
Project Summary:  

The focus here is on Modelling and solving the Ingredient Ratio 

Optimization problem in Cement Raw Material blending process. A 

General Nonlinear Time-Varying Model is established for cement raw 

material blending process via considering Chemical Composition, Feed 

Flow Fluctuation, and various Craft and Production constraints. 

Different objective functions are presented to acquire optimal 

ingredient ratios under various production requirements. The 

Ingredient Ratio Optimization problem is transformed into discrete-

time single objective or multiple objectives rolling nonlinear constraint 

optimization problem. A framework of grid interior point method is 

presented to solve the rolling nonlinear constraint optimization 

problem. The corresponding ingredient ratio software will be devised 

to obtain Optimal Ingredient Ratio.  

 

Introduction: 

Cement is a widely used construction material in the world. Cement 

production will experience several procedures which include Raw 

Materials blending process and burning process, cement clinker 

grinding process, and packaging process. Cement raw material and 

cement clinkers mainly contain four oxides: Calcium Oxide or Lime 

(CaO), Silica (SiO2), Alumina (Al2O3), and Iron Oxide (Fe2O3). The 

cement clinkers quality is evaluated by the above four Oxides. Hence, 



ingredient ratio of Cement Raw Material will affect the quality and 

property of cement clinker significantly. Optimal ingredient ratio will 

promote and stabilize cement quality and production craft. Therefore, 

cement raw materials should be reasonably mixed. Hence, it is a 

significant problem to obtain optimal ingredient ratio. 

 

Optimization Modelling of Cement Plant:  

Cement production process could be roughly divided into Three stages. 

The first stage is to make Cement Raw Material, which contains raw 

material blending process and grinding process. The second stage and 

third stage are to burn the raw material and grind cement clinkers 

respectively. The cement raw material blending process is an important 

link because the blending process will affect the cement clinker quality 

and critical cement craft parameters, thus the blending process finally 

affects the cement quality. Exhibit-1 demonstrates cement raw material 

blending process and its control system. Cement original materials are 

usually the Limestone, Steel Slag, Shale, Sandstone, Clay, and Correct 

material. The original Cement Materials should be blended in a 

reasonable proportion, and then original cement materials are 

transported into the ball mill which grinds original cement materials 

into certain sizes. The classifier selects suitable size of original cement 

material which is transported to the cement kiln for burning. 

 



The quality of cement raw material and cement clinkers are evaluated 

by the cement Lime Saturation Factor (LSF), Silicate Ratio (SR), and 

Aluminium-Oxide Ratio (AOR). LSF, SR, and AOR are directly 

determined by the Lime, Silica, Alumina, and Iron oxide which are 

contained in cement raw material. The LSF, SR, and AOR are critical 

cement craft parameters, thus Ingredient Ratio determines critical 

cement crafts parameters. Likewise, critical cement craft parameters 

are also used to assess the blending process. In cement production, the 

LSF, SR, and AOR must be controlled or stabilized in reasonable 

range. Critical cement craft parameters are not stabilized, so it cannot 

produce high qualified cement. The X-Ray Analyzer in Exhibit-1 is 

used to analyse Chemical Compositions of the original cement material 

or Raw Material, then X-Ray Analyzer can feedback LSF, SR, and 

AOR in fixed sample time. The LSF, SR, and AOR can be affected by 

many uncertain factors such as composition fluctuation, and material 

feeding flow. Exhibit-2 shows the chemical composition of original 

cement materials. 

 

Chemical composition is the time-varying function. The symbols μj = 

μj(t), ηj = ηj(t), . . .,ωj = ωj(t), and ϕj = ϕj(t) represent chemical 

composition of original Cement Material-j. In Exhibit-2, R2O 

represents total chemical composition of Sodium Oxide (Na2O) and 

Potassium (K2O). 

 



 

 

Original cement materials are obtained from Nature Mine, thus 

Chemical Composition is time-varying function. Composition 

fluctuation is inevitable and it may contain randomness. With 

economic development, resource consumption is expanding and the 

resources are consuming. Therefore, original cement materials with 

stable chemical composition become more and more difficult to find. 

From the perspective of protecting environment, cement production 

needs to use parts of Waste and Sludge, therefore original Cement 

Materials composition fluctuation will be enlarged in the long Run. 

 

To some extent, Modelling and Optimization of the cement Raw 

Material blending process becomes more important and challenge. 

Because of different original Cement Material type, different chemical 

composition, and different requirements on critical cement craft 

parameters, ingredient ratio should be more scientific and reasonable 

in blending process. Therefore, ingredient ratio should adapt to the 

chemical composition fluctuation and guarantee critical cement craft 

parameters in permissible scope. 

 

 

 

 



General Blending Model for Cement Plant: 

The blending process is to produce Qualified cement raw material. In 

cement raw material blending process, it is a key task to stabilize 

critical cement craft parameters LSF, SR, and AOR in permissible 

scope. In practice, formulas in are used to calculate LSF, SR, and AOR 

as follows: 

 

 = M / (2.8 M + 1.18M + 0.65M) 

 

 = M / (M + M)        (A.1) 

 

 = M/ M 

 

where   is the LSF,  is the SR, and  is the AOR. Without losing 

generality, it assumes that there has -type the original cement materials 

in blending process. The mass of CaO, SiO2, Al2O3, and Fe2O3 in 

cement raw material can be acquired as: 

 

M = 1M1 + 2M2 +……………………+nMn = jMj 

 

M = 1M1 + 2M2 +……………………+nMn = jMj 

 

M = 1M1 + 2M2 +……………………+nMn = jMj.      (A.2) 

 

M = 1M1 + 2M2 +……………………+nMn = jMj 

 

LSF, SR, and AOR are affected by the original Cement Materials Mass 

or mass percentage. Obviously, LSF, SR, and AOR are affected by 

Composition Fluctuation. Equation is equivalently expressed as: 



 

(M /M) = ( jMj/M) 

 

(M/M) = (jMj/M) 

 

(M/M) = ( jMj/M).                                                     (A.3) 

 

(M/M) = ( jMj/M) 

 

Where M= M1 + M2 + ………………+ Mn-1 + Mn 

 
where  M is total mass of original cement material. Variables are 

normalized, and is further expressed as: 

 

m = ( jxj) = ( x) 

 

m = (jxj) = (x) 

 

m = ( jxj) = ( x)       (A.4) 

 

m= ( jxj) = ( x) 

 

xj = 1; xj = (Mj/M); xj = (x1, x2, x3……….,xn) 

 
 

where  xj (j = 1,2,3………..,n) is the mass percentage of original 

Cement Material- j,  x = (x1, x2, ………, xn) is ingredient ratio (Mass 

Percentage Vector), and , ,  and   are mass percentage vector of 

CaO, SiO2, Al2O3, and Fe2O3 for cement raw material, respectively. 



The ingredient ratio x is usually expressed by the percentage form, 

and m, m , m, m, , ,  and   are obtained as: 

 

m = (M /M),  = (1, 2,….……,n) 

 

m = (M/M),  = (1, 2,………,n) 

 

m = (M/M),  = (1, 2,………,n) 

           (A.5) 

m = (M/M),  = (1, 2,………,n) 

 
In practice, each type of original cement material will possess a certain 

proportion, thus mass percentage will yield: 

         j  xj  1, 0  j  1(j= 1,2,3,….,n).            (A.6) 

 
where εj (j = 1, 2, . . . , n)_ is Minimum Mass Percentage of original 

Cement Material-j. Minimum mass percentage εj is decided by cement 

production crafts. In cement production, the mass percentage mγ of 

cement raw material should be limited in permissible scope. Otherwise, 

cement will lose its inherent nature property as: 

 

m-  m  m+,  m+ = 0 + 0,  m- = 0 - 0    (A.7) 

 

where  𝛿𝛾0 is the expected mass percentage of CaO, ∆𝛾0 is the 

maximum fluctuation scope, and 𝑚𝛾− and 𝑚𝛾+ are the lower bounded 

and upper bounded respectively. 𝛿𝛾0 and ∆𝛾0 are determined by cement 



production crafts. In actual cement production, critical cement craft 

parameters LSF, SR and AOR should be stabilized in permissible scope 

as follows: 

 

α0−  α  α0+ , β0−  β  β0+ , Ω0−  Ω  Ω0+ ……………..(A.8) 

 

where α0−, β0−, and Ω0− are the minimum lower bounded of LSF, SR, 

and AOR respectively, and α0+, β0+ and Ω0+ are the Maximum Upper 

Bounded of LSF, SR, and AOR respectively. Cement raw material is 

burned in the Kiln, to guarantee the quality of the Cement Clinker, and 

burning loss and impurity ratio should be limited in allowable range. If 

raw material has too much impurity, it will affect the clinker quality. 

So, they cannot exceed certain scope and will yield relationships as: 

 

m= (M /M), M = 1M1 + 2M2 + ………..+ nMn 

 

m = (M/M), M = 1M1 + 2M2 + ………+ nMn 

 

m = 1x1 + 2x2 + ………..+ nxn =  jxj = Tx  0…(A.9) 

 

m = 1x1 + 2x2 + ………..+ nxn =  jxj = Tx  0 

 
 

where δ0 and δω0 are the maximum permission loss ratio and impurity 

ratio, respectively, and  and ω are loss and impurity percentage vector, 

respectively. To restrict harmful ingredients and protect environment, 

harmful ingredients in cement raw material should be reduced as far as 



possible. It shows that too much harmful ingredients such as 

Magnesium Oxide, Sodium Oxide, Trioxide, and Potassium will affect 

burning process and cause cement kiln plug and crust. Harmful 

ingredients will affect cement clinkers quality and property. Therefore, 

Toxic Ingredients in cement raw material should be limited as follows: 

 

m= (M /M), M = 1M1 + 2M2 + ………..+ nMn 

 

mr = (Mr/M), Mr = r1M1 + r2M2 + ………+ rnMn 

 

ms= (Ms /M), Ms = s1M1 + s2M2 + ………..+ snMn…….(A.10) 

 

m = (M/M), M = 1M1 + 2M2 + ………+ nMn 

 

m = (M/M), M = 1M1 + 2M2 + ………+ nMn 

 

m = 1x1 + 2x2 + ………..+ nxn =  jxj = Tx  0 

 

mr = r1x1 + r2x2 + ………..+ rnxn =  rjxj = rTx  r0 
 

ms = s1x1 + s2x2 + ………..+ snxn =  sjxj = sTx  s0 

 

m = 1x1 + 2x2 + ………..+ nxn =  jxj = Tx  0….(A.11) 
 

m = 1x1 + 2x2 + ………..+ nxn =  jxj = Tx  0 
 

where δτ0, δr0, δs0, δλ0, and δπ0 are the permissible maximum mass 

percentage of MgO, R2O, SO3, TiO2, and Cl in cement Raw Material, 



respectively, and τ, r, s, λ, and π are composition Mass Percentage 

Vector (MPV) of MgO, R2O, SO3, TiO2, and Cl, respectively. 

