Engineering Mechanics
Mehanics is a branch of science which deals about body is in rest condition or motion under g the action of farces.

Engineering Mechanics
Statics
\Rightarrow Statics:-

kinematics
kinetics
Statics is a branch of mechanics which deals about Rest Condition of the body under the action of force.
\Rightarrow Dynamics:-
Dynamics is a branch of mechanics which deals about motion of the body.
\Rightarrow Kinematics:-
In which the description of motion of body independent of causes of motion.
\Rightarrow kinetics:-
In which both motion and its causes are considered.

Basic definitions :-

1. Matter:- The matter is a gubstan ce which occupies space. possesses mass and offers resistance to any External force. Ext- Iron, stone, wood etc.
2. particle:- It is an object that has infinitely small volume bat has a mass which can be. considered to be concentrated at a point.
3. Body:- body has a definite shape and Consists of numbers of pantides.
There are two type of body.
(1) Elastic body
(ii) plastic body.
(i) Elastic body:- Body undergoes deformation but regains its original shape after removal of the external force.
Lii) plastic body: - Body undergoes detarmation, but donal regains its original shape after removal of the external farce.
4. Space:- space is a region which extends in all directions and Contains every thing in it.
5. Time:- Time is a measure at succession at events. the unit of time
6. Motion:- when o body changes its position with respect to other bodies. then body is said to be in motion.

Trajectory:- Trajectory is path followed by a body during its motion. It may be a straight line or a carve.
Mass:- The quantity of matter present with in the System. is called mass.
weight:- weight is a farce which the system exerts due to gravitational acceleration.

Farce: - Force is an external agent which tends to change or change the state of the body. characteristics of a force are.
(a) ats magnitude.
(b) Its point of application.
(c) Its direction.

Ld\} ~ L i n e ~ o f ~ a c t i o n . ~
Ex:-

\rightarrow Magnitude is 700 N
\rightarrow The point of application is at a distance of

- 5 from A point.
\rightarrow The line of action of force is vertide.
\rightarrow The direction is in downward.
\Rightarrow The unit of farce is Newtons (N) and it is a vector quantity.

System of farces:-
when several forces of different magnitude and direction act upon a body, than gt is called farce of system or system of farces.

Collinearfarces:- the Line of action of all forces lie along the same straight line.

Coplanar forces:- When more than one farces acting in a single plane. than the tress are called in coplanar.

Concurrent farces: - When mare than one forces acting at a single point. Than the forces are called concurrent forces.

Non Coplonartarces:- when more than one traves action in different plane is called Non-copbnar farces.
Exaikiazion:- when two or mare than two bares act on a body in such a coly that the bol stenains in a state of rest or of uniform motion. then the system of forces is said to be in equilibrium.
Resultant:- when a body is acted upon by a system of forces then rectorial sum of all the farces is known as resultant. Hence resultant motors to the single farce which produce the same extent as is done by the combined effect of several farces.
Fundamental principles of mechanics
The fundamental principle of mechanics are:-

1. Newton's law af motions.
2. Neaten's law of gravitation.
3. parallelogram (aw.
4. principle of transmissibilily.

Newton's Law of motion:-
(1) Newton's first law of motion:-
every body Continues in its state of rest or of unitarm motion in a straight line it

There is no unbalanced tree acting uponit.
Neaten's seiend Law of motion:
The rate of change of linear momentum is directly proportional to the impressed force and it takes place in the direction of the impureseed farce.
New) ton's third, $(a, 2)$ of motion
To every action, there is equal and opposite reaction.
\Rightarrow Neat on's Law of gravitation:-
Every body in the universe attracts every other body with a torte directly proportional to the product of their mass and inversely proportional. to the square of the distance separating them.

$$
\begin{aligned}
F & \propto m_{1} m_{2} \\
& \propto \frac{1}{\gamma^{2}} \\
F & \propto G \frac{m_{1} m_{2}}{\gamma^{2}} \\
G & =6.67 \times 10^{-11} \mathrm{Nm}
\end{aligned}
$$

principle of transmissibility.
The condition of equilibrium or motion of rigid body remains, unchanged. gt a force acting at a given point of the rigid boon is replaced by a forte of same magnitude and direction but action at a different point provided that the two forces have the some line of action.

