Eighth Edition

GATE

ELECTRONICS \& COMMUNICATION

Network Analysis
Vol 3 of 10

RK Kanodia
Ashish Murolia

NODIA \& COMPANY

GATE Electronics \& Communication Vol 3, 8e Network Analysis
RK K anodia \& A shish Murolia

Copyright © By NODIA \& COMPANY

Information contained in this book has been obtained by author, from sources believes to be reliable. However, neither NODIA \& COMPANY nor its author guarantee the accuracy or completeness of any information herein, and NODIA \& COMPANY nor its author shall be responsible for any error, omissions, or damages arising out of use of this information. This book is published with the understanding that NODIA \& COM PANY and its author are supplying information but are not attempting to render engineering or other professional services.

MRP 690.00

NODIA \& COMPANY

B - 8, Dhanshree Ist, Central Spine, Vidyadhar Nagar, J aipur - 302039
Ph : +91-141-2101150,
www.nodia.co.in
email : enquiry@nodia.co.in

ToOr Parents

Preface to the Series

For almost a decade, we have been receiving tremendous responses from GATE aspirants for our earlier books: GATE Multiple Choice Questions, GATE Guide, and the GATE Cloud series. Our first book, GATE Multiple Choice Questions (MCQ), was a compilation of objective questions and solutions for all subjects of GATE Electronics \& Communication Engineering in one book. The idea behind the book was that G ate aspirants who had just completed or about to finish their last semester to achieve his or her B.E/B.Tech need only to practice answering questions to crack GATE. The solutions in the book were presented in such a manner that a student needs to know fundamental concepts to understand them. We assumed that students have learned enough of the fundamentals by his or her graduation. The book was a great success, but still there were a large ratio of aspirants who needed more preparatory materials beyond just problems and solutions. This large ratio mainly included average students.

Later, we perceived that many aspirants couldn't develop a good problem solving approach in their B.E/B.Tech. Some of them lacked the fundamentals of a subject and had difficulty understanding simple solutions. Now, we have an idea to enhance our content and present two separate books for each subject: one for theory, which contains brief theory, problem solving methods, fundamental concepts, and points-to-remember. The second book is about problems, including a vast collection of problems with descriptive and step-by-step solutions that can be understood by an average student. This was the origin of GATE Guide (the theory book) and GATE Cloud (the problem bank) series: two books for each subject. GATE Guide and GATE Cloud were published in three subjects only.

Thereafter we received an immense number of emails from our readers looking for a complete study package for all subjects and a book that combines both GATE Guide and GATE Cloud. This encouraged us to present GATE Study Package (a set of 10 books: one for each subject) for GATE Electronic and Communication Engineering. Each book in this package is adequate for the purpose of qualifying GATE for an average student. Each book contains brief theory, fundamental concepts, problem solving methodology, summary of formulae, and a solved question bank. The question bank has three exercises for each chapter: 1) Theoretical MCQs, 2) Numerical MCQs, and 3) Numerical Type Questions (based on the new GATE pattern). Solutions are presented in a descriptive and step-by-step manner, which are easy to understand for all aspirants.

We believe that each book of GATE Study Package helps a student learn fundamental concepts and develop problem solving skills for a subject, which are key essentials to crack GATE. Although we have put a vigorous effort in preparing this book, some errors may have crept in. We shall appreciate and greatly acknowledge all constructive comments, criticisms, and suggestions from the users of this book. You may write to us at rajkumar. kanodia@gmail.com and ashish.murolia@gmail.com.

Acknowledgements

We would like to express our sincere thanks to all the co-authors, editors, and reviewers for their efforts in making this project successful. We would also like to thank Team NODIA for providing professional support for this project through all phases of its development. At last, we express our gratitude to God and our Family for providing moral support and motivation.

We wish you good luck!
R. K. K anodia

A shish Murolia

SYLLABUS

GATE Electronics \& Communications

Networks:

Network graphs: matrices associated with graphs; incidence, fundamental cut set and fundamental circuit matrices. Solution methods: nodal and mesh analysis. Network theorems: superposition, Thevenin and Norton's maximum power transfer, W ye-Delta transformation. Steady state sinusoidal analysis using phasors. Linear constant coefficient differential equations; time domain analysis of simple RLC circuits, Solution of network equations using Laplace transform: frequency domain analysis of RLC circuits. 2-port network parameters: driving point and transfer functions. State equations for networks.

IES Electronics \& Telecommunication

Network Theory

Network analysis techniques; Network theorems, transient response, steady state sinusoidal response; Network graphs and their applications in network analysis; Tellegen's theorem. Two port networks; Z, Y, h and transmission parameters. Combination of two ports, analysis of common two ports. Network functions : parts of network functions, obtaining a network function from a given part. Transmission criteria : delay and rise time, Elmore's and other definitions effect of cascading. Elements of network synthesis.

