ACUMEN

JEE MAIN - MATHEMATICS
 Test-2D Geometry and Circles

1. A triangle has a vertex at $(1,2)$ and the mid-points of the two sides through it are $(-1,1)$ and $(2,3)$. Then, the centroid of this triangle is
a) $\left(\frac{1}{3}, 1\right)$
b) $\left(\frac{1}{3}, 2\right)$
c) $\left(1, \frac{7}{3}\right)$
d) $\left(\frac{1}{3}, \frac{5}{3}\right)$
2. The number of integer values of m, for which the x-coordinate of the point of intersection of the lines $3 x+4 y=9$ and $y=m x+1$ is also an integer, is
a) 4
b) 0
c) 2
d) 1
3. If length of the tangent drawn from each and every point on the curve $\mathrm{y}=\sqrt{\lambda-x^{2}}$ to the circle $\mathrm{x}^{2}+$ $y^{2}=36$ is 8 units, then λ is :
a) 30
b) 50
c) 100
d) 90
4. If the perpendicular bisector of the line segment joining the points $P(1,4)$ and $Q(k, 3)$ has y-intercept equal to -4 , then a value of k is:
a) $\sqrt{15}$
b) -4
c) -2
d) $\sqrt{14}$
5. Slope of a line passing through $P(2,3)$ and intersecting the line, $x+y=7$ at a distance of 4 units from P, is
a) $\frac{\sqrt{7}-1}{\sqrt{7}+1}$
b) $\frac{1-\sqrt{7}}{1+\sqrt{7}}$
c) $\frac{1-\sqrt{5}}{1+\sqrt{5}}$
d) $\frac{\sqrt{5}-1}{\sqrt{5}+1}$
6. If the tangents are drawn from any point on the line $x+y=3$ to the circle $x^{2}+y^{2}=9$, then the chord of contact passes through the point :
a) $(3,2)$
b) $(3,5)$
c) $(3,3)$
d) $(5,3)$
7. The normal at a point P on the parabola $y^{2}=8 x$ meet the x-axis in G. If S is the focus and the triangle SPG is equilateral then the abscissa of the point P is
a) $2 / 3$
b) 3
c) 6
d) $2 \sqrt{3}$
8. The length of the chord cut by the circle $x^{2}+y^{2}=2$ on the line $y-2 x-1=0$, is :
a) $\frac{6}{\sqrt{5}}$
b) $\frac{4}{9}$
c) 0
d) $\frac{2}{9}$
9. The region represented by $|\mathrm{x}-\mathrm{y}| \leq 2$ and $|\mathrm{x}+\mathrm{y}| \leq 2$ is bounded by a
a) rhombus of area $8 \sqrt{2}$ sq units
b) square of area 16 sq units
c) rhombus of side length 2 units
d) square of side length $2 \sqrt{2}$ units
10. Two circles whose radii are equal to 4 and 8 intersect at right angles. The length of their common chord is :
a) $\frac{8 \sqrt{5}}{5}$
b) $\frac{16}{\sqrt{5}}$
c) 8
d) $4 \sqrt{6}$
11. A point $P(\sqrt{3}, 1)$ moves on the circle $x^{2}+y^{2}=4$ and after covering a quarter of circle in anticlockwise leaves it tangentially. The equation of a line along which the point moves after leaving the circle is :
a) $y=\sqrt{3} x+4$
b) $\mathrm{y}=\sqrt{3} y-4$
c) $\sqrt{3} y=x-4$
d) $\sqrt{3} y=x+4$
12. Minimum distance between the circles $x^{2}+y^{2}=144$ and $x^{2}+y^{2}-6 x-8 y=0$, is :
a) 7
b) 17
c) 0
d) 2
13. The sides of $\triangle A B C$ are shown in given figure. Let D be any internal point and e,f g are perpendicular distance of D from sides of triangle then the value of $(5 e+12 f+13 g)$ is equal to :