Law of farces:-

1) parallelogram lace of tres.
2) Triangle law of tares.
3) Polygon Law of truces.
1. Parallelogram Law of farces:-

If terotarces, acting at a point be represented in magnitude and direction by the two adja cent sides of parallelogram, then their result tank is represented in magnitude and direction by the diagonal of the parallelogram passing through that point.

proof:-
Let us consider two forces P and Q acting on a body. The force P and Q represented in magnirude and direction $b \dot{y} \overrightarrow{O A}$ and $\overrightarrow{O B}$ respectively and angle between the farce is θ. and the diagonal \bar{O} Represent gits resultant of the Illetogram. DACB.

Drop perpendicular from ' C ' and Let it meet $O A$ extend at point D.

$$
\because \quad O A \| B C \quad \therefore \quad O A=B C=Q .
$$

from $\triangle B C D$

$$
\begin{aligned}
& \sin \theta=\frac{C D}{B C} \quad \& \quad \cos \theta=\frac{B D}{B C} \\
\Rightarrow & \sin \theta=\frac{C D}{Q} \quad \Rightarrow \cos \theta=\frac{B D}{Q} \\
\Rightarrow & C D=Q \sin \theta \quad \Rightarrow B D=Q \cos \theta
\end{aligned}
$$

from: $\triangle O G Q$

$$
\begin{aligned}
& O C^{2}=O D^{2}+C D^{2} \\
\Rightarrow & O C^{2}=\left(O A^{2}+A D\right)^{2}+C D^{2} \\
\Rightarrow & O C^{2}=(P+Q \cos \theta)^{2}+(Q \sin \theta)^{2} \\
\Rightarrow & R^{2}=P^{2}+2 P B \cos \theta+8^{2} \cos ^{2} \theta+Q^{2} \sin ^{2} \theta \\
\Rightarrow & R^{2}=P^{2}+2 P Q \cos \theta+\theta^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right) \\
\Rightarrow & R^{2}=P^{2}+Q^{2}+2 P Q \cos \theta\left[\because \sin ^{2} \theta+\cos ^{2} \theta=1\right] \\
& R=\sqrt{P^{2}+\theta^{2}+2 P Q \cos \theta} \quad \text { Magnitude }
\end{aligned}
$$

For direction.
$9 n \triangle O C D$

$$
\begin{aligned}
\triangle O C B & \tan \alpha
\end{aligned}=\frac{C D}{O D}=\frac{C D}{O A+A B}, ~\left(\frac{Q \sin \theta}{P+Q \cos \theta}\right.
$$

Special cases:-
Case 1. When the two tares act $\theta=90^{\circ}$

$$
\begin{aligned}
R & =\sqrt{P^{2}+\theta^{2}+2 P Q \cos 90^{\circ}} \\
& =\sqrt{P^{2}+\theta^{2}+2 P Q \times 0 \quad\left[\because \cos 90^{\circ}=0\right]} \\
R & =\sqrt{P^{2}+8^{2}}
\end{aligned}
$$

and

$$
\begin{aligned}
\alpha & =\tan ^{-1}\left(\frac{B \sin \theta}{P+Q \cos \theta}\right) \\
& =\tan ^{-1}\left(\frac{Q \sin 90^{\circ}}{P+\theta \cos 90^{\circ}}\right) \\
\alpha & =\tan ^{-1}\left(\frac{Q}{P}\right)
\end{aligned}
$$

case 2. When the two farces act in the same line

$$
\begin{aligned}
& \theta=0^{\circ} \\
R= & \sqrt{P^{2}+8^{2}+2 P Q \cos 0^{\circ}} \\
= & \sqrt{P^{2}+8^{2}+2 P Q} \quad\left[\because \cos 0^{\circ}=1\right] \\
R= & \sqrt{(P+8)^{2}}
\end{aligned}
$$

