Dimensional Formulae of Physical Quantities

S.No	Physical Quantity	Relationship with other physical quantities	Remark	Dimensional Formula
1.	Area	Length \times breadth		$\left[\mathrm{M}^{0} \mathrm{~L}^{2} \mathrm{~T}^{0}\right]$
2.	Volume	Length \times breadth \times height		$\left[\mathrm{M} \mathrm{L}^{3} \mathrm{~T}^{0}\right]$
3.	Mass density	Mass/volume		$\left[\mathrm{M} \mathrm{L}^{-3} \mathrm{~T}^{0}\right]$
4.	Frequency	1/time period		$\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{-1}\right]$
5.	Velocity, speed	Displacement/time		$\left[\mathrm{M}^{0} \mathrm{~L} \mathrm{~T}^{-1}\right]$
6.	Acceleration	Velocity/time		$\left[\mathrm{M}^{0} \mathrm{LT}^{-2}\right]$
7.	Force	Mass \times Acceleration		[$\mathrm{M} \mathrm{L} \mathrm{T}^{-2}$]
8.	Impulse	Force \times Time		[$\mathrm{M} \mathrm{L} \mathrm{T}^{-1}$]
9.	Work, Energy	Force \times Distance		$\left[\mathrm{M} \mathrm{L}^{2} \mathrm{~T}^{-2}\right]$
10	Power	Work/Time		$\left[\mathrm{M} \mathrm{L}^{2} \mathrm{~T}^{-3}\right]$
11	Momentum	Mass \times Velocity		[$\mathrm{M} \mathrm{L} \mathrm{T}^{-1}$]
12	Pressure, stress	Force/Area		$\left[\mathrm{M} \mathrm{L}^{-1} \mathrm{~T}^{2}\right]$
13	Strain	$\begin{gathered} \hline \text { change in dimension } \\ \hline \text { Original dimension } \\ \hline \end{gathered}$		$\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right]$
14	Modulus of elasticity	Stress/Strain		$\left[\mathrm{M} \mathrm{L}^{-1} \mathrm{~T}^{-2}\right]$
15	Surface tension	Force/Length		$\left[\mathrm{M} \mathrm{L}^{0} \mathrm{~T}^{-2}\right]$
16	Surface energy	Energy/Area		$\left[\mathrm{M} \mathrm{L}^{0} \mathrm{~T}^{-2}\right]$
17	Velocity gradient	Velocity/distance		$\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{-1}\right]$
18	Pressure gradient	Pressure/distance		$\left[\mathrm{M} \mathrm{L}^{-2} \mathrm{~T}^{-2}\right]$
19	Pressure energy	Pressure \times volume		$\left[\mathrm{M} \mathrm{L}^{2} \mathrm{~T}^{-2}\right]$
20	Coefficient of viscosity	Force/area \times velocity gradient		$\left[\mathrm{M} \mathrm{L}^{-1} \mathrm{~T}^{-1}\right]$
21	Angle, Angular displacement	Arc/radius		$\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right]$
	Trigonometric ratio $(\sin \theta, \cos \theta, \tan \theta$, etc).	Length/length		$\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right]$
23	Angular velocity	Angle/time		$\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{-1}\right]$
24	Angular acceleration	Angular velocity/time		$\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{-2}\right]$
25	Radius of gyration	Distance		$\left[\mathrm{M}^{0} \mathrm{~L} \mathrm{~T}^{0}\right]$
26	Moment of inertia	Mass $\times\left(\right.$ radius of gyration) ${ }^{2}$		$\left[\mathrm{M} \mathrm{L}^{2} \mathrm{~T}^{0}\right]$

$\mathbf{2 7}$	Angular momentum	Moment of inertial \times angular velocity		$\left[\mathrm{M} \mathrm{L}^{2} \mathrm{~T}^{-1}\right]$
$\mathbf{2 8}$	Moment of force, moment of couple	Force \times distance		$\left[\mathrm{M} \mathrm{L}^{2} \mathrm{~T}^{-2}\right]$
$\mathbf{2 9}$	Torque	Angular momentum/time Or Force \times distance		$\left[\mathrm{M} \mathrm{L}^{2} \mathrm{~T}^{-2}\right]$
$\mathbf{3 0}$	Angular frequency	$2 \pi \times$ Frequency		$\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{-1}\right]$
$\mathbf{. 3 1}$	Wavelength	Distance	$\left[\mathrm{M}^{0} \mathrm{~L} \mathrm{~T}^{0}\right]$	
$\mathbf{3 2}$	Hubble constant	Recession speed/distance		$\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{-1}\right]$
$\mathbf{3 3}$	Intensity of wave	(Energy/time)/area	$\left[\mathrm{M} \mathrm{L}^{0} \mathrm{~T}^{-3}\right]$	
$\mathbf{3 4}$	Radiation pressure	$\frac{\text { Intensity of wave }}{}$		$\left[\mathrm{M} \mathrm{L}^{-1} \mathrm{~T}^{-2}\right]$
$\mathbf{.}$				