 

In cement production, the cement kiln can be divided into wet kiln and 

dry kiln. It shows that the cement raw material with high sulphur-alkali 

ratio (SAR) will cause some problems in dry kiln. Therefore, it is 

necessary to control the SAR for preventing cement kiln plug and crust. 

The cement Raw Material with small SAR will increase the 

flammability and improve the cement clinkers quality. Some formulas 

are presented to calculate the SAR for cement raw material. The world 

famous Cement Manufacturers such as KHD Humboldt Company, 

F.L.Smidth Company, and F.C.B Company propose their formulas to 

calculate SAR; in practice, any of the following formulas can be used 

to compute SAR: 

 

KHDHumboldt (δθ0=0.7∼1.0): θ = Ms / (0.85Mr1 + 1.29Mr2 – 1.119M) 

 0 

F.C.B (δθ0 = 0.3∼1.2): θ = Ms / (0.85Mr1 + 1.29Mr2)  0……(A.12) 

F.L.Smidth (δθ0 = 0.3%): θ = Ms – (0.85Mr1 + 0.645Mr2)  0 

 

where θ is the SAR, Mr1 and Mr2 are the mass or mass percentage of 

K2O and Na2O, respectively, and δθ0 is the permissible maximum 

percentage. The Mr1 and Mr2 have the implicit relationships: Mr =Mr1 

+Mr2, Mr1 = ξMr2. ξ is mass ratio between K2O and Na2O. The SAR 

is limited in permissible scope, which will reduce the environmental 



pollution. Here, the blending process does not include the cement ball 

mill grinding process. Before Cement raw materials are transported 

into the cement burning kiln, cement raw material blending process is 

considered as a whole process, thus the grinding process could be seen 

as part of blending process. For integrity and generality, we consider 

that the cement raw material blending process includes ball mill 

grinding process. Then, the mass balance equation of active ingredients 

SiO2 in ball mill could be obtained as follows: 

 

 
𝑑

𝑑𝑡
(𝑄𝑚) =  𝐹𝑖𝑛𝑝𝑢𝑡 − 𝐹𝑂𝑢𝑡𝑝𝑢𝑡

↔∑(

𝑗
𝑥𝑗𝑑𝑄

𝑑𝑡
+ 𝑄𝑗

𝑑𝑥𝑗

𝑑𝑡
+
𝑄𝑥𝑗𝑑𝑗

𝑑𝑡
)

𝑛

𝑗=1

 

 

                  = 𝑄𝑖𝑛𝑝𝑢𝑡 × ∑ 𝜇𝑗 − 𝑄 × ∑ 𝑘𝜇,𝑗𝜇𝑗𝑥𝑗
𝑛
𝑗=1

𝑛
𝑗=1 ……..(A.13) 

 

𝐹𝑖𝑛𝑝𝑢𝑡 = 𝑄𝑖𝑛𝑝𝑢𝑡𝑚𝜇 ,   𝐹𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑘𝑄𝑚𝜇 + 𝑄 ×∑ 𝜐𝜇,𝑗𝜇𝑗𝑥𝑗
𝑛

𝑗=1
 

 

𝑚𝜇 =∑ 𝜇𝑗𝑥𝑗 , 𝑘𝜇,𝑗 = 𝑘 + 𝜈𝜇,𝑗 , (𝑗 = 1,2,3……… . , 𝑛)
𝑛

𝑗=1
 

 

 

 

where Q is original Cement Material output flow in ball mill, Qinput is 

original Cement Material feed flow, Finput is SiO2 Mass in feed flow, 

Foutput is SiO2 mass in Output Flow, and kμ,j is the SiO2 ouput mass 

coefficient of original cement material-j. In Eqn 3.13, it assumes that 

output mass is proportional to the Material Flow in Ball Mill and mass 



composition percentage. Likewise, the A12O3, Fe2O3, and CaO Mass 

Balance Equation of Active Ingredients in Ball Mill will be obtained as 

follows: 

 

∑ (
𝑛𝑗𝑥𝑗𝑑𝑄

𝑑𝑡
+
𝑄𝜂𝑗𝑑𝑥𝑗

𝑑𝑡
+
𝑄𝑥𝑗𝑑𝜂𝑗

𝑑𝑡
)

𝑛

𝑗=1
 

= 𝑄𝑖𝑛𝑝𝑢𝑡 ×∑𝜂𝑗𝑥𝑗 − 𝑄 ×∑ 𝑘𝜂,𝑗𝜂𝑗𝑥𝑗 ,   {𝑘𝜂,𝑗 = 𝑘 + 𝜈𝜂,𝑗 , (𝑗 = 1,2… , 𝑛)}
𝑛

𝑗=1

𝑛

𝑗=1

 

…………………..(A.14) 

Therefore, the MgO, R2O, SO3, TiO2, and Cl mass balance equation of 

Harmful Ingredients in ball mill could be obtained as follows: 

 

∑ 𝜏𝑗𝑥𝑗 (
𝑑𝑄

𝑑𝑡
) + 𝑄𝜏𝑗 (

𝑑𝑥𝑗

𝑑𝑡
) + 𝑄𝑥𝑗 (

𝑑𝜏𝑗

𝑑𝑡
)

𝑛

𝑗=1
   

= 𝑄𝑖𝑛𝑝𝑢𝑡 ×∑𝜏𝑗𝑥𝑗 − 𝑄 ×∑ 𝑘𝜏,𝑗𝜏𝑗𝑥𝑗 , {𝑘𝜏,𝑗 = 𝑘 + 𝜐𝜏,𝑗 , (𝑗 = 1,2. . 𝑛)}
𝑛

𝑗=1

𝑛

𝑗=1

 

∑𝑟𝑗𝑥𝑗 (
𝑑𝑄

𝑑𝑡
) + 𝑄𝑟𝑗 (

𝑑𝑥𝑗

𝑑𝑡
) + 𝑄𝑥𝑗 (

𝑑𝑟𝑗

𝑑𝑡
)

𝑛

𝑗=1

 

 =𝑄𝑖𝑛𝑝𝑢𝑡 ×∑ 𝑟𝑗𝑥𝑗 − 𝑄 × ∑ 𝑘𝑟,𝑗
𝑛
𝑗=1 𝑟𝑗𝑥𝑗 , {𝑘𝑟,𝑗 = 𝑘 + 𝜈𝑟,𝑗 , (𝑗 = 1,2… , 𝑛)}

𝑛
𝑗=1  

∑𝑠𝑗𝑥𝑗

𝑛

𝑗=1

(
𝑑𝑄

𝑑𝑡
) + 𝑄𝑥𝑗 (

𝑑𝑠𝑗

𝑑𝑡
) + 𝑄𝑠𝑗 (

𝑑𝑥𝑗

𝑑𝑡
) 

= 𝑄𝑖𝑛𝑝𝑢𝑡 ×∑𝑠𝑗𝑥𝑗 − 𝑄 ×∑𝑘𝑠,𝑗

𝑛

𝑗=1

𝑠𝑗𝑥𝑗 , {𝑘𝑠,𝑗 = 𝑘 + 𝜈𝑠,𝑗 , (𝑗 = 1,2… . , 𝑛)}

𝑛

𝑗=1

 



∑𝜆𝑗𝑥𝑗 (
𝑑𝑄

𝑑𝑡
) + 𝑄𝑥𝑗 (

𝑑𝜆𝑗

𝑑𝑡
) + 𝑄𝜆𝑗 (

𝑑𝑥𝑗

𝑑𝑡
)

𝑛

𝑗=1

 

= 𝑄𝑖𝑛𝑝𝑢𝑡 ×∑𝜆𝑗𝑥𝑗 − 𝑄 ×∑𝑘𝜆,𝑗𝜆𝑗 , {𝑘𝜆,𝑗 = 𝑘 + 𝜐𝜆,𝑗 , (𝑗 = 1,2. . 𝑛)}

𝑛

𝑗=1

𝑛

𝑗=1

 

∑
𝜋𝑗𝑥𝑗 (

𝑑𝑄

𝑑𝑡
) + 𝑄𝑥𝑗 (

𝑑𝜋𝑗

𝑑𝑡
) + 𝑄𝜋𝑗 (

𝑑𝑥𝑗

𝑑𝑡
)

𝑛

𝑗=1

 

= 𝑄𝑖𝑛𝑝𝑢𝑡 ×∑𝜋𝑗𝑥𝑗 − 𝑄 ×∑𝑘𝜋,𝑗𝜋𝑗

𝑛

𝑗=1

, {𝑘𝜋,𝑗 = 𝑘 + 𝜐𝜋,𝑗 , (𝑗 = 1,2…𝑛)}

𝑛

𝑗=1

 

           ……(A.15) 

The impurity and loss mass balance equation of Ball Mill in blending 

process could be also obtained as follows: 

 

∑𝜔𝑗𝑥𝑗 (
𝑑𝑄

𝑑𝑡
) + 𝑄𝑥𝑗 (

𝑑𝜔𝑗

𝑑𝑡
) + 𝑄𝜔𝑗

𝑛

𝑗=1

(
𝑑𝑥𝑗

𝑑𝑡
) 

= 𝑄𝑖𝑛𝑝𝑢𝑡 ×∑𝜔𝑗𝑥𝑗 − 𝑄 ×∑𝑘𝜔,𝑗𝜔𝑗

𝑛

𝑗=1

,

𝑛

𝑗=1

{𝑘𝜔,𝑗 = 𝑘 + 𝜐𝜔,𝑗 , (𝑗 = 1,2. . 𝑛)} 

          ………..(A.16) 

∑𝜓𝑗𝑥𝑗 + 𝑄𝑥𝑗 (
𝑑𝜓𝑗

𝑑𝑡
)+ 𝑄𝜓𝑗 (

𝑑𝑥𝑗

𝑑𝑡
)

𝑛

𝑗=1

 

= 𝑄𝑖𝑛𝑝𝑢𝑡 ×∑𝜓𝑗𝑥𝑗 − 𝑄 ×∑𝑘𝜓,𝑗𝜓𝑗,{𝑘𝜓,𝑗 = 𝑘 + 𝜐𝜓,𝑗 , (𝑗 = 1,2. . 𝑛)}

𝑛

𝑗=1

𝑛

𝑗=1

 

          …………(A.17) 



In order to obtain the general nonlinear time-varying Dynamic 

Optimization Model, we need to select suitable optimization objective 

function. In practice, many factors should be considered such as 

original cement material cost, grind ability, and the error between the 

actual critical craft and desired critical craft. To reduce the cement cost, 

an optimal ingredient ratio should be pursued to reduce the original 

Cement Material Cost. Thus, original cement material cost function is 

acquired as: 

𝑚𝑖𝑛𝐽1 =∑𝑥𝑗𝐶𝑗 = 𝑚𝑖𝑛(𝐶
𝑇𝑥) 

𝑛

𝑗=1

 

          ……(A.18) 

where Cj (Rs/ton) is the cost of original cement material-j, and J1 is the 

cost function. To improve the grind-ability, it can pursue an optimal 

ingredient ratio to reduce the electrical power consumption. Thus, the 

power consumption function is acquired as: 

 

𝑚𝑖𝑛𝐽2 =∑𝑥𝑗𝑃𝑗 = min(𝑃
𝑇𝑥)

𝑛

𝑗=1

 

          ……(A.19) 

 

 

where Pj (Kwh/ton) is bond grinding power index of original cement 

material-j, and J2 is Power Consumption Function. Pj represents the 

grind ability of Original Cement material-j and also can reflect the Ball 



Mill power consumption. To reduce critical Cement Craft Error, it can 

pursue an optimal ingredient ratio to reduce LSF, SR, and AOR error. 

