Matrices Class Sheet
 Priyanka Rana

- A matrix is an ordered rectangular array of numbers or functions.
- A matrix having m rows and n columns is called a matrix of order $m \times n$.
- $\quad\left[a_{i j}\right]_{m \times 1}$ is a column matrix.
- $\left[a_{i j}\right]_{1 \times n}$ is a row matrix.
- An $m \times n$ matrix is a square matrix if $m=n$.
- $\mathrm{A}=\left[a_{i j}\right]_{m \times m}$ is a diagonal matrix if $a_{i j}=0$, when $i \neq j$.
- $\mathrm{A}=\left[a_{i j n \times n}\right.$ is a scalar matrix if $a_{i j}=0$, when $i \neq j, a_{i j}=k$, (k is some constant), when $i=\mathrm{j}$.
- $\mathrm{A}=\left[a_{i j}\right]_{n \times n}$ is an identity matrix, if $a_{i j}=1$, when $i=j, a_{i j}=0$, when $i \neq j$.
- A zero matrix has all its elements as zero.
- $\mathrm{A}=\left[a_{i j}\right]=\left[b_{i j}\right]=\mathrm{B}$ if (i) A and B are of same order, (ii) $a_{i j}=b_{i j}$ for all possible values of i and j.
- $k \mathrm{~A}=k\left[a_{i j}\right]_{m \times n}=\left[k\left(a_{i j}\right)\right]_{m \times n}$
- $-\mathrm{A}=(-1) \mathrm{A}$
- $\mathbf{A}-\mathbf{B}=\mathbf{A}+(-\mathbf{1}) \mathbf{B}$
- $\mathrm{A}+\mathrm{B}=\mathrm{B}+\mathrm{A}$ Commutative law
- $(\mathbf{A}+\mathbf{B})+\mathbf{C}=\mathbf{A}+(\mathbf{B}+\mathbf{C})=\mathbf{A}+\mathbf{B}+\mathbf{C}$, where A, B and C are of same order. Associative Law.
- $k(\mathrm{~A}+\mathrm{B})=k \mathrm{~A}+k \mathrm{~B}$, where A and B are of same order, k is constant.
- $\quad(k+l) \mathrm{A}=k \mathrm{~A}+l \mathrm{~A}$, where k and l are constant.

