

2023-30/1/1-29Q(3M)

Two tangents TP and TQ are drawn to a circle with centre O from an external point T. Prove that $\angle PTQ = 2\angle OPQ$.

2023-30/2/1 - 2 MARK

In the given figure, O is the centre of the circle. AB and AC are tangents drawn to the circle from point A. If \angle BAC = 65°, then find the measure of \angle BOC.

2023-30/4/1 - 2 mark

Prove that the angle between the two tangents drawn from an external point to a circle is supplementary to the angle subtended by the line-segment joining the points of contact at the centre.

2023-30/4/3- 3 MARK

From an external point, two tangents are drawn to a circle. Prove that the line joining the external point to the centre of the circle bisects the angle between the two tangents.

2023-30/2/2- 1 MARK

Assertion (A): If PA and PB are tangents drawn from an external point P to a circle with centre O, then the quadrilateral AOBP is cyclic.

Reason (R): The angle between two tangents drawn from an external point to a circle is supplementary to the angle subtended by the line segment joining the points of contact at the centre.

2023-30/5/1 - 1 MARK

In the given figure, AC and AB are tangents to a circle centered at O. If \angle COD = 120°, then \angle BAO is equal to :

(a) 30°

(b) 60°

(c) 45°

(d) 90°

2023-30/5/1-2 mark

In the given figure, PT is a tangent to the circle centered at O. OC is perpendicular to chord AB. Prove that $PA \cdot PB = PC^2 - AC^2$.

2023-30/5/1-5 mark

Two circles with centres O and O' of radii 6 cm and 8 cm, respectively intersect at two points P and Q such that OP and O'P are tangents to the two circles. Find the length of the common chord PQ.

2023-30/6/1- 1 MARK

In the given figure, PA and PB are tangents from external point P to a circle with centre C and Q is any point on the circle. Then the measure of $\angle AQB$ is

- (A) 62½° (C) 55°

- (B) 125°
- (D) 90°

2023-30/3/1-5 mark

A circle touches the side BC of a $\triangle ABC$ at a point P and touches AB and AC when produced at Q and R respectively. Show that $AQ = \frac{1}{2}$ (Perimeter of $\triangle ABC$).

2023-30/6/3-5 mark

(A) Prove that a parallelogram circumscribing a circle is a rhombus.

OR

In the given figure, tangents PQ and PR are drawn to a circle such that $\angle RPQ = 30^{\circ}$. A chord RS is drawn parallel to the tangent PQ. Find the measure of $\angle RQS$.

2022-30/2/1- 4 MARK

In Fig. 4, PQ is a chord of length 8 cm of a circle of radius 5 cm. The tangents at P and Q meet at a point T. Find the length of TP.

2022-30/3/1- 2 MARK

In Figure 2, PQ and PR are tangents to the circle centred at O. If \angle OPR = 45°, then prove that ORPQ is a square.

2022-30/B/5 - 4 MARK

OR

Prove that the lengths of two tangents drawn from an external point to a circle are equal.

2022-30/4/1- 2 MARK

In Fig. 1, there are two concentric circles with centre O. If ARC and AQB are tangents to the smaller circle from the point A lying on the larger circle, find the length of AC, if AQ = 5 cm.

In given Fig. 5, two circles touch each other at the point C. Prove that the common tangent to the circles at C, bisects the common tangent at P and Q.

2020-30/3/1- 1 MARK

In Fig. 2, PA and PB are tangents to the circle with centre O such that $\angle APB = 50^{\circ}$, then the measure of $\angle OAB$ is _____.

Fig. 2 OR

In Fig. 3, PQ is a chord of a circle and PT is tangent at P such that $\angle QPT = 60^{\circ}$, then the measure of $\angle PRQ$ is _____.

2020-30/3/3- 1 MARK

2020-30/3/3- 2 MARK

Prove that the tangents at the extremities of any chord of a circle make equal angles with the chord.

2020-30/4/1- 1 MARK

In Figure-4, AB and CD are common tangents to circles which touch each other at D. If AB = 8 cm, then find the length of CD.

2020-30/4/2- 3 MARK

In Figure-7, two tangents PA and PB are drawn to a circle with centre C from an external point P. Prove that \angle APB = 2 \angle OAB.

M- 2015 - 2 MARK

In Figure 3, two tangents RQ and RP are drawn from an external point R to the circle with centre O. If \angle PRQ = 120°, then prove that OR = PR + RQ.

 $Figure\ 3$

2020-30/5/1- 1 MARK

In Figure-3, from an external point P, two tangents PQ and PR are drawn to a circle of radius 4 cm with centre O. If \angle QPR = 90°, then length of PQ is

- (A) 3 cm
- (B) 4 cm
- (C) 2 cm
- (D) $2\sqrt{2}$ cm

All concentric circles are _____ to each other.

M_2016- 2 MARK

In Fig. 3, from an external point P, two tangents PT and PS are drawn to a circle with centre O and radius r. If OP = 2r, show that $\angle OTS = \angle OST = 30^{\circ}$.

Figure 3

m_2017 - 1 MARK

If the angle between two tangents drawn from an external point P to a circle of radius a and Centre O, is 60 Degrees, then find the length of OP.

MF2017- 3 MARK

In the given figure, PA and PB are tangents to a circle from an external point P such that PA = 4 cm and \angle BAC = 135°. Find the length of chord AB.

Mf2016- 2 mark

In Fig. 2, from a point P, two tangents PT and PS are drawn to a circle with centre O such that \angle SPT = 120°, Prove that OP = 2PS.

Fig. 2

MF2016-2 MARK

In fig. 3 are two concentric circles of radii 6 cm and 4 cm with centre O. If AP is a tangent to the larger circle and BP to the smaller circle and length of AP is 8 cm, find the length of BP.

MF 2015- 2 MARK

In Figure 1, O is the centre of a circle. PT and PQ are tangents to the circle from an external point P. If \angle TPQ = 70°, find \angle TRQ.

Figure 1

MD 2016- 2 MARK

In Fig. 3, AP and BP are tangents to a circle with centre O, such that AP = 5 cm and \angle APB = 60°. Find the length of chord AB.

Fig. 3

MD 2015 - 2 MARK

From a point T outside a circle of centre O, tangents TP and TQ are drawn to the circle. Prove that OT is the right bisector of line segment PQ.

MS - T2 - 2022- 2 MARK

From a point P, two tangents PA and PB are drawn to a circle C(0, r). If OP = 2r, then find $\angle APB$. What type of triangle is APB?

Ms - 2024- 3 MARK

PA and PB are tangents drawn to a circle of centre O from an external point P. Chord AB makes an angle of 30° with the radius at the point of contact.

If length of the chord is 6 cm, find the length of the tangent PA and the length of the radius OA.

Ms-2023- 1 mark

If two tangents inclined at an angle of 60° are drawn to a circle of radius 3cm, then the length of each tangent is equal to

- (a) $\frac{3\sqrt{3}}{2}$ cm
- (b) 3cm

(c) 6cm

(d) $3\sqrt{3}$ cm

Ms2020 - 1 mark

If the angle between two tangents drawn from an external point 'P' to a circle of radius 'r' and centre O is 60°, then find the length of OP.

M2017- 1 mark

4. In the given figure PA and PB are tangents to a circle with centre O. If

 $\angle APB = (2x + 3)^{\circ}$ and $\angle AOB = (3x + 7)^{\circ}$, then find the value of x

M2017- 2 MARK

In the given figure, common tangents AB and CD to the two circles intersect at E. Prove that AB = CD.

