
Solutions to the problems in Circuit Theory 
 
 
1. We have the circuit on the right, with a driving voltage 
US = 5 V, and we want to know U and I. 

a.  R = 1000 Ω;  
the total resistance in the circuit is then  

Rtot = 1010 Ω, and we can use Ohm's law to find  
I = US/Rtot = 5/1010 A = 4.95 mA  

and U = RI = 4.95 V. 

b.  R = 15 Ω; repeating the calculation we see that Rtot = 25 Ω, I = US/Rtot = 5/25 A = 200 mA and 
U = RI = 3.0 V. 

c.  R = 0.1 Ω; this time Rtot = 10.1 Ω, I = US/Rtot = 5/10.1 A = 495 mA and U = RI = 49.5 mV. 
 
 

2. In the circuit above, Rtot = (10 + R) Ω. The current I = US/Rtot and U = RI = R US/Rtot. The 
power dissipated in the resistor is then  
P = UI = R(US/Rtot)

2 = RUS
2/(10+R)2.  

To find the maximum in P we take the derivative with respect to R, which is 
dP/dR = US

2[(R+10)2 - 2R(10+R)]/(10+R)4 = US
2 (R+10-2R)/(10+R)3 = US

2 (10 - R)/(10+R)3; 
This function has an extreme value when 10 - R = 0, or R = 10, 

and since P = 0 at R = 0 and P → 0 also as R →∞, the power must be a maximum when R = 10 Ω.  
This is a completely general result:  

A two-pole circuit such as this one (a Thevenin equivalent circuit) delivers 
maximum output power when the load resistor connected equals the internal 
resistance. 
 
 
3.  We have a circuit as in the figure right, with a source 
current I = 0.5 A. From Kirchhoffs second law,  
I = Ix + Iy.  

a.  R = 1000 Ω. The parallel combination of resistances 
has an effective value Rx, which is obtained as  
1/Rx = 1/10 + 1/R or Rx = 10R/(10+R);  

in this case, Rx = 10000/1010 Ω = 9.901 Ω.  

In general, U = IRx = 10 IR/(10+R), and we see that  
Ix = U/R = 10 I/(10+R) and Iy = U/10 = IR/(10+R) ("current division formulas"). We thus find 
U = 10 IR/(10+R) = 4.95 V, 
Ix = 10 I/(10+R) = 4.95 mA, and 
Iy = IR/(10+R) = 495 mA. 
 

b.  R = 15 Ω. We repeat the calculation using the same formulae to find 
U = 10 IR/(10+R) = 3 V, 
Ix = 10 I/(10+R) = 200 mA, and 
Iy = IR/(10+R) = 300 mA. 
 

c.  Finally, R = 0.1 Ω. The same calculation gives 
U = 10 IR/(10+R) = 49.5 mV, 
Ix = 10 I/(10+R) = 495 mA, and 
Iy = IR/(10+R) = 4.95 mA. 
 



4.  
We want to know the currents through the two resistors 
in the figure on the right. 
 
Of course, we use the simplest possible solution!  
 
We see immediately that the voltage over the resistor on  

the right must always be 2 V (parallel to an ideal voltage source), so by Ohm's law the current 
through this resistor must be IR = U/R = 2/10 A = 0.2 A. 
 
We can use the same method for the resistor on the left, but let us be a little more sophisticated and 
assume that the current through this resistor is IL.  
The voltage on the right voltage source is higher, so we assume IL flows through the resistor from 
right to left.  
 
We then use Kirchhoff's voltage law. If we circulate from the bottom left corner clockwise 
through the left loop, we sum up the voltages as 
+1 + 10 IL - 2 = 0,  or 10 IL - 1 = 0;  IL = 0.1 A. 
 
Answer: The currents are IL = 0.1 A and IR = 0.2 A. 
 
 
5. We want to know the voltage at point A (relative to 
ground). Let us use the superposition principle, 
starting with the left voltage source! 
 
We can re-draw the circuit as in the figure below, right, 
where we have short-circuited the right voltage source 
and moved the right resistor down a bit. 
From point A to ground we now have a total  
resistance R' equal to 10 Ω in parallel to 10, i.e. 

1/R' = (1/10)+(1/10) = (2/10),  R' = 5 Ω. 
 