50	Thermal conductivity	Heat energy \times thickness Area \times temperature \times time	$\left[\mathrm{M} \mathrm{L} \mathrm{T}^{-3} \mathrm{~K}^{-1}\right]$
51	Bulk modulus or (compressibility) $^{-1}$	$\frac{\text { volume } \times(\text { change in pressure })}{\text { (change in volume) }}$	$\left[\mathrm{M} \mathrm{L}^{-1} \mathrm{~T}^{-2}\right]$
52	Centripetal acceleration	(Velocity) $/$ / radius	$\left[\mathrm{M}^{0} \mathrm{~L} \mathrm{~T}^{-2}\right]$
53	Stefan constant	$\frac{(\text { Energ } / \text { area } \times \text { time })}{(\text { Temperature })^{4}}$	$\left[\mathrm{M} \mathrm{L}^{0} \mathrm{~T}^{-3} \mathrm{~K}^{-4}\right]$
54	Wien constant	Wavelength \times temperature	[$\left.\mathrm{M}^{0} \mathrm{LT}^{0} \mathrm{~K}\right]$
55	Boltzmann constant	Energy/temperature	$\left[\mathrm{ML}^{2} \mathrm{~T}^{-2} \mathrm{~K}^{-1}\right]$
56	Universal gas constant	Pressure \times volume mole \times temperature	$\begin{aligned} & \hline\left[\mathrm{ML}^{2} \mathrm{~T}^{-2} \mathrm{~K}^{-1}\right. \\ & \left.\mathrm{mol}^{-1}\right] \end{aligned}$
57	Charge	Current \times time	[$\left.\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{TA}\right]$
58	Current density	Current/area	$\left[\mathrm{M}^{0} \mathrm{~L}^{-2} \mathrm{~T}^{0} \mathrm{~A}\right]$
59	Voltage, electric potential, electromotive force	Work/charge	$\left[\mathrm{ML}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{-1}\right]$
	Resistance	$\frac{\text { Potential difference }}{\text { Current }}$	$\left[\mathrm{ML}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{-2}\right]$
61	Capacitance	Charge/potential difference	$\left[\mathrm{M}^{-1} \mathrm{~L}^{-2} \mathrm{~T}^{4} \mathrm{~A}^{2}\right]$
62	Electrical resistivity or (electrical conductivity $)^{-1}$	$\frac{\text { Resistance } \times \text { area }}{\text { length }}$	$\left[\mathrm{ML}^{3} \mathrm{~T}^{-3} \mathrm{~A}^{-2}\right]$
63	Electric field	Electrical force/charge	$\left[\mathrm{MLT}^{-3} \mathrm{~A}^{-1}\right]$
64	Electric flux	Electric field \times area	$\left[\mathrm{ML}^{3} \mathrm{~T}^{-3} \mathrm{~A}^{-1}\right]$
65	Electric dipole moment	Torque/electric field	[M^{0} LTA]
66	Electric field strength or electric intensity	$\frac{\text { Potential difference }}{\text { distance }}$	$\left[\mathrm{MLT}^{-3} \mathrm{~A}^{-1}\right]$
67	Magnetic field, magnetic flux density, magnetic induction	$\frac{\text { Force }}{\text { Current } \times \text { length }}$	$\left[\mathrm{ML}^{0} \mathrm{~T}^{-2} \mathrm{~A}^{-1}\right]$
68	Magnetic flux	Magnetic field \times area	$\left[\mathrm{ML}^{2} \mathrm{~T}^{-2} \mathrm{~A}^{-1}\right]$
	Inductance	$\frac{\text { Magnetic flux }}{\text { Current }}$	$\left[\mathrm{ML}^{2} \mathrm{~T}^{-2} \mathrm{~A}^{-2}\right]$
70	Magnetic dipole moment	Torque/magnetic field or current \times area	$\left[\mathrm{M}^{0} \mathrm{~L}^{2} \mathrm{~T}^{0} \mathrm{~A}\right]$
71	Magnetic field strength, magnetic intensity or magnetic moment density	$\frac{\text { Magnetic moment }}{\text { Volume }}$	$\left[\mathrm{M}^{0} \mathrm{~L}^{-1} \mathrm{~T}^{0} \mathrm{~A}\right]$

