# CONCEPT OF RELATION IN MATH

# **CARTESIAN PRODUCT OF TWO SETS**

**Definition** : If A and B are two non-empty sets, then the Cartesian product of two sets, A and set B is the set of all ordered pairs (a, b) such that  $a \in A$  and  $b \in B$  which is denoted as  $A \times B$ .

 $A \times B = \{(x, y) : x \in A, y \in B\}$ 

If  $A = \{7, 8\}$  and  $B = \{2, 4, 6\}$ , find  $A \times B$ .

Solution:

 $A \times B = \{(7, 2); (7, 4); (7, 6); (8, 2); (8, 4); (8, 6)\}$ 

The 6 ordered pairs thus formed can represent the position of points in a plane, if A and B are subsets of a set of real numbers.

#### Note:

If either A or B are null sets, then A ×B will also be an empty set, i.e., if A =  $\emptyset$  or B =  $\emptyset$ , then A × B =  $\emptyset$ 

| Problem: If A = { 1, 3, 5} and B = {2, 3}, then Find: |                                     |                    |                                 |
|-------------------------------------------------------|-------------------------------------|--------------------|---------------------------------|
| (i) A × B                                             | (ii) B × A                          | (iii) A × A        | (iv) (B × B)                    |
| Solution:                                             |                                     |                    |                                 |
| A ×B={1, 3, 5                                         | 5) × {2,3} = [{1, 2]                | },{1, 3},{3, 2},{3 | 3, 3},{5, 2},{5, 3}]            |
| $\mathbf{B} \times \mathbf{A} = \{2, 3\}$             | <pre></pre>                         | 1},{2, 3},{2, 5}   | ,{3, 1},{3, 3},{3, 5}]          |
| A × A = {1, 3,<br>{!                                  | 5} × {1, 3, 5}= [{<br>5, 3},{5, 5}] | [1, 1},{1, 3},{1,  | 5},{3, 1},{3, 3},{3, 5},{5, 1}, |

 $B \times B = \{2, 3\} \times \{2, 3\} = [\{2, 2\}, \{2, 3\}, \{3, 2\}, \{3, 3\}]$ 

 $f = \{1, 2, 3\}$ and  $B = \{a, b\}$ Then  $A \times B = \{(1,a) (1,b) (2,a) (2,b) (2,b) (3,c) (3,b)\}$ Now  $(1,a) \in A \times B$ True  $\{(1,a)\} \in A \times B$ False  $\{(1,a)\} \subset A \times B$ True

The number of distinct elements in a finite set is called its cardinal number. It is denoted as n(A) and read as 'the number of elements of the set'.

For example:

(i) Set A = {2, 4, 5, 9, 15} has 5 elements.

Therefore, the cardinal number of set A = 5. So, it is denoted as n(A) = 5.

(ii) Set  $B = \{w, x, y, z\}$  has 4 elements.

Therefore, the cardinal number of set B = 4. So, it is denoted as n(B) = 4.

lf

The number of distinct elements in finite set n(A)=m

### &

The number of distinct elements in finite set n(B)=n

Then

The number of distinct elements in finite set n(AXB)=m.n

If A = {7, 8} and B = {2, 4, 6}, Then

 $A \times B = \{(7, 2); (7, 4); (7, 6); (8, 2); (8, 4); (8, 6)\}$ 

n(A)=m=2 & n(B)=n=3 then

n(A × B ) = m.n=2.3=6

## Number of Subsets of a given Set:

If a set contains 'n' elements, then the number of subsets of the set is (2<sup>n</sup>)

### Note:

Every set is a subset of itself, i.e.,  $A \subset A$ ,  $B \subset B$ .

Null set or Ø is a subset of every set.

**Problem**: If A {1, 3, 5}, then write all the possible subsets of A. Find their numbers.

#### Solution:

The subset of A containing no elements : { }

The subset of A containing one element each -:{1} {3} {5}

The subset of A containing two elements each -: {1, 3} {1, 5} {3, 5}

The subset of A containing three elements -: {1, 3, 5}

Therefore, all possible subsets of A are { }, {1}, {3}, {5}, {1, 3}, {3, 5}, {1, 3, 5}

Therefore, number of all possible subsets of A =2^3=8

As we know that if the number of distinct elements in finite set n(A)=m

### &

The number of distinct elements in finite set n(B)=n Then

The number of distinct elements in finite set n(AxB)=m.n

Hence the number of subsets of the set (AxB)= 2^(m.n)

