## CONCEPT OF RELATION IN MATH

## CARTESIAN PRODUCT OF TWO SETS

Definition : If $A$ and $B$ are two non-empty sets, then the Cartesian product of two sets, $A$ and set $B$ is the set of all ordered pairs $(a, b)$ such that $a \in A$ and $b \in B$ which is denoted as $A \times B$.

$$
A \times B=\{(x, y): x \in A, y \in B\}
$$

If $A=\{7,8\}$ and $B=\{2,4,6\}$, find $A \times B$.

## Solution:

$A \times B=\{(7,2) ;(7,4) ;(7,6) ;(8,2) ;(8,4) ;(8,6)\}$
The 6 ordered pairs thus formed can represent the position of points in a plane, if $A$ and $B$ are subsets of a set of real numbers.

Note:
If either A or B are null sets, then $\mathrm{A} \times \mathrm{B}$ will also be an empty set, i.e., if $\mathrm{A}=\varnothing$ or
$B=\varnothing$, then $A \times B=\varnothing$
Problem: If $A=\{1,3,5\}$ and $B=\{2,3\}$, then Find:
$\begin{array}{llll}\text { (i) } A \times B & \text { (ii) } B \times A & \text { (iii) } A \times A & \text { (iv) }(B \times B)\end{array}$

Solution:

$$
\left.\begin{array}{rl}
A \times B=\{1,3,5\} \times\{2,3\}=[\{1,2\},\{1,3\},\{3,2\},\{3,3\},\{5,2\},\{5,3\}] \\
B \times A & =\{2,3\} \times\{1,3,5\}=[\{2,1\},\{2,3\},\{2,5\},\{3,1\},\{3,3\},\{3,5\}] \\
A \times A & =\{1,3,5\} \times\{1,3,5\}=[\{1,1\},\{1,3\},\{1,5\},\{3,1\},\{3,3\},\{3,5\},\{5,1\}, \\
\{5,3\},\{5,5\}]
\end{array}\right\}
$$

If $A=\{1,2,3\}$
and $B=\{a, b\}$
Then $\begin{aligned} A \times B=\left\{\begin{array}{ll}(1, a) & (1, b) \\ (2, a) \\ (2, b) & (3, a)\end{array}(3, b)\right\}\end{aligned}$
Now
$(1, a) \in A \times B$ True
$\{(1, a)\} \in A \times B$ False
$\{(1, a)\} \subset A \times B$ True

The number of distinct elements in a finite set is called its cardinal number. It is denoted as $n(A)$ and read as 'the number of elements of the set'.

## For example:

(i) Set $A=\{2,4,5,9,15\}$ has 5 elements.

Therefore, the cardinal number of $\operatorname{set} A=5$. So, it is denoted as $n(A)=5$.
(ii) Set $B=\{w, x, y, z\}$ has 4 elements.

Therefore, the cardinal number of set $B=4$. So, it is denoted as $n(B)=4$.

The number of distinct elements in finite set $n(A)=m$
\&
The number of distinct elements in finite set $n(B)=n$
Then
The number of distinct elements in finite set $n(A X B)=m . n$

$$
\begin{aligned}
& \text { If } A=\{7,8\} \text { and } B=\{2,4,6\} \text {, Then } \\
& A \times B=\{(7,2) ;(7,4) ;(7,6) ;(8,2) ;(8,4) ;(8,6)\} \\
& n(A)=m=2 \& n(B)=n=3 \text { then } \\
& n(A \times B)=m \cdot n=2.3=6
\end{aligned}
$$

## Number of Subsets of a given Set:

If a set contains ' $n$ ' elements, then the number of subsets of the set is ( $2^{\wedge} n$ )

Note:
Every set is a subset of itself, i.e., $A \subset A, B \subset B$.
Null set or $\varnothing$ is a subset of every set.

Problem: If $A\{1,3,5\}$, then write all the possible subsets of $A$. Find their numbers.