$$
R=P+Q \quad \text { maximum magnitude. }
$$

cases. When the $\theta=180^{\circ}$

$$
\begin{aligned}
R & =\sqrt{P^{2}+Q^{2}+2 P Q \cos 180^{\circ}} \\
& =\sqrt{P^{2}+Q^{2}-2 P Q} \quad\left[\because \cos 180^{\circ}=-1\right] \\
& =\sqrt{(P-Q)^{2}} \\
R & =P-Q \quad \text { Minimum magnitude. }
\end{aligned}
$$

Q.1. Twotarces of magnitude 80 N and 160 N ane acting simultaneously at a point. The angle betafen the sources are 60°. Find the agnilude and direction of resultant tranceaisting on the point.
Son: Given. $F_{1}=80 \mathrm{~N}$ and $\theta=60^{\circ}$

$$
F_{2}=160 \mathrm{~N}
$$

To find

$$
\begin{aligned}
& R=? \\
& \alpha=?
\end{aligned}
$$

we know that

$$
\therefore R=211.660 \mathrm{~N}
$$

$$
\begin{aligned}
\therefore R & =\sqrt{F_{1}^{2}+F_{2}^{2}+2 F_{1} F_{2} \cos \theta} \\
& =\sqrt{(80)^{2}+(160)^{2}+2.80 \cdot 160 \cdot 60860^{\circ}} \\
& =\sqrt{8400+25600+25600 \times \frac{1}{2}} \\
& =\sqrt{44800}
\end{aligned}
$$

Jor direction.

$$
\begin{aligned}
\tan \alpha & =\frac{F_{2} \sin \theta}{F_{1}+F_{2} \cos \theta} \\
& =\frac{180.8 \sin 60^{\circ}}{80+180 \cos 60} \\
& =0.866 \\
\alpha & =\tan ^{-1}(0.866) \\
& =40.9 \text { degrec with Farce } F_{1}
\end{aligned}
$$

Q.2. An eye bolt as shown intigware below is subjected to two tare $P_{1}=100 \mathrm{~N}$ and $F_{2}=150 \mathrm{~N}$ Determine the magnitude and direction of the resultant trave.

$$
115^{\circ}, ~ y F_{2}=150 \mathrm{~N}
$$

Sol
angle $b \omega F_{1}$ and f_{2} is

$$
\begin{aligned}
\theta & =\left[90^{\circ}-15^{\circ}-15^{\circ}\right]=60^{\circ} \\
F_{1} & =100 \mathrm{~N}, F_{2}=150 \mathrm{M} \\
\because \quad R & =\sqrt{\left(F_{1}\right)^{2}+\left(\mathrm{F}_{2}\right)^{2}+2 R_{1} F_{2} \cos \theta} \\
& =\sqrt{(100)^{2}+\left(150^{2}+2 \times 100 \times 150 \cos 60^{\circ}\right.} \\
& =\sqrt{47500 \mathrm{~N}} \\
R & =217.97=218 \mathrm{~N}
\end{aligned}
$$

Forrirection.

$$
\begin{aligned}
\tan \alpha & =\frac{F_{2} \sin \theta}{F_{1}+F_{2} \cos \theta} \\
& =\frac{150 \cdot \sin 60}{100+150 \cdot \cos 60^{\circ}} \\
\tan \alpha & =0.742 \\
\alpha & =\tan ^{-1}(0.742) \\
\alpha & =36.575^{\circ} \quad \text { with farce } F_{1}
\end{aligned}
$$

Q.2. The resultant ot two tories ' P ' and 28 acting at a point is ' R '. It is is doubles force. R also get doubled and it Q is reversed R is again doubled. Show that the ratio of P, Q and R is given by.

$$
P: Q: R=\sqrt{2}: \sqrt{3}: \sqrt{2}
$$

Soln:- From parallelogram law of forces

$$
\begin{equation*}
R^{2}=P^{2}+18^{2}+2 P \cos \theta \tag{1}
\end{equation*}
$$