 $A = \{ 1, 2, 3 \}$  $\Rightarrow n(A) = 3$ 45 And  $B = \{a, b\}$  $\Rightarrow n(B) = 2$  $n(A \times B) = 3.2 = 6$ then Hence the number of Subset of the Set  $(A \times B) = 2^6 = 64$ Every Subset of Set (AxB) is a Relation

Let  $A = \{1, 2\}$ ,  $B = \{a\}$ then  $A \times B = \{ (1, a) (2, a) \}$  $n(A \times B) = 2$ The number of subset of the Set  $A \times B = 2^2 = 4$ , and that are  $\{ \}, \{(1,a)\}, \{(2,a)\}, \{(1,a), (2a)\}$ Here each subset represented a

Representation of Relation in Math: The relation in math from set A to set B is expressed in different forms. (i) Roster form

(ii) Set builder form

(iii) Arrow diagram

## i. Roster form:

• In this, the relation (R) from set A to B is represented as a set of ordered pairs.

• In each ordered pair 1st component is from A; 2nd component is from B.

**For Example:** 1. If A = {p, q, r} B = {3, 4, 5}

then R = {(p, 3), (q, 4), (r, 5)}

Hence,  $R \subseteq A \times B$ 

# ii. Set builder form:

In this form, the relation R from set A to set B is represented as  $R = \{(a, b): a \in A, b \in B, a...b\}$ , the blank space is replaced by the rule which associates a and b.

Let R = {(2, 4), (4, 6), (6, 8), (8, 10) then R in the set builder form, it can be written as R = {a, b} : a  $\in$  A, b  $\in$  B, a is 2 less than b}

## iii. Arrow diagram:

- Draw two circles representing Set A and Set B.
- Write their elements in the corresponding sets, i.e., elements of Set A in circle A and elements of Set B in circle B.
- Draw arrows from A to B which satisfy the relation and indicate the ordered pairs. **For Example:**

1. If A =  $\{3, 4, 5\}$  B =  $\{2, 4, 6, 9, 15, 16, 25\}$ , then relation R from A to B is defined as 'is a positive square root of' and can be represented by the arrow diagram as shown. Here R =  $\{(3, 9); (4, 16); (5, 25)\}$ 

3 R 9 is called as '3 related as R with 9'
Here 9 is called image of 3, and
3 is called preimage of 9



**Problem**: If A = {2, 3, 4, 5} and B = {1, 3, 5} and R be the relation 'is less than' from A to B Then represented the Relation R in (i) Roster form (ii) Set builder form (iii) Arrow diagram

Given that 
$$A = \{2, 3, 4, 5\}$$
,  $B = \{1, 3, 5\}$   
And Relation R'xis Less then' from  $A \rightarrow B$   
(i) Roster form  
 $R = \{(2, 3), (2, 5), (3, 5), (4, 5)\}$   
(ii) Set builder Form  $R = \{(a, b): a \in A, \& b \in B, a < b\}$   
(iii)  
 $A = R = \{a, b, b, a < b, b \in B, a < b\}$   
(iii)  
 $A = R = \{a, b, b, a < b, b \in B, a < b\}$ 



# **Reflexive Relation:**

Reflexive relation on set is a binary element in which every element is related to itself.

Let A be a set and R be the relation defined in it.

R is set to be reflexive, if (a, a)  $\in$  R for all a  $\in$  A that is, every element of A is R-related to itself, in other words aRa for every a  $\in$  A.

A relation R in a set A is not reflexive if there be at least one element  $a \in A$  such that  $(a, a) \notin R$ .

For example A relation R is defined on the set Z by "aRb if a – b is divisible by 5" for a,  $b \in Z$ .

Let  $a \in Z$ . Then a - a is divisible by 5. Therefore  $a \in R$  a holds for all a in Z i.e. R is reflexive.

# **Symmetric Relation:**

Let A be a set in which the relation R defined. Then R is said to be a symmetric relation, if  $(a, b) \in R \Rightarrow (b, a) \in R$ , that is, aRb  $\Rightarrow$  bRa for all  $(a, b) \in R$ .

Consider, for example, the set A of natural numbers. If a relation A be defined by "x + y = 5", then this relation is symmetric in A, for  $a + b = 5 \Rightarrow b + a = 5$ 

But in the set A of natural numbers if the relation R be defined as 'x is a divisor of y', then the relation R is not symmetric as 3R9 does not imply 9R3; for, 3 divides 9 but 9 does not divide 3.

