
Schedule: Timing Topic
50 minutes Lecture

50 minutes Practice

100 minutes Total

Copyright © Oracle Corporation, 2001. All rights reserved.

Oracle Supplied Packages

Oracle9i: Program with PL/SQL 14-2

14-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:
• Write dynamic SQL statements using DBMS_SQL

and EXECUTE IMMEDIATE

• Describe the use and application of some Oracle
server-supplied packages:
– DBMS_DDL

– DBMS_JOB

– DBMS_OUTPUT

– UTL_FILE

– UTL_HTTP and UTL_TCP

Lesson Aim
In this lesson, you learn how to use some of the Oracle server supplied packages and to take advantage of their
capabilities.

Instructor Note
In this lesson, only a few of the many Oracle server supplied packages and their procedures, functions, and
parameters are explained.

Oracle9i: Program with PL/SQL 14-3

Using Supplied Packages
Packages are provided with the Oracle server to allow either PL/SQL access to certain SQL features, or to
extend the functionality of the database.

You can take advantage of the functionality provided by these packages when creating your application, or you
may simply want to use these packages as ideas when you create your own stored procedures.

Most of the standard packages are created by running catproc.sql.

Instructor Note
The catproc.sql script is found in the $ORACLE_HOME/rdbms/admin directory. Other packages
may have to be created in the SYS schema by running corresponding scripts located in the directory
$ORACLE_HOME/rdbms/admin. The scripts to create supplied packages have prefix DBMS_.

14-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Using Supplied Packages

Oracle-supplied packages:
• Are provided with the Oracle server
• Extend the functionality of the database
• Enable access to certain SQL features normally

restricted for PL/SQL

Oracle9i: Program with PL/SQL 14-4

14-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Using Native Dynamic SQL

Dynamic SQL:
• Is a SQL statement that contains variables that can

change during runtime
• Is a SQL statement with placeholders and is stored

as a character string
• Enables general-purpose code to be written
• Enables data-definition, data-control, or session-

control statements to be written and executed
from PL/SQL

• Is written using either DBMS_SQL or native dynamic
SQL

Using Native Dynamic SQL (Dynamic SQL)
You can write PL/SQL blocks that use dynamic SQL. Dynamic SQL statements are not embedded in your
source program but rather are stored in character strings that are input to, or built by, the program. That is, the
SQL statements can be created dynamically at run time by using variables. For example, you use dynamic
SQL to create a procedure that operates on a table whose name is not known until run time, or to write and
execute a data definition language (DDL) statement (such as CREATE TABLE), a data control statement (such
as GRANT), or a session control statement (such as ALTER SESSION). In PL/SQL, such statements cannot be
executed statically.
In Oracle8, and earlier, you have to use DBMS_SQL to write dynamic SQL.

In Oracle 8i, you can use DBMS_SQL or native dynamic SQL. The EXECUTE IMMEDIATE statement can
perform dynamic single-row queries. Also, this is used for functionality such as objects and collections, which
are not supported by DBMS_SQL. If the statement is a multirow SELECT statement, you use OPEN-FOR,
FETCH, and CLOSE statements.

Oracle9i: Program with PL/SQL 14-5

14-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Execution Flow

SQL statements go through various stages:
• Parse
• Bind
• Execute
• Fetch
Note: Some stages may be skipped.

Steps to Process SQL Statements
All SQL statements have to go through various stages. Some stages may be skipped.
Parse
Every SQL statement must be parsed. Parsing the statement includes checking the statement's syntax and
validating the statement, ensuring that all references to objects are correct, and ensuring that the relevant
privileges to those objects exist.
Bind
After parsing, the Oracle server knows the meaning of the Oracle statement but still may not have enough
information to execute the statement. The Oracle server may need values for any bind variable in the
statement. The process of obtaining these values is called binding variables.
Execute
At this point, the Oracle server has all necessary information and resources, and the statement is executed.
Fetch
In the fetch stage, rows are selected and ordered (if requested by the query), and each successive fetch
retrieves another row of the result, until the last row has been fetched. You can fetch queries, but not the DML
statements.

Instructor Note
Do not go into too much detail when discussing this topic. Processing of SQL statements is covered in more
detail in other courses.

Oracle9i: Program with PL/SQL 14-6

14-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the DBMS_SQL Package

The DBMS_SQL package is used to write dynamic SQL
in stored procedures and to parse DDL statements.
Some of the procedures and functions of the package
include:

– OPEN_CURSOR

– PARSE

– BIND_VARIABLE

– EXECUTE

– FETCH_ROWS

– CLOSE_CURSOR

Using the DBMS_SQL Package
Using DBMS_SQL, you can write stored procedures and anonymous PL/SQL blocks that use dynamic SQL.

DBMS_SQL can issue data definition language statements in PL/SQL. For example, you can choose to issue a
DROP TABLE statement from within a stored procedure.

The operations provided by this package are performed under the current user, not under the package owner
SYS. Therefore, if the caller is an anonymous PL/SQL block, the operations are performed according to the
privileges of the current user; if the caller is a stored procedure, the operations are performed according to the
owner of the stored procedure.

Using this package to execute DDL statements can result in a deadlock. The most likely reason for this is that
the package is being used to drop a procedure that you are still using.

Oracle9i: Program with PL/SQL 14-7

Components of the DBMS_SQL Package
The DBMS_SQL package uses dynamic SQL to access the database.

Instructor Note
DBMS_SQL has many more procedures and functions than are shown here. The procedures and functions in
the table should show the main stages of dynamic SQL statements. If you want to cover DBMS_SQL in more
detail, start by showing the data dictionary information on DBMS_SQL.
SELECT text FROM all_source WHERE name ='DBMS_SQL' ORDER BY LINE;

or
Use DESC DBMS_SQL to view the description of the procedures and functions in the package.
The above SELECT statement returns 1050 rows.

Function or Procedure Description

OPEN_CURSOR Opens a new cursor and assigns a cursor ID number

PARSE Parses the DDL or DML statement: that is, checks the statement’s syntax
and associates it with the opened cursor (DDL statements are immediately
executed when parsed)

BIND_VARIABLE Binds the given value to the variable identified by its name in the parsed
statement in the given cursor

EXECUTE Executes the SQL statement and returns the number of rows processed

FETCH_ROWS Retrieves a row for the specified cursor (for multiple rows, call in a loop)

CLOSE_CURSOR Closes the specified cursor

Oracle9i: Program with PL/SQL 14-8

Example of a DBMS_SQL Package
In the slide, the table name is passed into the DELETE_ALL_ROWS procedure by using an IN parameter.
The procedure uses dynamic SQL to delete rows from the specified table. The number of rows that are
deleted as a result of the successful execution of the dynamic SQL are passed to the calling environment
through an OUT parameter.