Case 1:- When Q is doubled. R also get doubled.

$$
\begin{align*}
& \therefore \quad(2 R)^{2}=P^{2}+(2 Q)^{2}+2 P(2 Q) \cos \theta \\
& \Rightarrow \quad 4 R^{2}=P^{2}+4 Q^{2}+4 P Q \cos \theta
\end{align*}
$$

case 2:- when Q reversed indirection. R is again doubled.

$$
\begin{align*}
\therefore \quad(2 R)^{2} & =P^{2}+(-\theta)^{2}+2 P(-\theta) \cdot \cos \theta \\
& 4 R^{2} \tag{III}
\end{align*}=P^{2}+\theta^{2}-2 P Q \cos \theta
$$

Adding eqn (i) and (iii)

$$
\begin{aligned}
& R^{2}=P^{2}+Q^{2}+2 P Q \cos \theta \\
& 4 R^{2}=P^{2}+\angle B^{2}-2 P \cos \theta \\
& 6 R^{2}=2 P^{2}+2 B^{2}
\end{aligned}
$$

$$
\text { eqn (iII) } \times 2+e^{n} n \text { (II) }
$$

$$
8 R^{2}=2 P^{2}+28^{2}-4 P 8 \cos \theta
$$

$$
4 R^{2}=2 R^{2}=P^{2}+48^{2}+4 P Q \cos \theta
$$

$$
12 R^{2}=3 P^{2}+6 Q^{2}
$$

$$
\begin{equation*}
4 R^{2}=p^{2}+248^{2} \tag{v}
\end{equation*}
$$

again eqn (v) - (v)

$$
\begin{align*}
& 5 R^{2}=2 P^{2}+28^{2} \\
& 4 R^{2}=P^{2} \pm 2 Q^{2} \\
& R^{2}=P^{2} \tag{VI}\\
& \therefore R=P
\end{align*}
$$

put the value of R is cen

$$
\begin{aligned}
& 4 P^{2}=P^{2}+2 Q^{2} \\
& \Rightarrow 3 P^{2}=2 Q^{2} \\
& \Rightarrow Q^{2}=3 / 2 P^{2} \\
&: Q=\frac{\sqrt{3}}{\sqrt{2}} P \\
& \therefore P: Q: R=P: \frac{\sqrt{3}}{\sqrt{2}} P: P \\
& \therefore P: Q: R=\sqrt{2}: \sqrt{3}: \sqrt{2} \text { proved }
\end{aligned}
$$

Resolution of forces:-
When a force axing at a point with θ angle from the horizontal than gt resolve two Component verticle on Hortzontal.

From $\triangle O A B$

$$
\begin{aligned}
& \sin \theta=\frac{A B}{O A} \\
& \Rightarrow \sin \theta=\frac{A B}{F} \\
& A B=F \sin \theta
\end{aligned}
$$

and

$$
\begin{aligned}
\cos \theta & =\frac{O B}{O A} \\
\Rightarrow \cos \theta & =\frac{O B}{F} \\
& O B
\end{aligned}=F \cos \theta
$$

It means the force resolve into two part. $F \cos \theta$ and $F \sin \theta$.
Resultant of coplanar - Concurrenttarces:-Steps:-
(i) Find the Component of each force in the System in two mutually perpendicular x and y direction.
(ii) make algebric addition of Components in each direction to get two Components i P_{x}. and $\sum f_{y}$
\{iii) obtain the iresceltant both in magnitude and direction by two Component.

$$
\begin{aligned}
& R G \sqrt{\left(\sum f_{x}\right)^{2}+\left(\sum f_{y}\right)^{2}} \text { magnitude } \\
& \tan \theta=\frac{\sum f_{y}}{\sum f_{x}} \quad \text { infection }
\end{aligned}
$$

