Dimensional Formulae of Physical Quantities

S.No	Physical Quantity	Relationship with other	Remark	Dimensional
		physical quantities		Formula
1.	Area	Length \times breadth		$[M^0 L^2 T^0]$
2.	Volume	Length \times breadth \times height		[M L3 T0]
3.	Mass density	Mass/volume		$[M L^{-3} T^{0}]$
4.	Frequency	1/time period		$[M^0 L^0 T^{-1}]$
5.	Velocity, speed	Displacement/time		$[M^0 L T^{-1}]$
6.	Acceleration	Velocity/time		$[M^0 L T^{-2}]$
7.	Force	Mass × Acceleration		[M L T ⁻²]
8.	Impulse	Force × Time		[M L T ⁻¹]
9.	Work, Energy	Force × Distance		$[M L^2 T^{-2}]$
10	Power	Work/Time		$[M L^2 T^{-3}]$
11	Momentum	Mass × Velocity		[M L T ⁻¹]
12	Pressure, stress	Force/Area		$[M L^{-1} T^2]$
13	Strain	change in dimension		$[M^0 L^0 T^0]$
•		Original dimension		
14	Modulus of elasticity	Stress/Strain		$[M L^{-1} T^{-2}]$
15	Surface tension	Force/Length		$[M L^0 T^{-2}]$
16	Surface energy	Energy/Area		$[M L^0 T^{-2}]$
17	Velocity gradient	Velocity/distance		$[M^0 L^0 T^{-1}]$
18	Pressure gradient	Pressure/distance		[M L ⁻² T ⁻²]
19	Pressure energy	Pressure \times volume		$[M L^2 T^{-2}]$
20	Coefficient of viscosity	Force/area × velocity gradient		$[M L^{-1} T^{-1}]$
21	Angle, Angular displacement	Arc/radius		$[M^0 L^0 T^0]$
22	Trigonometric ratio (sin θ , cos θ , tan θ , etc).	Length/length		$[M^0 L^0 T^0]$
23	Angular velocity	Angle/time		$[M^0 L^0 T^{-1}]$
24	Angular acceleration	Angular velocity/time		$[M^0 L^0 T^{-2}]$
25	Radius of gyration	Distance		$[M^0 L T^0]$
26	Moment of inertia	Mass \times (radius of gyration) ²		[M L2 T0]

27	Angular momentum	Moment of inertial × angular velocity	$[M L^2 T^{-1}]$
28	Moment of force, moment of couple	Force × distance	$[M L^2 T^{-2}]$
29	Torque	Angular momentum/time Or Force × distance	[M L ² T ⁻²]
30	Angular frequency	$2\pi \times$ Frequency	$[M^0 L^0 T^{-1}]$
31	Wavelength	Distance	$[M^0 L T^0]$
32	Hubble constant	Recession speed/distance	$[M^0 L^0 T^{-1}]$
33	Intensity of wave	(Energy/time)/area	$[M L^0 T^{-3}]$
34	Radiation pressure	Intensity of wave Speed of light	[M L ⁻¹ T ⁻²]
35	Energy density	Energy/volume	$[M L^{-1} T^{-2}]$
36	Critical velocity	Reynold's number × coefficient of viscocity Mass density × radius	$[M^0 L T^{-1}]$
37	Escape velocity	$(2 \times \text{ acceleration due to})^{1/2}$ gravity × earth's radius) ^{1/2}	[M ⁰ L T ⁻¹]
38	Heat energy, internal energy	Work (= Force \times distance)	$[M L^2 T^{-2}]$
39	Kinetic energy	(1/2) mass × (velocity) ²	$[M L^2 T^{-2}]$
40	Potential energy	Mass \times acceleration due to gravity \times height	
41	Rotational kinetic energy	$\frac{1}{2} \times \text{moment of inertia} \times (\text{angular velocity})^2$	$[M L^2 T^{-2}]$
42	Efficiency	output work or energy Input work or energy	$[M^0 L^0 T^0]$
43	Angular impulse	Torque × time	$[M L^2 T^{-1}]$
44	Gravitational constant	$\frac{\text{Force} \times (\text{distance})^2}{\text{mass} \times \text{mass}}$	$[M^{-1} L^3 T^{-2}]$
45	Planck constant	Energy/frequency	$[M L^2 T^{-1}]$
46	Heat capacity, entropy	Heat energy/temperature	$[M L^2 T^{-2} K^{-1}]$
47	Specific heat capacity	Heat Energy Mass×temperature	$[M^0 L^2 T^{-2} K^{-1}]$
48	Latent heat	Heat energy/mass	$[M^0 L^2 T^{-2}]$
49	Thermal expansion coefficient or thermal expansivity	change in dimension Original dimension × temperature	$[M^0 L^0 K^{-1}]$

