 

02

0
2

q
q 
 
 

 = 1
2

 × 
2
0q

C
 = 1

2
 × C V 2 = 1

2
 × q0 V   

ωt

π 2π

V

π/2 3 /2π

0

1 3 4

I

P
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 So, UE = 1
2

 × 
2
0q

C
 = 1

2
 × C V 2 = 1

2
 × q0 V (7.91) 

Problem 7.106: A light bulb (lamp) is rated at 100 W, 220 V a.c. Determine: i) the resistance of the lamp,     
ii) the peak voltage of the a.c. voltage source, iii) the rms value of current flowing through the 
lamp. [NCERT] 

Solution: Lamp = 100 W, 220 V 

 The resistance of the lamp may be given as: 

  R = 
2V

P
 = 

2(220)
100

 = 484 Ω 

 The peak value of the a.c. voltage source may be given as: 

  V0 = 2 × Vrms = 2  × 220 = 311.13 V 

 The rms value of current flowing through the lamp may be given as: 

  I = V
R

 = 220
484

 = 0.455 A 

   = P
V

 = 100
220

 = 0.455 A 

Problem 7.107: A resistor and a capacitor are connected in series across an a.c. source. If the potential 
differences across R and C are 90 V and 120 V respectively and the rms current of the circuit 
is 3 A, determine the: i) impedance, ii) power factor of the circuit.  [CBSE 2005-06] 

Solution: VR = 90 V,            VC = 120 V,            I = 3 A 

 The value of resistance and capacitive reactance may respectively be given as: 

  R = RV
I

 = 90
3

 = 30 Ω 

  XC = CV
I

 = 120
3

 = 40 Ω 

 So, the impedance of the circuit may be given as: 

  Z = 2 2
CR X  = 2 2(30) (40)  = 50 Ω 

 The power factor of the circuit, using impedance triangle shown in the Fig. 7.71 (b), may be 
given as: 

  p.f. = cos ɸ = R
Z

 = 30
50

 = 0.6 (leading) 

Problem 7.108: A resistor of 10 Ω, an inductor of 200 mH and a capacitor C are connected in series across 
an a.c. source of frequency 50 Hz. If the power factor of the circuit is found to be unity, 
determine the: i) value of capacitance C, ii) the quality factor of the circuit. [CBSE 2005-06] 

Solution: R = 10 Ω,            L = 200 mH,            f = 50 Hz 

 The unity power factor of the circuit indicates that the circuit is resonating for the given 
frequency. So, the value of the capacitance may be given by the expression: 

XC
Z

I
ϕ

(c)

R

V

I R C

I
I
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  f0 = 1
2 π LC

  

 or, C = 2
1

(2 π )f L
 = 2 3

1
(2 π 50) 200 10  

 = 50.66 µF 

 The quality factor of the circuit may be given as: 

  Q = 1
R

 × L
C

 = 1
10

 × 
3

6
200 10

50.66 10







 = 6.283 

   = ωL
R

 = 2 π f L
R

 = 
32 π 50 200 10

10

    = 6.283 

Problem 7.109: An alternating voltage source of emf e = 200 sin 300t Volts is applied across a series 
combination of R = 10 Ω and an inductor of 800 mH. Determine: i) impedance of the circuit, 
ii) peak value of the current flowing through the circuit, iii) power factor of the circuit. 
 [CBSE 1933-94] 

Solution: e = 200 sin 300t Volts,            R = 10 Ω,            L = 800 mH 

 Comparing the expression for emf with the standard emf expression, we get: 

  E0 = 200 V,            ω = 300 rad/sec 

 The impedance of the circuit may be given as: 

  Z = 2 2
LR X  = 2 2(ω )R L  = 2 3 2(10) (300 800 10 )    = 240.208 Ω 

 The peak value of the current flowing through the circuit may be given as: 

  I0 = 0E
Z

 = 200
240.208

 = 0.833 A 

 The power factor of the circuit, using the impedance triangle, may be given as: 

  p.f. = cos ɸ = R
Z

 = 10
240.208

 = 0.042 (lagging)  

Problem 7.110: A sin usoidal voltage of peak value 283 V, 50 Hz is applied across an R-L-C series circuit in 
which R = 3 Ω, L = 25.48 mH and C = 796 µF. Determine: i) the impedance of the circuit, ii) 
the phase difference between the voltage across the source and the current flowing through 
the circuit, iii) the power dissipated in the circuit, iv) the power factor of the circuit.  [NCERT] 

Solution: V0 = 283 V,            f = 50 Hz,             R = 3 Ω,            L = 25.48 mH,            C = 796 µF 

 The net reactance of the circuit may be given as: 

  X = (XL – XC) = 12 π
2 π

f L
f C

 
 

 
  

 or, X = 3
6

12π 50 25.48 10
2π 50 796 10




 
          

= (8 – 4) = 4 Ω 

 The impedance of the circuit may be given as: 

  Z = 2 2R X  = 2 2(3) (4)  = 5 Ω  
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 The phase difference between the voltage across the source and 

the current flowing through the circuit, using the impedance 
triangle shown in the Fig. 7.72 (b), may be given as: 

  ɸ = tan−1 X
R

 
 
 

 = tan−1 4
3

 
 
 

 = 53.13° 

 The power dissipated in the circuit may be given as: 

  P = I 2 R = 
2

rmsV
Z

 
 
 

× R = 
2

0

2
V

Z
 
  

× R = 
2283

2 5
 
  

× 3  

   = 4805.34 W = 4.805 kW 

 The power factor of the circuit may be given as: 

  p.f. = cos ɸ = R
Z

 = 3
5

 = 0.6 (lagging) 

Problem 7.111: If the frequency of the source is variable in the previous problem, determine: i) resonance 
frequency of the given circuit, ii) the impedance, the current flowing through the circuit and 
the power dissipation in the circuit at resonance. [CBSE 2001-02] 

Solution: V0 = 283 V,            f = 50 Hz,             R = 3 Ω,            L = 25.48 mH,            C = 796 µF 

 The resonance frequency of the given circuit may be given as: 

  fr = 1
2 π LC

 = 
3 6

1

2 π 25.48 10 796 10   
 = 35.34 Hz 

 The impedance of the circuit at the time of resonance may be given as: 

  Z = R = 3 Ω 

 The current flowing through the circuit at the time of resonance may be given as: 

  I = rmsV
Z

 = 0

2
V

R
 = 283

2 3
 = 66.704 A 

 The power dissipation in the circuit at the time of resonance may be given as: 

  P = I 2 × R = (66.704)2 × 3 =13.348 kW  

Problem 7.112: A 200 V variable frequency a.c. source is connected to a series combination of R = 40 Ω,       
L = 5 H and C = 80 µF. Determine: i) angular frequency of the source to get maximum 
current in the circuit, ii) the current amplitude at the resonance, iii) the power dissipated in 
the circuit. [CBSE 2001-02] 

Solution: V = 200 V,            f = variable,             R = 40 Ω,            L = 5 H,            C = 80 µF 

 The maximum current can be obtained in an R-L-C series circuit at its resonance only. The 
required angular frequency may be given by the expression: 

  f0 = 1
2 π LC

 

 or, ω = 2 π f = 1
LC

 = 
6

1

5 80 10 
 = 50 rad/sec 

 The amplitude of the current at resonance may be given as: 

V

I R L C

I I
I
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Z

ϕ

I

(b)  
Fig. 7.72 
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  I0 = 0V
Z

 = 2 rmsV
R
  = 2 200

40
  = 7.071 A 

 The power dissipated in the circuit may be given as: 

  P = I 2 R = 
2

0

2
I 

 
 

× R = 
27.071

2
 
 
 

× 40 = 999.98 W ≈ 1 kW 

   = 
2
rmsE
R

 = 
2(200)

40
 = 1000 W = 1 kW 

Problem 7.113: A current of 4 A is flowing through a coil, when it is connected across a supply source of 
frequency 50 Hz. If the power consumed in the coil is 240 W and the potential difference 
across the coil is 100 V, determine the inductance of the coil.  [CBSE 1991-92] 

Solution: I = 4 A,            f = 50 Hz,             P = 240 W,            V = 100 V 

 The value of the resistance of the coil may be given by the expression: 

  R = 2
P
I

 = 2
240
(4)

 = 15 Ω 

 The impedance of the coil may be given by the expression: 

  Z = V
I

 = 100
4

 = 25 Ω 

 So, the inductive reactance of the coil, using impedance triangle shown in the Fig. 7.73, may 
be given as: 

  XL = 2 2Z R  = 2 2(25) (15)  = 20 Ω = 2 π f L 

 or, L = 20
2 π f

 = 20
2 π 50

 = 63.66 mH  

Problem 7.114: A circuit draws a power of 550 W from a source of 220 V, 50 Hz. The power factor of the 

circuit is 0.8 (lagging). Show that a capacitor of about 1
42 π

× 10−2 F will have to be 

connected in series of the circuit to bring the power factor of the circuit to unity.    
 [CBSE 1991-92] 

Solution: P = 550 W,         V = 220 V,         f = 50 Hz,           p.f. = 0.8 (lagging),          C = 1
42 π

× 10−2 F 

 The current flowing through the circuit may be given by the expression: 

  P = V I cos ɸ 

 or, I = 
cos
P

V 
 = 550

220 0.8
 = 3.125 A 

 The resistance connected in the circuit may be given as: 

  R = 2
P
I

 = 2
550

(3.125)
 = 56.32 Ω 

 So, the inductive reactance connected in the circuit may be given as: 

XL
Z

I

ϕ

R  
Fig. 7.73 

XL
Z

I

ϕ

R  
Fig. 7.74 
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  XL = R tan ɸ = 56.32 × sin
cos




 = 56.32 × 
21 (0.8)

0.8


 = 42.24 Ω 

 The power factor of the circuit will become unity at resonance, 

 i.e. XC = 1
2 π f C

 = XL = 42.24 Ω 

 or, C = 1
2 π 42.24f 

 = 1
2 π 50 42.24 

 = 1
42.24π

 × 10−2 F ≈ 1
42 π

 × 10−2 F 

Problem 7.115: An emf e = 100 sin 314t Volts is applied across a pure capacitor of 637 µF. Determine: i) the 
instantaneous current, ii) instantaneous power, iii) the frequency of power, iv) the maximum 
energy stored in the capacitor. 

Solution: e = 100 sin 314t Volts,         C = 637 µF 

 Comparing the expression for emf with the standard emf equation, we get: 

  E0 = 100 V,            ω = 314 rad/sec 

 The capacitive reactance of the capacitor at this angular frequency may be given as: 

  XC = 1
ωC

 = 6
1

314 637 10 
 = 5 Ω 

 The instantaneous current may be given as (leading the supply voltage by π/2 rad, as the 
circuit is purely capacitive): 

  i = 
C

e
X

 = 100
5

 sin (314t + π/2) = 20 sin (314t + π/2) Amp = 20 cos 314t Amp 

 The instantaneous power may be given as: 

  p = v i = (100 sin 314t) × (20 cos 314t) = 1000 × 2 sin 314t cos 314t 

   = 1000 sin 628t Watt 

 The frequency of power may be given as: 

  fp = 
ω
2π

p  = 628
2 π

 = 100 Hz (double of the supply frequency) 

 The maximum energy stored in the capacitor may be given as: 

  UE = 1
2

× C 2
0E  = 1

2
 × 637 × 10−6 × (100)2 = 3.185 J 

Problem 7.116: An R-L-C series circuit is consisting of R = 100 Ω, L = 2
π

  H and C = 100
π

 µF. This series 

combination is connected across an a.c. source of 220 V, 50 Hz. Determine: i) the impedance 
of the circuit, ii) the peak value of the current flowing through the circuit, iii) the power factor 
of the circuit and compare it with the power factor of circuit at resonance.   

