
1

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-49

IV.2 Fault Tolerance
n To ensure safety, the system’s design must “deal”

with all anticipated faults
n One strategy to do this are execution-time

techniques that cope with the effects of faults and
reduce its effects to an acceptable level!

Fault tolerance (FT): Providing a service that is
consistent with its specification in spite of faults.

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-50

Limitations of Fault Tolerance
Can work only for anticipated faults:
n You can’t tolerate what you don’t expect
n But if we expected it, we would avoid or eliminate

the fault!
ð employ only for faults you cannot avoid/eliminate

In general:
n We can itemize the classes of faults that can occur
n If the fault occurs (the error is detected) we can

react on this

2

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-51

Four Phases of Fault Tolerance
(1) Error detection:
o You must know there is a problem in order to

deal with it
(2) Damage assessment:
o You must know or at least estimate the

damage so as to know how bad the situation is
(3) State restoration:
o A consistent state is needed to continue

(4) Continued service:
o Do something useful with what is left

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-52

(1) Error Detection Techniques
n Functionality checking

Only hardware: e.g., memory
checks via checksums

n Consistency Checking
e.g., range checks

n Signal Comparison
o Checking pairs

n Information redundancy
o Parity checking, checksums, …

n Instruction monitoring
o CPU reavtion when an invalid

instruction code is detected

n Loopback testing
Feedback output to compare it with

source
n Watchdog timers

reset CPU when a timer is not
incremented

n Bus monitoring
check address ranges on the bus

n Power supply monitoring
o Power supply monitor initiates

emergency action before voltage
reaches dangerous level

o Uninterruptible power source
when no disruption can be
permitted

3

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-53

(2) Damage Assessment
n How much damage to the system occurs when a

component fails? It might be a lot.....

Example: an Ada exception (Ariane 5 accident)

n Failure semantics = defines which divergent behaviour is
possible if faults are present

n Components that are expected to fail must have predefined
failure semantics

n Hazard analysis reveals which hazardous behaviour of the
system might result

n If critical hazards can result, the design has to take care to
exclude the involved chain of events

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-54

(3) State Restoration / Error Recovery
n There are two possibilities to transform a currently

erroneous system state into an error-free system state:

Backward recovery:
o system state is reset to a previously store error-free system state
o Re-execution of failed processing sequence
e.g., database systems (predict valid system states is not possible)

Forward recovery:
o system state is set to a new error-free system state
typical for real-time systemswith periodic processing patterns
(it is possible to predict valid system states)

4

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-55

(4) Continued Service
n Some kind of redundancy is required to

tolerate faults, because whether or not an
error actually leads to a failure depends on
the following facts:
o the system composition and the existence of

redundancy (intentional or unintentional
redundancy)

o the system activity after the introduction of an
error (the error may get overwritten)

o the definition of the correct operation (which
implicitly defines what is a failure or not)

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-56

IV.2.1 Fault-Tolerance and Redundancy
Redundancy can occur in 3 different domains.
(1) Domain of information:

redundant information e.g. error correcting codes,
robust data structures

(2) Domain of space:
replication of components, e.g. 2 CPU’s, UPS
(uninterruptible power supply)

(3) Domain of time:
replication of computations, e.g. calculate results
by same (or different) algorithm a second time,
sending messages more than once

5

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-57

FT in the Domain of Information

error correcting codes:
n for all error correcting codes (ECC)
n (2t + p + 1) = d
n d .. Hamming distance of code
n t .. number of single bit errors to be tolerated
n p .. number of additional detected errors

robust data structures:
n store the number of elements
n redundant pointers

(e.g. double linked chains with status)
n status or type information

(e.g. authenticated objects)
n checksum or CRC

application specific knowledge

010

011

000

001

110

111

100

101

object
(data)

authentication

access

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-58

FT in the Domain of Space
Active redundancy
n parallel fail-silent

components
n voting, triple modular

redundancy (TMR)

passive or standby
redundancy

n hot standby: standby
component is operating in
background

n cold standby: standby
components starts only
when required

…
…

V

S

6

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-59

FT in the Domain of Time
allows tolerance of temporary faults
multiple calculation:
n a function is calculated n times with the same inputs
n the result is checked by an acceptance test
n or the multiple results are voted
sending messages multiple times:
n message transmission is repeated n times
n retransmission only in case of failures

(positive acknowledge retransmit PAR)
n retransmission always n times

(reduces temporal uncertainty for real-time systems)

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-60

Redundancy and Diversity
n Redundancy with identical components protects

against random hardware component failures, but
not systematic ones (common mode failures)

ð diversity is also required

n Hardware diversity: micro-controller and hard wired
or programmable logic controller (PLC)

n Software diversity: Common mode failures can
always result form the specification