a) 15
b) 30
c) 60
d) 120
14. The equation of line segment $A B$ is $y=x$. If A and B lie on the same side of the line mirror $2 x-y=1$, then image of $A B$ is :
a) $7 x-y-6=0$
b) $7 x+y-6=0$
c) $7 x-y+6=0$
d) $7 x+y+6=0$
15. If $P=(1,0), Q=(-1,0)$ and $R=(2,0)$ are three given points, then locus of the points satisfying the relation $\mathrm{SQ}^{2}+\mathrm{SR}^{2}=2 \mathrm{SP}^{2}$, is
a) a circle passing through the origin
b) a straight line parallel to Y-axis
c) a straight line parallel to X-axis
d) a circle with the centre at the origin
16. Total number of common tangents of $x^{2}+y^{2}-2 x-4 y=0$ and $x^{2}+y^{2}-8 y-4=0$ is equal to :
a) 4
b) 1
c) none of these
d) 2
17. A ray of light along $x+\sqrt{3} y=\sqrt{3}$ gets reflected upon reaching x-axis, the equation of the reflected ray is:
a) $y=\sqrt{3} x-\sqrt{3}$
b) $\sqrt{3} y=x-1$
c) $\sqrt{3} y=x-\sqrt{3}$
d) $y=x+\sqrt{3}$
18. Suppose that the points $(h, k),(1,2)$ and $(-3,4)$ lie on the line L_{1}. If a line L_{2} passing through the points (h, k) and $(4,3)$ is perpendicular to L_{1}, then $\frac{k}{h}$ equals
a) 3
b) 0
c) $-\frac{1}{7}$
d) $\frac{1}{3}$
19. The locus of midpoints of the chords of the circle $x^{2}-2 x+y^{2}-2 y+1=0$ which are of unit length is:
a) $(x-1)^{2}+(y-1)^{2}=\frac{2}{3}$
b) $(x-1)^{2}+(y-1)^{2}=2$
c) $(x-1)^{2}+(y-1)^{2}=\frac{3}{4}$
d) $(x-1)^{2}+(y-1)^{2}=\frac{1}{4}$
20. In a triangle $A B C, \sin A: \sin B: \sin C=4: 5: 6$, while $\cos A: \cos B: \cos C=x: y: 2$. The ordered pair (x, y) is : [Note : All symbols used have usual meaning in triangle $A B C$.]
a) $(12,9)$
b) $(9,6)$
c) $(5,4)$
d) $(10,5)$
21. The number of intergral points (integral point means both the coordinates should be integer) exactly in the interior of the triangle with vertices $(0,0),(0,21)$ and $(21,0)$, is:
a) 105
b) 133
c) 190
d) 233
22. A circle of radius 10 is circumscribed about a triangle $A B C$. If $A B=B C=10$, then the area of the triangle is :
a) 40
b) $25 \sqrt{3}$
c) 50
d) $25 \sqrt{2}$
23. The chords of contact of the pair of tangents drawn from points on the line $2 x+y=4$ to the circle $x^{2}+$ $\mathrm{y}^{2}=1$ passes through a fixed point $\mathrm{M}(\mathrm{a}, \mathrm{b})$. The value of $\left(\frac{1}{a}+\frac{1}{b}\right)$, is equal to :
a) 3
b) 4
c) 6
d) 5
24. Let $\mathrm{A}(1,5), \mathrm{B}(3,4)$ and $\mathrm{C}(1,1)$ be vertices of a $\triangle \mathrm{ABC}$ with O as its orthocentre. If orthocentre of $\triangle \mathrm{OAB}$ be (α, β), then $|\alpha-\beta|$ is equal to :
a) 4
b) 0
c) 2
d) 1
25. If the line $\mathrm{y} \cos \alpha=\mathrm{x} \sin \alpha+\mathrm{a} \cos \alpha$ be a tangent to the circle $\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{a}^{2}$, then