For Direction:-

$$
\begin{aligned}
\tan \alpha & =\frac{\sum y}{\sum x}=\frac{50.67}{194.6}=0.260 \\
\alpha & =\tan ^{-1}(0.260) \\
\alpha & =14.57 \quad \text { Ans }
\end{aligned}
$$

Q. A system of fowt fortes acthg on a sether 18 shown in dig. Determine theyesater..

Soln
Composition of terroes is reporesent on harizontal and vertices axig.

$$
\begin{aligned}
\Sigma x & =100 \cos 30^{\circ}+200 \sin 60^{\circ}-220 \cos 25^{\circ}-50 \cos 45^{\circ} \\
& =25.06 \mathrm{~N} . \\
\Sigma y & =100 \sin 30^{\circ}+220 \sin 25^{\circ}-200 \cos 60^{\circ}-50 \sin 45^{\circ} \\
& =7.62 \mathrm{~N} .
\end{aligned}
$$

Q. Determine the resultant of the three farces acting on a block as shown as.

Component of all the forces are represented on the vertical and Horizontal axis.

$$
\begin{aligned}
& 180 \cos 45^{\circ} \\
& 100 \cos 60^{\circ} \\
& 20 \cos 30^{\circ}
\end{aligned}
$$

Horizontal component

$$
\begin{aligned}
\sum x & =100 \cos 60+20 \cos 30+180 \cos 45^{\circ} \\
& =194.6 \mathrm{~N}
\end{aligned}
$$

$$
\sum y=20 \sin 30^{\circ}+180 \sin 45^{\circ}-100 \sin 60^{\circ}
$$

$$
50.67 \mathrm{~N}
$$

Resultant:-

$$
\begin{aligned}
& \therefore=\sqrt{(\Sigma x)^{2}+(\Sigma y)^{2}}=\sqrt{(194.6)^{2}+(50.67)^{2}} \\
& R=201.08
\end{aligned}
$$

For Resultant:-

$$
\begin{aligned}
& R=\sqrt{\left(\sum x\right)^{2}+(\Sigma y)^{2}}=\sqrt{(25.06)^{2}+(7.62)^{2}} \\
& R=26.193 \mathrm{~N} \text { Ans }
\end{aligned}
$$

For Direction

$$
\begin{aligned}
& \tan \alpha=\frac{\sum y}{\sum x}=\frac{7.62}{25.06} \\
& \alpha=\tan ^{-1}\left(\frac{7.62}{25.06}\right)=16.915 \\
& \alpha=16.913 \quad \text { Ans }
\end{aligned}
$$

Q. Determine the magnitude and direction of the resultant of the following set of farces acting on a body.

1. 200 N inclined 30° with cast towards worth.
2. 250 N towards the north.
3. 300 N towards north west and
4. 350 N inclined at 40° with west towards south. what will be the equilibrant of the given tare system?
Sol

Resolving all the farces along x-direction and y-direction.

$$
\begin{aligned}
\sum F_{x}= & 200 \cos 30^{\circ}+250 \cos 90^{\circ}-300 \cos 45^{\circ} \\
& -350 \cos 40^{\circ} \\
= & -307\left(\text { along } 0 \gamma^{\prime}\right) \mathrm{N} \\
\Sigma F_{y}= & 200 \sin 30^{\circ}+250 \sin 90^{\circ}+300 \sin 45^{\circ} \\
& -350 \sin 40^{\circ} \\
= & 337.4 \mathrm{~N}(\text { along } 0 y)
\end{aligned}
$$

Resultant

$$
\begin{aligned}
R & =\sqrt{\left(\sum F_{x}\right)^{2}+\left(\sum F_{4}\right)^{2}} \\
& =\sqrt{(-307)^{2}+(337.4)^{2}}=456 \mathrm{~N}
\end{aligned}
$$

Direction

$$
\begin{aligned}
\theta & =\tan ^{-1}\left(\frac{\sum P_{y}}{\sum P_{x}}\right) \\
& =\tan ^{-1}\left(\frac{337.4}{-307}\right)=-47.70^{\circ}
\end{aligned}
$$

than the equilibrant of this system is 456 N in magnitude an? 47.7° to the x_{1}-axis in forth quadrant.