CHAPTER 1 BASIC CONCEPTS

1.1 INTRODUCTION TO CIRCUIT ANALYSIS 1
1.2 BASIC ELECTRIC QUANTITIES OR NETWORK VARIABLES 1
1.2.1 Charge 1
1.2.2 Current 1
1.2.3 Voltage 2
1.2.4 Power 3
1.2.5 Energy 4
1.3 CIRCUIT ELEMENTS
1.3.1 A ctive and Passive Elements 5
1.3.2 Bilateral and Unilateral Elements 5
1.3.3 Linear and Non-linear Elements 5
1.3.4 Lumped and Distributed Elements 5
1.4 SOURCES 5
1.4.1 Independent Sources 5
1.4.2 Dependent Sources 6
EXERCISE 1.1 8
EXERCISE 1.2 18
SOLUTIONS 1.1 23
SOLUTIONS 1.2 30
CHAPTER 2 BASIC LAWS
2.1 INTRODUCTION 37
2.2 OHM'S LAW AND RESISTANCE 37
2.3 BRANCHES, NODES AND LOOPS 39
2.4 KIRCHHOFF'S LAW 40
2.4.1 Kirchhoff's Current Law 40
2.4.2 K irchoff's Voltage Law 41
2.5 SERIES RESISTANCES AND VOLTAGE DIVISION 41
2.6 PARALLEL RESISTANCES AND CURRENT DIVISION 42
2.7 SOURCES IN SERIES OR PARALLEL 44
2.7.1 Series Connection of Voltage Sources 44
2.7.2 Parallel Connection of Identical Voltage Sources 44
2.7.3 Parallel Connection of Current Sources 44
2.7.4 Series Connection of Identical Current Sources 45
2.7.5 Series - Parallel Connection of Voltage and Current Sources 45
2.8 ANALYSIS OF SIMPLE RESISTIVE CIRCUIT WITH A SINGLE SOURCE 46
2.9 ANALYSIS OF SIMPLE RESISTIVE CIRCUIT WITH A DEPENDENT SOURCE 46
2.10 DELTA- TO- WYE($\Delta-Y)$ TRANSFORMATION 46
2.10.1 W ye To Delta Conversion 47
2.10.2 Delta To W ye Conversion 47
2.11 NON-IDEAL SOURCES 48
EXERCISE 2.1 49
EXERCISE 2.2 67
SOLUTIONS 2.1 78
SOLUTIONS 2.2 101
CHAPTER 3 GRAPH THEORY
3.1 INTRODUCTION 127
3.2 NETWORK GRAPH 127
3.2.1 Directed and Undirected Graph 127
3.2.2 Planar and Non-planar Graphs 128
3.2.3 Subgraph 128
3.2.4 Connected Graphs 129
3.2.5 Degree of Vertex 129
3.3 TREE AND CO-TREE 129
3.3.1 Twigs and Links 130
3.4 INCIDENCE MATRIX 131
3.4.1 Properties of Incidence M atrix: 131
3.4.2 Incidence M atrix and KCL 132
3.5 TIE-SET 133
3.5.1 \quad ie-Set M atrix 134
3.5.2 Tie-Set Matrix and K V L 134
3.5.3 Tie-Set M atrix and B ranch Currents 135
3.6 CUT-SET 136
3.6.1 Fundamental Cut - Set 136
3.6.2 Fundamental Cut-set M atrix 137
3.6.3 Fundamental Cut-set Matrix and KCL 138
3.6.4 Tree Branch Voltages and Fundamental Cut-set Voltages 139
EXERCISE 3.1 140
EXERCISE 3.2 149
SOLUTIONS 3.1 151
SOLUTIONS 3.2 156
CHAPTER 4 NODAL AND LOOP ANALYSIS
4.1 INTRODUCTION 159
4.2 NODAL ANALYSIS 159
4.3 MESH ANALYSIS 161
4.4 COMPARISON BETWEEN NODAL ANALYSIS AND MESH ANALYSIS 163
EXERCISE 4.1 164
EXERCISE 4.2 173
SOLUTIONS 4.1 181
SOLUTIONS 4.2 192
CHAPTER 5 CIRCUIT THEOREMS
5.1 INTRODUCTION 211
5.2 LINEARITY 211
5.3 SUPERPOSITION 212
5.4 SOURCE TRANSFORMATION 213
5.4.1 Source Transformation For Dependent Source 214
5.5 THEVENIN'S THEOREM 214
5.5.1 Thevenin's Voltage 215
5.5.2 Thevenin's R esistance 215
5.5.3 Circuit Analysis Using Thevenin Equivalent 216
5.6 NORTON'S THEOREM 217
5.6.1 Norton's Current 217
5.6.2 Norton's Resistance 218
5.6.3 Circuit Analysis Using Norton's Equivalent 218
5.7 TRANSFORMATION BETWEEN THEVENIN \& NORTON'S EQUIVALENT CIRCUITS 219
5.8 MAXIMUM POWER TRANSFER THEOREM 219
5.9 RECIPROCITY THEOREM 221
5.9.1 Circuit With a Voltage Source 221
5.9.2 Circuit With a Current Source 221
5.10 SUBSTITUTION THEOREM 222
5.11 MILLMAN'S THEOREM 223
5.12 TELLEGEN'S THEOREM 223
EXERCISE 5.1 224
EXERCISE 5.2 239
SOLUTIONS 5.1 246
SOLUTIONS 5.2 272
CHAPTER 6 INDUCTOR AND CAPACITOR
6.1 CAPACITOR 297
6.1.1 Voltage-Current Relationship of a Capacitor 297
6.1.2 Energy Stored In a Capacitor 298
6.1.3 Some Properties of an Ideal Capacitor 299
6.2 SERIES AND PARALLEL CAPACITORS 299
6.2.1 Capacitors in Series 299
6.2.2 C apacitors in Parallel 301
6.3 INDUCTOR 301
6.3.1 Voltage-Current Relationship of an Inductor 302
6.3.2 Energy Stored in an Inductor 302
6.3.3 Some P roperties of an Ideal Inductor 303
6.4 SERIES AND PARALLEL INDUCTORS 303
6.4.1 Inductors in Series 303
6.4.2 Inductors in Parallel 304
6.5 DUALITY 305
EXERCISE 6.1 307
EXERCISE 6.2 322
SOLUTIONS 6.1 328
SOLUTIONS 6.2 347
CHAPTER 7 FIRST ORDER RL AND RC CIRCUITS
7.1 INTRODUCTION 359
7.2 SOURCE FREE OR ZERO-INPUT RESPONSE 359
7.2.1 Source-Free RC Circuit 359
7.2.2 Source-Free RL circuit 362
7.3 THE UNIT STEP FUNCTION 364
7.4 DC OR STEP RESPONSE OF FIRST ORDER CIRCUIT 365
7.5 STEP RESPONSE OF AN RC CIRCUIT 365
7.5.1 Complete Response : 367
7.5.2 Complete Response in terms of Initial and Final Conditions 368
7.6 STEP RESPONSE OF AN RL CIRCUIT 368
7.6.1 Complete Response 369
7.6.2 Complete Response in terms of Initial and Final Conditions 370
7.7 STEP BY STEP APPROACH TO SOLVE RL AND RC CIRCUITS 370
7.7.1 Solution Using Capacitor Voltage or Inductor Current 370
7.7.2 General M ethod 371
7.8 STABILITY OF FIRST ORDER CIRCUITS 372
EXERCISE 7.1 373
EXERCISE 7.2 392
SOLUTIONS 7.1 397
SOLUTIONS 7.2 452
CHAPTER 8 SECOND ORDER CIRCUITS
8.1 INTRODUCTION 469
8.2 SOURCE-FREE SERIES RLC CIRCUIT 469
8.3 SOURCE-FREE PARALLEL RLC CIRCUIT 472
8.4 STEP BY STEP APPROACH OF SOLVING SECOND ORDER CIRCUITS 475
8.5 STEP RESPONSE OF SERIES RLC CIRCUIT 475
8.6 STEP RESPONSE OF PARALLEL RLC CIRCUIT 476
8.7 THE LOSSLESS LC CIRCUIT 477
EXERCISE 8.1 478
EXERCISE 8.2 491
SOLUTIONS 8.1 495
SOLUTIONS 8.2 527
CHAPTER 9 SINUSOIDAL STEADY STATE ANALYSIS
9.1 INTRODUCTION 541