How to Process Dynamic DML
1. Use OPEN_CURSOR to establish an area in memory to process a SQL statement.

2. Use PARSE to establish the validity of the SQL statement.

3. Use the EXECUTE function to run the SQL statement. This function returns the number of row
processed.

4. Use CLOSE_CURSOR to close the cursor.

Instructor Note
If you want to demonstrate this code, remember to do a ROLLBACK in order to undo the deletion. The
sample code contains DELETE command on another test table that is created in the script.

Demonstration: 14_dmldynam.sql, 14_ddldynam.sql, and 14_seldynam.sql

Purpose: The first two scripts create a table to perform either a DROP TABLE or a DELETE command
on it. The last script accepts three parameters and selects data from the table. Use EMPLOYEES, JOB,
and MANAGER as the values when prompted. The values are not case-sensitive.

14-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Using DBMS_SQL

Use dynamic SQL to delete rows
VARIABLE deleted NUMBER
EXECUTE delete_all_rows('employees', :deleted)
PRINT deleted

CREATE OR REPLACE PROCEDURE delete_all_rows
(p_tab_name IN VARCHAR2, p_rows_del OUT NUMBER)

IS
cursor_name INTEGER;

BEGIN
cursor_name := DBMS_SQL.OPEN_CURSOR;
DBMS_SQL.PARSE(cursor_name, 'DELETE FROM '||p_tab_name,

DBMS_SQL.NATIVE);
p_rows_del := DBMS_SQL.EXECUTE (cursor_name);
DBMS_SQL.CLOSE_CURSOR(cursor_name);

END;
/

Oracle9i: Program with PL/SQL 14-9

14-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Use the EXECUTE IMMEDIATE statement for native
dynamic SQL with better performance.

• INTO is used for single-row queries and specifies
the variables or records into which column values
are retrieved.

• USING is used to hold all bind arguments. The
default parameter mode is IN.

Using the EXECUTE IMMEDIATE Statement

EXECUTE IMMEDIATE dynamic_string
[INTO {define_variable

[, define_variable] ... | record}]
[USING [IN|OUT|IN OUT] bind_argument

[, [IN|OUT|IN OUT] bind_argument] ...];

Using the EXECUTE IMMEDIATE Statement

Syntax Definition

You can use the INTO clause for a single-row query, but you must use OPEN-FOR, FETCH, and CLOSE for a
multirow query.

Note: The syntax shown in the slide is not complete. The other clauses of the statement are discussed in the
Advanced PL/SQL course.

Instructor Note
To process most dynamic SQL statements, you use the EXECUTE IMMEDIATE statement. However, to
process a multirow query (SELECT statement), you must use the OPEN-FOR, FETCH, and CLOSE
statements.

OPEN-FOR, FETCH, and CLOSE are not covered in this course, because they use cursor variables.

Parameter Description
dynamic_string A string expression that represents a dynamic SQL statement (without

terminator) or a PL/SQL block (with terminator)
define_variable A variable that stores the selected column value
record A user-defined or %ROWTYPE record that stores a selected row
bind_argument An expression whose value is passed to the dynamic SQL statement or

PL/SQL block

Oracle9i: Program with PL/SQL 14-10

Using the EXECUTE IMMEDIATE Statement (continued)
In the EXECUTE IMMEDIATE statement:

• The INTO clause specifies the variables or record into which column values are retrieved. It is used
only for single-row queries. For each value retrieved by the query, there must be a corresponding, type-
compatible variable or field in the INTO clause.

• The RETURNING INTO clause specifies the variables into which column values are returned. It is
used only for DML statements that have a RETURNING clause (without a BULK COLLECT clause).
For each value returned by the DML statement, there must be a corresponding, type-compatible
variable in the RETURNING INTO clause.

• The USING clause holds all bind arguments. The default parameter mode is IN. For DML statements
that have a RETURNING clause, you can place OUT arguments in the RETURNING INTO clause
without specifying the parameter mode, which, by definition, is OUT. If you use both the USING clause
and the RETURNING INTO clause, the USING clause can contain only IN arguments.

At run time, bind arguments replace corresponding placeholders in the dynamic string. Thus, every
placeholder must be associated with a bind argument in the USING clause or RETURNING INTO clause.
You can use numeric, character, and string literals as bind arguments, but you cannot use Boolean literals
(TRUE, FALSE, and NULL).

Dynamic SQL supports all the SQL data types. For example, define variables and bind arguments can be
collections, LOBs, instances of an object type, and REFs. As a rule, dynamic SQL does not support PL/SQL-
specific types. For example, define variables and bind arguments cannot be Booleans or index-by tables. The
only exception is that a PL/SQL record can appear in the INTO clause.

You can execute a dynamic SQL statement repeatedly, using new values for the bind arguments. However,
you incur some overhead because EXECUTE IMMEDIATE reparses the dynamic string before every
execution.

Oracle9i: Program with PL/SQL 14-11

14-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Dynamic SQL Using EXECUTE IMMEDIATE

CREATE PROCEDURE del_rows
(p_table_name IN VARCHAR2,
p_rows_deld OUT NUMBER)

IS
BEGIN
EXECUTE IMMEDIATE 'delete from '||p_table_name;
p_rows_deld := SQL%ROWCOUNT;

END;
/

VARIABLE deleted NUMBER
EXECUTE del_rows('test_employees',:deleted)
PRINT deleted

Dynamic SQL Using EXECUTE IMMEDIATE
This is the same dynamic SQL as seen with DBMS_SQL, using the Oracle8i statement EXECUTE
IMMEDIATE. The EXECUTE IMMEDIATE statement prepares (parses) and immediately executes the
dynamic SQL statement.

Instructor Note
If you run this example, remember to use ROLLBACK to undo the deletion.

Oracle9i: Program with PL/SQL 14-12

Using the DBMS_DDL package

This package provides access to some SQL DDL statements, which you can use in PL/SQL programs.
DBMS_DDL is not allowed in triggers, in procedures called from Forms Builder, or in remote sessions. This
package runs with the privileges of calling user, rather than the package owner SYS.

Practical Uses
• You can recompile your modified PL/SQL program units by using DBMS_DDL.ALTER_COMPILE. The

object type must be either procedure, function, package, package body, or trigger.
• You can analyze a single object, using DBMS_DDL.ANALYZE_OBJECT. (There is a way of analyzing

more than one object at a time, using DBMS_UTILITY.) The object type should be TABLE, CLUSTER, or
INDEX. The method must be COMPUTE, ESTIMATE, or DELETE.