Triangle lace of farces.
"It two farces acting on a body are representted by the sides of a traingle taken imo order. their resultant is represented by the dosing side of the traingle taken in the epposite order"

$$
\overrightarrow{A B}+\overrightarrow{B C}=\overrightarrow{A C}
$$

Polygon law of farces
If a number at concurrent forces acting on a body are represented in magnitude and direction by the sides of a polygon, taken in order, then the resultant is represented in magnitude and direction by dosing side at the polygon taken in opposite order.

<a)

<b)

Free body diagrame:-
A free body diagram is a sketch at an object which is free from all the contact switace and all the forces acting on it are drown.
Asumpsions for free body diagram.

1. Select the system.
2. All the swisace context is removed.
3. Draw all the forces on the system.
4. Extra force is introduce wit (w) acting gt self.

Ex:-

$w=\omega t$.
$f=$ Frictiontarce. Free body diagram of A
$T=$ Tension.
$R_{H}=$ Normal Rection

Lati's theorem
If a body is in equilibrium under the action of three farces, then each force is proportional to the sine of the angle between the other two farces"

Applying sine rule for the traingle $A B C$

$$
\begin{aligned}
& \frac{A B}{\sin (\pi-\alpha)}=\frac{B C}{\sin (\pi-\beta)}=\frac{C A}{\sin (\pi-y)} \\
& \frac{P}{\sin \alpha}=\frac{Q}{\sin \beta}=\frac{R}{\sin \gamma}
\end{aligned}
$$

Q. A weight of 2000 N is supported by two chains $A C$ and $B C$ as shown in fig. Determine the tension in each chain.

Soln:-
Free body of point ' c '

Ably Lami's theorem

$$
\frac{T_{1}}{\sin \alpha}=\frac{T_{2}}{\sin \beta}=\frac{W}{\sin \gamma}
$$

or

$$
\frac{T_{1}}{\sin 150^{\circ}}=\frac{T_{2}}{\sin 120^{\circ}}=\frac{W}{\sin 90^{\circ}}
$$

$$
\begin{aligned}
& \therefore \frac{T_{1}}{\sin 150}=\frac{W}{\sin 90} \text { or } \frac{T_{2}}{\sin 120}=\frac{W}{\sin 90} \\
& \Rightarrow \frac{T_{1}}{\sin 150}=\frac{2000}{\sin 90} \Rightarrow \frac{T_{2}}{\sin 120}=\frac{2000}{\sin 90} \\
& \Rightarrow T_{1}=\frac{2000}{\sin 90} \times \sin 150 \Rightarrow T_{2}=\frac{2000}{\sin 90} \times \sin 120 \\
& \Rightarrow T_{1}=\frac{2000}{1} \times \frac{1}{2} \Rightarrow T_{2}=\frac{2000}{1} \times \sin 120 \\
& \\
& T_{1}=1000^{\circ} \mathrm{N}
\end{aligned}
$$

Moment of Force and parallel Forces:-
Moment af afarce:-
Moment of farce about a point is defined as the turning tendency of farce e about that point. It is measured by the product of force and the Lan distance of the line of action of the ferne from that point.
line of action of a farce.

The moment of tara about O^{\prime} is

$$
M_{0}=F^{\prime} \cdot d
$$

When force acting on a body has two effects.
(1) It tends to move the bat by.
(ii) It tends to rotate the bothy.
\Rightarrow unit of moment :- N.M or $\mathrm{KN} \cdot \mathrm{M}$
(-)erection of moment:-
The twining r rotational effect due to farce can be clockwise or anticlockwise.