72	Permittivity constant (or free space)	$\frac{\text { Charge } \times \text { charge }}{4 \pi \times \text { electric force } \times(\text { distance })^{2}}$	$\left[\mathrm{M}^{-1} \mathrm{~L}^{-3} \mathrm{~T}^{4} \mathrm{~A}^{2}\right]$
73	Permeability constant (of free space)	$\frac{2 \pi \times \text { force } \times \text { distance }}{\text { current } \times \text { current length }}$	$\left[\mathrm{MLT}^{-2} \mathrm{~A}^{-2}\right]$
74	Refractive index	Speed of light in vacuum Speed of light in medium	$\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right]$
75	Faraday constant	Avogadro constant \times elementary charge	$\begin{array}{\|l} \hline\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{TA} \mathrm{~mol}^{-}\right. \\ \text {}] \end{array}$
76	Wave number	$2 \pi /$ wavelength	$\left[\mathrm{M}^{0} \mathrm{~L}^{-1} \mathrm{~T}^{0}\right]$
77	Radiant flux, Radiant power	Energy emitted/time	$\left[\mathrm{M} \mathrm{L}^{2} \mathrm{~T}^{-3}\right]$
78	Luminosity of radiant flux or radiant intensity	$\frac{\text { Radiant power or radiant flus }}{\text { Solid angle }}$	$\left[\mathrm{M} \mathrm{L}^{2} \mathrm{~T}^{-3}\right]$
79	Luminous power or luminous flux of source	$\frac{\text { Luminous energy emitted }}{\text { time }}$	$\left[\mathrm{M} \mathrm{L}^{2} \mathrm{~T}^{-3}\right]$
80	Luminous intensity of illuminating power of source	$\frac{\text { Luminous flux }}{\text { Solid angle }}$	$\left[\mathrm{M} \mathrm{L}^{2} \mathrm{~T}^{-3}\right]$
	Intensity of illumination or luminance	$\frac{\text { Luminous intensity }}{(\text { distance })^{2}}$	$\left[\mathrm{M} \mathrm{L}^{0} \mathrm{~T}^{-3}\right]$
82	Relative luminosity	Luminous flux of a source of given wave lengthluminous flux of peak sensitivity wavelength $(555 \mathrm{~nm})$ sourc e of same power	$\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right]$
83	Luminous efficiency	$\frac{\text { Total luminous flux }}{\text { Total radiant flux }}$	$\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right]$
84	Illuminance or illumination	$\frac{\text { Luminous flux incident }}{\text { area }}$	$\left[\mathrm{M} \mathrm{L}^{0} \mathrm{~T}^{-3}\right]$
85	Mass defect	$\begin{aligned} & \text { (sum of masses of nucleons) } \\ & - \text { (mass of the nucleus) } \\ & \hline \end{aligned}$	$\left[\mathrm{M} \mathrm{L}^{0} \mathrm{~T}^{0}\right]$
86	Binding energy of nucleus	Mass defect \times (speed of light in vacuum) ${ }^{2}$	$\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]$
87	Decay constant	0.693/half life	$\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{-1}\right]$
88	Resonant frequency	$\left(\right.$ Inductance \times capacitance) ${ }^{-\frac{1}{2}}$	$\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~A}^{0} \mathrm{~T}^{-1}\right]$
	Quality factor or Q- factor of coil	$\frac{\text { Resonant frequency } \times \text { inductance }}{\text { Resistance }}$	$\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right]$
90	Power of lens	(Focal length) ${ }^{-1}$	$\left[\mathrm{M}^{0} \mathrm{~L}^{-1} \mathrm{~T}^{0}\right]$
91	Magnification	$\frac{\text { Image distance }}{\text { Object distance }}$	$\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right]$

$\mathbf{9 2}$ \cdot	Fluid flow rate	$\frac{(\pi / 8)(\text { pressure }) \times(\text { radius })^{4}}{(\text { viscosity coefficient }) \times(\text { length })}$		$\left[\mathrm{M}^{0} \mathrm{~L}^{3} \mathrm{~T}^{-1}\right]$
$\mathbf{9 3}$	Capacitive reactance	(Angular frequency \times capacitance) $)^{-1}$		$\left[\mathrm{ML}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{-2}\right]$
\mathbf{C}		(Angular frequency \times inductance)		$\left[\mathrm{ML}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{-2}\right]$
$\mathbf{9 4}$	Inductive reactance			