Hence, the critical cement craft error function J3 is obtained as follows: 

 

𝑚𝑖𝑛𝐽3 = 𝑚𝑖𝑛{𝜔1(∆𝛼)
2 + 𝜔2(∆𝛽)

2 + 𝜔3(∆Ω)
2} 

∆𝛼 = 𝛼 − 𝛼𝑑0, ∆𝛽 = 𝛽 − 𝛽𝑑0,∆, ∆Ω = Ω− Ω𝑑0 

         ………….(A.20) 

 

where j (j = 1, 2, 3) is the weight of LSF error, SR error, and AOR 

error, Δα, Δβ, and ΔΩ are the error of LSF, SR, and AOR, and αd0, βd0, 

and Ωd0 are the expected LSF, SR, and AOR. Based on the cement 

production requirements, various objective functions are obtained. 

Finally, General Non-Linear Time Varying dynamic optimization 

models of cement raw material blending process are obtained as: 

 

Model-1: 𝑚𝑖𝑛𝐽1 = min(𝐶
𝑇𝑥) 

 

Model-2: 𝑚𝑖𝑛𝐽2 = min(𝑃
𝑇𝑥) 

 

Model-3: 𝑚𝑖𝑛𝐽3 = 𝑚𝑖𝑛{𝜔1(∆𝛼)
2 + 𝜔2(∆𝛽)

2 + 𝜔3(∆Ω)
2} 

 

Model-4: 𝑚𝑖𝑛(𝐽1𝐽2) = 𝑚𝑖𝑛{𝜓1𝐽1 + 𝜓2𝐽2}…………………….(A.21) 

 

Model-5: min (𝐽1𝐽3) = 𝑚𝑖𝑛{𝜓1𝐽1 + 𝜓2𝐽3} 

 

Model-6: min (𝐽2𝐽3) = 𝑚𝑖𝑛{𝜓1𝐽2 + 𝜓2𝐽3} 

 

Model-7: min (𝐽1, 𝐽2,𝐽3) = 𝑚𝑖𝑛{𝜓1𝐽1 + 𝜓2𝐽2 + 𝜓3𝐽3} 
Subject to (s.t) (A.1) - (A.12), (A.13) - (A.17) 

 



(Ref: Exhibit-3) 

 

 

where Ψ1, Ψ2, and Ψ3 are the function weight. The General Non-Linear 

Time Varying dynamic optimization model includes the single 

objective and multiple objectives optimization model. All the 

optimization models contain algebraic constraints and dynamic 

constraints; 

 

Analysis of Ingredient Ratio Optimization Problem and Grid 

Interior Point Framework: 

 

The object functions J1, J2, and J3 in Dynamic Optimization Models are 

the convex functions. The Ψ1J1+Ψ2J2, Ψ1J1+Ψ2J3, Ψ1J2+Ψ2J3, and the 

Ψ1J1 +Ψ2J2 +Ψ3J3 are also the Convex functions. As known, the convex 

optimization problems have good Convergent Properties. 

 

The optimization problems are the Convex Optimization problem 

which is determined by their objective function and constraints. We 

need to check the constraints of optimization problems shown in 

Exhibit-4. The constraints (A.1) - (A.12) are algebraic constraints and 

constraints (A.13) - (A.17) are dynamic constraints. The algebraic 

constraints and dynamic constraints construct the feasible regions of the 

optimization problem. The feasible region of constraint (A.12) and 

(A.8) are obtained as 

𝐹𝜃 = {𝑥|𝜃 =  
𝑀𝑠

(0.85 𝑀𝑟1 +  1.29 𝑀𝑟2 − 1.119𝑀𝜋)
 ≤  𝛿𝜃0} 

          ……….(B.1) 



 

𝐹𝛼𝛽Ω = {𝑥|𝛼0− ≤  𝛼 ≤  𝛼0+, 𝛽0− ≤  𝛽 ≤  𝛽0+, Ω0− ≤ Ω ≤ Ω0+} 

Where F and F are the feasible regions constructed by constraints 

(A.12) and (A.8) respectively. SAR is equivalently expressed as: 

 

𝜃 =  
(𝑀𝑠 𝑀⁄ )

{(0.85𝑀𝑟1 + 1.29 𝑀𝑟2 − 1.119𝑀𝜋) 𝑀⁄ }
 

   

  ⇔  𝜃 =  
𝑚𝑠

((0.85𝑚𝑟1+1.29) 𝑚𝑟2− 𝑚𝜋)
 …..(B.2) 

 

⇔  𝜃 =  
𝑚𝑠

((0.85𝜁 + 1.29) 𝑚𝑟/(1 + 𝜁) − 𝑚𝜋)
 

 

Then, feasible region Fθ can be equivalently written as: 

 

𝐹𝜃 = {
(𝑥| 𝑚𝑠)

(0.85𝜁 + 1.29) 𝑚𝑟/(1+ 𝜁) − 𝑚𝜋)
  ≤  𝛿𝜃0}  ⇔ 

 

𝐹𝜃 =  

{(𝑥|(1 + 𝜁)𝑚𝑠 )  ≤ ((0.85𝜁 + 1.29)𝑚𝑟 − 1.119(1 + 𝜁)𝑚𝜋)𝛿𝜃0 } ⇔ 

        ………………(B.3) 

 

 

𝐹𝜃 =  



{(𝑥|(1 + 𝜁)𝑚𝑠 ) + 1.119(1 + 𝜁)𝛿𝜃0𝑚𝜋 − (0.85𝜁 + 1.29)𝛿𝜃0𝑚𝑟  ≤

0}  

  

Likewise, critical cement craft parameters α, β, and Ω can be 

equivalently expressed as: 

 

𝛼 = 
(
𝑀𝛾 − 1.65𝑀𝜂 − 0.35𝑀𝜌

𝑀 )

(
2.8𝑀𝜇
𝑀 )

⟺ 

                               𝛼 = 
(𝑚𝛾−1.65𝑚𝜂−0.35 𝑚𝜌)

2.8 𝑚𝜇
 

𝛽 =  
𝑀𝜇/𝑀

((𝑀𝜂+ 𝑀𝜌)/𝑀
⟺  𝛽 = 

𝑚𝜇

𝑚𝜂+ 𝑚𝜌
 ………….(B.4) 

Ω =  
(
𝑀𝜂
𝑀 )

(𝑀𝜌/𝑀)
⟺  Ω =  

𝑚𝜂

𝑚𝜌
 

 

 

 

 

 

 

 

 

 



Then, feasible region Fα,β,Ω can be equivalently written as: 

𝐹𝛼,𝛽,Ω = {
(𝑥|(𝑚𝛾 − 1.65𝑚𝜂 − 0.35𝑚𝜌))

(2.8𝑚𝜇)

≥ 𝛼0− ,
(𝑚𝛾 − 1.65𝑚𝜂 − 0.35𝑚𝜌

(2.8𝑚𝜇)
≤ 𝛼0+ ,

𝑚𝜇
𝑚𝜂 + 𝑚𝜌

≥ 𝛽0− ,
𝑚𝜇

𝑚𝜂 + 𝑚𝜌
 ≤ 𝛽0+  ,   

𝑚𝜂

𝑚𝜌
 

≥ Ω0−,
𝑚𝜂

𝑚𝜌
≤ Ω0+} ⟺ 

 

𝐹𝛼,𝛽,Ω = {(𝑥|𝑚𝛾 − 1.65𝑚𝜂 − 0.35𝑚𝜌 − 2.8𝛼0−𝑚𝜇)

≥ 0,   𝑚𝛾 − 1.65𝑚𝜂 − 0.35𝑚𝜌 − 2.8𝛼0+

≤ 0,   𝑚𝜇 − 𝛽0−(𝑚𝜂 +𝑚𝜌)

≥ 0,   𝑚𝜇 − 𝛽0+(𝑚𝜂 +𝑚𝜌) ≤ 0,𝑚𝜂 −Ω0−𝑚𝜌

≥ 0,𝑚𝜂 − Ω0+𝑚𝜌 ≤ 0} ⟺ 

 

𝐹𝛼,𝛽,Ω = {(𝑥|𝑚𝛾 − 1.65𝑚𝜂 − 0.35𝑚𝜌 − 2.8𝛼0−𝑚𝜇) ≥

0,   𝑚𝜇 − 𝛽0−(𝑚𝜂 +𝑚𝜌) ≥ 0, 𝑚𝜂 −Ω0−𝑚𝜌 ≥ 0}⋂{𝑚𝛾 −

1.65𝑚𝜂 − 0.35𝑚𝜌 − 2.8𝛼0+ ≤ 0,   𝑚𝜇 − 𝛽0+(𝑚𝜂 +𝑚𝜌) ≤

0, 𝑚𝜂 − Ω0+𝑚𝜌 ≤ 0}      …….(B.5) 

 



In the previous section, we know that the ms, mπ, mr , mγ , mη, mρ, and 

mμ are the linear functions of the ingredient ratio (original cement 

materials mass percentage vector) x = (x1, x2, . . . , xn)T . Therefore, 

feasible region Fθ and Fα,β,Ω are the convex or Semiconvex region. 

Constraints (A.8) and (A.12) are nonlinear Algebraic Constraints, but 

their feasible regions are also convex or Semiconvex region. Hence, 

feasible regions constructed by constraints (A.1) – (A.12) are obtained 

as: 

𝐹 =  {(𝑥|𝐹𝜃⋂𝐹𝛼,𝛽,Ω⋂𝐹0,𝑒)} ∈ ∏………………………(B.6) 

 

where F is the feasible region constructed by constraints (A.1) –  

(A.12), Foe is the feasible region constructed by constraints (A.1) –

(A.10), and Π is the convex and Semiconvex regions set. The 

constraints (A.1)–(A.10) are the linear algebraic constraints. Hence, the 

feasible region Foe constructed by constraints (A.1) – (A.10) is the 

Convex or Semiconvex. Therefore, feasible regions constructed by 

constraints (A.1)–(A.12) belong to Convex or Semiconvex region. 

