Eighth Edition

GATE

ELECTRONICS & COMMUNICATION

Network Analysis

Vol 3 of 10

RK Kanodia Ashish Murolia

NODIA & COMPANY

GATE Electronics & Communication Vol 3, 8e Network Analysis RK Kanodia & Ashish Murolia

Copyright © By NODIA & COMPANY

Information contained in this book has been obtained by author, from sources believes to be reliable. However, neither NODIA & COMPANY nor its author guarantee the accuracy or completeness of any information herein, and NODIA & COMPANY nor its author shall be responsible for any error, omissions, or damages arising out of use of this information. This book is published with the understanding that NODIA & COMPANY and its author are supplying information but are not attempting to render engineering or other professional services.

MRP 690.00

NODIA & COMPANY

B – 8, Dhanshree Ist, Central Spine, Vidyadhar Nagar, Jaipur – 302039 Ph : +91 – 141 – 2101150, www.nodia.co.in email : enquiry@nodia.co.in

Printed by Nodia and Company, Jaipur

To Our Parents

Preface to the Series

For almost a decade, we have been receiving tremendous responses from GATE aspirants for our earlier books: GATE Multiple Choice Questions, GATE Guide, and the GATE Cloud series. Our first book, GATE Multiple Choice Questions (MCQ), was a compilation of objective questions and solutions for all subjects of GATE Electronics & Communication Engineering in one book. The idea behind the book was that Gate aspirants who had just completed or about to finish their last semester to achieve his or her B.E/B.Tech need only to practice answering questions to crack GATE. The solutions in the book were presented in such a manner that a student needs to know fundamental concepts to understand them. We assumed that students have learned enough of the fundamentals by his or her graduation. The book was a great success, but still there were a large ratio of aspirants who needed more preparatory materials beyond just problems and solutions. This large ratio mainly included average students.

Later, we perceived that many aspirants couldn't develop a good problem solving approach in their B.E/B.Tech. Some of them lacked the fundamentals of a subject and had difficulty understanding simple solutions. Now, we have an idea to enhance our content and present two separate books for each subject: one for theory, which contains brief theory, problem solving methods, fundamental concepts, and points-to-remember. The second book is about problems, including a vast collection of problems with descriptive and step-by-step solutions that can be understood by an average student. This was the origin of *GATE Guide* (the theory book) and *GATE Cloud* (the problem bank) series: two books for each subject. *GATE Guide* and *GATE Cloud* were published in three subjects only.

Thereafter we received an immense number of emails from our readers looking for a complete study package for all subjects and a book that combines both *GATE Guide* and *GATE Cloud*. This encouraged us to present GATE Study Package (a set of 10 books: one for each subject) for GATE Electronic and Communication Engineering. Each book in this package is adequate for the purpose of qualifying GATE for an average student. Each book contains brief theory, fundamental concepts, problem solving methodology, summary of formulae, and a solved question bank. The question bank has three exercises for each chapter: 1) Theoretical MCQs, 2) Numerical MCQs, and 3) Numerical Type Questions (based on the new GATE pattern). Solutions are presented in a descriptive and step-by-step manner, which are easy to understand for all aspirants.

We believe that each book of GATE Study Package helps a student learn fundamental concepts and develop problem solving skills for a subject, which are key essentials to crack GATE. Although we have put a vigorous effort in preparing this book, some errors may have crept in. We shall appreciate and greatly acknowledge all constructive comments, criticisms, and suggestions from the users of this book. You may write to us at rajkumar. kanodia@gmail.com and ashish.murolia@gmail.com.

Acknowledgements

We would like to express our sincere thanks to all the co-authors, editors, and reviewers for their efforts in making this project successful. We would also like to thank Team NODIA for providing professional support for this project through all phases of its development. At last, we express our gratitude to God and our Family for providing moral support and motivation.

We wish you good luck ! R. K. Kanodia Ashish Murolia

SYLLABUS

GATE Electronics & Communications

Networks:

Network graphs: matrices associated with graphs; incidence, fundamental cut set and fundamental circuit matrices. Solution methods: nodal and mesh analysis. Network theorems: superposition, Thevenin and Norton's maximum power transfer, Wye-Delta transformation. Steady state sinusoidal analysis using phasors. Linear constant coefficient differential equations; time domain analysis of simple RLC circuits, Solution of network equations using Laplace transform: frequency domain analysis of RLC circuits. 2-port network parameters: driving point and transfer functions. State equations for networks.

IES Electronics & Telecommunication

Network Theory

Network analysis techniques; Network theorems, transient response, steady state sinusoidal response; Network graphs and their applications in network analysis; Tellegen's theorem. Two port networks; Z, Y, h and transmission parameters. Combination of two ports, analysis of common two ports. Network functions : parts of network functions, obtaining a network function from a given part. Transmission criteria : delay and rise time, Elmore's and other definitions effect of cascading. Elements of network synthesis.

CONTENTS

CHAPTER 1 BASIC CONCEPTS

- 1.1 INTRODUCTION TO CIRCUIT ANALYSIS 1
- 1.2 BASIC ELECTRIC QUANTITIES OR NETWORK VARIABLES 1

5

5

5

45

- 1.2.1 Charge 1
- 1.2.2 Current 1
- 1.2.3 Voltage 2
- 1.2.4 Power 3
- 1.2.5 Energy 4
- 1.3 CIRCUIT ELEMENTS 4
 - 1.3.1 Active and Passive Elements 51.3.2 Bilateral and Unilateral Elements
 - 1.3.3 Linear and Non-linear Elements
 - 1.3.4 Lumped and Distributed Elements
- 1.4 **SOURCES** 5

	1.4.1	Independent Sources	5
	1.4.2	Dependent Sources	6
EXER	CISE 1.1	8	
EXER	CISE 1.2	18	
SOLU	TIONS 1.1	23	
SOLU	TIONS 1.2	30	

CHAPTER 2 BASIC LAWS

2.1	INTROD	UCTION	37			
2.2	OHM'S I	AW AND RES	ISTANCE	37		
2.3	BRANCI	HES, NODES A	ND LOOPS	39		
2.4		IOFF'S LAW Kirchhoff's (Kirchoff's Vo		40 41		
2.5	SERIES	RESISTANCES	S AND VOLTAG	E DIVISION 41		
2.6	PARALL	EL RESISTAN	CES AND CURI	RENT DIVISION	42	
2.7	2.7.1	Series Conne	OR PARALLEL ection of Voltag			44
	2.7.2 2.7.3		nection of Iden	tical Voltage Sources	44	44
	2.7.4			cal Current Sources	45	
	2.7.5	Series - Para	llel Connection	n of Voltage and Curre	ent Sour	ces

- 2.8 ANALYSIS OF SIMPLE RESISTIVE CIRCUIT WITH A SINGLE SOURCE 46
- 2.9 ANALYSIS OF SIMPLE RESISTIVE CIRCUIT WITH A DEPENDENT SOURCE 46

46

2.10 DELTA- TO- WYE(Δ -Y) TRANSFORMATION

- 2.10.1 Wye To Delta Conversion 47
- 2.10.2 Delta To Wye Conversion 47
- 2.11 NON-IDEAL SOURCES 48
- EXERCISE 2.1 49
- EXERCISE 2.2 67
- SOLUTIONS 2.1 78
- SOLUTIONS 2.2 101

CHAPTER 3 GRAPH THEORY

3.1	INTROD	UCTION 127	
3.2	NETWOR	RK GRAPH 127	
	3.2.1	Directed and Undirected Graph 127	
	3.2.2	Planar and Non-planar Graphs 128	
	3.2.3	Subgraph 128	
	3.2.4	Connected Graphs 129	
	3.2.5	Degree of Vertex 129	
3.3		ND CO-TREE 129	
	3.3.1	Twigs and Links 130	
3.4	INCIDEN	ICE MATRIX 131	
	3.4.1	Properties of Incidence Matrix: 131	
	3.4.2	Incidence Matrix and KCL 132	
3.5	TIE-SET	133	
	3.5.1	Tie-Set Matrix 134	
	3.5.2	Tie-Set Matrix and KVL 134	
	3.5.3	Tie-Set Matrix and Branch Currents 135	
3.6	CUT-SET	Г 136	
	3.6.1	Fundamental Cut - Set 136	
	3.6.2	Fundamental Cut-set Matrix 137	
	3.6.3	Fundamental Cut-set Matrix and KCL 138	
	3.6.4	Tree Branch Voltages and Fundamental Cut-set Voltages 13	9
EXERC	ISE 3.1	140	
EXERC	ISE 3.2	149	
SOLUT	IONS 3.1	151	
	IONS 3.2		

CHAPTER 4 NODAL AND LOOP ANALYSIS

- 4.1 INTRODUCTION 159
- 4.2 NODAL ANALYSIS 159
- 4.3 MESH ANALYSIS 161

EXERCISE 4.1	164
EXERCISE 4.2	173
SOLUTIONS 4.1	181
SOLUTIONS 4.2	192

CHAPTER 5 CIRCUIT THEOREMS

5.1	INTROD	UCTION 211	
5.2	LINEAR	ITY 211	
5.3	SUPERF	POSITION 212	
5.4	SOURCI	E TRANSFORMATION 213	
	5.4.1	Source Transformation For Dependent Source214	
5.5		NIN'S THEOREM 214	
	5.5.1	Thevenin's Voltage 215	
	5.5.2	Thevenin's Resistance 215	
	5.5.3	Circuit Analysis Using Thevenin Equivalent 216	
5.6	NORTO	N'S THEOREM 217	
	5.6.1	Norton's Current 217	
		Norton's Resistance 218	
	5.6.3	Circuit Analysis Using Norton's Equivalent 218	
5.7	TRANSE	FORMATION BETWEEN THEVENIN & NORTON'S EQUIVALENT CIRCUITS 2	219
5.7 5.8		FORMATION BETWEEN THEVENIN & NORTON'S EQUIVALENT CIRCUITS 2 JM POWER TRANSFER THEOREM 219	219
	MAXIMU		219
5.8	MAXIMU	JM POWER TRANSFER THEOREM 219	219
5.8	MAXIMU	JM POWER TRANSFER THEOREM 219 OCITY THEOREM 221	219
5.8	MAXIMU RECIPR 5.9.1 5.9.2	JM POWER TRANSFER THEOREM 219 OCITY THEOREM 221 Circuit With a Voltage Source 221	219
5.8 5.9	MAXIMU RECIPR 5.9.1 5.9.2 SUBSTI	JM POWER TRANSFER THEOREM219OCITY THEOREM221Circuit With a Voltage Source221Circuit With a Current Source221	219
5.8 5.9 5.10	MAXIMU RECIPR 5.9.1 5.9.2 SUBSTI MILLMA	JM POWER TRANSFER THEOREM219OCITY THEOREM221Circuit With a Voltage Source221Circuit With a Current Source221TUTION THEOREM222	219
5.8 5.9 5.10 5.11 5.12	MAXIMU RECIPR 5.9.1 5.9.2 SUBSTI MILLMA	JM POWER TRANSFER THEOREM219OCITY THEOREM221Circuit With a Voltage Source221Circuit With a Current Source221TUTION THEOREM222N'S THEOREM223	219
5.8 5.9 5.10 5.11 5.12 EXER	MAXIMU RECIPR 5.9.1 5.9.2 SUBSTI MILLMA TELLEG	JM POWER TRANSFER THEOREM219OCITY THEOREM221Circuit With a Voltage Source221Circuit With a Current Source221TUTION THEOREM222IN'S THEOREM223EN'S THEOREM223	219
5.8 5.9 5.10 5.11 5.12 EXER EXER	MAXIMU RECIPR 5.9.1 5.9.2 SUBSTI MILLMA TELLEG	JM POWER TRANSFER THEOREM219OCITY THEOREM221Circuit With a Voltage Source221Circuit With a Current Source221TUTION THEOREM222IN'S THEOREM223224224239239	219

CHAPTER 6 INDUCTOR AND CAPACITOR

6.1	CAPAC	ITOR 297				
	6.1.1	Voltage-Current Relation	ship of a	Capacit	or	297
	6.1.2	Energy Stored In a Capa	citor	298		
	6.1.3	Some Properties of an Id	eal Capac	itor	299	
6.2	SERIES	AND PARALLEL CAPACITO	ORS	299		
	6.2.1	Capacitors in Series	299			
	6.2.2	Capacitors in Parallel	301			

6.3	INDUCT	OR 301	
	6.3.1	Voltage-Current Relations	ship of an Inductor
	6.3.2	Energy Stored in an Indu	ctor 302
	6.3.3	Some Properties of an Ide	eal Inductor 303
6.4	SERIES	AND PARALLEL INDUCTOR	RS 303
	6.4.1	Inductors in Series	303
	6.4.2	Inductors in Parallel	304
6.5	DUALIT	Y 305	
EXERC	CISE 6.1	307	
EXERCISE 6.2		322	
SOLUT	TIONS 6.1	328	
SOLUT	TIONS 6.2	347	

302

CHAPTER 7 FIRST ORDER RL AND RC CIRCUITS

7.1	INTROD	OUCTION 359	
7.2	SOURCI	E FREE OR ZERO-INPUT RESPONSE 359	
	7.2.1	Source-Free RC Circuit 359	
	7.2.2	Source-Free RL circuit 362	
7.3	THE UN	IIT STEP FUNCTION 364	
7.4	DC OR S	STEP RESPONSE OF FIRST ORDER CIRCUIT 365	
7.5	STEP R	ESPONSE OF AN RC CIRCUIT 365	
	7.5.1	Complete Response : 367	
	7.5.2	Complete Response in terms of Initial and Final Conditions	368
7.6	STEP R	ESPONSE OF AN RL CIRCUIT 368	
	7.6.1	Complete Response 369	
	7.6.2	Complete Response in terms of Initial and Final Conditions	370
7.7	STEP B	Y STEP APPROACH TO SOLVE RL AND RC CIRCUITS 370	
	7.7.1	Solution Using Capacitor Voltage or Inductor Current 370	
	7.7.2	General Method 371	
7.8	STABIL	ITY OF FIRST ORDER CIRCUITS 372	
EXE	RCISE 7.1	373	
EXE	RCISE 7.2	392	
SOL	UTIONS 7.	1 397	

SOLUTIONS 7.2 452

CHAPTER 8 SECOND ORDER CIRCUITS

8.1 INTRODUCTION	469
------------------	-----

- 8.2 SOURCE-FREE SERIES RLC CIRCUIT 469
- 8.3 SOURCE-FREE PARALLEL RLC CIRCUIT 472
- 8.4 STEP BY STEP APPROACH OF SOLVING SECOND ORDER CIRCUITS 475
- 8.5 STEP RESPONSE OF SERIES RLC CIRCUIT 475

8.6 STEP RESPONSE OF PARALLEL RLC CIRCUIT 476

 8.7 THE LOSSLESS LC CIRCUIT
 477

 EXERCISE 8.1
 478

 EXERCISE 8.2
 491

 SOLUTIONS 8.1
 495

 SOLUTIONS 8.2
 527

CHAPTER 9 SINUSOIDAL STEADY STATE ANALYSIS

9.1	INTRODU	JCTION	541				
9.2	CHARAC	TERISTICS O	F SINUS	SOID	541		
9.3	PHASOR	S 543					
9.4	9.4.1	RELATIONSH Resistor Inductor Capacitor	HIP FOR 544 545 545	CIRCU	IT ELEN	NENTS 544	
9.5	IMPEDAN		/ITTANC	E	546		
	9.5.1	Admittance		548			
9.6	KIRCHHO 9.6.1 9.6.2	DFF'S LAWS I Kirchhoff's V Kirchhoff's (Voltage I	Law(K)	/L)	IN 548 549	548
9.7	IMPEDAN 9.7.1 9.7.2 9.7.3	ICE COMBINA Impedances Impedances Delta-to-Wy	in Series in Paral	and Vo lel and	Current		549 550
9.8	CIRCUIT 9.8.1 9.8.2 9.8.3 9.8.4 9.8.5	ANALYSIS IN Nodal Analy Mesh Analys Superposition Source Trans Thevenin and	rsis sis n Theor sformatio	552 552 em on	553 553	552 Fircuits	553
9.9	PHASOR	DIAGRAMS	554				
EXERC	ISE 9.1	556					
EXERC	ISE 9.2	579					
SOLUT	IONS 9.1	583					

CHAPTER 10 AC POWER ANALYSIS

10.1 INTRODUCTION 627

SOLUTIONS 9.2 618

- 10.2 INSTANTANEOUS POWER 627
- 10.3 AVERAGE POWER 628
- 10.4 EFFECTIVE OR RMS VALUE OF A PERIODIC WAVEFORM 629

10.5	COMPLE	X POWER 630	
	10.5.1	Alternative Forms For Complex Power631	
10.6	POWER	FACTOR 632	
10.7	MAXIMU	M AVERAGE POWER TRANSFER THEOREM 634	
	10.7.1	Maximum Average Power Transfer, when \boldsymbol{Z} is Restricted 635	
10.8	AC POW	ER CONSERVATION 636	
10.9	POWER	FACTOR CORRECTION 636	
EXER	CISE 10.1	638	
EXER	CISE 10.2	648	
SOLU	TIONS 10	1 653	
SOLU ⁻	TIONS 10	2 669	

CHAPTER 11 THREE PHASE CIRCUITS

11.1	INTROD	UCTION	683				
11.2	BALANC	ED THREE P	HASE VOLTAG		CES	683	
	11.2.1	Y-connected	d Three-Phase	Voltage	Source		683
	11.2.2	Δ -connecte	d Three-Phase	Voltage	Source		686
11.3	BALANC	ED THREE-P	HASE LOADS	688			
	11.3.1	Y-connecte	d Load	688			
	11.3.2	Δ -connected	d Load	689			
11.4	ANALYS	SIS OF BALAN	ICED THREE-PI	HASE CI	RCUITS	689	
	11.4.1	Balanced Y	-Y Connection	1	689		
	11.4.2	Balanced Y	$-\Delta$ Connection	l	691		
	11.4.3	Balanced Δ	- Δ Connection	l	692		
	11.4.4	Balanced \triangle	-Y connection		693		
11.5	POWER	IN A BALANC	CED THREE-PH	ASE SYS	STEM	694	
11.6	TWO-WA	ATTMETER PO	OWER MEASUR	REMENT	695		
EXERC	CISE 11.1	697					
EXERC	CISE 11.2	706					
SOLUT	FIONS 11	.1 709					
SOLUT	FIONS 11	.2 722					

CHAPTER 12 MAGNETICALLY COUPLED CIRCUITS

12.1	INTRODUCTION 729	
12.2	MUTUAL INDUCTANCE 729	
12.3	DOT CONVENTION 730	
12.4	ANALYSIS OF CIRCUITS HAVING COUPLED INDUCTORS	731
12.5	SERIES CONNECTION OF COUPLED COILS 732	
	12.5.1 Series Adding Connection 732	
	12.5.2 Series Opposing Connection 733	
12.6	PARALLEL CONNECTION OF COUPLED COILS 734	

12.7	ENERGY	STORED IN A COUPLED CIRCUIT	735
	12.7.1	Coefficient of Coupling 736	
12.8	THE LIN	EAR TRANSFORMER 737	
	12.8.1	$T\operatorname{-equivalent}$ of a Linear Transformer	737
	12.8.2	$\pi\operatorname{-equivalent}$ of a Linear Transformer	738
12.9	THE IDE	AL TRANSFORMER 739	
	12.9.1	Reflected Impedance 740	
EXER	CISE 12.1	742	
EXER	CISE 12.2	751	
SOLU	TIONS 12.	1 755	
SOLU	TIONS 12.	2 768	

CHAPTER 13 FREQUENCY RESPONSE

13.1	INTROD	UCTION 777		
13.2	TRANSF	ER FUNCTIONS	777	
	13.2.1	Poles and Zeros	778	
13.3	RESON	ANT CIRCUIT 778		
	13.3.1	Series Resonance	778	
	13.3.2	Parallel Resonan	ce 784	
13.4	PASSIVI	E FILTERS 788		
	13.4.1	Low Pass Filter	788	
	13.4.2	High Pass Filter	789	
	13.4.3	Band Pass Filter	790	
	13.4.4	Band Stop Filter	· 791	
13.5	EQUIVA	LENT SERIES AND	PARALLEL COMBI	NATION 792
13.6	SCALIN	G 793		
	13.6.1	Magnitude Scalin	ng 793	
	13.6.2	Frequency Scalin	ig 793	
	13.6.3	Magnitude and H	Frequency Scaling	794
EXER	CISE 13.1	795		
	CISE 13.1 CISE 13.2			
EXER		804		