a) $\cos ^{2} \alpha=a^{2}$
b) $\sin ^{2} \alpha=a^{2}$
c) $\cos ^{2} \alpha=1$
d) $\sin ^{2} \alpha=1$
26. The circles $\mathrm{x}^{2}+\mathrm{y}^{2}-10 \mathrm{x}+16=0$ and $\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{r}^{2}$ intersect each other in two distinct points if:
a) $r>8$
b) $2<r<8$
c) $2 \leq r \leq 8$
d) $\mathrm{r}<2$
27. $a, b>0$. The length of the common chord of the circles $(x-a)^{2}+y^{2}=a^{2}$ and $x^{2}+(y-b)^{2}=b^{2}$ is
a) $\sqrt{a+b}$
b) $\frac{2 a b}{a+b}$
c) $\frac{2 a b}{\sqrt{a^{2}+b^{2}}}$
d) $\frac{a+b}{2}$
28. If $\mathrm{A}_{0}, \mathrm{~A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \mathrm{~A}_{4}$ and A_{5} be a regular hexagon inscribed in a circle of unit radius. Then, the product of the lengths of the line segments $\mathrm{A}_{0} \mathrm{~A}_{1}, \mathrm{~A}_{0} \mathrm{~A}_{2}$ and $\mathrm{A}_{0} \mathrm{~A}_{4}$ is
a) $\frac{3}{4}$
b) $\frac{3 \sqrt{3}}{2}$
c) $3 \sqrt{3}$
d) 3
29. Let the combined equation of a pair of tangents to a circle drawn from the origin O be $\mathrm{xy}-\mathrm{y}^{2}=(2+$ $\sqrt{3}$) ($\mathrm{x}^{2}-\mathrm{xy}$). If the radius of the circle is 3 units and centre is in the first quadrant, then the length OA (where A is one of the points of contact) is
a) $3(2-\sqrt{3})$
b) $\frac{3}{2}(2+\sqrt{3})$
c) $3(2+\sqrt{3})$
d) $\frac{\sqrt{3}}{2}(2+\sqrt{3})$
30. If the length of the chord of the circle, $x^{2}+y^{2}=r^{2}(r>0)$ along the line, $y-2 x=3$ is r, then r^{2} is equal to:
a) $\frac{9}{5}$
b) $\frac{24}{5}$
c) 12
d) $\frac{12}{5}$
31. A circle touching the X -axis at $(3,0)$ and making an intercept of length 8 on the Y-axis passes through the point
a) $(2,3)$
b) $(3,10)$
c) $(1,5)$
d) $(3,5)$
32. The area of triangle formed by the tangent, normal drawn at $(1, \sqrt{3})$ to the circle $x^{2}+y^{2}=4$ and the positive x -axis, is
a) $5 \sqrt{3}$
b) $4 \sqrt{3}$
c) $2 \sqrt{3}$
d) $\sqrt{3}$
33. If the straight line $\frac{2 x}{a}+\frac{y}{b}=2 \sqrt{2}$ touches the circle $\mathrm{x}^{2}+\mathrm{y}^{2}=2 \mathrm{ab}, \mathrm{a}, \mathrm{b}>0$, then:
a) $a=b$
b) $2 a=b$
c) None of these
d) $a=2 b$
34. The point $(1,4)$ lies inside the circle ω having equation $x^{2}+y^{2}-6 x-8 y+k=0$, where k is an arbitrary constant. The circle ω neither touches the coordinate axes nor cuts them. The possible values of k are between
a) 9 and 16
b) 9 and 25
c) 9 and 21
d) 16 and 21
35. Let L_{1} be a straight line passing through the origin and L_{2} be the straight line $x+y=1$. If the intercepts made by the circle $x^{2}+y^{2}-x+3 y=0$ on L_{1} and L_{2} are equal, then which of the following equations can represent L_{1} ?