 

The constraints (A.13) – (A.17) are the time-varying differential 

equation constraints in dynamic model. The constraints (A.13) – (A.17) 

can be equally written as the following Vector form: 

 

𝑑𝑄

𝑑𝑡
𝜇𝑇𝑥 + 𝑄𝑥𝑇

𝑑𝜇

𝑑𝑡
+ 𝑄𝜇𝑇

𝑑𝑥

𝑑𝑡
= 𝑄𝑖𝑛𝑝𝑢𝑡𝜇

𝑇𝑥-Q𝜇𝑇Λ𝜇𝑥, Λ𝜇 =

𝑑𝑖𝑎𝑔(𝑘𝜇,1, …………… , 𝑘𝜇,𝑛) 



 

𝑑𝑄

𝑑𝑡
𝜂𝑇𝑥 + 𝑄𝑥𝑇

𝑑𝜂

𝑑𝑡
+ 𝑄𝜂𝑇

𝑑𝑥

𝑑𝑡
= 𝑄𝑖𝑛𝑝𝑢𝑡𝜂

𝑇𝑥 − 𝑄𝜂𝑇Λ𝜂𝑥, Λ𝜂

= 𝑑𝑖𝑎𝑔(𝑘𝜂,1, ………… . . , 𝑘𝜂,𝑛) 

 

𝑑𝑄

𝑑𝑡
𝜌𝑇𝑥 + 𝑄𝑥𝑇

𝑑𝜌

𝑑𝑡
+ 𝑄𝜌𝑇

𝑑𝑥

𝑑𝑡
= 𝑄𝑖𝑛𝑝𝑢𝑡𝜌

𝑇𝑥 − 𝑄𝜌𝑇Λ𝜌𝑥, Λ𝜌

= 𝑑𝑖𝑎𝑔(𝑘𝜌,1, ………… . . , 𝑘𝜌,𝑛) 

 

𝑑𝑄

𝑑𝑡
𝛾𝑇𝑥 + 𝑄𝑥𝑇

𝑑𝛾

𝑑𝑡
+ 𝑄𝛾𝑇

𝑑𝑥

𝑑𝑡
= 𝑄𝑖𝑛𝑝𝑢𝑡𝛾

𝑇𝑥 − 𝑄𝛾𝑇Λ𝛾𝑥, Λ𝛾

= 𝑑𝑖𝑎𝑔(𝑘𝛾,1, ………… . . , 𝑘𝛾,𝑛) 

 

𝑑𝑄

𝑑𝑡
𝜏𝑇𝑥 + 𝑄𝑥𝑇

𝑑𝜏

𝑑𝑡
+ 𝑄𝜏𝑇

𝑑𝑥

𝑑𝑡
= 𝑄𝑖𝑛𝑝𝑢𝑡𝜏

𝑇𝑥 − 𝑄𝜏𝑇Λ𝜏𝑥, Λ𝜏

= 𝑑𝑖𝑎𝑔(𝑘𝜏,1, ………… . . , 𝑘𝜏,𝑛) 

 

𝑑𝑄

𝑑𝑡
𝑟𝑇𝑥 + 𝑄𝑥𝑇

𝑑𝑟

𝑑𝑡
+ 𝑄𝑟𝑇

𝑑𝑥

𝑑𝑡
= 𝑄𝑖𝑛𝑝𝑢𝑡𝑟

𝑇𝑥 − 𝑄𝑟𝑇Λ𝑟𝑥, Λ𝑟

= 𝑑𝑖𝑎𝑔(𝑘𝑟,1, ………… . . , 𝑘𝑟,𝑛) 

 

𝑑𝑄

𝑑𝑡
𝑠𝑇𝑥 + 𝑄𝑥𝑇

𝑑𝑠

𝑑𝑡
+ 𝑄𝑠𝑇

𝑑𝑥

𝑑𝑡
= 𝑄𝑖𝑛𝑝𝑢𝑡𝑠

𝑇𝑥 − 𝑄𝑠𝑇Λ𝑠𝑥, Λ𝑠

= 𝑑𝑖𝑎𝑔(𝑘𝑠,1, ………… . . , 𝑘𝑠,𝑛) 



 

𝑑𝑄

𝑑𝑡
𝜆𝑇𝑥 + 𝑄𝑥𝑇

𝑑𝜆

𝑑𝑡
+ 𝑄𝜆𝑇

𝑑𝑥

𝑑𝑡
= 𝑄𝑖𝑛𝑝𝑢𝑡𝜆

𝑇𝑥 − 𝑄𝜆𝑇Λ𝜆𝑥, Λ𝜆

= 𝑑𝑖𝑎𝑔(𝑘𝜆,1, ………… . . , 𝑘𝜆,𝑛) 

 

𝑑𝑄

𝑑𝑡
𝜋𝑇𝑥 + 𝑄𝑥𝑇

𝑑𝜋

𝑑𝑡
+ 𝑄𝜋𝑇

𝑑𝑥

𝑑𝑡
= 𝑄𝑖𝑛𝑝𝑢𝑡𝜋

𝑇𝑥 − 𝑄𝜋𝑇Λ𝜋𝑥, Λ𝜋

= 𝑑𝑖𝑎𝑔(𝑘𝜋,1, ………… . . , 𝑘𝜋,𝑛) 

 

𝑑𝑄

𝑑𝑡
𝜔𝑇𝑥 + 𝑄𝑥𝑇

𝑑𝜔

𝑑𝑡
+ 𝑄𝜔𝑇

𝑑𝑥

𝑑𝑡
= 𝑄𝑖𝑛𝑝𝑢𝑡𝜔

𝑇𝑥 − 𝑄𝜔𝑇Λ𝜔𝑥, Λ𝜔

= 𝑑𝑖𝑎𝑔(𝑘𝜔,1, ………… . . , 𝑘𝜔,𝑛) 

 

𝑑𝑄

𝑑𝑡
𝜑𝑇𝑥 + 𝑄𝑥𝑇

𝑑𝜑

𝑑𝑡
+ 𝑄𝜑𝑇

𝑑𝑥

𝑑𝑡
= 𝑄𝑖𝑛𝑝𝑢𝑡𝜑

𝑇𝑥 − 𝑄𝜑𝑇Λ𝜑𝑥, Λ𝜑 =

𝑑𝑖𝑎𝑔(𝑘𝜑,1, ………… . . , 𝑘𝜑,𝑛)……………(B.7) 

 

The constraints (A.13) – (A.17) in the dynamic optimization model 

reveal that fluctuations of the cement material flow and chemical 

composition will have important effects on cement raw material 

ingredient ratio. The derivative of ingredient ratio is affected by the 

Chemical Composition and cement material flow. In practical cement 

production, chemical composition is analyzed and updated by the X-

Ray Analyzer in fixed sampling period which may be quarter hour, half 

hour, one hour, and even longer. Therefore, it is hard to accurately solve 



dynamic optimization problem (A.21) because chemical composition 

and cement material flow could not be continuously and accurately 

obtained. To simplify the dynamic model, it is assumed that the 

derivative of feed flow Q and ingredient ratio x are minor, and they can 

be ignored. Then, the constraint (B.7) can be equivalently expressed as: 

 

𝑄𝑥𝑇
𝑑𝜇

𝑑𝑡
≅ 𝑄𝑖𝑛𝑝𝑢𝑡𝜇

𝑇𝑥-Q𝜇𝑇Λ𝜇𝑥, 

𝑄𝑥𝑇
𝑑𝜂

𝑑𝑡
≅ 𝑄𝑖𝑛𝑝𝑢𝑡𝜂

𝑇𝑥 − 𝑄𝜂𝑇Λ𝜂𝑥 

𝑄𝑥𝑇
𝑑𝜌

𝑑𝑡
≅ 𝑄𝑖𝑛𝑝𝑢𝑡𝜌

𝑇𝑥 − 𝑄𝜌𝑇Λ𝜌𝑥 

𝑄𝑥𝑇
𝑑𝛾

𝑑𝑡
≅ 𝑄𝑖𝑛𝑝𝑢𝑡𝛾

𝑇𝑥 − 𝑄𝛾𝑇Λ𝛾𝑥 

𝑄𝑥𝑇
𝑑𝜏

𝑑𝑡
≅ 𝑄𝑖𝑛𝑝𝑢𝑡𝜏

𝑇𝑥 − 𝑄𝜏𝑇Λ𝜏𝑥, 

𝑄𝑥𝑇
𝑑𝑟

𝑑𝑡
≅ 𝑄𝑖𝑛𝑝𝑢𝑡𝑟

𝑇𝑥 − 𝑄𝑟𝑇Λ𝑟𝑥 

𝑄𝑥𝑇
𝑑𝑠

𝑑𝑡
≅ 𝑄𝑖𝑛𝑝𝑢𝑡𝑠

𝑇𝑥 − 𝑄𝑠𝑇Λ𝑠𝑥 

𝑄𝑥𝑇
𝑑𝜆

𝑑𝑡
≅ 𝑄𝑖𝑛𝑝𝑢𝑡𝜆

𝑇𝑥 − 𝑄𝜆𝑇Λ𝜆𝑥 

𝑄𝑥𝑇
𝑑𝜋

𝑑𝑡
≅ 𝑄𝑖𝑛𝑝𝑢𝑡𝜋

𝑇𝑥 − 𝑄𝜋𝑇Λ𝜋𝑥 

𝑄𝑥𝑇
𝑑𝜔

𝑑𝑡
≅ 𝑄𝑖𝑛𝑝𝑢𝑡𝜔

𝑇𝑥 − 𝑄𝜔𝑇Λ𝜔𝑥 



𝑄𝑥𝑇
𝑑𝜑

𝑑𝑡
≅ 𝑄𝑖𝑛𝑝𝑢𝑡𝜑

𝑇𝑥 − 𝑄𝜑𝑇Λ𝜑𝑥…………….(B.8) 

(
𝑑𝑄

𝑑𝑡
≈ 0,   

𝑑𝑥

𝑑𝑡
≈ 0) 

 

The original cement materials chemical composition will fluctuate with 

time. To solve the optimization problem (A.21), dynamic optimization 

models should be transformed into discrete form. Thus, dynamic 

constraint (B.8) in optimization model can be transformed into the 

following discrete forms: 

 

μ(k) = fμ(μ(k – 1), x); 

η(k) = fη(η(k – 1), x); 

ρ(k) = fρ(ρ(k – 1), x); 

γ(k) = fγ(γ(k – 1), x);  

τ(k) = fτ (τ(k – 1), x); 

r(k) = fr(r(k – 1), x); 

s(k) = fs(s(k – 1), x);  

λ(k) = fλ(τ(k – 1), x);  

π(k) = fπ(π(k – 1), x); 

ω(k) = fω(ω(k – 1), x);  

ϕ(k) = fϕ(ϕ(k – 1), x)…………………(B.9) 

 

 

 



It is noted μ(k) = μ(kTs), . . . , ϕ(k) = ϕ(kTs), and x = x(k) in (B.9), and 

Ts is the sampling period. Differential equation is transformed into 

difference equation. Constraints (A.1)–(A.12) in dynamic optimization 

model are transformed into the following discrete forms: 

 