## **Transitive Relation:**

Let A be a set in which the relation R defined. R is said to be transitive, if (a, b)  $\in$  R and (b, a)  $\in$  R  $\Rightarrow$  (a, c)  $\in$  R,

That is aRb and bRc  $\Rightarrow$  aRc where a, b, c  $\in$  A.

The relation is said to be non-transitive, if (a, b)  $\in \mathbb{R}$  and (b, c)  $\in \mathbb{R}$  do not imply (a, c)  $\in \mathbb{R}$ .

For example, in the set A of natural numbers if the relation R be defined by 'x less than y' then

a < b and b < c imply a < c, that is, aRb and bRc  $\Rightarrow$  aRc. Hence this relation is transitive.

### **Equivalence Relation:**

Equivalence relation on set is a relation which is reflexive, symmetric and transitive.

A relation R, defined in a set A, is said to be an equivalence relation if and only if (i) R is reflexive, that is, aRa for all  $a \in A$ . (ii) R is symmetric, that is, aRb  $\Rightarrow$  bRa for all  $a, b \in A$ . (iii) R is transitive, that is aRb and bRc  $\Rightarrow$  aRc for all  $a, b, c \in A$ .

**Problem.** A relation R is defined on the set Z by "a R b if a - b is divisible by 5" for  $a, b \in Z$ . Examine if R is an equivalence relation on Z.

### Solution:

(i) Let  $a \in Z$ . Then a - a is divisible by 5. Therefore aRa holds for all a in Z and R is reflexive. (ii) Let  $a, b \in Z$  and aRb hold. Then a - b is divisible by 5 and therefore b - a is divisible by 5. Thus, aRb  $\Rightarrow$  bRa and therefore R is symmetric.

- (iii) Let a, b,  $c \in Z$  and aRb, bRc both hold. Then a b and b c are both divisible by 5.
- Therefore a c = (a b) + (b c) is divisible by 5.
- Thus, aRb and bRc  $\Rightarrow$  aRc and therefore R is transitive.
- Since R is reflexive, symmetric and transitive so, R is an equivalence relation on Z.

**Problem**: Let L be the set of all lines in XY plane and R be the relation in L defined as R = {(L1, L2) : L1 is parallel to L2}. Show that R is an equivalence relation.

 $R = \{(L_1, L_2) : L_1 \text{ is parallel to } L_2\}$ R is reflexive as any line L, paralled to it self. i.e.  $(L_1, L_1) \in \mathbb{R}$ Now Let (LI, L2) ER > Li is parallel to L2 > L2 is parallel to L1 = (4,4) ER .. R is symmetric

**Problem**: Show that the relation R in the set A =  $\{1, 2, 3, 4, 5\}$  given by R =  $\{(a, b) : |a - b| is even\}$ , is an equivalence relation.

Given that  $A = \{1, 2, 3, 4, 5\}$ &  $R = \{(a,b): | a-b \}$  is even for any element a EA. We have 1a-al = 0 (an even number) ... R is reflexive Let  $(a,b) \in R$  $\Rightarrow$  |a-b| is even  $\Rightarrow |-(b-a)| = |b-a|$  is also even  $\Rightarrow (b,a) \in \mathbb{R}$ :. R is symmetric Now, Let (a,b) ER and (b,c) ER Hence ⇒ la-bl is even and 1b-cl is even R is equivalence  $\Rightarrow$  (a-c) = (a-b) + (b-c) is even relation > |a-c| is even ⇒ .: R is transitive.

### **Domain Co-domain and Range of Relation**

**Domain**: what can go *into* a Relation **Codomain**: what *may possibly come out* of a Relation **Range**: what *actually comes out* of a Relation



Domain = {1, 2, 3, 4} Codomain = {5,6,7,8} Range = {5,6,8} **Problem**: Given that A =  $\{2, 4, 5, 6, 7\}$ , B =  $\{2, 3, 4\}$ . R is a relation from A to B defined by R =  $\{(a, b) : a \in A, b \in B and a is divisible by b\}$ 

find (i) R in the roster form (ii) Represent R by arrow diagram. (iii) Domain of R (iv) Codomain of R (v) Range of R

Solution: (j) R in noster form Given that A = { 2, 4, 5, 6, 7 } And B = { 2, 3, 4, B }  $R = \{ (a, b) : a \in A, b \in B \& A is divisible by b \}$  $= \{ (2,2), (4,2), (4,4), (6,2), (6,3) \}$ R Domain of  $R = \{2, 4, 6\}$ Codomain of  $R = \{2, 3, 4, 8\}$ of  $R = \{2, 3, 4\}$ Range