9.2 CHARACTERISTICS OF SINUSOID 541
9.3 PHASORS 543
9.4 PHASOR RELATIONSHIP FOR CIRCUIT ELEMENTS 544
9.4.1 Resistor 544
9.4.2 Inductor 545
9.4.3 C apacitor 545
9.5 IMPEDANCE AND ADMITTANCE 546
9.5.1 Admittance 548
9.6 KIRCHHOFF'S LAWS IN THE PHASOR DOMAIN 548
9.6.1 K irchhoff's Voltage Law(K VL) 548
9.6.2 Kirchhoff's Current Law(KCL) 549
9.7 IMPEDANCE COMBINATIONS 549
9.7.1 Impedances in Series and Voltage Division 549
9.7.2 Impedances in Parallel and Current Division 550
9.7.3 Delta-to-W ye Transformation 551
9.8 CIRCUIT ANALYSIS IN PHASOR DOMAIN 552
9.8.1 Nodal Analysis 552
9.8.2 M esh A nalysis 552
9.8.3 Superposition Theorem 553
9.8.4 Source Transformation 553
9.8.5 Thevenin and Norton Equivalent Circuits 553
9.9 PHASOR DIAGRAMS 554
EXERCISE 9.1 556
EXERCISE 9.2 579
SOLUTIONS 9.1 583
SOLUTIONS 9.2 618
CHAPTER 10 AC POWER ANALYSIS
10.1 INTRODUCTION 627
10.2 INSTANTANEOUS POWER 627
10.3 AVERAGE POWER 628
10.4 EFFECTIVE OR RMS VALUE OF A PERIODIC WAVEFORM 629
10.5 COMPLEX POWER 630
10.5.1 A Iternative Forms For Complex Power 631
10.6 POWER FACTOR 632
10.7 MAXIMUM AVERAGE POWER TRANSFER THEOREM 634
10.7.1 M aximum A verage Power Transfer, when Z is Restricted 635
10.8 AC POWER CONSERVATION 636
10.9 POWER FACTOR CORRECTION 636
EXERCISE 10.1 638
EXERCISE 10.2 648
SOLUTIONS 10.1 653
SOLUTIONS 10.2 669
CHAPTER 11 THREE PHASE CIRCUITS
11.1 INTRODUCTION 683
11.2 BALANCED THREE PHASE VOLTAGE SOURCES 683
11.2.1 Y-connected Three-P hase V oltage Source 683
11.2.2 Δ-connected Three-P hase Voltage Source 686
11.3 BALANCED THREE-PHASE LOADS 688
11.3.1 Y -connected Load 688
11.3.2 Δ-connected Load 689
11.4 ANALYSIS OF BALANCED THREE-PHASE CIRCUITS 689
11.4.1 B alanced Y-Y Connection 689
11.4.2 B alanced Y - Δ C onnection 691
11.4.3 B alanced Δ - Δ C onnection 692
11.4.4 Balanced $\Delta-Y$ connection 693
11.5 POWER IN A BALANCED THREE-PHASE SYSTEM 694
11.6 TWO-WATTMETER POWER MEASUREMENT 695
EXERCISE 11.1 697
EXERCISE 11.2 706
SOLUTIONS 11.1 709
SOLUTIONS 11.2 722
CHAPTER 12 MAGNETICALLY COUPLED CIRCUITS
12.1 INTRODUCTION 729
12.2 MUTUAL INDUCTANCE 729
12.3 DOT CONVENTION 730
12.4 ANALYSIS OF CIRCUITS HAVING COUPLED INDUCTORS 731
12.5 SERIES CONNECTION OF COUPLED COILS 732
12.5.1 Series Adding Connection 732
12.5.2 Series Opposing Connection 733
12.6 PARALLEL CONNECTION OF COUPLED COILS 734
12.7 ENERGY STORED IN A COUPLED CIRCUIT 735
12.7.1 Coefficient of Coupling 736
12.8 THE LINEAR TRANSFORMER 737
12.8.1 T -equivalent of a Linear Transformer 737
12.8.2 π-equivalent of a Linear Transformer 738
12.9 THE IDEAL TRANSFORMER 739
12.9.1 R eflected Impedance 740
EXERCISE 12.1 742
EXERCISE 12.2 751
SOLUTIONS 12.1 755
SOLUTIONS 12.2 768
CHAPTER 13 FREQUENCY RESPONSE
13.1 INTRODUCTION 777
13.2 TRANSFER FUNCTIONS 777
13.2.1 Poles and Zeros 778
13.3 RESONANT CIRCUIT 778
13.3.1 Series Resonance 778
13.3.2 Parallel Resonance 784
13.4 PASSIVE FILTERS 788
13.4.1 Low Pass Filter 78
13.4.2 High Pass Filter 789
13.4.3 B and Pass Filter 790
13.4.4 B and Stop Filter 791
13.5 EQUIVALENT SERIES AND PARALLEL COMBINATION 792
13.6 SCALING 793
13.6.1 M agnitude Scaling 793
13.6.2 Frequency Scaling 793
13.6.3 M agnitude and Frequency Scaling 794
EXERCISE 13.1 795
EXERCISE 13.2 804
SOLUTIONS 13.1 807
SOLUTIONS 13.2 821
CHAPTER 14 CIRCUIT ANALYSIS USING LAPLACE TRANSFORM
14.1 INTRODUCTION 827
14.2 DEFINITION OF THE LAPLACE TRANSFORM 827
14.2.1 Laplace Transform of Some Basic Signals 828
14.2.2 Existence of Laplace Transform 828
14.2.3 Poles and Zeros of Rational Laplace Transforms 829
14.3 THE INVERSE LAPLACE TRANSFORM 829
14.3.1 Inverse Laplace Transform U sing Partial Fraction M ethod 830
14.4 PROPERTIES OF THE LAPLACE TRANSFORM 830
14.4.1 Initial Value and Final Value Theorem 831
14.5 CIRCUIT ELEMENTS IN THE S -DOMAIN 831
14.5.1 Resistor in the S-domain 831
14.5.2 Inductor in the S-domain 832
14.5.3 C apacitor in the S-domain 833
14.6 CIRCUIT ANALYSIS IN THE S-DOMAIN 834
14.7 THE TRANSFER FUNCTION 834
14.7.1 Transfer Function and Steady State Response 835
EXERCISE 14.1 836
EXERCISE 14.2 850
SOLUTIONS 14.1 853
SOLUTIONS 14.2 880
CHAPTER 15 TWO PORT NETWORK
15.1 INTRODUCTION 887
15.2 IMPEDANCE PARAMETERS 887
15.2.1 Some Equivalent Networks 889
15.2.2 Input Impedance of a Terminated T wo-port Network in Terms of Impedance Parameters 889
15.2.3 Thevenin Equivalent A cross Output Port in Terms of Impedance Parameters 890
15.3 ADMITTANCE PARAMETERS 891
15.3.1 Some Equivalent Networks 892
15.3.2 Input Admittance of a Terminated Two-port Networks in Terms of Admittance Parameters 893
15.4 HYBRID PARAMETERS 894
15.4.1 Equivalent Network 895
15.4.2 Input Impedance of a Terminated T wo-port Networks in Terms of Hybrid Parameters 895
15.4.3 Inverse Hybrid Parameters 896
15.5 TRANSMISSION PARAMETERS 897
15.5.1 Input Impedance of a Terminated Two-port Networks in Terms of ABCD Parameters 898
15.6 SYMMETRICAL AND RECIPROCAL NETWORK 898
15.7 RELATIONSHIP BETWEEN TWO-PORT PARAMETERS 899
15.8 INTERCONNECTION OF TWO-PORT NETWORKS 900
15.8.1 Series Connection 900
15.8.2 Parallel Connection 901
15.8.3 C ascade Connection 902
EXERCISE 15.1 904
EXERCISE 15.2 920
SOLUTIONS 15.1 924
SOLUTIONS 15.2 955