ℎ(𝜇(𝑘),………… ,𝜑(𝑘), 𝑥) = 0 

𝑔(𝜇(𝑘),……… . . , 𝜑(𝑘), 𝑥) ≤ 0,⟺ 

ℎ(𝑓𝜇(𝜇(𝑘 − 1), 𝑥), …………… . , 𝑓𝜑(𝜑(𝑘 − 1), 𝑥), 𝑥) = 0 

𝑔(𝑓𝜇(𝜇(𝑘 − 1), 𝑥), …………… . , 𝑓𝜑(𝜑(𝑘 − 1), 𝑥), 𝑥) ≤ 0…..(B.10) 

 

where h(·) and g(·) are the discrete equality and inequality constraint 

vectors, respectively. Hence, the continuous time dynamic model is 

transformed into the following discrete time form: 

 

Model-1: 𝑚𝑖𝑛𝑗1 = min (𝐶
𝑇𝑥) 

Model-2: 𝑚𝑖𝑛𝑗2 = min(𝑃
𝑇𝑥) 

Model-3:𝑚𝑖𝑛𝑗3(𝑘, 𝑥) = 𝑚𝑖𝑛(𝜔1(Δ𝛼(𝑘, 𝑥))
2 + 𝜔2(Δ𝛽(𝑘, 𝑥))

2 +

𝜔3(ΔΩ(𝑘, 𝑥))
2) 

∆𝛼(𝑘, 𝑥) = Γ𝛼(𝛾(𝑘), 𝜂(𝑘), 𝜌(𝑘), 𝜇(𝑘), 𝑥) 

∆𝛽(𝑘, 𝑥) = Γ𝛽(𝜇(𝑘), 𝜂(𝑘), 𝜌(𝑘), 𝑥) 

∆Ω(𝑘, 𝑥) = ΓΩ(𝜂(𝑘), 𝜌(𝑘), 𝑥)………(B.11) 

Model-4: min(𝑗1𝑗2) = 𝑚𝑖𝑛{𝜓1𝑗1 + 𝜓2𝑗2} 

Model-5: min(𝐽1𝐽3(𝑘, 𝑥)) = 𝑚𝑖𝑛{𝜓1𝐽1 + 𝜓2𝐽3(𝑘, 𝑥)} 

Model-6: min(𝐽2𝐽3(𝑘, 𝑥)) = 𝑚𝑖𝑛{𝜓1𝐽2 + 𝜓2𝐽3(𝑘, 𝑥)} 



Model-7: min(𝐽1𝐽2𝐽3(𝑘, 𝑥)) = 𝑚𝑖𝑛{𝜓1𝐽1 + 𝜓2𝐽2 + 𝜓3𝐽3(𝑘, 𝑥)} 

s.t: (B.9) - (B.10) 

 

It should be noted that (i) the continuous time dynamic optimization 

model is transformed into discrete time rolling optimization model; (ii) 

chemical composition and cement material flow cannot be obtained in 

a continuous and accurate way, thus it is necessary to transform the 

continuous model into the discrete model; (iii) it is difficult and 

complex to directly solve the continuous-time dynamic ingredient ratio 

model; (iv) the dynamic model of discrete time form is equivalent to a 

static optimization problem in a specific sampling time. Without losing 

the generality, the discrete time model can be expressed as the general 

form in a specific sampling period as follows: 

 

min f (x) s.t. h(x) = 0, 𝑔(𝑥) ≤ 0, 𝑎 ≤ 𝑥 ≤ 𝑏)…...(B.12) 

 

where f(x):Rn → R, h(x):Rn → Rm, and g(x):Rn → Rq are the smooth 

and differentiable functions, x is the decision variable, and n, m, and q 

denote the number of the decision variables, equality constraints, and 

inequality constraints, respectively. The discrete model is seen as a 

general linear or nonlinear static optimization problem in certain 

sampling period. The optimization methods in such as the Newton 

methods, Conjugate Gradient methods, steepest descent methods, 

interior point methods, trust region methods, quadratic programming 

(QP) methods, successive linear programming (SLP) methods, 



sequential quadratic programming (SQP) methods, genetic algorithms, 

and particle swarm algorithms are well established to solve constraint 

optimization problems. Based on interior point methods, a framework 

of grid interior point method is presented for dynamic cement 

ingredient ratio optimization problem. The optimization problem 

(B.12) could be transformed into following form: 

min 𝑓(𝑥) − 𝑣 ∑ln 𝛿𝑖

𝑞

𝑖=1

 

𝑠. 𝑡. ℎ(𝑥) = 0, 𝑔𝜀(𝑥) + 𝛿 = 0……… . (B. 14) 

𝑔𝜀(𝑥) =  (𝑔(𝑥)
𝑇, (𝑎 − 𝑥)𝑇, (𝑥 − 𝑏)𝑇)𝑇 

 

where υ > 0 is the barrier parameter, the slack vector δ = (δ1, δ2, . . . , 

δq)T > 0 is set to be positive, and gε(x) is an expanded inequality 

constraint. It introduces the Lagrange multipliers y and z for barrier 

problem (B.13) as follows: 

 

𝐿(𝑥, 𝑦, 𝑧, 𝛿)

= 𝑓(𝑥)

− 𝑣 ∑ ln𝛿𝑖 + 𝑦
𝑇(𝑔𝜀(𝑥) + 𝛿) + 𝑧

𝑇ℎ(𝑥)……… . . (B. 15)

𝑞

𝑖=1

 

 

 

 

 



 

where L (x, y, z, δ) is Lagrange function, y = (y1, y2, . . . , yq)T and z = 

(z1, z2, . . . , zm)T are Lagrange multipliers for constraints gε(x)+ δ and 

h(x), respectively. Based on Karush-Kuhn-Tucker (KKT) optimality 

conditions, optimality conditions for optimization problem (B.13) can 

be expressed as: 

 

∇𝑓(𝑥 + ∆𝑥) + (∇𝑔𝜀(𝑥 + ∆𝑥)
𝑇(𝑦 + ∆𝑦) + (∇ℎ(𝑥 + ∆𝑥)𝑇(𝑧 + ∆𝑧)

= 0……(𝐵. 16) 

−𝑣𝑒 + (𝑆𝛿 + ∆𝑆𝛿)(𝑌 + ∆𝑌)𝑒 = 0 

𝑔𝜀(𝑥 + ∆𝑥) + (𝛿 + ∆𝛿) = 0, ℎ(𝑥 + ∆𝑥) = 0 ⇒ 

(∇2𝑓(𝑥) + ∇2𝑔𝜀(𝑥)
𝑇𝑦 + ∇2ℎ(𝑥)𝑇𝑧)∆𝑥 + ∇𝑔𝜀(𝑥)

𝑇∆𝑦 + ∇ℎ(𝑥)𝑇∆𝑧

+ (∇𝑓(𝑥) + ∇𝑔𝜀(𝑥)
𝑇𝑦 + ∇ℎ(𝑥)𝑇𝑧 = 0…… (𝐵. 17) 

−𝑣𝑒 + 𝑆𝛿𝑌𝑒 + 𝑆𝛿∆𝑦 = 0 

𝑔𝜀(𝑥) + ∇𝑔𝜀(𝑥)∆𝑥 + 𝛿 + ∆𝛿 = 0 

∇ℎ(𝑥)∆𝑥 + ℎ(𝑥) = 0 

 

The system (B.17) is obtained by ignoring the higher order incremental 

system (B.16), and replacing nonlinear terms with linear 

approximation, system (B.17) is written in the following matrix form: 

 

 

 

 

 



 

(

 
 
𝐻(𝑥, 𝑦, 𝑧) 0 ∇ℎ(𝑥)𝑇 𝑔𝜀(𝑥)

𝑇

0 𝑆𝛿
−1𝑌 0 𝐼

∇ℎ(𝑥) 0 0 0
∇𝑔𝜀(𝑥) 0 0 0 )

 
 
(

∆𝑥
∆𝛿
∆𝑦
∆𝑧

)

=

(

 

−∇𝑓(𝑥) − ∇𝑔𝜀(𝑥)
𝑇𝑦 − ∇ℎ(𝑥)𝑇𝑧

𝑣𝑆−1𝑒 − 𝑦
−ℎ(𝑥)

−𝑔𝜀(𝑥) − 𝛿 )

 ………(𝐵. 18) 

𝐻(𝑥, 𝑦, 𝑧) = ∇2𝑓(𝑥) + ∇2𝑔𝜀(𝑥)
𝑇𝑦 + ∇2ℎ(𝑥)𝑇𝑍…… . (𝐵. 19) 

 

Where H (x, y, z) is the Hessian matrix in system. Finally, the new 

iterate direction is obtained via solving the system (B.18), which is the 

essential process of the interior point method. Thus, the new iteration 

point can be obtained in the following iteration: 

 

(𝑥, 𝛿, 𝑧, 𝑦) ← (𝑥, 𝛿, 𝑧, 𝑦) + 𝜁1(∆𝑥, ∆𝛿, ∆𝑧, ∆𝑦)……… . (𝐵. 20) 

 

where ζ1 is the step size. Choosing the step size ζ1 holds the δ, y > 0 in 

search process. The grid interior point method framework is depicted 

as follows. 

 

 

 

 

 



Grid Interior Point Method Framework: 

The following steps will be considered by us: 

We will follow the following steps- 

Step 1. The feasible region F = {x | h(x) = 0, g(x) ≤ 0, a ≤ x ≤ b} is 

divided into N small pieces of feasible region without any intersection 

(F = UFi), and Fi = {x | h(x) = 0, g(x) ≤ 0, a + (i – 1) ×Θ ≤ x ≤ a+i ×Θ}, 

and Θ is the interval length (Θ = (b – a)/N; i = 1, 2, . . . , N). 

 

Step 2. For i = 1: N, each small feasible region will do the following 

steps. 

 

Step 3. Choose an initial iteration point (x(0,i), δ(0,i), z(0,i), y(0,i)) in the 

feasible region set Fi ={x | h(x) = 0, g(x) ≤ 0, a= (i – 1) × Θ ≤ x ≤ a  + i 

× Θ}, and the δ(0) > 0, y(0) > 0, k = 0. 

 

Step 4. Constructing current iterate, we have the current iterate value 

x(k,i), δ(k,i), z(k,i) and y(k,i) of the primal variable x, the slack variable δ, 

and the multipliers y and z, respectively. 

 

Step 5. Calculate the Hessian matrix H(x, y, z) of the Lagrange system 

L(x, y, z, δ), and the Jacobian matrix ∇h(x) and ∇g(x) are of the vectors 

h(x) and g(x) in the current iterate (x(k,i), δ(k,i), z(k,i), y(k,i)). 

 

Step 6. Solve the linear system (B.18) and construct the iterate direction 

(Δx, Δδ, Δz,Δy). Solve the linear matrix equation (B.18), and then we 



can obtain the primal solution Δx, multipliers solution Δz, Δy, and also 

the slack variable solution Δδ. 