From the voltage divider theorem we get  
UA(1) = U [5/(5+10)] V = U/3 = (1/3) V.  
 
We then repeat the calculation for the right source, 

 
deleting instead the left one. From the symmetry of the circuit we see immediately that we would get 
the same magnitude for the second contribution, i.e. |UA(2)| = (1/3) V, but since the polarity of the 
two sources are opposite UA(2) = - (1/3) V.   
 
Finally, we add up the two contributions to find UA = 0 V.  
(We could use instead Kirchhoff's laws in the two loops to find the same result.) 
 
 
6. We have here essentially the same problem as in 5), 
except that the polarity of the right-hand source has 
been reversed. The solution must also be identical, 
except that now UA(1) = UA(2) = 1/3 V, such that the 
total UA = 2/3 V. 



7.   We have again the circuit used in problem 4): 
Now we want to replace the left voltage source plus 
the left-hand resistor with a current source in parallel 
with a resistor, in such a way that nothing is changed 
in the properties of the circuit. This problem is 
equivalent to replacing a Thévenin equivalent circuit 
with a Norton one!  

The left figure below shows the the two equivalent (Thévenin and Norton) circuits, and we draw the 
new desired circuit on the right: 
 

 

 

 

 
Referring to the left figure above, the measured resistances between A and B, when the voltage 
source is short-circuited and the current source is open, are simply RT and RN, and equivalence 
implies RT = RN. Also, the output voltages between A and B are UAB = E and UAB = IRN, 
respectively, and thus E = IRN. 
 
The solution for the new circuit in the right-hand figure above is thus  

R = 10 Ω and 
I = (E/RT =) 1/10 A = 0.1 A. 
 
 
8. We want to know the voltages UA and UB at points A and B, respectively, in the figure below; 

the resistor R = 10 Ω. 
We use the superposition theorem, since 
we have both a current source and a 
voltage source. Removing the current 
source leaves us with four resistors in an 
array. The total resistance seen by the 

voltage source is 10 Ω in series with a 

parallel combination of 20 Ω and (10+10)  
Ω. The total resistance is easily seen to be 20 Ω. There is thus a current of 0.5 A driven by the 

voltage source; this divides equally between the two 20-Ω branches, the current from B to A must 

be 0.25 A, and the voltages UA(1) = 0.25⋅10 V = 2.5 V, UBA(1) = UB - UA = 0.25⋅10 V = 2.5 V, and 
thus UB(1) = 5 V. 
Removing (shorting!) the voltage source, we have a more complicated situation. The total 

resistance seen by the current source is 10 Ω in parallel with a three-resistor network. Working from 

the left, we have 10 Ω in parallel with 20 Ω, giving Reff(1) = 10⋅20/(10+20) Ω = 20/3 Ω. This acts in 

series with R, giving a total of Reff(2) = (10+20/3) Ω = 50/3 Ω. 

The current from the current source divides between the 10 Ω resistor and the series combination 

according to the current divider rule, and thus the current through R must be IR = 1⋅10/(10+Reff(2)) 

A = 10/(10+50/3) A = 10⋅3/80 A = 0.375 A, resulting in a voltage UBA = - 10⋅0.375 V = - 3.75 V 

(the current is opposite to the first one!). The current through the 10 Ω resistor is then 0.625 A, 
giving UA(2) = 6.25 V, and we find UB(2) = (6.25 - 3.75) V = 2.5 V. 
 
The total voltages are then UA = 8.75 V and UB = 7.5 V. 



9. We have the same circuit as in problem 8), except that we move the ground point to point B. 
a. We want to analyse the effect of changing R, so for simplicity we want to replace the rest of 
the circuit with a Thévenin equivalent. 
We can start by re-drawing the circuit as specified above. (This is actually not necessary!) The left 
figure below is the original circuit, while the right-hand side shows the similarly complicated result 
after re-drawing, omitting R. 
(Trace the circuits and convince yourself that they are actually equivalent!) 
 

 
 

The Thévenin equivalent internal resistance RT is the total resistance between A and B after shorting 

the voltage source and opening the current source. This must be the sum of the 10 Ω resistor 

originally in parallel with the current source and the parallel combination of 10 and 20 Ω on the left, 
i.e. 