CHAPTER 14 CIRCUIT ANALYSIS USING LAPLACE TRANSFORM

14.1	INTROD	UCTION	827			
14.2	DEFINIT	ION OF THE	LAPLACE TRANSFORM	827		
	14.2.1	Laplace Trai	nsform of Some Basic Sigr	nals	828	
	14.2.2	Existence of	Laplace Transform	828		
	14.2.3	Poles and Z	Zeros of Rational Laplace	Transforms	829	
14.3	THE INV	ERSE LAPLA	CE TRANSFORM 82	9		
	14.3.1	Inverse Lapl	ace Transform Using Part	ial Fraction	Method	830

	14.4	PROPER	TIES OF TH	IE LAPLACE T	RANSFOR	M	830			
		14.4.1	Initial Valu	ue and Final \	/alue Theo	orem		831		
	14.5	CIRCUIT	ELEMENTS	S IN THE S -DO	OMAIN		831			
		14.5.1		the <i>S</i> -domain		831				
		14.5.2		n the <i>S</i> -domai		832				
		14.5.3	Capacitor	in the <i>S</i> -doma	ain	833				
	14.6	CIRCUIT	ANALYSIS	IN THE S-DOM	ЛАІМ	834				
	14.7	THE TRA	ANSFER FUI	NCTION	834					
		14.7.1	Transfer F	unction and S	teady Stat	e Respo	onse	835		
	EXERC	ISE 14.1	836							
	EXERC	ISE 14.2	850							
	SOLUT	IONS 14.	1 853							
	SOLUT	IONS 14.	2 880							
СНА	PTER	15]		RT NETWO	ORK					
•••••										
	15.1	INTROD	UCTION	887						
	15.2									
		15.2.1	-	valent Networ		889 Tuun ma	nt Notes	und in Tanua of Inc.	dan as Danamatana	000
		15.2.2 15.2.3				-		ork in Terms of Impe ns of Impedance Parai		889
	15.3		ANCE PARA	•	891		III ICIII	is of impedance f and	1000	
	10.5	15.3.1		valent Networ		892				
		15.3.2	-				ort Net	works in Terms of Ad	mittance Parameters	893
	15.4		PARAMETE			1				
		15.4.1	Equivalent		895					
		15.4.2	1		erminated	Two-po	rt Netw	orks in Terms of Hyb	rid Parameters	895
		15.4.3	Inverse Hy	brid Paramete	ers	896				
	15.5	TRANSM	ISSION PAP	RAMETERS	897					
		15.5.1	Input Impe	edance of a Te	erminated	Two-po	rt Netw	orks in Terms of AB	CD Parameters	898
	15.6	SYMMET		RECIPROCAI		RK	898			
	15.7	RELATIC	ONSHIP BET	WEEN TWO-P	ORT PARA	METER	S	899		
	15.8	INTERCO	ONNECTION	OF TWO-POR	RT NETWO	RKS	900			
		15.8.1	Series Con	nection	900					
		15.8.2	Parallel Co		901					
		15.8.3	Cascade C	onnection	902					
	EXERC	ISE 15.1	904							
	EXERC	ISE 15.2	920							
	SOLUT	IONS 15.	1 924							

SOLUTIONS 15.2 955

CHAPTER 5

CIRCUIT THEOREMS

INTRODUCTION 5.1

In this chapter we study the methods of simplifying the analysis of more complicated circuits. We shall learn some of the circuit theorems which are used to reduce a complex circuit into a simple equivalent circuit. This includes Thevenin theorem and Norton theorem. These theorems are applicable to linear circuits, so we first discuss the concept of circuit linearity.

5.2 LINEARITY

A system is linear if it satisfies the following two properties

Homogeneity Property

The homogeneity property requires that if the input (excitation) is multiplied by a constant, then the output (response) is multiplied by the same constant. For a resistor, for example, Ohm's law relates the input *I* to the output *V*,

V = IR

If the current is increased by a constant k, then the voltage increases correspondingly by k, that is,

kIR = kV

Additivity Property

The additivity property requires that the response to a sum of inputs is the sum of the responses to each input applied separately. Using the voltagecurrent relationship of a resistor, if

 $V_1 = I_1 R$ (Voltage due to current I_1) and $V_2 = I_2 R$ (Voltage due to current I_2)

then, applying current $(I_1 + I_2)$ gives

$$V = (I_1 + I_2) R = I_1 R + I_2 R$$

$$= V_1 + V_2$$

These two properties defining a linear system can be combined into a single statement as

For any linear resistive circuit, any output voltage or current, denoted by the variable y, is related linearly to the independent sources (inputs), i.e.,

$$v = a_1 x_1 + a_2 x_2 + \dots + a_n x_n$$

where x_1, x_2, \dots, x_n are the voltage and current values of the independent sources in the circuit and a_1 through a_m are properly dimensioned constants.

Thus, a linear circuit is one whose output is linearly related (or directly

GATE STUDY PACKA	GE 10 Subject-	-wise books by R. I	K. Kanodia Electro	ctronics & Communication	
General Aptitude	Engineering Mathematics	Networks	Electronic Devices	Analog Electronics	
Digital Electronics	Signals & Systems C	Control Systems	Communication Systems	Electromagnetics	

Page 212 Chap 5 Circuit Theorems proportional) to its input. For example, consider the linear circuit shown in figure 5.2.1. It is excited by an input voltage source V_s , and the current through load R is taken as output(response).

Fig. 5.2.1 A Linear Circuit

Suppose $V_s = 5 \text{ V}$ gives I = 1 A. According to the linearity principle, $V_s = 10 \text{ V}$ will give I = 2 A. Similarly, I = 4 mA must be due to $V_s = 20 \text{ mV}$. Note that ratio V_s/I remains constant, since the system is linear.

NOTE :

We know that the relationship between power and voltage (or current) is not linear. Therefore, linearity does not applicable to power calculations.

5.3 SUPERPOSITION

The number of circuits required to solve a network. using superposition theorem is equal to the number of independent sources present in the network. It states that

In any linear circuit containing multiple independent sources the total current through or voltage across an element can be determined by algebraically adding the voltage or current due to each independent source acting alone with all other independent sources set to zero.

An independent voltage source is set to zero by replacing it with a 0 V source(short circuit) and an independent current source is set to zero by replacing it with 0 A source(an open circuit). The following methodology illustrates the procedure of applying superposition to a given circuit

METHODOLOGY

- 1. Consider one independent source (either voltage or current) at a time, short circuit all other voltage sources and open circuit all other current sources.
- 2. Dependent sources can not be set to zero as they are controlled by other circuit parameters.
- 3. Calculate the current or voltage due to the single source using any method (KCL, KVL, nodal or mesh analysis).
- 4. Repeat the above steps for each source.
- 5. Algebraically add the results obtained by each source to get the total response.

NOTE :

Superposition theorem can not be applied to power calculations since power is not a linear quantity.

or

5.4 SOURCE TRANSFORMATION

It states that an independent voltage source V_s in series with a resistance R is equivalent to an independent current source $I_s = V_s/R$, in parallel with a resistance R.

An independent current source I_s in parallel with a resistance R is equivalent to an independent voltage source $V_s = I_s R$, in series with a resistance R.

Figure 5.4.1 shows the source transformation of an independent source. The following points are to be noted while applying source transformation.

Fig. 5.4.1 Source Transformation of Independent Source

1. Note that head of the current source arrow corresponds to the +ve terminal of the voltage source. The following figure illustrates this

Fig. 5.4.2 Source Transformation of Independent Source

2. Source conversion are equivalent at their external terminals only i.e. the voltage-current relationship at their external terminals remains same. The two circuits in figure 5.4.3a and 5.4.3b are equivalent, provided they have the same voltage-current relation at terminals a-b

Fig. 5.4.3 An example of source transformation (a) Circuit with a voltage source (b) Equivalent circuit when the voltage source is transformed into current sources

3. Source transformation is not applicable to ideal voltage sources as $R_s = 0$ for an ideal voltage source. So, equivalent current source value $I_s = V_s/R \rightarrow \infty$. Similarly it is not applicable to ideal current source

Page 213 Chap 5 Circuit Theorems

GATE STUDY PACKA	GE 10 Subject	-wise books by R .	K. Kanodia Ele	ctronics & Communication			
General Aptitude	Engineering Mathematics	8 Networks	Electronic Devices	Analog Electronics			
Digital Electronics	Signals & Systems C	Control Systems	Communication System	ns Electromagnetics			
Page 214 Chap 5 Circuit Theorems	because for an ideal current source $R_s = \infty$, so equivalent voltage source value will not be finite.						
5.4.1 Source Transformation For Dependent Source							

Source transformation is also applicable to dependent source in the same manner as for independent sources. It states that

An dependent voltage source V_x in series with a resistance R is equivalent to a dependent current source $I_x = V_x/R$, in parallel with a resistance R, keeping the controlling voltage or current unaffected.

or,

A dependent current source I_x in parallel with a resistance R is equivalent to an dependent voltage source $V_x = I_x R$, in series with a resistance R, keeping the controlling voltage or current unaffected.

Figure 5.4.4 shows the source transformation of an dependent source.

Fig. 5.4.4 Source Transformation of Dependent Sources

5.5 THEVENIN'S THEOREM

It states that any network composed of ideal voltage and current sources, and of linear resistors, may be represented by an equivalent circuit consisting of an ideal voltage source, V_{Th} , in series with an equivalent resistance, R_{Th} as illustrated in the figure 5.5.1.

Fig. 5.5.1 Illustration of Thevenin Theorem

where V_{Th} is called Thevenin's equivalent voltage or simply Thevenin voltage and R_{Th} is called Thevenin's equivalent resistance or simply Thevenin resistance.

The methods of obtaining Thevenin equivalent voltage and resistance are given in the following sections.

5.5.1 Thevenin's Voltage

The equivalent Thevenin voltage (V_{Th}) is equal to the open-circuit voltage present at the load terminals (with the load removed). Therefore, it is also denoted by V_{oc}

Page 215 Chap 5 Circuit Theorems

Fig. 5.5.2 Equivalence of Open circuit and Thevenin Voltage

Figure 5.5.2 illustrates that the open-circuit voltage, V_{oc} , and the Thevenin voltage, V_{Th} , must be the same because in the circuit consisting of V_{Th} and R_{Th} , the voltage V_{oc} must equal V_{Th} , since no current flows through R_{Th} and therefore the voltage across R_{Th} is zero. Kirchhoff's voltage law confirms that

 $V_{Th} = R_{Th}(0) + V_{oc} = V_{oc}$

The procedure of obtaining Thevenin voltage is given in the following methodology.

METHODOLOGY

- 1. Remove the load i.e open circuit the load terminals.
- 2. Define the open-circuit voltage V_{oc} across the open load terminals.
- 3. Apply any preferred method (KCL, KVL, nodal analysis, mesh analysis etc.) to solve for V_{oc} .
- 4. The Thevenin voltage is $V_{Th} = V_{oc}$.

NOTE :

Note that this methodology is applicable with the circuits containing both the dependent and independent source.

If a circuit contains dependent sources only, i.e. there is no independent source present in the network then its open circuit voltage or Thevenin voltage will simply be zero.

NOTE :

For the Thevenin voltage we may use the terms Thevenin voltage or open circuit voltage interchangeably.

5.5.2 Thevenin's Resistance

Thevenin resistance is the input or equivalent resistance at the open circuit terminals *a*, *b* when all independent sources are set to zero(voltage sources replaced by short circuits and current sources replaced by open circuits).

We consider the following cases where Thevenin resistance R_{Th} is to be determined.

GATE STUDY PACKAGE 10	Subject-wise b	books by R. K	K. Kanodia Electro	ectronics & Communication	
General Aptitude Engineering Math	nematics	Networks	Electronic Devices	Analog Electronics	
Digital Electronics Signals & System	ms Contro	ol Systems	Communication Systems	Electromagnetics	

Case 1: Circuit With Independent Sources only

Page 216 Chap 5 Circuit Theorems

If the network has no dependent sources, we turn off all independent sources. R_{Th} is the input resistance or equivalent resistance of the network looking between terminals *a* and *b*, as shown in figure 5.5.3.

Fig 5.5.3 Circuit for Obtaining R_{Th}

Case 2: Circuit With Both Dependent and Independent Sources

Different methods can be used to determine Thevenin equivalent resistance of a circuit containing dependent sources. We may follow the given two methodologies. Both the methods are also applicable to circuit with independent sources only(case 1).

Using Test Source

Μ	E	Т	н	Ο	D	Ο	L	0	G	Υ	2

- 1. Set all independent sources to zero(Short circuit independent voltage source and open circuit independent current source).
- 2. Remove the load, and put a test source V_{test} across its terminals. Let the current through test source is I_{test} . Alternatively, we can put a test source I_{test} across load terminals and assume the voltage across it is V_{test} . Either method would give same result.
- 3. Thevenin resistance is given by $R_{Th} = V_{test}/I_{test}$.

```
NOTE :
```

We may use $V_{test} = 1 \text{ V}$ or $I_{test} = 1 \text{ A}$.

Using Short Circuit Current

 $R_{Th} = \frac{\text{open circuit voltage}}{\text{short circuit current}} = \frac{V_{oc}}{I_{sc}}$

METHODOLOGY 3

- 1. Connect a short circuit between terminal *a* and *b*.
- 2. Be careful, do not set independent sources zero in this method because we have to find short circuit current.
- 3. Now, obtain the short circuit current I_{sc} through terminals a, b.
- 4. Thevenin resistance is given as $R_{Th} = V_{oc}/I_{sc}$ where V_{oc} is open circuit voltage or Thevenin voltage across terminal *a*, *b* which can be obtained by same method given previously.

5.5.3 Circuit Analysis Using Thevenin Equivalent

Thevenin's theorem is very important in circuit analysis. It simplifies a

circuit. A large circuit may be replaced by a single independent voltage source and a single resistor. The equivalent network behaves the same way externally as the original circuit. Consider a linear circuit terminated by a load R_L , as shown in figure 5.5.5. The current I_L through the load and the voltage V_L across the load are easily determined once the Thevenin equivalent of the circuit at the load's terminals is obtained.

Page 217 Chap 5 Circuit Theorems

Fig. 5.5.5 A Circuit with a Load and its Equivalent Thevenin Circuit

Current through the load R_L

$$I_L = rac{V_{Th}}{R_{Th}+R_L}$$

Voltage across the load R_L

$$V_L = R_L I_L = \frac{R_L}{R_{Th} + R_L} V_L$$

5.6 NORTON'S THEOREM

Any network composed of ideal voltage and current sources, and of linear resistors, may be represented by an equivalent circuit consisting of an ideal current source, I_N , in parallel with an equivalent resistance, R_N as illustrated in figure 5.6.1.

2.00

Fig. 5.6.1 Illustration of Norton Theorem

where I_N is called Norton's equivalent current or simply Norton current and R_N is called Norton's equivalent resistance. The methods of obtaining Norton equivalent current and resistance are given in the following sections.

5.6.1 Norton's Current

The Norton equivalent current is equal to the short-circuit current that would flow when the load replaced by a short circuit. Therefore, it is also called short circuit current I_{sc} .

b

Fig 5.6.2 Equivalence of Short Circuit Current and Norton Current

Figure 5.6.2 illustrates that if we replace the load by a short circuit, then current flowing through this short circuit will be same as Norton current I_N

 $I_N = I_{sc}$

The procedure of obtaining Norton current is given in the following methodology. Note that this methodology is applicable with the circuits containing both the dependent and independent source.

METHODOLOGY

- 1. Replace the load with a short circuit.
- 2. Define the short circuit current, I_{sc} , through load terminal.
- 3. Obtain *I*_{sc} using any method (KCL, KVL, nodal analysis, loop analysis).
- 4. The Norton current is $I_N = I_{sc}$.

If a circuit contains dependent sources only, i.e. there is no independent source present in the network then the short circuit current or Norton current will simply be zero.

5.6.2 Norton's Resistance

Norton resistance is the input or equivalent resistance seen at the load terminals when all independent sources are set to zero(voltage sources replaced by short circuits and current sources replaced by open circuits) i.e. Norton resistance is same as Thevenin's resistance

 $R_N = R_{Th}$

So, we can obtain Norton resistance using same methodologies as for Thevenin resistance. Dependent and independent sources are treated the same way as in Thevenin's theorem.

NOTE :

For the Norton current we may use the term Norton current or short circuit current interchangeably.

5.6.3 Circuit Analysis Using Norton's Equivalent

As discussed for Thevenin's theorem, Norton equivalent is also useful in circuit analysis. It simplifies a circuit. Consider a linear circuit terminated by a load R_L , as shown in figure 5.6.4. The current I_L through the load and the voltage V_L across the load are easily determined once the Norton equivalent of the circuit at the load's terminals is obtained,

Fig. 5.6.4 A circuit with a Load and its Equivalent Norton Circuit

Current through load R_L is,

$$I_L = \frac{R_N}{R_L + R_L} I_N$$

Voltage across load R_L is,

$$V_L = R_L I_L = \frac{R_L R_N}{R_{Th} + R_L} I_N$$

5.7 TRANSFORMATION BETWEEN THEVENIN & NORTON'S EQUIVALENT CIRCUITS

From source transformation it is easy to find Norton's and Thevenin's equivalent circuit from one form to another as following

Fig. 5.7.1 Source Transformation of Thevenin and Norton Equivalents

5.8 MAXIMUM POWER TRANSFER THEOREM

Maximum power transfer theorem states that a load resistance R_L will receive maximum power from a circuit when the load resistance is equal to Thevenin's/Norton's resistance seen at load terminals.

i.e. $R_L = R_{Th}$, (For maximum power transfer)

In other words a network delivers maximum power to a load resistance R_L when R_L is equal to Thevenin equivalent resistance of the network.

PROOF :

Consider the Thevenin equivalent circuit of figure 5.8.1 with Thevenin voltage V_{Th} and Thevenin resistance R_{Th} .

GATE STUDY PACKA	AGE 10 Subject-wise books by R. K. Kanodia	Electronics & Communication
General Aptitude	Engineering MathematicsNetworksElectronic Dev	rices Analog Electronics
Digital Electronics	Signals & Systems Control Systems Communication Sy	stems Electromagnetics
Page 220 Chap 5	Fiig. 5.8.1 A Circuit Used for Maximum Power Transfer	

We assume that we can adjust the load resistance R_L . The power absorbed by the load, P_L , is given by the expression

$$P_L = I_L^2 R_L \tag{5.8.1}$$

and that the load current is given as,

$$T_L = \frac{V_{Th}}{R_L + R_{Th}}$$
 (5.8.2)

Substituting I_L from equation (5.8.2) into equation (5.8.1)

$$P_L = \frac{V_{Th}^2}{(R_L + R_{Th})^2} R_L \tag{5.8.3}$$

To find the value of R_L that maximizes the expression for P_L (assuming that V_{Th} and R_{Th} are fixed), we write

 $\frac{dP_L}{dR_L} = 0$

Computing the derivative, we obtain the following expression :

$$rac{dP_L}{dR_L} = rac{V_{Th}^2 (R_L + R_{Th})^2 - 2 \, V_{Th}^2 R_L (R_L + R_{Th})}{(R_L + R_{Th})^4}$$

which leads to the expression

 $R_L = R_{Th}$

$$(R_L + R_{Th})^2 - 2R_L(R_L + R_{Th}) = 0$$

 $P_{\text{max}} = \frac{V_{Th}^2}{4R_I}$

Thus, in order to transfer maximum power to a load, the equivalent source and load resistances must be matched, that is, equal to each other.

$$R_L = R_{Th}$$

The maximum power transferred is obtained by substituting $R_L = R_{Th}$ into equation (5.8.3)

$$P_{\max} = \frac{V_{Th}^2 R_{Th}}{(R_{Th} + R_{Th})^2} = \frac{V_{Th}^2}{4R_{Th}}$$
(5.8.4)

or,

or

If the Load resistance R_L is fixed :

Now consider a problem where the load resistance R_L is fixed and Thevenin resistance or source resistance R_s is being varied, then

$$P_{L} = \frac{V_{Th}^{2}}{(R_{L} + R_{s})^{2}} R_{L}$$

To obtain maximum P_L denominator should be minimum or $R_s = 0$. This can be solved by differentiating the expression for the load power, P_L , with respect to R_s instead of R_L .

