


CARTESIAN PRODUCT OF TWO SETS

Definition : If A and B are two non-empty sets, then the Cartesian product of two sets, A and set B is
the set of all ordered pairs (a, b) such that a €A and b €B which is denoted as A x B.
AxB={(x,y):x€A,y€EB}

If A={7,8}and B ={2, 4, 6}, find A x B.
Solution:
AxB={(7,2);(7,4); (7, 6); (8, 2); (8, 4); (8,6)}

The 6 ordered pairs thus formed can represent the position of points in a plane, if A and B are subsets of a set
of real numbers.

Note:

If either A or B are null sets, then A xB will also be an empty set, i.e., if A=Q or
B=0Q,thenAxB=0




Problem:If A={1, 3,5}and B = {2, 3}, then Find:
(i)AxB (i) B x A (iii)AxA (iv) (B x B)

Solution:

={1, 3, 5} x{2,3} = [{1, 2},11, 3},{3, 2},13, 3},{5, 2},{5, 3}]
=1{2, 3} x11, 3, 5} = [{2, 1},{2, 3},12, 5},13, 1},13, 3},{3, 5}

={1, 3,5} x {1, 3, 5}= [{1, 1},{1, 3},{1, 5},{3, 1},{3, 3},{3, 5},{5, 1},
{5, 31,15, 51

=1{2,3}x12, 3} = [{2, 2},{2, 3,13, 2},13, 3]]



A:}. A ={ ‘, 2,3}

ond G ={ Q, b}

Then Ax@Q = { (hLa) (L,b) (2,00
(2,b) (3,a) (3,b}

Now
(Lha) &€ AxB  THue

L} € AXe  False
f L0} AXB Txve




The number of distinct elements in a finite set is called its cardinal number. It
is denoted as n(A) and read as ‘the number of elements of the set’.

For example:
(i) Set A={2,4,5,9, 15} has 5 elements.
Therefore, the cardinal number of set A = 5. So, it is denoted as n(A) = 5.

(ii) Set B = {w, X, vy, z} has 4 elements.
Therefore, the cardinal number of set B = 4. So, it is denoted as n(B) = 4.



If
The number of distinct elements in finite set n(A)=m

&
The number of distinct elements in finite set n(B)=n
Then
The number of distinct elements in finite set n(AXB)=m.n

If A={7,8}and B=1{2, 4, 6}, Then

AxB={(7,2);(7,4);(7,6);(8,2);(8,4); (8, 6)}

n(A)=m=2 & n(B)=n=3 then

n(AxB)=m.n=2.3=6



Number of Subsets of a given Set:

If a set contains ‘n’ elements, then the number of
subsets of the set is (2”n)

Note:
Every set is a subset of itself, i.e., AC A, B C B.

Null set or @ is a subset of every set.



Problem: If A {1, 3, 5}, then write all the possible subsets of A. Find their numbers.

Solution:

The subset of A containing no elements : { }

The subset of A containing one element each -:{1} {3} {5}

The subset of A containing two elements each -: {1, 3} {1, 5} {3, 5}

The subset of A containing three elements -: {1, 3, 5)

Therefore, all possible subsets of A are { }, {1}, {3}, {5}, {1, 3}, {3, 5}, {1, 3, 5}

Therefore, number of all possible subsets of A =2/3=8



As we know that if the number of distinct elements in finite
set n(A)=m

&
The number of distinct elements in finite set n(B)=n
Then
The number of distinct elements in finite set n(AxB)=m.n

Hence the number of subsets of the set (AxB)= 2~A(m.n)
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Representation of Relation in Math:
The relation in math from set A to set B is
expressed in different forms.

(i) Roster form

(ii) Set builder form

(iii) Arrow diagram



i. Roster form:
® In this, the relation (R) from set A to B is represented as a set of ordered
pairs.

® In each ordered pair 1st component is from A; 2nd component is from B.

For Example:
1.IfA={p, q,r}B={3, 4, 5}

then R = {(p, 3), (q, 4), (r, 5)}

Hence, RE AxB



li. Set builder form:

In this form, the relation R from set A to set B is
represented as R={(a, b):a € A, b € B, a...b}, the blank
space is replaced by the rule which associates a and b.

Let R ={(2, 4), (4, 6), (6, 8), (8, 10) then R in the set
builder form, it can be written as
R={a,b}:a€A b€EB,ais?2lessthan b}



ili. Arrow diagram:

® Draw two circles representing Set A and Set B.

e Write their elements in the corresponding sets, i.e., elements of Set A in circle A and

elements of Set B in circle B.
e Draw arrows from A to B which satisfy the relation and indicate the ordered pairs.

For Example:
1.IfA={3,4,5}B={2,4,6,9, 15, 16, 25}, then relation R from A to B is defined as ‘is a

positive square root of’ and can be represented by the arrow diagram as shown.
Here R ={(3, 9); (4, 16); (5, 25)}

3 R9is called as ‘3 related as R with 9’
Here 9 is called image of 3, and
3 is called preimage of 9




Problem: If A={2, 3,4,5}and B={1, 3, 5} and R be the relation 'is less than' from A to B
Then represented the Relation R in (i) Roster form  (ii) Set builder form (iii) Arrow
diagram

Ci
iven that A={2'3, 4, 5} ’ B,_-.{ , 3,57

And  Helabon R'xA Less Hen' fxom A — 13
() Roster Form
R ={ ( 213). (2,5), (3)5—), (")5_)}
(i) Set bvilder Fovm 2. {(a,b): ae A, & beB,

e . s 0<b}
(i)




Types of Relations

R=db<ACGA

Empty

" Universal Bikkeds

Arelation Rin a set A
(a, a) € R, foreveryac A

Relation Reflexive

Arelation Rin a set A
(a1, a2) € R implies that (a2, al) € R,
forallal, a2 A

Ref + Sym +Trans= === Sym metric

Equivalence Relation

Arelation Rin a set A

T N i iV if (al, a2) = R and (a2, a3)= R implies
rans t € that (al, a3)= R, for all al, a2,

a3 e A.




