Quadratics Assignment.

Ques 1
a)

$$
\begin{aligned}
y & =-3 x^{2}+2 x+1 \\
& =-3\left[x^{2}-\frac{2}{3} x-\frac{1}{3}\right] \\
& =-3\left[x^{2}+2 \times x \times\left(-\frac{1}{3}\right)+\left(\frac{-1}{3}\right)^{2}-\left(-\frac{1}{3}\right)^{2}-\frac{1}{3}\right] \\
& =-3\left[\left(x-\frac{1}{3}\right)^{2}-\frac{1}{9}-\frac{1}{3}\right] \\
& =-3\left[\left(x-\frac{1}{3}\right)^{2}-\frac{4}{9}\right] \quad \text { vertex } \\
y & \left.=-3\left(x-\frac{1}{3}\right)^{2}+\frac{4}{3}\right] \text { form. }
\end{aligned}
$$

b) a in of symmetry $x=\frac{1}{3}$.
direction of opening $=-3<0$, downward opening.
x intercept $=$ by putting $y=0$

$$
\begin{aligned}
0 & =-3\left(x-\frac{1}{3}\right)^{2}+\frac{4}{3} \\
+\frac{4}{3} & =+3\left(x-\frac{1}{3}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \left(x-\frac{1}{3}\right)^{2}=\frac{4}{9} \\
& x-\frac{1}{3}= \pm \frac{2}{3} \\
& x=\frac{1}{3} \pm \frac{2}{3} \\
& x=\frac{1}{3}+\frac{2}{3} \text { or } \frac{1}{3}-\frac{2}{3} \\
& =\frac{3}{3}=1 \text { or }-\frac{1}{3}
\end{aligned}
$$

y intercept by putting $x=0$.

$$
\begin{aligned}
y & =-3\left(\frac{-1}{3}\right)^{2}+\frac{4}{3} \\
& =+3+\frac{1}{3}+\frac{4}{3} \\
& =\frac{-1}{3}+\frac{4}{3} \\
& =1
\end{aligned}
$$

maximum value $=\frac{4}{3}$.

Ques 2. Given $h=-3, \quad k=2$

$$
|a|=\frac{1}{2}
$$

opens up, $\therefore a=+\frac{1}{2}$
You could leave this functon in vertex
form.

5/5

$$
\begin{aligned}
& =\frac{1}{2}(x-(-3))^{2}+2 \\
& =\frac{1}{2}\left[(x+3)^{2}\right]+2 \\
& =\frac{1}{2}\left[x^{2}+9+6 x\right]+2 \\
& =\frac{1}{2} x^{2}+3 x+\frac{9}{2}+2 \\
& =\frac{1}{2} x^{2}+3 x+\frac{13}{4} .
\end{aligned}
$$

Ques 3 . Let the first number be x. Let the second number be y.
\therefore : according to question

$$
\begin{array}{r}
x+3 y=18 \tag{i}\\
\therefore \quad \text { product } X=x \times y \\
P=x y
\end{array}
$$

from (1), $y=\frac{18-x}{3}$

$$
\begin{aligned}
\therefore P & =x\left(\frac{18-x}{3}\right) \\
& =\frac{-x^{2}}{3}+6 x
\end{aligned}
$$

for quadratic form

$$
\begin{aligned}
P & =-\frac{1}{3}\left[x^{2}-18 x\right] \\
& =-\frac{1}{3}\left[x^{2}+2 x(-9)+(-9)^{2}-(9)^{2}\right] \\
& =-\frac{1}{3}\left[(x-9)^{2}-81\right] \\
& =-\frac{1}{3}\left[(x-9)^{2}+27\right]
\end{aligned}
$$

AS . $a=\frac{-1}{3}<0$, so, p will be
maximum at $x=9$ and

$$
P=27 \text {. }
$$

$$
\therefore y=\frac{p}{x}=\frac{27}{9}=3
$$

first number $=9$
second number $=3$.

Ques 4.
Stream
According to question

$$
\begin{aligned}
A & =b(600-2 b) \\
& =600 b-2 b^{2}
\end{aligned}
$$

10/10
$=2 b^{2}+600 b$

$$
=-2\left[b^{2}-300 b\right]
$$

$$
=-2\left[b^{2}-2 \times b \times 150+(150)^{2}-(150)^{2}\right]
$$

$$
=-2\left[(b-150)^{2}-22500\right]
$$

$$
=-2\left[(b-150)^{2}\right]+45000
$$

$-2<0$, Area is massimum $=45000$

$$
\begin{array}{r}
a t-b=150 \\
l=\frac{4500 \phi}{150}=300
\end{array}
$$

Hence,
dimensions are.
Nice solution to this problem Vrinda!

$$
\begin{aligned}
& l=300 \mathrm{~m} \\
& b=150 \mathrm{~m}
\end{aligned}
$$

Ques 5. Let the increase in Admission cost be (dollar) $\$ x$
then, admission cost $=(\$ 8+x)$
No. of visitors $=(2000-100 x)$

$$
\begin{aligned}
& \therefore \text { revenue }=(8+x)(2000-100 x) \\
&= 16000-800 x+2000 x-100 x^{2} \\
&=-100 x^{2}+1200 x+16000 \\
&=-100\left[x^{2}-12 x-160\right] \\
&=-100\left[x^{2}+2 \times x \times(-6)+(-6)^{2}\right. \\
&\left.-(6)^{2}-160\right] \\
&=-100\left[(x-6)^{2}-36-160\right] \\
&=-100\left[(x-6)^{2}-196\right] \\
&=-100(x-6)^{2}+19600 \\
& \therefore \therefore,=6,(6,19600) \\
& h=6, k=19600
\end{aligned}
$$

a) Equation of Revenue $=R(x)=-100(x-6)^{2}+19600$
$\begin{aligned} & \text { b) Coordinate of the maximum } \\ & \text { point of the function }\end{aligned}=(6,19600)$.
(C) Admission lost for maximum

$$
\text { Revenue }=8+6=\$ 14
$$

(d) Number of visitors for maximum

$$
\begin{aligned}
\text { (d) Number of } & =2000-100 \times 6 \\
& =1400
\end{aligned}
$$

Vrinda you have done an outstanding job on this submission. The solutions that were submitted were very well organized and fully justified your reasoning. You have demonstrated a great foundation of quadratics functions and their applications.
$\begin{array}{lc}\text { Assignment Mark: } & 45 / 45 \\ \text { Communication Mark: } & 5 / 5\end{array}$
Total Mark: $\quad 50 / 50$