The step-by-step methodology to solve problems based on maximum power transfer is given as following :

METHODOLOGY

- 1. Remove the load R_L and find the Thevenin equivalent voltage V_{Th} and resistance R_{Th} for the remainder of the circuit.
- 2. Select $R_L = R_{Th}$, for maximum power transfer.
- 3. The maximum average power transfer can be calculated using $P_{\text{max}} = V_{Th}^2/4R_{Th}$.

Circuit Theorems

5.9 RECIPROCITY THEOREM

The reciprocity theorem is a theorem which can only be used with single source circuits (either voltage or current source). The theorem states the following

Page 221 Chap 5 Circuit Theorems

5.9.1 Circuit With a Voltage Source

In any linear bilateral network, if a single voltage source V_a in branch *a* produces a current I_b in another branch *b*, then if the voltage source V_a is removed (i.e. short circuited) and inserted in branch *b*, it will produce a current I_b in branch *a*.

In other words, it states that the ratio of response (output) to excitation (input) remains constant if the positions of output and input are interchanged in a reciprocal network. Consider the network shown in figure 5.9.1a and b. Using reciprocity theorem we my write

Fig. 5.9.1 Illustration of Reciprocity Theorem for a Voltage Source

When applying the reciprocity theorem for a voltage source, the following steps must be followed:

- 1. The voltage source is replaced by a short circuit in the original location.
- 2. The polarity of the voltage source in the new location have the same correspondence with branch current, in each position, otherwise a ve sign appears in the expression (5.9.1).

This can be explained in a better way through following example.

5.9.2 Circuit With a Current Source

In any linear bilateral network, if a single current source I_a in branch a produces a voltage V_b in another branch b, then if the current source I_a is removed (i.e. open circuited) and inserted in branch b, it will produce a voltage V_b in open-circuited branch a.

Fig. 5.9.2 Illustration of Reciprocity Theorem for a Current Source

Buy Online: **Shop.nodia.co.in**

GATE STUDY PACKA	GE 10 Subject-wise books by R .	K. Kanodia Elect	ronics & Communication			
General Aptitude	Engineering Mathematics Networks	Electronic Devices	Analog Electronics			
Digital Electronics	Signals & Systems Control Systems	Communication Systems	Electromagnetics			
Page 222	Again, the ratio of vo	ltage and current remains	constant. Consider the			
Chap 5	network shown in figure 5.9.2a and 5.9.2b. Using reciprocity theorem we my					
Circuit Theorems	write					
	V V					

$$\frac{V_1}{I_1} = \frac{V_2}{I_2} \tag{5.9.2}$$

When applying the reciprocity theorem for a current source, the following conditions must be met:

- 1. The current source is replaced by an open circuit in the original location.
- 2. The direction of the current source in the new location have the same correspondence with voltage polarity, in each position, otherwise a ve sign appears in the expression (5.9.2).

5.10 SUBSTITUTION THEOREM

If the voltage across and the current through any branch of a dc bilateral network are known, this branch can be replaced by any combination of elements that will maintain the same voltage across and current through the chosen branch.

For example consider the circuit of figure 5.10.1.

Fig 5.10.1 A Circuit having Voltage $V_{ab} = 6$ V and Current I = 1 A in Branch *ab*

The voltage V_{ab} and the current I in the circuit are given as

$$V_{ab} = \left(rac{6}{6+4}
ight) 10 = 6 \ {
m V}$$

 $I = rac{10}{6+4} = 1 \ {
m A}$

The 6Ω resistor in branch *a-b* may be replaced with any combination of components, provided that the terminal voltage and current must be the same.

We see that the branches of figure 5.10.2a-e are each equivalent to the original branch between terminals a and b of the circuit in figure 5.10.1.

Buy Online: shop.nodia.co.in

Shipping Free

Fig. 5.10.2 Equivalent Circuits for Branch ab

Also consider that the response of the remainder of the circuit of figure 5.10.1 is unchanged by substituting any one of the equivalent branches.

5.11 MILLMAN'S THEOREM

Millman's theorem is used to reduce a circuit that contains several branches in parallel where each branch has a voltage source in series with a resistor as shown in figure 5.11.1.

Fig. 5.11.1 Illustration of Millman's Theorem

Mathematically

$$V_{eq} = \frac{V_1 G_1 + V_2 G_2 + V_3 G_3 + V_4 G_4 + \ldots + V_n G_1}{G_1 + G_2 + G_3 + G_4 + \ldots + G_n}$$

$$R_{eq} = \frac{1}{G_{eq}} = \frac{1}{G_1 + G_2 + G_3 + \ldots + G_n}$$

where conductances

$$G_1 = \frac{1}{R_1}, G_2 = \frac{1}{R_2}, G_3 = \frac{1}{R_3}, G_4 = \frac{1}{R_4}, \dots G_n = \frac{1}{R_4}$$

In terms of resistances

$$V_{eq} = \frac{V_1/R_1 + V_2/R_2 + V_3/R_3 + V_4/R_4 + \ldots + V_nR_n}{1/R_1 + 1/R_2 + 1/R_3 + 1/R_4 + \ldots + 1/R_n}$$

$$R_{eq} = \frac{1}{G_{eq}} = \frac{1}{1/R_1 + 1/R_2 + 1/R_3 + \ldots + 1/R_n}$$

5.12 TELLEGEN'S THEOREM

Tellegen's theorem states that the sum of the power dissipations in a lumped network at any instant is always zero. This is supported by Kirchhoff's voltage and current laws. Tellegen's theorem is valid for any lumped network which may be linear or non-linear, passive or active, time-varying or timeinvariant.

For a network with n branches, the power summation equation is,

$$\sum_{k=1}^{k=n} V_k I_k = 0$$

One application of Tellegen's theorem is checking the quantities obtained when a circuit is analyzed. If the individual branch power dissipations do not add up to zero, then some of the calculated quantities are incorrect.

Page 223 Chap 5 Circuit Theorems

GATE STUDY PACKA	GE 10 Subject-w	ise books by R. F	K. Kanodia Electro	nics & Communication
General Aptitude	Engineering Mathematics	Networks	Electronic Devices	Analog Electronics
Digital Electronics	Signals & Systems Cor	ntrol Systems	Communication Systems	Electromagnetics
Page 224 Chap 5 Circuit Theorems	E	XERO	CISE 5.1	

MCQ 5.1.1

The linear network in the figure contains resistors and dependent sources only. When $V_s = 10$ V, the power supplied by the voltage source is 40 W. What will be the power supplied by the source if $V_s = 5$ V?

- (B) 10 W
- (C) 40 W
- (D) can not be determined

MCQ 5.1.2

In the circuit below, it is given that when $V_s = 20$ V, $I_L = 200$ mA. What values of I_L and V_s will be required such that power absorbed by R_L is 2.5 W ?

MCQ 5.1.3 For the circuit shown in figure below, some measurements are made and listed in the table.

Which of the following equation is true for I_L ?

- (A) $I_L = 0.6 V_s + 0.4 I_s$ (B) $I_L = 0.2 V_s - 0.3 I_s$ (C) $I_L = 0.2 V_s + 0.3 I_s$
- (D) $I_L = 0.4 V_s 0.6 I_s$

Buy Online: **shop.nodia.co.in**

MCQ 5.1.4

1.4 In the circuit below, the voltage drop across the resistance R_2 will be equal to

Page 225 Chap 5 Circuit Theorems

MCQ 5.1.5 In the circuit below, current $I = I_1 + I_2 + I_3$, where I_1 , I_2 and I_3 are currents due to 60 A, 30 A and 30 V sources acting alone. The values of I_1 , I_2 and I_3 are respectively

MCQ 5.1.6

In the circuit below, current I is equal to sum of two currents I_1 and I_2 . What are the values of I_1 and I_2 ?

A network consists only of independent current sources and resistors. If the

(C) 3 A, 1 A (D) 3 A, 4 A

MCQ 5.1.7

values of all the current sources are doubled, then values of node voltages (A) remains same

- (B) will be doubled
- (C) will be halved
- (D) changes in some other way.

MCQ 5.1.8Consider a network which consists of resistors and voltage sources only. If
the values of all the voltage sources are doubled, then the values of mesh
current will be
(A) doubled
(B) same
(C) halved(B) same
(D) none of these

Buy Online: **shop.nodia.co.in**

In the circuit below, the 12 V source

- (A) absorbs 36 W
- (B) delivers 4 W
- (C) absorbs 100 W
- (D) delivers 36 W

Page 227 Chap 5 Circuit Theorems

MCQ 5.1.13 Consider a circuit shown in the figure

Which of the following circuit is equivalent to the above circuit ?

MCQ 5.1.14 For the circuit shown in the figure the Thevenin voltage and resistance seen from the terminal a-b are respectively

Shipping Free

GATE STUDY PACKAGE		10 Subject-wise books by R. K. Kanoc	dia Electronics & Communication		
General Aptitude Digital Electronics	Engineering I Signals & S		ectronic DevicesAnalog Electronicsunication SystemsElectromagnetics		
Page 228 Chap 5 Circuit Theorems	MCQ 5.1.15		voltage and resistance across terminal <i>a</i>		
	MCQ 5.1.16	(A) 10 V, 18 Ω (B) 2 V, 18 Ω (C) 10 V, 18.67 Ω (D) 2 V, 18.67 Ω The value of R_{Th} and V_{Th} such that the circuit of figure (B) is the Thevenin equivalent circuit of the circuit shown in figure (A), will be equal to			
		$24 \text{ V} + 6 \Omega \neq 6 \text{ A}$	$rac{}{\sim} a$ V_{Th} $rac{}{\sim} b$ R_{Th} a		
		Fig.(A) (A) $R_{Th} = 6 \Omega$, $V_{Th} = 4 V$ (B) $R_{Th} = 6 \Omega$, $V_{Th} = 28 V$ (C) $R_{Th} = 2 \Omega$, $V_{Th} = 24 V$ (D) $R_{Th} = 10 \Omega$, $V_{Th} = 14 V$	Fig.(B)		
	MCQ 5.1.17	What values of R_{Th} and V_{Th} will equivalent circuit of figure (A) ?	cause the circuit of figure (B) to be the		

Common Data For Q. 18 and 19:

Consider the two circuits shown in figure (A) and figure (B) below

Buy Online: shop.nodia.co.in

Electronics & Communication

Sample Chapter of Network Analysis (Vol-3, GATE Study Package)

MCQ 5.1.18	The value of Thevenin voltage across te (B) respectively are (A) 30 V, 36 V (C) 18 V, 12 V	erminals <i>a-b</i> of figure (A) and figure (B) 28 V, -12 V (D) 30 V, -12 V	Page 229 Chap 5 Circuit Theorems
MCQ 5.1.19	The value of Thevenin resistance acro figure (B) respectively are (A) zero, 3Ω (C) 2Ω , 3Ω	The probability of the function of the functi	
MCQ 5.1.20	 For a network having resistors and in obtain Thevenin equivalent across the locurrent source. Then which of the follow (A) The Thevenin equivalent circuit is a (B) The Thevenin equivalent circuit corresistor. (C) The Thevenin equivalent circuit doe does exist. (D) None of these 	bad which is in parallel with an ideal wing statement is true ? simply that of a voltage source. nsists of a voltage source and a series	
MCQ 5.1.21	The Thevenin equivalent circuit of a (Thevenin voltage is zero). Then which contained in the network ?(A) resistor and independent sources(B) resistor only(C) resistor and dependent sources(D) resistor, independent sources and d	of the following elements might be	
MCQ 5.1.22	For the circuit shown in the figure, the looking into $a-b$ are $2V_x + 6 \Omega + V_x + 1 A$ (A) 2 V, 3 Ω	e Thevenin's voltage and resistance (B) 2 V, 2 Ω	
	(C) $6 V$, -9Ω	(D) $6 \text{ V}, -3 \Omega$	

MCQ 5.1.23

For the following circuit, values of voltage V for different values of R are given in the table.

	•	R	V
Unknown Circuit	V R	$3 \ \Omega$	6 V
	<u>_</u>	8 Ω	8 V

The Thevenin voltage and resistance of the unknown circuit are respectively.

- (A) 14 V, 4 Ω
- (B) 4 V, 1 Ω
- (C) 14 V, 6 Ω
- (D) 10 V, 2 Ω

GATE STUDY PACKAGE		10 Subject-wise books by R. K. Kanodia			Electronics & Communication	
General Aptitude	Engineering N	Mathematics	Networks	Electronic De	evices	Analog Electronics
Digital Electronics	Signals & Sy	ystems Con	ntrol Systems	Communication S	ystems	Electromagnetics
Page 230	MCQ 5.1.24	In the circu	it shown belov	v, the Norton equ	ivalent cı	urrent and resistance

Page 230 Chap 5 Circuit Theorems In the circuit shown below, the Norton equivalent current and resistance with respect to terminal a-b is

MCQ 5.1.25

The Norton equivalent circuit for the circuit shown in figure is given by

MCQ 5.1.26

What are the values of equivalent Norton current source (I_N) and equivalent resistance (R_N) across the load terminal of the circuit shown in figure ?

MCQ 5.1.27

For a network consisting of resistors and independent sources only, it is desired to obtain Thevenin's or Norton's equivalent across a load which is in parallel with an ideal voltage sources. Consider the following statements :

- 1. Thevenin equivalent circuit across this terminal does not exist.
- 2. The Thevenin equivalent circuit exists and it is simply that of a voltage source.
- 3. The Norton equivalent circuit for this terminal does not exist.

Which of the above statements is/are true ?

- (A) 1 and 3 (B) 1 only
- (C) 2 and 3 (D) 3 only
- **MCQ 5.1.28** For a network consisting of resistors and independent sources only, it is desired to obtain Thevenin's or Norton's equivalent across a load which is in series with an ideal current sources.

Consider the following statements

- 1. Norton equivalent across this terminal is not feasible.
- 2. Norton equivalent circuit exists and it is simply that of a current source only.
- 3. Thevenin's equivalent circuit across this terminal is not feasible.

Which of the above statements is/are correct ?

- (A) 1 and 3
- (B) 2 and 3
- (C) 1 only
- (D) 3 only

MCQ 5.1.29 The Norton equivalent circuit of the given network with respect to the terminal a-b, is

MCQ 5.1.30

In the circuit below, if R_L is fixed and R_s is variable then for what value of R_s power dissipated in R_L will be maximum ?

Buy Online: **shop.nodia.co.in**

Maximum Discount

Page 231 Chap 5 Circuit Theorems

GATE STUDY PACKAGE		10 Subject-wise books by R. K. Kanodia			Electronics & Communication	
General Aptitude	Engineering M	Mathematics	Networks	Electronic Dev	ices	Analog Electronics
Digital Electronics	Signals & S	ystems Cor	trol Systems	Communication Sy	stems	Electromagnetics
Page 232	MCQ 5.1.31	In the circui	t shown below	the maximum pow	er trans	ferred to R_L is P_{\max} ,

Page 232 Chap 5 Circuit Theorems In the circuit shown below the maximum power transferred to R_L is P_{\max} , then

(A) $R_L = 12 \Omega$, $P_{\text{max}} = 12 W$ (B) $R_L = 3 \Omega$, $P_{\text{max}} = 96 W$

(C)
$$R_L = 3 \Omega$$
, $P_{\text{max}} = 48 \text{ W}$

(D)
$$R_L = 12 \Omega$$
, $P_{\text{max}} = 24 \text{ W}$

MCQ 5.1.32

In the circuit shown in figure (A) if current $I_1 = 2$ A, then current I_2 and I_3 in figure (B) and figure (C) respectively are

- (A) 40 mA
- (B) 20 mA
- (C) 20 mA
- (D) R_1 , R_2 and R_3 must be known

Buy Online: shop.nodia.co.in

Shipping Free

GATE STUDY PACKA	GE	10 Subject-w	ise books by R .	K. Kanodia	Electron	nics & Communication
General Aptitude	Engineering 1	Mathematics	Networks	Electronic	Devices	Analog Electronics
Digital Electronics	Signals & S	ystems Co	ntrol Systems	Communicatio	on Systems	Electromagnetics
Page 234 Chap 5 Circuit Theorems	MCQ 5.1.38					ic is also given in the esistance respectively
			<u>-</u>		▲ <i>I</i> (amp)	

MCQ 5.1.39

MCQ 5.1.40 For the following circuit the value of equivalent Norton current I_N and resistance R_N are

 $\frac{8}{5}$ A

5 Ω

 5Ω

MCQ 5.1.41

(D)

8 V

Consider the following circuits shown below

Buy Online: **shop.nodia.co.in**

The relation between I_a and I_b is (A) $I_b = I_a + 6$ (B) $I_b = I_a + 2$ (C) $I_b = 1.5I_a$ (D) $I_b = I_a$

Common Data For Q. 42 and 43 :

In the following circuit, some measurements were made at the terminals a, b and given in the table below.

- MCQ 5.1.42The Thevenin equivalent of the unknown network across terminal a-b is
(A) 3Ω , 14 V(B) 5Ω , 16 V(C) 16Ω , 38 V(D) 10Ω , 26 V
- MCQ 5.1.43The value of R that will cause I to be 1 A, is
(A) 22 Ω
(C) 8 Ω (B) 16 Ω
(D) 11 Ω
- MCQ 5.1.44 In the circuit shown in fig (A) if current $I_1 = 2.5$ A then current I_2 and I_3 in fig (B) and (C) respectively are

 $|I_1|$

Fig.(B)

$$\operatorname{Fig.}(A)$$

(A) 5 A, 10 A	(B) $-5 A$, 10 A
(C) 5 A, -10 A	(D) $-5 A$, $-10 A$

MCQ 5.1.45

The *V*-*I* relation of the unknown element *X* in the given network is V = AI + B. The value of *A* (in ohm) and *B* (in volt) respectively are

Page 235 Chap 5 Circuit Theorems

MCQ 5.1.47 A network N feeds a resistance R as shown in circuit below. Let the power consumed by R be P. If an identical network is added as shown in figure, the power consumed by R will be

(A) equal to P(C) between P and 4P

(B) less than P(D) more than 4P

Buy Online: shop.nodia.co.in

MCQ 5.1.48 A certain network consists of a large number of ideal linear resistors, one of which is R and two constant ideal source. The power consumed by R is P_1 when only the first source is active, and P_2 when only the second source is active. If both sources are active simultaneously, then the power consumed by R is

Page 237 Chap 5 Circuit Theorems

(A)
$$P_1 \pm P_2$$

(B) $\sqrt{P_1} \pm \sqrt{P_2}$
(C) $(\sqrt{P_1} \pm \sqrt{P_2})^2$
(D) $(P_1 \pm P_2)^2$

MCQ 5.1.49

If the 60 Ω resistance in the circuit of figure (A) is to be replaced with a current source I_s and 240 Ω shunt resistor as shown in figure (B), then magnitude and direction of required current source would be

(D) 150 mA, upward

MCQ 5.1.50

1.50 The Thevenin's equivalent of the circuit shown in the figure is

1.51 The voltage V_L across the load resistance in the figure is given by

$$V_L = V\!\!\left(\frac{R_L}{R+R_L}\right)$$

V and R will be equal to

Buy Online: **shop.nodia.co.in**

Shipping Free

GATE STUDY PACKA	GE 10 Subject-wis	e books by R. K	. Kanodia Electro	nics & Communication
General Aptitude	Engineering Mathematics	Networks	Electronic Devices	Analog Electronics
Digital Electronics	Signals & Systems Cont	trol Systems	Communication Systems	Electromagnetics

MCQ 5.1.52 In the circuit given below, viewed from a-b, the circuit can be reduced to an equivalent circuit as

- (A) 10 volt source in series with $2 k\Omega$ resistor
- (B) 1250Ω resistor only
- (C) 20 V source in series with 1333.34 Ω resistor
- (D) 800 Ω resistor only

MCQ 5.1.53

Page 238

Circuit Theorems

Chap 5

The V-I equation for the network shown in figure, is given by

MCQ 5.1.54

In the following circuit the value of open circuit voltage and Thevenin resistance at terminals a, b are

EXERCISE 5.2

Page 239 Chap 5 **Circuit Theorems**

QUES 5.2.1

In the given network, if $V_s = V_0$, I = 1 A. If $V_s = 2 V_0$ then what is the value of I_1 (in Amp) ?