\cdot Area × temperature × time51Bulk modulus or (compressibility)^{-1} $volume × (change in pressure)(change in volume)[M L^{-1} T^{-2}]52Centripetalacceleration(Velocity)^2 / radius[M^0 L T^{-2}]$]
51Bulk modulus or (compressibility)^{-1}volume×(change in pressure) (change in volume) $[M L^{-1} T^{-2}]$ 52Centripetal acceleration(Velocity)² / radius $[M^0 L T^{-2}]$	4]
.(compressibility)^{-1}(change in volume)52Centripetal acceleration $(Velocity)^2 / radius$ $[M^0 L T^{-2}]$	-4] -1]
52Centripetal acceleration $(Velocity)^2 / radius$ $[M^0 L T^{-2}]$ <t< th=""><th>-4] </th></t<>	-4]
. acceleration	-4] -1]
	-4]
53 Stefan constant $(Energ/area \times time)$ $[M L^0 T^{-3} K]$	-1]
• (Temperature) ⁴	-1]
54Wien constantWavelength \times temperature $[M^0 L T^0 K]$	-1]
55 Boltzmann constant Energy/temperature $[ML^2 T^{-2} K]$	
56 Universal gas constant Pressure \times volume [ML ² T ⁻² K]	-1
$ mole \times temperature mol^{-1}] $	
57 Charge Current × time $[M^0 L^0 TA]$	
58Current densityCurrent/area $[M^0 L^{-2} T^0 A]$	\]
59 Voltage, electric potential, electromotive force	¹]
60 Resistance Potential difference $[ML^2 T^{-3}A^{-1}]$	2
· Current	-
61CapacitanceCharge/potential difference $[M^{-1} L^{-2} T^4]$	A^2]
62 Electrical resistivity or Resistance \times area [ML ³ T ⁻³ A ⁻	2]
. (electrical length	-
conductivity) ⁻¹	
63 Electric field Electrical force/charge [MLT ⁻³ A ⁻¹]	
$\begin{array}{c c c c c c c c } 64 & Electric flux & Electric field \times area & [ML^3 T^{-3}A^{-1}] \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \end{array}$	1]
65 Electric dipole Torque/electric field [M ⁰ LTA]	
66 Electric field strength Potential difference]
. or electric intensity distance	-
67Magnetic field,Force $[ML^0 T^{-2}A^-]$	¹]
magnetic induction	11
68 Magnetic flux Magnetic field × area	1]
$69 \text{Inductance} \qquad \qquad \underline{\text{Magnetic flux}} \qquad \qquad \boxed{\text{[ML}^2 \text{ T}^{-2} \text{A}^{-1}}$	²]
Current	_
70Magnetic dipoleTorque/magnetic field or $[M^0 L^2 T^0 A]$]
moment current × area	1
$/1$ Magnetic field Magnetic moment $[M^{\circ}L^{-1}]^{\circ}A$	\]
intensity or magnetic	
moment density	

72	Permittivity constant	Charge×charge		$[M^{-1} L^{-3} T^4 A^2]$
•	(or free space)	$4\pi \times \text{electric force} \times (\text{distance})^2$		
73	Permeability constant	$2\pi \times$ force \times distance		$[MLT^{-2}A^{-2}]$
•	(of free space)	current × current length		
74	Refractive index	Speed of light in vacuum		$[M^0 L^0 T^0]$
•		Speed of light in medium		
75	Faraday constant	Avogadro constant \times		$[M^0 L^0 TA mol^-]$
•		elementary charge		Ĩ]
76	Wave number	2π /wavelength		$[M^0 L^{-1} T^0]$
•				2 2
77	Radiant flux, Radiant	Energy emitted/time		$[M L^2 T^{-3}]$
. 70	power	De dient neuven en redient flug		ENALT 2 TT-31
/0	flux or radiant	Radiant power of fadiant flux of		
•	intensity	Solid angle		
79	Luminous power or	Luminous energy emitted		$[M L^2 T^{-3}]$
	luminous flux of	time		
	source			
80	Luminous intensity of	Luminous flux		$[M L^2 T^{-3}]$
•	illuminating power of	Solid angle		
81	Intensity of	Luminous intensity		[M I ⁰ T ⁻³]
01	illumination or	$\frac{1}{(1; 4)^2}$		
	luminance	(distance)		
82	Relative luminosity	Luminous flux of a source		$[M^0 L^0 T^0]$
		of given wave length		
		luminous flux of peak sensitivity		
		of same power		
83	Luminous efficiency	Total luminous flux		[M ⁰ I ⁰ T ⁰]
	Eanimous enterency	Total radiant flux		
84	Illuminance or	Luminous flux incident		$[M L^0 T^{-3}]$
	illumination			
85	Mass defect	(sum of masses of nucleons)		$[M L^0 T^0]$
		– (mass of the nucleus)		
86	Binding energy of	Mass defect × (speed of		$[ML^2 T^{-2}]$
•	nucleus	light in vacuum) ²		
87	Decay constant	0.693/half life		$[M^0 L^0 T^{-1}]$
•	Decement f	1	ļ	
88	Resonant frequency	$($ Inductance×capacitance $)^{-\frac{1}{2}}$		
	Quality factor or Q-	Resonant frequency x inductance		$[M^0 L^0 T^0]$
	factor of coil	Resistance		
90	Power of lens	(Focal length) ⁻¹		$[M^0 L^{-1} T^0]$
91	Magnification	Image distance		$[M^0 L^0 T^0]$
•		Object distance		
I				

92	Fluid flow rate	$\frac{(\pi/8)(\text{pressure}) \times (\text{radius})^4}{(\text{viscosity coefficient}) \times (\text{length})}$	$[M^0 L^3 T^{-1}]$
93	Capacitive reactance	(Angular frequency \times capacitance) ⁻¹	$[ML^2 T^{-3}A^{-2}]$
94	Inductive reactance	(Angular frequency × inductance)	$[ML^2 T^{-3}A^{-2}]$