Various cases of location of roots:

Let $f(x)=a x^{2}+b x+c, a \neq 0$ and $a, b, c \in R$, and α, β are roots of $f(x)=0$ where $\alpha \leq \beta$
Suppose $k, k_{1}, k_{2} \in R$ and $k_{1}<k_{2}$, then remember the following.

CASE-I: Condition for a number k if both roots of $f(x)=0$ are less than k.

i) $\Delta \geq 0$
ii) $\mathrm{af}(\mathrm{k})>0$
iii) $\mathrm{k}>\frac{-\mathrm{b}}{2 \mathrm{a}}$

Intersection of (i), (ii) and (iii) gives the result.

CASE - II: Condition for both roots of $f(x)=0$ are greater than k.

i) $\Delta \geq 0$
ii) $\operatorname{af}(\mathrm{k})>0$
iii) $k<\frac{-b}{2 a}$

Intersection of (i), (ii) and (iii) gives the result.

CASE - III: If k lies between the roots of $\mathrm{f}(\mathrm{x})=0$

i) $\Delta>0$
ii) $\operatorname{af}(\mathrm{k})<0$

Intersection of (i) and (ii) gives the result.

CASE-IV: Condition for the numbers k_{1} and k_{2} if exactly one root of $f(x)=0$ lies in the interval $\left(\mathrm{k}_{1}, \mathrm{k}_{2}\right)$.

i) $\Delta>0$
ii) $f\left(k_{1}\right) f\left(k_{2}\right)<0$

Intersection of (i) and (ii) gives the result.

CASE - v: Condition for numbers k_{1} and k_{2} if both roots of $\mathrm{f}(\mathrm{x})=0$ are confined between k_{1} and k_{2}.

i) $\Delta \geq 0 \quad$ ii) $\operatorname{af}\left(\mathrm{k}_{1}\right)>0, \operatorname{af}\left(\mathrm{k}_{2}\right)>0 \quad$ iii) $\quad \mathrm{k}_{1}<\frac{-\mathrm{b}}{2 \mathrm{a}}<\mathrm{k}_{2} \quad$ where $\alpha \leq \beta$ and $\mathrm{k}_{1}<\mathrm{k}_{2}$
Intersection of (i), (ii) and (iii) gives the result.

CASE-VI: Condition for numbers k_{1} and k_{2} if k_{1} and k_{2} lie between the roots $f(x)=0$

$$
\left(\frac{-\mathrm{b}}{2 \mathrm{a}}, \frac{-\Delta}{4 \mathrm{a}}\right)
$$

i) $\Delta>0$
ii) $\operatorname{af}\left(\mathrm{k}_{1}\right)<0$, af $\left(\mathrm{k}_{2}\right)<0$ where $\mathrm{k}_{1}<\mathrm{k}_{2}, \alpha<\beta$.

Intersection of (i) and (ii) gives the result.

Let $x^{2}-(m-3) x+m=0(m \in R)$ be a quadratic equation. Find the values of m for which the roots are
i) Real and distinct
ii) Equal
iii) Not real
iv) Opposite in sign
v) Equal in magnitude but opposite in sign
vi) Positive
vii) Negative
viii) Such that at least one is positive
ix) One root is smaller than 2 and the other root is greater than 2
x) Both the roots are greater than 2
xi) Both the roots are smaller than 2
xii) Exactly one root lies in the interval $(1,2)$
xiii) Both the roots lie in the interval $(1,2)$
xiv) At least one root lies in the interval (1,2)
xv) One root is greater than 2 and the other root is smaller than 1

Sol: Let $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}-(\mathrm{m}-3) \mathrm{x}+\mathrm{m}=0$
i)

Both the roots are real and distinct. So,

$$
\begin{aligned}
& \mathrm{D}>0 \\
& \Rightarrow(\mathrm{~m}-3)^{2}-4 \mathrm{~m}>0 \\
& \Rightarrow \mathrm{~m}^{2}-10 \mathrm{~m}+9>0 \\
& \Rightarrow(\mathrm{~m}-1)(\mathrm{m}-9)>0 \\
& \Rightarrow \mathrm{~m} \in(-\infty, 1) \cup(9, \infty)
\end{aligned}
$$

ii)