- **QUES 5.2.2**
- In the given network, if $I_s = I_0$ then V = 1 volt. What is the value of I_1 (in Amp) if $I_s = 2I_0$?

QUES 5.2.3

In the circuit below, the voltage V across the 40 Ω resistor would be equal to ____ Volts.

QUES 5.2.4

The value of current I flowing through 2Ω resistance in the given circuit, equals to ____ Amp.

In the given circuit, the value of current *I* will be _____Amps.

GATE STUDY PACKA	GE 10 Subject-wise books by R. K.	Kanodia Electro	onics & Communication
General Aptitude	Engineering Mathematics Networks	Electronic Devices	Analog Electronics
Digital Electronics	Signals & Systems Control Systems	Communication Systems	Electromagnetics
Page 240 Chap 5 Circuit Theorems	$4 \Omega \qquad 20 V$ $4 \Omega \qquad 4 \Omega$ $4 \Omega \qquad 2 A$ $4 \Omega \qquad 4 \Omega$ $4 \Omega \qquad 4 \Omega$	24 Ω	

In the given network if $V_1 = V_2 = 0$, then what is the value of V_o (in volts) ?

QUES 5.2.8

What is the value of current I in the circuit shown below (in Amp) ?

QUES 5.2.9 How much power is being dissipated by the 4 k Ω resistor in the network (in mW) ?

QUES 5.2.10 Thevenin equivalent resistance R_{Th} between the nodes a and b in the following circuit is ____ Ω .

Common Data For Q. 11 and 12 :

Consider the circuit shown in the figure.

Page 241 Chap 5 **Circuit Theorems**

- The equivalent Thevenin voltage across terminal *a*-*b* is____ Volts. QUES 5.2.11
- QUES 5.2.12 The Norton equivalent current with respect to terminal *a*-*b* is _____ Amps
- In the circuit given below, what is the value of current I (in Amp) through QUES 5.2.13 6Ω resistor

QUES 5.2.14 For the circuit below, what value of *R* will cause I = 3 A (in Ω) ?

QUES 5.2.15 The maximum power that can be transferred to the resistance R in the circuit is ____ mili watts.

The value of current *I* in the following circuit is equal to _____Amp.

QUES 5.2.17 For the following circuit the value of R_{Th} is ____ Ω .

What is the value of current I in the given network (in Amp) ? QUES 5.2.18

For the circuit of figure, some measurements were made at the terminals a-bQUES 5.2.20 and given in the table below.

- What is the value of I_L (in Amps) for $R_L = 20 \Omega$?
- QUES 5.2.2

In the circuit below, for what value of k, load $R_L = 2 \Omega$ absorbs maximum power?

QUES 5.2.22

In the circuit shown below, the maximum power that can be delivered to the load R_L is equal to ____ mW.

QUES 5.2.23

A practical DC current source provide 20 kW to a 50 Ω load and 20 kW to a 200 Ω load. The maximum power, that can drawn from it, is ____ kW.

QUES 5.2.25 If I = 5 A in the circuit below, then what is the value of voltage source V_s (in volts)?

QUES 5.2.26 For the following circuit, what is the value of current I (in Amp)?

QUES 5.2.27 The Thevenin equivalent resistance between terminal *a* and *b* in the following circuit is $_$ Ω .

QUES 5.2.28 In the circuit shown below, what is the value of current I (in Amps)?

QUES 5.2.29

Buy Online: **shop.nodia.co.in**

Shipping Free

GATE STUDY PACKA	GE 10 Subject	-wise books by R. K	K. Kanodia Ele	ectronics & Communication
General Aptitude	Engineering Mathematic	s Networks	Electronic Device	es Analog Electronics
Digital Electronics	Signals & Systems	Control Systems	Communication Syste	ms Electromagnetics
D 044	- I .			

Page 244 Chap 5 Circuit Theorems QUES 5.2.30 In the circuit shown, what value of R_L (in Ω) maximizes the power delivered to R_L ?

QUES 5.2.31 The *V*-*I* relation for the circuit below is plotted in the figure. The maximum power that can be transferred to the load R_L will be _____ mW

QUES 5.2.32 In the following circuit equivalent Thevenin resistance between nodes *a* and *b* is $R_{Th} = 3 \Omega$. The value of α is_____

QUES 5.2.33 The maximum power that can be transferred to the load resistor R_L from the current source in the figure is ____ watts.

Common Data For Q. 34 and 35

An electric circuit is fed by two independent sources as shown in figure.

OUES 5.2.34The power supplied by 36 V source will be _____ watts.OUES 5.2.35The power supplied by 27 A source will be _____ watts.

Buy Online: **shop.nodia.co.in**

Shipping Free

QUES 5.2.36 In the circuit shown in the figure, what is the power dissipated in 4 Ω resistor (in watts)

Page 245 Chap 5 Circuit Theorems

QUES 5.2.37 What is the value of voltage V in the following network (in volts) ?

QUES 5.2.38 For the circuit shown in figure below the value of R_{Th} is ____ Ω .

QUES 5.2.39 Consider the network shown below :

The power absorbed by load resistance R_L is shown in table :

R_L	10 kΩ	30 kΩ
P	3.6 mW	4.8 mW

The value of R_L (in k Ω), that would absorb maximum power, is_____

GATE STUDY PACKAO		
General Aptitude Digital Electronics		Electronics nagnetics
Page 246 Chap 5 Circuit Theorems	SOLUTIONS 5.1	
	SOL 5.1.1 Option (B) is correct. I_s V_s V_s Linear Network	
	For, $V_s = 10 \text{ V}$, $P = 40 \text{ W}$ So, $I_s = \frac{P}{V_s} = \frac{40}{10} = 4 \text{ A}$ Now, $V'_s = 5 \text{ V}$, so $I'_s = 2 \text{ A}$ (From New value of the power supplied by source is $P'_s = V'_s I'_s = 5 \times 2 = 10 \text{ W}$ Note: Linearity does not apply to power calculations.	n linearity)
	SOL 5.1.2 Option (C) is correct. From linearity, we know that in the circuit $\frac{V_s}{I_L}$ ratio remains const $\frac{V_s}{I_L} = \frac{20}{200 \times 10^{-3}} = 100$ Let current through load is I_L' when the power absorbed is 2.5 W $P_L = (I_L')^2 R_L$ $2.5 = (I_L')^2 \times 10$ $I_L' = 0.5 A$ $\frac{V_s}{I_L} = \frac{V_s'}{I_L'} = 100$	
	So, $V'_{s} = 100I_{L} = 100 \times 0.5 = 50 \text{ V}$ Thus required values are $L'_{s} = 0.5 \text{ A}$ $V'_{s} = 50 \text{ V}$	

 $I_L' = 0.5 \text{ A}, V_s' = 50 \text{ V}$

SOL 5.1.3

Option (D) is correct. From linearity,

 $I_L = AV_s + BI_s, \quad A \text{ and } B \text{ are constants}$ From the table 2 = 14A + 6B ...(1) 6 = 18A + 2B ...(2) Solving equation (1) & (2) A = 0.4, B = -0.6

$$I_L=0.4\,V_s-0.6I_s$$

SOL 5.1.4 Option (B) is correct.

So,

The circuit has 3 independent sources, so we apply superposition theorem to obtain the voltage drop.

Due to 16 V source only: (Open circuit 5 A source and Short circuit 32 V source)

Buy Online: **shop.nodia.co.in**

Page 247 Chap 5 Circuit Theorems

Using voltage division

$$V_1 = -\frac{8}{24+8}(16)$$

= -4 V

Due to 5 A source only : (Short circuit both the 16 V and 32 V sources) Let voltage across R_2 due to 5 A source only is V_2 .

$$V_2 = (24 \Omega || 16 \Omega || 16 \Omega) \times$$

= 6 × 5 = 30 volt

Due to 32 V source only : (Short circuit 16 V source and open circuit 5 A source)

Let voltage across R_2 due to 32 V source only is V_3

Using voltage division

$$V_3 = \frac{9.6}{16 + 9.6} (32) = 12 \,\mathrm{V}$$

By superposition, the net voltage across R_2 is

 $V = V_1 + V_2 + V_3 = -4 + 30 + 12 = 38$ volt

ALTERNATIVE METHOD :

The problem may be solved by applying a node equation at the top node.

SOL 5.1.5

Option (C) is correct

Due to 60 A Source Only : (Open circuit 30 A and short circuit 30 V sources)

$$12\,\Omega\,|\,|\,6\,\Omega\,=4\,\Omega$$

Shipping Free

Chap 5 Circuit Theorems

Using current division

$$I_a = \frac{2}{2+8}(60) = 12 \,\mathrm{A}$$

Again, $\mathit{I_a}$ will be distributed between parallel combination of 12 Ω and 6 Ω

$$I_1 = \frac{6}{12+6}(12) = 4 \,\mathrm{A}$$

Due to 30 A source only : (Open circuit 60 A and short circuit 30 V sources)

Using current division

$$I_b = \frac{4}{4+6}(30) = 12 \,\mathrm{A}$$

 I_b will be distributed between parallel combination of $12\,\Omega$ and $6\,\Omega$

$$I_2 = \frac{6}{12+6}(12) = 4 A$$

Due to 30 V Source Only : (Open circuit 60 A and 30 A sources)

Using source transformation

Using current division

$$I_3 = -\frac{3}{12+3}(5) = -1 \,\mathrm{A}$$

SOL 5.1.6

Option (C) is correct. Using superposition, $I = I_1 + I_2$ Let I_1 is the current due to 9 A source only. (i.e. short 18 V source) $I_1 = \frac{6}{6+12}(9) = 3 A$ (current division)

Let I_2 is the current due to 18 V source only (i.e. open 9 A source)

$$I_2 = \frac{18}{6+12} = 1 \text{ A}$$

Buy Online: shop.nodia.co.in

Shipping Free

Page 249 Chap 5 Circuit Theorems

SOL 5.1.7 Option (B) is correct.

From superposition theorem, it is known that if all source values are doubled, then node voltages also be doubled.

- SOL 5.1.8 Option (A) is correct. From the principal of superposition, doubling the values of voltage source doubles the mesh currents.
- SOL 5.1.9 Option (C) is correct. Using source transformation, we can obtain I in following steps.

ALTERNATIVE METHOD :

Try to solve the problem by obtaining Thevenin equivalent for right half of the circuit.

SOL 5.1.10

10 Option (D) is correct.

Using source transformation of 4 A and 6 V source.

Adding parallel current sources

GATE STUDY PACKA	GE 10 Subject-w	rise books by R. I	K. Kanodia Electr	onics & Communication
General Aptitude	Engineering Mathematics	Networks	Electronic Devices	Analog Electronics
Digital Electronics	Signals & Systems Co	ntrol Systems	Communication Systems	Electromagnetics
Page 250	2Ω ^	8 V	_	

Chap 5 Circuit Theorems

Source transformation of 5 A source

Applying KVL around the anticlockwise direction

$$-5 - I + 8 - 2I - 12 = 0$$

 $-9 - 3I = 0$
 $I = -3 A$

Power absorbed by 12 V source

$$P_{12V} = 12 \times I$$
 (Passiv

or, 12 V source supplies 36 W power.

SOL 5.1.11

We know that source transformation also exists for dependent source, so

 $= 12 \times -3 = -36 \text{ W}$

Current source values

Option (B) is correct.

$$I_s = \frac{6I_x}{2} = 3I_x$$
 (downward)
 $R_s = 2 \Omega$

SOL 5.1.12

Option (C) is correct.

We know that source transformation is applicable to dependent source also. Values of equivalent voltage source

$$V_s = (4I_x) (5) = 20I_x$$
$$R_s = 5 \Omega$$

SOL 5.1.13

Option (C) is correct. Combining the parallel resistance and adding the parallel connected current sources.

$$9 A - 3 A = 6 A \text{ (upward)}$$
$$3 \Omega || 6 \Omega = 2 \Omega$$

Buy Online: shop.nodia.co.in

Shipping Free

Page 251 Chap 5 **Circuit Theorems**

Source transformation of 6 A source

SOL 5.1.14

Option (D) is correct.

Thevenin Voltage : (Open Circuit Voltage)

The open circuit voltage between a-b can be obtained as

Writing KCL at node a

$$\frac{V_{Th} - 10}{24} + 1 = 0$$

 $V_{Th} - 10 + 24 = 0$ or $V_{Th} = -14$ volt

Thevenin Resistance :

To obtain Thevenin's resistance, we set all independent sources to zero i.e., short circuit all the voltage sources and open circuit all the current sources.

$$R_{Th} = 24 \Omega$$

SOL 5.1.15

Option (B) is correct. **Thevenin Voltage :** $V_1 = \frac{20}{20+30} (10) = 4 \text{ volt}$ Using voltage division

and,

and,

$$V_2 = \frac{15}{15+10}(10) = 6 \text{ volt}$$

Applying KVL, $V_1 - V_2 + V_{ab} = 0$
 $4 - 6 + V_{ab} = 0$

Buy Online: **shop.nodia.co.in**

Page 253

Circuit Theorems

Chap 5

Sample Chapter of Network Analysis (Vol-3, GATE Study Package)

 $V_{Th}=-12\,\mathrm{V}$

SOL 5.1.19

SOL 5.1.18

Option (C) is correct. For the circuit for fig (A)

Buy Online: **shop.nodia.co.in**

 3Ω

 2Ω

For the circuit of fig (B), as obtained in previous solution.

Option (B) is correct.

SOL 5.1.20

The current source connected in parallel with load does not affect Thevenin equivalent circuit. Thus, Thevenin equivalent circuit will contain its usual form of a voltage source in series with a resistor.

SOL 5.1.21

1 Option (C) is correct.

The network consists of resistor and dependent sources because if it has independent source then there will be an open circuit Thevenin voltage present.

SOL 5.1.22

Option (D) is correct. Thevenin Voltage (Open Circuit Voltage) :

Applying KCL at top middle node

$$egin{aligned} &rac{V_{Th}-2\,V_x}{3}+rac{V_{Th}}{6}+1=0\ &rac{V_{Th}-2\,V_{Th}}{3}+rac{V_{Th}}{6}+1=0\ &-2\,V_{Th}+V_{Th}+6=0 \end{aligned}$$
 $(V_{Th}=V_x)$

$$V_{Th} = 6$$
 volt
Thevenin Resistance :

 $R_{Th} = rac{ ext{Open circuit voltage}}{ ext{Short circuit current}} = rac{V_{Th}}{I_{sc}}$

To obtain The venin resistance, first we find short circuit current through $a{\mathchar`b}$

Buy Online: shop.nodia.co.in

Page 255 Chap 5 Circuit Theorems

Writing KCL at top middle node

$$\frac{V_x - 2V_x}{3} + \frac{V_x}{6} + 1 + \frac{V_x - 0}{3} = 0$$

-2V_x + V_x + 6 + 2V_x = 0 or V_x = -6 volt
$$I_{sc} = \frac{V_x - 0}{3} = -\frac{6}{3} = -2 \text{ A}$$

Thevenin's resistance,

$$R_{Th}=\frac{V_{Th}}{I_{sc}}=-\frac{6}{2}=-3\,\Omega$$

ALTERNATIVE METHOD :

Since dependent source is present in the circuit, we put a test source across a-b to obtain Thevenin's equivalent.

By applying KCL at top middle node

$$\frac{V_x - 2V_x}{3} + \frac{V_x}{6} + 1 + \frac{V_x - V_{test}}{3} = 0$$

-2V_x + V_x + 6 + 2V_x - 2V_{test} = 0
2V_{test} - V_x = 6 ...(1)
$$I_{test} = \frac{V_{test} - V_x}{3}$$

We have

$$3I_{test} = V_{test} - V_x$$

 $V_x = V_{test} - 3I_{test}$

Put V_x into equation (1)

$$2 V_{test} - (V_{test} - 3I_{test}) = 6$$

$$2 V_{test} - V_{test} + 3I_{test} = 6$$

$$V_{test} = 6 - 3I_{test} \qquad \dots (2)$$

For Thevenin's equivalent circuit

$$V_{Th} + V_{test} + I_{test} + V_{test} + V_{Th} + R_{Th} I_{test} + V_{test} + V_{test} + V_{test} + R_{Th} + R_{Th} I_{test} + V_{Th} + R_{Th} + R_{Th} I_{test} + V_{Th} + R_{Th} +$$

Buy Online: shop.nodia.co.in

Maximum Discount

Shipping Free

GATE STUDY PACKA	GE	10 Subject-v	vise books by R. I	K. Kanodia E	lectron	nics & Communication
General Aptitude	Engineering	Mathematics	Networks	Electronic Devic	ces	Analog Electronics
Digital Electronics	Signals & S	Systems Co	ontrol Systems	Communication Syst	ems	Electromagnetics
Page 256 Chap 5 Circuit Theorems	SOL 5.1.23	Option (D) R_{Th}	a a			

Using voltage division

$$V = V_{Th} \Big(\frac{R}{R + R_{Th}} \Big)$$

From the table,

$$6 = V_{Th} \left(\frac{3}{3 + R_{Th}} \right) \qquad \dots (1)$$

$$8 = V_{Th} \left(\frac{8}{8 + R_{Th}} \right) \qquad \dots (2)$$

Dividing equation (1) and (2), we get

$$rac{6}{8} = rac{3\left(8+R_{Th}
ight)}{8\left(3+R_{Th}
ight)}
onumber \ 6+2R_{Th} = 8+R_{Th}$$

$$R_{Th}=2\,\Omega$$

Substituting R_{Th} into equation (1)

$$6 = V_{Th} \left(rac{3}{3+2}
ight)$$
 or $V_{Th} = 10 \, {
m V}$

SOL 5.1.24

Option (C) is correct. Norton Current : (Short Circuit Current)

The Norton equivalent current is equal to the short-circuit current that would flow when the load replaced by a short circuit as shown below

Applying KCL at node *a*

Since

$$I_N + I_1 + 2 = 0$$

 $I_1 = \frac{0 - 20}{24} = -\frac{5}{6} A$
So,
 $I_N - \frac{5}{6} + 2 = 0$
 $I_N = -\frac{7}{6} A$

Norton Resistance :

Set all independent sources to zero (i.e. open circuit current sources and short circuit voltage sources) to obtain Norton's equivalent resistance R_N .

$$R_N=24\,\Omega$$

Buy Online: shop.nodia.co.in

Shipping Free

co.in

Using source transformation of 1 A source

Page 257 Chap 5 **Circuit Theorems**

Again, source transformation of 2 V source

Adding parallel current sources

ALTERNATIVE METHOD:

Try to solve the problem using superposition method.

SOL 5.1.26

Option (C) is correct. Short circuit current across terminal a-b is

For simplicity circuit can be redrawn as

$$I_N = \frac{3}{3+6}(10)$$

(Current division)

 $= 3.33 \, \text{A}$ Norton's equivalent resistance

 $R_N = 6 + 3 = 9 \Omega$

Shipping Free

Buy Online: shop.nodia.co.in

GATE STUDY PACKA	GE	10 Subject-wise books by I	R. K. Kanodia Electr	onics & Communication
General Aptitude	Engineering	Mathematics Network		Analog Electronics
Digital Electronics	Signals & S	Systems Control Systems	Communication Systems	Electromagnetics
Page 258	SOL 5.1.27	Option (C) is correct.		
Chap 5 Circuit Theorems		Rest of		

The voltage across load terminal is simply V_s and it is independent of any other current or voltage. So, Thevenin equivalent is $V_{Th} = V_s$ and $R_{Th} = 0$ (Voltage source is ideal).

