MATHEMATICS CLASS TEST # 03

TIME: 1 HR

This paper contains 25 multiple choice questions. Each question has 4 choices (A), (B), (C) and (D), out of which **ONLY ONE** is correct. **MARKING**: (+4, -1, 0)

- **Q.1** The area (in sq. units) of the bounded by the curve $x^2 = 4v$ and the straight line x = 4v - 2 is:
 - (A) 5/4
- (B) 9/8
- (C) 7/8
- (D) $\frac{3}{4}$
- Q.2 The area of the region bounded by the curves y = |x - 1| and y = 3 - |x| is-
 - (A) 6 sq. units
- (B) 2 sq. units
- (C) 3 sq. units
- (D) 4 sq. units
- Q.3 The area of the region bounded by the curves y = |x - 2|, x = 1, x = 3 and the x- axis is-
 - (A) 1
- (B) 2
- (C)3
- (D) 4
- **Q.4** Area of the greatest rectangle that can be inscribed in the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is-
 - (A) 2ab
- (B) ab
- (C) \sqrt{ab}
- (D) $\frac{a}{1}$
- Q.5 The area enclosed between the curve $y = log_e (x + e)$ and the coordinate axes is-
 - (A) 1 (B) 2
- (C) 3
- (D) 4
- **Q.6** The parabolas $y^2 = 4x$ and $x^2 = 4y$ divide the square region bounded by the lines x = 4, y = 4 and the coordinate axes. If S₁, S₂, S₃ are respectively the areas of these parts numbered from top to bottom; then $S_1 : S_2 : S_3$ is-
 - (A) 1:2:1
- (B) 1:2:3
- (C) 2:1:2
- (D) 1:1:1
- **Q.7** Let f(x) be a non-negative continuous function such that the area bounded by the curve y = f(x), x-axis and the ordinates $x = \frac{\pi}{4}$ and $x = \beta > \frac{\pi}{4}$ is $\left(\beta \sin \beta + \frac{\pi}{4} \cos \beta + \sqrt{2}\beta\right)$. Then $f\left(\frac{\pi}{2}\right)$ is-

(A)
$$\left(\frac{\pi}{4} + \sqrt{2} - 1\right)$$
 (B) $\left(\frac{\pi}{4} - \sqrt{2} + 1\right)$

(B)
$$\left(\frac{\pi}{4} - \sqrt{2} + 1\right)$$

(C)
$$\left(1 - \frac{\pi}{4} - \sqrt{2}\right)$$
 (D) $\left(1 - \frac{\pi}{4} + \sqrt{2}\right)$

(D)
$$\left(1-\frac{\pi}{4}+\sqrt{2}\right)$$

- The area enclosed between the curves $y^2 = x$ and y = x**Q.8**
 - (A) $\frac{2}{3}$
- (B) 1
- (C) $\frac{1}{\epsilon}$
- (D) $\frac{1}{2}$
- Q.9 The area of the plane region bounded by the curves $x + 2y^2 = 0$ and $x + 3y^2 = 1$ is equal to-
 - (A) $\frac{1}{3}$
- (B) $\frac{2}{3}$
 - (C) $\frac{4}{3}$
- (D) $\frac{5}{2}$
- Q.10 The area of the region bounded by the parabola (y – $(2)^2 = x - 1$, the tangent to the parabola at the point (2, 3) and the x - axis is
 - (A)3
- (B)6
- (C)9
- (D) 12
- The area bounded by the curves $y = \cos x$ and 0.11 $y = \sin x$ between the ordinates x = 0 and $x = \frac{3\pi}{2}$ is-

 - (A) $4\sqrt{2} 2$ (B) $4\sqrt{2} + 2$

 - (C) $4\sqrt{2}-1$ (D) $4\sqrt{2}+1$
- The area of the region enclosed by the curves Q.12 y = x, x = e, y = 1/x and the positive x-axis is:
 - (A) 1/2 square units
- (B) 1 square units
- (C) 3/2 square units
- (D) 5/2 square units
- The area bounded by the curves $y^2 = 4x$ and Q.13 $x^2 = 4y \text{ is } -$

(A) $\frac{32}{3}$	(B) $\frac{16}{3}$
(C) $\frac{8}{3}$	(D) 0
The area of the region	bounded by $y = x - 1 $ and y
=1 is	
(A) 1	(B) 2

Q.14

(C) 1/2

Q.15 The area (in sq. units) of the bounded by the curve $y = x^2$ and the straight line y = x + 2 is:

(D) None of these

(A) 31/6 (B) 13/6 (C) 9/2 (D) 10/3

Q.16 The area bounded by the curves y = |x| - 1 and y = -|x| + 1 is(A) 1 (B) 2

(C) $2\sqrt{2}$ (D) 4

Q.17 Area of the region bounded by $y = \sqrt{x}$, x = 2y + 3 & x-axis lying in 1st quadrant is-

- (A) $2\sqrt{3}$ (B) 18 (C) 9 (D) 34/3
- **Q.18** If area bounded by the curves $x = ay^2$ and
- $y = ax^2$ is 1, then a equals-
 - (A) $\frac{1}{\sqrt{3}}$ (B) $\frac{1}{3}$
 - (C) $\frac{1}{2}$ (D) 3

Q.19 Find the area between the curves $y = (x - 1)^2$, $y = (x + 1)^2$ and $y = \frac{1}{4}$

- (A) $\frac{1}{3}$ (B) $\frac{2}{3}$ (C) $\frac{4}{3}$ (D) $\frac{1}{6}$
- Q.20 The area (in sq. units) of the bounded by the curve $y^2 = 2x$ and the straight line y = 4x 1 is:

 (A) 7/32 (B) 5/64 (C) 15/64 (D) 9/32

Q.21 The area (in sq. units) of the bounded by the curve $y^2 = 2x$ and the straight line y = x - 4 is:

(A) 53/3 (B) 18 (C) 30 (D) 16

Q.22 The area (in sq. units) of the bounded by the curve $y = x^2 + 2$ and the straight line y = x + 1, x = 0 and x = 3 is:

(A) 15/4 (B) 21/2 (C) 17/4 (D) 15/2

Q.23 Area in 1st quadrant bounded by $y = 4x^2$, x = 0, y = 1 and y = 4 is-

- (A) $\frac{3}{7}$ (B) $\frac{5}{7}$ (C) $\frac{7}{2}$ (D) $\frac{7}{5}$
- Q.24 The area between the curves $x = 2 y y^2$ and y-axis, is-
 - (A) 9 (B) $\frac{9}{2}$ (C) $\frac{9}{4}$ (D) 3

Q.25 Area bounded by $y = x^2 + 1$ and the tangents to it drawn from the origin, is-

(A) $\frac{8}{3}$ (B) $\frac{1}{3}$ (C) $\frac{2}{3}$ (D) $\frac{10}{3}$