SECTION -A

Q. 1 If the lines $\frac{x-1}{-3}=\frac{y-2}{2 k}=\frac{z-3}{2}$ and $\frac{\mathrm{x}-1}{3 \mathrm{k}}=\frac{\mathrm{y}-5}{1}=\frac{\mathrm{z}-6}{-5}$ are perpendicular to each other then $\mathrm{k}=$
[AIEEE 2002]
(A) $\frac{5}{7}$
(B) $\frac{7}{5}$
(C) $\frac{-7}{10}$
(D) $\frac{-10}{7}$
Q. 2 The angle between the lines, whose direction ratios are $1,1,2$ and $\sqrt{3}-1,-\sqrt{3}-1,4$, is-
[AIEEE 2002]
(A) 45°
(B) 30°
(C) 60°
(D) 90°
Q. 3 The acute angle between the planes $2 \mathrm{x}-\mathrm{y}+\mathrm{z}=$ 6 and $\mathrm{x}+\mathrm{y}+2 \mathrm{z}=3$ is- [AIEEE 2002]
(A) 30°
(B) 45°
(C) 60°
(D) 75°
Q. 4 The lines $\frac{x-2}{1}=\frac{y-3}{1}=\frac{z-4}{-k}$ and $\frac{\mathrm{x}-1}{\mathrm{k}}=\frac{\mathrm{y}-4}{2}=\frac{\mathrm{z}-5}{1}$ are coplanar if-
[AIEEE 2003]
(A) $\mathrm{k}=3$ or -3
(B) $\mathrm{k}=0$ or -1
(C) $\mathrm{k}=1$ or -1
(D) $\mathrm{k}=0$ or -3
Q. 5 A tetrahedron has vertices at $\mathrm{O}(0,0,0)$, A $(1,2,1), \mathrm{B}(2,1,3)$ and $\mathrm{C}(-1,1,2)$. Then the angle between the faces OAB and $A B C$ will be-
[AIEEE 2003]
(A) 90°
(B) $\cos ^{-1}\left(\frac{19}{35}\right)$
(C) $\cos ^{-1}\left(\frac{17}{31}\right)$
(D) 30°
Q. 6 Two systems of rectangular axes have the same origin. If a plane makes intercepts a, b, c and
Q. 10 If the straight lines $x=1+s, y=-3-\lambda s$, $\mathrm{z}=1+\lambda \mathrm{s}$ and $\mathrm{x}=\frac{\mathrm{t}}{2}, \mathrm{y}=1+\mathrm{t}, \mathrm{z}=2-\mathrm{t}$, with
$a^{\prime}, b^{\prime}, c^{\prime}$ on the two systems of axes respectively, then
[AIEEE-2003]
(A) $a^{2}+b^{2}+c^{2}=a^{\prime 2}+b^{\prime 2}+c^{\prime 2}$
(B) $\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~b}}+\frac{1}{\mathrm{c}}=\frac{1}{\mathrm{a}^{\prime}}+\frac{1}{\mathrm{~b}^{\prime}}+\frac{1}{\mathrm{c}^{\prime}}$
(C) $\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}+\frac{1}{\mathrm{c}^{2}}=\frac{1}{\mathrm{a}^{\prime 2}}+\frac{1}{\mathrm{~b}^{\prime 2}}+\frac{1}{\mathrm{c}^{\prime 2}}$
(D) $\frac{1}{\mathrm{a}^{2}-\mathrm{a}^{\prime 2}}+\frac{1}{\mathrm{~b}^{2}-\mathrm{b}^{\prime 2}}+\frac{1}{\mathrm{c}^{2}-\mathrm{c}^{\prime 2}}=0$
Q. 7 A line makes the same angle θ, with each of the x and z axis. If the angle β, which it makes with y axis, is such that $\sin ^{2} \beta=3 \sin ^{2} \theta$, then $\cos ^{2} \theta$ equals-
[AIEEE 2004]
(A) $2 / 3$
(B) $1 / 5$
(C) $3 / 5$
(D) $2 / 5$
Q. 8 Distance between two parallel planes
$2 \mathrm{x}+\mathrm{y}+2 \mathrm{z}=8$ and $4 \mathrm{x}+2 \mathrm{y}+4 \mathrm{z}+5=0$ is
[AIEEE 2004]
(A) $3 / 2$
(B) $5 / 2$
(C) $7 / 2$
(D) $9 / 2$
Q. 9 A line with direction cosines proportional to 2, 1, 2 meets each of the lines $x=y+a=z$ and $x+a$ $=2 \mathrm{y}=2 \mathrm{z}$. The coordinates of each of the points of intersection are given by-
[AIEEE 2004]
(A) (3a, 3a, 3a), (a, a, a)
(B) (3a, 2a, 3a), (a, a, a)
(C) $(3 \mathrm{a}, 2 \mathrm{a}, 3 \mathrm{a}),(\mathrm{a}, \mathrm{a}, 2 \mathrm{a})$
(D) $\quad(2 \mathrm{a}, \quad 3 \mathrm{a}, \quad 3 \mathrm{a}), \quad(2 \mathrm{a}, \quad \mathrm{a}, \quad \mathrm{a})$
parameters s and t respectively are coplanar then λ equals-
[AIEEE 2004]
(A) -2
(B) -1
(C) $-1 / 2$
(D) 0
Q. 11 If the angle θ between the line
$\frac{\mathrm{x}+1}{1}=\frac{\mathrm{y}-1}{2}=\frac{\mathrm{z}-2}{2}$ and the plane
$2 x-y+\sqrt{\lambda} z+4=0$ is such that $\sin \theta=\frac{1}{3}$ the value of λ is -