Norton equivalent does not exist because of parallel connected voltage source.

SOL 5.1.28

Option (B) is correct.

The output current from the network is equal to the series connected current source only, so $I_N = I_s$. Thus, effect of all other component in the network does not change I_N .

In this case Thevenin's equivalent is not feasible because of the series connected current source.

SOL 5.1.29

Norton Current : (Short Circuit Current)

Using source transformation

Option (C) is correct.

Nodal equation at top center node

$$\frac{0-24}{6} + \frac{0-(-6)}{3+3} + I_N = 0$$
$$-4 + 1 + I_N = 0$$
$$I_N = 3 \text{ A}$$

Norton Resistance :

Buy Online: **shop.nodia.co.in**

GATE STUDY PACKAGE

Sample Chapter of Network Analysis (Vol-3, GATE Study Package)

$$R_N = R_{ab} = 6 \mid\mid (3+3) = 6 \mid\mid 6 = 3 \Omega$$

So, Norton equivalent will be

SOL 5.1.30

Option (B) is correct.

Power absorbed by R_L

$$P_L = \frac{(V)^2}{R_L} = \frac{V_s^2 R_L}{(R_s + R_I)^2}$$

From above expression, it is known that power is maximum when $R_s = 0$

NOTE :

Do not get confused with maximum power transfer theorem. According to maximum power transfer theorem if R_L is variable and R_s is fixed then power dissipated by R_L is maximum when $R_L = R_s$.

SOL 5.1.31 Option (C) is correct.

We solve this problem using maximum power transfer theorem. First, obtain Thevenin equivalent across R_L .

Thevenin Voltage : (Open circuit voltage)

Using source transformation

Using nodal analysis $\frac{V_{Th} - 24}{6} + \frac{V_{Th} - 24}{2+4} = 0$

$$2 V_{Th} - 48 = 0 \Rightarrow V_{Th} = 24 \text{ V}$$

Thevenin Resistance :

Buy Online: **shop.nodia.co.in**

Shipping Free

Maximum Discount

Page 259 Chap 5 Circuit Theorems

For maximum power transfer

$$R_L = R_{Th} = 3 \Omega$$

Value of maximum power

$$P_{\text{max}} = \frac{(V_{Th})^2}{4R_L} = \frac{(24)^2}{4 \times 3} = 48 \text{ W}$$

SOL 5.1.32

This can be solved by reciprocity theorem. But we have to take care that the polarity of voltage source have the same correspondence with branch current in each of the circuit.

In figure (B) and figure (C), polarity of voltage source is reversed with respect to direction of branch current so

$$\frac{V_1}{I_1} = -\frac{V_2}{I_2} = -\frac{V_3}{I_3}$$
$$I_2 = I_3 = -2 \text{ A}$$

SOL 5.1.33 Option (C) is correct.

According to reciprocity theorem in any linear bilateral network when a single voltage source V_a in branch *a* produces a current I_b in branches *b*, then if the voltage source V_a is removed (i.e. branch *a* is short circuited) and inserted in branch *b*, then it will produce a current I_b in branch *a*.

SOL 5.1.34

$$I_2 = I_1 = 20 \text{ mA}$$

.34 Option (A) is correct.

So,

According to reciprocity theorem in any linear bilateral network when a single current source I_a in branch *a* produces a voltage V_b in branches *b*, then if the current source I_a is removed (i.e. branch *a* is open circuited) and inserted in branch *b*, then it will produce a voltage V_b in branch *a*.

 $V_2 = 2$ volt

SOL 5.1.35 Option (A) is correct.

So,

We use Millman's theorem to obtain equivalent resistance and voltage across a-b.

$$V_{ab} = \frac{-\frac{96}{240} + \frac{40}{200} + \frac{-80}{800}}{\frac{1}{240} + \frac{1}{200} + \frac{1}{800}} = -\frac{144}{5} = -28.8 \text{ V}$$

The equivalent resistance

$$R_{ab} = \frac{1}{\frac{1}{240} + \frac{1}{200} + \frac{1}{800}} = 96 \,\Omega$$

Buy Online: **shop.nodia.co.in**

Shipping Free

SOL 5.1.36

Option (B) is correct.

Thevenin Voltage: (Open circuit voltage):

The open circuit voltage will be equal to V, i.e. $V_{Th} = V$

Thevenin Resistance:

Set all independent sources to zero i.e. open circuit the current source and short circuit the voltage source as shown in figure

Open circuit voltage = V_1

SOL 5.1.37

Option (B) is correct.

V is obtained using super position.

Due to source V_1 only : (Open circuit source I_3 and short circuit source V_2)

Due to source V_2 only : (Open circuit source I_3 and short circuit source V_1)

So,

Due to source I_3 only : (short circuit sources V_1 and V_2)

Buy Online: shop.nodia.co.in

Shipping Free

Maximum Discount

Page 261 Chap 5 **Circuit Theorems**

GATE STUDY PACKAGE		10 Subject-wise books by R. K. Kanodia Electronics & Communication
General Aptitude	Engineering	MathematicsNetworksElectronic DevicesAnalog Electronics
Digital Electronics	Signals & S	ystems Control Systems Communication Systems Electromagnetics
Page 262		$V = I_3[100 100 100] = I_3 \Big(rac{100}{3} \Big)$
Chap 5 Circuit Theorems		
		So, $C = \frac{100}{3}$
		ALTERNATIVE METHOD :
		Try to solve by nodal method, taking a supernode corresponding to voltage
		source V_2 .
	SOL 5.1.38	Option (C) is correct.
		The circuit with Norton equivalent
		$I_N \bigoplus R_N \succcurlyeq V \bigsqcup$ Load
		IZ
		So, $I_N + I = \frac{V}{R_N}$
		$I = \frac{V}{R_N} - I_N \tag{General form}$
		From the given graph, the equation of line I = 2V - 6
		I = 2V - 6
		Comparing with general form
		$rac{1}{R_N}=2 \mathrm{or} R_N=0.5 \Omega$
		$I_N = 6 \text{ A}$
	SOL 5.1.39	Option (D) is correct.
		Thevenin voltage: (Open circuit voltage)
		2 A 3Ω $I=0$
		2Ω +
		$4 V \xrightarrow{+} 2 A V_{Th}$
		ā
		$V = A + (2 \times 2) = A + A = 2 V$
		$V_{Th} = 4 + (2 \times 2) = 4 + 4 = 8 \text{ V}$ Thevenin Resistance:
		2Ω 3Ω
		R_{Th}
		······································
		$R_{Th} = 2 + 3 = 5 \Omega = R_N$ Norton Current:
		$I_N = rac{V_{Th}}{R_{Th}} = rac{8}{5} \mathrm{A}$
	SOL 5.1.40	Option (C) is correct. Norton current $L_{1} = 0$ because there is no independent source present in
		Norton current, $I_N = 0$ because there is no independent source present in

the circuit.

To obtain Norton resistance we put a 1 A test source across the load terminal as shown in figure.

Norton or Thevenin resistance

$$R_N = \frac{V_{test}}{1}$$

Writing KVL in the left mesh

$$20I_{1} + 10(1 - I_{1}) - 30I_{1} = 0$$

$$20I_{1} - 10I_{1} - 30I_{1} + 10 = 0$$

$$I_{1} = 0.5 \text{ A}$$

Writing KVL in the right mesh

$$V_{test} - 5(1) - 30I_{1} = 0$$

$$V_{test} - 5 - 30(0.5) = 0$$

$$V_{test} - 5 - 15 = 0$$

$$R_{N} = \frac{V_{test}}{1} = 0$$

SOL 5.1.41

Option (C) is correct.

In circuit (b) transforming the 3 A source in to 18 V source all source are 1.5 times of that in circuit (a) as shown in figure.

 20Ω

Using principal of linearity, $I_b = 1.5I_a$

SOL 5.1.42

$$I = \frac{1}{R}$$

2 =

 $+ R_{Th}$

From the table,

...(1)

$$1.6 = \frac{V_{Th}}{5 + R_{Th}} \qquad ...(2)$$

Dividing equation (1) and (2), we get

$$egin{aligned} rac{2}{1.6} &= rac{5+R_{Th}}{3+R_{Th}} \ 6+2R_{Th} &= 8+1.6R_{Th} \ 0.4R_{Th} &= 2 \end{aligned}$$

Page 263 Chap 5 Circuit Theorems

Shipping Free

GATE STUDY PACKA		·	ise books by R. I			nics & Communication
General Aptitude Digital Electronics	Engineering I Signals & S		Networks ntrol Systems		ronic Devices	Analog Electronics Electromagnetics
Page 264 Chap 5 Circuit Theorems			$R_{Th}=5\Omega_{Th}$ into equa $2=rac{V_{2}}{3+V_{Th}}=2(8$	2 tion (1) 		
	SOL 5.1.43	Option (D) We have,	is correct. $I = \frac{1}{R_T}$	$\frac{V_{Th}}{h+R}$		
		V_{Th}	$h = 16 \text{ V}, R_{Th} =$			
			$I = \frac{1}{5 + 1}$ $16 = 5 + 1$			
			R = 11			
	SOL 5.1.44	Option (B)	is correct.			
		$^{I_1} \overbrace{0 \text{ V}}^{I_0 \text{ V}}$ Fig.(A)	-	$^{I_2}_{20 \text{ V}}_{\text{Fig.(B)}}$	nio	$\begin{array}{c} I_3 \\ 40 \text{ V} \\ \hline \\ \hline \\ \text{Fig.(C)} \end{array}$

It can be solved by reciprocity theorem. Polarity of voltage source should have same correspondence with branch current in each of the circuit. Polarity of voltage source and current direction are shown below

So,

$$\frac{V_1}{I_1} = -\frac{V_2}{I_2} = \frac{V_3}{I_3}$$

$$\frac{10}{2.5} = -\frac{20}{I_2} = \frac{40}{I_3}$$

$$I_2 = -5 \text{ A}$$

$$I_3 = 10 \text{ A}$$

SOL 5.1.45

Option (A) is correct.

To obtain V-I equation we find the Thevenin equivalent across the terminal at which X is connected.

Thevenin Voltage : (Open Circuit Voltage)

(KVL in outer mesh)

(KVL in Bottom right mesh)

Buy Online: shop.nodia.co.in

Shipping Free

Page 265 Chap 5 **Circuit Theorems**

 $R_{Th} = 1 + 1 = 2 \Omega$

Now, the circuit becomes as

ALTERNATIVE METHOD:

Option (A) is correct.

In the mesh ABCDEA, we have KVL equation as

V - 1(I + 2) - 1(I + 6) - 12 = 0V = 2I + 20A = 2, B = 2

So,

SOL 5.1.46

To obtain V-I relation, we obtain either Norton equivalent or Thevenin equivalent across terminal *a*-*b*.

Norton Current (short circuit current) :

Applying nodal analysis at center node

$$I_N + 2 = \frac{24}{4}$$
 or $I_N = 6 - 2 = 4$ A

Shipping Free

SOL 5.1.49 Option (B) is correct.

From the substitution theorem we know that any branch within a circuit can be replaced by an equivalent branch provided that replacement branch has the same current through it and voltage across it as the original branch. The voltage across the branch in the original circuit

Page 267 Chap 5 **Circuit Theorems**

$$V = \frac{40 || 60}{(40 || 60) + 16} (20) = \frac{24}{40} \times 20 = 12 \text{ V}$$

Current entering terminal a-b is

$$I = \frac{V}{R} = \frac{12}{60} = 200 \text{ mA}$$

In fig(B), to maintain same voltage V = 12 V current through 240 Ω resistor 50-11 must be

$$I_R = \frac{12}{240} = 50 \text{ mA}$$

Using KCL at terminal a, as shown

$$\begin{array}{c}
a & I \\
+ & & I_R \\
V & \geq 240 \ \Omega & & I_s \\
\hline
b & & I = I_R + I_S \\
200 = 50 + I_s \\
I_s = 150 \ \text{mA}, \quad \text{down wards}
\end{array}$$

SOL 5.1.50

Thevenin voltage : (Open Circuit Voltage)

 $I_3 = 0$

In the given problem, we use mesh analysis method to obtain Thevenin voltage

(a-b is open circuit)

Writing mesh equations

Option (B) is correct.

Mesh 1:
$$36 - 12 (I_1 - I_2) - 6 (I_1 - I_3) = 0$$

 $36 - 12I_1 + 12I_2 - 6I_1 = 0$ ($I_3 = 0$)
 $3I_1 - 2I_2 = 6$...(1)
Mesh 2: $-24I_2 - 20 (I_2 - I_3) - 12 (I_2 - I_1) = 0$

Buy Online: shop.nodia.co.in

Shipping Free

 V_{Th} can be obtained by writing nodal equation at node *a* and at center node.

SOL 5.1.51

We obtain Thevenin's equivalent across load terminal.

Thevenin Voltage : (Open Circuit Voltage)

Option (C) is correct.

Using KCL at top left node

 $5 = I_x + 0$ or $I_x = 5$ A

Using KVL

 $2I_x - 4I_x - V_{Th} = 0$

 $2(5) - 4(5) = V_{Th}$ or $V_{Th} = -10$ volt

Thevenin Resistance :

First we find short circuit current through a-b

Buy Online: **shop.nodia.co.in**

Using KCL at top left node

$$5 = I_x + I_{sc}$$
$$I_x = 5 - I_{sc}$$

Applying KVL in the right mesh

So,

 $2I_x - 4I_x + 0 = 0$ or $I_x = 0$ 5 $I_x - 0$ or $I_x = 5$

-

$$5 - I_{sc} = 0 \text{ or } I_{sc} = 5 \text{ A}$$

Thevenin resistance,

$$R_{Th} = \frac{V_{Th}}{I_{sc}} = -\frac{10}{5} = -2\,\Omega$$

Now, the circuit becomes as

SOL 5.1.52

We obtain The venin equivalent across terminal a-b.

Thevenin Voltage :

Option (D) is correct.

Since there is no independent source present in the network, Thevenin voltage is simply zero i.e. $V_{Th} = 0$

Thevenin Resistance :

Put a test source across terminal a-b

For the super node

$$V_{1} - V_{test} = 2000I_{x}$$

$$V_{1} - V_{test} = 2000 \left(\frac{V_{1}}{4000}\right)$$

$$\frac{V_{1}}{2} = V_{test} \text{ or } V_{1} = 2V_{test}$$

$$(I_{x} = V_{1}/4000)$$

Applying KCL to the super node

Maximum Discount

Shipping Free

Page 269 Chap 5 Circuit Theorems

GATE STUDY PACKA	GE 10 Subject-w	rise books by R. K	. Kanodia B	Electronics & Communication
General Aptitude	Engineering Mathematics	Networks	Electronic Devie	ces Analog Electronics
Digital Electronics	Signals & Systems Co.	ntrol Systems	Communication Syst	tems Electromagnetics
Page 270 Chap 5		$\frac{V_1-0}{4k}+\frac{V_1}{4k}$	$+rac{V_{test}}{4\mathrm{k}}=I_{test}$	
Circuit Theorems		-	+ $V_{test} = 4 \times 10^3 I_{test}$ + $V_{test} = 4 \times 10^3 I_{test}$	•
			$rac{V_{test}}{I_{test}}=rac{4 imes10^3}{5}=$	800 Ω

SOL 5.1.53

.53 Option (C) is correct.

Equation for V-I can be obtained with Thevenin equivalent across a-b terminals.

Thevenin Voltage: (Open circuit voltage)

Writing KCL at the top node

$$\frac{V_x}{40} = \frac{V_{Th} - V_x}{20}$$
$$V_x = 2 V_{Th} - 2 V_x$$
$$3 V_x = 2 V_{Th} \Rightarrow V_x = \frac{2}{3} V_{Th}$$

KCL at the center node

$$\frac{V_x - V_{Th}}{20} + \frac{V_x}{30} = 0.3$$

$$3V_x - 3V_{Th} + 2V_x = 18$$

$$5V_x - 3V_{Th} = 18$$

$$5\left(\frac{2}{3}\right)V_{Th} - 3V_{Th} = 18$$

$$\left(V_x = \frac{2}{3}V_{Th}\right)$$

 $10 V_{Th} - 9 V_{Th} = 54$ or $V_{Th} = 54$ volt

Thevenin Resistance :

When a dependent source is present in the circuit the best way to obtain Thevenin resistance is to remove all independent sources and put a test source across a-b terminals as shown in figure.

$$R_{Th} = rac{V_{tes}}{I_{tes}}$$

KCL at the top node

$$\frac{V_x}{40} + I_{test} = \frac{V_{test}}{20 + 30}$$

$$\frac{V_x}{40} + I_{test} = \frac{V_{test}}{50} \qquad \dots (1)$$

$$V_x = \frac{30}{30 + 20} (V_{test}) = \frac{3}{5} V_{test} \qquad (\text{using voltage division})$$

Buy Online: shop.nodia.co.in

Maximum Discount

Shipping Free

Substituting V_x into equation (1), we get

$$\frac{3V_{test}}{5(40)} + I_{test} = \frac{V_{test}}{50}$$
$$I_{test} = V_{test} \left(\frac{1}{50} - \frac{3}{200}\right) = \frac{V_{test}}{200}$$
$$R_{Th} = \frac{V_{test}}{I_{test}} = 200 \,\Omega$$

The circuit now reduced as

$$V = 200I + 54$$

Option (D) is correct. SOL 5.1.54 To obtain Thevenin resistance put a test source across the terminal a, b as shown.

$$0.01 V_{x}$$

$$3I_{x}$$

$$I_{2}$$

$$0.01 V_{x}$$

$$I_{2}$$

$$I_{1}$$

$$I_{test}$$

$$I_{test}$$

$$V_{test} = V_{x}, I_{test} = I_{x}$$
Writing loop equation for the circuit

Writing loop equation for the circuit

$$V_{test} = 600 (I_1 - I_2) + 300 (I_1 - I_3) + 900 (I_1)$$

$$V_{test} = (600 + 300 + 900) I_1 - 600I_2 - 300I_3$$

$$V_{test} = 1800I_1 - 600I_2 - 300I_3$$
 ...(1)

The loop current are given as,

$$I_1 = I_{test}, \ I_2 = 0.3 V_s, \ \text{and} \ I_3 = 3I_{test} + 0.2 V_s$$

Substituting theses values into equation (1),

$$V_{test} = 1800I_{test} - 600 (0.01 V_s) - 300 (3I_{test} + 0.01 V_s)$$
$$V_{test} = 1800I_{test} - 6 V_s - 900I_{test} - 3 V_s$$

$$10 V_{test} = 900 I_{test}$$
 or $V_{test} = 90 I_{test}$

Thevenin resistance

$$R_{Th} = \frac{V_{test}}{I_{test}} = 90 \ \Omega$$

Thevenin voltage or open circuit voltage will be zero because there is no independent source present in the network, i.e. $V_{oc} = 0$ V

Page 271 Chap 5 **Circuit Theorems**

GATE STUDY PACKA	GE 10 Subject-wise books by R. K. Kanodia	Electronics & Communication
General Aptitude	Engineering MathematicsNetworksElectronic	Devices Analog Electronics
Digital Electronics	Signals & Systems Control Systems Communication	n Systems Electromagnetics
Page 272 Chap 5 Circuit Theorems	SOLUTIONS	5.2

SOL 5.2.1

Correct answer is 3. We solve this problem using principal of linearity.

In the left, 4Ω and 2Ω are in series and has same current I = 1 A.

$$V_{3} = 4I + 2I \qquad \text{(using KVL)}$$
$$= 6I = 6 \text{ V}$$
$$I_{3} = 6 - 2 \text{ A} \qquad \text{(using obm's low)}$$

$$I_{3} = \frac{1}{3} - \frac{1}{3$$

$$V_1 = (1) I_2 + V_3$$
 (using KVL)
= 3 + 6 = 9 V

$$I_1 = \frac{V_1}{6} = \frac{9}{6} = \frac{3}{2} \text{ A}$$
 (using ohm's law)

Applying principal of linearity

For
$$V_s = V_0$$
,

Correct answer is 3.

