Q1. Let A and B be two sets, then $(A \cup B)^{\prime} \cup\left(A^{\prime} \cap B\right)$ is equal to
a) A^{\prime}
b) A
c) B^{\prime}
d) None of these

Solution:
Q2. $A=\{1,2,3,4\}, B=\{1,2,3,4,5,6\}$ are two sets and function $f: A \rightarrow B$ is defined by $f(x)=x+2$ for all $x \in A$, then the function f is
a) Bijective
b) Onto
c) one - one
d) many - one

Q3. On the set of integers \mathbb{Z}, define $f: \mathbb{Z} \rightarrow \mathbb{Z}$ as $f(n)=\left\{\begin{array}{ll}\frac{n}{2}, & \mathrm{n} \text { is even } \\ 0, & \mathrm{n} \text { is odd }\end{array}\right.$, then f is
a) one-one but not onto
b) neither one-one nor onto
c) onto but not one-one
d) bizective

Q4. The complex number $\frac{(-\sqrt{3}+3 i)(1-i)}{(3+\sqrt{3} i)(i)(\sqrt{3}+\sqrt{3} i)}$ when represented in the argand diagram is
a) in $2^{\text {nd }}$ quadrant
b) in $1^{\text {st }}$ quadrant
c) on imaginary axis
d) on real axis

Q5. If $z=\frac{4}{1-i}$, then \bar{z} is
a) $2(1+i)$
b) $(1+i)$
c) $\frac{2}{1-i}$
d) $\frac{4}{1+i}$

Q6. If $f:[0, \infty) \rightarrow[0, \infty)$ and $f(x)=\frac{x}{1+x}$, then f is
a) one-one and onto
b) one-one but not onto
c) onto but not one-one
d) neither one-one nor onto

Q7. If $z=r(\cos \theta+i \sin \theta)$, then the value of $\frac{z}{z}+\frac{\bar{z}}{z}$ is
a) $\cos 2 \theta$
b) $2 \cos 2 \theta$
c) $2 \cos \theta$
d) $2 \sin \theta$
e) $2 \sin 2 \theta$

Q8. For real x, let $f(x)=x^{3}+5 x+1$, then
a) f is one-one but not onto \mathbb{R}
b) f is onto \mathbb{R} but not one-one
c) f is one-one and onto \mathbb{R}
d) f is neither one-one nor onto \mathbb{R}

Q9. If $(3+i) z=(3-i) \bar{z}$, then z is
a) $a(3-i) ; a \in \mathbb{R}$
b) $\frac{a}{3+i} ; a \in \mathbb{R}$
c) $a(3+i) ; a \in \mathbb{R}$
d) $a(-3+i) ; a \in \mathbb{R}$

Q10. $\{n(n+1)(2 n+1): n \in \mathbb{Z}\} \subset$?
a) $\{6 k: k \in \mathbb{Z}\}$
b) $\{12 k: k \in \mathbb{Z}\}$
c) $\{18 k: k \in \mathbb{Z}\}$
d) $\{24 k: k \in \mathbb{Z}\}$

