which ONLY ONE is correct. MARKING: $\mathbf{(+ 4 , - \mathbf { 1 } , \mathbf { 0 })}$
Q. 1 The area (in sq. units) of the bounded by the curve $x^{2}=4 y$ and the straight line $x=4 y-2$ is :
(A) $5 / 4$
(B) $9 / 8$
(C) $7 / 8$
(D) $3 / 4$
Q. 2 The area of the region bounded by the curves $y=|x-1|$ and $y=3-|x|$ is-
(A) 6 sq. units
(B) 2 sq. units
(C) 3 sq. units
(D) 4 sq. units
Q. 3 The area of the region bounded by the curves $y=|x-2|, x=1, x=3$ and the x - axis is-
(A) 1
(B) 2
(C) 3
(D) 4
Q. 4 Area of the greatest rectangle that can be inscribed in the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is-
(A) 2 ab
(B) ab
(C) $\sqrt{a b}$
(D) $\frac{a}{b}$
Q. 5 The area enclosed between the curve $y=\log _{e}(x+e)$ and the coordinate axes is-
(A) 1
(B) 2
(C) 3
(D) 4
Q. 6 The parabolas $y^{2}=4 x$ and $x^{2}=4 y$ divide the square region bounded by the lines $x=4, y=4$ and the coordinate axes. If S_{1}, S_{2}, S_{3} are respectively the areas of these parts numbered from top to bottom; then $S_{1}: S_{2}: S_{3}$ is-
(A) $1: 2: 1$
(B) $1: 2: 3$
(C) $2: 1: 2$
(D) $1: 1: 1$
Q. 7 Let $f(x)$ be a non-negative continuous function such that the area bounded by the curve $y=f(x), x$-axis and the ordinates $x=\frac{\pi}{4}$ and $x=\beta>\frac{\pi}{4}$ is $\left(\beta \sin \beta+\frac{\pi}{4} \cos \beta+\sqrt{2} \beta\right)$. Then $\mathrm{f}\left(\frac{\pi}{2}\right)$ is-
(A) $\left(\frac{\pi}{4}+\sqrt{2}-1\right)$
(B) $\left(\frac{\pi}{4}-\sqrt{2}+1\right)$
(C) $\left(1-\frac{\pi}{4}-\sqrt{2}\right)$
(D) $\left(1-\frac{\pi}{4}+\sqrt{2}\right)$
Q. 8 The area enclosed between the curves $y^{2}=x$ and $y=$ $|\mathrm{x}|$ is:
(A) $\frac{2}{3}$
(B) 1
(C) $\frac{1}{6}$
(D) $\frac{1}{3}$
Q. 9 The area of the plane region bounded by the curves $x+2 y^{2}=0$ and $x+3 y^{2}=1$ is equal to-
(A) $\frac{1}{3}$
(B) $\frac{2}{3}$
(C) $\frac{4}{3}$
(D) $\frac{5}{3}$
Q. 10 The area of the region bounded by the parabola (y -$2)^{2}=x-1$, the tangent to the parabola at the point $(2,3)$ and the x - axis is
(A) 3
(B) 6
(C) 9
(D) 12
Q. 11 The area bounded by the curves $y=\cos x$ and $\mathrm{y}=\sin \mathrm{x}$ between the ordinates $\mathrm{x}=0$ and $x=\frac{3 \pi}{2}$ is-
(A) $4 \sqrt{2}-2$
(B) $4 \sqrt{2}+2$
(C) $4 \sqrt{2}-1$
(D) $4 \sqrt{2}+1$
Q. 12 The area of the region enclosed by the curves $y=x, x=e, y=1 / x$ and the positive x-axis is:
(A) $1 / 2$ square units
(B) 1 square units
(C) $3 / 2$ square units
(D) $5 / 2$ square units
Q. 13 The area bounded by the curves $y^{2}=4 x$ and $x^{2}=4 y$ is -
(A) $\frac{32}{3}$
(B) $\frac{16}{3}$
(C) $\frac{8}{3}$
(D) 0
Q. 14 The area of the region bounded by $y=|x-1|$ and y $=1$ is
(A) 1
(B) 2
(C) $1 / 2$
(D) None of these
Q. 15 The area (in sq. units) of the bounded by the curve $y=x^{2}$ and the straight line $y=x+2$ is :
(A) $31 / 6$
(B) $13 / 6$
(C) $9 / 2$
(D) $10 / 3$
Q. 16 The area bounded by the curves $\mathrm{y}=|\mathrm{x}|-1$ and $\mathrm{y}=$ $-|x|+1$ is-
(A) 1
(B) 2
(C) $2 \sqrt{2}$
(D) 4
Q. 17 Area of the region bounded by $y=\sqrt{x}$, $\mathrm{x}=2 \mathrm{y}+3 \& \mathrm{x}$-axis lying in $1^{\text {st }}$ quadrant is-
(A) $2 \sqrt{3}$
(B) 18
(C) 9
(D) $34 / 3$
Q. 18 If area bounded by the curves $x=a y^{2}$ and $y=a x^{2}$ is 1 , then a equals-
(A) $\frac{1}{\sqrt{3}}$
(B) $\frac{1}{3}$
(C) $\frac{1}{2}$
(D) 3
Q. 19 Find the area between the curves $\mathrm{y}=(\mathrm{x}-1)^{2}$, $y=(x+1)^{2}$ and $y=\frac{1}{4}$
(A) $\frac{1}{3}$
(B) $\frac{2}{3}$
(C) $\frac{4}{3}$
(D) $\frac{1}{6}$
Q. 20 The area (in sq. units) of the bounded by the curve $y^{2}=2 x$ and the straight line $y=4 x-1$ is :
(A) $7 / 32$
(B) $5 / 64$
(C) $15 / 64$
(D) $9 / 32$
Q. 21 The area (in sq. units) of the bounded by the curve $y^{2}=2 x$ and the straight line $y=x-4$ is :
(A) $53 / 3$
(B) 18
(C) 30
(D) 16
Q. 22 The area (in sq. units) of the bounded by the curve $y=x^{2}+2$ and the straight line $y=x+1$, $x=0$ and $x=3$ is :
(A) $15 / 4$
(B) $21 / 2$
(C) $17 / 4$
(D) $15 / 2$
Q. 23 Area in 1st quadrant bounded by $y=4 x^{2}, x=0, y=$ 1 and $y=4$ is-
(A) $\frac{3}{7}$
(B) $\frac{5}{7}$
(C) $\frac{7}{3}$
(D) $\frac{7}{5}$
Q. 24 The area between the curves $x=2-y-y^{2}$ and $y-$ axis, is-
(A) 9
(B) $\frac{9}{2}$
(C) $\frac{9}{4}$
(D) 3
Q. 25 Area bounded by $y=x^{2}+1$ and the tangents to it drawn from the origin, is-
(A) $\frac{8}{3}$
(B) $\frac{1}{3}$
(C) $\frac{2}{3}$
(D) $\frac{10}{3}$