7

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-61

IV.2.2 Techniques for FT
There are two fundamental approaches to fault-

tolerance:
n Systematic fault-tolerance

o replication of components
o divergence of components is used for fault-detection
o redundant components are used for continued service

n Application-specific fault-tolerance
o reasonableness checks for fault detection (based on

model of real world)
o state estimations for continued service

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-62

Application-specific Fault-Tolerance (1/2)
n the computer system interacts with some physical process,

the behaviour of the process is constrained by the law of
physics

n these laws are implemented by the computer system to
check its state for reasonableness

n for example:
o the acceleration/deceleration rate of an engine is constrained by the

mass and the momentum that affects the axle
o signal range checks for analogue input signals

n reasonableness checks are based on application
knowledge

n fail-stop behaviour can be implemented based on
reasonableness checks

8

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-63

Application-specific Fault-Tolerance (2/2)
n the laws of physics constraining the process can be used to

perform state estimations in case some component has
failed

n for example:
o if the engine temperature sensor fails a simple state estimation could

assume a default value
o a better state estimation can be based on the ambient temperature

of the engine, engine load and thermostatical behavior of the engine
o the speed of a vehicle can be estimated if the engine speed and the

transmission ratio is known

n state estimations are based on application knowledge
n fail-operational behaviour can be implemented based on

reasonableness checks and state estimations

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-64

Systematic Fault-Tolerance (1/2)
n does not use application knowledge, makes no

assumptions on the physical process or controlled object
n uses replicated components instead
n if among a set of replicated components, some — but not

all — fail then there will be divergence among replicas
n information on divergence is used for fault detection
n replicas are therefore required to deliver corresponding

results in the absence of faults
n The problem of replica determinism:

due to the limited accuracy of any sensor that maps continuous
quantities onto computer representable discrete numbers it is
impossible to avoid non-deterministic behaviour

9

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-65

Systematic Fault-Tolerance (2/2)
n systematic fault-tolerance requires agreement

protocols due to replica non-determinism
n the agreement protocol has to guarantee that

correct replicas return corresponding results (the
problem of replica determinism is discussed later)

n fail-stop behaviour can be implemented by using
the information of divergent results

n fail-operational behaviour can be implemented by
using redundant components

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-66

Comparison of Techniques (1/3)

depends on application knowledgeno application knowledge necessary

fault detection is limited by a grey zoneexact distinction between correct and
faulty behaviour

—requires replica determinism

reasonableness checks for fault
detection

no reasonableness checks necessary

—divergence among replicas in case of
Faults

no replication necessaryreplication of components

Application-specific fault-toleranceSystematic fault-tolerance

10

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-67

Comparison of Techniques (2/3)

forward and backward recoveryonly backward recovery

correct system function depends on the
severity of faults and on the capability of
reasonableness checks and state
estimations

correct system function depends on the
number of correct replicas and their
failure semantics

quality of state estimations is lower than
quality delivered during normal operation

service quality is independent of whether
replicated components are faulty or not

missing or insufficient reasonableness
checks for some application areas

independence of application areas

state estimations for continued serviceno state estimations necessary

Application-specific fault-toleranceSystematic fault-tolerance

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-68

Comparison of Techniques (3/3)

fault-tolerance is not handled
transparently to the application

fault-tolerance can be handled
transparently to the application

application and fault-tolerance are
closely intertwined

separation of fault-tolerance and
application functionality

no increase of system level complexityconsiderable increase of system level
complexity

considerable increase in application
complexity

no increase in application complexity

no additional costs for replicated
components

additional costs for replicated
components (if no system inherent
replication is available)

Application-specific fault-toleranceSystematic fault-tolerance

11

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-69

Systematic and Application-specific FT
n under practical conditions there will be a compromise

between systematic and application-specific fault-tolerance
n usually cost, safety and reliability are the determining

factors to choose a proper compromise
n software complexity plays an important role:

o for complex systems software is almost unmanageable without
adding fault-tolerance (fault containment regions and software
robustness)

o therefore systematic fault-tolerance should be applied in favor of
application-specific fault-tolerance to reduce the software complexity

o systematic fault-tolerance allows to test and to validate the
mechanisms independently of the application software (divide and
conquer)

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-70

IV.2.3 Hardware Fault Tolerance
n Static redundancy

o Fault masking to prevent error propagation

n Dynamic redundancy
oDetection of faults plus actions to nullify them

n Hybrid redundancy
o Fault masking to prevent error propagation
oDetection of faults and reconfiguration to remove faulty

units from the system

12

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-71

Triple Modular Redundancy (TMR)
Redundancy
n Domain of space
n Static
n Signal comparison (voting)