RT = (10 + 10⋅20/(10+20)) Ω = (10 + 20/3) Ω = 16.67 Ω. 
 
The Thevenin voltage UT can also easily be calculated, basically by a superposition method: 

When no resistance R is connected, the current I = 1 A flows only through the 10 Ω resistor in 
parallel with the source, giving rise to a voltage drop of 10 V with point A positive relative to the 
point C defined in the figure. 
 

The voltage source is also part of a local circuit where it gives rise to a voltage drop over the 20 Ω 

resistor. We can calculate this voltage using the voltage divider theorem as UBC = 10⋅20/(10+20) V 
= 20/3 V ≈ 6.67 V, with point B being positive relative to point C. 
 
We have defined point B as ground; using the information above we find that UC = - 6.67 V and 
thus the open circuit voltage UA = (10 - 6.67) = 3.33 V = UT.  

We can thus draw an equivalent circuit (left below), with UT = 3.33 V and RT = 16.67 ΩΩΩΩ. 
 

 
 

 
b. We want to replace the circuit with a Norton model instead.  
 
The necessary conversion equations were derived in Problem 7 (see above), so we give immediately 
the results: 

IN = UT/RT = (10/3)/(50/3) A = 0.2 A,  RN = RT = 16.67 Ω. The model is shown on the right 
above.  
 
c. What value for the external resistor R would dissipate the largest power? This was solved in 

Problem 2), where we found that this occurred for R = RT = RN = 16.67 Ω. 



10. a. We want to replace the circuit below with an equivalent Thevenin two-pole circuit, 
calculated between A and B: 

 
E = 5 V 
I  = 2 A 

R1 = 40 Ω 

R2 = 60 Ω 

R3 =   6 Ω 

R4 = 20 Ω 

 
We start by short-circuiting all voltage sources and 
opening all current sources, to find the equivalent 
resistance, seen between A and B. We then get the circuit 
on the right-hand side. 
 
R1//R2 is then R', 1/R' = 1/R1 + 1/R2; numerically  

1/R' = 1/40 + 1/60 = 5/120 = 1/24,   and  R' = 24 Ω. 
 

The total Thévenin equivalent resistance RT as seen between A and B is then R4 in parallel with the 
series combination of R3 and R', such that 
1/RT = (1/R4) + [1/(R3+R')], or numerically 1/RT = (1/20) + [1/(6 + 24)] = 1/20 + 1/30 = 

5/60 = 1/12, such that RT = 12 Ω. 
 
Because we have both a voltage source and a current 
source, we use the superposition principle to find 
the Thévenin equivalent voltage UT between A and 
B. We start by removing the current source (fig →) 
and introducing two circulating currents, I1 and I2, 
fulfilling Kirchhoff's current law.  
 
Summing the voltages in the left-hand loop,  
U - I1 (R1+R2) + I2 R2 = 0,  (1) 
and in the right-hand loop 
I1 R2 - I2 (R2+R3+R4) = 0.  (2) 
(2) gives I1 = I2 (R2+R3+R4)/R2, numerically I1 = I2 (60+6+20)/60 = (86/60) I2; 
Inserting into (1) gives 
U = (86/60)I2(R1+R2) - I2R2, or U = I2 [(86/60)(R1+R2) - R2]; numerically, we get 
I2 = 5/[(86/60)(100) - 60] = 5/(500/6) A = 3/50 A.  
The contribution from the voltage source to the output voltage is then UT(1) = I2 R4 V = 1.2 V. 
 

 

We now remove (short) the voltage 
source. We see that the current source 
"sees" three parallel resistors: 
R1, R2, and the series combination R' 

= R3+R4 = 26 Ω. 
The total parallel resistance is then 
1/R = 1/R1 + 1/R2 + 1/R' = 
1/40 + 1/60 + 1/26 = 25/312, 

and the voltage over the current source and over each parallel resistor "leg" is U = IR = 624/25 V. 
 