So for
$$V_s = 2 V_0$$
, $I_1 = \frac{3}{2} \times 2 = 3 \text{ A}$

SOL 5.2.2

We solve this problem using principal of linearity.

 $I_1 = \frac{3}{2} A$

$$I_{s} \bigoplus \begin{array}{c} 4 \Omega & \underline{I_{1}} & 2 \Omega \\ & & & & \\ 12 \Omega & V_{2} & 6 \Omega & V \\ & & & & \\ \end{array} \xrightarrow{I_{1}} & V_{2} & 1 \Omega \\ \end{array}$$

$$I = \frac{V}{1} = \frac{1}{1} = 1 \text{ A}$$
 (using ohm's law)

$$V_2 = 2I + (1) I = 3 V$$
 (using KVL)
 $V_2 = 3 - 1$

$$I_2 = \frac{V_2}{6} = \frac{3}{6} = \frac{1}{2} A$$
 (using ohm's law)

$$I_1 = I_2 + I \qquad \text{(using KCL)}$$
$$= \frac{1}{2} + 1 = \frac{3}{2} \text{ A}$$

9

Applying principal of superposition

When
$$I_s = I_0$$
, and $V = 1$ V, $I_1 = \frac{3}{2}$ A

Buy Online: **shop.nodia.co.in**

Maximum Discount

Shipping Free

SOL 5.2.3

Sample Chapter of Network Analysis (Vol-3, GATE Study Package)

So, if $I_s = 2I_0$,

$$I_1=rac{3}{2} imes 2=3\,\mathrm{A}$$

Page 273 Chap 5 Circuit Theorems

Correct answer is 160. We solve this problem using superposition. **Due to 9 A source only :** (Open circuit 6 A source)

Using current division

$$\frac{V_1}{40} = \frac{20}{20 + (40 + 30)} (9) \Rightarrow V_1 = 80 \text{ volt}$$

Due to 6 A source only : (Open circuit 9 A source)

Using current division,

$$rac{V_2}{40} = rac{30}{30 + (40 + 20)}$$
 (6) $\Rightarrow V_2 = 80$ volt

From superposition,

 $V = V_1 + V_2 = 80 + 80 = 160$ volt

ALTERNATIVE METHOD:

The problem may be solved by transforming both the current sources into equivalent voltage sources and then applying voltage division.

SOL 5.2.4

Correct answer is 5.

Using super position, we obtain *I*. **Due to 10 V source only :** (Open circuit 5 A source)

$$I_1 = \frac{10}{2} = 5 \text{ A}$$

Due to 5 A source only : (Short circuit 10 V source)

$$I_2 = 0$$

 $I = I_1 + I_2 = 5 + 0 = 5 A$

ALTERNATIVE METHOD :

We can see that voltage source is in parallel with resistor and current source so voltage across parallel branches will be 10 V and I = 10/2 = 5 A

Buy Online: shop.nodia.co.in

GATE STUDY PACKA	AGE	10 Subject-wi	se books by R .	K. Kanodia	Electron	ics & Communication
General Aptitude	Engineering	Mathematics	Networks	Electronic Dev	vices	Analog Electronics
Digital Electronics	Signals & S	Systems Cor	ntrol Systems	Communication Sy	vstems	Electromagnetics
Page 274 Chap 5 Circuit Theorems	SOL 5.2.5	Correct answ Applying suj Due to 6 V s	perposition,	Open circuit 2 A cu	rrent sou	ırce)

$$I_1 = \frac{6}{6+6} = 0.5 \,\mathrm{A}$$

Due to 2 A source only : (Short circuit 6 V source)

ALTERNATIVE METHOD:

This problem may be solved by using a single KVL equation around the outer loop.

SOL 5.2.6

Correct answer is 4.

Applying superposition,

Due to 24 V Source Only : (Open circuit 2 A and short circuit 20 V source)

Buy Online: shop.nodia.co.in

Electronics & Communication

Sample Chapter of Network Analysis (Vol-3, GATE Study Package)

Page 275 Chap 5 Circuit Theorems

SOL 5.2.7

Alternate Method: We can see that current in the middle 4Ω resistor is I-2, therefore *I* can be obtained by applying KVL in the bottom left mesh. Correct answer is 0.

SOL 5.2.8

Correct answer is 1.5.

Using source transformation of 48 V source and the 24 V source

using parallel resistances combination

Source transformation of 8 A and 6 A sources

Shipping Free

GATE STUDY PACKA	.GE 10 Subject	-wise books by R .	K. Kanodia Electr	conics & Communication
General Aptitude	Engineering Mathematics	8 Networks	Electronic Devices	Analog Electronics
Digital Electronics	Signals & Systems (Control Systems	Communication Systems	Electromagnetics
Page 276 Chap 5 Circuit Theorems	Writing K		clock wise direction $-4I - 2I - 16 = 0$ $12 - 8I = 0$ $I = \frac{12}{8} = 1.5$	δA

SOL 5.2.9

Correct answer is 2.25.

We apply source transformation as follows.

Transforming 3 mA source into equivalent voltage source and 18 V source into equivalent current source.

 $6 \text{ k}\Omega$ and $3 \text{ k}\Omega$ resistors are in parallel and equivalent to 2Ω .

Again transforming 3 mA source

$$I = \frac{6+6}{2+8+4+2} = \frac{3}{4} \text{ mA}$$
$$P_{4 \text{ k}\Omega} = I^2 (4 \times 10^3) = \left(\frac{3}{4}\right)^2 \times 4 = 2.25 \text{ mW}$$

SOL 5.2.10

Correct answer is 3.

Set all independent sources to zero (i.e. open circuit current sources and short circuit voltage sources) to obtain R_{Th}

 $R_{Th} = 12 \Omega \mid \mid 4 \Omega = 3 \Omega$

SOL 5.2.11

Correct answer is 16.8 . Using current division

$$I_1 = \frac{(5+1)}{(5+1)+(3+1)}(12) = \frac{6}{6+4}(12) = 7.2 \text{ A}$$

Buy Online: shop.nodia.co.in

Shipping Free

$$V_{1} = I_{1} \times 1 = 7.2 \text{ V}$$

$$I_{2} = \frac{(3+1)}{(3+1) + (5+1)} (12) = 4.8 \text{ A}$$

$$V_{2} = 5I_{2} = 5 \times 4.8 = 24 \text{ V}$$

$$V_{2} = 5I_{2} = 5 \times 4.8 = 24 \text{ V}$$

$$V_{Th} + V_{1} - V_{2} = 0$$

$$V_{Th} = V_{2} - V_{1} = 24 - 7.2 = 16.8 \text{ V}$$
(KVL)
$$V_{Th} = V_{2} - V_{1} = 24 - 7.2 = 16.8 \text{ V}$$

$$12 \text{ A}$$

$$I_{1} \otimes V_{1} \qquad V_{2} \otimes 5 \Omega$$

$$I_{2} \otimes V_{1} \qquad V_{2} \otimes 5 \Omega$$

$$I_{3} \otimes V_{1} \qquad V_{Th} = V_{2} + I_{2} = 10.8 \text{ V}$$

SOL 5.2.12

Correct answer is 7.

We obtain Thevenin's resistance across *a*-*b* and then use source transformation of Thevenin's circuit to obtain equivalent Norton circuit.

Norton equivalent

SOL 5.2.13

Correct answer is -0.5 .

Current *I* can be easily calculated by Thevenin's equivalent across 6Ω . Thevenin Voltage : (Open Circuit Voltage)

Buy Online: shop.nodia.co.in

Shipping Free

• a

 R_{Th}

 $R_{Th}=12~\Omega$

(both 4Ω resistors are short circuit)

so, circuit becomes as

Note: The problem can be solved easily by a single node equation. Take the nodes connecting the top 4Ω , 3 V and 4Ω as supernode and apply KCL.

SOL 5.2.14

Correct answer is 0. We obtain Thevenin's equivalent across *R*. **Thevenin Voltage : (Open circuit voltage)**

Applying KVL $18 - 6I_x - 2I_x - (1)I_x = 0$ $I_x = \frac{18}{2}$

$$I_x = \frac{18}{9} = 2 \text{ A}$$

 $V_{Th} = (1) I_x = (1) (2) = 2 \text{ V}$

Thevenin Resistance :

 $I_{sc} \rightarrow$ Short circuit current

(Due to short circuit)

 $I_{sc} = \frac{18}{6} = 3 \mathrm{A}$

Thevenin resistance,

$$R_{Th} = \frac{V_{Th}}{I_{sc}} = \frac{2}{3} \,\Omega$$

Now, the circuit becomes as

SOL 5.2.15

Correct answer is 121.5. We obtain Thevenin's equivalent across R. By source transformation of both voltage sources

Adding parallel sources and combining parallel resistances

For maximum power transfer

$$R=R_{Th}=60\,\Omega$$

Buy Online: **shop.nodia.co.in**

Shipping Free

Maximum Discount

Page 279 Chap 5 Circuit Theorems

GATE STUDY PACKA	GE 10 Subject-wis	e books by R. K .	. Kanodia Electro	onics & Communication
General Aptitude	Engineering Mathematics	Networks	Electronic Devices	Analog Electronics
Digital Electronics	Signals & Systems Cont	trol Systems	Communication Systems	Electromagnetics
Page 280	60 9			
Chap 5		√		
Circuit Theorems		2		

5.4 V (-)

Maximum Power absorbed by R

$$P = \frac{(V_{Th})^2}{4R} = \frac{(5.4)^2}{4 \times 60} = 121.5 \text{ mW}$$

ALTERNATIVE METHOD :

Thevenin voltage (open circuit voltage) may be obtained using node voltage method also.

SOL 5.2.16

Correct answer is 3.

First we obtain equivalent voltage and resistance across terminal a-b using Millman's theorem.

So, the circuit is reduced as

$$\begin{array}{c} 3 \Omega \\ 24 \mathrm{V} \\ + \end{array} \end{array} \begin{array}{c} \uparrow_{I} \\ 5 \Omega \\ I = \frac{24}{3+5} = 3 \mathrm{A} \end{array}$$

SOL 5.2.17

Set all independent sources to zero as shown,

Correct answer is 6.

Correct answer is 0.5 . We solve this problem using linearity and taking assumption that I = 1 A.

Buy Online: shop.nodia.co.in

Maximum Discount

Shipping Free

Try to solve the problem using source conversion.

SOL 5.2.20 Correct answer is 4. We find Thevenin equivalent across *a-b*.

Buy Online: **shop.nodia.co.in**

$$R_{Th} = R_L = 2 \Omega$$

To obtain R_{Th} set all independent sources to zero and put a test source across the load terminals.

$$R_{Th} = rac{V_{test}}{I_{test}}$$

Using KVL,

$$V_{test} - 4I_{test} - 2I_{test} - kV_x - 4I_{test} = 0$$

$$V_{test} - 10I_{test} - k(-2I_{test}) = 0$$

$$(V_x = -2I_{test})$$

Buy Online: **shop.nodia.co.in**

Maximum Discount

Shipping Free

$$V_{test} = (10 - 2k) I_{test}$$

$$R_{Th} = \frac{V_{test}}{I_{test}} = 10 - 2k = 2$$

$$8 = 2k \text{ or } k = 4$$
Page 283
Chap 5
Circuit Theorems

SOL 5.2.22

Correct answer is 18. To calculate maximum power transfer, first we will find Thevenin equivalent across load terminals.

Thevenin Voltage: (Open Circuit Voltage)

Using source transformation

$$R_{Th} = 1 + 2 || 2 = 1 + 1 = 2 \mathrm{k}\Omega$$

Circuit becomes as

$$V_L = rac{R_L}{R_{Th} + R_L} V_{Th}$$

For maximum power transfer $R_L = R_{Th}$

$$V_L=rac{V_{Th}}{2R_{Th}} imes R_{Th}=rac{V_{Th}}{2}$$

So maximum power absorbed by R_L

Buy Online: shop.nodia.co.in

Shipping Free

GATE STUDY PACKA	GE 10 Subject-wise boo	oks by R. K. Kan o	odia Electroi	nics & Communication
General Aptitude	Engineering Mathematics N	letworks	Electronic Devices	Analog Electronics
Digital Electronics	Signals & Systems Control S	Systems Com	munication Systems	Electromagnetics
Page 284 Chap 5	P	$P_{\max} = \frac{V_L^2}{R_L} = \frac{V_T^2}{4R_L}$	$\frac{h}{Th} = \frac{(12)^2}{4 \times 2} = 18 \text{ mW}$	

SOL 5.2.23

Circuit Theorems

Correct answer is 22.5 .

The circuit is as shown below

When $R_L = 50 \Omega$, power absorbed in load will be

$$\left(\frac{R_s}{R_s+50}I_s\right)^2 50 = 20 \text{ kW}$$
 ...(1)

When $R_L = 200 \Omega$, power absorbed in load will be

$$\left(\frac{R_s}{R_s+200}I_s\right)^2 200 = 20 \text{ kW}$$
 ...(2)

Dividing equation (1) and (2), we have

$$(R_s + 200)^2 = 4 (R_s + 50)^2$$

 $R_s = 100 \Omega \text{ and } I_s = 30 \text{ A}$

From maximum power transfer, the power supplied by source current I_s will be maximum when load resistance is equal to source resistance i.e. $R_L = R_s$. Maximum power is given as

$$P_{\text{max}} = \frac{I_s^2 R_s}{4} = \frac{(30)^2 \times 100}{4} = 22.5 \text{ kW}$$

SOL 5.2.24

Correct answer is 6.

If we solve this circuit directly by nodal analysis, then we have to deal with three variables. We can replace the left most and write most circuit by their Thevenin equivalent as shown below.

Now the circuit becomes as shown

Writing node equation at the top center node

$$\frac{V_1 - 4}{1 + 1} + \frac{V_1}{6} + \frac{V_1 - 12}{1 + 2} = 0$$

$$\frac{V_1 + 4}{2} + \frac{V_1}{6} + \frac{V_1 - 12}{3} = 0$$

$$3V_1 - 12 + V_1 + 2V_1 - 24 = 0$$

$$6V_1 = 36$$

$$V_1 = 6 V$$

SOL 5.2.25

Correct answer is 56.

 6Ω and 3Ω resistors are in parallel, which is equivalent to 2Ω .

Using source transformation of 6 A source

Source transform of 4 A source

Adding series resistors and sources on the left

Source transformation of 48 V source

Buy Online: shop.nodia.co.in

Shipping Free

Maximum Discount

Page 285 Chap 5 **Circuit Theorems**

Note that current in 3Ω resistor is (I+6) A, so by applying KVL around the outer loop, we can find current I.

SOL 5.2.27 Correct answer is 11.

$$R_{Th} = rac{V_{oc}}{I_{sc}} = rac{ ext{Open circuit voltage}}{ ext{short circuit}}$$

Thevenin Voltage: (Open Circuit Voltage V_{oc}) Using source transformation of the dependent source

Buy Online: **shop.nodia.co.in**

Applying KCL at top left node

$$24 = \frac{V_x}{6} \Rightarrow V_x = 144 \text{ V}$$

Using KVL,
$$V_x - 8I - \frac{V_x}{2} - V_{oc} = 0$$
$$144 - 0 - \frac{144}{2} = V_{oc}$$
$$V_{oc} = 72 \text{ V}$$

Short circuit current (I_{sc}) :

Applying KVL in the right mesh

$$V_x - 8I_{sc} - \frac{V_x}{2} = 0$$

$$\frac{V_x}{2} = 8I_{sc}$$

 $V_x = 16I_{sc}$ KCL at the top left node

$$24 = \frac{V_x}{6} + \frac{V_x - V_x/2}{8}$$
$$24 = \frac{V_x}{6} + \frac{V_x}{16}$$
$$V_x = \frac{1152}{11} \text{ V}$$
$$I_{sc} = \frac{V_x}{16} = \frac{1152}{11 \times 16} = \frac{72}{11} \text{ A}$$
$$R_{Th} = \frac{V_{oc}}{I_{sc}} = \frac{72}{\frac{72}{11}} = 11 \Omega$$

ALTERNATIVE METHOD :

We can obtain Thevenin equivalent resistance without calculating the Thevenin voltage (open circuit voltage). Set all independent sources to zero (i.e. open circuit current sources and short circuit voltage sources) and put a test source V_{test} between terminal a-b as shown