Both the roots are equal. So,
$\mathrm{D}=0 \Rightarrow \mathrm{~m}=9$ or $\mathrm{m}=1$
iii)

Both the roots are imaginary. So,
$\mathrm{D}<0 \Rightarrow(\mathrm{~m}-1)(\mathrm{m}-9)<0 \quad \mathrm{~m} \in(1,9)$
iv)

Both the roots are opposite in sign. Hence, the product of roots is negative.
So, $\mathrm{m}<0 \Rightarrow \mathrm{~m} \in(-\infty, 0)$
v)

Roots are equal in magnitude but opposite in sign. Hence, sum of roots is zero as well as $\mathrm{D} \geq 0$. So, $\mathrm{m} \in(-\infty, 1) \cup(9, \infty)$ and $\mathrm{m}-3=0$ i.e., $\mathrm{m}=3$
As no such m exists, so $m \in \phi$
vi)

Both the roots are positive. Hence, $\mathrm{D} \geq 0$ and both the sum and the product of roots are positive. So,
$\mathrm{m}-3>0, \mathrm{~m}>0$ and $\mathrm{m} \in(-\infty, 1] \cup[9, \infty)$
$\mathrm{m} \in[9, \infty)$
vii)

Both the roots are negative. Hence, $\mathrm{D} \geq 0$, and sum is negative but product is positive. So,

$$
\mathrm{m}-3<0, \mathrm{~m}>0 \mathrm{~m} \in(-\infty, 1] \cup[9, \infty) \Rightarrow \mathrm{m} \in(0,1]
$$

viii) At least one root is positive. Hence, either one root is positive or both roots are positive. So, $\mathrm{m} \in(-\infty, 0) \cup[9, \infty)$
ix)

One root is smaller than 2 and the other root is greater than 2, i.e., 2 lies between the roots. So, $\mathrm{f}(2)<0 \Rightarrow 4-2(\mathrm{~m}-3)+\mathrm{m}<0 \Rightarrow \mathrm{~m}>10$

Both the roots are greater than 2. So, $f(2)>0, D \geq 0,-\frac{b}{2 a}>2$
$\Rightarrow \mathrm{m}<10$ and $\mathrm{m} \in(-\infty, 1] \cup[9, \infty)$ and $\mathrm{m}-3>4$
$\Rightarrow \mathrm{m} \in[9,10)$
xi)

Both the roots are smaller than 2. So, $f(2)>0, D \geq 0,-\frac{b}{2 a}<2$
$\Rightarrow \mathrm{m} \in(-\infty, 1]$
xii)

Exactly one root lies in $(1,2)$. So, $f(1) f(2)<0$
$\Rightarrow 4(10-\mathrm{m})<0$
$\Rightarrow \mathrm{m} \in(10, \infty)$
xiii) Both the roots lie in the interval (1, 2). Then,

$$
\begin{equation*}
D \geq 0 \Rightarrow(m-1)(m-9) \geq 0 \Rightarrow m \leq 1 \text { or } m \geq 9 \tag{1}
\end{equation*}
$$

Also,

$$
\begin{equation*}
\mathrm{f}(1)>0 \text { and } \mathrm{f}(2)>0 \Rightarrow 10>\mathrm{m} \tag{2}
\end{equation*}
$$

And

$$
\begin{equation*}
1<-\frac{\mathrm{b}}{2 \mathrm{a}}<2 \Rightarrow 5<\mathrm{m}<7 \tag{3}
\end{equation*}
$$

Thus, no such m exists.
xiv)

CASE-I: Exactly one root lies in (1, 2). So,

$$
\mathrm{f}(1) \mathrm{f}(2)<0 \Rightarrow \mathrm{~m}>10
$$

CASE - II: Both the roots lie in (1, 2). So, from (xiii) $m \in \phi$. Hence, $m \in(10, \infty)$
xv) For one root greater than 2 and the other root smaller than 1 ,

$$
\begin{align*}
& \mathrm{f}(1)<0 \tag{1}\\
& \mathrm{f}(2)<0 \tag{2}
\end{align*}
$$

From (1), $f(1)<0$, but $f(1)=4$, which is not possible. Thus, no such m exists.