Reflexive Relation:

Reflexive relation on set is a binary element in which every element is related
to itself.
Let A be a set and R be the relation defined in it.

R is set to be reflexive, if (a, a) € R for all a € A that is, every element of A is R-
related to itself, in other words aRa for every a € A.

A relation R in a set A is not reflexive if there be at least one elementa € A
such that (a, a) € R.

For example A relation R is defined on the set Z by “aRb if a — b is divisible by
5” fora, b € Z.

Leta € Z. Then a—a is divisible by 5. Therefore aR a holds forallainZi.e.R s
reflexive.



Symmetric Relation:

Let A be a set in which the relation R defined. Then R is said to be a
symmetric relation, if (a, b) € R = (b, a) € R, that is, aRb = bRa for
all (a, b) € R.

Consider, for example, the set A of natural numbers. If a relation A
be defined by “x + y = 57, then this relation is symmetric in A, for
a+tb=5=>b+a=5

But in the set A of natural numbers if the relation R be defined as ‘x
is a divisor of y’, then the relation R is not symmetric as 3R9 does
not imply 9R3; for, 3 divides 9 but 9 does not divide 3.



Transitive Relation:

Let A be a set in which the relation R defined. R is said to be transitive, if
(a, b) eRand (b,a) ER = (a, c) ER,

That is aRb and bRc = aRc where a, b, c € A.

The relation is said to be non-transitive, if
(a, b) € Rand (b, c) € Rdo notimply (a, c) €R.

For example, in the set A of natural numbers if the relation R be defined by ‘x
less than y’ then

a<bandb<cimplyac<c, thatis, aRb and bRc = aRc.
Hence this relation is transitive.



Equivalence Relation:

Equivalence relation on set is a relation which is reflexive, symmetric and transitive.

A relation R, defined in a set A, is said to be an equivalence relation if and only if
(i) R is reflexive, that is, aRa for all a € A.

(ii) R is symmetric, that is, aRb = bRa for all a, b € A.

(iii) R is transitive, that is aRb and bRc = aRc for all a, b, c € A.

Problem. A relation R is defined on the set Z by “a R b if a—b is divisible by 5” for a, b € Z.
Examine if R is an equivalence relation on Z.

Solution:

(i) Let a € Z. Then a —ais divisible by 5. Therefore aRa holds for all a in Z and R is reflexive.
(ii) Let a, b € Z and aRb hold. Then a — b is divisible by 5 and therefore b — a is divisible by 5.
Thus, aRb = bRa and therefore R is symmetric.

(iii) Let a, b, c € Zand aRb, bRc both hold. Then a — b and b — c are both divisible by 5.
Therefore a—c=(a—b) + (b—c)is divisible by 5.

Thus, aRb and bRc = aRc and therefore R is transitive.

Since R is reflexive, symmetric and transitive so, R is an equivalence relation on Z.



Problem: Let L be the set of all lines in XY plane and R be the relation in L defined as R = {(L1,
L2) : L1 is parallel to L2}. Show that R is an equivalence relation.

{(L,,L,_) > Ly 1s pavallel o L’-}

i‘? s vellexive Qs Qny dine L pavalled +o .t sd}
= 8. ( L| L-._) & R

Now Lt (L,L) e R by
= Li A pavale 4o L, La
= Ly is pPoarald 45 L

= (4, L)) & R

T Rew e Symme-+rc

,JL'“) Ld—‘ CL| L:_) (Lg_,Ls) 6R \:\
= L, is Pavallel 4oL ¥ L3 is pavalld 4o L2

= Ly \s Pa'm“d +o L3 Hence R is an qUiVInce
. R 18 2y=EF tvankihve Yelalion




Problem: Show that the relation Rinthe set A={1, 2, 3, 4, 5} givenby R ={(a, b) : |a—b| is
even}, is an equivalence relation.

Given khak A - { , 2,3, L',S'}
% R = { (,b): {a-b) ia evcn}

for Oy Rlement a € A Lle have
lo-o\ =o (an even wumbey)
SR <edlexive
Let (Ca,b) € R
= |a-bl » even
= ‘-(b-a)] = ‘B—a\ A dlso Even (ba) R
. R s sywme+xic

Now K Let (a,b) eR and (bec) €R

A d . Hen ce
= Ja-bl s even an )5-4? D even TR s equival
= (0-c) = (a-b) -+ (b)) 1s even ~velation

= la-¢c\ s even
=2 .. R 18 Evansitive




Domain Co-domain and Range of Relation

Domain: what can go into a Relation

Codomain: what may possibly come out of a Relation
Range: what actually comes out of a Relation

Domain ={1, 2, 3, 4}
Codomain = {5,6,7,8}
Range = {5,6,8}



Problem: Given that A={2,4,5, 6, 7}, B={2, 3,4}. R is a relation from A to B defined by R={(a, b) :a €A, b EB
and a is divisible by b}

find (i) Rin the roster form (ii) Represent R by arrow diagram. (iii) Domain of R (iv) Codomainof R  (v)
Range of R

Solution: 1y R in Sosler .:FOY""',

Given that A = {245 6,7] And B={273 43}
R=§(Gb): 00cA becB % @ rva dvisible by b}

Y

={ (2,2) ,(4,2), (H,A),(6,2>,L643)}F'

Dorrain o} R = £2,4 ¢}
Codomain o) R = { 2, 3,"-\, 8}
"?onag ol R= { 2, 3{: ’-1} ‘ :

JON L N)y
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