
The controller responds to URL request, gets data from a model and hands it over to the

view. The view then renders the data. Model can be entities or business objects.

In part 7, we have built Employee entity.

public class Employee

{

 public int EmployeeId { get; set; }

 public string Name { get; set; }

 public string Gender { get; set; }

 public string City { get; set; }

}

In this video, we will discuss, retrieving data from a database table tblEmployee using entity

framework. In a later video, we will discuss using business objects as our model.

Step 1: Install entity framework, if you don't have it installed already on your computer. At the

time of this recording the latest version is 5.0.0.0. Using nuget package manager, is the easiest

way to install. A reference to EntityFramework.dll is automatically added.

Open visual studio > Tools > Library Package Manager > Manage NuGet Packages for Solution

Step 2: Add EmployeeContext.cs class file to the Models folder. Add the

following"using" declaration.

using System.Data.Entity;

Copy & paste the following code in EmployeeContext.cs

public class EmployeeContext : DbContext

{

 public DbSet<Employee> Employees {get; set;}

}

EmployeeContext class derives from DbContext class, and is responsible for establishing a

connection to the database. So the next step, is to include connection string in web.config file.

Step 3: Add a connection string, to the web.config file, in the root directory.

<connectionStrings>

 <add name="EmployeeContext"

 connectionString="server=.; database=Sample; integrated security=SSPI"

 providerName="System.Data.SqlClient"/>

</connectionStrings>

Step 4: Map "Employee" model class to the database table, tblEmployee

using "Table"attribute as shown below.

http://csharp-video-tutorials.blogspot.com/2013/04/part-7-models-in-mvc-application.html

[Table("tblEmployee")]

public class Employee

{

 public int EmployeeId { get; set; }

 public string Name { get; set; }

 public string Gender { get; set; }

 public string City { get; set; }

}

Note: "Table" attribute is present in "System.ComponentModel.DataAnnotations.Schema"

namespace.

Step 5: Make the changes to "Details()" action method in "EmployeeController" as shown

below.

public ActionResult Details(int id)

{

 EmployeeContext employeeContext = new EmployeeContext();

 Employee employee = employeeContext.Employees.Single(x => x.EmployeeId == id);

 return View(employee);

}

Step 6: Finally, copy and paste the following code in Application_Start() function,

inGlobal.asax file. Database class is present "in System.Data.Entity" namespace. Existing

databases do not need, database initializer so it can be turned off.

Database.SetInitializer<MVCDemo.Models.EmployeeContext>(null);

That's it, run the application and navigate to the following URL's and notice that the relevant

employee details are displayed as expected