Solution: R = 100 Ω,         L = 2
π

 H,            C = 100
π

 µF,            V = 220 V,            f = 50 Hz 

 The net reactance of the circuit may be given as: 
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  X = XL – XC = 2 π f L – 1
2 π f C

 = 2 π × 50 × 2
π

 – -6
1

2 π 50 (100 / π)×10 
  

   = 200 – 100 = 100 Ω 

 The impedance of the circuit may be given as: 

  Z = 2 2R X  = 2 2(100) (100)  = 100 2  = 141.4 Ω 

 The peak value of the current flowing through the circuit may be given as: 

  I0 = 0V
Z

 = 2 rmsV
Z

 = 2 220
100 2
  = 2.2 A 

 The power factor of the circuit may be given as: 

  p.f. = cos ɸ = R
Z

 = 100
100 2

 = 1
2

 = 0.707 (lagging) 

 The power factor qt resonance is unity for an R-L-C series circuit. 

 So, circuit

resonance

p.f.
p.f.

 = 0.707
1

 = 0.707                  or,                  p.f.circuit : p.f.resonance = 0.707 : 1  

Problem 7.117: The current in a coil of self inductance 2 H is increasing according to I = 2 sin t 2 Amp. 
Determine the amount of energy spent during the period when the current changes from zero 
to 2 A.    [Roorkee 1991] 

Solution: L = 2 H,         I = 2 sin t 2 Amp,            I1 = 0 A,            I2 = 2 A 

 Since the maximum value of the current is also 2 A. 

 So, the energy spent may be given as: 

  UB = 1
2

 × L 2
0I  = 1

2
 × 2 × (2)2 = 4 J 

Problem 7.118: A 100 µF capacitor is charged with a 50 V supply source. Then the source supply is removed 
and the capacitor is connected across an inductor, as a result of which a current of 5 A flows 
through the inductor. Determine the value of the inductance of inductor.  [CBSE 1991-92] 

Solution: C = 100 µF,         V = 50 V,            I = 5 A 

 Since inductor and capacitors are the energy storing elements and both exchanges the energy 
stored in themselves during the half cycles of the oscillations, 

 So, 1
2

 × C V 2 = 1
2

 × L I 2 

 or, L = C × 
2V

I
 
 
 

 = 100 × 10−6 × 
250

5
 
 
 

 = 0.01 H = 10 mH   

Problem 7.119: A coil has an inductance of 0.7 H and is joined in series with a resistor of 220 Ω. Determine 
the watt less component of the current in the circuit, when an alternating emf of 220 V at a 
frequency of 50 Hz is applied to this series combination. 

Solution: L = 0.7 H,         R = 220 Ω,            V = 220 V,            f = 50 Hz 

 The reactance offered by the coil may be given as: 
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  XL = 2 π f L = 2 π × 50 × 0.7 = 219.91 Ω 

 The impedance of the coil may be given as: 

  Z = 2 2R X  = 2 2(220) (219.91)  = 311.06 Ω 

 The current flowing through the circuit may be given as: 

  I = V
Z

 = 220
311.06

 = 0.7073 A 

 The watt less component of the current through the circuit may be given as: 

  Iwattless = I sin ɸ = I × LX
Z

 = 0.7073 × 219.91
311.06

 = 0.5 A 

Problem 7.120: An ammeter shows that an alternator is delivering 20 A. The voltmeter reads 220 V, while a 
wattmeter shows that 4 kW of power is being delivered. Determine the working power factor 
of the alternator. 

Solution: I = 20 A,         V = 220 V,            P = 4 kW 

 The working power factor of the alternator may be given as: 

  cos ɸ = P
V I

 = 4000
220 20

 = 0.909 

Problem 7.121: A 100 Ω electric iron is connected to 200 V, 50 Hz a.c. source. Determine average power 
delivered to the iron, peak power and energy spent in one minute. 

Solution: R = 100 Ω,         V = 200 V,            f = 50 Hz 

 The average power delivered to the iron may be given as: 

  P = 
2V

R
 = 

2(200)
100

 = 400 W 

 The peak power delivered to the iron may be given as: 

  P0 = 
2

0V
R

 = 
2( 2 )rmsV

R
 = 

2( 2 200)
100
  = 800 W 

 The energy spent in one minute may be given as: 

  U = P × t = 400 × 1 × 60 = 24000 Watt sec 

Problem 7.122: An a.c. circuit has a resistance of 100 Ω and an inductance of 6 H connected in series across 
a 250 V, 50 Hz a.c. source. Determine the current flowing through the circuit and its power 
factor.  

Solution: R = 100 Ω,         L = 6 H,            V = 250 V,            f = 50 Hz 

 The impedance of the circuit may be given as: 

  Z = 2 2
LR X  = 2 2(2 π )R f L  = 2 2(100) (2 π 50 6)    = 1887.61 Ω 

 The current flowing through the circuit may be given 
as: 

  I = V
Z

 = 250
1887.61

 = 0.1325 A = 132.5 mA 
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Z

I

ϕ

(b)
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Fig. 7.76 
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ϕ
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 The power factor of the circuit, using the impedance triangle shown in the Fig. 7.76 (b), may 

be given as: 

  p.f. = cos ɸ = R
Z

 = 100
1887.61

 = 0.0529 (lagging) 

Problem 7.123: An a.c. circuit has a resistance of 50 Ω, an inductance of 10 H and a capacitor of 2 µF 
connected in series across a 220 V, 50 Hz a.c. source. Determine the current flowing through 
the circuit and its power factor.  

Solution: R = 50 Ω,         L = 10 H,            C = 2 µF,            V = 220 V,            f = 50 Hz 

 The impedance of the circuit may be given as: 

  Z = 2 2( )L CR X X   = 
2

2 12π
2 π

R f L
f C

 
  
 

  

   = 
2

2
6

1(50) 2π 50 10
2π 50 2 10

 
        

  

   = 1550.04 Ω 

 The current flowing through the circuit may be given as: 

  I = V
Z

 = 220
1550.04

 = 0.1419 A = 141.9 mA 

 The power factor of the circuit, using the impedance triangle 
shown in the Fig. 7.77 (b), may be given as: 

  p.f. = cos ɸ = R
Z

 = 50
1550.04

 = 0.0323 (lagging) 

Problem 7.124: A group of electric lamps has a power rating of 300 W. An a.c. voltage is applied across the 
group of lamps, given by V =141.4 sin (314t + π/3) Volts. Determine the effective value of 
current delivered by the source. 

Solution: P = 300 W,         V = 141.4 sin (314t + π/3) Volts 

 The effective value of the current delivered by the source may be given as: 

  I = P
V

 = 
0( / 2)

P
V

 = 2 300
141.4
  = 3 A 

Problem 7.125: An alternating voltage and the corresponding current in an electrical circuit may be given as: 

 e = 110 sin (ωt + π/6) Volts          and,             i = 5 sin (ωt – π/6) Amp 

 Determine the impedance of the circuit and the average power dissipated in the circuit.   

Solution: e = 110 sin (ωt + π/6) Volts,            i = 5 sin (ωt – π/6) Amp 

 We get following parameters by inspection of the expressions for the emf and the circuit 
current: 

  E0 = 110 V,            I0 = 5 A,            ɸ = (π/6) – (– π/6) = π/3 = 60°  

 The impedance of the circuit may be given as: 

V

I R L C

I I
I
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R
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XC

Z

ϕ

I

(b)  
Fig. 7.77 
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  Z = E
I

 = 0

0

E
I

 = 110
5

 = 22 Ω 

 The average power dissipated in the circuit may be given as: 

  P = E I cos ɸ = 0

2
E

 × 0

2
I

 × cos ɸ = 110
2

 × 5
2

 × cos 60° = 137.5 W   

Problem 7.126: An R-L-C series circuit has a potential drop across its individual elements as: VR = 80 V,     
VL = 100 V and VC = 40 V. Determine the emf of the applied voltage source and the power 
factor of the circuit.  

Solution: VR = 80 V,         VL = 100 V,            VC = 40 V 

 The circuit diagram and the phasor diagram for the voltages across 
the individual elements connected in series are shown in the Fig. 
7.78 (a) and (b) respectively. The emf of the applied voltage 
source will be equal to the resultant of three voltages connected in 
series. So, the emf of the source voltage may be given as: 

  V = 2 2( )R L CV V V   = 2 2(80) (100 40)   

   = 100 V 

 The power factor of the circuit, using the voltage triangle shown in 
the Fig. 7.78 (b), may be given as: 

  p.f. = cos ɸ = RV
V

 = 80
100

 = 0.8 (lagging)   

Problem 7.127: A resistor of 10 Ω, an inductor of 200 mH and a capacitor of 500 µF are connected in series 
across a 100 V, variable frequency a.c. source. Determine the: i) frequency for which the 
power factor of the circuit will become unity, ii) the amplitude of the current at this frequency, 
iii) Quality factor of the circuit at this frequency.   