In particular, this is the voltage over (R3+R4); the voltage over R4 is UT(2) = U R4/(R3+R4) = 
(20/26)(624/25) V = (4/5)24 V = 19.2 V. 
We find the total Thévenin output voltage as UT = UT(1)+UT(2) = 20.4 V. 



b. In this problem we want to replace the same circuit with an equivalent Norton two-pole circuit. 
We can either make the whole calculation again, or use the equivalence of the Norton and Thévenin 
circuits: 
 
The output voltages from the two circuits 
must be equal, that is  
UAB = E = UT = INRN, 
and, obviously, RN = RT. 
 
Using these equations we see immediately  
that RN = RT = 12 Ω,  
and that the equivalent Norton current IN = UT/RT = 1.7 A 
 
 
11. a. We want to replace the circuit below with an equivalent Thevenin two-pole circuit. 
 

 

 
E1 = 12 V 
E2 = 10 V 
E3 =   6 V 

R1 = 80 Ω 

R2 = 40 Ω 

R3 = 80 Ω 

Let us introduce circulating currents I1 and I2 as defined in the figure! (These currents flow in closed 
loops and thus automatically satisfy Kirchhoff's second law.) 
Walking around the left-hand loop we find 
E1 - I1R1 -I1R2 + I2R2 - E2 = 0    (1) 
and from the other loop we get 
E2 + I1R2 - I2R2 - I2R3 = 0.    (2) 
Eq. (2) can be re-written to give I2 = (E2 + I1R2)/(R2 + R3), which inserted in (1) gives 
E1 - I1(R1 +R2) + I2R2 - E2 = E1 - I1(R1 +R2) + (E2 + I1R2) R2/(R2 + R3) - E2;   
E1 - E2  + E2 R2/(R2 + R3) = E1 - E2 R3/(R2 + R3) = I1[R1 + R2 - R2

2/(R2 + R3)]; 
Numerically, 

12 - 10⋅80/120 = I1(80 + 40 - 40
2/120);  12 - 20/3 = I1(120 - 40/3), or 16/3 = I1⋅320/3;  

we find I1 = 16/320 A = 0.050 A 

which inserted into the equation for I2 gives I2 = (10 + 0.05⋅40)/(40 + 80) = 0.10 A. 
The output voltage UAB, which equals the Thévenin voltage UT, is then  

UAB = UT = I2R3 - E3 = (0.1⋅80 - 6) V = 2 V. 
The total resistance RT is simply all three resistances in parallel; 

RT = R1R2R3/(R1R2 + R2R3 + R1R3) = 20 ΩΩΩΩ. 
 
b. To replace this by a Norton circuit, we use again the simple conversion formulas to find 

IN = UT/RT = 2/20 A = 0.1 A,   and RN = RT = 20 Ω. 
 
c. From the Norton equivalent circuit shown on the 
right we immediately realise that short-circuiting the 
output connections will give an output current equal to 
the output of the current source, i.e. 
Ishort = IN = 0.1 A. 

 



12.  

 

 
 
U1 = 2 V 
U2 = 21 V 
 

R1 = 100 Ω 

R2 = 100 Ω 

R3 = 10 Ω 

R4 = 10 Ω 

R5 = 100 Ω 

 
We seek the potential differences between points A, B and C in the figure above.  
We see immediately that current can only circulate in the closed loop in the lower part of the figure. 
Let us assume that this current is I, and that it circulates in the counter-clockwise direction, i.e. 
flowing from point C to point A (right-hand side). Using Ohm's law we find that 
U2 = I (R1 + R2 + R3), or I = U2/(R1 + R2 + R3) = 21/210 A = 0.1 A.. 

a. The voltage between points A and B is then UAB = - I R3 + U1 = (- 0.1⋅10 + 2) V = 1 V.  
         (Point B more positive.) 

b. The voltage between points A and C is UAC = - I R2 = - 0.1⋅100 V = 10 V.  
         (Point C more positive.) 
 
 
13. a. We want to replace the circuit below with a simpler Thévenin equivalent circuit. 

 

 
I  =   1 A 
E1 =   6 V 
E2 = 12 V 

R1 =   8 Ω 

R2 =   6 Ω 

R3 = 12 Ω 

R4 =   8 Ω 

R5 =   8 Ω 

 
Although this circuit looks complicated, it is actually quite simple as is obvious when it is re-drawn 
as shown below. In that figure it is obvious that the circuit consists of three completely independent 
circuits, and as long as the output connections are "open" there is no interaction between the three 
parts. 
 