 

Step 7. Choosing the step size ζ1 holds the δ, y > 0 in the search process, 

ζ1 ∈ (0, 1). Update the iterate values: (x(k+1,i), δ(k+1,i), z(k+1,i), y(k +1,i)) ← 

(x(k,i), δ(k,i), z(k,i), y(k,i)) + ζ1(Δx,Δδ,Δz,Δy), k ← k+1. 

 

Step 8. Check the ending conditions for region Fi. If it is not satisfied, 

go to Step 5, else the minimum fmin,i of feasible region Fi is obtained, i 

← i +1, go to Step 3. 

 

Step 9. Comparing the minimum fmin,i of feasible region Fi, output the 

minimum fmin = min{fmin,i (i = 1, 2, . . . , N)}, end. 

 

Based on the Grid Interior Point method framework, the algorithm 

structure diagram of cement raw material blending process is shown in 

Exhibit-3. In this case here, we wish to develop the Ingredient Ratio 

Software for cement raw material blending process. The proposed 

ingredient ratio software interface is shown in Exhibit 5 - 9. The 

ingredient ratio software will have strong features which include single 

objective Optimization Model, Multiple Objectives Optimization 

Model, and Robust Ingredient Ratio. The software will achieve 

ingredient ratio for Four, Five, and Six types of original Cement 

Materials, of course the Software can be further improved to achieve 



ingredient ratio for more types of original cement materials. In practice, 

it does not exceed eight types of original cement material. 

 

Numerical Results for Blending Process: 

In Production/ Factory, many fields Engineers will give an ingredient 

ratio of Original Cement Materials based on critical cement crafts and 

their experiences. Here, a General Non-Linear Time Varying model 

and ingredient ratio software are shown to provide Optimal Ingredient 

Ratios for cement raw material blending process under different 

production requirements. Let us go through Three (3) numerical 

examples to depict the proposed method. It does not consider the 

differential or difference equation constraint because output mass 

coefficient and flow of original cement materials are unknown.  

 

Exhibit 10-12 in the display only original cement materials Chemical 

Composition in a specific sampling period, wherein the chemical 

composition in Exhibit-10 is used to produce cement raw materials by 

a cement enterprise in the African Continent. 

 

There are five types of original cement material in Exhibit-10, and they 

are the Limestone, Sandstone, Steel Slag, Shale, and Coal Ash. The 

Steel Slag is the most expensive material, the Sandstone is the cheapest 

material, the Limestone has the best Grind Ability, and the Shale has 

the poorest grind ability. The optimization models (discrete time) and 



optimal ingredient ratios under different production requirements are 

presented in Exhibit 13 and Exhibit 14. 

 

Model-1 has the Smallest Cost with the optimal Ingredient Ratio x1 = 

84.003%, x2 = 7.687%, x3 = 3.203%, x4 = 0.010%, and x5 = 5.097%.  

 

Model-2 has the smallest Power Consumption with the optimal 

ingredient ratio x1 = 84.145%, x2 = 8.021%, x3 = 3.795%, x4 = 0.010%, 

and x5 = 4.029%.  

 

Model-3 has the smallest critical Cement Craft deviation with optimal 

Ingredient Ratio x1 = 84.046%, x2 = 7.335%, x3 = 3.587%, x4 = 0.010%, 

and x5 = 5.021%.  

 

Model-4, Model-5, Model-6, and Model-7 are the multiple objectives 

optimization model which could be equivalently transformed into 

single objective optimization model via introducing weight Ψ1, Ψ2, and 

Ψ3.  

 

Model-4 makes balance between Material Cost and Power 

Consumption with optimal Ingredient Ratio x1 = 84.658%, x2 = 

7.349%, x3 = 3.122%, x4 = 0.010%, and x5 = 4.681%. 

 

Model-5, Model-6, and Model-7 have the same optimal Ingredient 

Ratio with Model-1, Model-2, and Model-4, respectively because the 



objective function J3 is far less than the objective function J1 and J2. In 

addition, the weight of objective function J3 is not far larger than the 

weight of objective function J1 and J2, therefore they have the same 

optimal ingredient ratio. 

 

There are five types of original Cement Materials in Exhibit-11, and 

they are the Limestone, Clay, Iron, Correction, and Coal Ash. The iron 

is the most expensive material, the Limestone is the cheapest material, 

the Clay has the best grind ability, and the Iron has the poorest grind 

ability. The optimization models (discrete time) and optimal ingredient 

ratios under different production requirements are presented in Exhibit 

15 and Exhibit-16. 

  

Model-1 has the smallest Material Cost with the optimal Ingredient 

Ratio x1 = 88.257%, x2 = 7.503%, x3 = 0.010%, x4 = 3.731%, and x5 = 

0.499%.  

 

Model-2 has the smallest Power Consumption with the optimal 

Ingredient Ratio x1 = 87.565%, x2 = 8.480%, x3 = 0.040%, x4 = 3.905%, 

and x5 = 0.010%.  

 

Model-3 has the smallest critical Cement Craft Deviation with optimal 

Ingredient Ratio x1 = 87.805%, x2 = 7.791%, x3 = 0.878%, x4 = 3.516%, 

and x5 = 0.010%.  

 



Model-4 makes balance between Material Cost and Power 

Consumption with Optimal Ingredient ratio x1 = 87.555%, x2 = 

8.414%, x3 = 0.010%, x4 = 3.912%, and x5 = 0.109%.  

 

Model-5, Model-6, and Model-7 have the same optimal ingredient ratio 

with Model-1, Model-2, and Model-4, respectively. 

 

There are four types of original Cement Materials in Exhibit-12, and 

they are the Carbide Slag, Clay, Sulfuric Acid Residue, and Cinder. 

The Sulfuric Acid residue is the most expensive material, the Cinder is 

the cheapest material, the Carbide Slag has the best Grind Ability, and 

the Sulfuric Acid residue has the poorest Grind Ability. The 

optimization models (discrete time) and optimal Ingredient Ratios 

under different Production requirements are presented in Exhibit-17 

and Exhibit-18.  

 

Model-1 has the smallest Material Cost with the optimal Ingredient 

Ration x1 = 75.007%, x2 = 14.973%, x3 = 3.620%, and x4 = 6.400%.  

 

Model-2 has the smallest Power Consumption with the optimal 

Ingredient Ratio x1 = 76.090%, x2 = 19.530%, x3 = 3.624%, and x4 = 

0.755%.  

 



Model-3 has the smallest Critical Cement Craft Deviation with optimal 

Ingredient Ratio x1 = 75.442%, x2 = 19.623%, x3 = 4.257%, and x4 = 

0.678%.  

 

Model-4 makes balance between Material Cost and Power 

Consumption with optimal Ingredient Ratio x1 = 75.654%, x2 = 

14.798%, x3 = 3.562%, and x4 = 5.985%.  

 

Model-5, Model-6, and Model=7 have the same optimal Ingredient 

Ratio with Model-1, Model-2, and Model-4, respectively. 

 

The Dynamic Optimal Ingredient Ratio could be obtained in the 

blending process and can help to promote the cement quality if raw 

material chemical composition is updated with time. 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Exhibit-1: Cement Raw Materials Blending Process 

 

 

Exhibit-2: Chemical Composition of Cement Original Materials 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Exhibit-3: Optimization algorithm structure diagram of cement raw 

material blending process. 

 

 

 



Optimization Models Optimization Objective Function Constraints 

Single Objective 

Optimization 

Model-1                  min J1= min(𝐶𝜏x) (A.1)-(A.12),(A.13)-(A.17) 

Model-2 𝑚𝑖𝑛𝐽2 = min(𝑃
𝜏𝑥) (A.1)-(A.12),(A.13)-(A.17) 

Model-3 𝑚𝑖𝑛𝐽3 = 𝑚𝑖𝑛{𝜔1(Δ𝛼)
2+ 𝜔2(∆𝛽)

2

+ 𝜔3(∆Ω)
2} 

(Notes: ∆𝛼 = 𝛼 − 𝛼𝑑0, ∆𝛽 = 𝛽 −
𝛽𝑑0, ∆Ω = Ω − Ω𝑑0 

(A.1)-(A.12),(A.13)-(A.17) 

Multiple Objective 

Optimization 

Model-4 min(𝐽1𝐽2) = 𝑚𝑖𝑛{𝜓1𝐽1 + 𝜓2𝐽2} (A.1)-(A.12),(A.13)-(A.17) 

Model-5 min(𝐽1𝐽3) = 𝑚𝑖𝑛{𝜓1𝐽1 + 𝜓2𝐽3} (A.1)-(A.12),(A.13)-(A.17) 

Model-6 min(𝐽2𝐽3) = 𝑚𝑖𝑛{𝜓1𝐽2 + 𝜓2𝐽3} (A.1)-(A.12),(A.13)-(A.17) 

Model-7 min(𝐽1𝐽2𝐽3) =  {𝜓1𝐽1 + 𝜓2𝐽2 + 𝜓3𝐽3} (A.1)-(A.12),(A.13)-(A.17) 

 

Exhibit-4: General Non-Linear Time Varying Dynamic Optimization 

Models of the Cement Raw Materials Blending Process: 

 

 

Exhibit-5: Ingredient ratio software for Cement raw material blending 

process (Four Materials) 

 



Exhibit-6: Ingredient ratio software for Cement raw material blending 

process (Five Materials) 

 

 

 

Exhibit-7: Ingredient ratio software for Cement raw material blending 

process (Six Materials) 

 



 

Exhibit-8: Ingredient ratio software for Cement raw material blending 

process (Optimization UI) 

 

 

 

Exhibit-9: Proposed Optimization results of Ingredient Ratio Software 

for Cement Raw Material blending process 

 

 

 



Material 

Type 

SiO2 Al2O Fe2O CaO Loss Imp Power Cost 

% % % % % % Kwh/Ton USD 

Limestone 4.50 0.99 0.24 45.00 40.56 2.91 12.45 25.00 

Sandstone 65.00 5.76 1.61 0.52 2.62 8.90 12.94 15.00 

Steel Slag 17.50 6.90 29.00 31.49 0.30 13.45 19.89 68.00 

Shale 45.31 23.30 6.10 8.63 10.34 6.32 28.60 20.00 

Coal Ash 59.26 24.55 8.07 3.73 8.32 6.07 28.60 20.00 

 

Exhibit-10: Table- Chemical Composition of Cement Original 

Materials in certain Sampling period (1): 

 

Material 

Type 

Loss SiO2 Al2O Fe2O CaO MgO SO3 K2O Na2O Cl 

% % % % % % % % % % 

Limestone 40.09 8.52 1.23 1.31 46.05 2.49 0.02 0.21 0.07 0.0243 

Clay 7.99 62.74 17.94 4.06 2.40 0.94 0.64 3.25 0.00 0.09 

Iron 24.74 7.92 50.27 13.01 2.94 079 0.14 0.19 0.00 0.09 

Correction 30.25 3.15 21.30 38.55 5.17 1.53 0.05 0.00 0.00 0.013 

Coal Ash 0.00 44.77 26.04 4.49 8.42 1.67 0.95 0.62 0.00 0.043 

 

Exhibit-11: Table- Chemical Composition of Cement Original 

Materials in certain Sampling period (2): 

 

Assuming the cost and bond power index for the cement material in 

Exhibit-11 are 24.00 USD/ton, 25.00 USD/ton, 50.00 USD/ton, 30.00 

USD/ton, 28.70 USD/ton, 12.45 Kwh/ton, 12.10 Kwh/ton, 18.98 

Kwh/ton, 14.70 Kwh/ton, and 15.66 Kwh/ton, respectively. 