CHAPTER 5

CIRCUIT THEOREMS

5.1 INTRODUCTION

In this chapter we study the methods of simplifying the analysis of more complicated circuits. We shall learn some of the circuit theorems which are used to reduce a complex circuit into a simple equivalent circuit. This includes Thevenin theorem and Norton theorem. These theorems are applicable to linear circuits, so we first discuss the concept of circuit linearity.

5.2 LINEARITY

A system is linear if it satisfies the following two properties

Homogeneity Property

The homogeneity property requires that if the input (excitation) is multiplied by a constant, then the output (response) is multiplied by the same constant. For a resistor, for example, Ohm's law relates the input I to the output V,

$$
V=I R
$$

If the current is increased by a constant k, then the voltage increases correspondingly by k, that is,

$$
\mathrm{klR}=\mathrm{kV}
$$

Additivity Property

The additivity property requires that the response to a sum of inputs is the sum of the responses to each input applied separately. Using the voltagecurrent relationship of a resistor, if

$$
\begin{array}{ll}
\mathrm{V}_{1}=I_{1} \mathrm{R} & \text { (Voltage due to current } \left.\mathrm{I}_{1}\right) \\
\mathrm{V}_{2}=I_{2} \mathrm{R} & \text { (Voltage due to current } \left.\mathrm{I}_{2}\right)
\end{array}
$$

and
then, applying current $\left(I_{1}+I_{2}\right)$ gives

$$
\begin{aligned}
V=\left(I_{1}+I_{2}\right) R & =I_{1} R+I_{2} R \\
& =V_{1}+V_{2}
\end{aligned}
$$

These two properties defining a linear system can be combined into a single statement as

For any linear resistive circuit, any output voltage or current, denoted by the variable y, is related linearly to the independent sources(inputs), i.e.,

$$
y=a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}
$$

where $x_{1}, x_{2} \ldots . x_{n}$ are the voltage and current values of the independent sources in the circuit and a_{1} through a_{m} are properly dimensioned constants.

Thus, a linear circuit is one whose output is linearly related (or directly

Page 212

Chap 5

Circuit Theorems
proportional) to its input. For example, consider the linear circuit shown in figure 5.2.1. It is excited by an input voltage source V_{s}, and the current through load R is taken as output(response).

Fig. 5.2.1 A Linear Circuit
Suppose $\mathrm{V}_{\mathrm{s}}=5 \mathrm{~V}$ gives $\mathrm{I}=1 \mathrm{~A}$. According to the linearity principle, $V_{s}=10 \mathrm{~V}$ will give $I=2 \mathrm{~A}$. Similarly, $I=4 \mathrm{~mA}$ must be due to $\mathrm{V}_{\mathrm{s}}=20 \mathrm{mV}$. N ote that ratio $\mathrm{V}_{\mathrm{s}} / \mathrm{l}$ remains constant, since the system is linear.

NOTE:
We know that the relationship between power and voltage (or current) is not linear. Therefore, linearity does not applicable to power calculations.

5.3 SUPERPOSITION

The number of circuits required to solve a network. using superposition theorem is equal to the number of independent sources present in the network. It states that

In any linear circuit containing multiple independent sources the total current through or voltage across an element can be determined by algebraically adding the voltage or current due to each independent source acting alone with all other independent sources set to zero.

An independent voltage source is set to zero by replacing it with a 0 V source(short circuit) and an independent current source is set to zero by replacing it with 0 A source(an open circuit). The following methodology illustrates the procedure of applying superposition to a given circuit

```
M E T H O D O L O G Y
```

1. Consider one independent source (either voltage or current) at a time, short circuit all other voltage sources and open circuit all other current sources.
2. Dependent sources can not be set to zero as they are controlled by other circuit parameters.
3. Calculate the current or voltage due to the single source using any method (KCL, KVL, nodal or mesh analysis).
4. Repeat the above steps for each source.
5. Algebraically add the results obtained by each source to get the total response.