1. Voltage source E1 creates a voltage drop over R3 given by U1 = E1R3/(R2+R3) = 6⋅12/18 V = 4 V. 
Point C is positive relative to point A. 

2. The current source creates a voltage drop over R1 given by U2 = IR1 = 1⋅8 V = 8 V. Point C is 
positive relative to point D. 

3. Voltage source E2 creates a voltage drop over R4 given by U3 = E2R4/(R4+R5) = 12⋅8/16 V = 6 V. 
Point B is positive relative to point D. 



 

 

 
I  =   1 A 
E1 =   6 V 
E2 = 12 V 

R1 =   8 Ω 

R2 =   6 Ω 

R3 = 12 Ω 

R4 =   8 Ω 

R5 =   8 Ω 

 
We sum up the individual contributions; assuming UB = 0 we find UA = (0 - 6 + 8 - 4) V = - 2 V, 
which we can define as the equivalent Thévenin voltage UT = - 2 V. (B is positive relative to A.) 
 
The total equivalent source resistance RT is easily seen to be (R2//R3) + R1 + (R4//R5), so 

RT = R2R3/(R2+R3) + R1 + R4R5/(R4+R5) = (6⋅12/18 + 8 + 8⋅8/16) Ω = (4 + 8 + 4) Ω = 16 ΩΩΩΩ. 
 
b. We use again the voltage-to-current transformation; 
 

RN = RT = 16 ΩΩΩΩ, and 
IN = UT/RT = -2/16 A = - 125 mA.  (Current flows from A toward B.) 
 
 
 
 
14. The figure shows an industrial installation. A signal is sent by a current source through a 
double wire to an instrument on the right. An interference voltage U is coupled to the signal wires.  

 

 
 I = 10 mA  R1 = 100  Ω  R3 = R4 = 10 Ω 

 U = 10 V  R2 = 1 M Ω 
 
a. We want to know the output voltage UAB between points A and B due to the current source:  
 

The total resistance in the loop, Rloop = R1 + R3 + R4 = 120 Ω is very much smaller than the 
internal resistance R2 of the current source, and the current through the loop is thus  
Iloop = I R2/(R2 + Rloop) ≈ I. 
 
The desired voltage UAB = R1 Iloop;  
 
The exact value is then UAB = R1 I R2/(R2 + Rloop) = 0.99988 V ≈ 1 V. 



b. We also want to know the output voltage UAB due to the interfering voltage source U.  
Ohm's law tells us that the current due to this source is Ii = U/(R1 + R2+ R3+ R4), and thus 
 
UAB = Ii R1 = U R1/(R1 + R2+ R3+ R4) = 10·100/1000120 V = 9.9988 10

-4 V ≈ 1.0 mV. 
 
 
 
 

15. Let us assume that =j a + jb ! We know then that (a + jb)2 = j. 

But if (a + jb)2 = a2 - b2 +2jab = j, we can identify  
  a2 = b2 and  
  2ab = 1, or ab = 1/2, or b = 1/2a. 

Then, a2 = (1/2a)2 = 1/4a2 and a = +1/ 2  = b. 

We find that =j  +(1/ 2 )(1 + j).  

  
 
 
16. We have Z = (1 + 2j)/(1 - j). 
 
We first simplify Z to  
 
Z = (1 + 2j)/(1 - j) = (1 + 2j)(1 + j)/[(1 - j)(1 + j)] = (1 + 2j + j + 2j2)/(1 - j2) =  
= (1 + 3j - 2)/(1 - j2) = (3j - 1)/(1 + 1) = (3j - 1)/2. 
 

|Z| is then |Z| = (1/2)(32 + 1)1/2 = 101/2/2 ≈ 1.581. 
 

arg (Z) = arctan (Im Z)/Re(Z) = arctan (3/(-1)) = arctan (-3) ≈ 1.893 rad (≈ 108.4o). 
 
 
 
  
 
17.    a. We want to know the transfer function  

G(jω) = Uout/Uin. 
 

