DAV PUBLIC / MODEL SCHOOL, WEST BENGAL ZONE

ONLINE MID-TERM PEN PAPER ASSESSMENT
SESSION 2020-2021

CLASS : XI
 SUBJECT : PHYSICS

MAXIMUM MARKS : 35
TIME : 1122 HOURS

1. a) Derive the dimensional formula for universal gravitational constant.

2
b) 5.74 gm of a substance occupies $1.2 \mathrm{~cm}^{3}$. Express its density with appropriate number of significant figures.
2. A projectile is fired with a velocity u making an angle θ with the horizontal. Show that its trajectory is parabola.

OR
If R is the horizontal range for a projectile with angle of projection θ with the horizontal and h is the maximum height reached by it, show that the maximum range can be expressed as $\mathrm{R}_{\max }=\frac{R^{2}}{8 h}+2 h$.
3. A simple pendulum of length 1 m has a wooden bob of mass 1 Kg . It is struck by a bullet of mass $10^{-2} \mathrm{Kg}$. moving with a speed of $2 \times 10^{2} \mathrm{~ms}^{-1}$. If the bullet gets embedded into the bob, obtain the height to which the bob rises before swinging back. Take $\mathrm{g}=10 \mathrm{~ms}^{-2}$.
4. A body tied to one end of a string is made to revolve in a vertical circle. Derive the expression for (i) the tension in the string at any point (ii) minimum velocity at the lowest point for just looping the loop.
5. Plot the spring force F as a function of displacement x and hence from the graph find an expression for the potential energy of an elastic stretched spring.

OR

Prove the work energy theorem for a particle under the action of a variable force.
6. a) Given that the displacement of an oscillating particle is given by $y=A \operatorname{Sin}(B x+C t+D)$ where x is position and t is time. Find the dimensional formula for (ABCD).
b) Write any two limitations of dimensional analysis.
7. a) Draw a graph to show the variation of the frictional force with the applied force and mark the limiting friction in the graph.
b) Define angle of repose and derive its relation with coefficient of static friction.
9. A particle located at $\mathrm{x}=0$ at time $\mathrm{t}=0$, starts moving along the positive x direction with a velocity v that varies as $\mathrm{v}=\alpha \sqrt{x}$. Show that the displacement of the particle varies with time as $\mathrm{x} \propto \mathrm{t}^{2}$

OR
The relation between time t and distance x is given as $t=\alpha x^{2}+\beta x$ where α and β are constants. If v be the instantaneous velocity, show that the retardation is $2 \alpha \mathrm{v}^{3}$.
10. An electric motor is used to lift an elevator and its load of total mass 1500 Kg to a height of 20 m . The time taken for the job is 20 s . What is the rate at which the work is done? If the efficiency of the motor is 75%, at which rate is the energy supplied to the motor?
11. a) Derive the expression for the maximum safe speed for a car to negotiate a banked circular road. Given, the angle of banking is θ, the coefficient of friction between the tyre and the road is μ and the radius of the circular road is r.
b) A train has to negotiate a curve of 400 m . By how much should the outer rail be raised with respect to the inner rail for a speed of $48 \mathrm{Km} / \mathrm{hr}$? The distance between the rails is 1 m . Ignore friction.
12. a) A man rows directly across a flowing river in time t_{1} and rows an equal distance down the stream in time t_{2}. If u be the speed of the man in still water and v that of stream then show that $\mathrm{t}_{1}: \mathrm{t}_{2}=\sqrt{u+v}: \sqrt{u-v}$
b) Determine the sine of the angle between the vectors $\vec{A}=3 \hat{i}+\hat{j}+2 \hat{k}$ and $\vec{B}=2 \hat{i}-2 \hat{j}+4 \hat{k}$.

OR

a) Derive an expression for the centripetal acceleration of a particle moving with uniform speed along a circular path of radius r.
b) A ball is projected upwards from the top of a tower with a velocity $50 \mathrm{~m} / \mathrm{s}$ making an angle 30° with the horizontal. The height of the tower is 70 m . After how much time from the instant of throwing will the ball reach the ground?
8. a) What do you mean by "precision" of a measurement
b) The percentage error in the measurement of mass and speed are 2% and 3% respectively. How much will be the maximum error in measurement of kinetic energy obtained by measuring mass and speed?