NOTE:

Superposition theorem can not be applied to power calculations since power is not a linear quantity.

5.4 SOURCE TRANSFORMATION

It states that an independent voltage source V_{s} in series with a resistance R is equivalent to an independent current source $I_{s}=V_{s} / R$, in parallel with a resistance R.
or
An independent current source I_{s} in parallel with a resistance R is equivalent to an independent voltage source $V_{s}=I_{s} R$, in series with a resistance R.

Figure 5.4.1 shows the source transformation of an independent source. The following points are to be noted while applying source transformation.

Fig. 5.4.1 Source Transformation of Independent Source

1. Note that head of the current source arrow corresponds to the + ve terminal of the voltage source. The following figure illustrates this

$V_{s}=I_{s} R_{s}$

$I_{s}=V_{s} / R_{s}$

Fig. 5.4.2 Source Transformation of Independent Source
2. Source conversion are equivalent at their external terminals only i.e. the voltagecurrent relationship at their external terminals remains same. The two circuits in figure 5.4.3a and 5.4.3b are equivalent, provided they have the same voltage-current relation at terminals $a-b$

Fig. 5.4.3 An example of source transformation (a) Circuit with a voltage source (b) Equivalent circuit when the voltage source is transformed into current sources
3. Source transformation is not applicable to ideal voltage sources as $R_{s}=0$ for an ideal voltage source. So, equivalent current source value $I_{s}=V_{s} / R \rightarrow \infty$. Similarly it is not applicable to ideal current source

Chap 5

Circuit Theorems
because for an ideal current source $R_{s}=\infty$, so equivalent voltage source value will not be finite.

5.4.1 Source Transformation For Dependent Source

Source transformation is also applicable to dependent source in the same manner as for independent sources. It states that

An dependent voltage source V_{x} in series with a resistance R is equivalent to a dependent current source $I_{x}=V_{x} / R$, in parallel with a resistance R, keeping the controlling voltage or current unaffected.
or,
A dependent current source I_{x} in parallel with a resistance R is equivalent to an dependent voltage source $V_{x}=I_{x} R$, in series with a resistance R, keeping the controlling voltage or current unaffected.

Figure 5.4 .4 shows the source transformation of an dependent source.

$$
V_{x}=I_{x} R
$$

Fig. 5.4.4 Source Transformation of Dependent Sources

5.5 THEVENIN'S THEOREM

It states that any network composed of ideal voltage and current sources, and of linear resistors, may berepresented by an equivalent circuit consisting of an ideal voltage source, $\mathrm{V}_{T h}$, in series with an equivalent resistance, $\mathrm{R}_{T h}$ as illustrated in the figure 5.5.1.

Fig. 5.5.1 Illustration of Thevenin Theorem
where V_{Th} is called T hevenin's equivalent voltage or simply T hevenin voltage and $R_{T h}$ is called Thevenin's equivalent resistance or simply Thevenin resistance.

The methods of obtaining Thevenin equivalent voltage and resistance are given in the following sections.

5.5.1 Thevenin's Voltage

The equivalent Thevenin voltage $\left(V_{T h}\right)$ is equal to the open-circuit voltage present at the load terminals (with the load removed). Therefore, it is also denoted by $\mathrm{V}_{\text {oc }}$

Fig. 5.5.2 Equivalence of Open circuit and Thevenin Voltage
Figure 5.5.2 illustrates that the open-circuit voltage, $\mathrm{V}_{\text {oc }}$, and the Thevenin voltage, V_{Th}, must be the same because in the circuit consisting of $V_{T h}$ and $R_{T h}$, the voltage $V_{o c}$ must equal $V_{T h}$, since no current flows through $R_{T h}$ and therefore the voltage across $R_{T h}$ is zero. K irchhoff's voltage law confirms that

$$
V_{T h}=R_{T h}(0)+V_{o c}=V_{o c}
$$

The procedure of obtaining Thevenin voltage is given in the following methodology.

M E T H O D O L O G Y 1

1. Remove the load i.e open circuit the load terminals.
2. Define the open-circuit voltage $V_{o c}$ across the open load terminals.
3. A pply any preferred method (KCL, KVL, nodal analysis, mesh analysis etc.) to solve for V_{oc}.
4. T he T hevenin voltage is $\mathrm{V}_{\mathrm{Th}}=\mathrm{V}_{\mathrm{oc}}$.

NOTE:

Note that this methodology is applicable with the circuits containing both the dependent and independent source.

If a circuit contains dependent sources only, i.e. there is no independent source present in the network then its open circuit voltage or Thevenin voltage will simply be zero.

NOTE:
For the Thevenin voltage we may use the terms Thevenin voltage or open circuit voltage interchangeably.

5.5.2 Thevenin's R esistance

Thevenin resistance is the input or equivalent resistance at the open circuit terminals a, b when all independent sources are set to zero(voltage sources replaced by short circuits and current sources replaced by open circuits).

We consider the following cases where T hevenin resistance $R_{T h}$ is to be determined.

Chap 5

Circuit Theorems

Case 1: Circuit W ith Independent Sources only

If the network has no dependent sources, we turn off all independent sources. R_{Th} is the input resistance or equivalent resistance of the network looking between terminals a and b, as shown in figure 5.5.3.

Fig 5.5.3 Circuit for Obtaining R_{Th}

Case 2: Circuit W ith B oth Dependent and Independent Sources

Different methods can be used to determine Thevenin equivalent resistance of a circuit containing dependent sources. We may follow the given two methodologies. Both the methods are also applicable to circuit with independent sources only(case 1).

Using Test Source

M E T H O D O L O G Y 2

1. Set all independent sources to zero(Short circuit independent voltage source and open circuit independent current source).
2. Remove the load, and put a test source $\mathrm{v}_{\text {test }}$ across its terminals. Let the current through test source is $I_{\text {test }}$. Alternatively, we can put a test source $I_{\text {test }}$ across load terminals and assume the voltage across it is $\mathrm{V}_{\text {test }}$. Either method would give same result.
3. Thevenin resistance is given by $\mathrm{R}_{\mathrm{Th}}=\mathrm{V}_{\text {test }} / \mathrm{I}_{\text {test }}$.