Solution: R = 10 Ω,            L = 200 mH,            C = 500 µF,            V = 100 V,            f = variable 

 The power factor of the circuit will become unity at resonance only, and the resonance 
frequency may be given as: 

  f0 = 1
2 π LC

 = 
3 6

1

2 π 200 10 500 10   
 = 15.92 Hz 

 The amplitude of the current at resonance frequency may be given as: 

  I0 = 2  × Irms = 2  × V
Z

 = 2  × V
R

 = 2  × 100
10

 = 10 2  A = 14.14 A 

 The quality factor of the circuit at this frequency may be given as: 

  Q = 1
R

 × L
C

 = 1
10

 × 
3

6
200 10
500 10







 = 2 

   = ωL
R

 = 02 π f L
R

 = 
32 π 15.92 200 10

10

    = 2 

Problem 7.128: A resistor of 10 Ω, an inductor of unknown value and a capacitor of 100 µF are connected in 
series across a 200 V, 50 Hz a.c. source. If the power factor of the circuit is found to be unity, 

V

I R L C

I I
I
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VL
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(a)
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(V VL C - )
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V

ϕ

I

(b)  
Fig. 7.78 



71 
 

determine the value of inductor and the amplitude of the current flowing through the circuit.
 [CBSE 2007-08]    

Solution: R = 10 Ω,            C = 100 µF,            V = 200 V,            f = 50 Hz 

 The unity power factor of the circuit indicates the resonance in the circuit at the given 
frequency. The value of the inductor may be given by the expression: 

  f0 = 1
2 π LC

  

 or, L = 2
1

(2 π )f C
 = 2 6

1
(2π 50) 100 10  

 = 101.32 mH 

 The amplitude of the current at resonance frequency may be given as: 

  I0 = 2  × Irms = 2  × V
Z

 = 2  × V
R

 = 2  × 200
10

 = 20 2  A = 28.28 A 

Problem 7.129: A resistor of 12 Ω, an inductor of reactance 30 Ω and a capacitor of reactance 14 Ω are 
connected in series across a 230 V, 50 Hz a.c. source. Determine: i) the current flowing 
through the circuit, ii) the phase angle between the applied voltage and the current flowing 
through the circuit, iii) the power factor of the circuit.  [Haryana 2001-02]    

Solution: R = 12 Ω,            XL = 30 Ω,            XC = 14 Ω,            V = 230 V,            f = 50 Hz 

 The net reactance of the circuit may be given as: 

  X = XL – XC = 30 – 14 = 16 Ω (inductive) 

 The impedance of the circuit may be given as: 

  Z = 2 2R X  = 2 2(12) (16)  = 20 Ω 

 The current flowing through the circuit may be given as: 

  I = V
Z

 = 230
20

 = 11.5 A 

 The phase angle between the applied voltage and the current flowing through the circuit may 
be given as: 

  ɸ = tan−1 X
R

 
 
 

 = tan−1 16
12
 
 
 

 = 53.13° 

 The power factor of the circuit may be given as: 

  p.f. = cos ɸ = cos 53.13° = 0.6 (lagging) 

   = R
Z

 = 12
20

 = 0.6 (lagging) 

Problem 7.130: A resistor of 15 Ω, an inductor of 80 mH and a capacitor of 60 µF are connected in series 
across a 230 V, 50 Hz a.c. source. Determine: i) the average power transferred to individual 
circuit element, ii) the total power consumed by the circuit.  [Haryana 2000-01]    

Solution: R = 15 Ω,            L = 80 mH,            C = 60 µF,            V = 230 V,            f = 50 Hz 

 The current flowing through the circuit may be given as: 

XL
Z

I

ϕ

R  
Fig. 7.79 
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  I = V
Z

 = 
2 2( )L C

V

R X X 
 = 

2
2 12 π

2π

V

R f L
f C

 
  
 

  

   = 
2

2 3
6

230

1(15) 2 π 50 80 10
2π 50 60 10




 
     

   

  

   = 
2 2

230

(15) (25.133 53.052) 
 = 230

31.693
 = 7.257 A 

 The power transferred to the individual circuit elements may be given as: 

  PR = I 2 R = (7.257)2 × 15 = 789.96 W 

  PL = 0  (An inductor does not consume any power at all.) 

  PC = 0  (A capacitor does not consume any power at all.) 

 The total power consumed by the circuit may be given as: 

  P = V I cos ɸ = V I × R
Z

 = 230 × 7.257 × 15
31.693

 = 789.97 W 

   = I 2 R = (7.257)2 × 15 = 789.96 W 

Problem 7.131: An R-L-C series circuit, having R = 46 Ω, L = 240 mH and C = 240 nF, is connected across a 
230 V, variable frequency a.c. source. 

 i) Determine the source frequency for which the amplitude of the current flowing through 
the circuit is maximum. Also, determine the maximum value. 

 ii) Determine the source frequency for which the average power consumed in the circuit will 
become maximum. Also, determine the value of maximum power. 

 iii) For which frequencies the power transferred to the circuit will become half of the power 
consumed at resonance frequency? Determine the amplitude of the current at these 
frequencies. 

 iv) Determine the Quality factor of the given circuit. 

Solution: R = 46 Ω,            L = 240 mH,            C = 240 nF,            V = 230 V,            f = variable 

 The current amplitude becomes maximum in the circuit, when the circuit resonates. So, the 
frequency corresponding to the maximum amplitude of the current in the circuit may be given 
as: 

  f0 = 1
2 π LC

 = 
3 9

1

2 π 240 10 240 10   
 = 663.15 Hz  

 The amplitude of the maximum value of current flowing through the circuit at this frequency 
may be given as: 

  I0 = 2  × Irms = 2  × V
Z

 = 2  × V
R

 = 2  × 230
46

 = 5 2  A = 7.071 A  
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 The power consumed in the circuit will become maximum, when the current flowing through 

the circuit will become maximum, i.e. at the resonance of the circuit. So, the frequency 
corresponding to the maximum power consumed by the circuit may be given as: 

  fmax power = f0 = 663.15 Hz  

 The maximum power consumed by the circuit at this frequency may be given as: 

  Pmax = V I = V × 0

2
I

 = 230 × 5 2
2

 = 1.15 kW  

   = I 2 R = 
2

5 2
2

 
  
 

 × 46 = 1.15 kW   

 The power corresponding to half power frequencies will become half of that consumed by 
the circuit at resonance frequency. The half power frequencies may be given as: 

  fH.P. = f0 ± 
4π

R
L

 = 663.15 ± 3
46

4 π 240 10 
  

   = 663.15 ± 15.25 = 678.4 Hz, 647.9 Hz 

 The current at these frequencies may be given as: 

  P ' = 
2

resonanceP  = 
2
0

2
I R  = 

2

2
resonanceI 

 
 

× R = (I ')2 × R 

 So, I'0 = 
2

resonanceI
 = 0

2
I

 = 5 2
2

 = 5 A 

 The quality factor of the circuit at this frequency may be given as: 

  Q = 1
R

 × L
C

 = 1
46

 × 
3

9
240 10
240 10







 = 21.739 

    = ωL
R

 = 02 π f L
R

 = 
32 π 663.15 240 10

46

    = 21.739 

7.18 L-C Oscillations: If a charged capacitor is allowed to discharge through a non-resistive inductor (pure 
inductor), electrical oscillations of constant amplitude and frequency are produced. These oscillations 
are known as L-C Oscillations. 

 Analysis of Production of L-C Oscillations:  

 Qualitative Analysis of L-C Oscillations: Consider the Fig.7.80 (a), in which a fully charged capacitor 
(C) is shown connected across a pure inductor (L) through a switch (S). When the switch (S) is open the 
current in the circuit is zero. The electrical energy stored in the capacitor at this instant may be given as:  

  UE = 1
2

 × 
2
0q

C
 = 1

2
 × C 2

0V  = 1
2

 × q0 V (7.92) 
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 As soon as the switch (S) is closed, as shown in the Fig. 7.80 

(b), a current starts to build up in the circuit due to potential 
difference (Electric field) across the capacitor, the current 
goes on increasing with the time (t). This increasing current 
starts to build up an induced emf across the inductor, hence 
the electrical energy stored in the capacitor (UE) is being 
transferred to the inductor with the help of the current flowing 
through the circuit and now the energy is being stored in the 
form of magnetic energy in the inductor (UB). The magnetic 
energy stored in the inductor at any instant may be given as: 

  UB = 1
2

 × L I 2   (7.93) 

 The current increases up to some maximum value (I0) 
corresponding to the entire electrical energy transferred from 
the capacitor (UE) to the inductor in the form of magnetic 
energy (UB), as shown in the Fig. 7.80 (c). The capacitor has 
been fully discharged now, but the current in the circuit is at 
its maximum value (I0) and the inductor has the maximum 
induced emf across its terminals at this instant. The magnetic 
energy stored in the inductor at this instant may be given as: 

  UB = 1
2

 × L 2
0I    (7.94) 

 The magnetic flux linked with the inductor starts to decrease 
after this instant, inducing a current (but of decreasing nature) 
in the same direction as the earlier current, as shown in the 
Fig. 7.80 (d). So, this decreasing current in the same direction 
starts to charge the capacitor but in opposite direction to its 
earlier charging state [the reader may note that the sign on the 
capacitor plates has been reversed now in Fig. 7.80 (d)]. The 
magnetic energy stored in the inductor is now being converted 
into the electrical energy (UE) to be stored in the capacitor. 
This process continues with decreasing current till the 
capacitor gets fully charged in opposite direction to that of its 
earlier charged state, as shown in the Fig. 7.80 (e). The current in the circuit becomes zero at this state 
corresponding to the entire magnetic energy (UB) transferred from the inductor to the capacitor in the 
form of electric energy (UE), as shown in the Fig. 7.80 (e). The capacitor has been fully charged now, 
and the current in the circuit is at zero value (I = 0), so the capacitor has the maximum potential 
difference across its terminals at this instant. The electrical energy (UE) stored in the capacitor at this 
instant may be given as:  

  UE = 1
2

 × 
2
0q

C
 = 1

2
 × C 2

0V  = 1
2

 × q0 V (7.95) 

 The capacitor starts to discharge through the inductor again by sending a current in opposite direction to 
that of the earlier, as shown in the Fig. 7.80 (f). The electrical energy (UE) is once again being 
transferred from the capacitor to the inductor to be stored in the form of magnetic energy (UB). And so, 
the process repeats in the opposite direction, as shown in the Fig. 7.80 (e), (f), (g), (h) and finally (a). 
So, repeating the process in opposite direction the system (L-C) returns to its initial state, as shown in 
the Fig. 7.80 (a). 
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 The energy of system continuously surges between the capacitor and 

the inductor back and forth from the electric field of the capacitor to 
the magnetic field of the inductor. This will result in the production 
of the electrical oscillations of a constant frequency f0, and are 
known as L-C oscillations. If the inductor and capacitor are pure in 
nature (i.e. no resistance is associated with them, which is not 
possible in practice), there will be no loss of energy in the circuit 
and hence the amplitude of the oscillations remains constant over 
the time, as shown in the Fig. 7.81 (a). Such oscillations are known 
as Un-damped Oscillations.  

 However, the L-C oscillations are damped oscillations in nature due 
to the following two reasons: 

 i) A real inductor as well as a real capacitor and also the 
connecting leads always have a small resistance associated with 
them, so the energy stored in the system will decay slowly (due 
to power losses in resistance of inductor and capacitor) resulting in decreasing amplitude of the 
oscillations, and finally oscillations will diminish with the elapsing time. Such oscillations are 
known as Damped Oscillations, as shown in the Fig. 7.81 (b). 

 ii) The total energy of the system would not remain constant even in the absence of the resistance of 
inductor, capacitor and connecting leads. The energy will radiate away in the form of 
electromagnetic radiations / waves. The working of radio and television transmitters is based on 
such radiations.  

 Quantitative Analysis of L-C Oscillations: Consider a capacitor (C), initially charged to q0, and 
connected to an inductor (L) through a switch (S), as shown in the Fig. 7.82. When the switch (S) is 
closed at time t = 0, the charge on the capacitor begins to flow through the circuit from positive plate of 
the capacitor to the negative plate of the capacitor, which gives rise to a gradually increasing current in 
the circuit. This gradually increasing current will decrease the charge on the capacitor and induces an 
emf across the inductor. 