Advantages:
n Protection against random

component failures
Disadvantages:
n Voter a single point of failure
n High redundancy costs

Component

Component

Component

Voter
Out

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-72

Triplicated Voting
Redundancy
n Domain of space
n Static
n Signal comparison (voting)

Advantages:
n Protection against random

component and voter failures
Disadvantages:
n Even higher redundancy

costs

Component

Component

Component

Voter

Voter

Voter

13

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-73

Multistage TMR Arrangement

n Even more expensive, but also do not mask two
failures occurring in two components of one stage

Component

Component

Component

Voter

Voter

Voter

Component

Component

Component

Voter

Voter

Voter

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-74

N-Modular Redundancy
Advantages:
n Protection against

(N-1)/2 random
component failures

Disadvantages:
n Voter a single point of

failure
n Very high redundancy

costs

Component

Component

Component

…

…
Component

Voter
Out

14

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-75

Cold Standby Spares
Redundancy
n Passive/standby and dynamic
n cold standby

Advantages:
n Lower costs than redundancy

(component twice + fault
detector + switch)

Disadvantages:
n No fault masking
n Reconfiguration may cause a

momentary disruption of service
while standby unit is activated

Switch

Fault
detector

Component

Component
(standby)

Out
On/Off

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-76

Hot Standby Spares
Redundancy
n Passive/standby and dynamic
n hot standby

Advantages:
n Lower costs than redundancy

(component twice + fault
detector + switch)

Disadvantages:
n No fault masking
n Increases power consumption
n Standby unit has the same

stress as the active unit

Switch

Fault
detector

Component

Component

Out

15

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-77

Self-Checking Pair
Redundancy
n Passive/standby and dynamic
n hot standby

Advantages:
n Lower costs than redundancy

(component twice + Comparator)

Disadvantages:
n No fault masking
n Increases power consumption
n Standby unit has the same

stress as the active unit
n Comparator single point of

failure

Comparator

Component

Component

Out

Err

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-78

Self-Checking Pair (Fail-Silent)
Redundancy
n Passive/standby and dynamic
n hot standby

Advantages:
n Lower costs than redundancy

(component + Comparator twice)

Disadvantages:
n No fault masking
n Increases power consumption
n Standby unit has the same stress as

the active unit
n No output must result in safe state

Comparator

Component

Component

Out

Err

Comparator

16

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-79

Parallel Fail-Silent Components
Fail-Silent Component
n Internal error detection unit

prevents faulty result form
occurring on the output

passive or standby
redundancy

n hot standby: standby
component is operating in
background

n cold standby: standby
components starts only
when required

…

Out

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-80

N-Modular Redundancy with Spares
Redundancy
n Domain of space
n Active and hybrid
n Signal comparison (voting)

Advantages:
n Protection against

(N-1)/2 random component
failures

Disadvantages:
n Voter a single point of failure
n Very high redundancy costs

Component

Component

Component

…
Component
(standby)

Out

+mask
faulty
units

On/Off

Voter

17

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-81

IV.2.4 Software Fault Tolerance
Two meanings:
n “Tolerance of software faults”

oCan be addresses by the techniques for hardware fault
tolerance using software diversity

n “Tolerance of faults by the use of software”
o Includes first case plus effects of the underlying

hardware

Achieve diversity:
n Usually the same requirements (weakness)
n different programmers, contractors?

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-82

Hardware vs. Software
n hardware components are more

reliable compared to software
components

n very mature technology for
hardware process validation

n but: “build it in hardware instead”
is no solution at all since the
problem of design dependability
arises because of the system
inherent complexity:
o very complex systems are

realized in software because of
their complexity

o software is often used to
implement radically new
systems

n higher flexibility of software is
often exploited by very short
modification cycles

n Outages in % by fatal faults for
the Tandem system illustrates
the shift from hardware to
software (cf. [Gray1985]):

15%12%9%Operation

5%13%19%Maintenance

7%22%29%Hardware

62%39%34%Software

198919871985

18

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-83

Exception Handling (1/3)
n to detect erroneous states of software modules the

exception mechanism can be used (software and hardware
mechanisms for detection of exceptional states)

n a procedure (method) has to satisfy a pre condition before
delivering its intended service which has to satisfy post
conditions afterwards

n the state domain for a procedure can be subdivided:
o Anticipated exceptional domain
o Unanticipated exceptional domain
o Standard domain

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-84

Exception Handling (2/3)
n an exception mechanism is a set of language constructs which allows to

express how the standard continuation of module is replaced when an
exception is raised

n exception handlers allow the designer to specify recovery actions
(forward or backward recovery)

Use run-time system to handle faults:
n raise an exception when an erroneous state is detected
n pass control to appropriate handler
n could be on another processor
n Propagate to outmost scope then fail

Example:
n Ada...

