QUADRILATERAL TEST -1

1. $A B C D$ is a rhombus. Show that diagonal $A C$ bisects $\angle A$ as well as $\angle C$ and diagonal $B D$ bisects $\angle \mathrm{B}$ as well as $\angle \mathrm{D}$.
2. The angles A, B, C, D of a quadrilateral are in the ratio of $2: 4: 5: 7$. Find the measure of these angles. What type of quadrilateral is it? Give reasons
3. $A B C D$ is a quadrilateral in which P, Q, R, S are the midpoints of the sides $A B, B C, C D$, and DA respectively. Show that PQRS is a parallelogram
4. In parallelogram $A B C D$, two points P and Q are taken on diagonal $B D$ such that $D P=$ $B Q$ (see figure). Show that

(i) $\triangle A P D \cong \triangle C Q B$
(ii) $A P=C Q$
(iii) $\triangle A Q B \cong \triangle C P D$
(iv) $A Q=C P$
(v) $A P C Q$ is a parallelogram.
5. In $\triangle A B C$ and $\triangle D E F, A B=D E, A B| | D E, B C=E F$ and $B C \| E F$. Vertices A, B and C are joined to vertices D, E and F, respectively (see figure). Show that
i. quadrilateral ABED is a parallelogram
ii. quadrilateral $B E F C$ is a parallelogram
iii. $\quad A D|\mid C F$ and $A D=C F$
iv. quadrilateral ACFD is a parallelogram
v. $\mathrm{AC}=\mathrm{DF}$
vi. $\triangle A B C \cong \triangle D E F$
6. $A B C D$ is a trapezium in which $A B \| C D$ and $A D=B C$ (see figure). Show that
i. $\angle A=\angle B$
ii. $\angle C=\angle D$
iii. $\triangle A B C \cong \triangle B A D$
iv. diagonal $A C=$ diagonal $B D$

7. I, m and n are three parallel lines intersected by transversals p and q such that I, m and n cut off equal intercepts $A B$ and $B C$ on p (see fig. 8.28). Show that I, m and n cut off equal intercepts DE and EF on q also.
8. $A B C D$ is a parallelogram in which P and Q are mid-points of opposite sides $A B$ and $C D$ (see fig.)If $A Q$ intersects $D P$ at S and $B Q$ intersects $C P$ at R, show that:
i. APCQ is a parallelogram.
ii. DPBQ is a parallelogram.
iii. PSQR is a parallelogram.

9. Two parallel lines I and m are intersected by a transversal p (see fig). Show that the quadrilateral formed by the bisectors of interior angles is a rectangle.

10.Prove that the diagonals of a square are equal and perpendicular to each other.