 The potential difference across the capacitor at any instant of time (t) may be given as: 

  V = q
C

  (7.96) 

 The current in the circuit at any instant of time (t) may be given as: 

  I = – d q
d t

     (7.97) 

 (The negative sign is due to the decreasing charge with increasing current) 

 The induced emf across the inductor (L) at any instant of time (t) may be given as: 

  e = – L d I
d t

  (7.98) 

 Applying Kirchhoff’s Voltage Law to the L-C circuit: 

  – L d I
d t

 + q
C

 = 0 

 or,  – L d d q
d t d t
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 or,  
2

2
d q
d t

 + 1
LC

 × q = 0 

 or, 
2

2
d q
d t

 + 2
0ω  q = 0       0

1Where, ω  = 
LC

 
   

  (7.99) 

 Above equation is linear differential equation of second order, which will have a general solution of the 
form given by: 

  q = A cos ω0t + B sin ω0t (7.100) 

 At time t = 0, q = q0, 

 So, q0 = A cos 0 + B sin 0 

 or, A = q0 (7.101) 

 Differentiating equation (7.100) w.r.t. the time: 

  d q
d t

 = – A sin ω0t + B cos ω0t   (7.102) 

 At time t = 0, q = q0 (maximum), So, I = d q
d t

 = 0. 

 So, 0 = – A sin 0 + B cos 0 

 or, B = 0 (7.103) 

 Putting equations (7.101) and (7.103) in equation (7.100): 

  q = q0 cos ω0t (7.104) 

 and, I = – d q
d t

 =  ω0 q0 sin ω0t = I0 sin ω0t (7.105.1) 

 Where, I0 = ω0 q0  (7.105.2) 

 So, the charge on the capacitor plates and hence the current in the L-C oscillator varies simple 
harmonically, between its positive maximum value to negative maximum value, with time and having 
an angular frequency given by: 

  ω0 = 1
LC

   (7.106) 

 And hence, the frequency of oscillations may be given as: 

  f0 = 1
2 π LC

  (7.107) 

 Conservation of Energy in L-C Oscillations: The total energy in an L-C oscillator (the sum of energies 
stored in the inductor and that in the capacitor) remains constant at any instant of time, as similar to 
that of a Simple Harmonic Motion. 

 The total energy in an L-C oscillator at any instant of time may be given as: 

  U = UE + UB = 1
2

 × 
2q

C
 + 1

2
 × L I 2 (7.108) 
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 We know that: q = q0 cos ω0t,            and,            I = – d q
d t

 = ω0 q0 sin ω0t 

 So, U = 1
2

 × 
2

0 0( cos ω )q t
C

 + 1
2

 × L (ω0 q0 sin ω0t)2 = 
2
0

2
q
C

 × cos2 ω0t + 1
2

 × L 2
0ω  2

0q  sin2 ω0t 

   = 
2
0

2
q
C

 × cos2 ω0t + 1
2

 × L 1
LC

 2
0q  sin2 ω0t = 

2
0

2
q
C

 × cos2 ω0t + 
2
0

2
q
C

 × sin2 ω0t 

   = 
2
0

2
q
C

 × (cos2 ω0t + sin2 ω0t) = 1
2

 × 
2
0q

C
 = 1

2
 × C 2

0V  = Initial energy (7.109) 

 So, the total energy stored in any L-C oscillator remains constant irrespective of the time. 

 Mechanical Analogy for L-C Oscillations: The L-C oscillations are quite similar to the mechanical 
oscillations of a mass-spring system. 

 Consider the mass spring system shown in the Fig. 7.83 (a) on a friction less plane. The oscillating body 
has a mass m and the spring has a spring constant of k. If the displacement of the oscillating mass (m) is 
x at any instant of the time t, the force experienced by the mass due to the spring towards its mean 
position may be given as: 

  F = – k x  (7.110) 

 The (−)ve sign shows that the restoring force always tends towards the mean position of the oscillating 
mass. 

 The acceleration of the mass (m) at this instant of the time / the opposing force due to the moment of 
inertia of the mass (m) may be given as: 

  F = m a = m 
2

2
d x
d t

 (7.111) 

 The free body diagram (According to D’Alembert’s Principle) of the 
oscillating mass (m) is drawn in the Fig. 7.83 (b). The reader may observe 
that two forces will be equal and opposite to each other at equilibrium. 

 So, F = – k x = m 
2

2
d x
d t

 

 or, m 
2

2
d x
d t

 + k x = 0                  or,                  
2

2
d x
d t

 + k
m

 x = 0 

 or, 
2

2
d x
d t

 + 2
0ω  x = 0                    Where,            ω0 = k

m
 (7.112) 

 The equations for the L-C oscillations were found to be: 

  
2

2
d q
d t

 + 2
0ω  q = 0       0

1Where, ω  = 
LC

 
   

  (7.113) 

 On comparison of above equations (7.112) and (7.113), the reader may find following analogies in two 
different systems: 
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Fig. 7.83 



78 
 
 i) The charge (q) in the electrical system is analogous to the displacement (x) in the mechanical 

system. 

 ii)  The current d qI
d t

 
 

 
 in the electrical system is analogous to the velocity d x

d t
 

 
 

v  in mechanical 

system. 

 iii) The inductance (L) in the electrical system is analogous to the mass (m) in the mechanical system. 

 iv) The reciprocal of capacitance 1
C

 
 
 

 in the electrical system is analogous to the spring constant (k) in 

the mechanical system.  

 Above analogy may be remembered in a tabular form as given below:  

SR. NO. ELECTRICAL SYSTEM MECHANICAL SYSTEM 

1 Charge (q) Displacement (x) 

2 Current 
d qI
d t

 
 

 
 Velocity 

d x
d t

 
 

 
v  

3 Inductance (L) Mass (m) 

4 Reciprocal of Capacitance 1
C

 
 
 

 Spring Constant (k) 

5 ω0 = 1
LC

 ω0 = k
m

 

6 

Electrical differential equation: 

2

2
d q
d t

 + 2
0ω  q = 0 

Mechanical differential 
equation: 

2

2
d x
d t

 + 2
0ω  x = 0 

  

Problem 7.132: Determine the wavelength of radio waves radiated from a circuit containing an inductor of    
8 µH and a capacitor of 0.02 µF in series. [Haryana 1191-92] 

Solution: L = 8 µH,            C = 0.02 µF 

 The frequency of oscillations of the circuit may be given as: 

  f0 = 1
2 π LC

 = 
6 6

1

2 π 8 10 0.02 10   
 = 397.887 kHz 

 The wavelength of the radio waves radiated from this L-C Oscillator may be given as: 

  λ = 
0

C
f

 = 
8

3
3 10

397.887 10



 = 753.983 m 

Problem 7.133: An inductor of 2 mH is connected across a charged capacitor of 5 µF and the resulting L-C 
circuit is set oscillating at its natural frequency of oscillations. Let q denotes the 
instantaneous charge on the capacitor and I be the current in the circuit. It is found that the 
maximum value of charge q is 200 µC. Determine: 

 i) The value of d I
d t

, when q = 100 µC. 
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 ii) The value of I, when q = 200 µC. 

 iii) The maximum value of the current flowing through the circuit. 

 iv) The value of q, at the instant when the current in the circuit is at half of its maximum 
value. [IIT 1998] 

Solution: L = 2 mH,            C = 5 µF,            q0 = 200 µC 

 The natural angular frequency of oscillations may be given as: 

  ω0 = 1
LC

 = 
3 6

1

2 10 5 10   
 = 1 × 104 rad/sec  

 We know that the charge on the capacitor, the circuit current and the rate of change of current 
in an L-C Oscillator may respectively be given as: 

  q = q0 cos ωt 

 and, I = – d q
d t

 = ω0 q0 sin ωt = I0 sin ωt 

 and, d I
d t

 = 2
0ω  q0 cos ωt = 2

0ω  q 

 When, q = 100 µC, the value of d I
d t

 may be given as: 

  d I
d t

 = 2
0ω  q = (1 × 104)2 × 100 × 10−6 = 1 × 104 A/sec 

 When, q = 200 µC, the corresponding time is t = 0 sec, i.e. start of the discharging process: 

 So,  I = ω0 q0 sin ωt = ω0 q0 sin 0 = 0 Amp 

 The maximum value of the current flowing through the circuit may be given as: 

  I0 = ω0 q0 = 1 × 104 × 200 × 10−6 = 2 A 

 When the current in the circuit is at half of its maximum value, the current expression may be 
given as: 

  I = I0 sin ωt = 0

2
I  

 So, sin ωt = 1
2

 = 0.5 

 Now,  q = q0 cos ωt = q0 × 21 sin ω t  = 200 × 21 (0.5)  = 173.205 µC 

Problem 7.134: A coil of inductance 150 mH is connected in series with a variable capacitor of capacitance 
20 pF to 500 pF. Determine the frequency range over which the circuit may be tuned. 

Solution: L = 150 mH,            C = 20 pF –to– 500 Pf 

 The two extreme frequencies may respectively be given as: 

  f1 = 
1

1
2 π LC

 = 
3 12

1

2 π 150 10 20 10   
 = 91.888 kHz 
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 and, f2 = 
2

1
2 π LC

 = 
3 12

1

2 π 150 10 500 10   
 = 18.378 kHz 

Problem 7.135: A 10 µF capacitor is charged to a potential of 25 V. The battery is then disconnected and a 
purely inductive coil of 100 mH is connected across the capacitor, so that L-C oscillations 
may setup in the circuit. Determine the maximum current in the coil. 

Solution: C = 10 µF,            V = 25 V,            L = 100 mH 

 We know that the charge on the capacitor and the circuit current in an L-C Oscillator may 
respectively be given as: 

  q = q0 cos ωt            and,            I = – d q
d t

 = ω0 q0 sin ωt = I0 sin ωt 

 So, the maximum current in the circuit may be given as: 

  I0 = ω0 q0 = 1
LC

 × C V = V × C
L

 = 25 × 
6

3
10 10
100 10







 = 0.25 A 

Problem 7.136: A 1.5 mH inductor in an L-C circuit stores a maximum energy of 30 µJ. Determine the 
maximum current in the circuit.  

Solution: L = 1.5 mH,            Umax = 30 µJ 

 We know that the energy stored in an L-C oscillator remains constant at all the times and may 
be given as: 

  Umax = 1
2

 × L 2
0I  =  1

2
 × 

2
0q

C
 

 So, I0 = max2U
L

 = 
6

3
2 30 10
1.5 10




 


 = 0.2 A  

Problem 7.137: In an L-C oscillator circuit, the self inductance of the coil used is 10 mH. If the natural 
frequency of oscillation of the circuit is 1 MHz, determine the capacitance of the required 
capacitor in the circuit.  

Solution: L = 10 mH,            f0 = 1 MHz 

 The natural frequency of oscillations in an L-C oscillator circuit may be given as: 

  f0 = 1
2 π LC

  

 or, C = 2
1

(2 π )f L
 = 6 2 3

1
(2π 1 10 ) 10 10   

 = 2.533 pF 

Problem 7.138: An electromagnetic wave of wavelength 300 m can be produced by a transmitter. A capacitor 
of capacitance 2.5 µF is available. Determine the required inductance of the coil for the L-C 
oscillatory circuit. 