19

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-85

Exception Handling (3/3)
Advantages:
n no voting required
n fault detection distributed in the code (easier)

Disadvantages:
n fault detection distributed in the code (structure?)
n correct run-time handling of exceptions required

Remark:
n complex control structures (difficult verification)

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-86

Recovery Blocks (1/4)
n a method to apply diverse designs to provide design fault-

tolerance based on an acceptance test—which detects
erroneous states—different modules are tried until an
acceptable state is reached

n Examples for Acceptance tests:
o Checks for run-time errors
o Checks for reasonability
o Excessive execution time
o Mathematical errors

n acceptance tests are application-specific, they have only
limited error detection coverage

20

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-87

Recovery Blocks (2/4)
Program scheme:

primary module
acceptance test
secondary module
acceptance test

Problem:
n execution of a module might

corrupt system state

ð Recovery Point:
n backward error recovery!
n use entire system state is

inefficient

Idea:
n add recovery point before

primary module execution

Program scheme:

Establish recovery point
primary module
acceptance test
alternative module 1
acceptance test
alternative module 2
acceptance test
…

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-88

Recovery Blocks (3/4)
Advantages:
n no voting required
n can also handle (transient) hardware faults
n can be used to implement graceful degradation, when

different modules provide different levels of service

Disadvantages:
n additional acceptance test required
n delay for backward recovery in real-time systems
n It is difficult to development acceptance tests
n the quality of acceptance test is often questionable

21

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-89

Recovery Blocks (4/4)
Remarks:
n mixture of systematic and application-specific fault-

tolerance:
o systematic method to apply n diverse modules by rollback recovery
o acceptance test is application specific

n recovery blocks can be nested such that a module itself is a
recovery block

n can also be supported with the exception mechanism (e.g.
standard exception handler for unidentified exceptions can
be used)

n modeling of recovery block with primary and one alternative
is equivalent to passive redundant system (acceptance test
? switch)

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-90

Distributed Recovery Blocks
n for uniform treatment of software and hardware

failures
n the primary module is executed on the primary

processor, the alternate is executed on a backup
processor

n both processors use duplicated acceptance test
n if the primary module fails, a message is sent to the

backup and the backup then forwards its results
n combination of software and hardware diversity

22

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-91

N-Version Programming (1/4)
n n non-identical replicated software modules are applied and

instead of an acceptance test a voter takes a m out of n or
majority decision

n driver program to invoke different modules (different
processes for module execution), wait for results and voting
require more resources than recovery blocks but less
temporal uncertainty (response time of slowest module)

Redundancy
n Domain of space or time
n Signal comparison (voting)

Example:
n Primary flight control of the Airbus A330/A340

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-92

N-Version Programming (2/4)
Advantages:
n For N=2 like self-checking pair (repeating the

execution helps for transient faults; diagnosis to
determine faults routine)

n Protection against (N-1)/2 faulty program versions

Disadvantages:
n High implementation costs (>N due to the voting)
n performance costs of n executions and voting
n Common mode faults are not excluded

23

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-93

N-Version Programming (3/4)
Problems of replica non-determinism:

o the real-world abstraction limitation is no problem (all modules get
exactly the same inputs from driver program)

o consistent comparison problem: diverse implementations, different
compilers, differences in floating point arithmetic, multiple correct
solutions (n roots of nth order equation), …

n What can be done?
o there is no systematic solution for the consistent comparison

problem
o either very detailed specification with many agreement points (limits

diversity)
o or approximate voting to consider non-determinism (application-

specific)

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-94

N-Version Programming (4/4)
n n-version programming is approach to systematic

fault-tolerance:
o there is no application specific acceptance test

necessary
o exact voting on every bit is systematic

n modeling of n-version programming is equivalent to
active redundant systems with voting

Remark:
n costs make N>2 very uncommon
n Only highly safety-critical systems

24

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-95

N self-checking programming
n n versions are executed in parallel (similar to N-

version programming)
n each module is self -checking, an acceptance test is

used (similar to recovery blocks)
n mixture of application specific and systematic fault-

tolerance
n requires no backward recovery and no voting

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-96

Deadline Mechanism
n based on recovery blocks, but deadline instead of acceptance test
n used to avoid timing failures in real-time systems

service name
within response-period
by primary_module

else
by alternate_module

n it is assumed that an upper execution bound for the alternate is known
n for the primary it is assumed that the execution is timely in most cases
n if the primary does not finish within the slack time (response-period –

execution bound for alternate) then the primary is aborted and the
alternate is used