[AIEEE-2005]
(A) $\frac{5}{3}$
(B) $\frac{-3}{5}$
(C) $\frac{3}{4}$
(D) $\frac{-4}{3}$
Q. 12 The angle between the lines $2 x=3 y=-z$ and $6 x$ $=-\mathrm{y}=-4 \mathrm{z}$ is -
[AIEEE-2005]
(A) 0°
(B) 90°
(C) 45°
(D) 30°
Q. 13 The distance between the line $\vec{r}=2 \hat{i}-2 \hat{j}+3 \hat{k}+$ $\lambda(\hat{i}-\hat{j}+4 \hat{k})$ and the plane $\vec{r} .(\hat{i}+5 \hat{j}+\hat{k})=5$ is
[AIEEE-2005]
(A) $\frac{10}{9}$
(B) $\frac{10}{3 \sqrt{3}}$
(C) $\frac{3}{10}$
(D) $\frac{10}{3}$
Q. 14 The two lines $\mathrm{x}=\mathrm{ay}+\mathrm{b}, \mathrm{z}=\mathrm{cy}+\mathrm{d}$; and $x=a^{\prime} y+b^{\prime}, z=c^{\prime} y+d^{\prime}$ are perpendicular to each other if - [AIEEE-2006/AIEEE -2003]
(A) $\mathrm{aa}^{\prime}+\mathrm{cc}^{\prime}=1$
(B) $\frac{\mathrm{a}}{\mathrm{a}^{\prime}}+\frac{\mathrm{c}}{\mathrm{c}^{\prime}}=-1$
(C) $\frac{a}{a^{\prime}}+\frac{c}{c^{\prime}}=1$
(D) $a a^{\prime}+c c^{\prime}=-1$
Q. 15 The image of the point ($-1,3,4$) in the plane $x-2 y=0$ is -
[AIEEE 2006]
(A) $(15,11,4)$
(B) $\left(-\frac{17}{3},-\frac{19}{3}, 1\right)$
(C) $(8,4,4)$
(D) None of these
Q. 16 Let L be the line of intersection of the planes $2 x+3 y+z=1$ and $x+3 y+2 z=2$. If L makes an angle α with the positive x-axis, then $\cos \alpha$ equals-
[AIEEE 2007]
(A) $1 / \sqrt{3}$
(B) $1 / 2$
(C) 1
(D) $1 / \sqrt{2}$
Q. 17 If a line makes an angle of $\pi / 4$ with the positive directions of each of x-axis and y-axis, then the angle that the line makes with the positive direction of the z -axis is-
[AIEEE-2007]
(A) $\pi / 6$
(B) $\pi / 3$
(C) $\pi / 4$
(D) $\pi / 2$
Q. 18 If the straight lines $\frac{x-1}{k}=\frac{y-2}{2}=\frac{z-3}{3}$ and $\frac{x-2}{3}=\frac{y-3}{k}=\frac{z-1}{2}$ intersect at a point, then the integer k is equal to- [AIEEE-2008]
(A) 5
(B) 2
(C) -2
(D) -5
Q. 19 The line passing through the points $(5,1, a)$ and $(3, b, 1)$ crosses the $y z$-plane at the point $\left(0, \frac{17}{2}, \frac{-13}{2}\right)$. Then
[AIEEE-2008]
(A) $a=4, b=6$
(B) $a=6, b=4$
(C) $\mathrm{a}=8, \mathrm{~b}=2$
(D) $\mathrm{a}=2, \mathrm{~b}=8$
Q. 20 Let the line $\frac{x-2}{3}=\frac{y-1}{-5}=\frac{z+2}{2}$ lie in the plane $x+3 y-\alpha z+\beta=0$, then (α, β) equals :
[AIEEE-2009]
(A) $(-6,7)$
(B) $(5,-15)$
(C) $(-5,5)$
(D) $(6,-17)$
Q. 21 The projections of a vector on the three coordinate axis are $6,-3,2$ respectively. The direction cosines of the vector are :
[AIEEE-2009]
(A) $\frac{6}{5}, \frac{-3}{5}, \frac{2}{5}$
(B) $\frac{6}{7}, \frac{-3}{7}, \frac{2}{7}$
(C) $\frac{-6}{7}, \frac{-3}{7}, \frac{2}{7}$
(D) $6,-3,2$
Q. 22 A line $A B$ in three dimensional space makes angles 45° and 120° with the positive x - axis and the positive y - axis respectively. If AB makes an acute angle θ with the positive z - axis, then θ equals -
[AIEEE-2010]
(A) 30°
(B) 45°
() 60°
(D) 75°
Q. 23 Statement - 1 : The point $A(3,1,6)$ is the mirror image of the point $\mathrm{B}(1,3,4)$ in the plane $\mathrm{x}-\mathrm{y}+$ $z=5$.
Statement - 2: The plane $x-y+z=5$ bisects the line segment joining $\mathrm{A}(3,1,6)$ and $\mathrm{B}(1,3,4)$.
[AIEEE-2010]
(A) Statement -1 is true, Statement -2 is true; Statement -2 is a correct explanation for Statement -1
(B) Statement -1 is true, Statement -2 is true; Statement -2 is not a correct explanation for Statement -1.
(C) Statement -1 is true, Statement -2 is false.
(D) Statement -1 is false, Statement -2 is ture.