• This package gives developers access to ALTER and ANALYZE SQL statements through PL/SQL
environments.

Instructor Note
You can check the column LAST_DDL_TIME in USER_OBJECTS and LAST_ANALYZED in
USER_TABLES to monitor the results of these operations.

14-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the DBMS_DDL Package

The DBMS_DDL Package:

• Provides access to some SQL DDL statements
from stored procedures

• Includes some procedures:
– ALTER_COMPILE (object_type, owner, object_name)

– ANALYZE_OBJECT (object_type, owner, name,
method)

Note: This package runs with the privileges of calling
user, rather than the package owner SYS.

DBMS_DDL.ALTER_COMPILE('PROCEDURE','A_USER','QUERY_EMP')

DBMS_DDL.ANALYZE_OBJECT('TABLE','A_USER','JOBS','COMPUTE')

Oracle9i: Program with PL/SQL 14-13

14-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Using DBMS_JOB for Scheduling

DBMS_JOB Enables the scheduling and execution of
PL/SQL programs:

• Submitting jobs
• Executing jobs
• Changing execution parameters of jobs
• Removing jobs
• Suspending Jobs

Scheduling Jobs by Using DBMS_JOB
The package DBMS_JOB is used to schedule PL/SQL programs to run. Using DBMS_JOB, you can submit
PL/SQL programs for execution, execute PL/SQL programs on a schedule, identify when PL/SQL programs
should run, remove PL/SQL programs from the schedule, and suspend PL/SQL programs from running.

It can be used to schedule batch jobs during nonpeak hours or to run maintenance programs during times of
low usage.

Instructor Note
In the init.ora file, the JOB_QUEUE_PROCESSES parameter must be set to greater than zero (at least
1), because this parameter enables job queue processing in the background.

Oracle9i: Program with PL/SQL 14-14

14-14 Copyright © Oracle Corporation, 2001. All rights reserved.

DBMS_JOB Subprograms

Available subprograms include:
• SUBMIT

• REMOVE

• CHANGE

• WHAT

• NEXT_DATE

• INTERVAL

• BROKEN

• RUN

DBMS_JOB Subprograms

Subprogram Description
SUBMIT Submits a job to the job queue
REMOVE Removes a specified job from the job queue
CHANGE Alters a specified job that has already been submitted to the

job queue (you can alter the job description, the time at
which the job will be run, or the interval between executions
of the job)

WHAT Alters the job description for a specified job
NEXT_DATE Alters the next execution time for a specified job
INTERVAL Alters the interval between executions for a specified job
BROKEN Disables job execution (if a job is marked as broken, the

Oracle server does not attempt to execute it)
RUN Forces a specified job to run

Oracle9i: Program with PL/SQL 14-15

14-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Submitting Jobs

You can submit jobs by using DBMS_JOB.SUBMIT.
Available parameters include:
• JOB OUT BINARY_INTEGER

• WHAT IN VARCHAR2

• NEXT_DATE IN DATE DEFAULT SYSDATE

• INTERVAL IN VARCHAR2 DEFAULT 'NULL'

• NO_PARSE IN BOOLEAN DEFAULT FALSE

DBMS_JOB.SUBMIT Parameters
The DBMS_JOB.SUBMIT procedure adds a new job to the job queue. It accepts five parameters and returns
the number of a job submitted through the OUT parameter JOB. The descriptions of the parameters are listed
below.

Note: An exception is raised if the interval does not evaluate to a time in the future.

P aram eter M ode D escription
JOB OUT U nique iden tifier of the job
WHAT IN PL /S Q L code to execute as a job
NEXT_DATE IN N ext execu tion date of the job
INTERVAL IN D ate function to com pute the nex t execu tion date of a job
NO_PARSE IN B oolean flag that indicates w hether to parse the job a t job

subm ission (the defau lt is fa lse)

Oracle9i: Program with PL/SQL 14-16

14-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Submitting Jobs

Use DBMS_JOB.SUBMIT to place a job to be executed
in the job queue.
VARIABLE jobno NUMBER
BEGIN

DBMS_JOB.SUBMIT (
job => :jobno,
what => 'OVER_PACK.ADD_DEPT(''EDUCATION'',2710);',
next_date => TRUNC(SYSDATE + 1),
interval => 'TRUNC(SYSDATE + 1)'

);
COMMIT;

END;
/
PRINT jobno

Example
The block of code in the slide submits the ADD_DEPT procedure of the OVER_PACK package to the job
queue. The job number is returned through the JOB parameter. The WHAT parameter must be enclosed in
single quotation marks and must include a semicolon at the end of the text string. This job is submitted to run
every day at midnight.

Note: In the example, the parameters are passed using named notation.

The transactions in the submitted job are not committed until either COMMIT is issued, or DBMS_JOB.RUN
is executed to run the job. COMMIT in the slide commits the transaction.

Instructor Note
You can demonstrate this code with the 14_16s.sql file.

Oracle9i: Program with PL/SQL 14-17

14-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Changing Job Characteristics

• DBMS_JOB.CHANGE: Changes the WHAT, NEXT_DATE,
and INTERVAL parameters

• DBMS_JOB.INTERVAL: Changes the INTERVAL
parameter

• DBMS_JOB.NEXT_DATE: Changes the next execution
date

• DBMS_JOB.WHAT: Changes the WHAT parameter

Changing Jobs After Being Submitted
The CHANGE, INTERVAL, NEXT_DATE, and WHAT procedures enable you to modify job characteristics
after a job is submitted to the queue. Each of these procedures takes the JOB parameter as an IN parameter
indicating which job is to be changed.

Example
The following code changes job number 1 to execute on the following day at 6:00 a.m. and every four hours
after that.
BEGIN

DBMS_JOB.CHANGE(1, NULL, TRUNC(SYSDATE+1)+6/24, ’SYSDATE+4/24');
END;
/

Note: Each of these procedures can be executed on jobs owned by the username to which the session is
connected. If the parameter what, next_date, or interval is NULL, then the last values assigned to
those parameters are used.

Instructor Note
You can demonstrate this code with the 14_17n.sql file.