 

 



 

Material 

Type 

Loss SiO2 Al2O Fe2O CaO MgO 

% % % % % % 

Carbide Slag 24.65 1.02 1.29 0.00 69.26 0.00 

Clay 5.83 69.56 16.42 3.35 0.00 0.00 

Sulfuric Acid 

Residue 

1.06 11.05 2.22 77.85 2.45 2.71 

Cinder 0.00 56.39 22.77 10.18 1.13 2.16 

 

Exhibit-12: Table- Chemical Composition of Cement Original 

Materials in certain Sampling period (3). 

 

Assuming the cost and Bond Power index for the Cement Material in 

Exhibit 12 are 18.00 USD/ton, 25.00 USD/ton, 48.00 USD/ton, 9.00 

USD/ton, 11.24 Kwh/ton, 12.50 Kwh/ton, 19.86 Kwh/ton, and 13.80 

Kwh/ton, respectively 

 

Exhibit-13: Optimization Models and results for Cement Materials in 

Exhibit-9 

Optimization Models 

Model-1: 𝐽1 = 25𝑥1 + 15𝑥2 + 68𝑥3 + 20𝑥4 + 20𝑥5 

Model-2: 𝐽2 = 12.45𝑥1 + 12.94𝑥2 + 19.89𝑥3 + 28.6𝑥4 + 28.6𝑥5 

Model-3: 𝐽3 = 𝜔1(1.00 − 𝛼)
2 + 𝜔2(2.70 − 𝛽)

2 + 𝜔3(1.55 − Ω)
2 

((𝜔1 = 0.5, 𝜔2 = 0.3, 𝜔3 = 0.2, 𝛼𝑑0 = 1.00, 𝛽𝑑0 = 2.70, Ω𝑑0 =

1.55) 

Model-4: 𝑚𝑖𝑛(𝐽1𝐽2) = 𝑚𝑖𝑛{𝜓1𝐽1 + 𝜓2𝐽2} 
 



Model-5: min (𝐽1𝐽3) = 𝑚𝑖𝑛{𝜓1𝐽1 + 𝜓2𝐽3} 

 

Model-6: min (𝐽2𝐽3) = 𝑚𝑖𝑛{𝜓1𝐽2 + 𝜓2𝐽3} 

 

Model-7: min (𝐽1, 𝐽2,𝐽3) = 𝑚𝑖𝑛{𝜓1𝐽1 + 𝜓2𝐽2 + 𝜓3𝐽3} 
Subject to (s.t) (A.1) - (A.4) 

 

(1) 𝑀𝜇 = 4.5𝑥1 + 65𝑥2 + 17.5𝑥3 + 45.31𝑥4 + 59.26𝑥5 

𝑀𝜂 = 0.99𝑥1 + 5.76𝑥2 + 6.9𝑥3 + 23.3𝑥4 + 24.55𝑥5 

𝑀𝜌 = 0.24𝑥1 + 1.61𝑥2 + 29.0𝑥3 + 6.1𝑥4 + 8.07𝑥5 

𝑀𝛾 = 45.0𝑥1 + 0.52𝑥2 + 31.49𝑥3 + 8.63𝑥4 + 3.73𝑥5 

𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 = 0 

𝑥1 ≥ 0, 𝑥2 ≥ 0, 𝑥3 ≥ 0, 𝑥4 ≥ 𝜀, 𝑥5 ≥ 0, (𝜀 = 0.0001) 
 

 

(2) 𝛼 = (𝑀𝛾 − 1.65𝑀𝜂 − 0.35𝑀𝜌)/(2.8𝑀𝜇) 

𝛽 =
𝑀𝜇

𝑀𝜂 +𝑀𝜌
, Ω =

𝑀𝜂

𝑀𝜌
 

 

(3) 𝑀𝜑 = 40.56𝑥1 + 2.62𝑥2 + 0.3𝑥3 + 10.34𝑥4 + 8.32𝑥5 ≤

38.00 

𝑀𝜔 = 2.91𝑥1 + 8.9𝑥2 + 13.45𝑥3 + 6.32𝑥4 + 6.07𝑥5 ≤ 7.00 

(4) 0.98 ≤ 𝛼 ≤ 1.02, 2.60 ≤ 𝛽 ≤ 2.80, 1.45 ≤ Ω ≤ 1.65 

Models   Optimum Ingredient Ratio.                                         Remarks 

Model-1 𝑥1
∗=84.003 %, 𝑥2

∗=7.687 %, 𝑥3
∗=3.203 %, 

   𝑥4
∗=0.010 %, 𝑥5

∗=5.097 %, 𝐽1
∗=25.35308 %, 

Model-2 𝑥1
∗=84.145 %, 𝑥2

∗=8.021 %, 𝑥3
∗=3.795 %, 

            𝑥4
∗=0.010 %, 𝑥5

∗=4.029 %, 𝐽2
∗=13.42398 %, 

Model-3 𝑥1
∗=84.046 %, 𝑥2

∗=7.335 %, 𝑥3
∗=3.587 %, 

                         𝑥4
∗=0.010 %, 𝑥5

∗=5.021 %, 𝐽3
∗=0.000 %, 

Model-4  𝑥1
∗=84.658 %, 𝑥2

∗=7.349 %, 𝑥3
∗=3.122 %,   𝜓1 = 𝜓2 = 1.0 

                          𝑥4
∗=0.010%,𝑥5

∗=4.681%,𝐽1
∗ + 𝐽2

∗=38.86875 %,  𝐽1
∗ = 25.36388 



Model-5   𝑥1
∗=84.003 %, 𝑥2

∗=7.687 %, 𝑥3
∗=3.203 %,   𝜓1 = 𝜓2 = 1.0 

                          𝑥4
∗=0.010 %, 𝑥5

∗=5.097 %, 𝐽1
∗ + 𝐽3

∗=25.35828%                 𝐽1
∗ = 25.35308 

Model-6    𝑥1
∗=84.145 %, 𝑥2

∗=8.021 %, 𝑥3
∗=3.795 %,                         𝜓1 = 𝜓2 = 𝜓3 = 1.0 

                           𝑥4
∗=0.010%,𝑥5

∗=4.029%,𝐽2
∗ + 𝐽3

∗ = 13.42918%                 𝐽2
∗ = 13.42398 

Model-7   𝑥1
∗=84.046 %, 𝑥2

∗=7.335 %, 𝑥3
∗=3.587 %,    𝜓1 = 𝜓2 = 𝜓3 = 1.0 

                           𝑥4
∗=0.010%,𝑥5

∗=5.021%,𝐽1
∗+𝐽2

∗ + 𝐽3
∗ = 38.87395%         𝐽1

∗ = 25.36388 

                                                                                                                 𝐽2
∗ = 13.50487 

Where x1, x2, x3, x4, and x5 are ingredient ratio of the Limestone, Sandstone, Steel Slag, 

Shale, and Coal Ash, respectively. 

 

 

 

 

 

 

 

 

 

 

 

Exhibit-14: Optimal Ingredient Ratio for Cement Materials in Exhibit-4 

 

 

 

 

 



 

Exhibit-15: Optimization Models and results for Cement Materials in 

Exhibit-10 

 

Optimization Models 

Model-1: 𝐽1 = 24𝑥1 + 25𝑥2 + 50𝑥3 + 30𝑥4 + 28.7𝑥5 

Model-2: 𝐽2 = 12.45𝑥1 + 12.10𝑥2 + 18.98𝑥3 + 14.70𝑥4 + 15.66𝑥5 

Model-3: 𝐽3 = 𝜔1(0.96 − 𝛼)
2 + 𝜔2(1.90 − 𝛽)

2 + 𝜔3(1.25 − Ω)
2 

((𝜔1 = 0.5, 𝜔2 = 0.3, 𝜔3 = 0.2, 𝛼𝑑0 = 0.96, 𝛽𝑑0 = 1.90, Ω𝑑0 =

1.25) 

Model-4: 𝑚𝑖𝑛(𝐽1𝐽2) = 𝑚𝑖𝑛{𝜓1𝐽1 + 𝜓2𝐽2} 
 

Model-5: min (𝐽1𝐽3) = 𝑚𝑖𝑛{𝜓1𝐽1 + 𝜓2𝐽3} 

 

Model-6: min (𝐽2𝐽3) = 𝑚𝑖𝑛{𝜓1𝐽2 + 𝜓2𝐽3} 

 

Model-7: min (𝐽1, 𝐽2,𝐽3) = 𝑚𝑖𝑛{𝜓1𝐽1 + 𝜓2𝐽2 + 𝜓3𝐽3} 
Subject to (s.t) (A.1) - (A.5) 

 
(1)   𝑀𝜇 = 8.52𝑥1 + 62.74𝑥2 + 7.92𝑥3 + 3.15𝑥4 + 44.77𝑥5 

𝑀𝜂 = 1.23 + 17.94𝑥2 + 50.27𝑥3 + 21.3𝑥4 + 26.04𝑥5 

𝑀𝜌 = 1.31𝑥1 + 4.06𝑥2 + 13.01𝑥3 + 38.55𝑥4 + 4.49𝑥5 

𝑀𝛾 = 46.05𝑥1 + 2.40𝑥2 + 2.94𝑥3 + 5.17𝑥4 + 8.42𝑥5 

𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 = 0 

𝑥1 ≥ 0, 𝑥2 ≥ 0, 𝑥3 ≥ 𝜀, 𝑥4 ≥ 0, 𝑥5 ≥ 𝜀, (𝜀 = 0.0001) 
 

(2) 𝛼 = (𝑀𝛾 − 1.65𝑀𝜂 − 0.35𝑀𝜌)/(2.8𝑀𝜇) 

𝛽 =
𝑀𝜇

𝑀𝜂 +𝑀𝜌
, Ω =

𝑀𝜂

𝑀𝜌
 

 

