15. ABBREVIATION USED IN DEDUCTIVE GEOMETRY

B. Properties of Circle

No.	Diagram	Given Condition	Conclusion	Abbreviation
1		$OM \perp AB$	AM = MB	⊥ from centre to chord bisects chord
2		AM = MB	$OM \perp AB$	line joining centre to mid-pt of chord ⊥ chord
3	O M M B	$CM \perp AB$ and AM = MB	CM passes through O	⊥ bisector of chord passes through centre
4	N O B	AB = PQ	OM = ON	equal chords, equidistant from centre
5		OM = ON	AB = CD	chords equidistant from centre are equal
6	A	The angle at the centre and the angle at the circumference <u>are</u> <u>subtended by the</u> <u>same arc (i.e. arc AB</u> <u>in this case)</u>	$\angle AOB = 2 \angle ACB$	\angle at centre twice \angle at Θ^{ce}
7	A O B	AB is a diameter and C is a point on circle	$\angle ACB = 90^{\circ}$	∠ in semi-circle
8	A O B	$\angle ACB = 90^{\circ}$	AB is diameter	converse of ∠ in semi- circle
9	C D B B	AB is a chord	$\angle ACB = \angle ADB$	∠s in the same segment

No.	Diagram	Given Condition	Conclusion	Abbreviation
10	D O O B	ABCD is a cyclic quadrilateral	$\angle A + \angle C = 180^{\circ}$ $\angle B + \angle D = 180^{\circ}$	opp. ∠s, cyclic quad.
11		One side of a cyclic quadrilateral is produced to form an exterior angle	$\angle ADC = \angle EBC$	ext. ∠, cyclic quad.
12	C A B	$\angle ACB = \angle ADB$ and both <i>C</i> and <i>D</i> are on the same side of <i>AB</i>	A, B, C and D are concyclic	converse of ∠s in the same segment
13	C A B	$\angle A + \angle D = 180^{\circ}$ $\angle B + \angle C = 180^{\circ}$	A, B, C and D are concyclic	opp. ∠s supp.
14	A B E	<i>ABE</i> is a straight line $\angle ACD = \angle DBE$	A, B, C and D are concyclic	ext. $\angle =$ int. opp. \angle
15(i)	A B D	$\angle AOB = \angle COD$	AB = CD	equal ∠s, equal chords
15(ii)	A B	AB = CD	$\angle AOB = \angle COD$	equal chords, equal ∠s
16(i)		$\angle AOB = \angle COD$	$\widehat{AB} = \widehat{CD}$	equal ∠s, equal arcs

No.	Diagram	Given Condition	Conclusion	Abbreviation
16(ii)		$\widehat{AB} = \widehat{CD}$	$\angle AOB = \angle COD$	equal arcs, equal ∠s
17(i)		$\widehat{AB} = \widehat{CD}$	AB = CD	equal arcs, equal chords
17(ii)		AB = CD	$\widehat{AB} = \widehat{CD}$	equal chords, equal arcs
18	D C A B	$\angle AOB : \angle COD = m : n$	$\widehat{AB}: \widehat{CD} = m: n$	arcs prop. to ∠s at centre
19	D C A B	$\angle ADB : \angle BDC = m : n$	$\widehat{AB}:\widehat{BC}=m:n$	arcs prop. to ∠s at Θ ^{ce}
21	A T B	AB is the tangent to the circle at the point T	$AB \perp OT$	tangent ⊥ radius
22		$ATB \perp OT$	<i>ATB</i> is the tangent to the circle at <i>T</i> .	converse of tangent ⊥ radius
23(i)	P O Q T	Two tangents drawn from an external point T meet the circle at points P and Q	TP = TQ	tangent prop.

No.	Diagram	Given Condition	Conclusion	Abbreviation
23(ii)	P O Q T	Two tangents drawn from an external point T meet the circle at points P and Q	$\angle TOP = \angle TOQ$	tangent prop.
23(iii)	P Q T	Two tangents drawn from an external point T meet the circle at points P and Q	$\angle OTP = \angle OTQ$	tangent prop.
24	P A Q	<i>PQ</i> is the tangent to the circle at point <i>A</i>	$\angle BCA = \angle BAP$	∠ in alt. segment
25	P A Q	$\angle BCA = \angle BAP$	<i>PQ</i> is the tangent to the circles at <i>A</i>	converse of ∠ in alt. segment
26	Touching externally Touching internally	Two circles touch each other (either externally or internally)	<i>OAO</i> ' and <i>OO</i> ' <i>A</i> are straight lines	prop. of two touching circles