25

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-97

Data Diversity
n it is assumed that

software fails on
some “special” inputs

n if the inputs are
changed slightly then
the same software
may work correctly

n data re-expression is necessary to generate different but
logically equivalent data sets (application specific)
o for real variables the value may be changed slightly
o coordinate transformation to new origin

n cheaper alternative to diverse software

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-98

Independence Assumption
n empirical studies have shown that diverse designed

software does not fail independently (co-dependent failures)
o 27 program versions have been written by two universities

o failure probabilities for 1 10-6 test cases with 351 2-version systems
and 2925 3-version systems were calculated

n for the average 3-version system the failure probability
improved by a factor 19, compared to the average single
version

n if the independence assumption would hold, the failure
probability should have decreased by at least three orders
of magnitude

26

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-99

Problems Due to Co-Dependence
n software fault-tolerance is based on the inpependence

assumption that predicts that diverse designed models fail
independently
o different programmer teams
o different programming language and tools, …

But …
n only modest increase for very high effort
n development costs are main costs for software
n replica non-determinism or application-specific methodology
n Increasing costs and time for handling problems for multiple

version systems (project management, configuration
control, versioning, modifications and updates)

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-100

Forms of Redundancy
Control redundancy includes:
n exception handling
n recovery blocks
n n-version programming
n n self-checking programming
n deadline mechanism
n data diversity

Data redundancy uses extra data
n to check the validity of results
n Error correcting/detecting codes
n Checksum agreements etc.

27

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-101

Summary
n N-version programming similar to N-modular

Redundancy
n Recovery blocks similar to dynamic redundancy
n Duplicated identical hardware modules provide

fault tolerance for some form of hardware faults
whereas duplication of identical software has little
benefit (only transient faults)

n Software redundancy required diversity (due to the
high costs usually preserved for highly critical
applications)

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-102

IV.2.5. Replication
n Problems

o The Problems of Replica Determinism
oNon-deterministic behaviour
o Limits of Redundancy

n Replica control
o Internal vs. external
oCentralized vs. distributed
oControl strategies
o Failure recovery
oRedundancy preservation

n complexity

28

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-103

The Problem of Replica Determinism
n For systematic fault-tolerance it is necessary that replicated

components show consistent or deterministic behaviour in
the absence of faults

n If for example two active redundant components are
working in parallel, both have to deliver corresponding
results at corresponding points in time

n This requirement is fundamental to differentiate between
correct and faulty behaviour

n At a first glance it seems trivial to fulfil replica determinism
since computer systems are assumed to be examples of
deterministic behaviour, but

n in the following it is shown that computer systems behave
almost deterministically

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-104

Non-deterministic Behaviour (1/6)
n Inconsistent inputs: If inconsistent input values are

presented to the replicas then the results may be
inconsistent too.
a typical example is the reading of replicated analogue sensors

read(C1) = 99.99 °C, read(C2) = 100.00 °C
n Inconsistent order: If service requests are presented to

replicas in different order then the results will be
inconsistent.

C1
s0

s1 s2
C2

s0
s1 s2

C3
s0

s1 s2 t

external event e

29

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-105

Non-deterministic Behaviour (2/6)
n Inconsistent membership information: Replicas

may fail or leave groups voluntarily or new replicas
may join a group. If replicas have inconsistent
views about group membership it may happen that
the results of individual replicas will differ.

C1

C2

C4

C5

C6

group membership view C1

group membership view C2

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-106

Non-deterministic Behaviour (3/6)
task body server is
begin
select
accept service_1() do
action_1();

end;
...

or
accept service_n() do
action_n();

end;
end select;

end server;

n Non-deterministic program
constructs: Besides intentional
non-determinism, like random
number generators, some
programming languages have
non-deterministic program
constructs for communication
and synchronization (Ada,
OCCAM, …).

n Ada example:

task server is
entry service_1();
...
entry service_n();

end server;

30

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-107

Non-deterministic Behaviour (4/6)
n Local information: If decisions with a replica are based on

local knowledge (information which is not available to other
replicas) then the replicas will return different results.
o system or CPU load
o local time

n Timeouts: Due to minimal processing speed differences or
due to slight clock drifts it may happen that some replicas
locally decide to timeout while others do not.

n Dynamic scheduling decisions: Dynamic scheduling
decides in which order a series of service requests are
executed on one or more processors. This may cause
inconsistent order due to:
o non-identical sets of service requests
o minimal processing speed differences

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-108

Non-deterministic Behaviour (5/6)
n Message transmission delays: Variability in the

message transmission delays can lead to different
message arrival orders at different servers (for
point-to-point communication topologies or
topologies with routing).