Couples:-
A special case of moment is a "couple". A couple Consist of tar parallel forces that are equal in magniture e opposite in direction and donot have same line of action. It do not produce any transcation. It produce rotation only. The resuettent farce of a couple is zero but resuttent of couple is not zero.
 .c
taking moment about point ' C '

$$
\begin{aligned}
M_{C} & =F \times A C-F \times B C \\
& =F(A C-B C) \\
& =F(A B) \quad \text { (dockaisC) }
\end{aligned}
$$

$E_{1} \times:-$
\rightarrow The force exerted by yow r hand on a screw driver.
\rightarrow opening or dosing a water tap.
\rightarrow Twin of the cap of a pen.
characteristics of a couple:-
\rightarrow A couple consist of a pair of equal and opposite parallel force which are separated by definite distance.
\rightarrow The sum of two fortes along any direction istero. But the sum of moment about any given point is not zero.
\rightarrow The couples does not translate the body but It rotate the body.
\rightarrow moment of a couple about any point is equal to the product of the force and perpendicular distance between the two farces.

$$
M=F \cdot d
$$

Varignon's theorem: Lain af moment:-
"Moment of a resultant of two farces. about a point lying in a plane of the forces, is equal to the algebric sum of moments of these two forces. about the same point.

Equilibrium:-
Any system of farces (two or mare than two tonnes) which keeps the body of rest is said to be in equilibrium

It means when the body is in equilibrium.
(i) The algebric sum of the component of the forces along the mutually perpendicular direction is zero.
(ii) The algebric sum at the component of the moment along each of the mutually perpendicular direction is zero.

$$
\begin{array}{lll}
\text { see. } & \sum F_{x}=0 \\
\sum F_{y}=0 & \sum M_{x}=0 \\
\sum F_{z}=0 & \sum M_{y}=0 \\
& \sum M_{z}=0
\end{array}
$$

These are "condition of equilibrium" for three mutually perpendicular axis.
\Rightarrow In the case of coplanertorices (acting on $x-y$ plane)

$$
\begin{aligned}
& \sum F_{x}=0 \quad \& \quad \sum M_{z}=0 \\
& \sum P_{y}=0
\end{aligned}
$$

Virtual work
Introduction :-
Work done is the dot product of the force and the displacement in the direction of force.

Let 'F' forme is acting an a borg and the book displaced by ' $d x$ ' distance than the work don by the farce is.

$$
\text { Work }=F \cdot d x=F \cdot d x \cos \theta
$$

work done by a moment (couple)
A couple ' M ' acting an a body that change its angular position by an amount ' $d \theta$ ' Then wart done by the couple is.

$$
w=M \cdot d \theta
$$

- $2 m_{1}$
work done by moment $m_{1}=-\overrightarrow{m_{2}} \cdots$

$$
=M_{1} d \theta
$$

wonk done by moment M2

$$
=M_{2} d \theta
$$

Virtual displacement and virtual worth.
Consider a system of concurenent system F_{1}. $F_{2} . F_{3}, \ldots F_{n}$ acting on a partide.

Resultent forces ' R ' is

$$
R=\Sigma\left(F_{1}+F_{2}+F_{3} \cdots+F_{n}\right)
$$

It the system is in equilibrium than

$$
R=\Sigma F=0
$$

that means when the body is in equilibrium then the displacement of the body is zee and NO work is posible.
But an imaginary infinite small displacement can be asumed to be given to the body in. equilibrium. Such displacement is called
"virtual Displacement"
The resulting wart done of y the farce acting on the body during the virtual displacement is called "vertual wart.
$\Rightarrow \frac{\text { Application of principle of virtual work:- }}{x}$
Consider a bar $A B C$ having support at ' C ' and $A \& B$ points are free and $P \& \&$ forces acting on the point $A \& B$.

Obtain the relation bl P and Q.
(i) Equilibrium eqn.
ai) Principle of virtual work.
Soln

1. By Equibrium

$$
\begin{aligned}
& \sum M_{c}=0 \\
\Rightarrow \quad & P \times a-Q \times b=0 \\
& P=b / a Q
\end{aligned}
$$

(ii) By principle of virtual wank.

Let us Consider a small angular displacement $d \theta$ in the given rod.

