Matrices Class Sheet Priyanka Rana

- A matrix is an ordered rectangular array of numbers or functions.
- A matrix having *m* rows and *n* columns is called a matrix of order $m \times n$.
- $[a_{ij}]_{m \times 1}$ is a column matrix.
- $[a_{ij}]_{1 \times n}$ is a row matrix.
- An $m \times n$ matrix is a square matrix if m = n.
- A = $[a_{ij}]_{m \times m}$ is a diagonal matrix if $a_{ij} = 0$, when $i \neq j$.
- A= $[a_{ij}]_{n \times n}$ is a scalar matrix if $a_{ij} = 0$, when $i \neq j$, $a_{ij} = k$, (k is some constant), when i = j.
- A = $[a_{ij}]_{n \times n}$ is an identity matrix, if $a_{ij} = 1$, when i = j, $a_{ij} = 0$, when $i \neq j$.
- A zero matrix has all its elements as zero.
- A = [a_{ij}] = [b_{ij}] = B if (i) A and B are of same order, (ii) a_{ij} = b_{ij} for all possible values of *i* and *j*.
- $k\mathbf{A} = k[a_{ij}]_{m \times n} = [k(a_{ij})]_{m \times n}$
- -A = (-1)A
- $\mathbf{A} \mathbf{B} = \mathbf{A} + (-1) \mathbf{B}$
- A + B = B + A Commutative law
- $(\mathbf{A} + \mathbf{B}) + \mathbf{C} = \mathbf{A} + (\mathbf{B} + \mathbf{C}) = \mathbf{A} + \mathbf{B} + \mathbf{C}$, where A, B and C are of same order. Associative Law.
- k(A + B) = kA + kB, where A and B are of same order, k is constant.
- (k+l) A = kA + lA, where k and l are constant.