Solution: λ = 300 m,            C = 2.5 µF 

 The frequency of the generated wave may be given by the expression: 

  f0 = 
λ
c  = 

83 10
300
  = 1 × 106 Hz = 1 MHz 
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 The natural frequency of oscillations in an L-C oscillator circuit may be given as: 

  f0 = 1
2 π LC

  

 or, L = 2
1

(2 π )f C
 = 6 2 6

1
(2π 1 10 ) 2.5 10   

 = 10.132 nH 

7.19 Transformer: A transformer is a static electrical machine. It is being used for two main purposes:       
i) To Change the voltage and current level of electricity (electric power supply) for transmission and 
distribution purposes, ii) Electrical isolation of two electrical circuits for safety from high voltage 
surges of either side. 

  If, it is used for increasing the voltage level it is known as step-up transformer, on the other hand if it is 
used for decreasing the voltage level it is known as step-down transformer. 

  Principle of Operation: A transformer works on the principle of mutual induction, i.e. if a changing 
current is flowing through one of the two inductively coupled windings, an emf is being induced in the 
secondary winding (as well as in the primary winding) according to the Faraday’s Law of 
Electromagnetic Induction.  We already have discussed it in detail, in article 6.15 in the chapter 
Electromagnetic Induction.   

 Construction: Every transformer has primary and secondary windings to change the voltage and 
current levels at two sides of the transformer, however frequency of the supply remains same on both 
the sides, on the primary as well as on the secondary side.  

 The soft iron core, on which two windings (primary winding and secondary winding) of the transformer 
are wound, is made up of laminated punching / stamping in order to reduce the eddy current losses in 
the transformer. The soft iron core has a very high relative permeability, due to which the entire flux  
produced (of considerable amount) due to the primary winding is strictly confined within the core of the 
transformer only and hence links both of the windings of the transfer, primary as well as secondary 
windings. This prevents the stray currents being generated in the conductors lying in the vicinity of a 
transformer and the consequent power losses. 

 The transformer core and the windings are immersed in the transformer oil of high dielectric strength 
inside the tank of the transformer. This transformer oil serves two purposes for the transformer: 

 i) It provides high insulation resistance (due to its high dielectric 
strength), between the turns of windings itself as well as turns of 
windings to the iron core and iron body of transformer. 

 ii) It provides cooling to the transformer windings by extracting heat 
from the transformer windings. 

 Transformers have two types of construction: a) Core type 
transformer, b) Shell type transformer. 

  a) Core Type Transformer: The iron core of the transformer is 
surrounded by the windings of the transformer in this type of the 
construction. The windings are wounded on the two limbs of the 
core, as shown in the Fig. 7.84.  

  b) Shell Type Transformer: Primary and secondary windings of 
the transformer are surrounded by the core of the transformer 
in this type of the construction. The windings are wounded on 
the central limb of the core, as shown in the Fig. 7.85. 

7.20 Working of A Transformer: A transformer has two windings, 
wound on the same iron core, i.e. two magnetically coupled 
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windings. When primary winding of the transformer is excited by an alternating voltage, an alternating 
magnetizing current lagging the applied voltage by almost 90° starts to flow in the primary winding (as 
the primary windings and the secondary windings are highly inductive). An alternating flux, co-phasor 
with the magnetizing current, is set-up in the transformer core. This alternating flux is associated with 
both the windings of the transformer, primary as well as secondary windings. An emf is being induced 
in both the windings E1 (back emf) in primary winding and E2 in secondary winding (depending on the 
number of turns in each winding) due to this alternating flux. The electrical energy may now be 
transferred from primary winding to secondary winding with the help of magnetic coupling between 
primary and secondary windings with-out having any electrical contact / connection between them. 

  Transformer on D.C.: When primary winding of a transformer is being excited with the help of a D.C. 
voltage source, a uni-directional flux is set-up in the core and hence no “back emf” is induced in the 
primary winding and no emf is induced in the secondary winding, so we get zero output at the terminals 
of secondary winding. Also as, there is no induced “back emf” in the primary winding and the winding 
resistances are quite low, consequently a high current will flow in the primary winding of the 
transformer and the primary winding will get burnt off. The transformer will get permanently damaged 
and become un-usable. 

7.21 EMF Equation of a Transformer: Let us assume the primary winding of the transformer as purely 
inductive and resistance of the winding is 
zero. Now, if we excite the primary 
winding by a voltage given as: 

   v1 = V0 sin ωt (7.114) 

  A current (magnetization current) will 
set-up in the primary winding, which is 
almost 90° lagging behind the supply 
voltage v1, and may be given as: 

   i1 = I0 sin (ωt – 90°) = I0 cos ωt (7.115) 

  The flux set-up in the transformer core by this magnetizing current is co-phasor with the current and 
may be given as: 

   ɸ1 = ɸ0 cos ω t (7.116) 

  Now, the emf induced in any winding (primary / secondary winding) due to this alternating flux may be 
given as: 

   e = – N d
d t
  = – N  d

d t
 (ɸ0 cos ω t) = N ω ɸ0 sin ω t            (again, 90° lagging behind the flux) 

   e = N ω ɸ0 sin ω t = e0 sin ω t (7.117) 

  Hence, E = 0

2
E

 = 0ω
2

N 
 = 02 π

2
f N 

 = 4.44 × f N ɸ0 (7.118) 

  So, E1 = 4.44 × f N1 ɸ0  (7.119) 

  and, E2 = 4.44 × f N2 ɸ0  (7.120)  

  Since, the transformer is assumed as an ideal transformer (having zero winding resistances and leakage 
reactance),  
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  So, V1 = E1 and, V2 = E2 

  Now, 2

1

E
E

 = 2

1

N
N

 = 2

1

V
V

  (7.121) 

  We know that, for an ideal transformer (having no losses due to its zero winding resistances), power 
input to the transformer must be equal to the power output of the transformer. 

  So, V1 I1 = V2 I2                  or,                  2

1

V
V

 = 1

2

I
I

 (7.122) 

  So now equation (7.121) becomes,  

   2

1

E
E

 = 2

1

N
N

 = 2

1

V
V

 = 1

2

I
I

  (7.123) 

  Where, 2

1

E
E

 → Ratio of two emf’s 

   2

1

N
N

 → Transformation ratio / Turns ratio 

   2

1

V
V

 → Ratio of Output Voltage to Input Voltage 

   1

2

I
I

 → Ratio of Input Current to Output Current 

 The equations (7.122) and (7.123) revel that a step-up transformer steps up the voltage, while at the 
same time steps down the current exactly in the same ratio, so that the power on the two sides of a 
transformer remains balanced. On the other hand, a step down transformer steps down the voltage, while 
at the same time steps up the current exactly in the same ratio, so that the power on the two sides of a 
transformer remains balanced. 

 The efficiency of a real transformer is fairly large in the range of 90% – 99%, but not 100%. 

 Above derivation, for efficiency of the transformer, may be done by using following assumptions 
(deviation from the real transformer): 

 i) The primary as well as secondary windings have negligible resistance (R1 and R2 ≈ 0). 

 ii) The total flux created by the primary winding is linked also with the secondary winding. 

 iii) The secondary winding is open circuited, i.e. not supplying any load current to the load.  

7.22 Efficiency of a Transformer: The efficiency of a transformer may be given as: 

  η = Power Output
Power Input

 × 100%  (7.124) 

 Losses in the Transformers: There are various types of losses in a transformer, which results in the 
heating (temperature rise) of the transformer during its duty cycle. 
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 i) Copper Losses (Variable Losses): They occur in the copper windings, primary as well as secondary 

windings (made up of copper wires), of the transformer as I 2 R losses (heating effect of the current). 
They are variable losses, as current of the transformer may vary from No-load to Full-load and I 2 R 
losses will also change with current as [PCu  I 2]. 

 ii) Iron / Core Losses (Constant Losses): They occur in the core (made up of iron) of the transformer. 
They are constant losses, independent of the load on transformer, as flux in the core of transformer 
remains constant for all values of loads. Iron losses are of two types:  

 a) Hysteresis Losses: The work done lost in aligning the small atomic dipoles of iron in either 
direction is known as hysteresis loss. The area of hysteresis loop (B-H Loop) represents the 
hysteresis loss in the iron core occurred in one cycle of the current, as shown in the Fig. 7.87 (a)        
[{Ph  f (ɸm)x}, where x is between 1.5 – 2.5]. 

 b) Eddy Current Losses: The circular currents, induced in 
the iron body internally due to the induced emf in iron 
because of the alternating flux in the core, are known as 
“eddy currents”. The eddy currents cause heat losses in 
the iron body. The eddy currents also oppose the cause 
due to which they are being induced. The induction and 
flow of eddy currents internally in the iron body is 

shown in the Fig. 7.87 (b) [Pe  f 2 (ɸm)2]. 

 iii) Humming Losses: The dimensions of the transformer core changes slightly along their length, width 
and thickness due to the alternating nature of the flux. The phenomenon of change in dimensions of a 
magnetic material subjected to a magnetic field is known as “Magnetostriction”. The transformer 
creates the humming noise during its operation due to the magnetostriction, which is the loss of energy 
in the form of sound. 

 iv) Flux Leakage: Some of the flux created by the primary winding leaks through the air in the vicinity of 
the primary winding only and do not links with the secondary winding. Similarly, some of the flux 
created by the secondary winding leaks through the air in the vicinity of the secondary winding only and 
do not links with the primary winding. This is known as the leakage flux and affects the performance of 
the transformer, but this is not a loss, as no energy has been lost in it. 

7.23 Applications of Transformers: Some of the important applications of the transformers are given below 
for better understanding of the reader: 

 i) The most common use of the large power transformers and distribution transformers is in stepping 
up the voltages to high values for the bulk transmission of the electrical energy over long distances 
and then in stepping down to appropriate values for the distribution and use of electrical energy at a 
safe value. 

 ii) The transformers are being used in the voltage stabilizers for various industrial and domestic uses of 
electrical energy at a constant voltage. 

 iii) The small transformers are used as the voltage regulators in televisions, refrigerators, air-
conditioners, computers and other appliances. 

 iv) The small transformers are used for stepping down the voltage to a low level for charging of mobile 
phones and toys etc. 

 v)  The small transformers are used in radio transmitters and receivers, telephones, loud speakers etc. 
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 vi) A special step-down transformer is used for obtaining a very high current for electric arc welding. 

 vii)  A special step-down transformer is used in induction furnace for quick melting of the metals. 

 ix) A step-up transformer is used for the production of X-rays. 

7.24 Long Distance Transmission of Electrical Power: The most important application of the transformers 
is for the stepping up the voltage level of power in the transmission of bulk electrical power over long 
distances and then for the stepping down the voltage level of power for its distribution to domestic 
consumers for its use at a safe potential. The bulk electrical power must be transmitted over long 
distance at very high potentials, because of the following drawbacks of low voltage transmission: 

 i) The resistance of a long transmission line is considerably high due to their large lengths (as R  l). 
Hence, a large amount of energy will be lost (I 2 R t) as heat in the transmission lines, if the voltage 
level of the electrical power is low (consequently the current level of electrical power will be high). 

 ii) A larger voltage drop (I R) will occur along the long transmission line, consequently the voltage at 
the receiving end will be much smaller than that of the sending end (generation station). 

 iii) The resistance of the transmission lines may be decreased by installing the thicker wires of large 
cross sectional area. But this will increase the installation cost and is not economical. 