Oracle9i: Program with PL/SQL 14-18

14-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Running, Removing, and Breaking Jobs

• DBMS_JOB.RUN: Runs a submitted job immediately
• DBMS_JOB.REMOVE: Removes a submitted job from

the job queue
• DBMS_JOB.BROKEN: Marks a submitted job as

broken, and a broken job will not run

Running, Removing, and Breaking Jobs
The DBMS_JOB.RUN procedure executes a job immediately. Pass the job number that you want to run
immediately to the procedure.
EXECUTE DBMS_JOB.RUN(1)

The DBMS_JOB.REMOVE procedure removes a submitted job from the job queue. Pass the job number that
you want to remove from the queue to the procedure.
EXECUTE DBMS_JOB.REMOVE(1)

The DBMS_JOB.BROKEN marks a job as broken or not broken. Jobs are not broken by default. You can
change a job to the broken status. A broken job will not run. There are three parameters for this procedure.
The JOB parameter identifies the job to be marked as broken or not broken. The BROKEN parameter is a
Boolean parameter. Set this parameter to FALSE to indicate that a job is not broken, and set it to TRUE to
indicate that it is broken. The NEXT_DATE parameter identifies the next execution date of the job.

EXECUTE DBMS_JOB.BROKEN(1, TRUE)

Oracle9i: Program with PL/SQL 14-19

14-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Viewing Information on Submitted Jobs

• Use the DBA_JOBS dictionary view to see the
status of submitted jobs.

• Use the DBA_JOBS_RUNNING dictionary view to
display jobs that are currently running.

SELECT job, log_user, next_date, next_sec,
broken, what

FROM DBA_JOBS;

Viewing Information on Submitted Jobs
The DBA_JOBS and DBA_JOBS_RUNNING dictionary views display information about jobs in the queue
and jobs that have run. To be able to view the dictionary information, users should be granted the SELECT
privilege on SYS.DBA_JOBS.

The query shown in the slide displays the job number, the user who submitted the job, the scheduled date for
the job to run, the time for the job to run, and the PL/SQL block executed as a job.

Use the USER_JOBS data dictionary view to display information about jobs in the queue for you. This view
has the same structure as the DBA_JOBS view.

Instructor Note
You may want to describe these views in iSQL*Plus. The columns are fairly descriptive of the information
held in them. Refer students to the reference material for more in-depth descriptions.

You can demonstrate this code with the 14_19s.sql file.

Oracle9i: Program with PL/SQL 14-20

Using the DBMS_OUTPUT Package
The DBMS_OUTPUT package outputs values and messages from any PL/SQL block.

Practical Uses
• You can output intermediary results to the window for debugging purposes.

• This package enables developers to closely follow the execution of a function or procedure by sending
messages and values to the output buffer.

Function or Procedure Description

PUT Appends text from the procedure to the current line of the line
output buffer

NEW_LINE Places an end_of_line marker in the output buffer

PUT_LINE Combines the action of PUT and NEW_LINE

GET_LINE Retrieves the current line from the output buffer into the
procedure

GET_LINES Retrieves an array of lines from the output buffer into the
procedure

ENABLE/DISABLE Enables or disables calls to the DBMS_OUTPUT procedures

14-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the DBMS_OUTPUT Package

The DBMS_OUTPUT package enables you to output
messages from PL/SQL blocks. Available procedures
include:
• PUT

• NEW_LINE

• PUT_LINE

• GET_LINE

• GET_LINES

• ENABLE/DISABLE

Oracle9i: Program with PL/SQL 14-21

14-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Interacting with Operating System Files

• UTL_FILE Oracle-supplied package:
– Provides text file I/O capabilities
– Is available with version 7.3 and later

• The DBMS_LOB Oracle-supplied package:
– Provides read-only operations on external BFILES

– Is available with version 8 and later
– Enables read and write operations on internal LOBs

Interacting with Operating System Files
Two Oracle-supplied packages are provided. You can use them to access operating system files.

With the Oracle-supplied UTL_FILE package, you can read from and write to operating system files. This
package is available with database version 7.3 and later and the PL/SQL version 2.3 and later.

With the Oracle-supplied package DBMS_LOB, you can read from binary files on the operating system. This
package is available from the database version 8.0 and later. This package is discussed later in the lesson
“Manipulating Large Objects.”

Oracle9i: Program with PL/SQL 14-22

14-22 Copyright © Oracle Corporation, 2001. All rights reserved.

What Is the UTL_FILE Package?

• Extends I/O to text files within PL/SQL
• Provides security for directories on the server

through the init.ora file

• Is similar to standard operating system I/O
– Open files
– Get text
– Put text
– Close files
– Use the exceptions specific to the UTL_FILE

package

The UTL_FILE Package
The UTL_FILE package provides text file I/O from within PL/SQL. Client-side security implementation
uses normal operating system file permission checking. Server-side security is implemented through
restrictions on the directories that can be accessed. In the init.ora file, the initialization parameter
UTL_FILE_DIR is set to the accessible directories desired.
UTL_FILE_DIR = directory_name

For example, the following initialization setting indicates that the directory /usr/ngreenbe/my_app
is accessible to the fopen function, assuming that the directory is accessible to the database server
processes. This parameter setting is case-sensitive on case-sensitive operating systems.
UTL_FILE_DIR = /user/ngreenbe/my_app

The directory should be on the same machine as the database server. Using the following setting turns off
database permissions and makes all directories that are accessible to the database server processes also
accessible to the UTL_FILE package.
UTL_FILE_DIR = *

Using the procedures and functions in the package, you can open files, get text from files, put text into
files, and close files. There are seven exceptions declared in the package to account for possible errors
raised during execution.

Instructor Note
UTL_FILE_DIR = * is not recommended. Your init.ora file needs to include the parameter
UTL_FILE_DIR. If it does not, edit the init.ora file and add the parameter. Then restart the database
by using the SHUTDOWN and STARTUP commands.

Oracle9i: Program with PL/SQL 14-23

14-23 Copyright © Oracle Corporation, 2001. All rights reserved.

YesGet lines
from the
text file

Put lines
into the
text file

More
lines to
process?

No Close
the

text file

File Processing Using the
UTL_FILE Package

Open the
text file

File Processing Using the UTL_FILE Package
Before using the UTL_FILE package to read from or write to a text file, you must first check whether the
text file is open by using the IS_OPEN function. If the file is not open, you open the file with the FOPEN
function. You then either read the file or write to the file until processing is done. At the end of file
processing, use the FCLOSE procedure to close the file.

Note: A summary of the procedures and functions within the UTL_FILE package is listed on the next page.

Instructor Note
Reading or writing to a file in PL/SQL or SQL is the same as reading or writing to files in other third-
generation languages.

Oracle9i: Program with PL/SQL 14-24

14-24 Copyright © Oracle Corporation, 2001. All rights reserved.

UTL_FILE Procedures and Functions

• Function FOPEN

• Function IS_OPEN

• Procedure GET_LINE

• Procedure PUT, PUT_LINE, PUTF

• Procedure NEW_LINE

• Procedure FFLUSH

• Procedure FCLOSE, FCLOSE_ALL

The UTL_FILE Package: Procedures and Functions

Note: The maximum size of an input record is 1,023 bytes unless you specify a larger size in the overloaded
version of FOPEN.