C2
rcv1

C3
rcv2

C4
snd2 t

C1
snd1

rcv2

rcv1

31

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-109

Non-deterministic Behaviour (6/6)
n The consistent comparison problem:

o computers can only represent finite sets of numbers
o it is therefore impossible to represent the real numbers exactly, they

are rather approximated by equivalency classes
o if the results of arithmetic calculations are very close to the border of

equivalency classes, different implementations can return diverging
results

o different implementations are caused by: N-version programming,
different hardware, different floating point libraries, different
compilers

o for example the calculation of (a – b)2 with floating point
representation with a mantissa of 4 decimal digits and rounding
where a = 100 and b = 0.005 gives different result for mathematical
equivalent formulas.

(a – b)2 = 1.000 104 (a – b)2 = a2 –2ab + b2 = 9.999 103

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-110

Limitations to Replication (1/2)
n The real world abstraction limitation:

o dependable computer systems usually interface with continuos real-
world quantities:
n quantity SI-unit
n distance meter [m]
n mass kilogram [kg]
n time second [s]
n electrical current ampere [A]
n thermodynamic temperature degree kelvin [K]
n gramme-molecule mol [mol]
n luminous intensity candela [cd]

o these continuous quantities have to be abstracted (or represented)
by finite sets of discrete numbers

o due to the finite accuracy of any interface device, different discrete
representations will be selected by different replicas

32

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-111

Limitations to Replication (2/2)
n The impossibility of exact agreement:

o due to the real world abstraction limitation it is impossible to avoid
the introduction of replica non-determinism at the interface level

o but it is also impossible to avoid the once introduced replica non-
determinism by agreement protocols completely

o exact agreement would require ideal simultaneous actions, but in
the best case actions can be only simultaneous within a time interval

n Intention and missing coordination:
o replica non-determinism can be introduced intentionally
o or unintentionally by omitting some necessary coordinating actions

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-112

Replica Control
Replica control
n Due to these fundamental limitations to replication it is

necessary to enforce
n replica determinism which is called replica control.

Replica Determinism: Correct replicas show
correspondence of service outputs and/or service states
under the assumption that all servers within a group start in
the same initial state, executing corresponding service
requests within a given time interval.

Remarks:
o this generic definition covers a broad range of systems
o correspondence and within a given time interval needs to be defined

according to the application semantics

33

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-113

Internal vs. External Replica Control
n Internal replica control:

o avoid non-deterministic program constructs, uncoordinated timeouts,
dynamic scheduling decisions, diverse program implementations,
local information, and uncoordinated time services

o can only be enforced partially due to the fundamental limitations to
replication

n External replica control:
o control non-determinism of sensor inputs
o avoid non-determinism introduced by the communication service
o control non-determinism introduced by the program execution on the

replicated processors by exchanging information

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-114

Groups and Replication Level
n Replicated entities such as processors are called groups.
n The number of replicas in a group is called replication

level
n A group is said to be n-resilient if up to n processor failures

can be tolerated

Group vs. hierarchical failure masking
n Group failure masking: The group output is a function of

the individual group members output (e.g. a majority vote, a
consensus decision). Thus failures of group members are
hidden from the service user.

n Hierarchical failure masking: The processors within a
group come up with diverging results and the faults are
resolved by the service user one hierarchical level higher.

34

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-115

Basic Services for Groups
The basic services for replicated fault-tolerant systems
n Membership: Every non-faulty processor within a group

has timely and consistent information on the set of
functioning processors which constitute the group.

n Agreement: Every non-faulty processor in a group receives
the same service requests within a given time interval.

n Order: Explicit service requests as well as implicit service
requests, which are introduced by the passage of time, are
processed by non-faulty processors of a group in the same
order.

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-116

Central vs. Distributed Replica Control
n Strictly central replica control:

o there is one distinguished processor within a group called leader or
central processor

o the leader takes all non-deterministic decisions

o the remaining processors in the group, called followers, take over
the leaders decisions

n Strictly distributed replica control:
o there is no leader role, each processor in the group performs exactly

the same way
o to guarantee replica determinism the group members have to carry

out a consensus protocol on non-deterministic decisions

35

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-117

Replica Control Strategies (1/4)
Lock-step execution:
n processors are executing in synchronous
n the outputs of processors are compared after each single operation
n typically implemented at the hardware level with identical processors

Advantages:
n arbitrary software can be used without modifications for fault-tolerance

(important for commercial systems)
Disadvantages:
n common clock is single point of failure
n transient faults can affect all processors at the same point in the

computation
n high clock speed limits number and distance of processors
n restricted failure semantics

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-118

Replica Control Strategies (2/4)
Active replication:
n all processors in the group are carrying out the same service requests in

parallel
n strictly distributed approach, non-deterministic decisions need to be

resolved by means of an agreement protocol
n the communication media is the only shared resource

