Q.1: Represent the following situations in the form of quadratic equations:
(i) The area of a rectangular plot is $528 \mathrm{~m}^{2}$. The length of the plot (in metres) is one more than twice its breadth. We need to find the length and breadth of the plot.
(ii) A train travels a distance of 480 km at a uniform speed. If the speed had been $8 \mathrm{~km} / \mathrm{h}$ less, then it would have taken 3 hours more to cover the same distance. What is the speed of the train?
(3)
Q.2: Find the roots of quadratic equations by factorisation:
(i) $\sqrt{ } 2 x^{2}+7 x+5 \sqrt{ } 2=0$
(ii) $100 x^{2}-20 x+1=0$
Q.3: Find two consecutive positive integers, sum of whose squares is 365 . (2)
Q.4: Find the roots of the following quadratic equations, if they exist, by the method of completing the square:
(i) $2 x^{2}-7 x+3=0$
(ii) $2 x^{2}+x-4=0$
Q.5: The diagonal of a rectangular field is 60 metres more than the shorter side. If the longer side is 30 metres more than the shorter side, find the sides of the field. (2)
Q. 6 : Solve the quadratic equation $2 x^{2}-7 x+3=0$ by using quadratic formula. (2)
Q.7: Find the values of k for each of the following quadratic equations, so that they have two equal roots.
$k x(x-2)+6=0$
Q.8: Is it possible to design a rectangular park of perimeter 80 and area 400 sq.m.? If so find its length and breadth.