Q. 24 Statement - 1 :

The point $\mathrm{A}(1,0,7)$ is the mirror image of the point B $(1,6,3)$ in the line :
$\frac{\mathrm{x}}{1}=\frac{\mathrm{y}-1}{2}=\frac{\mathrm{z}-2}{3}$.
Statement - 2 :
The line : $\frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3}$ bisects the line segment joining $\mathrm{A}(1,0,7)$ and $\mathrm{B}(1,6,3)$.
[AIEEE-2011]
(A) Statement -1 is true, Statement -2 is true;

Statement -2 is a correct explanation for Statement -1
(B) Statement -1 is true, Statement -2 is true; Statement -2 is not a correct explanation for Statement 1 .
(C) Statement -1 is true, Statement -2 is false.
(D) Statement -1 is false, Statement -2 is true.
Q. 25 If the angle between the line $x=\frac{y-1}{2}=\frac{z-3}{\lambda}$ and the plane $x+2 y+3 z=4$ is $\cos ^{-1}\left(\sqrt{\frac{5}{14}}\right)$, then λ equals -
[AIEEE-2011]
(A) $2 / 3$
(B) $3 / 2$
(C) $2 / 5$
(D) $5 / 2$

SECTION-B

Q. 1 If line $\frac{x-4}{1}=\frac{y-2}{1}=\frac{z-k}{2}$ lies in the plane $2 x-4 y+z=7$ then the value of $k=$?
[IIT Scr.2003]
(A) $k=-1$
(B) $\mathrm{k}=7$
(C) $k=-7$
(D) no value of k
Q. 2 Two lines $\frac{\mathrm{x}-1}{2}=\frac{\mathrm{y}+1}{3}=\frac{\mathrm{z}-1}{4}$ and $\frac{\mathrm{x}-3}{1}=\frac{\mathrm{y}-\mathrm{k}}{2}=\frac{\mathrm{z}}{1}$ intersect at a point then k is-
[IIT Scr.2004]
(A) $3 / 2$
(B) $9 / 2$
(C) $2 / 9$
(D) 2
Q. 3 A plane at a unit distance from origins cuts at three axes at $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ points. $\triangle \mathrm{PQR}$ has centroid at $(\mathrm{x}, \mathrm{y}, \mathrm{z})$ point $\&$ satisfy to $\frac{1}{\mathrm{x}^{2}}+\frac{1}{\mathrm{y}^{2}}+\frac{1}{\mathrm{z}^{2}}=\mathrm{k}$, then $\mathrm{k}=$ [IIT Scr.2005]
(A) 9
(B) 1
(C) 3
(D) 4
Q. 4 A plane passes through $(1,-2,1)$ and is perpendicular to two planes $2 x-2 y+z=0$ and x $-y+2 z=4$. The distance of the plane from point $(1,2,2)$ is-
[IIT-2006]
(A) $2 \sqrt{2}$
(B) 0
(C) 1
(D) $\sqrt{2}$
Q. 5 A line perpendicular to $\mathrm{x}+2 \mathrm{y}+2 \mathrm{z}=0$ and passes through $(0,1,0)$ then the perpendicular distance of this line from the origin is-
[IIT-2007]
(A) $\frac{\sqrt{5}}{3}$
(B) $\frac{\sqrt{3}}{2}$
(C) $\frac{-\sqrt{3}}{2}$
(D) None of these
Q. 6 Consider the planes $3 x-6 y-2 z=15$ and $2 x+y-2 z=5$
STATEMENT-1 : The parametric equations of the line of intersection of the given planes are x $=3+14 \mathrm{t}, \mathrm{y}=1+2 \mathrm{t}, \mathrm{z}=15 \mathrm{t}$.
because
STATEMENT-2: The vector $14 \hat{i}+2 \hat{j}+15 \hat{k}$ is parallel to the line of intersection of given planes.
[IIT-2007]
(A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
(B) Statement-1 is True, Statement- 2 is True; Statement-2 is NOT a correct explanation for Statement-1
(C) Statement-1 is True, Statement-2 is False
(D) Statement-1 is False, Statement-2 is True