Function or Procedure Description
FOPEN A function that opens a file for input or output and returns a file

handle used in subsequent I/O operations
IS_OPEN A function that returns a Boolean value whenever a file handle

refers to an open file
GET_LINE A procedure that reads a line of text from the opened file and

places the text in the output buffer parameter (the maximum size
of an input record is 1,023 bytes unless you specify a larger size
in the overloaded version of FOPEN)

PUT, PUT_LINE A procedure that writes a text string stored in the buffer
parameter to the opened file (no line terminator is appended by
put; use new_line to terminate the line, or use PUT_LINE
to write a complete line with a terminator)

PUTF A formatted put procedure with two format specifiers: %s and
\n (use %s to substitute a value into the output string. \n is a
new line character)

NEW_LINE Procedure that terminates a line in an output file

FFLUSH Procedure that writes all data buffered in memory to a file
FCLOSE Procedure that closes an opened file
FCLOSE_ALL Procedure that closes all opened file handles for the session

Oracle9i: Program with PL/SQL 14-25

14-25 Copyright © Oracle Corporation, 2001. All rights reserved.

Exceptions Specific to the UTL_FILE
Package

• INVALID_PATH

• INVALID_MODE

• INVALID_FILEHANDLE

• INVALID_OPERATION

• READ_ERROR

• WRITE_ERROR

• INTERNAL_ERROR

Exceptions to the UTL_FILE Package
The UTL_FILE package declares seven exceptions that are raised to indicate an error condition in the
operating system file processing.

Note: These exceptions must be prefaced with the package name.

UTL_FILE procedures can also raise predefined PL/SQL exceptions such as NO_DATA_FOUND or
VALUE_ERROR.

Exception Name Description
INVALID_PATH The file location or filename was invalid.

INVALID_MODE The OPEN_MODE parameter in FOPEN was invalid.

INVALID_FILEHANDLE The file handle was invalid.

INVALID_OPERATION The file could not be opened or operated on as requested.

READ_ERROR An operating system error occurred during the read operation.

WRITE_ERROR An operating system error occurred during the write operation.

INTERNAL_ERROR An unspecified error occurred in PL/SQL.

Oracle9i: Program with PL/SQL 14-26

14-26 Copyright © Oracle Corporation, 2001. All rights reserved.

FUNCTION FOPEN

(location IN VARCHAR2,

filename IN VARCHAR2,

open_mode IN VARCHAR2)

RETURN UTL_FILE.FILE_TYPE;

FUNCTION IS_OPEN

(file_handle IN FILE_TYPE)

RETURN BOOLEAN;

The FOPEN and IS_OPEN Functions

FOPEN Function Parameters

Syntax Definitions

The return value is the file handle that is passed to all subsequent routines that operate on the file.
IS_OPEN Function
The function IS_OPEN tests a file handle to see if it identifies an opened file. It returns a Boolean value
indicating whether the file has been opened but not yet closed.

Note: For the full syntax, refer to Oracle9i Supplied PL/SQL Packages and Types Reference.

Where location Is the operating-system-specific string that
specifies the directory or area in which to
open the file

 filename Is the name of the file, including the
extension, without any pathing information

 open_mode Is string that specifies how the file is to be
opened; Supported values are:
‘r’ read text (use GET_LINE)
‘w’ write text (PUT, PUT_LINE,
 NEW_LINE, PUTF,
 FFLUSH)
‘a’ append text (PUT, PUT_LINE,
 NEW_LINE, PUTF,
 FFLUSH)

Oracle9i: Program with PL/SQL 14-27

14-27 Copyright © Oracle Corporation, 2001. All rights reserved.

CREATE OR REPLACE PROCEDURE sal_status
(p_filedir IN VARCHAR2, p_filename IN VARCHAR2)
IS
v_filehandle UTL_FILE.FILE_TYPE;
CURSOR emp_info IS

SELECT last_name, salary, department_id
FROM employees
ORDER BY department_id;

v_newdeptno employees.department_id%TYPE;
v_olddeptno employees.department_id%TYPE := 0;

BEGIN
v_filehandle := UTL_FILE.FOPEN (p_filedir, p_filename,'w');
UTL_FILE.PUTF (v_filehandle,'SALARY REPORT: GENERATED ON

%s\n', SYSDATE);
UTL_FILE.NEW_LINE (v_filehandle);

FOR v_emp_rec IN emp_info LOOP
v_newdeptno := v_emp_rec.department_id;

...

Using UTL_FILE
sal_status.sql

Using UTL_FILE
Example
The SAL_STATUS procedure creates a report of employees for each department and their salaries. This
information is sent to a text file by using the UTL_FILE procedures and functions.
The variable v_filehandle uses a type defined in the UTL_FILE package. This package defined type is
a record with a field called ID of the BINARY_INTEGER datatype.
TYPE file_type IS RECORD (id BINARY_INTEGER);

The contents of file_type are private to the UTL_FILE package. Users of the package should not
reference or change components of this record.
The names of the text file and the location for the text file are provided as parameters to the program.
EXECUTE sal_status('C:\UTL_FILE', 'SAL_RPT.TXT')

Note: The file location shown in the above example is defined as value of UTL_FILE_DIR in the
init.ora file as follows: UTL_FILE_DIR = C:\UTL_FILE.
When reading a complete file in a loop, you need to exit the loop using the NO_DATA_FOUND exception.
UTL_FILE output is sent synchronously. DBMS_OUTPUT procedures do not produce output until the
procedure is completed.

Instructor Note
You can demonstrate this code with the 14_27s.sql and 14_27n.sql files. Run the script
14_27s.sql first. You can demonstrate the output generated in the file instructor.txt after you run
14_27n.sql.

Oracle9i: Program with PL/SQL 14-28

14-28 Copyright © Oracle Corporation, 2001. All rights reserved.