In this case we can easily apply the jω method, using the 
voltage divider formula: 

 
Uout = Uin⋅R/(R + XC) = Uin⋅R/(R + (1/jωC)) = Uin⋅ jωCR/( jωCR + 1); 
 

G(jω) = Uout/Uin = jωRC/( jωRC + 1). 
 
b.  If we exchange R and C we get instead  

Uout = Uin⋅XC/(R + XC) = Uin⋅(1/jωC)/(R + (1/jωC)) = Uin/( jωCR + 1); 
 

G(jω) = Uout/Uin = 1/( jωRC + 1). 
 
 
 
 
 
 



18. We want to know G = Uout/Uin as a function of frequency for the circuit below. 

 
We use again the jω method. The output voltage can be written 
 

Uout = Uin·R2/(R1 + R2 + jωL), and thus 
 

G(jω) = Uout/Uin = R2/(R1 + R2 + jωL). 
 
 
19.     We want to know the properties of the L-C-R 
series resonance circuit shown on the left. 
 
a. The total impedance Z can be calculated using the 

jω method: 
 

Z = jωL + R + 1/(jωC) = R + j(ωL - (1/ωC)) 
 

b. Z is real at the resonance frequency ωο, i.e. when 

(ωοL - (1/ωοC) = 0, or ωο
2 = 1/LC, which can be written ωο = (LC)

-1/2. 
 

c. We assume that Uin = 1 V rms, and that ω = ωο (i.e. Z = R). We can then calculate the current  
as i = Uin/Z = Uin/R. 

The voltage drop over the inductance is  UL = j i ωοL = j Uin ωοL/R; 
the voltage drop over the resistance is  UR = i R = Uin R/R = Uin; 

the voltage drop over the capacitance is  UC = i /jωοC = i /jωοC = - j Uin/ωοCR. 
 

d. The quality factor Q is defined as Q = ωοL/R. The voltage over the inductance can thus be 

written UL = j Uin ωοL/R = j Uin Q, and its magnitude is |UL |= Q Uin. 
 

e. At ω = ωο,   ωοL - (1/ωοC) = 0    and |Z| = R. 
 

We now increase ω from ωo to (ωo+∆ω), where ∆ω = ωo/2Q and Q>>1. We saw in a) that the 

general expression for Z is Z = R + j(ωL - (1/ωC)) and thus |Z|2 = R2 + [ωL - (1/ωC)]2. 
 

Here, we have ω = ωo+∆ω = ωo+ (ωo/2Q) =  ωo(1 + 1/2Q); 
we then have  

ωωωωL - (1/ωωωωC) = ωo(1 + 1/2Q)L – 1/[ωo(1 + 1/2Q)C] = ωoL + ωoL/2Q – 1/[ωoC(1 + 1/2Q)]; 

but Q = ωoL/R, so ωoL/2Q = R/2,         and [1 + 1/2Q)]
-1 ≈ (1 - 1/2Q) = (1 – R/2ωoL).  

Then, 

ωωωωL - (1/ωωωωC) = ωoL + R/2 – 1/[ωoC(1 + 1/2Q)] ≈ ωoL + R/2 – (1 – R/2ωoL)/ωoC = 

=ωoL + R/2 - 1/ωoC + R/(2LCωo
2). 

However, we know already that (ωoL - 1/ωoC) = 0 and ωo
2 = 1/LC, and thus 

ωωωωL - (1/ωωωωC) = ωoL - 1/ωoC + R/2 + R/(2LCωo
2) = 0 + R/2 + R/2 = R . 

 



We then find |Z|2 = R2 + [ωL - (1/ωC)]2 = R2 + R2 = 2R2, and thus |Z| = R 2 , implying that 

the impedance has increased by a factor 2  (i.e. by 3 dB!) from its minimum at ωο. 
 
 
 
20.    a. We have a parallel resonance circuit as 
shown on the right. The impedance Z of this circuit 
can be calculated as  
 

(1/Z) = (1/XC) + [1/(R + jωL)] =  

= jωC+ [1/(R + jωL)] =  

 

 

= [jωC(R + jωL) + 1]/(R + jωL) = [jωRC - ω2LC + 1]/(R + jωL), 
and thus 

Z = (R + jωL)/[(1 - ω2LC) + jωRC]. 
 