(3)  𝑀𝜑 = 40.09𝑥1 + 7.99𝑥2 + 24.74𝑥3 + 30.25𝑥4 ≤ 39.00 



          𝑀𝜏 = 2.49𝑥1 + 0.94𝑥2 + 0.79𝑥3 + 1.53𝑥4 + 1.67𝑥5 ≤ 3.00 

       𝑀𝑠 = 0.02𝑥1 + 0.64𝑥2 + 0.14𝑥3 + 0.05𝑥4 + 0.95𝑥5 ≤ 0.8 

          𝑀𝑟 = 0.28𝑥1 + 3.25𝑥2 + 0.19𝑥3 + 0.62𝑥5 ≤ 0.9 

𝑀𝑟1 = 0.21𝑥1 + 3.25𝑥2 + 0.19𝑥3 + 0.62𝑥5 ≤ 0.8,𝑀𝑟2 = 0.07𝑥1

≤ 0.1 

𝑀𝜋 = 0.0243𝑥1 + 0.09𝑥2 + 0.25𝑥3 + 0.013𝑥4 + 0.043𝑥5 ≤ 0.2 

(4)  𝜃 = 𝑀𝑠/(0.85𝑀𝑟1 + 1.29𝑀𝑟2 − 1.119𝑀𝜋) ≤ 0.7 

(5) 0.94 ≤ 𝛼 ≤ 0.98, 1.80 ≤ 𝛽 ≤ 2.00, 1.15 ≤ Ω ≤ 1.35 

Models   Optimum Ingredient Ratio                                         Remarks 

Model-1 𝑥1
∗=88.257 %, 𝑥2

∗=7.503 %, 𝑥3
∗=0.010 %, 

   𝑥4
∗=3.731 %, 𝑥5

∗=0.499 %, 𝐽1
∗=24.32497 %, 

Model-2 𝑥1
∗=87.565 %, 𝑥2

∗=8.480 %, 𝑥3
∗=0.040 %, 

            𝑥4
∗=3.905 %, 𝑥5

∗=0.010 %, 𝐽2
∗=12.51115 %, 

Model-3 𝑥1
∗=87.805 %, 𝑥2

∗ =7.791 %, 𝑥3
∗=0.878 %, 

                         𝑥4
∗=3.516 %, 𝑥5

∗=0.010 %, 𝐽3
∗=0.000 %, 

Model-4  𝑥1
∗=87.555 %, 𝑥2

∗=8.414 %, 𝑥3
∗=0.010 %,   𝜓1 = 𝜓2 = 1.0 

                          𝑥4
∗=3.912%,𝑥5

∗=0.109%, 𝐽1
∗ + 𝐽2

∗=36.83931%,  𝐽1
∗ = 24.32659 

Model-5   𝑥1
∗=88.257 %, 𝑥2

∗=7.503 %, 𝑥3
∗=0.010 %,   𝜓1 = 𝜓2 = 1.0 

                          𝑥4
∗=3.731 %, 𝑥5

∗=0.499 %, 𝐽1
∗ + 𝐽3

∗=24.33017%                 𝐽1
∗ = 24.32497 

Model-6    𝑥1
∗=87.565 %, 𝑥2

∗=8.480 %, 𝑥3
∗=0.040 %,                         𝜓1 = 𝜓2 = 𝜓3 = 1.0 

                           𝑥4
∗=3.905%,𝑥5

∗=0.010%, 𝐽2
∗ + 𝐽3

∗ = 12.51635%               𝐽2
∗ = 12.51115 

Model-7   𝑥1
∗=87.555 %, 𝑥2

∗=8.414 %, 𝑥3
∗=0.010 %,    𝜓1 = 𝜓2 = 𝜓3 = 1.0 

                           𝑥4
∗=3.912%,𝑥5

∗=0.109%,𝐽1
∗+𝐽2

∗ + 𝐽3
∗ = 36.84451%         𝐽1

∗ = 24.32659 

                                                                                                                 𝐽2
∗ = 12.51273 

Where x1, x2, x3, x4, and x5 are ingredient ratio of the Limestone, Clay, Iron, 

Correction Materials, and Coal Ash, respectively. 



 

 

 

 

 

 

 

 

 

 

 

 

Exhibit-16: Optimal Ingredient Ratio for Cement Materials in Exhibit-5 

 

Exhibit-17: Optimization Models and results for Cement Materials in 

Exhibit-11 

Optimization Models 

Model-1: 𝐽1 = 18𝑥1 + 25𝑥2 + 48𝑥3 + 9𝑥4 

Model-2: 𝐽2 = 11.24𝑥1 + 12.50𝑥2 + 19.86𝑥3 + 13.80𝑥4 

Model-3: 𝐽3 = 𝜔1(1.02 − 𝛼)
2 + 𝜔2(1.80 − 𝛽)

2 + 𝜔3(1.10 − Ω)
2 

((𝜔1 = 0.5, 𝜔2 = 0.3, 𝜔3 = 0.2, 𝛼𝑑0 = 1.02, 𝛽𝑑0 = 1.80, Ω𝑑0 =

1.10) 

Model-4: 𝑚𝑖𝑛(𝐽1𝐽2) = 𝑚𝑖𝑛{𝜓1𝐽1 + 𝜓2𝐽2} 
 

Model-5: min (𝐽1𝐽3) = 𝑚𝑖𝑛{𝜓1𝐽1 + 𝜓2𝐽3} 

 



Model-6: min (𝐽2𝐽3) = 𝑚𝑖𝑛{𝜓1𝐽2 + 𝜓2𝐽3} 

 

Model-7: min (𝐽1, 𝐽2,𝐽3) = 𝑚𝑖𝑛{𝜓1𝐽1 + 𝜓2𝐽2 + 𝜓3𝐽3} 
Subject to (s.t) (A.1) - (A.4) 

 
(1) 𝑀𝜇 = 1.02 + 69.56𝑥2 + 11.05𝑥3 + 56.39𝑥4 

      𝑀𝜂 = 1.29 + 16.42𝑥2 + 2.22𝑥3 + 22.77𝑥4 

𝑀𝜌 = 3.35𝑥2 + 77.85𝑥3 + 10.18𝑥4 

𝑀𝛾 = 69.26𝑥1 + 2.45𝑥3 + 1.13𝑥4 

𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 = 0 

𝑥1 ≥ 0, 𝑥2 ≥ 0, 𝑥3 ≥ 0, 𝑥4 ≥ 0 

 

 (2) 𝛼 = (𝑀𝛾 − 1.65𝑀𝜂 − 0.35𝑀𝜌)/(2.8𝑀𝜇) 

𝛽 =
𝑀𝜇

𝑀𝜂 +𝑀𝜌
, Ω =

𝑀𝜂

𝑀𝜌
 

 

 (3)  𝑀𝜑 = 24.65𝑥1 + 5.83𝑥2 + 1.06𝑥3 ≤ 30.00 

𝑀𝜏 = 2.71𝑥3 + 2.16𝑥4 ≤ 1.50 

     (4) 1.00 ≤ 𝛼 ≤ 1.04, 1.70 ≤ 𝛽 ≤ 1.90, 0.95 ≤ Ω ≤ 1.25 

Models   Optimum Ingredient Ratio.                                      Remarks 

Model-1 𝑥1
∗=75.007 %, 𝑥2

∗=14.973 %, 𝑥3
∗=3.620 %, 

   𝑥4
∗=6.400 %, 𝐽1

∗=19.55801 %, 

Model-2 𝑥1
∗=76.090 %, 𝑥2

∗=19.539 %, 𝑥3
∗=3.624 %, 

            𝑥4
∗=0.755 %, 𝐽2

∗=11.81783 %, 

Model-3 𝑥1
∗=75.442 %, 𝑥2

∗=19.623 %, 𝑥3
∗=4.257 %, 

                         𝑥4
∗=0.678 %, 𝐽3

∗=0.000 %, 

Model-4  𝑥1
∗=75.652 %, 𝑥2

∗=14.798 %, 𝑥3
∗=3.562 %,   𝜓1 = 𝜓2 = 1.0 

                          𝑥4
∗=5.985%, 𝐽1

∗ + 𝐽2
∗=31.45261%,                      𝐽1

∗ = 19.56587 

Model-5   𝑥1
∗=75.007 %, 𝑥2

∗=14.973 %, 𝑥3
∗=3.620 %,   𝜓1 = 𝜓2 = 1.0 

                          𝑥4
∗=6.400 %, 𝐽1

∗ + 𝐽3
∗=19.56571 %                                           𝐽1

∗ = 19.55801 

Model-6    𝑥1
∗=76.090 %, 𝑥2

∗=19.530 %, 𝑥3
∗=3.624 %,                         𝜓1 = 𝜓2 = 𝜓3 = 1.0 



                           𝑥4
∗=0.755 %,𝐽2

∗ + 𝐽3
∗ = 11.82553 %                                      𝐽2

∗ = 11.81783 

Model-7   𝑥1
∗=75.654 %, 𝑥2

∗=14.798 %, 𝑥3
∗=3.562 %,    𝜓1 = 𝜓2 = 𝜓3 = 1.0 

                           𝑥4
∗=3%, 𝐽1

∗+𝐽2
∗ + 𝐽3

∗ = 31.46031%                                      𝐽1
∗ = 19.56587 

                                                                                                                 𝐽2
∗ = 11.88674 

 

Where x1, x2, x3, and x4 are ingredient ratio of the Carbide Slag, Clay, Sulfuric 

Acid Residue, and Cinder, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

Exhibit-18: Optimal Ingredient Ratio for Cement Materials in Exhibit-6 

 

 

 

 

 

 



 

 

Exhibit-19: Nomenclature used  

μi: SiO2 mass percentage of original cement material-i 

ηi: Al2O3 mass percentage of original cement material-i 

ρi: Fe2O3 mass percentage of original cement material-i 

γi: CaO mass percentage of original cement material-i 

τi: MgO mass percentage of original cement material-i 

ri: R2O mass percentage of original cement material-i 

si: SO3 mass percentage of original cement material-i 

λi: TiO2 mass percentage of original cement material-i 

πi: Cl mass percentage of original cement material-i 

ωi: Impurity mass percentage in original cement material-i 

ϕi: Mass loss percentage of original cement material-i in the cement 

kiln burning process 

Mi: Original cement material-i mass 

Mμ: SiO2 total mass of original cement material 

Mη: Al2O3 total mass of original cement material 

Mρ: Fe2O3 total mass of original cement material 

Mγ : CaO total mass of original cement material 

Mτ : MgO total mass of original cement material 

Mr: R2O total mass of original cement material 

Ms: SO3 total mass of original cement material 

Mλ: TiO2 total mass of original cement material 

Mπ: Cl total mass of original cement material 



Mω: Impurity total mass of original cement material 

Mϕ: Total mass loss of original cement material in cement kiln burning 

process 

mμ: SiO2 total mass percentage of original cement material 

mη: Al2O3 total mass percentage of original cement material 

mρ: Fe2O3 total mass percentage of original cement material 

mγ : CaO total mass percentage of original cement material 

mτ: MgO total mass of original Cement Material 

mr: R2O total mass percentage of original cement material 

ms: SO3 total mass percentage of original cement material 

mλ: TiO2 total mass percentage of original cement material 

mπ: Cl total mass percentage of original cement material 

mω: Impurity total mass percentage of original cement material 

mϕ: Total mass loss percentage of original cement material in Cement 

kiln burning process. 

 