...
IF v_newdeptno <> v_olddeptno THEN
UTL_FILE.PUTF (v_filehandle, 'DEPARTMENT: %s\n',

v_emp_rec.department_id);
END IF;
UTL_FILE.PUTF (v_filehandle,' EMPLOYEE: %s earns: %s\n',

v_emp_rec.last_name, v_emp_rec.salary);
v_olddeptno := v_newdeptno;

END LOOP;
UTL_FILE.PUT_LINE (v_filehandle, '*** END OF REPORT ***');
UTL_FILE.FCLOSE (v_filehandle);

EXCEPTION
WHEN UTL_FILE.INVALID_FILEHANDLE THEN

RAISE_APPLICATION_ERROR (-20001, 'Invalid File.');
WHEN UTL_FILE.WRITE_ERROR THEN
RAISE_APPLICATION_ERROR (-20002, 'Unable to write to

file');
END sal_status;
/

Using UTL_FILE
sal_status.sql

Using UTL_FILE (continued)
The output for this report in the sal_rpt.txt file is as follows:

SALARY REPORT: GENERATED ON 08-MAR-01

DEPARTMENT: 10
EMPLOYEE: Whalen earns: 4400

DEPARTMENT: 20
EMPLOYEE: Hartstein earns: 13000
EMPLOYEE: Fay earns: 6000

DEPARTMENT: 30
EMPLOYEE: Raphaely earns: 11000
EMPLOYEE: Khoo earns: 3100
...

DEPARTMENT: 100
EMPLOYEE: Greenberg earns: 12000
...

DEPARTMENT: 110
EMPLOYEE: Higgins earns: 12000
EMPLOYEE: Gietz earns: 8300
EMPLOYEE: Grant earns: 7000

*** END OF REPORT ***

Oracle9i: Program with PL/SQL 14-29

14-29 Copyright © Oracle Corporation, 2001. All rights reserved.

The UTL_HTTP Package

The UTL_HTTP package:

• Enables HTTP callouts from PL/SQL and SQL to
access data on the Internet

• Contains the functions REQUEST and
REQUEST_PIECES which take the URL of a site as a
parameter, contact that site, and return the data
obtained from that site

• Requires a proxy parameter to be specified in the
above functions, if the client is behind a firewall

• Raises INIT_FAILED or REQUEST_FAILED
exceptions if HTTP call fails

• Reports an HTML error message if specified URL
is not accessible

The UTL_HTTP Package
UTL_HTTP is a package that allows you to make HTTP requests directly from the database. The UTL_HTTP
package makes hypertext transfer protocol (HTTP) callouts from PL/SQL and SQL. You can use it to access
data on the Internet or to call Oracle Web Server Cartridges. By coupling UTL_HTTP with the DBMS_JOBS
package, you can easily schedule reoccurring requests be made from your database server out to the Web.

This package contains two entry point functions: REQUEST and REQUEST_PIECES. Both functions take a
string universal resource locator (URL) as a parameter, contact the site, and return the HTML data obtained
from the site. The REQUEST function returns up to the first 2000 bytes of data retrieved from the given URL.
The REQUEST_PIECES function returns a PL/SQL table of 2000-byte pieces of the data retrieved from the
given URL.

If the HTTP call fails, for a reason such as that the URL is not properly specified in the HTTP syntax then the
REQUEST_FAILED exception is raised. If initialization of the HTTP-callout subsystem fails, for a reason such
as a lack of available memory, then the INIT_FAILED exception is raised.

If there is no response from the specified URL, then a formatted HTML error message may be returned.

If REQUEST or REQUEST_PIECES fails by returning either an exception or an error message, then verify the
URL with a browser, to verify network availability from your machine. If you are behind a firewall, then you
need to specify proxy as a parameter, in addition to the URL.

This package is covered in more detail in the course Administering Oracle9i Application Server.

For more information, refer to Oracle9i Supplied PL/SQL Packages Reference.

Oracle9i: Program with PL/SQL 14-30

14-30 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT UTL_HTTP.REQUEST('http://www.oracle.com',
'edu-proxy.us.oracle.com')

FROM DUAL;

Using the UTL_HTTP Package

Using the UTL_HTTP Package
The SELECT statement and the output in the slide show how to use the REQUEST function of the UTL_HTTP
package to retrieve contents from the URL www.oracle.com. The second parameter to the function indicates
the proxy because the client being tested is behind a firewall.
The retrieved output is in HTML format.
You can use the function in a PL/SQL block as shown below. The function retrieves up to 100 pieces of data, each
of a maximum 2000 bytes from the URL. The number of pieces and the total length of the data retrieved are
printed.
DECLARE
x UTL_HTTP.HTML_PIECES;
BEGIN
x := UTL_HTTP.REQUEST_PIECES('http://www.oracle.com/',100,

'edu-proxy.us.oracle.com');
DBMS_OUTPUT.PUT_LINE(x.COUNT || ' pieces were retrieved.');
DBMS_OUTPUT.PUT_LINE('with total length ');
IF x.COUNT < 1 THEN DBMS_OUTPUT.PUT_LINE('0');
ELSE DBMS_OUTPUT.PUT_LINE((2000*(x.COUNT - 1))+LENGTH(x(x.COUNT)));
END IF;
END;
/

Oracle9i: Program with PL/SQL 14-31

14-31 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the UTL_TCP Package

The UTL_TCP Package:

• Enables PL/SQL applications to communicate with
external TCP/IP-based servers using TCP/IP

• Contains functions to open and close connections,
to read or write binary or text data to or from a
service on an open connection

• Requires remote host and port as well as local host
and port as arguments to its functions

• Raises exceptions if the buffer size is too small,
when no more data is available to read from a
connection, when a generic network error occurs, or
when bad arguments are passed to a function call

Using the UTL_TCP Package
The UTL_TCP package enables PL/SQL applications to communicate with external TCP/IP-based servers using
TCP/IP. Because many Internet application protocols are based on TCP/IP, this package is useful to PL/SQL
applications that use Internet protocols.

The package contains functions such as:

OPEN_CONNECTION: This function opens a TCP/IP connection with the specified remote and local host and port
details. The remote host is the host providing the service. The remote port is the port number on which the service
is listening for connections. The local host and port numbers represent those of the host providing the service. The
function returns a connection of PL/SQL record type.

CLOSE_CONNECTION: This procedure closes an open TCP/IP connection. It takes the connection details of a
previously opened connection as parameter. The procedure CLOSE_ALL_CONNECTIONS closes all open
connections.

READ_BINARY()/TEXT()/LINE(): This function receives binary, text, or text line data from a service on an
open connection.

WRITE_BINARY()/TEXT()/LINE(): This function transmits binary, text, or text line message to a service
on an open connection.

Exceptions are raised when buffer size for the input is too small, when generic network error occurs, when no
more data is available to read from the connection, or when bad arguments are passed in a function call.

This package is discussed in detail in the course Administering Oracle9i Application Server. For more
information, refer to Oracle 9i Supplied PL/SQL Packages Reference.