 So, the long distance power transmission at low voltage and high current is neither efficient nor 
economical. If I is the current in transmission line and R is the equivalent resistance of the transmission 
line. The power wastage in the transmission line may be given as: 

  PLine Losses = I 2 R (7.125) 

 The power delivered by the generator to the transmission line for bulk transmission of power may be 
given as:  

  P = V I                  or,                  I = P
V

   (7.126) 

 So, the current level (I) for a constant power (P) will be low if the voltage level (V) is high. 

 A design set up from the generation of electricity [at high voltage (HV A.C.)], through the long distance 
transmission of bulk electrical power [at Extra High Voltage (EHV A.C.)] to the end users (domestic 
users) is shown in the Fig. 7.88. The first transformer is shown at the location of the generation station 
at 11 kV or 33 kV. This HV A.C. is then step up to 220 kV (EHV A.C.) to deliver it to a pool of various 
generation stations connected through long transmission lines and collectively known as the National 
Grid. The bulk transmission of electrical power is then done over long distances at 220 kV or 132 kV 

(EHV A.C.) level. The second transformer is shown at the location of the outskirts of our cities to step 
down the voltage level to 33 kV or 11 kV for its primary distribution inside our cities. The third 
transformer is show at the location of a substation near by our homes to further step it down to domestic 
voltage level of 400 V for its secondary distribution up to our homes.   

Problem 7.139: The primary coil of an ideal step-up transformer has 100 turns and the transformation ratio is 
also 100. The input voltage and the power are 220 V and 1100 W respectively. Determine:    
i) the number of turns in the secondary winding, ii) the current through the primary winding, 
iii) the voltage across the secondary winding, iv) the current through the secondary winding, 
v) the power delivered by the secondary winding to the load. [CBSE 2005-06]  

220 kV33 kV 11 kV
400 V

Domestic
Consumer

PRIMARY

DISTRIBUTION

PRIMARY

TRANSMISSION LINE
 

Fig. 7.88 
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Solution: N1 = 100 Turns,            2

1

N
N

 = 100,            V1 = 220 V,            P1 = 1100 W 

 The number of turns in the secondary winding may be given by the expression: 

  2

1

N
N

 = 100                  or,                  N2 = 100 × N1 = 100 × 100 = 10000 Turns 

 The current through the primary winding may be given as: 

  I1 = 1

1

P
V

 = 1100
220

 = 5 A 

 The voltage across the secondary winding may be given by the expression: 

  2

1

V
V

 = 2

1

N
N

                   or,                  V2 = 2

1

N
N

 × V1 = 220 × 100 = 22000 V = 22 kV 

 The current through the secondary winding may be given by the expression: 

  2

1

I
I

 = 1

2

N
N

                   or,                  I2 = 1

2

N
N

 × I1 = 1
100

 × 5 = 0.05 A = 50 mA 

 The power delivered by the secondary winding to the load may be given as: 

  P2 = V2 × I2 = 22000 × 0.05 = 1100 W = P1 

Problem 7.140: Determine the current drawn by the primary winding of a transformer, which steps down a 
voltage of 220 V at primary side to a voltage of 22 V at secondary side to operate a device 
with an impedance of 220 Ω. [Haryana 2000-01 CBSE 2007-08]  

Solution: V1 = 220 V,            V2 = 22 V,            Z = 220 Ω 

 The current drawn by the impedance of 220 Ω at secondary side may be given as: 

  I2 = 2V
Z

 = 22
220

 = 0.1 A 

 The corresponding current at primary side of the transformer may be given by the expression: 

  1

2

I
I

 = 2

1

V
V

                  or,                  I1 = 2

1

V
V

 × I2 = 22
220

 × 0.1 = 0.01 A = 10 mA  

Problem 7.141: A transformer has 500 turns in the primary winding and 1000 turns in the secondary winding. 
The primary voltage is 200 V and the load on the secondary side is 100 Ω. Determine the 
current on the primary side assuming it to be an ideal transformer.   [ISCE 2001-02]  

Solution: N1 = 500 Turns,            N2 = 1000 Turns,            V1 = 200 V,            RL = 100 Ω 

 The voltage at the secondary side may be given as: 

  V2 = 2

1

N
N

 × V1 = 1000
500

 × 200 = 400 V 

 The current drawn by the load on secondary side may be given as: 

  I2 = 2

L

V
R

 = 400
100

 = 4 A 

 The corresponding current at primary side of the transformer may be given by the expression: 
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  1

2

I
I

 = 2

1

V
V

                  or,                  I1 = 2

1

V
V

 × I2 = 400
200

 × 4 = 8 A  

Problem 7.142: An ideal transformer has 200 primary and 1000 secondary turns. If the power input to the 
primary side is 10 kW at 200 V, determine: i) the output voltage, ii) the current drawn by the 
primary winding and the corresponding current at secondary side.   [CBSE 2001-02]  

Solution: N1 = 200 Turns,            N2 = 1000 Turns,            P1 = 10 kW,            V1 = 200 V 

 The output voltage at the secondary side may be given as: 

  V2 = 2

1

N
N

 × V1 = 1000
200

 × 200 = 1000 V = 1 kV 

 The current drawn by the primary winding and the corresponding current at secondary side 
may respectively be given as: 

  I1 = 1

1

P
V

 = 
310 10

200
  = 50 A 

 and, I2 = 1

2

N
N

 × I1 = 200
1000

 × 50 = 10 A 

Problem 7.143: The output voltage of an ideal transformer, connected to a 240 V a.c. mains is 24 V. If this 
transformer is used to supply a lamp of ratings 24 V, 24 W; determine the current drawn by 
the primary side of the transformer from the a.c. mains.    [CBSE 1999-2000]  

Solution: V1 = 240 V,            V2 = 24 V,            Lamp = 24 V, 24 W 

 The current dawn by the lamp connected at secondary side (24 V) of the transformer may be 
given as: 

  I2 = 
2

P
V

 = 24
24

 = 1 A 

 The corresponding current at primary side of the transformer may be given by the expression: 

  1

2

I
I

 = 2

1

V
V

                  or,                  I1 = 2

1

V
V

 × I2 = 24
240

 × 1 = 0.1 A = 100 mA  

Problem 7.144: A 100% efficient transformer has 200 primary turns and 40000 secondary turns. The primary 
side of the transformer is connected to 220 V a.c. mains and the secondary side feeds a 
resistor of 100 kΩ. Determine the output potential difference per turn and the power delivered 
to the load on secondary side.   

Solution: η = 100%,          N1 = 200 Turns,          N2 = 40000 Turns,          V1 = 220 V,          RL = 100 kΩ 

 The output potential difference per turn may be given as: 

  Output P.D.per turn = 2

2

V
N

 = 1

1

V
N

 = 220
200

 = 1.1 V/Turn 

 The output voltage at secondary side may be given as: 

  V2 = Output P.D.per turn × N2 = 1.1 × 40000 = 44000 V = 44 kV 

 The power delivered to the load may be given as: 
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  P2 = 
2

2

L

V
R

 = 
2

3
(44000)
100 10

 = 19.36 kW 

Problem 7.145: A step down transformer is used to reduce the main supply from 220 V at primary side to 11 V 
at secondary side. If the current drawn by the primary winding is 5 A and the current 
delivered by the secondary winding to the load is 95 A, determine the efficiency of the 
transformer.     

Solution: V1 = 220 V,            V2 = 11 V,            I1 = 5 A,            I2 = 95 A 

 The efficiency of a transformer may be given as: 

  η = Power Output
Power Input

 × 100% = 2 2

1 1

V I
V I

 × 100% = 11 95
220 5



 × 100% = 95% 

Problem 7.146: Determine the current drawn by the primary winding of a transformer, which steps down the 
primary voltage of 200 V to secondary voltage at 20 V to operate a device having a resistance 
of 20 Ω. Assume the efficiency of the transformer to be 80%.      

Solution: V1 = 200 V,            V2 = 20 V,            RL = 20 Ω,            η = 80% 

 The current drawn by the device connected to the secondary side of the transformer may be 
given as: 

  I2 = 2

L

V
R

 = 20
20

 = 1 A 

 The expression for the efficiency of a transformer may be given as: 

  η = Power Output
Power Input

 × 100% = 2 2

1 1

V I
V I

 × 100% = 80% = 0.8 

 So, I1 = 2 2

10.8
V I

V
 = 20 1

0.8 200



 = 0.125 A 

Problem 7.147: A 10 kW transformer, having 20 primary turns and 100 secondary turns, is connected across 
an a.c. supply of emf e = 600 sin 314t Volts. Determine: i) the maximum value of the flux in 
the transformer core, ii) the maximum value of the secondary voltage.      

Solution: P = 10 kW,            N1 = 20 Turns,            N2 = 100 Turns,            e = 600 sin 314t Volts 

 Comparing the given emf expression with the standard emf expression, we will get: 

  (E1)0 = 600 V,            ω = 314 rad/sec  

 Let us assume that the flux in the transformer core is: 

  ɸ = ɸ0 cos ωt 

 Since, the transformer is ideal with zero winding resistance and zero leakage reactance, the 
emf induced in the primary winding is equal to the applied voltage across the primary winding 
and may be given as: 

  e1 = – N1 
d
d t
  = – N1 

d
d t

 (ɸ0 cos ωt) = N1 ω ɸ0 sin ωt = (E1)0 sin ωt 

 Where, (E1)0 = N1 ω ɸ0 

 or, ɸ0 = 1 0

1

( )
ω

E
N

 = 600
20 314

 = 95.54 mWb   
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 The maximum value of the secondary voltage may be given as: 

  (E2)0 = 2

1

N
N

 × (E1)0 = 100
20

 × 600 = 3000 V = 3 kV 

Problem 7.148: A transformer, having 400 primary turns and 2000 secondary turns, is supplying a load of 
12.1 kW at 1100 V connected to its secondary side. Determine the input voltage of the 
transformer at primary side. 

 If the resistance of the primary winding is 0.2 Ω, the resistance of the secondary side is 2 Ω 
and the transformer is 90% efficient, determine the heat losses in the two individual 
sides/windings (primary and secondary) of the transformer.      

Solution: N1 = 400 Turns,            N2 = 2000 Turns,            Poutput = 12.1 kW,            V2 = 1100 V 

 R1 = 0.2 Ω,                   R2 = 2 Ω,                        η = 90% 

 The input voltage at the primary side may be given as: 

  V1 = 1

2

N
N

 × V2 = 400
2000

 × 1100 = 220 V 

 The output current at the secondary side of the transformer may be given as: 

  I2 = 
2

outputP
V

 = 
312.1 10

1100
  = 11 A 

 The expression for the efficiency of a transformer may be given as: 

  η = Power Output
Power Input

 × 100% = 
1 1

outputP
V I

 × 100% = 90% = 0.9 

 or, I1 = 
10.9

outputP
V

 = 
312.1 10

0.9 220



 = 61.11 A 

 So, the heat losses at the primary and secondary side may respectively be given as: 

  (Plosses)1 = 2
1I  × R1 = (61.11)2 × 0.2 = 746.886 W 

  (Plosses)2 = 2
2I  × R2 = (11)2 × 2 = 242 W 

Problem 7.149: A transformer, having 300 primary turns and 2400 secondary turns, is connected across a 
230 V on its primary side. Determine the output voltage at the secondary side of the 
transformer. [NCERT]    

Solution: N1 = 300 Turns,            N2 = 2400 Turns,            V1 = 230 V 

 The output voltage at the secondary side may be given as: 

  V2 = 2

1

N
N

 × V1 = 2400
300

 × 230 = 1840 V = 1.84 kV 

Problem 7.150: A transformer, having 200 primary turns and 150 secondary turns, is supplying a load at   
300 V connected to its secondary side. Determine the input voltage at the primary side of the 
transformer. [NCERT]    

Solution: N1 = 200 Turns,            N2 = 150 Turns,            V2 = 300 V 

 The input voltage at the primary side may be given as: 
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  V1 = 1

2

N
N

 × V2 = 200
150

 × 300 = 400 V 

Problem 7.151: The ratio of the number of turns in the primary and the secondary side of a step up 
transformer is 1 : 200. If it is connected to 200 V a.c. mains, determine the output voltage at 
the secondary side of the transformer. Also, determine the maximum value of the current in 
the secondary winding, if the transformer is drawing a primary current of 2 A.      

