Q1. Let A and B be two sets, then $(A \cup B)' \cup (A' \cap B)$ is equal to a) A' b) A c) B' d) None of these

Solution:

Q2. $A = \{1, 2, 3, 4\}, B = \{1, 2, 3, 4, 5, 6\}$ are two sets and function $f : A \to B$ is defined by f(x) = x + 2 for all $x \in A$, then the function f is a) *Bijective* b) *Onto* c) *one - one* d) *many - one*

Q3. On the set of integers \mathbb{Z} , define $f : \mathbb{Z} \to \mathbb{Z}$ as $f(n) = \begin{cases} \frac{n}{2}, & \text{n is even} \\ 0, & \text{n is odd} \end{cases}$,

then f is

a) one-one but not onto

b) neither one-one nor onto

c) onto but not one-one

d) bizective

Q4. The complex number $\frac{(-\sqrt{3}+3i)(1-i)}{(3+\sqrt{3}i)(i)(\sqrt{3}+\sqrt{3}i)}$ when represented in the argand diagram is

a) in 2^{nd} quadrant b) in 1^{st} quadrant c) on *imaginary* axis d) on *real* axis

Q5. If $z = \frac{4}{1-i}$, then \overline{z} is a) 2(1+i) b) (1+i) c) $\frac{2}{1-i}$ d) $\frac{4}{1+i}$

Q6. If $f: [0, \infty) \to [0, \infty)$ and $f(x) = \frac{x}{1+x}$, then f is a) one-one and onto b) one-one but not onto c) onto but not one-one

d) neither one-one nor onto

Q7. If $z = r(\cos\theta + i\sin\theta)$, then the value of $\frac{z}{\overline{z}} + \frac{\overline{z}}{\overline{z}}$ is a) $\cos 2\theta$ b) $2\cos 2\theta$ c) $2\cos \theta$ d) $2\sin \theta$ e) $2\sin 2\theta$

Q8. For real x, let $f(x) = x^3 + 5x + 1$, then

a) f is one-one but not onto \mathbb{R}

b) f is onto $\mathbb R$ but not one-one

c) f is one-one and onto \mathbb{R}

d) f is neither one-one nor onto \mathbb{R}

Q9. If $(3+i)z = (3-i)\overline{z}$, then z is a) a(3-i); $a \in \mathbb{R}$ b) $\frac{a}{3+i}$; $a \in \mathbb{R}$ c) a(3+i); $a \in \mathbb{R}$ d) a(-3+i); $a \in \mathbb{R}$

Q10. $\{n(n+1)(2n+1) : n \in \mathbb{Z}\} \subset \underline{?}$ a) $\{6k : k \in \mathbb{Z}\}$ b) $\{12k : k \in \mathbb{Z}\}$ c) $\{18k : k \in \mathbb{Z}\}$ d) $\{24k : k \in \mathbb{Z}\}$

Phase 1

2021-22

MATHEMATICS

Phase 1

2021-22