NOTE :
We may use $\mathrm{V}_{\text {test }}=1 \mathrm{~V}$ or $\mathrm{I}_{\text {test }}=1 \mathrm{~A}$

Using Short Circuit Current

$$
\mathrm{R}_{T h}=\frac{\text { open circuit voltage }}{\text { short circuit current }}=\frac{\mathrm{V}_{o c}}{1_{s c}}
$$

M E T H O D O L O G Y 3

1. Connect a short circuit between terminal a and b.
2. Be careful, do not set independent sources zero in this method because we have to find short circuit current.
3. Now, obtain the short circuit current I_{sc} through terminals a, b.
4. Thevenin resistance is given as $R_{T h}=V_{o c} / I_{s c}$ where $V_{o c}$ is open circuit voltage or T hevenin voltage across terminal a, b which can be obtained by same method given previously.

5.5.3 Circuit A nalysis Using Thevenin Equivalent

Thevenin's theorem is very important in circuit analysis. It simplifies a
circuit. A large circuit may be replaced by a single independent voltage source and a single resistor. The equivalent network behaves the same way externally as the original circuit. Consider a linear circuit terminated by a load R_{L}, as shown in figure 5.5.5. The current I_{L} through the load and the voltage V_{L} across the load are easily determined once the T hevenin equivalent of the circuit at the load's terminals is obtained.

Fig. 5.5.5 A Circuit with a Load and its Equivalent Thevenin Circuit

Current through the load R_{L}

$$
I_{L}=\frac{V_{T h}}{R_{T h}+R_{L}}
$$

Voltage across the load R_{L}

$$
V_{L}=R_{L} I_{L}=\frac{R_{L}}{R_{T h}+R_{L}} V_{T h}
$$

5.6 NORTON'S THEOREM

A ny network composed of ideal voltage and current sources, and of linear resistors, may be represented by an equivalent circuit consisting of an ideal current source, I_{N}, in parallel with an equivalent resistance, R_{N} as illustrated in figure 5.6.1.

Fig. 5.6.1 Illustration of Norton T heorem
where I_{N} is called Norton's equivalent current or simply Norton current and R_{N} is called Norton's equivalent resistance. The methods of obtaining Norton equivalent current and resistance are given in the following sections.

5.6.1 N orton's C urrent

The Norton equivalent current is equal to the short-circuit current that would flow when the load replaced by a short circuit. Therefore, it is also called short circuit current $I_{s c}$.

Page 218

Chap 5
Circuit Theorems

Fig 5.6.2 Equivalence of Short Circuit Current and Norton Current
Figure 5.6.2 illustrates that if we replace the load by a short circuit, then current flowing through this short circuit will be same as Norton current I_{N}

$$
I_{N}=I_{s c}
$$

The procedure of obtaining Norton current is given in the following methodology. Note that this methodology is applicable with the circuits containing both the dependent and independent source.

> | M E THODO L O G Y |
| :--- | :--- | :--- |
| 1. Replace the load with a short circuit. |
| 2. Define the short circuit current, $I_{s c}$, through load terminal. |
| 3. Obtain $I_{s c}$ using any method (KCL, KVL, nodal analysis, loop analysis). |
| 4. The Norton current is $I_{\mathrm{N}}=I_{\mathrm{sc}}$. |

If a circuit contains dependent sources only, i.e. there is no independent source present in the network then the short circuit current or Norton current will simply be zero.

5.6.2 Norton's R esistance

Norton resistance is the input or equivalent resistance seen at the load terminals when all independent sources are set to zero(voltage sources replaced by short circuits and current sources replaced by open circuits) i.e. Norton resistance is same as Thevenin's resistance

$$
\mathrm{R}_{\mathrm{N}}=\mathrm{R}_{\mathrm{Th}}
$$

So, we can obtain Norton resistance using same methodologies as for Thevenin resistance. Dependent and independent sources are treated the same way as in Thevenin's theorem.

NOTE:
For the Norton current we may use the term Norton current or short circuit current interchangeably.

5.6.3 Circuit A nalysis U sing Norton's Equivalent

As discussed for Thevenin's theorem, Norton equivalent is also useful in circuit analysis. It simplifies a circuit. Consider a linear circuit terminated by a load R_{L}, as shown in figure 5.6.4. The current I_{L} through the load and the voltage V_{L} across the load are easily determined once the Norton equivalent of the circuit at the load's terminals is obtained,

Fig. 5.6.4 A circuit with a Load and its Equivalent Norton Circuit
Current through load R_{L} is,

$$
I_{L}=\frac{R_{N}}{R_{L}+R_{L}} I_{N}
$$

Voltage across load R_{L} is,

$$
V_{L}=R_{L} I_{L}=\frac{R_{L} R_{N}}{R_{T h}+R_{L}} I_{N}
$$

5.7 TRANSFORMATION BETWEEN THEVENIN \& NORTON'S EQUIVALENT CIRCUITS

From source transformation it is easy to find Norton's and Thevenin's equivalent circuit from one form to another as following

$$
V_{T h}=I_{N} R_{N}
$$

$$
I_{N}=V_{T h} / R_{T h}
$$

Fig. 5.7.1 Source Transformation of Thevenin and Norton Equivalents

5.8 MAXIMUM POWER TRANSFER THEOREM

Maximum power transfer theorem states that a load resistance R_{L} will receive maximum power from a circuit when the load resistance is equal to Thevenin's/ Norton's resistance seen at load terminals.
i.e. $\quad R_{L}=R_{T h}, \quad$ (For maximum power transfer)

In other words a network delivers maximum power to a load resistance R_{L} when R_{L} is equal to T hevenin equivalent resistance of the network.

PROOF:
Consider the Thevenin equivalent circuit of figure 5.8.1 with Thevenin voltage $V_{T h}$ and T hevenin resistance $R_{T h}$.