Solution: N1 : N2 = 1 : 200,            V1 = 200 V,            I1 = 2 A 

 The output voltage at the secondary side may be given as: 

  V2 = 2

1

N
N

 × V1 = 200
1

 × 200 = 40000 V = 40 kV 

 The output current (rms value) flowing through the secondary winding may be given as: 

  I2 = 1

2

N
N

 × I1 = 1
200

 × 2 = 0.01 A = 10 mA 

 The maximum value of the current in secondary winding may be given as: 

  (I2)0 = 2  × I2 = 2  × 0.01 = 0.01414 A = 14.14 mA 

Problem 7.152: A 100% efficient transformer, having 500 primary turns and 10000 secondary turns, is 
connected across a 220 V a.c. mains on its primary side. Determine the output voltage at the 
secondary side of the transformer.     

Solution: η = 100%,            N1 = 500 Turns,           N2 = 10000 Turns,            V1 = 220 V 

 The output voltage at the secondary side may be given as: 

  V2 = 2

1

N
N

 × V1 = 10000
500

 × 220 = 4400 V = 4.4 kV 

Problem 7.153: When a supply voltage of 120 V is impressed upon the primary side of a transformer, the 
current in the primary winding is found to be 1.85 A. If the efficiency of the transformer is    
95 % and it is delivering a current of 150 mA at secondary side, determine the output voltage 
at the secondary side.   

Solution: V1 = 120 V,            I1 = 1.85 A,           η = 95%,            I2 = 150 mA 

 The expression for the efficiency of a transformer may be given as: 

  η = Power Output
Power Input

 × 100% = 2 2

1 1

V I
V I

 × 100% = 95% = 0.95 

 or, V2 = 1 1

2

0.95 V I
I
  = 3

0.95 120 1.85
150 10
 


 = 1406 V = 1.406 kV 

Problem 7.154: A town situated 20 km away from a power plant generating power at 440 V, requires 0.6 MW 
of electric power at 200 V. The resistance of the two wire line carrying the current is           
0.04 Ω/km. The town gets power from the line through a 3000-220 V step down transformer at 
a substation at the town. Determine: i) the line power losses in the form of heat, ii) the power 
supplied by the plant, assuming negligible power losses due to leakage.     

Solution: l = 20 km,            Vgeneration = 440 V,            Precieving = 0.6 MW,            Vrecieving = 200 V, 

  Rline = 0.04 Ω/km,   Line = 3000 – 220 V 
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 The setup for generation (440 V) at sending end, step-up for transmission and transmission 

(3000 V), and step down (200 V) at receiving end is shown in the Fig. 7.89. The voltage at 
sending end is 440 V and 
that on the receiving end 
is 200 V. The transformer 
at receiving end has a 
transformation ratio of 
3000V / 220 V. 

 The voltage of the 
transmission line may be 
given as: 

  V1 = 3000
220

 × 200 = 2727.27 V 

 The current corresponding to 0.6 MW power at 2727.27 V may be given as: 

  I1 = 
1

P
V

 = 
60.6 10

2727.27
  = 220 A 

 The net resistance of the transmission line may be given as: 

  (Rline)net = 2 × l × Rline = 2 × 20 × 0.04 = 1.6 Ω 

 So, the power losses in the line as heat may be given as: 

  Plosses = 2
1I  × R1 = (220)2 × 1.6 = 77.44 kW 

 And, the power supplied by the plant may be given as: 

  Psending = Precieving + Plosses = 600 + 77.44 = 677.44 kW 

Problem 7.155: A transformer, having 200 primary turns and 1000 secondary turns, is supplying a load of     
9 kW at 1000 V on its secondary side. Determine: i) the input voltage at primary side, ii) the 
heat loss in the primary winding, if the resistance of primary winding is 0.2 Ω and the 
efficiency of the transformer is 90%.   

Solution: N1 = 200 Turns,            N2 = 1000 Turns,            Poutput = 9 kW,            V2 = 1000 V,            

 R1 = 0.2 Ω,                   η = 90% 

 The input voltage at the primary side may be given as: 

  V1 = 1

2

N
N

 × V2 = 200
1000

 × 1000 = 200 V 

 The expression for the efficiency of a transformer may be given as: 

  η = Power Output
Power Input

 × 100% = 
1 1

outputP
V I

 × 100% = 90% = 0.9 

 or, I1 = 
10.9

outputP
V

 = 
39 10

0.9 200



 = 50 A 

 So, the heat losses at the primary side may be given as: 

  (Plosses)1 = 2
1I  × R1 = (50)2 × 0.2 = 500 W 

440 V 440 V 200 V

N2  220N1  3000

Transmission

Line

20 km long

V1

Sending End Recieving End   
Fig. 7.89 
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7.25 A.C. Generator: The present form of the generators is given to us by the great Yugoslav Scientist, 

Nikola Tesla in year 1988. The name generator used for the generation of electricity is actually a 
misnomer.  

 An a.c. generator / dynamo / synchronous generator is an electrical machine which converts 
mechanical energy into electrical energy.  

 An a.c. generator produces an alternating current that alternates its polarity (from positive to negative 
and vice-versa) regularly after a fixed interval of time, and the instantaneous value of the current 
changes continuously in a sinusoidal manner between it’s positive maximum to negative maximum 
value.  

 Principle of Operation: If a coil is being rotated in a fixed magnetic field at a constant angular speed 
with its axis perpendicular to the magnetic field, the magnetic flux lines associated with the coil changes 
continuously (in sinusoidal manner) and an EMF is being induced in the coil according to Faraday’s 

Law of Electromagnetic Induction, i.e.   e = – N d
d t
 .     

 Construction of A.C. Generator: Every 
rotating electrical machine has two basic parts 
for the support of its components: i) Stator 
(stationary part), ii) Rotor (rotating part). 

 i) Stator: The stator of an A.C. generator 
consists of following parts: 

 a) Yoke: It is the soft iron structure to 
mount/support the components of stator 
inside it, [Fig. 7.90 (a)]. 

 b) Pole Shoes: They are made up of either 
permanent magnet in small dynamos or of 
laminated steel punching to support field 
winding to create a strong electromagnet 
in case of large generators. The laminated 
punching are used to reduce eddy current 
losses, [Fig. 7.90 (a)].  

 c) Carbon brushes assembly: It carries two 
carbon brushes [one for (+)ve terminal 
and one for (–)ve terminal] to collect the 
A.C. current from rotating slip rings. The 
out-put terminals of generator are 
connected to stationary carbon brushes, on 
stator. These carbon brushes are in 
continuous contact with the rotating slip 
rings due to a spring arrangement behind the carbon brushes, [Fig. 7.90 (a)]. 

 d) Bearing assembly: Stator also has bearings and end brackets to support the rotating armature coils 
on the rotor. 

 ii) Rotor: Rotor is meant for rotating inside the stator assembly, it supports following components: 

 a) Rotor Body: It is made up of laminated steel punching to reduce the eddy current losses. Rotor 
body has slots (open or closed) along its circumference to accommodate the armature windings 
inside them [Fig. 7.90 (b)].  
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 b) Armature winding: The insulated coils of copper wire accommodated in rotor slots (in which emf 

is being induced, when it rotates in the magnetic field with rotating rotor and hence can supply 
current to an electrical load) is known as armature winding. This armature winding is connected to 
the slip rings (on the rotor shaft) in order to supply the load current to an electrical load connected 
to the output terminals of the generator. 

 c) Slip Rings: They are made up of H.T. steel and are located at rotor shaft, which gives continuous 
electrical contact of the carbon brushes over them to the ends of the rotating coil. They remains in 
continuous contact with stationary carbon brushes, located on stator to provide connection of 
armature winding to the stationary electrical load, [Fig. 7.90 (b)].  

 Working: Consider the setup shown in the Fig. 7.91, a 
coil ABCD is shown between two poles of a magnet 
(permanent magnet / electromagnet). The coil side AB 
is connected to the slip ring Y, and that the coil side 
CD is connected to another slip ring X. The coil sides 
will remain in the continuous contact with respective 
slip rings while rotating. The load resistance (RL) is 
connected to the slip rings through the carbon brushes 
and spring arrangement, so that the rotating slip rings 
are in continuous contact with the stationary carbon 
brushes. Now, the coil is being rotated in anti-clock-
wise direction between two poles of the magnet with 
the help of an external source (Prime Mover) giving 
mechanical energy to the coil. Consider the instant 
shown in Fig. 7.91 (a), when coil side AB is coming 
upwards and that the coil side CD is going downwards. 
The arrows are showing the direction of induced emf 
(and hence the current in the load) according to Flemings Right Hand Rule, from X-to-Y, for this half 
rotation. After half the rotation, the situation will become as shown in Fig. 7.91 (b), coil side CD is 
coming upwards and that the coil side AB is going downwards. The arrows are showing the direction of 
induced emf, for this half rotation (and hence the current in the load), from Y-to-X now, which is 
opposite to the earlier direction of current. It shows that the induced emf is alternating in nature for this 
rotating arrangement of the coil.   

 Expression for Induced EMF in A.C. Generator: Let us define some parameters before deriving the 
emf equation for an A.C. Generator. 

  N → Number of turns in the armature winding. 

  A → Face area of each turn in armature winding. 

  B → Magnetic field (flux density). 

  θ → Angle between the magnetic field and the normal to the plane of coil at any instant t. 

  ω → Angular speed of the rotation of the armature coil. 

 We know that the flux linkages of a coil rotating at a constant angular speed changes in a sinusoidal 
manner. So, the flux linkages of the coil at any instant of the time may be given as: 

  λ = N ɸ = N B A cos θ = N B A cos ωt      (7.127) 

 The emf induced in the armature may be given, according to Faraday’s Law of Electromagnetic 
Induction, as: 

  e = – λd
d t

 = – d
d t

 (N B A cos ωt) = N B A ω sin ωt = E0 sin ωt (7.128) 
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 Where, E0 = N B A ω  (7.129) 

 If a load of resistance RL is connected across the armature terminals, the current through the load and 
armature winding may be given as: 

  I = 
L

e
R

 = 0 sin ω

L

E t
R

 = I0 sin ωt     (7.130) 

 So, I0 = 0

L

E
R

 = ω

L

N B A
R

 (7.131) 

 So, both the induced emf as well as the current generated by the generator are varying in sinusoidal 
manner. The mechanical power is being supplied by the external agent (Prime Mover) to the armature 
coil, to which the armature coil is converting in the electrical energy to feed the electrical load to do 
some useful work. 