Advantages:
n unrestricted failure semantics
n no single point of failure
Disadvantages:
n requires the highest degree of replica control
n high communication effort for consensus protocols
n problems with dynamic scheduling decisions and timeouts

36

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-119

Replica Control Strategies (3/4)
Semi-active replication:
n intermediate approach between distributed and centralized
n the leader takes all non-deterministic decisions
n the followers are executing in parallel until a potential non-deterministic

decision point is reached

Advantages:
n no need to carry out a consensus protocol
n lower complexity of the communication protocol (compared to active

replication)
Disadvantages:
n restricted failure semantics, the leaders decisions are single points of

failures
n problems with dynamic scheduling decisions and timeouts

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-120

Replica Control Strategies (4/4)
Passive replication:
n only one processor in the group – called primary – is active
n the other processors in the group are in standby
n checkpointing to store last correct service state and pending service

requests

Advantages:
n requires the least processing resources
n standby processors can perform additional tasks
n highest reliability of all strategies (if assumption coverage = 1)
Disadvantages:
n restricted failure semantics (crash or fail-stop)
n long resynchronization delay

37

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-121

Failures and Replication (1/2)
Centralized replication:
n semi-active and passive replication
n the leading processor is required to be fail restrained
n Byzantine or performance failures of the leader cannot be

detected by other processors in the group (“heartbeat” or “I
am alive” messages)

n to tolerate t failures with crash or omission semantics t + 1
processors are necessary

n the result of any processor (e.g. the fastest) can be used
n if no reliable broadcast service is available 2t + 1

processors are necessary

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-122

Failures and Replication (2/2)
Distributed replication:
n active replication
n no restricted failure semantics of processors
n to tolerate t crash or omission failures t + 1 processors are

necessary
n to tolerate t performance failures 2t + 1 processors are

necessary
n to tolerate t Byzantine failures 3 t + 1 processors are

necessary
n for crash or omission failures it is sufficient to take 1

processor result
n for performance or Byzantine failure t + 1 identical results

are required

38

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-123

Failure Recovery (1/2)
n After occurrence of a failure (that is covered by the fault hypothesis) the

group has to perform some recovery actions

Centralized replication:
n failures of followers require no recovery actions
n if a leader fails a new leader needs to be elected
n then the new leader has to take over the service of the failed leader
n typically solved by backward recovery (reexecution from last fault free

state)
n recovery time needs to be considered for real-time services
n window of vulnerability where new leader cannot decide whether the last

output was made successfully or not
n output devices typically require at least once semantics (state

semantics)

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-124

Failure Recovery (2/2)
Distributed replication:
n no special recovery actions necessary since

all services are executed in parallel
n no election in case of processor failures
n output devices have to consider the results

of all group members or each group member
has its own output device (idempotence)

n no state semantics for output devices
necessary (exactly once semantics possible)

39

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-125

Redundancy Preservation (1/2)
n to guarantee fault-tolerance and to cover the fault

hypothesis the replication level has to be kept above a
given threshold

n assuming n processors are in a group where f have failed
and up to t failures have to be tolerated then one of the
following combining conditions needs to be satisfied:
o n – f > 2t for Byzantine failures
o n – f > t for performance failures
o n – f > 0 for crash or omission failures

n if this combining condition is violated
o a new processor needs to be added to the group (redundancy

preservation)
o or the service of the group has to be abandoned

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-126

Redundancy Preservation (2/2)
n real-time requirements for redundancy preservation need special

consideration
n faults in the reconfiguration service need to be considered
n f is therefore the number of failed processors plus the number of correct

processors that are configured by a faulty reconfiguration service
n this requires a membership protocol:

o detect departures and joins of processors to groups
o provide consistent and timely group membership information on a system

wide basis
n joins of processors are difficult to handle:

o the new processor needs to be synchronized to the service state of the
group

o but the groups service state is evolving over time
o after synchronization it has to be guaranteed that all further service requests

are delivered to the new group member as well

40

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-127

Failure Coverage vs. Complexity
n High assumption coverage implies high complexity

o for Byzantine faults the assumption coverage is 1
o Byzantine faults require consensus protocols and very complex

fault-tolerance mechanisms
o high probability of faults in the fault-tolerance mechanisms (35%

ESS-1)
o due to the high complexity the system will have a low dependability

n Low assumption coverage implies low dependability
o low assumption coverage implies high possibility of assumption

violations
o in case of assumption violations a fault-tolerant system can fail

completely
o the system will therefore have a low dependability

n for optimal dependability a compromise between the
assumption coverage rate and complexity of the fault-
tolerance mechanism has to be made

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-128

IV.2.6 Recovery
n systematic fault-tolerance is often based on backward

recovery to recover a consistent state
n in distributed systems a state is said to be consistent if it

could exist in an execution of the system
n Recovery line: A set of recovery points form a consistent

state—called recovery line—if they satisfies the following
conditions:
(1) the set contains exactly one recovery point for each process
(2) No orphan messages: There is no receive event for a message m

before process Pi’s recovery point which has not been sent before
process Pj’s recovery point.