Chap 5

Circuit Theorems

Fiig. 5.8.1 A Circuit Used for Maximum Power Transfer
We assume that we can adjust the load resistance R_{L}. The power absorbed by the load, P_{L}, is given by the expression

$$
\begin{equation*}
P_{L}=I_{L}^{2} R_{L} \tag{5.8.1}
\end{equation*}
$$

and that the load current is given as,

$$
\begin{equation*}
\mathrm{I}_{\mathrm{L}}=\frac{\mathrm{V}_{T h}}{\mathrm{R}_{\mathrm{L}}+\mathrm{R}_{T h}} \tag{5.8.2}
\end{equation*}
$$

Substituting I_{L} from equation (5.8.2) into equation (5.8.1)

$$
\begin{equation*}
P_{L}=\frac{V_{T h}^{2}}{\left(R_{L}+R_{T h}\right)^{2}} R_{L} \tag{5.8.3}
\end{equation*}
$$

To find the value of R_{L} that maximizes the expression for P_{L} (assuming that $V_{T h}$ and $R_{T h}$ are fixed), we write

$$
\frac{\mathrm{dP}_{\mathrm{L}}}{\mathrm{~d} \mathrm{R}_{\mathrm{L}}}=0
$$

Computing the derivative, we obtain the following expression :

$$
\frac{d P_{L}}{d R_{L}}=\frac{V_{T h}^{2}\left(R_{L}+R_{T h}\right)^{2}-2 V_{T h}^{2} R_{L}\left(R_{L}+R_{T h}\right)}{\left(R_{L}+R_{T h}\right)^{4}}
$$

which leads to the expression

$$
\left(R_{L}+R_{T h}\right)^{2}-2 R_{L}\left(R_{L}+R_{T h}\right)=0
$$

$$
\text { or } \quad R_{L}=R_{T h}
$$

Thus, in order to transfer maximum power to a load, the equivalent source and load resistances must be matched, that is, equal to each other.

$$
\mathrm{R}_{\mathrm{L}}=\mathrm{R}_{\mathrm{Th}}
$$

The maximum power transferred is obtained by substituting $R_{L}=R_{T h}$ into equation (5.8.3)

$$
\begin{equation*}
P_{\max }=\frac{V_{T h}^{2} R_{T h}}{\left(R_{T h}+R_{T h}\right)^{2}}=\frac{V_{T h}^{2}}{4 R_{T h}} \tag{5.8.4}
\end{equation*}
$$

or,

$$
\mathrm{P}_{\max }=\frac{\mathrm{V}_{\mathrm{T}}^{2}}{4 \mathrm{R}_{\mathrm{L}}}
$$

If the Load resistance R_{L} is fixed :

Now consider a problem where the load resistance R_{L} is fixed and Thevenin resistance or source resistance R_{s} is being varied, then

$$
P_{L}=\frac{V_{T h}^{2}}{\left(R_{L}+R_{S}\right)^{2}} R_{L}
$$

To obtain maximum P_{L} denominator should be minimum or $R_{S}=0$. This can be solved by differentiating the expression for the load power, P_{L}, with respect to R_{S} instead of R_{L}.

The step-by-step methodology to solve problems based on maximum power transfer is given as following :

M E T H O D O L O G Y

1. Remove the load R_{L} and find the T hevenin equivalent voltage $V_{T h}$ and resistance $R_{T h}$ for the remainder of the circuit.
2. Select $R_{L}=R_{T h}$, for maximum power transfer.
3. The maximum average power transfer can be calculated using $P_{\text {max }}=V_{T h}^{2} / 4 R_{T h}$.

5.9 RECIPROCITY THEOREM

The reciprocity theorem is a theorem which can only be used with single source circuits (either voltage or current source). The theorem states the following

5.9.1 Circuit W ith a Voltage Source

In any linear bilateral network, if a single voltage source V_{a} in branch a produces a current I_{b} in another branch b, then if the voltage source V_{a} is removed(i.e. short circuited) and inserted in branch b, it will produce a current I_{b} in branch a.

In other words, it states that the ratio of response(output) to excitation(input) remains constant if the positions of output and input are interchanged in a reciprocal network. Consider the network shown in figure 5.9.1a and b . U sing reciprocity theorem we my write

$$
\frac{V_{1}}{I_{1}}=\frac{V_{2}}{I_{2}}
$$

(a)

(b)

Fig. 5.9.1 Illustration of Reciprocity Theorem for a Voltage Source
When applying the reciprocity theorem for a voltage source, the following steps must be followed:

1. The voltage source is replaced by a short circuit in the original location.
2. The polarity of the voltage source in the new location have the same correspondence with branch current, in each position, otherwise a ve sign appears in the expression (5.9.1).
This can be explained in a better way through following example.

5.9.2 Circuit With a C urrent Source

In any linear bilateral network, if a single current source I_{a} in branch a produces a voltage V_{b} in another branch b , then if the current source I_{a} is removed(i.e. open circuited) and inserted in branch b, it will produce a voltage V_{b} in open-circuited branch a.

Fig. 5.9.2 Illustration of Reciprocity Theorem for a Current Source

Page 222

Chap 5

Circuit Theorems

A gain, the ratio of voltage and current remains constant. Consider the network shown in figure 5.9.2a and 5.9.2b. Using reciprocity theorem we my write

$$
\begin{equation*}
\frac{V_{1}}{I_{1}}=\frac{V_{2}}{I_{2}} \tag{5.9.2}
\end{equation*}
$$

W hen applying the reciprocity theorem for a current source, the following conditions must be met:

1. The current source is replaced by an open circuit in the original location.
2. The direction of the current source in the new location have the same correspondence with voltage polarity, in each position, otherwise a ve sign appears in the expression (5.9.2).

5.10 SUBSTITUTION THEOREM

If the voltage across and the current through any branch of a dc bilateral network are known, this branch can be replaced by any combination of elements that will maintain the same voltage across and current through the chosen branch.

For example consider the circuit of figure 5.10.1.

Fig 5.10.1 A Circuit having Voltage $\mathrm{V}_{\mathrm{ab}}=6 \mathrm{~V}$ and Current $\mathrm{I}=1 \mathrm{~A}$ in Branch ab
The voltage V_{ab} and the current I in the circuit are given as

$$
\begin{aligned}
\mathrm{V}_{\mathrm{ab}} & =\left(\frac{6}{6+4}\right) 10=6 \mathrm{~V} \\
\mathrm{I} & =\frac{10}{6+4}=1 \mathrm{~A}
\end{aligned}
$$

The 6Ω resistor in branch a-b may be replaced with any combination of components, provided that the terminal voltage and current must be the same.