 Hydroelectric Power Generation Station: The water is stored in a dam up to a significant height. The 
water falls onto the giant turbines (water wheels) with a greater speed, under the influence of gravity, 
from the penstocks in the wall of the dam. These turbines are coupled with the rotor of heavy 
generators. The falling water from the penstocks rotate the turbines, which in turn rotate the rotor of 
heavy generator, to convert the potential energy of the water – through – its kinetic energy – to – turbine 
– into – the electrical energy by generator. 

 
Potential Energy
of Water Stored

at Height
 → 

Kinetic Energy
of Falling Water

 → 
Rotation of

Turbine
 → 

Rotation of
Armature Winding

 → Electrical Energy    

 Thermal Power Generation Station: The superheated steam is produced in huge boilers using coal or 
crude oil in a thermal power station. The super heated steam emerging from small jets hit the turbines 
with a greater speed, due to the pressure of steam and orifice of jets. These turbines are coupled with the 
rotor of heavy generators. The steam hitting the turbines rotate the turbines which in turn rotate the rotor 
of heavy generator, to convert the potential energy of the steam – through – its kinetic energy – to – 
turbine – into – the electrical energy by generator. 

 Heat →
Potential Energy
of Steam Stored
in Compressors

→
Kinetic Energy

of Steam
→

Rotation of
Turbine

→
Rotation of

Armature Winding
→ Electrical Energy    

 Nuclear Power Generation Station: The superheated steam is produced in huge boilers using nuclear 
fuel in nuclear power stations, rest of the process of generating electrical power is same as that in a 
thermal power generation station. 

7.26 Advantages and Dis-advantages of A.C. over D.C.: The alternating electric current has certain 
advantages and dis-advantages over the direct electric current, which are as enlisted below. 

 Advantages of A.C. over D.C.:  

 i) The generation of A.C. is more economical than D.C. because high voltage generation of D.C. is not 
possible (above 750 V), however the generation of A.C. is being done commercially at 11 kV, 33kV 
and 132 kV. 

 ii) The alternating current and voltages may very easily be stepped-up or stepped-down for the purpose 
of economical transmission and distribution. 

 iii) The alternating currents may easily be reduced by using choke coil without any significant wastage 
of electrical power. 
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 iv) The alternating currents may easily be converted into direct currents with the help of rectifiers as 

and when required. 

 v) A.C. machines are rugged in construction. They are rough and tough and need less maintenance 
than that of the d.c. machines. 

 Dis-advantages of A.C. over D.C.:  

 i) Peak value of A.C. is higher (I0 = 2 Irms) than that of the corresponding D.C. So, it is more 
dangerous to work with A.C. than that with the D.C. 

 ii) The direct current is required for the processes like: electroplating, electro-refining, electrotyping 
etc. These processes cannot be performed with A.C. supply. 

 iii) There is no skin effect in the direct currents (Skin Effect persists in alternating currents, which is 
the tendency of the current to concentrate on the surface of the conductor. So, more current flows at 
the surface of the conductor than that inside the conductor). So, the required cross section of the 
conductor to carry the same d.c. current is smaller.  

Problem 7.156: A student pedals a stationary bicycle, the pedals of which are attached to a 100 turns coil of 
area 0.1 m2. The coil rotates at half a revolution per second, when placed in a magnetic field 
of strength 0.01 Tesla perpendicular to the axis of rotation of the coil. Determine the 
maximum emf induced in the coil.   [NCERT, CBSE 2007-08] 

Solution: N = 100 Turns,            A = 0.1 m2,            n = 0.5 rps,            B = 0.01 T 

 The maximum value of the emf induced in the coil may be given as: 

  E0 = N B A ω = N B A × (2 π f) = 100 × 0.01 × 0.1 × (2 π × 0.5) = 0.314 V    

Problem 7.157: An a.c. generator, having a coil of 50 turns and area of 2.5 m2, is rotating at an angular 
speed of 60 rad/sec in a uniform magnetic field of 0.3 Tesla between two fixed pole pieces. 
The resistance of the circuit including that of the coil is 500 Ω. Determine: i) maximum value 
of the current supplied by the generator, ii) the flux linkages of the coil when the current 
through the coil is zero, iii) would the generator works, if the coil is held stationary, while the 
pole pieces of the magnet would rotate at the same speed of rotation?      
 [CBSE 1997-98, 2002-03] 

Solution: N = 50 Turns,            A = 2.5 m2,            ω = 60 rad/sec,            B = 0.3 T,            R = 500 Ω 

 The maximum value of the current supplied by the generator may be given as: 

  I0 = 0E
R

 = ωN B A
R

 = 50 0.3 2.5 60
500

    = 4.5 A 

 The alternating current generated in an a.c. generator may be given as: i = N B A ω sin ωt 

 The value of this current will be maximum obviously for ωt = 0°. 

 So, the flux linkages of the coil at this instant may be given as: 

  λ = N ɸ = N B A cos ωt = 50 × 0.3 × 2.5 × cos 0° = 37.5 Wb 

 The generator will still work satisfactorily as there is a relative motion between the armature 
coil and the magnetic field, so the flux linkages of the coil are still changing at the same rate, 
and hence the same emf continues to be induced in the armature coil.      

Problem 7.158: An a.c. generator, having a coil of 100 turns and cross sectional area of 3 m2, is rotating at a 
constant angular speed of 60 rad/sec in a uniform magnetic field of 0.04 T. The total 
resistance of the circuit is 500 Ω. Determine: i) the maximum current supplied by the current, 
ii) the power dissipation in the circuit. [CBSE 2002-03] 
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Solution: N = 100 Turns,            A = 3 m2,            ω = 60 rad/sec,            B = 0.04 T,            R = 500 Ω 

 The maximum value of the current supplied by the generator may be given as: 

  I0 = 0E
R

 = ωN B A
R

 = 100 0.04 3 60
500

    = 1.44 A 

 The power dissipated in the circuit may be given as: 

  P = I 2 × R = 
2

0

2
I 

 
 

× R = 
21.44

2
 
 
 

× 500 = 518.4 W  

Problem 7.159: A generator develops an emf of 120 V and has a terminal potential difference of 115 V, when 
the armature current is 25 A. Determine the resistance of the armature. 

Solution: E = 120 V,            Vt = 115 V,            Ia = 25 A 

 The voltage relationship for the generator circuit 
may be given as: 

  E = Vt + Ia Ra 

 or, Ra = t

a

E V
I
  = 120 115

25
  = 0.2 Ω  

Problem 7.160: An armature coil, having 20 Turns of resistance 15 Ω and a cross sectional area of 0.09 m2, is 

rotating at a constant frequency of 150
π

 Hz inside a uniform magnetic field of 0.5 Tesla. 

Determine the value of: i) maximum induced emf, ii) average induced emf. 

Solution: N = 20 Turns,            R = 15 Ω,            A = 0.09 m2,            f = 150
π

 Hz,            B = 0.5 T 

 The maximum value of the induced emf in the armature coil may be given as: 

  E0 = N B A ω = N B A × (2 π f) = 20 × 0.5 × 0.09 × 2 π × 150
π

 = 270 V 

 The average emf induced in the coil may be given as: 

  Eavg = 02
π
E  = 2 270

π
  = 171.89 V 

Problem 7.161: An a.c. generator, having a coil of 2000 turns and a cross sectional area of 80 cm2, is rotating 
at an angular speed of 200 rpm inside a uniform magnetic field of 0.048 Tesla. Determine the 
peak value and the rms value of the induced emf in the armature coil. [Punjab 2001-02]  

Solution: N = 2000 Turns,            A = 80 cm2,            f = 200 rpm = 200
60

 = 10
3

 Hz,            B = 0.048 T 

 The peak value of the emf induced in the armature coil may be given as: 

  E0 = N B A ω = N B A × (2 π × f) = 2000 × 0.048 × 80 ×10−4 × 2 π × 10
3

 = 16.085 V 

 The rms value of the emf induced in the armature coil may be given as: 

  Erms = 0

2
E

 = 16.085
2

 = 11.374 V 
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SHORT ANSWER TYPE QUESTIONS FOR EXERCISE 
1. Define following in context of alternating current: i) alternating current, ii) waveform, iii) instantaneous 

value, iii) amplitude, iv) cycle, v) time period, vi) frequency, vii) angular frequency, vii) relationship 
between angular speed and frequency.  

2. Define and give the value following for sinusoidal alternating current: i) average value, ii) rms / 
effective value, iii) standard equation for the alternating current. 

3. Define following in context of alternating current: i) phasor diagram, ii) phase, iii) phase angle,           
iv) phase difference.  

4. Give the expression for the power dissipated and the value of phase difference between the applied 
voltage and the circuit current (lagging / leading) in case of: i) purely resistive circuit, ii) purely 
inductive circuit, iii) purely capacitive circuit.  

5. Define and give the expression for the time constant of a purely capacitive circuit in case of a d.c. 
supply applied across the capacitor. 

6. Draw and properly label (naming of branches of the triangles) the impedance triangles and power 
triangles for the following circuits: i) R-L series circuit, ii) R-C series circuit, iii) R-L-C series circuit. 
Also mention the unit of each power in power triangle. 

7. Define: i) power factor, ii) watt-full current, iii) watt-less current; with the help of a suitable phasor 
diagram.    

8. Define and give the condition for the resonance to occur in an R-L-C series circuit. Also, give the 
expression for: i) resonance frequency, ii) impedance at resonance, iii) current at resonance, iv) power 
factor at resonance, v) quality factor (all three formulae), vi) band width, vii) half power frequencies. 

9. Draw the current –vs– frequency curve for an R-L-C series circuit and derive the expression for the 
band width and half power frequencies. Also, write down the physical significance of half power 
frequencies and the reason due to which the R-L-C series circuit is also known as a tuner circuit.   

10. For an R-L-C series circuit, define the following: i) quality factor, ii) selectivity, iii) relationship 
between quality factor and selectivity with the help of a suitable diagram.   

11. Derive the expressions for the energy associated with a: i) pure inductor, ii) pure capacitor. 

12. Show that the energy remains conserved in case of an L-C oscillator. 

13. Explain the working principal of a transformer, and name the parameters that will get transformed from 
primary winding to secondary winding. Also, derive the emf equation for a transformer and hence prove 

the relationship: 2

1

E
E

 = 2

1

N
N

 = 2

1

V
V

 = 1

2

I
I

 

14. Name and explain all the losses in a transformer and their cause. Also mention which loss is variable 
loss and which one is a constant loss.  

15. Give the applications of the transformers. Also, explain: what will happen to a transformer if a d.c. 
supply is given to it?  

16. Give the advantages and dis-advantages of A.C. supply over D.C. supply. 

17. Explain the working principal of an A.C. generator with the help of suitable diagrams. 

 