 

b. We define the resonance frequency ωo as the frequency at which Z is real. We re-write Z as  
 

Z = (R + jωL)/[(1 - ω2LC) + jωRC] =  

= (R + jωL) [(1 - ω2LC) - jωRC]/[(1 - ω2LC) + jωRC][(1 - ω2LC) - jωRC] = 

= [R(1 - ω2LC) + jωL(1 - ω2LC) - jωR2C + ω2RLC]/[(1 - ω2LC)2 + (ωRC)2]; 
 

This is real when jωL(1 - ω2LC) - jωR2C = 0,  i.e. 1 - ω2LC - R2C/L = 0. We find that 

ω0
2 = (1 - R2C/L)/(LC), or 

ω0 = [(1 - R
2C/L)/(LC)]1/2 = [(L - R2C)/(L2C)]1/2 = [(1/(LC)) - (R2/L2)]1/2 

 

If Q = ωοL/R >> 1, then R/L << ω0;  

but then R2/L2 << ω0
2 and the second term on the right in the expression  

ω0
2 = [(1/(LC)) - (R2/L2)]  

must be negligible such that ω0
2 ≈ 1/(LC), the same expression as for the series resonance circuit. 

 



21. The figure below shows a Maxwell bridge for measuring inductances. The unknown coil, with 
inductance Lx and resistance Rx, is connected as shown; arrows denote variable resistances. 
 

 

a. We want an expression for Lx at balance. The 
bridge is balanced when the voltages at A and 
B are identical. The voltage at B can be written 

UB = E R4 /(R4 + Rx + jωLx);  
to find the voltage at A, we first calculate the 
parallel impedance Zp between A and earth as  

1/Zp = 1/R3 + jωC3 = (1 + jωR3C3)/R3,  
after which we write  
UA = E Zp/(R1 + Zp) = E R3 /(R1 + R3 + 

jωR1R3C3).  
To get the simplest possible solution we now 
put 1/UA = 1/UB, to get 

(R4 + Rx + jωLx)/R4 =  

(R1 + R3 + jωR1R3C3)/R3;   
we see that Lx appears only in an imaginary 
term. Putting the imaginary terms equal we 

find  jωR3Lx = jωR1R3R4C3, or Lx = R1 R4 C3. 

 
b. We can get further information by putting the real terms equal, i.e. R3 (R4 + Rx) = R4 (R1 + R3), 
giving Rx = R1 R4 / R3. 
 
 
22. The figure below shows a Schering bridge, used for measuring capacitances. The unknown 
capacitance Cx, with resistance rx, is connected as shown; arrows denote variable impedances. We 
want to know the balance conditions for Cx and rx. 
 

 

 

 
The parallel impedance Zp between A and earth 
is found from 

1/Zp = 1/R3 + jωC3 = (1 + jωR3C3)/R3,  
and the series impedance connected between 
point B and the power source is  

ZS = rx + 1/jωCx = (1 + jωrxCx)/jωCx. 
To find the balance condition, we can either 
use UA = UB, or the "diagonal impedance 
match" method. Let us try the latter this time!  
 
We have the bridge in balance when 

R1 /jωC4 (= R1 XC4) = ZpZS =  

= [R3(1 + jωrxCx)]/[jωCx (1 + jωR3C3)]; 
we find  

R1Cx + jωR1R3CxC3 = R3C4 + jωrxR3CxC4. 
 
From the real parts we find R1Cx = R3C4, or 
Cx = R3 C4 /R1; 
from the imaginary parts we see 
R1R3CxC3 = rxR3CxC4, or 
rx = R1 C4 /C3. 

 



23. We want to know the transfer function ("gain") for the circuit below. 
 
Let us assume there is a current I 
flowing from the input terminal, 
through the two resistors, and to the 
output. (No current may enter the input 
of an amplifier, but the output may 
both supply and sink currents.) 
 
From Ohm's law, and using the fact that 
the input terminals must have the same 
potential ("infinite gain"), we can write   
I = (Uin - 0)/Rin = (0 - Uout)/RF, where Rin = 10 kΩ and the feedback resistor RF = 50 kΩ.  
We find immediately Uin/Rin = - Uout/RF, and thus  
G = Uout/Uin = - RF/Rin = - 5.  
 