Solution:

The subset of $A$ containing no elements : \{ \}

The subset of $A$ containing one element each $-:\{1\}\{3\}\{5\}$

The subset of $A$ containing two elements each -: $\{1,3\}\{1,5\}\{3,5\}$

The subset of $A$ containing three elements -: $\{1,3,5)$

Therefore, all possible subsets of $A$ are $\},\{1\},\{3\},\{5\},\{1,3\},\{3,5\},\{1,3,5\}$

Therefore, number of all possible subsets of $A=\mathbf{2 n}^{\wedge} \mathbf{= 8}$

As we know that if the number of distinct elements in finite set $n(A)=m$
\&

The number of distinct elements in finite set $n(B)=n$
Then
The number of distinct elements in finite set $n(A x B)=m . n$

Hence the number of subsets of the set (AxB)= $\mathbf{2 n}^{\wedge}(m . n)$

If $A=\{1,2,3\} \quad \Rightarrow n(A)=3$
And $B=\{a, b\} \quad \Rightarrow n(B)=2$
then $n(A \times B)=3.2=6$
Hence the number of subset of the set $(A \times B)=2^{6}=64$
Every Subset of Set $(A \times B)$ is a Relation

Let $A=\{1,2\}, B=\{a\}$
then $A \times B=\{(1, a)(2, a)\}$

$$
n(A \times B)=2
$$

The number of subset of the set $A \times B=2^{2}=4$, and that are $\},\{(1, a)\},\{(2, a)\},\{(1, a),(2 a)\}$
Here each subset represented a
Relation

## Representation of Relation in Math:

 The relation in math from set $A$ to set $B$ is expressed in different forms.(i) Roster form
(ii) Set builder form
(iii) Arrow diagram

## i. Roster form:

- In this, the relation (R) from set $A$ to $B$ is represented as a set of ordered pairs.
- In each ordered pair 1st component is from A; 2nd component is from B.


## For Example:

1. If $A=\{p, q, r\} B=\{3,4,5\}$
then $R=\{(p, 3),(q, 4),(r, 5)\}$

Hence, $R \subseteq A \times B$

## ii. Set builder form:

In this form, the relation $R$ from set $A$ to set $B$ is represented as $R=\{(a, b): a \in A, b \in B, a . . . b\}$, the blank space is replaced by the rule which associates $a$ and $b$.

Let $R=\{(2,4),(4,6),(6,8),(8,10)$ then $R$ in the set builder form, it can be written as $R=\{a, b\}: a \in A, b \in B, a$ is 2 less than $b\}$

## iii. Arrow diagram:

- Draw two circles representing Set A and Set B.
- Write their elements in the corresponding sets, i.e., elements of Set A in circle A and elements of Set B in circle B.
- Draw arrows from $A$ to $B$ which satisfy the relation and indicate the ordered pairs.

For Example:

1. If $A=\{3,4,5\} B=\{2,4,6,9,15,16,25\}$, then relation $R$ from $A$ to $B$ is defined as 'is a positive square root of' and can be represented by the arrow diagram as shown.
Here $R=\{(3,9) ;(4,16) ;(5,25)\}$
$3 R 9$ is called as ' 3 related as $R$ with 9 ' Here $\mathbf{9}$ is called image of $\mathbf{3}$, and $\mathbf{3}$ is called preimage of 9


Problem: If $A=\{2,3,4,5\}$ and $B=\{1,3,5\}$ and $R$ be the relation 'is less than' from $A$ to $B$ Then represented the Relation R in (i) Roster form
(ii) Set builder form
(iii) Arrow diagram

Given that $A=\{2,3,4,5\}, B=\{1,3,5\}$
And Relation $R$ 'xis Less then' from $A \rightarrow B$
(i) Roster Form

$$
R=\{(2,3),(2,5),(3,5),(4,5)\}
$$

(ii) Set builder Form $R=\{(a, b): a \in A, \& b \in B$,
(iii)


## Types of Relations



$$
R=\phi \subset A \diamond A
$$

$$
R=A \diamond A
$$

A relation $R$ in a set $A$ ( $a, a) \in R$, for every $a \in A$

A relation $R$ in a set $A$ $(a 1, a 2) \in R$ implies that $(a 2, a 1) \in R$, for all a1, a2 $\in A$

A relation $R$ in a set $A$
if $(a 1, a 2) \in R$ and $(a 2, a 3) \in R$ implies that $(a 1, a 3) \in R$, for all a1, a2, $a 3 \in A$.

