Polynomials

An expression containing variables, constant and any arithmetic operation is called polynomial.
Polynomial comes from poly- (meaning "many") and -nomial (in this case meaning "term") ... so it says "many terms"

- Polynomials contain three types of terms:-
(1) Monomial: - A polynomial with one term.
(2) Binomial: - A polynomial with two terms.
(3) Trinomial: - A polynomial with three terms.
$3 x y^{2}$
Monomial (1 term)
$5 x-1$
Binomial (2 terms)
$3 x+5 y^{2}-3$
Trinomial (3 terms)
- Degree of polynomial: - the highest power of the variable in a polynomial is termed as the degree of polynomial.
- Constant polynomial: - A polynomial of degree zero is called constant polynomial.
- Linear polynomial: - A polynomial of degree one.
- E.g.:-9x + 1
- Quadratic polynomial: - A polynomial of degree two. E.g.:-3/2y² $-3 y+3$
- Cubic polynomial: - A polynomial of degree three.
- E.g.:- $12 x^{3}-4 x^{2}+5 x+1$
- Bi - quadratic polynomial: - A polynomial of degree four.
- E.g.: $-10 x^{4}-7 x^{3}+8 x^{2}-12 x+20$

Standard Form

- The Standard Form for writing a polynomial is to put the terms with the highest degree first.
- Example: Put this in Standard Form: $3 \mathrm{x}^{2}-7+4 \mathrm{x}^{3}+\mathrm{x} 6$

The highest degree is 6 , so that goes first, then 3,2 and then the constant last:
$x^{6}+4 x^{3}+3 x^{2}-7$

Reminder theorem

- Let $\mathrm{p}(\mathrm{x})$ be any polynomial of degree greater than or equal to one and let 'a' be any real number. If $p(x)$ is divided by linear polynomial $x-a$ then the reminder is $p(a)$.
- Proof: - Let $p(x)$ be any polynomial of degree greater than or equal to 1 . Suppose that when $p(x)$ is divided by $x-a$, the quotient is $q(x)$ and the remainder is $r(x)$, i.e;
$\mathrm{p}(\mathrm{x})=(\mathrm{x}-\mathrm{a}) \mathrm{q}(\mathrm{x})+\mathrm{r}(\mathrm{x})$
Since the degree of $(x-a)$ is 1 and the degree of $r(x)$ is less than the degree of $x-a$, the degree of $r(x)=0$.

This means that $r(x)$ is a constant .say r.
So, for every value of $x, r(x)=r$.
Therefore, $p(x)=(x-a) q(x)+r$
In particular, if $x=a$, this equation gives us
$p(a)=(a-a) q(a)+r$
This proves the theorem.

Factor Theorem

Let $p(x)$ be a polynomial of degree $(n>1)$ and let 'a' be any real number. If $p(a)=0$ then $(x-a)$ is a factor of $p(x)$.

PROOF:-By the reminder theorem,
$P(x)=(x-a) q(x)+p(a)$.

1. If $p(a)=0$, then $p(x)=(x-a) q(x)$, which shows that $(x-a)$ is a factor of $p(x)$.
2. Since $x-a$ is a factor of $p(x)$,
$p(x)=(x-a) g(x)$ for same polynomial $g(x)$.
In this case, $p(a)=(a-a) g(a)=0$

ALGEBRIC IDENTITIES

- $(x+y)^{2}=x^{2}+2 x y+y^{2}$
- $(x-y)^{2}=x^{2}-2 x y+y^{2}$
- $(x+y)(x-y)=x^{2}-y^{2}$
- $(x+a)(x+b)=x^{2}+(a+b) x+a b$
- $(x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 z x$
- $(x+y)^{3}=x^{3}+y^{3}+3 x y(x+y)=x^{3}+y^{3}+3 x^{2} y+3 x y^{2}$
- $(x-y)^{3}=x^{3}-y^{3}-3 x y(x-y)=x^{3}-y^{3}-3 x^{2} y+3 x y^{2}$
- $x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right)$
- $x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)$