 
24.     We want to know the gain G = 
Uout/Uin as a function of frequency for 
this circuit. 
 
Considering that no current can enter the 
amplifier input, the gain G can be found 
to be 

G = - Z/R1, where R1 = 10 kΩ and Z is 
the parallel combination of C = 10 nF 

and R2 = 50 kΩ. 
 

1/Z = 1/R2 + jωC = (1 + jωR2C)/R2,  
and Z = R2/(1 + jωR2C); 
 

G = - (R2/R1)/(1 + jωR2C), or numerically G = - 5/(1 + 5 10
-4 jω). 

 
 
 
25.    In the circuit on the right, the voltage on 
the inverting input is equal to the output 
voltage.  
 
Since the voltages at the two input terminals 
must be the same, Uin = Uout, and thus  
G = Uout/Uin = 1.  
 
  

(The name, "voltage follower", derives from the fact that the output voltage tracks or follows the 
input voltage.  The advantage of this circuit is that there will be only a very small input current, 
because of the very high ("infinite") input impedance, and an instrument attached to the output will 
thus measure the correct value with no risk of "loading" effects.) 
 
 
 



26. 
 
In this circuit, we can assume a current is 
flowing through the resistor chain, from 
amplifier output to ground. No current enters 
the amplifier inputs. 
 
The voltage on the two inputs must be the 
same, and from the voltage divider formula 
Uin = Uout 10/(10+90) = Uout/10; 
 
G = Uout/Uin = 10.  
 
 
 
27. We want to analyze the amplification of the differential amplifier shown below. 

 
 

We know that no current can enter an amplifier input. The current from input A must thus go from 
the input terminal, through R1 and R3, to the amplifier output. If we call this current IA and the 
voltage at the amplifier inputs UV, Ohm's law gives 
IA = (UA - UV)/R1 = (UV - Uout)/R3.   (1) 
Because the amplification is "infinite", we must have the same voltage UV at both inputs. The 
current IB from input B must go to the non-inverting input and then down to ground, and thus 
IB = (UB - UV)/R2 = (UV - 0)/R4 = UV/R4.  (2) 
 
Eq. (2) gives (UB - UV)/R2 - UV/R4 = 0; UB/R2 = UV[(1/R2)+(1/R4)] = UV(R2+R4)/R2R4 and thus  
UV = UB R4/(R2+R4).     (2') 
(This result can be obtained immediately by the voltage division theorem!) 
 
Eq. (1) can be re-written as 
Uout = UV + UV(R3/R1) - UA(R3/R1)   (1') 
 
Inserting (2') into (1), we find 
Uout = UB R4/(R2+R4) + UB (R3/R1)[R4/(R2+R4)] - UA(R3/R1). 
 
a. We assume all resistors are equal, i.e. R1 = R2 = R3 = R4: 
Uout = UB(1/2) + UB(1/2) - UA = UB - UA. 
 

b. We assume R1 = R2 = 10 kΩ and R3 = R4 = 30 kΩ : 
Uout = UB (3/4) + UB 3(3/4) - 3 UA = 3(UB - UA). 



28. Let us call the output voltage of the operational amplifier Uout, as usual. We know that 
a) the amplifier input impedance is “infinite”, so 
no current enters the inputs, 
b) the amplification is “infinite”, so the two 
input terminals of the amplifier must have the 
same potatial relative to ground. We can call this 
potential Uin. 
 
If we have a voltage U1, this voltage must give 
rise to a current I1 which flows from terminal U1 
to the inverting input, and from there to the 
amplifier output. We then know that 
I1 = (U1-Uin)/R = (Uin-Uout)/R, which we can 
rewrite as Uout = 2Uin - U1.  
 
The situation in the lower branch is more 
complicated, but we see that the current I must 

 

 

be the sum of the current coming from input terminal U2 and the current coming from the output 
terminal, so  
 
I = (U2-Uin)/R + (Uout-Uin)/R = (U2 - 2Uin + Uout)/R;  
 
if we insert the expression for Uout derived above we find 
 
I = (U2 - 2Uin + Uout)/R = (U2 - 2Uin + 2Uin - U1)/R = (U2 - U1)/R. 
 
The output current thus does not depend on RL, only on R and the difference between the input 
voltages, and the circuit is a current source. 