Oracle9i: Program with PL/SQL 14-32

Using Oracle-Supplied Packages

Package Description
DBMS_ALERT Provides notification of database events

DBMS_APPLICATION_INFO Allows application tools and application developers to inform the
database of the high level of actions they are currently performing

DBMS_DESCRIBE Returns a description of the arguments for a stored procedure

DBMS_LOCK Requests, converts, and releases userlocks, which are managed by
the RDBMS lock management services

DBMS_SESSION Provides access to SQL session information

DBMS_SHARED_POOL Keeps objects in shared memory

DBMS_TRANSACTION Controls logical transactions and improves the performance of
short, nondistributed transactions

DBMS_UTILITY Analyzes objects in a particular schema, checks whether the server
is running in parallel mode, and returns the time

14-32 Copyright © Oracle Corporation, 2001. All rights reserved.

Oracle-Supplied Packages

• DBMS_ALERT

• DBMS_APPLICATION_INFO

• DBMS_DESCRIBE

• DBMS_LOCK

• DBMS_SESSION

Other Oracle-supplied packages include:

• DBMS_SHARED_POOL

• DBMS_TRANSACTION

• DBMS_UTILITY

Oracle9i: Program with PL/SQL 14-33

Built-in Name Description
CALENDAR Provides calendar maintenance functions
DBMS_ALERT Supports asynchronous notification of database events.

Messages or alerts are sent on a COMMIT command.
Message transmittal is one way, but one sender can alert
several receivers.

DBMS_APPLICATION_INFO Is used to register an application name with the database
for auditing or performance tracking purposes

DBMS_AQ Provides message queuing as part of the Oracle server; is
used to add a message (of a predefined object type) onto a
queue or dequeue a message

DBMS_AQADM Is used to perform administrative functions on a queue or
queue table for messages of a predefined object type

DBMS_DDL Is used to embed the equivalent of the SQL commands
ALTER, COMPILE, and ANALYZE within your PL/SQL
programs

DBMS_DEBUG A PL/SQL API to the PL/SQL debugger layer, Probe, in
the Oracle server

DBSM_DEFER
DBMS_DEFER_QUERY
DBMS_DEFER_SYS

Is used to build and administer deferred remote procedure
calls (use of this feature requires the Replication Option)

DBMS_DESCRIBE Is used to describe the arguments of a stored procedure
DBMS_DISTRIBRUTED_
TRUST_ADMIN

Is used to maintain the Trusted Servers list, which is used
in conjunction with the list at the central authority to
determine whether a privileged database link from a
particular server can be accepted

DBMS_HS Is used to administer heterogeneous services by
registering or dropping distributed external procedures,
remote libraries, and non-Oracle systems (you use
dbms_hs to create or drop some initialization variables
for non-Oracle systems)

DBMS_HS_EXTPROC Enables heterogeneous services to establish security for
distributed external procedures

DBMS_HS_PASSTHROUGH Enables heterogeneous services to send pass-through SQL
statements to non-Oracle systems

DBMS_IOT Is used to schedule administrative procedures that you
want performed at periodic intervals; is also the interface
for the job queue

DBMS_JOB Is used to schedule administrative procedures that you
want performed at periodic intervals

DBMS_LOB Provides general purpose routines for operations on
Oracle large objects (LOBs) data types: BLOB, CLOB
(read only) and BFILES (read-only)

Oracle-Supplied Packages

The following list summarizes and provides a brief description of the packages supplied with Oracle9i.

Oracle9i: Program with PL/SQL 14-34

B uilt-in Nam e Description
DBMS_LOCK Is used to request, convert, and release locks through

Oracle Lock M anagement services
DBMS_LOGMNR Provides functions to initialize and run the log reader
DBMS_LOGMNR_D Queries the dictionary tables of the current database, and

creates a text based file containing their contents
DBMS_OFFLINE_OG Provides public APIs for offline instantiation of master

groups
DBMS_OFFLINE_SNAPSH
OT

Provides public APIs for offline instantiation of snapshots

DBMS_OLAP Provides procedures for summaries, dimensions, and
query rewrites

DBMS_ORACLE_TRACE_
AGENT

Provides client callable interfaces to the Oracle TRACE
instrumentation w ithin the Oracle7 server

DBMS_ORACLE_TRACE_
USER

Provides public access to the Oracle7 release server
Oracle TRACE instrumentation for the calling user

DBMS_OUTPUT Accumulates information in a buffer so that it can be
retrieved out later

DBMS_PCLXUTIL Provides intrapartition parallelism for creating partition-
wise local indexes

DBMS_PIPE Provides a DBM S pipe service that enables messages to
be sent between sessions

DBMS_PROFILER Provides a Probe Profiler API to profile existing PL/SQL
applications and identify performance bottlenecks

DBMS_RANDOM Provides a built-in random number generator
DBMS_RECTIFIER_DIFF Provides APIs used to detect and resolve data

inconsistencies between two replicated sites
DBMS_REFRESH Is used to create groups of snapshots that can be refreshed

together to a transactionally consistent point in time;
requires the D istributed option

DBMS_REPAIR Provides data corruption repair procedures
DBMS_REPCAT Provides routines to administer and update the replication

catalog and environment; requires the Replication option
DBMS_REPCAT_ADMIN Is used to create users with the privileges needed by the

symmetric replication facility; requires the Replication
option

DBMS_REPCAT_
INSTATIATE

Instantiates deployment templates; requires the
Replication option

DBMS_REPCAT_RGT Controls the maintenance and definition of refresh group
templates; requires the Replication option

DBMS_REPUTIL Provides routines to generate shadow tables, triggers, and
packages for table replication

DBMS_RESOURCE_
MANAGER

M aintains plans, consumer groups, and plan directives; it
also provides semantics so that you may group together
changes to the plan schema

Oracle Supplied Packages (continued)

Oracle9i: Program with PL/SQL 14-35

Built-in Name Description
DBMS_RESOURCE_
MANAGER_PRIVS

Maintains privileges associated with resource consumer
groups

DBMS_RLS Provides row-level security administrative interface
DBMS_ROWID Is used to get information about ROWIDs, including the

data block number, the object number, and other
components

DBMS_SESSION Enables programmatic use of the SQL ALTER SESSION
statement as well as other session-level commands

DBMS_SHARED_POOL Is used to keep objects in shared memory, so that they are
not aged out with the normal LRU mechanism

DBMS_SNAPSHOT Is used to refresh one or more snapshots that are not part
of the same refresh group and purge logs; use of this
feature requires the Distributed option

DBMS_SPACE Provides segment space information not available through
standard views

DBMS_SPACE_ADMIN Provides tablespace and segment space administration not
available through standard SQL

DSMS_SQL Is used to write stored procedure and anonymous PL/SQL
blocks using dynamic SQL; also used to parse any DML
or DDL statement