(3) No lost messages: There is no sending event for a message m
before process Pi’s recovery point which has not been received
before process Pj’s recovery point.

41

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-129

The Domino Effect
n the consistency requirement for recovery lines can

cause a flurry of rollbacks to recovery points in the
past

n to avoid the domino effect:
o coordination among individual processors for checkpoint

establishment
o restricted communication between processors

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-130

Synchronous Checkpointing
n based on synchronized clocks check points are established with a fixed

period p by all processes, where ß is the clock synchronization
precision and d temporal uncertainty of message transmission

n if a message is sent during [T – ß – d, T] it will be received before T + ß
+ d

n to achieve a consistent state two possibilities exists:
o prohibit message sending during interval ß after checkpoint establishment
o establish checkpoint earlier, at kp – ß – d and log messages during the

critical instant

42

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-131

Stable Storage (1/2)
n stable storage is an important building block for many

operations in fault-tolerant systems (fail-stop systems,
dependable transaction processing, …)

n there are two operations which should work correctly
despite of faults (as covered by the fault hypothesis):
o procedure writeStableStorage(address, data)
o procedure readStableStorage(address) returns (status, data)

n many failures can be handled by coding (CRC’s) but other
types cannot be handled by this technique:
o Transient failures: The disk behaves unpredictably for a short period

of time.
o Bad sector: A page becomes corrupted, and the data stored cannot

be read.
o Controller failure: The disk controller fails.
o Disk failure: The entire disk becomes unreadable.

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-132

Stable Storage (2/2)
Disk shadowing
n a set of identical disk images is maintained on separate disks
n in case of two disks this technique is called disk mirroring
n for performance and availability reasons the disks should be “dual-

ported” (e.g. Tandem system)

Redundant Array of Inexpensive Disks (RAID)
n data is spread over multiple disks by “bit-interleave” (individual bits of a

data word are stored on different disks)
n in the following example single bit failures can be tolerated since a parity

bit is stored on a check disk and disks are assumed to detect single bit
failures

n RAID’s provide high reliability and I/O throughput (parallel read/write)

43

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-133

Example: Fail Stop Processors
n the visible effects of the failure of a fail stop processor are:

(1) It stops executing
(2) The internal state of the processor and the volatile storage

connected to the processor are lost; the state of the stable storage is
unaffected.

(3) Any processor can detect the failure of a fail stop processor.

n real processors do not have such a simple well defined
semantics

n typically fail stop processors are implemented by a group of
regular processors

n k-fail-stop processor: A processor is said to be k-fail-stop
if it can tolerate up to k component (processor) failures
while preserving its fail-stop property.

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-134

Fail Stop Processors with Stable Storage
Assumptions:
n the stable storage is reliable
n n + 1 normal processors
n communication is reliable
n message origin can be authenticated (point -to-point or cryptographic check)
n synchronous system model (synchronized clocks, bounded communication)

Implementation:
n requests to the stable storage are only granted if k + 1 requests are received within a time interval d:
S-process:
R:= bag of received requests with proper timestamp
if (|R| = n+1 ? all requests are identical ? ¬failed

? all requests are from different processors)
then

if (request is write) then
writeStableStorage

elseif (request is read) then
readStableStorage and send result to all processors

fi
else // k-fail stop processor has failed

writeStableStorage failed
fi

44

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-135

Fail Stop Processors without Stable Storage
Assumptions:
n the storage processor are not reliable and can fail byzantine
n k + 1 p-processors (program processors)
n 2k + 1 s-processors (storage processors)
n each s-process has a copy of the stable storage
n communication is reliable
n message origin can be authenticated (point-to-point or cryptographic

check)
n synchronous system model

Implementation:
n requests to the stable storage subsystem are only granted if k + 1

requests are received within a time interval d
n failures of individual storage processors are masked by Byzantine

agreement (under the assumption of authentification detectable failures)

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-136

IV.2.7 Summary
n Forms of Redundancy
n Techniques for Fault Tolerance
n Hardware Fault Tolerance Techniques
n Software Fault Tolerance Techniques
n Problems of Replication
n Recovery

45

WS02/03 – Safety-Critical Computer SystemsDr. Holger Giese

University of Paderborn
Software Engineering Group

IV-137

Remember…
n Fault tolerance is not a system property.
n It is a technique by which dependability

might be achieved.

Dependability/safety are the
required system property.