a) $x-7 y=0$
b) $x-y=0, x+7 y=0$
c) $7 x+y=0$
d) $x+y=0, x-7 y=0$
36. If the circle $x^{2}+y^{2}+4 x+22 y+c=0$ bisects the circumfeence of the circle $x^{2}+y^{2}-2 x+8 y-d=0(c, d>$ 0), then maximum value of cd is:
a) 425
b) 625
c) 125
d) 25
37. Equations to the circles which touch the lines $3 x-4 y+1=0,4 x+3 y-7=0$ and pass through $(2,3)$ are
a) $5 x^{2}+5 y^{2}-12 x-24 y+31=0$
b) $(x-2)^{2}+(y-8)^{2}=25$
c) $(x-2)^{2}+(y-8)^{2}=25$ and $5 x^{2}+5 y^{2}-$
d) None of these $12 x-24 y+31=0$
38. Let C be the circle with center at $(1,1)$ and radius 1 . If T is the circle centered at $(0, y)$ passing through the origin and touching the circle C externally, then the radius of T is equal to
a) $\frac{1}{4}$
b) $\frac{1}{2}$
c) $\frac{\sqrt{3}}{2}$
d) $\frac{\sqrt{3}}{\sqrt{2}}$
39. P is a lattice point (a point having integer coordinates) in the $1^{\text {st }}$ quadrant. The segment joining $(\sqrt{33}, \sqrt{17})$ and $(-\sqrt{33},-\sqrt{17})$ subtends a right angle at P . The number of points which satisfy P are
a) 4
b) 3
c) 2
d) 12
40. A circle cuts a chord oflength 4 a on the X -axis and passes through a point on the Y -axis, distant 2 b from the origin. Then, the locus of the centre of this circle, is
a) A hyperbola
b) A straight line
c) A parabola
d) An ellipse
41. Three circles of radii $a, b, c(a<b<c)$ touch each other externally. If they have X-axis as a common tangent, then
a) $\frac{1}{\sqrt{a}}=\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}$
b) a, b, c are in AP
c) $\frac{1}{\sqrt{b}}=\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{c}}$
d) $\sqrt{a}, \sqrt{b}, \sqrt{c}$ are in AP
42. The locus of the centres of the circles, which touch the circle, $\mathrm{x}^{2}+\mathrm{y}^{2}=1$ externally, also touch the Yaxis and lie in the first quadrant, is
a) $x=\sqrt{1+4 y}, y \geq 0$
b) $x=\sqrt{1+2 y}, y \geq 0$
c) $y=\sqrt{1+2 x}, x \geq 0$
d) $y=\sqrt{1+4 x}, x \geq 0$
43. The equation of a tangent to the circle $x^{2}+y^{2}=25$ passing through $(-2,11)$ is
a) $7 x+24 y=230$
b) $3 x+4 y=38$
c) $4 x+3 y=25$
d) $24 x+7 y+125=0$
44. If the circle $x^{2}+y^{2}+2 x+2 k y+6=0$ and $x^{2}+y^{2}+2 k y+k=0$ intersect orthogonally, then k is
a) 2 or $-3 / 2$
b) -2 or $-3 / 2$
c) 2 or $3 / 2$
d) -2 or $3 / 2$
45. The point $\mathrm{P}(10,7)$ lies outside the circle $\mathrm{x}^{2}+\mathrm{y}^{2}-4 \mathrm{x}-2 \mathrm{y}-20=0$. The greatest distance of P from the circle is
a) 5
b) $\sqrt{5}$
c) 15
d) $\sqrt{3}$
46. The centre of a circle passing through the points $(0,0),(1,0)$ and touching the circle $x^{2}+y^{2}=9$ is
a) $(1 / 2,3 / 2)$
b) $(1 / 2,1 / 2)$
c) $(3 / 2,1 / 2)$
d) $\left(1 / 2,-2^{1 / 2}\right)$
47. AB and CD are perpendicular chords of a circle of radius R meeting at point E . Then the expression $E A^{2}+E B^{2}+E C^{2}+E D^{2}$ equals
a) R^{2}
b) $2 R^{2}$
c) $4 R^{2}$
d) $8 R^{2}$
48. ω_{1} and ω_{2} are two circles passing through the points ($0, \mathrm{a}$), ($0,-\mathrm{a}$) and each touches the line $\mathrm{y}=\mathrm{mx}+\mathrm{c}$. If ω_{1} and ω_{2} cut each other orthogonally, then
a) $\mathrm{a}^{2}=\mathrm{c}^{2}\left(2+\mathrm{m}^{2}\right)$
b) $\mathrm{c}^{2}=\mathrm{a}^{2}\left(1+\mathrm{m}^{2}\right)$
