15. Abbreviation used in Deductive Geometry

B. Properties of Circle

No.	Diagram	Given Condition	Conclusion	Abbreviation
1		$O M \perp A B$	$A M=M B$	\perp from centre to chord bisects chord
2		$A M=M B$	$O M \perp A B$	line joining centre to mid-pt of chord \perp chord
3		$\begin{gathered} C M \perp A B \text { and } \\ A M=M B \end{gathered}$	$C M$ passes through O	\perp bisector of chord passes through centre
4		$A B=P Q$	$O M=O N$	equal chords, equidistant from centre
5		$O M=O N$	$A B=C D$	chords equidistant from centre are equal
6		The angle at the centre and the angle at the circumference are subtended by the same arc (i.e. $\operatorname{arc} A B$ in this case)	$\angle A O B=2 \angle A C B$	$\begin{gathered} \angle \text { at centre twice } \angle \text { at } \\ \Theta^{\text {ce }} \end{gathered}$
7		$A B$ is a diameter and C is a point on circle	$\angle A C B=90^{\circ}$	\angle in semi-circle
8		$\angle A C B=90^{\circ}$	$A B$ is diameter	converse of \angle in semicircle
9		$A B$ is a chord	$\angle A C B=\angle A D B$	$\angle s$ in the same segment

No.	Diagram	Given Condition	Conclusion	Abbreviation
10		$A B C D$ is a cyclic quadrilateral	$\begin{aligned} & \angle A+\angle C=180^{\circ} \\ & \angle B+\angle D=180^{\circ} \end{aligned}$	opp. \angle s, cyclic quad.
11		One side of a cyclic quadrilateral is produced to form an exterior angle	$\angle A D C=\angle E B C$	ext. \angle, cyclic quad.
12		$\angle A C B=\angle A D B$ and both C and D are on the same side of $A B$	A, B, C and D are concyclic	converse of $\angle \mathrm{s}$ in the same segment
13		$\begin{aligned} & \angle A+\angle D=180^{\circ} \\ & \angle B+\angle C=180^{\circ} \end{aligned}$	A, B, C and D are concyclic	opp. $\angle \mathrm{s}$ supp.
14		$A B E$ is a straight line $\angle A C D=\angle D B E$	A, B, C and D are concyclic	ext. $\angle=$ int. opp. \angle
15(i)		$\angle A O B=\angle C O D$	$A B=C D$	equal $\angle \mathrm{s}$, equal chords
15(ii)		$A B=C D$	$\angle A O B=\angle C O D$	equal chords, equal $\angle \mathrm{s}$
16(i)		$\angle A O B=\angle C O D$	$\overparen{A B}=\overparen{C D}$	equal $\angle \mathrm{s}$, equal arcs

No.	Diagram	Given Condition	Conclusion	Abbreviation
16(ii)		$\overparen{A B}=\overparen{C D}$	$\angle A O B=\angle C O D$	equal arcs, equal $\angle \mathrm{s}$
17(i)		$\overparen{A B}=\overparen{C D}$	$A B=C D$	equal arcs, equal chords
17(ii)		$A B=C D$	$\overparen{A B}=\overparen{C D}$	equal chords, equal arcs
18		$\angle A O B: \angle C O D=m: n$	$\overparen{A B}: \overparen{C D}=m: n$	arcs prop. to $\angle \mathrm{s}$ at centre
19		$\angle A D B: \angle B D C=m: n$	$\overparen{A B}: \overparen{B C}=m: n$	arcs prop. to $\angle \mathrm{s}$ at $\Theta^{\text {ce }}$
21		$A B$ is the tangent to the circle at the point T	$A B \perp O T$	tangent \perp radius
22		$A T B \perp O T$	ATB is the tangent to the circle at T.	converse of tangent \perp radius
23(i)		Two tangents drawn from an external point T meet the circle at points P and Q	$T P=T Q$	tangent prop.

No.	Diagram	Given Condition	Conclusion	Abbreviation
23(ii)		Two tangents drawn from an external point T meet the circle at points P and Q	$\angle T O P=\angle T O Q$	tangent prop.
23(iii)		Two tangents drawn from an external point T meet the circle at points P and Q	$\angle O T P=\angle O T Q$	tangent prop.
24		$P Q$ is the tangent to the circle at point A	$\angle B C A=\angle B A P$	\angle in alt. segment
25		$\angle B C A=\angle B A P$	$P Q$ is the tangent to the circles at A	converse of \angle in alt. segment
26	Touching externally Touching internally	Two circles touch each other (either externally or internally)	$O A O^{\prime}$ and $O O^{\prime} A$ are straight lines	prop. of two touching circles