DBMS_STANDARD Provides language facilities that help your application
interact with the Oracle server

DBMS_STATS Provides a mechanism for users to view and modify
optimizer statistics gathered for database objects

DBMS_TRACE Provides routines to start and stop PL/SQL tracing
DBMS_TRANSACTION Provides procedures for a programmatic interface to

transaction management
DBMS_TTS Checks whether if the transportable set is self-contained
DBMS_UTILITY Provides functionality for managing procedures, reporting

errors, and other information
DEBUG_EXTPROC Is used to debug external procedures on platforms with

debuggers that can attach to a running process
OUTLN_PKG Provides the interface for procedures and functions

associated with management of stored outlines
PLITBLM Handles index-table operations
SDO_ADMIN Provides functions implementing spatial index creation

and maintenance for spatial objects
SDO_GEOM Provides functions implementing geometric operations on

spatial objects
SDO_MIGRATE Provides functions for migrating spatial data from release

7.3.3 and 7.3.4 to 8.1.x
SDO_TUNE Provides functions for selecting parameters that determine

the behavior of the spatial indexing scheme used in the
Spatial Cartridge

Oracle Supplied Packages (continued)

Oracle9i: Program with PL/SQL 14-36

Oracle Supplied Packages (continued)

Built-in Name Description
STANDARD Declares types, exceptions, and subprograms that are

available automatically to every PL/SQL program
TIMESERIES Provides functions that perform operations, such as

extraction, retrieval, arithmetic, and aggregation, on time
series data

TIMESCALE Provides scale-up and scale-down functions
TSTOOLS Provides administrative tools procedures
UTL_COLL Enables PL/SQL programs to use collection locators to

query and update
UTL_FILE Enables your PL/SQL programs to read and write

operating system (OS) text files and provides a restricted
version of standard OS stream file I/O

UTL_HTTP Enables HTTP callouts from PL/SQL and SQL to access
data on the Internet or to call Oracle Web Server
Cartridges

UTL_PG Provides functions for converting COBOL numeric data
into Oracle numbers and Oracle numbers into COBOL
numeric data

UTL_RAW Provides SQL functions for RAW data types that
concatenate, obtain substring, and so on, to and from RAW
data types

UTL_REF Enables a PL/SQL program to access an object by
providing a reference to the object

VIR_PKG Provides analytical and conversion functions for visual
information retrieval

Oracle9i: Program with PL/SQL 14-37

14-37 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Take advantage of the preconfigured packages

that are provided by Oracle
• Create packages by using the catproc.sql script

• Create packages individually.

DBMS Packages and the Scripts to Execute Them

Note: For more information about these packages and scripts, refer to Oracle9i Supplied PL/SQL Packages and
Types Reference.

Instructor Note
Point out to the students that these script files often have useful comments embedded within them that
supplement the documentation. See the dbmspipe.sql script for an example.

DBMS_ALERT dbmsalrt.sql

DBMS_APPLICATION_INFO dbmsutil.sql

DBMS_DDL dbmsutil.sql

DBMS_LOCK dbmslock.sql

DBMS_OUTPUT dbmsotpt.sql

DBMS_PIPE dbmspipe.sql

DBMS_SESSION dbmsutil.sql

DBMS_SHARED_POOL dbmsspool.sql

DBMS_SQL dbmssql.sql

DBMS_TRANSACTION dbmsutil.sql

DBMS_UTILITY dbmsutil.sql

Oracle9i: Program with PL/SQL 14-38

14-38 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 14 Overview

This practice covers using:
• DBMS_SQL for dynamic SQL
• DBMS_DDL to analyze a table
• DBMS_JOB to schedule a task
• UTL_FILE to generate text reports

Practice 14 Overview
In this practice, you use DBMS_SQL to implement a procedure to drop a table. You also use the EXECUTE
IMMEDIATE command to drop a table. You use DBMS_DDL to analyze objects in your schema, and you
can schedule the analyze procedure through DBMS_JOB.

In this practice, you also write a PL/SQL program that generates customer statuses into a text file.

Oracle9i: Program with PL/SQL 14-39

Practice 14
1. a. Create a DROP_TABLE procedure that drops the table specified in the input parameter.

Use the procedures and functions from the supplied DBMS_SQL package.

b. To test the DROP_TABLE procedure, first create a new table called EMP_DUP as a copy
of the EMPLOYEES table.

c. Execute the DROP_TABLE procedure to drop the EMP_DUP table.

2. a. Create another procedure called DROP_TABLE2 that drops the table specified in the input
parameter. Use the EXECUTE IMMEDIATE statement.

b. Repeat the test outlined in steps 1-b and 1-c.
3. a. Create a procedure called ANALYZE_OBJECT that analyzes the given object that you

specified in the input parameters. Use the DBMS_DDL package, and use the COMPUTE
method.

b. Test the procedure using the EMPLOYEES table. Confirm that the
ANALYZE_OBJECT procedure has run by querying the LAST_ANALYZED column in the

USER_TABLES data dictionary view.

If you have time:
4. a. Schedule ANALYZE_OBJECT by using DBMS_JOB. Analyze the DEPARTMENTS
table, and schedule the job to run in five minutes time from now. (To start the job in five

minutes from now, set the parameter NEXT_DATE = 5/(24*60) = 1/288.)

b. Confirm that the job has been scheduled by using USER_JOBS.

5. Create a procedure called CROSS_AVGSAL that generates a text file report of
employees who have exceeded the average salary of their department. The partial
code is provided for you in the file lab14_5.sql.

a. Your program should accept two parameters. The first parameter identifies the output
directory. The second parameter identifies the text file name to which your procedure
writes.

b. Your instructor will inform you of the directory location. When you invoke the
program, name the second parameter sal_rptxx.txt where xx stands for your
user number, such as 01, 15, and so on.

c. Add an exception handling section to handle errors that may be encountered from
using the UTL_FILE package.

Sample output from this file follows:
EMPLOYEES OVER THE AVERAGE SALARY OF THEIR DEPARTMENT:
REPORT GENERATED ON 26-FEB-01

Hartstein 20 $13,000.00
Raphaely 30 $11,000.00
Marvis 40 $6,500.00
...
*** END OF REPORT ***

Oracle9i: Program with PL/SQL 14-40

Instructor Note
You can locate the directory name UTL_FILE, where the students write their files as follows:

Use Telnet to connect to the server provided by the ESS group. Log in to the server operating system using
the username and password supplied by ESS.

Type the command ls to list the contents and observe that the directory UTL_FILE is listed.

Type the command pwd to display the present working directory. Give this value to the students to use as a
parameter in their practice.

