Big Idea: Energy exits in different forms and can change from one form to another, but energy is always conserved.

Unit 2 Lesson 3 Thermal Energy and Heat Essential Question: What is the relationship between heat and temperature?

Thermal, Under Where? What is thermal energy?

• Thermal energy is the particles in a substance. in a substance.

Thermal energy is measured in joules (J).

What is the difference between thermal energy and temperature?

- <u>Temperature</u> is related to the <u>average</u> kinetic energy of particles.
- Thermal energy is the total kinetic energy of all the particles.
- For example, a glass of water can have the same temperature as a lake, but the lake has much more thermal energy because the lake contains many more water molecules.
- 5) <u>Temperature</u> and <u>total amount of particles</u> determine the thermal energy of a substance.

Which has more thermal energy?

Bowl of Soup

Pot of Soup

Small balloon

Large balloon

Tiger

House cat

Heat It Up!

What is heat?

• Heat is the energy transferred from an object at a higher temperature to an object at a lower temperature.

 Energy in the form of heat always flows from hot to cold.

Draw an arrow in the direction in which energy in the form of heat would flow.

7)	Object 1	Direction of heat flow	Object 2
	Metal rod	——	Fire
	Hat		Snowman
	Ice cube		Glass of warm water

8) Energy as heat is flowing from the girls' warm bodies to the cold air

How is heat measured?

Heat It Up!

- Heat is measured in two ways.
- One way is the calorie (cal)
- One calorie is equal to the amount of energy needed to raise the temperature of 1 g of water by 1 $^{\circ}$ C.
- Heat is also measured in **joules** (J) because heat is a form of energy.
- One calorie is equal to 4.18 joules.

How is heat measured?

- In nutrition, 1 Calorie (with a capital C) is actually 1 kilocalorie, or 1,000 calories.
- To find out how many calories are in food, a sample of food is burned inside an instrument called a calorimeter.
- The change in temperature in the calorimeter is used to calculate how much energy is released from the food sample.

How is heat related to thermal energy?

- Adding or removing heat from a substance will affect its temperature and thermal energy.
- Heat, however, is not the same as thermal energy and temperature.
- Thermal energy and temperature are physical properties of a substance. Heat is the energy involved when these properties change.
- Even though two materials might have the same temperature, their thermal energies might be different.
- Thermal energy depends on how many particles are present in the object.
 - 9) Energy as heat will be transferred from the warmer object to the cooler object **until** both objects are at the same temperature

How can heat affect the state of an object?

- The state of a substance depends on the speed of its particles.
- Adding energy in the form of heat to a substance can result in a change of state.
- Removing energy in the form of heat from a substance can also result in a change of state.

11) Add energy in the form of heat or subtract energy in the form of heat.

Energy as heat can be transferred in three main ways:

Keep Your Cool

What is conduction?

 Conduction is the transfer of energy as heat from one substance to another through <u>direct contact</u>.

 As long as two objects are in contact, conduction continues until the temperatures of the objects are

equal.

What is conduction?

- A conductor is a material that transfers heat very well.
- Metals are typically good conductors.

 Wood, paper, and plastic foam are examples of good insulators.

Flannel Shirt

- conductor
- insulator

Iron skillet

- conductor
- insulator

Copper pipe

- conductor
- insulator

Oven Mitt

- conductor
- insulator

What is convection?

- Convection is the transfer of energy as heat by the movement of a liquid or gas. (FLUID)
- Convection occurs when a cooler, denser mass of gas or liquid replaces a warmer, less dense mass of gas or liquid by pushing it upward.
- When water is boiled, the water moves in roughly circular patterns because convection.
- This motion is due to density differences that result from temperature differences.
- The motion is called a <u>convection</u> <u>current.</u>

Convection

Copyright 1998 by John Wiley and Sons, Inc. All rights resu

Convection (moist):
Upward flowing air currents
causing a cloud to form.

What is radiation?

- Radiation is the transfer of energy by electromagnetic waves.
- Examples of EM waves: visible light, microwaves, infrared light
- When radiation is emitted from one object and then absorbed by another, the result is the transfer of heat.
- Radiation can travel through empty space.

p130 http://www.pbslearningmedia.org/ass et/lsps07_int_heattransfer/

Example	Conduction, convection or radiation
When you put some food in the microwave, it gets hot.	RADIATION
A hot burner warms a cold pot	conduction
A heater on the first floor of the school makes the air on the second floor warm	CONVECTION 19

Simple Heat Engine

- 2) The spiral spins and eventually comes to a stop and reverses the spin.
- 3) The thermal energy (heat) from the light bulb transfers the energy to the air causing the air to rise (convection current) through the spiral making the spiral spin.
- 4) You could make the spiral spin faster by using a higher wattage bulb.
- 5) Electrical energy → Thermal energy → kinetic energy of the moving air (convection current) → kinetic energy of the spiral → potential energy stored up in the wound up string.

Simple Heat Engine

- 6) Thermal energy is kinetic energy of the particles.
- Temperature is the measurement of heat and average kinetic energy of all the particles of an object.
- Heat is energy that is transferred from objects at a higher temperature to objects at a lower temperature.
- Heat can change the temperature of an object.
- 7) Power plants, car engines uses heat to produce motion. Car engines uses heat from the combustion of fuel

THE ELECTROMAGNETIC SPECTRUM

Practical Uses of Radiation

- A solar cooker is a device that cooks food using mirrors that concentrate radiation from the sun.
- In parts of the world that are far from electricity and clean water, solar cookers are a cheap and portable way to sterilize water for drinking.
- Many people like to use solar cookers because they do not require any fuel and do not release harmful emissions.