c) $\mathrm{a}^{2}=2 \mathrm{c}^{2}\left(1+\mathrm{m}^{2}\right)$
d) $c^{2}=a^{2}\left(2+m^{2}\right)$
49. The area of the trapezium ABCD with $\mathrm{AB} \| \mathrm{CD}, \mathrm{AD} \perp \mathrm{AB}$ and $\mathrm{AB}=3 \mathrm{CD}$ is equal to 4 . A circle inside the trapezium is tangent to all of its sides. If the radius of the circle is r then the value of $4 r^{2}$, is:
a) 3
b) 8
c) 2
d) 1
50. The square of the length of the tangent from (3, -4) on the circle $x^{2}+y^{2}-4 x-6 y+3=0$ is
a) 30
b) 40
c) 50
d) 20
51. Let $\mathrm{A}(1,0), \mathrm{B}(6,2)$ and $\mathrm{C}\left(\frac{3}{2}, 6\right)$ be the vertices of a triangle ABC . If P is a point inside the triangle ABC such that the triangles $A P C, A P B$ and $B P C$ have equal areas, then the length of the line segment $P Q$, where Q is the point $\left(-\frac{7}{6},-\frac{1}{3}\right)$, is \qquad .
52. For a point P in the plane, let $d_{1}(P)$ and $d_{2}(P)$ be the distances of the point P from the lines $x-y=0$ and $x+y=0$, respectively. The area of the region R consisting of all points P lying in the first quadrant of
the plane and satisfying $2 \leq d_{1}(P)+d_{2}(P) \leq 4$ is \qquad sq units.
53. Let point B be the reflection of point $\mathrm{A}(2,3)$ with respect to the line $8 \mathrm{x}-6 \mathrm{y}-23=0$. Let T_{A} and T_{B} be circles of radii 2 and 1 with centers A and B respectively. Let T be a common tangent to the circles T_{A} and T_{B} such that both the circles are on the same side of T. If C is the point of intersection of T and the line passing through A and B, then the length of the line segment $A C$ is \qquad .
54. The number of integral values of k for which the line, $3 x+4 y=k$ intersects the circle, $x^{2}+y^{2}-2 x-4 y$ $+4=0$ at two distinct points is \qquad .
55. For how many values of p, the circle $x^{2}+y^{2}+2 x+4 y-p=0$ and the coordinate axes have exactly three common points?
56. Two parallel chords of a circle of radius 2 are at a distance $\sqrt{3}+1$ apart. If the chords subtend at the centre, angles of $\frac{\pi}{k}$ and $\frac{2 \pi}{k}$, where $\mathrm{k}>0$, then the value of $[\mathrm{k}]$ is \qquad .
NOTE: [k] denotes the largest integer less than or equal to k.
57. Let O be the centre of the circle $\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{r}^{2}$, where $r>\frac{\sqrt{5}}{2}$. Suppose PQ is a chord of this circle and the equation of the line passing through P and Q is $2 x+4 y=5$. If the centre of the circumcircle of the triangle OPQ lies on the line $x+2 y=4$, then the value of r is \qquad -.
58. The centres of two circles C_{1} and C_{2} each of unit radius are at a distance of 6 units from each other. Let P be the mid-point of the line segment joining the centres of C_{1} and C_{2} and C be a circle touching circles C_{1} and C_{2} externally. If a common tangents to C_{1} and C passing through Pis also a common tangent to C_{2} and C , then the radius of the circle C is \qquad
59. The diameter of the circle, whose centre lies on the line $x+y=2$ in the first quadrant and which touches both the lines $x=3$ and $y=2$, is \qquad .
60. If the curves, $x^{2}-6 x+y^{2}+8=0$ and $x^{2}-8 y+y^{2}+16-k=0,(k>0)$ touch each other at a point, then the largest value of k is \qquad .