Page 287 Chap 5 Circuit Theorems

General AptitudeEngineering MathematicsNetworksElectronic DevicesAnalog ElectronicsDigital ElectronicsSignals & SystemsControl SystemsCommunication SystemsElectronicsPage 288 Cheap 5 $R_{Tb} = \frac{V_{sec}}{L_{sec}}$ $R_{Tb} = \frac{V_{sec}}{L_{sec}}$ (KVL) $14I - \frac{6J}{2} - V_{secf} = 0$ $V_c = 6I_{secf}$ (Using Ohm's law) $11I = V_{secf}$ $Sol = 5.2.28$ Correct answer is 4.We solve this problem using linearity and assumption that $I = 1$ A. $V_i = 4II + 2I$ $V_i = 4I + 2I$ (Using KVL) $= 6$ $I_i = V_i = \frac{412}{12} + \frac{1}{12} + $	Image: Control SystemsElectronic DevicesAnalog ElectronicsDigital ElectronicsSignals & SystemsCommunication SystemsElectronic DevicesAnalog ElectronicsPage 288 $R_{25} = \frac{V_{ent}}{L_{ent}}$ $R_{25} = \frac{V_{ent}}{L_{ent}}$ Electronic DevicesElectronicsCircuit Theorems $6I + 8I - \frac{V_{2}}{2} - V_{ent} = 0$ $V_{i} = 6I_{ent}$ (Using Ohn's law) $11I = V_{ent}$ So $R_{25} = \frac{V_{ent}}{L_{ent}} = 11 \Omega$ solution is problem using linearity and assumption that $I = 1$ A. $V_{i} = 4I + 2I$ (Using KVL) $i = 0$ $V_{i} = 4I + 2I$ $i = 0$ <	GATE STUDY PACKA	GE	10 Subject-wise	e books by R. K. I	Kanodia Electro	onics & Communication
Page 288 Chap 5 $R_{TR} = \frac{V_{cost}}{I_{cost}}$ Circuit Theorems $6I + 8I - \frac{V_i}{2} - V_{cost} = 0$ (KVL) $14I - \frac{6I}{2} - V_{cost} = 0$ $V_k = 6I_{tost}$ (Using Ohm's law) $11I = V_{cost}$ So $R_{TR} = \frac{V_{cost}}{I_{tost}} = 11\Omega$ SoL 5.2.28Correct answer is 4.We solve this problem using linearity and assumption that $I = 1$ A. $4\Omega = \frac{4\Omega}{I_{tost}} + \frac{4\Omega}{V_2} + \frac{I_1}{V_1} + \frac{4\Omega}{V_1} + \frac{I_1 - 1}{V_1} + \frac{I_2 - 1}{V_2} + \frac{I_1 - I_1}{V_2} + \frac{I_2 - I_1}{V_1} + \frac{I_2 - I_1}{V_1} + \frac{I_2 - I_1}{V_1} + \frac{I_2 - I_1}{V_1} + \frac{I_1 - I_2}{V_2} + \frac{I_1 - I_2}{V_1} + \frac{I_2 - I_1}{V_1} + \frac{I_1 - I_2}{V_1} + \frac{I_2 - I_1}{V_1} + \frac{I_1 - I_2}{V_1} + \frac{I_1 - I_2}{V_1} + \frac{I_2 - I_1}{V_1} + \frac{I_2 - I_1}{V_1} + \frac{I_2 - I_1}{V_1} + \frac{I_1 - I_2}{V_1} +$	Page 285 Chop 5 Great Theorems $R_{T2} = V_{Exc}^{rest}$ $R_{T2} = V_{Exc}^{rest} = 0 (KVL)$ $14I - \frac{6}{2}I - V_{exc} = 0 (V_s = 6I_{exc} (Using Ohm's law)$ $11I = V_{exc}$ So $R_{T2} = V_{Exc}^{rest} = 11\Omega$ Sol. 5.2.20 Correct answer is 4. We solve this problem using linearity and assumption that $I = 1$ A. $V_1 = 4I + 2I (Using KVL)$ $= 6V$ $V_1 = 4I + 2I (Using KVL)$ $= 6V$ $U_1 = 4I + 2I (Using KVL)$ $= 6V$ $U_2 = 4I + 2I (Using KVL)$ $= 6V$ $U_1 = 6V + 1 = 6V$ $U_2 = 4I + 2I (Using KVL)$ $= 4(2.5) + 6 = 16 V$ $I_1 + I_2 = I_2$ $U_2 = V_2 = I_2$ $V_1 = 4I + I_2 = I_2$ $U_2 = V_2 = I_2$ $V_1 = 4I + I_2 = I_2$ $V_2 = 4I_2 + V_1 (Using KVL)$ $= 4(2.5) + 6 = 16 V$ $I_1 + I_2 = I_2$ $I_2 = \frac{V_2}{16} + 2.5 = 3.5 \Lambda$ When $I_2 = 3.5 \Lambda$, $I = 1 \Lambda$ But $I_2 = 14\Lambda$, so $I = \frac{1}{3.5} \times 14 = 4 \Lambda$ Sol. 5.2.29 Correct answer is 120. This problem will easy to solve if we obtain Thevenin equivalent across the 12 V source. Thevenin Voltage : (Open Circuit Voltage) $V_1 = \frac{1}{2\Lambda} = \frac{1}{12} + \frac{1}{12} $			Mathematics	Networks	Electronic Devices	
Chap 5 Chap 5 Circuit Theorems $K_{TS} = \overline{I_{esc}}$ $K_{TS} = \overline{I_{esc}}$ $6I + 8I - \frac{V_{2}}{2} - V_{rest} = 0 \qquad (KVL)$ $14I - \frac{6I}{2} - V_{rest} = 0 \qquad V_{s} = 6I_{rest} \text{ (Using Ohm's law)}$ $11I = V_{rest}$ So $R_{TD} = \frac{V_{rest}}{I_{test}} = 11\Omega$ SoL 5.2.20 Correct answer is 4. We solve this problem using linearity and assumption that $I = 1$ A. $4\Omega + \frac{4\Omega}{12} + \frac{4\Omega}{V_{s}} + \frac{I_{s}}{V_{s}} + \frac{4\Omega}{4\Omega} + \frac{I_{s}}{2\Omega}$ $V_{i} = 4I + 2I \qquad (Using KVL)$ $= 6 V$ $I_{c} = I_{r} + I \qquad (Using KCL)$ $= \frac{V_{i}}{4} + I = \frac{6}{4} + 1 = 2.5 \text{ A}$ $V_{c} = 4I_{c} + V \qquad (Using KVL)$ $= 4(2.5) + 6 = 16 V$ $I_{s} - \frac{V_{c}}{4 + 12} = I_{c}$ $I_{s} = \frac{16}{16} + 2.5 = 3.5 \text{ A}$ When $I_{s} = 3.5 \text{ A}$, $I = 1 \text{ A}$ But $I_{s} = 14 \text{ A}$, so $I = \frac{1}{3.5} \times 14 = 4 \text{ A}$ Sol 5.2.20 Correct answer is 120. This problem will easy to solve if we obtain Thevenin equivalent across the 12V source. Thevenin Voltage : (Open Circuit Voltage)	Chap 5 Circuit Theorems $K_{2,0} = \frac{T_{low}}{T_{low}} = 0 (KVL)$ $14I - \frac{6I}{2} - V_{lost} - 0 V_{r} - 6I_{lowt} (Using Ohm's law)$ $11I = V_{towt}$ So $R_{2,0} = \frac{V_{low}}{I_{low}} = 110$ SoL 52.20 Correct answer is 4. We solve this problem using linearity and assumption that $I = 1$ A. $402 \frac{V_{1}}{V_{1}} - \frac{402}{V_{1}} + \frac{402}{V_{1}} + \frac{110}{V_{2}} + \frac{110}{V_$	Digital Electronics	Signals & S	bystems Cont	rol Systems C	Communication Systems	Electromagnetics
$6I + 8I - \frac{1}{2} - V_{est} = 0 $ (KVL) $14I - \frac{6I}{2} - V_{est} = 0 $ $V_x = 6I_{est} \text{ (Using Ohm's law)}$ $11I = V_{test}$ So So So So So So So So So So	$6I + 8I - \frac{2}{2} - V_{exr} = 0 $ (KVL) $14I - \frac{6I}{2} - V_{exr} = 0 $ (KVL) $14I - \frac{6I}{2} - V_{exr} = 0 $ (KVL) $11I = V_{exr}$ So $R_{T_{R}} = \frac{V_{exr}}{I_{exr}} = 110$ Sol. 51.228 Correct answer is 4. We solve this problem using linearity and assumption that $I = 1$ A. $\frac{40}{14} + \frac{1}{2} + \frac{40}{14} + \frac{1}{2} + \frac{40}{14} + \frac{1}{2} + $	Chap 5			$R_{Th} = rac{V_{test}}{I_{test}}$		
$11I = V_{test}$ So $R_{Th} = \frac{V_{test}}{L_{test}} = 11 \Omega$ SoL 5.2.29 Correct answer is 4. We solve this problem using linearity and assumption that $I = 1$ A. $4\Omega = \frac{4}{12} + \frac{4}{1$	$11I = V_{exc}$ So $R_{Ib} = \frac{V_{exc}}{L_{exc}} = 110$ Sol. 5.2.28 Correct answer is 4. We solve this problem using linearity and assumption that $I = 1$ A. $40 \frac{L_{b}}{L_{b}} = \frac{40}{L_{b}} \frac{L_{b}}{L_{b}} = \frac{40}{L_{b}} \frac{L_{b}}{L_{b}} \frac{L_{b}}{L_$	Circuit Theorems		$6I + 8I - \frac{V_x}{2}$	$V - V_{test} = 0$		(KVL)
So $R_{Th} = \frac{V_{inst}}{I_{inst}} = 11 \Omega$ SOL 5.2.28 Correct answer is 4. We solve this problem using linearity and assumption that $I = 1$ A. $V_{i} = 4I + 2I$ (Using KVL) = 6 V $I_{i} = 4I + 2I$ (Using KVL) = 6 V $I_{i} = I_{i} + I$ (Using KCL) $= \frac{V_{i}}{4} + I = \frac{6}{4} + 1 = 2.5$ A $V_{i} = 4I_{i} + V_{i}$ (Using KVL) = 4(2,5) + 6 = 16 V $I_{i} + I_{i} = I_{i}$ $I_{i} = \frac{16}{16} + 2.5 = 3.5$ A When $I_{s} = 3.5$ A, $I = 1$ A But $I_{s} = 14$ A, so $I = \frac{1}{3}.5 \times 14 = 4$ A Sol. 5.2.29 Correct answer is 120. This problem will easy to solve if we obtain Thevenin equivalent across the 12 V source. Thevenin Voltage : (Open Circuit Voltage)	So $R_{T_0} = \frac{V_{ex}}{I_{ext}} = 11 \Omega$ Sol 5.2.20 Correct answer is 4. We solve this problem using linearity and assumption that $I = 1$ A. $4\Omega = \frac{I_0}{I_0} = \frac{I_0}{I_1} = \frac{I_0}{I_1} = \frac{I_0}{I_1} = 1$ (Using KVL) = 6 V (Using KVL) = 6 V (Using KCL) $= \frac{V_1}{I_1} + I = \frac{6}{4} + 1 = 2.5 \Lambda$ $V_2 = 4I_2 + V$ (Using KCL) = 4(2.5) + 6 = 16 V (Using KCL) $I_1 = \frac{V_2}{I_1 + 12} = I_2$ $I_2 = \frac{16}{16} + 2.5 = 3.5 \Lambda$ When $I_c = 3.5 \Lambda$, $I = 1 \Lambda$ But $I_c = 14 \Lambda$, so $I = \frac{1}{3.5} \times 14 = 4 \Lambda$ Sol 5.2.20 Correct answer is 120. This problem will easy to solve if we obtain Thevenin equivalent across the $12 V$ source. Thevenin Voltage : (Open Circuit Voltage) $\sqrt{\frac{2}{V_{ex}}} = \frac{10}{I_1} + \Omega = \frac{10}{I_2} + \Omega$			$14I - \frac{6I}{2}$	$-V_{test}=0$	$V_x = 6I_x$	test (Using Ohm's law)
SOL 5.2.28 Correct answer is 4. We solve this problem using linearity and assumption that $I = 1$ A. $4\Omega = \frac{I_3}{I_4} + \frac{I_4}{V_2} + \frac{I_4}{V_2} + \frac{I_4}{V_1} + \frac{I_4}{V_1} + \frac{I_4}{V_1} + \frac{I_4}{V_2} + I_$	Sol. 5.2.28 Correct answer is 4. We solve this problem using linearity and assumption that $I = 1$ A. $40 \frac{10}{4} \frac{1}{4} \frac{1}$				$11I = V_{test}$		
SOL 5.2.28 Correct answer is 4. We solve this problem using linearity and assumption that $I = 1$ A. $4\Omega = \frac{I_3}{I_4} + \frac{I_4}{V_2} + \frac{I_4}{V_2} + \frac{I_4}{V_1} + \frac{I_4}{V_1} + \frac{I_4}{V_1} + \frac{I_4}{V_2} + I_$	Sol. 5.2.28 Correct answer is 4. We solve this problem using linearity and assumption that $I = 1$ A. $40 \frac{10}{4} \frac{1}{4} \frac{1}$			So	$R_{Th} = \frac{V_{test}}{I} =$	= 11 Ω	
$V_{1} = 4I + 2I \qquad (Using KVL)$ $= 6V$ $I_{2} = I_{1} + I \qquad (Using KCL)$ $= \frac{V_{1}}{4} + I = \frac{6}{4} + 1 = 2.5 A$ $V_{2} = 4I_{2} + V_{1} \qquad (Using KVL)$ $= 4(2.5) + 6 = 16 V$ $I_{3} + I_{3} = I_{2} \qquad (Using KCL)$ $I_{4} - \frac{V_{2}}{4 + 12} = I_{2}$ $I_{5} - \frac{16}{16} + 2.5 = 3.5 A$ When $I_{s} = 3.5 A$, $I = 1 A$ But $I_{s} = 14 A$, so $I = \frac{1}{3.5} \times 14 = 4 A$ Sol. 5.2.29 Correct answer is 120. This problem will easy to solve if we obtain Thevenin equivalent across the 12 V source. Thevenin Voltage : (Open Circuit Voltage)	$V_{1} = 4I + 2I \qquad (Using KVL)$ $= 6V$ $V_{2} = 4I + 2I \qquad (Using KVL)$ $= 6V$ $I_{2} = I_{1} + I \qquad (Using KCL)$ $= \frac{V_{1}}{4} + I = \frac{6}{4} + 1 = 2.5 \text{ A}$ $V_{2} = 4I_{2} + V_{1} \qquad (Using KVL)$ $= 4(2.5) + 6 = 16 \text{ V}$ $I_{1} + I_{3} = I_{2} \qquad (Using KCL)$ $I_{-} = \frac{V_{2}}{4} + I = I_{2} \qquad (Using KCL)$ $I_{-} = \frac{16}{16} + 2.5 = 3.5 \text{ A}$ When $I_{s} = 3.5 \text{ A}$ $I = 1 \text{ A}$ But $I_{s} = 14 \text{ A}$, so $I = \frac{1}{3.5} \times 14 = 4 \text{ A}$ Sol 5.2.20 Correct answer is 120. This problem will easy to solve if we obtain Thevenin equivalent across the 12 V source. Thevenin Voltage : (Open Circuit Voltage) $\int_{V_{21}}^{10} \frac{10}{I_{2}} = 10$		SOL 5.2.28		er is 4.		that $I = 1 A$.
$V_{1} = 4I + 2I $ (Using KVL) $= 6 V$ $I_{2} = I_{1} + I $ (Using KCL) $= \frac{V_{1}}{4} + I = \frac{6}{4} + 1 = 2.5 \text{ A}$ $V_{2} = 4I_{2} + V_{1} $ (Using KVL) $= 4 (2.5) + 6 = 16 V$ $I_{s} + I_{3} = I_{2} $ (Using KCL) $I_{s} - \frac{V_{2}}{4 + 12} = I_{2}$ $I_{s} = \frac{16}{16} + 2.5 = 3.5 \text{ A}$ When $I_{s} = 3.5 \text{ A}$, $I = 1 \text{ A}$ But $I_{s} = 14 \text{ A}$, so $I = \frac{1}{3.5} \times 14 = 4 \text{ A}$ SOL 5.2.29 Correct answer is 120. This problem will easy to solve if we obtain Thevenin equivalent across the 12 V source. Thevenin Voltage : (Open Circuit Voltage)	$V_{1} = 4I + 2I \qquad (Using KVL)$ $= 6V \qquad (Using KCL)$ $= V_{1} + I = 6 + 1 = 2.5 A$ $V_{2} = 4I_{2} + V \qquad (Using KVL)$ $= 4(2.5) + 6 = 16 V \qquad (Using KCL)$ $I_{4} + I_{3} = I_{2} \qquad (Using KCL)$ $I_{5} - \frac{V_{2}}{4 + 12} = I_{2}$ $I_{5} = \frac{16}{16} + 2.5 = 3.5 A$ When $I_{4} = 3.5 A$, $I = 1 A$ But $I_{5} = 14A$, so $I = \frac{1}{3.5} \times 14 = 4 A$ Sol 5.2.29 Correct answer is 120. This problem will easy to solve if we obtain Thevenin equivalent across the 12 V source. Thevenin Voltage : (Open Circuit Voltage) $V_{T_{5}} = \frac{19}{I_{1}} + \frac{19}{I_{2}} = 1.9$					10	
$V_{1} = 4I + 2I \qquad (Using KVL)$ $= 6 V$ $I_{2} = I_{1} + I \qquad (Using KCL)$ $= \frac{V_{1}}{4} + I = \frac{6}{4} + 1 = 2.5 A$ $V_{2} = 4I_{2} + V_{1} \qquad (Using KVL)$ $= 4 (2.5) + 6 = 16 V$ $I_{s} + I_{3} = I_{2} \qquad (Using KCL)$ $I_{s} - \frac{V_{2}}{4 + 12} = I_{2}$ $I_{s} = \frac{16}{16} + 2.5 = 3.5 A$ When $I_{s} = 3.5 A$, $I = 1 A$ But $I_{s} = 14 A$, so $I = \frac{1}{3.5} \times 14 = 4 A$ Sol 5.2.29 Correct answer is 120. This problem will easy to solve if we obtain Thevenin equivalent across the 12 V source. Thevenin Voltage : (Open Circuit Voltage)	$V_{1} = 4I + 2I \qquad (Using KVL)$ $= 6V \qquad (Using KCL)$ $= V_{1} + I = 6 + 1 = 2.5 A$ $V_{2} = 4I_{2} + V \qquad (Using KVL)$ $= 4(2.5) + 6 = 16 V \qquad (Using KCL)$ $I_{4} + I_{3} = I_{2} \qquad (Using KCL)$ $I_{5} - \frac{V_{2}}{4 + 12} = I_{2}$ $I_{5} = \frac{16}{16} + 2.5 = 3.5 A$ When $I_{4} = 3.5 A$, $I = 1 A$ But $I_{5} = 14A$, so $I = \frac{1}{3.5} \times 14 = 4 A$ Sol 5.2.29 Correct answer is 120. This problem will easy to solve if we obtain Thevenin equivalent across the 12 V source. Thevenin Voltage : (Open Circuit Voltage) $V_{T_{5}} = \frac{19}{I_{1}} + \frac{19}{I_{2}} = 1.9$					I_1	
$= 6 V$ $I_2 = I_1 + I$ $Using KCL)$ $= \frac{V_1}{4} + I = \frac{6}{4} + 1 = 2.5 A$ $V_2 = 4I_2 + V_1$ $= 4(2.5) + 6 = 16 V$ $I_s + I_3 = I_2$ $Using KCL)$ $I_s - \frac{V_2}{4 + 12} = I_2$ $I_s = \frac{16}{16} + 2.5 = 3.5 A$ When $I_s = 3.5 A$, $I = 1 A$ But $I_s = 14 A$, so $I = \frac{1}{3.5} \times 14 = 4 A$ SOL 5.2.29 Correct answer is 120. This problem will easy to solve if we obtain Thevenin equivalent across the 12 V source. Thevenin Voltage : (Open Circuit Voltage)	$= 6 V$ $I_{2} = I_{1} + I$ $= \frac{V_{1}}{4} + I = \frac{6}{4} + 1 = 2.5 A$ $V_{2} = 4I_{2} + V_{1}$ $Using KVL)$ $= 4 (2.5) + 6 = 16 V$ $I_{s} + I_{3} = I_{2}$ $Using KCL)$ $I_{s} - \frac{V_{2}}{4 + 12} = I_{2}$ $I_{s} = \frac{16}{16} + 2.5 = 3.5 A$ When $I_{s} = 3.5 A$, $I = 1 A$ But $I_{s} = 14 A$, so $I = \frac{1}{3.5} \times 14 = 4 A$ Sol 5.2.29 Correct answer is 120. This problem will easy to solve if we obtain Thevenin equivalent across the 12 V source. Thevenin Voltage : (Open Circuit Voltage) $V_{T_{0}} = \frac{1}{I_{1}} + \frac{1}{2} \Omega = \frac{1}{I_{2}} + 1 \Omega$			12Ω	$ \bigoplus_{-}^{V_2} V_1 \mathbf{\xi} $	$4 \Omega \qquad \begin{cases} 2 \Omega \end{cases}$	
$= 6 V$ $I_2 = I_1 + I$ $Using KCL)$ $= \frac{V_1}{4} + I = \frac{6}{4} + 1 = 2.5 A$ $V_2 = 4I_2 + V_1$ $= 4(2.5) + 6 = 16 V$ $I_s + I_3 = I_2$ $Using KCL)$ $I_s - \frac{V_2}{4 + 12} = I_2$ $I_s = \frac{16}{16} + 2.5 = 3.5 A$ When $I_s = 3.5 A$, $I = 1 A$ But $I_s = 14 A$, so $I = \frac{1}{3.5} \times 14 = 4 A$ SOL 5.2.29 Correct answer is 120. This problem will easy to solve if we obtain Thevenin equivalent across the 12 V source. Thevenin Voltage : (Open Circuit Voltage)	$= 6 V$ $I_{2} = I_{1} + I$ $= \frac{V_{1}}{4} + I = \frac{6}{4} + 1 = 2.5 A$ $V_{2} = 4I_{2} + V_{1}$ $Using KVL)$ $= 4 (2.5) + 6 = 16 V$ $I_{s} + I_{3} = I_{2}$ $Using KCL)$ $I_{s} - \frac{V_{2}}{4 + 12} = I_{2}$ $I_{s} = \frac{16}{16} + 2.5 = 3.5 A$ When $I_{s} = 3.5 A$, $I = 1 A$ But $I_{s} = 14 A$, so $I = \frac{1}{3.5} \times 14 = 4 A$ Sol 5.2.29 Correct answer is 120. This problem will easy to solve if we obtain Thevenin equivalent across the 12 V source. Thevenin Voltage : (Open Circuit Voltage) $V_{T_{0}} = \frac{1}{I_{1}} + \frac{1}{2} \Omega = \frac{1}{I_{2}} + 1 \Omega$						
$= 4 (2.3) + 6 = 16 V$ $I_s + I_3 = I_2$ (Using KCL) $I_s - \frac{V_2}{4 + 12} = I_2$ $I_s = \frac{16}{16} + 2.5 = 3.5 \text{ A}$ When $I_s = 3.5 \text{ A}$, $I = 1 \text{ A}$ But $I_s = 14 \text{ A}$, so $I = \frac{.1}{3.5} \times 14 = 4 \text{ A}$ SOL 5.2.29 Correct answer is 120. This problem will easy to solve if we obtain Thevenin equivalent across the 12 V source. Thevenin Voltage : (Open Circuit Voltage)	$I_{s} + I_{3} = I_{2}$ (Using KCL) $I_{s} - \frac{V_{2}}{4 + 12} = I_{2}$ $I_{s} = \frac{16}{16} + 2.5 = 3.5 \text{ A}$ When $I_{s} = 3.5 \text{ A}$, $I = 1 \text{ A}$ But $I_{s} = 14 \text{ A}$, so $I = \frac{1}{3.5} \times 14 = 4 \text{ A}$ SOL 5.2.29 Correct answer is 120. This problem will easy to solve if we obtain Thevenin equivalent across the 12 V source. Thevenin Voltage : (Open Circuit Voltage) $I = \frac{1.0}{V_{Th}} + \frac{1.0}{I_{1}} + \frac{1.0}{I_{2}} + 1.0 + \frac{1.0}{I_{2}} + \frac{1.0}{I_{1}} + \frac{1.0}{I_{1}} + \frac{1.0}{I_{2}} + \frac{1.0}{I_{1}} + \frac{1.0}$				$V_1 = 4I + 2$ = 6 V		(Using KVL)
$= 4 (2.3) + 6 = 16 V$ $I_s + I_3 = I_2$ (Using KCL) $I_s - \frac{V_2}{4 + 12} = I_2$ $I_s = \frac{16}{16} + 2.5 = 3.5 \text{ A}$ When $I_s = 3.5 \text{ A}$, $I = 1 \text{ A}$ But $I_s = 14 \text{ A}$, so $I = \frac{.1}{3.5} \times 14 = 4 \text{ A}$ SOL 5.2.29 Correct answer is 120. This problem will easy to solve if we obtain Thevenin equivalent across the 12 V source. Thevenin Voltage : (Open Circuit Voltage)	$I_{s} + I_{3} = I_{2}$ (Using KCL) $I_{s} - \frac{V_{2}}{4 + 12} = I_{2}$ $I_{s} = \frac{16}{16} + 2.5 = 3.5 \text{ A}$ When $I_{s} = 3.5 \text{ A}$, $I = 1 \text{ A}$ But $I_{s} = 14 \text{ A}$, so $I = \frac{1}{3.5} \times 14 = 4 \text{ A}$ SOL 5.2.29 Correct answer is 120. This problem will easy to solve if we obtain Thevenin equivalent across the 12 V source. Thevenin Voltage : (Open Circuit Voltage) $I = \frac{1.0}{V_{Th}} + \frac{1.0}{I_{1}} + \frac{1.0}{I_{2}} + 1.0 + \frac{1.0}{I_{2}} + \frac{1.0}{I_{1}} + \frac{1.0}{I_{1}} + \frac{1.0}{I_{2}} + \frac{1.0}{I_{1}} + \frac{1.0}$				$= 0 v$ $I_2 = I_1 + I$		(Using KCL)
$= 4 (2.3) + 6 = 16 V$ $I_s + I_3 = I_2$ (Using KCL) $I_s - \frac{V_2}{4 + 12} = I_2$ $I_s = \frac{16}{16} + 2.5 = 3.5 \text{ A}$ When $I_s = 3.5 \text{ A}$, $I = 1 \text{ A}$ But $I_s = 14 \text{ A}$, so $I = \frac{.1}{3.5} \times 14 = 4 \text{ A}$ SOL 5.2.29 Correct answer is 120. This problem will easy to solve if we obtain Thevenin equivalent across the 12 V source. Thevenin Voltage : (Open Circuit Voltage)	$I_{s} + I_{3} = I_{2}$ (Using KCL) $I_{s} - \frac{V_{2}}{4 + 12} = I_{2}$ $I_{s} = \frac{16}{16} + 2.5 = 3.5 \text{ A}$ When $I_{s} = 3.5 \text{ A}$, $I = 1 \text{ A}$ But $I_{s} = 14 \text{ A}$, so $I = \frac{1}{3.5} \times 14 = 4 \text{ A}$ SOL 5.2.29 Correct answer is 120. This problem will easy to solve if we obtain Thevenin equivalent across the 12 V source. Thevenin Voltage : (Open Circuit Voltage) $I = \frac{1.0}{V_{Th}} + \frac{1.0}{I_{1}} + \frac{1.0}{I_{2}} + 1.0 + \frac{1.0}{I_{2}} + \frac{1.0}{I_{1}} + \frac{1.0}{I_{1}} + \frac{1.0}{I_{2}} + \frac{1.0}{I_{1}} + \frac{1.0}$				$=\frac{V_1}{4}+I$	$T = \frac{6}{4} + 1 = 2.5 \text{ A}$	
$I_{s} + I_{3} = I_{2}$ (Using KCL) $I_{s} - \frac{V_{2}}{4 + 12} = I_{2}$ $I_{s} = \frac{16}{16} + 2.5 = 3.5 \text{ A}$ When $I_{s} = 3.5 \text{ A}$, $I = 1 \text{ A}$ But $I_{s} = 14 \text{ A}$, so $I = \frac{.1}{3.5} \times 14 = 4 \text{ A}$ SOL 5.2.29 Correct answer is 120. This problem will easy to solve if we obtain Thevenin equivalent across the 12 V source. Thevenin Voltage : (Open Circuit Voltage)	$I_{s} + I_{3} = I_{2}$ (Using KCL) $I_{s} - \frac{V_{2}}{4 + 12} = I_{2}$ $I_{s} = \frac{16}{16} + 2.5 = 3.5 \text{ A}$ When $I_{s} = 3.5 \text{ A}$, $I = 1 \text{ A}$ But $I_{s} = 14 \text{ A}$, so $I = \frac{1}{3.5} \times 14 = 4 \text{ A}$ SOL 5.2.9 Correct answer is 120. This problem will easy to solve if we obtain Thevenin equivalent across the 12 V source. Thevenin Voltage : (Open Circuit Voltage) $I \Omega$ $V_{Th} = I \Omega$				$V_2 = 4I_2 + $	V_1	(Using KVL)
When $I_s = 3.5 \text{ A}$, $I = 1 \text{ A}$ But $I_s = 14 \text{ A}$, so $I = \frac{.1}{3.5} \times 14 = 4 \text{ A}$ SOL 5.2.29Correct answer is 120. This problem will easy to solve if we obtain Thevenin equivalent across the 12 V source. Thevenin Voltage : (Open Circuit Voltage)	When $I_s = 3.5 \text{ A}$, $I = 1 \text{ A}$ But $I_s = 14 \text{ A}$, so $I = \frac{.1}{3.5} \times 14 = 4 \text{ A}$ SOL 5.2.29 Correct answer is 120. This problem will easy to solve if we obtain Thevenin equivalent across the 12 V source. Thevenin Voltage : (Open Circuit Voltage) $I \Omega$ V_{Th} I_1 $I \Omega$ I_2 $I \Omega$				$= 4 (2.5)$ $I_s + I_3 = I_2$	0 + 0 = 10 V	(Using KCL)
When $I_s = 3.5 \text{ A}$, $I = 1 \text{ A}$ But $I_s = 14 \text{ A}$, so $I = \frac{.1}{3.5} \times 14 = 4 \text{ A}$ SOL 5.2.29Correct answer is 120. This problem will easy to solve if we obtain Thevenin equivalent across the 12 V source. Thevenin Voltage : (Open Circuit Voltage)	When $I_s = 3.5 \text{ A}$, $I = 1 \text{ A}$ But $I_s = 14 \text{ A}$, so $I = \frac{.1}{3.5} \times 14 = 4 \text{ A}$ SOL 5.2.29 Correct answer is 120. This problem will easy to solve if we obtain Thevenin equivalent across the 12 V source. Thevenin Voltage : (Open Circuit Voltage) $I \Omega$ V_{Th} I_1 $I \Omega$ I_2 $I \Omega$			I_s –	$\frac{V_2}{1+12} = I_2$		
When $I_s = 3.5 \text{ A}$, $I = 1 \text{ A}$ But $I_s = 14 \text{ A}$, so $I = \frac{.1}{3.5} \times 14 = 4 \text{ A}$ SOL 5.2.29Correct answer is 120. This problem will easy to solve if we obtain Thevenin equivalent across the 12 V source. Thevenin Voltage : (Open Circuit Voltage)	When $I_s = 3.5 \text{ A}$, $I = 1 \text{ A}$ But $I_s = 14 \text{ A}$, so $I = \frac{.1}{3.5} \times 14 = 4 \text{ A}$ SOL 5.2.29 Correct answer is 120. This problem will easy to solve if we obtain Thevenin equivalent across the 12 V source. Thevenin Voltage : (Open Circuit Voltage) $I \Omega$ V_{Th} I_1 $I \Omega$ I_2 $I \Omega$				$I_s = \frac{16}{16} + 2$	$2.5 = 3.5 \mathrm{A}$	
But $I_s = 14$ A, so $I = \frac{.1}{3.5} \times 14 = 4$ A SOL 5.2.29 Correct answer is 120. This problem will easy to solve if we obtain Thevenin equivalent across the 12 V source. Thevenin Voltage : (Open Circuit Voltage)	But $I_s = 14$ A, so $I = \frac{1}{3.5} \times 14 = 4$ A SOL 5.2.29 Correct answer is 120. This problem will easy to solve if we obtain Thevenin equivalent across the 12 V source. Thevenin Voltage : (Open Circuit Voltage) $I = \frac{1}{3.5} \times 14 = 4$ A Thevenin Voltage : (Open Circuit Voltage) $I = \frac{1}{3.5} \times 14 = 4$ A $I = \frac{1}{3.5} \times 14 =$						
This problem will easy to solve if we obtain Thevenin equivalent across the 12 V source. Thevenin Voltage : (Open Circuit Voltage)	This problem will easy to solve if we obtain Thevenin equivalent across the 12 V source. Thevenin Voltage : (Open Circuit Voltage) 1Ω 2 A I_3 V_{Th} V_{Th} I_1 V_{Th} I_1 I_2 $I \Omega$ I_2 $I \Omega$ I_2 $I \Omega$ I_2 $I \Omega$ I_2 $I \Omega$ $I \Omega$						
12 V source. Thevenin Voltage : (Open Circuit Voltage)	12 V source. Thevenin Voltage : (Open Circuit Voltage) 1Ω 2 A I_3 4 A V_{Th} V_{Th} I_1 $I_1 \Omega$ I_2 I_2 $I \Omega$ I_2 $I \Omega$ I_2 $I \Omega$		SOL 5.2.29				
Thevenin Voltage : (Open Circuit Voltage)	Thevenin Voltage : (Open Circuit Voltage) 1Ω 2 A I_3 $I_4 A$ V_{Th} V_{Th} I_1 I_1 I_2 $I \Omega$ I_2 $I \Omega$			-	will easy to solv	ve if we obtain Thevenin	equivalent across the
1.0	$V_{Th} \qquad I_1 \qquad I_2 \qquad I \qquad I_2 \qquad I \qquad $				tage : (Open Ci	rcuit Voltage)	
	$ \begin{array}{c c} & I_3 \\ & I_1 \\ & I_1 \\ & I_2 \\ & I_1 \\ & I_1 \\ & I_2 \\ & I_1 \\ & I_1 \\ & I_2 \\ & I_1 \\ & I_1 \\ & I_1 \\ & I_2 \\ & I_1 \\ &$			1Ω	-		
					4 A		
					$-\bigcirc$		
$V_{Th} \longrightarrow {}^{+\bullet} 1 \Omega \longrightarrow {}^{+} 1 \Omega$	$ \underbrace{I_1 \qquad I_2 \qquad} $ Mosh currents are			$V_{Th} \longrightarrow $	$I \Omega \frown {} {} {} {} {} {} {} {} {} {} {} {} {} $		
	Mash currents are						
				Mesh currents	s are		
Mesh currents are							(due to open circuit)