## Reflexive Relation:

Reflexive relation on set is a binary element in which every element is related to itself.
Let $A$ be a set and $R$ be the relation defined in it.
$R$ is set to be reflexive, if $(a, a) \in R$ for all $a \in A$ that is, every element of $A$ is $R-$ related to itself, in other words aRa for every a $\in A$.

A relation $R$ in a set $A$ is not reflexive if there be at least one element a $\in A$ such that $(a, a) \notin R$.
For example $A$ relation $R$ is defined on the set $Z$ by " $a R b$ if $a-b$ is divisible by $5^{\prime \prime}$ for $a, b \in Z$.
Let $a \in Z$. Then $a-a$ is divisible by 5 . Therefore $a \mathrm{R}$ a holds for all a in Z i.e. R is reflexive.

## Symmetric Relation:

Let $A$ be a set in which the relation $R$ defined. Then $R$ is said to be a symmetric relation, if $(a, b) \in R \Rightarrow(b, a) \in R$, that is, $a R b \Rightarrow b R a$ for all $(a, b) \in R$.

Consider, for example, the set $A$ of natural numbers. If a relation $A$ be defined by " $x+y=5$ ", then this relation is symmetric in A, for $a+b=5 \Rightarrow b+a=5$

But in the set A of natural numbers if the relation $R$ be defined as ' $x$ is a divisor of $y^{\prime}$, then the relation $R$ is not symmetric as $3 R 9$ does not imply 9R3; for, 3 divides 9 but 9 does not divide 3 .

## Transitive Relation:

Let $A$ be a set in which the relation $R$ defined. $R$ is said to be transitive, if

$$
(a, b) \in R \text { and }(b, a) \in R \Rightarrow(a, c) \in R,
$$

That is $a R b$ and $b R c \Rightarrow a R c$ where $a, b, c \in A$.
The relation is said to be non-transitive, if

$$
(a, b) \in R \text { and }(b, c) \in R \text { do not imply }(a, c) \in R \text {. }
$$

For example, in the set $A$ of natural numbers if the relation $R$ be defined by ' $x$ less than $y^{\prime}$ then

$$
\mathrm{a}<\mathrm{b} \text { and } \mathrm{b}<\mathrm{c} \text { imply } \mathrm{a}<\mathrm{c} \text {, that is, } \mathrm{aRb} \text { and } \mathrm{bRc} \Rightarrow \mathrm{aRc} \text {. }
$$

Hence this relation is transitive.

## Equivalence Relation:

Equivalence relation on set is a relation which is reflexive, symmetric and transitive.
A relation $R$, defined in a set $A$, is said to be an equivalence relation if and only if
(i) $R$ is reflexive, that is, aRa for all $a \in A$.
(ii) $R$ is symmetric, that is, $a R b \Rightarrow b R a$ for $a l l a, b \in A$.
(iii) $R$ is transitive, that is $a R b$ and $b R c \Rightarrow a R c$ for all $a, b, c \in A$.

Problem. A relation $R$ is defined on the set $Z$ by " $R \quad b$ if $a-b$ is divisible by 5 " for $a, b \in Z$. Examine if $R$ is an equivalence relation on $Z$.

## Solution:

(i) Let $a \in Z$. Then $a-a$ is divisible by 5 . Therefore aRa holds for all $a$ in $Z$ and $R$ is reflexive.
(ii) Let $a, b \in Z$ and $a R b$ hold. Then $a-b$ is divisible by 5 and therefore $b-a$ is divisible by 5 .