Displacement at $A \& B$ is

$$
A A^{\prime}=a \cdot d \theta \quad, \quad B B^{\prime}=b d \theta
$$

Now apply the principle of virtual work.

$$
\begin{gathered}
P\left(A A^{\prime}\right)=Q\left(B B^{\prime}\right) \\
P(a d \theta)=\theta(b d \theta) \\
P=b / a \theta
\end{gathered}
$$

Sign Convention:-

1. Upward force taken a positive while downward is -re.
2. Farce acting towards right are positive and -re.
3. Moment are positive of they are in clock wise direction.

$$
2+v e
$$

Q. Determine the reaction at A \& B supports devloped in the beam in fig. Dy principle of virtual work.

Soln:-
Let The diftelection at point ' B ' is δy and displacement at A is zero. By virtual work principle.

Farm $A B B^{\prime} \sim \triangle A C C^{\prime}$ and from $\triangle A B B^{\prime} \sim \triangle A D D^{\prime}$

$$
\begin{aligned}
\frac{A B}{A C} & =\frac{\delta y}{C C^{\prime}} \\
\Rightarrow \quad C C^{\prime} & =\frac{A C}{A B} \delta y \\
\Rightarrow \quad C c^{\prime} & =\frac{3}{4} \delta y
\end{aligned}
$$

$$
\begin{aligned}
\frac{A B}{A D} & =\frac{\delta y}{D D^{\prime}} \\
\Rightarrow D D^{\prime} & =\frac{A D}{A B} \delta y . \\
\Rightarrow D D^{\prime} & =\frac{1}{4} \delta y .
\end{aligned}
$$

from virtual wart principle.

$$
\begin{gathered}
\quad R_{A} \times 0-5 \times \frac{1}{4} \delta y-10 \cdot 3 / 4 y+R_{A} \cdot \delta_{y}=0 \\
\Rightarrow \quad\left(-5 / 4-\frac{30}{4}+R_{B}\right) \delta_{y} y=0 \\
\Rightarrow \quad \\
\delta y \neq 0 \\
\\
\quad-5 / 4-\frac{30}{4}+R_{B}=\theta=8 / 4+\frac{30}{4}=\frac{35}{4} \\
\\
R_{B}=8.75 \mathrm{kN}
\end{gathered}
$$

It sy' displaced at support A and B is zen to

form $\triangle B A A^{\prime} \sim \triangle B D D^{\prime}$
from $\triangle B A A^{\prime} \sim \triangle B C^{\prime}$

$$
\begin{aligned}
& \frac{A B}{B D}=\frac{A A^{\prime}}{D D^{\prime}} \\
\Rightarrow & D D^{\prime}=\frac{B D}{A B} \delta y^{\prime} \\
\Rightarrow & D D^{\prime}=\frac{3}{4} \delta y^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{A B}{B C}=\frac{A A^{\prime}}{C C^{\prime}} \\
& \Rightarrow \quad \frac{A B}{B C}=\frac{A A^{\prime}}{C C^{\prime}} \\
& \Rightarrow \quad C C^{\prime}=\frac{B C}{A B} \cdot A A^{1}
\end{aligned}
$$

By application of virtual wart k. $C C^{\prime}=\frac{1}{4} \delta y^{\prime}$

$$
\begin{aligned}
& R_{B} \times 0-\frac{1}{4} \delta Y^{\prime} \times 10-3 / 4 \delta Y^{\prime} \times S+R_{A} \cdot \delta Y^{\prime}=0 \\
& \Rightarrow \delta y^{\prime}\left(-10 / 4-\frac{15}{4}+R_{A}\right)=0 \quad \text { Hear } \delta y^{\prime} \neq 0 \\
& \left(-\frac{10^{\prime}}{4}-\frac{15}{4}+R_{A}\right)=0 \\
& R_{A}=6.25 \mathrm{kN} \\
& R_{A}=\frac{10}{4}+\frac{15}{4}=25 / 4 \\
& R_{B}=8.75 \mathrm{kM} \\
& R_{A}=6.25 \mathrm{kN}
\end{aligned}
$$