Buy Online: shop.nodia.co.in

Mesh equation for outer loop

Mesh 2:

Mesh 3:

 $I_1 - I_3 = 2$ or $I_3 = -2$ A

 $I_3 - I_2 = 4$ or $I_2 = -6$ A

$$egin{aligned} V_{Th} - 1 & imes I_3 - 1 & imes I_2 &= 0 \ V_{Th} - (-2) - (-6) &= 0 \ V_{Th} + 2 + 6 &= 0 \ V_{Th} + 2 + 6 &= 0 \ V_{Th} &= - 8 \, \mathrm{V} \end{aligned}$$

Page 289 Chap 5 Circuit Theorems

Thevenin Resistance :

$$R_{Th}=1+1=2\,\Omega$$

circuit becomes as

$$V_{Th}$$

 $I = \frac{12 - V_{Th}}{R_{Th}} = \frac{12 - (-8)}{2} = 10 \text{ A}$

Power supplied by 12 V source

$$P_{12\,{
m V}}=10 imes12=120\,{
m W}$$

ALTERNATIVE METHOD:

KVL in the loop ABCDA12 - 1(I - 2) - 1(

$$-1(I-2) - 1(I-6) = 0$$

 $2I = 20$
 $I = 10$

Power supplied by 12 V source

Correct answer is 286.

$$P_{12V} = 10 \times 12 = 120 \text{ W}$$

SOL 5.2.30

For maximum power transfer $R_L = R_{Th}$. To obtain Thevenin resistance set all independent sources to zero and put a test source across load terminals.

А

Shipping Free

GATE STUDY PACKAG		10 Subject-wise books by R. F	. Kulloulu	ctronics & Communication
General Aptitude Digital Electronics	Engineering M Signals & Sys		Electronic Devices	
Page 290 Chap 5 Circuit Theorems		Writing KCL at the top cer $rac{V_{test}}{2 extrm{k}}+rac{V_{test}}{2 extrm{k}}$	$R_{Th} = \frac{V_{test}}{I_{test}}$ inter node $\frac{V_{test}}{1k} = I_{test}$	(1)
		so Substituting $V_x = -V_{test}$ int $\frac{V_{test}}{2k} + \frac{V_{test} - 2}{1k}$	_	(KVL in left mesh) $\simeq 286 \Omega$
		Correct answer is 4. Redrawing the circuit in TI V_{Th} $\stackrel{I}{\longleftarrow}$ R_L $\stackrel{I}{\longleftarrow}$ V $I = \frac{V_{Th}}{R}$	hevenin equivalent form $\frac{-V}{R_{Th}}$ $P_{Th}I + V_{Th}$	
		V = -4 So, by comparing R_{Th} For maximum power transf Maximum power absorbed	I+8 $h=4 \ \mathrm{k}\Omega, V_{Th}=8 \ \mathrm{V}$ for $R_L=R_{Th}$ by R_L	(General form)
		$P_{\text{max}} = \frac{V_{TI}^2}{4R_T^2}$ Correct answer is 3. To fine out Thevenin equinode <i>a</i> and <i>b</i> , $\alpha I_x \stackrel{1}{\leftarrow} 1 \Omega \stackrel{V_1}{\leftarrow} 1 \Omega \stackrel{I}{\leftarrow} V_{te}$ $R_{Th} = \frac{V_{test}}{I_{test}}$ Writing node equation at <i>V</i>	st I _{test}	ut a test source between
		$\frac{V_1 - \alpha I_x}{1} + \frac{V_1}{1} = I_x$ $2V_1 = (1 + I_x \text{ is the branch current in}$ $I_x = \frac{V_{test}}{1}$	$- lpha) I_x$ 1 Ω resistor given as	(1)

Buy Online: shop.nodia.co.in

SOL 5.2.33

Page 291

Chap 5

Sample Chapter of Network Analysis (Vol-3, GATE Study Package)

 $R_{Th} = 16 + (240 + 40) || (20 + 100)$

Buy Online: shop.nodia.co.in

Buy Online: **shop.nodia.co.in**

Shipping Free

SOL 5.2.36

.36 Correct answer is 9. First, we find current I in the 4 Ω resistors using superposition.

Due to 18 V source only : (Open circuit 4 A and short circuit 12 V source)

 $I_1 = \frac{18}{4} = 4.5 \text{ A}$

Due to $12 \ V$ source only : (Open circuit $4 \ A$ and short circuit $18 \ V$ source)

Buy Online: shop.nodia.co.in

Shipping Free

GATE STUDY PACKA	GE 10 Subje	ect-wise bo	oks by R. K	. Kanodia Elect	conics & Communication
General Aptitude	Engineering Mathemat	tics N	Networks	Electronic Devices	Analog Electronics
Digital Electronics	Signals & Systems	Control	Systems	Communication Systems	Electromagnetics

Page 294 Chap 5 Circuit Theorems $I_2 = -\frac{12}{4} = -3$ A

Due to 4 A source only : (Short circuit 12 V and 18 V sources)

(Due to short circuit)

So,

 $I = I_1 + I_2 + I_3$ = 4.5 - 3 + 0

 $I_3 = 0$

Power dissipated in 4Ω resistor

$$P_{4\,\Omega} = I^2(4) = (1.5)^2 \times 4 = 9 \,\mathrm{W}$$

Alternate Method: Let current in 4Ω resistor is *I*, then by applying KVL around the outer loop

$$18 - 12 - 4I = 0$$

 $I = \frac{6}{4} = 1.5 A$

So, power dissipated in $4\,\Omega$ resistor

$$P_{4\,\Omega} = I^2(4) = (1.5)^2 \times 4$$

= 9 W

SOL 5.2.37

Correct answer is -10.

Using, Thevenin equivalent circuit Thevenin Voltage : (Open Circuit Voltage)

(due to open circuit)

Writing KVL in bottom right mesh

$$-24 - (1) I_x - V_{Th} = 0$$

 $V_{Th} = -24 + 4 = -20 \text{ V}$

 $I_x = -4 \, \text{A}$

Thevenin Resistance :

$$R_{Th} = rac{ ext{open circuit voltage}}{ ext{short circuit current}} = rac{V_{oc}}{I_{sc}}$$
 $V_{oc} = V_{Th} = - 20 ext{ V}$

 \mathcal{I}_{sc} is obtained as follows

Buy Online: shop.nodia.co.in

Page 295 Chap 5

Circuit Theorems

Sample Chapter of Network Analysis (Vol-3, GATE Study Package)

(using KCL)

The circuit is as shown below

ALTERNATIVE METHOD :

Note that current in bottom right most 1Ω resistor is $(I_x + 4)$, so applying KVL around the bottom right mesh,

$$-24 - I_x - (I_x + 4) = 0$$

$$I_x = -14 \text{ A}$$

So,

$$V = 1 \times (I_x + 4) = -14 + 4 = -10 \text{ V}$$

SOL 5.2.38

Correct answer is 100. Writing currents into 100 Ω and 300 Ω resistors by using KCL as shown in figure.

$$I_x = 1$$
 A, $V_x = V_{test}$
Writing mesh equation for bottom right mesh.

$$V_{test} = 100 (1 - 2I_x) + 300 (1 - 2I_x - 0.01 V_x) + 800$$

= 100 V

Buy Online: **shop.nodia.co.in**

Shipping Free

GATE STUDY PACKA	GE	10 Subject-wise	e books by R .	K. Kanodia	Electron	nics & Communication
General Aptitude	Engineering	Mathematics	Networks	Electronic	Devices	Analog Electronics
Digital Electronics	Signals & S	Systems Cont	rol Systems	Communicatio	n Systems	Electromagnetics
Page 296 Chap 5			$R_{Th} = \frac{V_{tex}}{1}$	$\frac{st}{2} = 100 \Omega$		
Circuit Theorems	SOL 5.2.39	Correct answe	er is 30.			
		For $R_L = 10$ k	Ω , $V_{ab1} = \sqrt{1}$	$0k \times 3.6m = 6$ V	V	
		For $R_L = 30$ k	Ω , $V_{ab2} = \sqrt{3}$	$30k \times 4.8m = 12$	V	
			$V_{ab1} = \overline{10}$	$rac{10}{+R_{Th}}V_{Th}=6$		(1)

$$V_{ab2} = \frac{30}{30 + R_{Th}} V_{Th} = 12 \qquad \dots (2)$$

Dividing equation (1) and (2), we get $R_{Th} = 30 \text{ k}\Omega$. Maximum power will be transferred when $R_L = R_{Th} = 30 \text{ k}\Omega$.