Thus, $a R b \Rightarrow b R a$ and therefore $R$ is symmetric.
(iii) Let $a, b, c \in Z$ and $a R b$, $b R c$ both hold. Then $a-b$ and $b-c$ are both divisible by 5 .

Therefore $a-c=(a-b)+(b-c)$ is divisible by 5 .
Thus, $a R b$ and $b R c \Rightarrow a R c$ and therefore $R$ is transitive.
Since $R$ is reflexive, symmetric and transitive so, $R$ is an equivalence relation on $Z$.

Problem: Let $L$ be the set of all lines in $X Y$ plane and $R$ be the relation in $L$ defined as $R=\{(L 1$, $L 2$ ) : $L 1$ is parallel to $L 2\}$. Show that $R$ is an equivalence relation.
$R=\left\{\left(L_{1}, L_{2}\right): L_{1}\right.$ is parallel to $\left.L_{2}\right\}$
$R$ is reflexive as any line $L$ paralled to it self. i. e. $\quad\left(L_{1}, L_{2}\right) \in R$

Now Let $\left(L_{1}, L_{2}\right) \in R$
$\Rightarrow L_{1}$ is parallel to $L_{2}$
$\qquad$ 4
$\Rightarrow L_{2}$ is parallel to $L_{1}$

$$
\Rightarrow\left(L_{2}, L_{1}\right) \in R
$$

$\therefore R$ is symmetric
Now Let $\left(L_{1}, L_{2}\right)\left(L_{2}, L_{3}\right) \in R$.
$\Rightarrow L_{1}$ is parallel to $L_{2}$ \& $L_{2}$ is parallel to $L_{3}$
$\qquad$ 4
$\qquad$ 4
$\Rightarrow L_{2}$ is parallel to $L_{1}$ \& $L_{3}$ is parallel to $L_{2}$ $\qquad$
$\Rightarrow L_{1}$ is parallel to $L_{3}$
$\therefore R$ is transitive

Problem: Show that the relation $R$ in the set $A=\{1,2,3,4,5\}$ given by $R=\{(a, b):|a-b|$ is even\}, is an equivalence relation.

Given that $A=\{1,2,3,4,5\}$
\& $\quad R=\{(a, b):|a-b|$ is even $\}$
for any element $a \in A$. We have
$|a-a|=0$ (an even number)
$\therefore R$ is reflexive
Let $(a, b) \in R$
$\Rightarrow|a-b|$ is even
$\Rightarrow|-(b-a)|=|b-a|$ is also even $\Rightarrow(b, a) \in R$
$\therefore R$ is symmetric
Now, Let $(a, b) \in R$ and $(b, c) \in R$
$\Rightarrow|a-b|$ is even and $|b-c|$ is even
$\Rightarrow(a-c)=(a-b)+(b-c)$ is even
Hence
$R$ is equivalence
$\Rightarrow|a-c|$ is even
$\Rightarrow \quad R$ is transitive.

Domain Co-domain and Range of Relation
Domain: what can go into a Relation
Codomain: what may possibly come out of a Relation
Range: what actually comes out of a Relation

Domain $=\{1,2,3,4\}$


Codomain $=\{5,6,7,8\}$
Range $=\{5,6,8\}$

Problem: Given that $A=\{2,4,5,6,7\}, B=\{2,3,4\}$. $R$ is a relation from $A$ to $B$ defined $b y=\{(a, b): a \in A, b \in B$ and $a$ is divisible by $b$ \}
find (i) $R$ in the roster form
(ii) Represent R by arrow diagram.
(iii) Domain of R
(iv) Codomain of $R$

Range of $R$
Solution: (i) $\mathbb{R}$ in roster form
Given that $A=\{2,4,5,6,7\}$ And $B=\{2,3,4, B\}$
$R=\{(a, b): a \in A, b \in B$ \& $a$ is divisible by $b\}$

$$
=\{(2,2),(4,2),(4,4),(6,2),(6,3)\}
$$

Domain of $R=\{2,4,6\}$
Codomain of $R=\{2,3,4,8\}$


Range of $R=\{2,3,4\}$