We see that the branches of figure 5.10.2a-e are each equivalent to the original branch between terminals a and b of the circuit in figure 5.10.1.

(a)

(b)

(c)

(d)

(e)

Also consider that the response of the remainder of the circuit of figure

5.11 MILLMAN'S THEOREM

Millman's theorem is used to reduce a circuit that contains several branches in parallel where each branch has a voltage source in series with a resistor as shown in figure 5.11.1.

Fig. 5.11.1 Illustration of Millman's Theorem
M athematically

$$
\begin{aligned}
& V_{\text {eq }}=\frac{V_{1} G_{1}+V_{2} G_{2}+V_{3} G_{3}+V_{4} G_{4}+\ldots+V_{n} G_{n}}{G_{1}+G_{2}+G_{3}+G_{4}+\ldots+G_{n}} \\
& R_{\text {eq }}=\frac{1}{G_{\text {eq }}}=\frac{1}{G_{1}+G_{2}+G_{3}+\ldots+G_{n}}
\end{aligned}
$$

where conductances

$$
\mathrm{G}_{1}=\frac{1}{\mathrm{R}_{1}}, \mathrm{G}_{2}=\frac{1}{\mathrm{R}_{2}}, \mathrm{G}_{3}=\frac{1}{\mathrm{R}_{3}}, \mathrm{G}_{4}=\frac{1}{\mathrm{R}_{4}}, \ldots \mathrm{G}_{\mathrm{n}}=\frac{1}{\mathrm{R}_{\mathrm{n}}}
$$

In terms of resistances

$$
\begin{aligned}
& V_{\text {eq }}=\frac{V_{1} / R_{1}+V_{2} / R_{2}+V_{3} / R_{3}+V_{4} / R_{4}+\ldots+V_{n} R_{n}}{1 / R_{1}+1 / R_{2}+1 / R_{3}+1 / R_{4}+\ldots+1 / R_{n}} \\
& R_{\text {eq }}=\frac{1}{G_{\text {eq }}}=\frac{1}{1 / R_{1}+1 / R_{2}+1 / R_{3}+\ldots+1 / R_{n}}
\end{aligned}
$$

5.12 TELLEGEN'S THEOREM

Tellegen's theorem states that the sum of the power dissipations in a lumped network at any instant is always zero. This is supported by Kirchhoff's voltage and current laws. Tellegen's theorem is valid for any lumped network which may be linear or non-linear, passive or active, time-varying or timeinvariant.

For a network with n branches, the power summation equation is,

$$
\sum_{k=1}^{k=n} V_{k} I_{k}=0
$$

One application of Tellegen's theorem is checking the quantities obtained when a circuit is analyzed. If the individual branch power dissipations do not add up to zero, then some of the calculated quantities are incorrect.

Chap 5

EXERCISE 5.1

mce 5.1.1 The linear network in the figure contains resistors and dependent sources only. W hen $\mathrm{V}_{\mathrm{s}}=10 \mathrm{~V}$, the power supplied by the voltage source is 40 W . W hat will be the power supplied by the source if $\mathrm{V}_{\mathrm{s}}=5 \mathrm{~V}$?

(A) 20 W
(B) 10 W
(C) 40 W
(D) can not be determined
mcQ 5.1.2 In the circuit below, it is given that when $V_{S}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=200 \mathrm{~mA}$. W hat values of I_{L} and V_{S} will be required such that power absorbed by R_{L} is 2.5 W ?

(A) $1 \mathrm{~A}, 2.5 \mathrm{~V}$
(B) $0.5 \mathrm{~A}, 2 \mathrm{~V}$
(C) $0.5 \mathrm{~A}, 50 \mathrm{~V}$
(D) $2 \mathrm{~A}, 1.25 \mathrm{~V}$

MCQ 5.1.3 For the circuit shown in figure below, some measurements are made and listed in the table.

	V_{s}	I_{s}	I_{L}
1.	14 V	6 A	2 A
2.	18 V	2 A	6 A

W hich of the following equation is true for I_{L} ?
(A) $I_{L}=0.6 \mathrm{~V}_{\mathrm{S}}+0.4 \mathrm{I}_{\mathrm{S}}$
(B) $I_{L}=0.2 \mathrm{~V}_{S}-0.3 \mathrm{I}_{\mathrm{S}}$
(C) $I_{L}=0.2 \mathrm{~V}_{\mathrm{S}}+0.3 \mathrm{I}_{\mathrm{S}}$
(D) $\mathrm{I}_{\mathrm{L}}=0.4 \mathrm{~V}_{\mathrm{S}}-0.6 \mathrm{I}_{\mathrm{S}}$

In the circuit below, the voltage drop across the resistance R_{2} will be equal

(A) 46 volt
(B) 38 volt
(C) 22 volt
(D) 14 volt

MCQ 5.1.5
In the circuit below, current $I=I_{1}+I_{2}+I_{3}$, where I_{1}, I_{2} and I_{3} are currents due to $60 \mathrm{~A}, 30 \mathrm{~A}$ and 30 V sources acting alone. The values of $\mathrm{I}_{1}, \mathrm{I}_{2}$ and I_{3} are respectively

(A) $8 \mathrm{~A}, 8 \mathrm{~A},-4 \mathrm{~A}$
(B) $12 \mathrm{~A}, 12 \mathrm{~A},-5 \mathrm{~A}$
(C) $4 \mathrm{~A}, 4 \mathrm{~A},-1 \mathrm{~A}$
(D) $2 \mathrm{~A}, 2 \mathrm{~A},-4 \mathrm{~A}$

In the circuit below, current I is equal to sum of two currents I_{1} and I_{2}. W hat are the values of I_{1} and I_{2} ?

(A) $6 \mathrm{~A}, 1 \mathrm{~A}$
(B) $9 \mathrm{~A}, 6 \mathrm{~A}$
(C) $3 \mathrm{~A}, 1 \mathrm{~A}$
(D) $3 \mathrm{~A}, 4 \mathrm{~A}$

A network consists only of independent current sources and resistors. If the values of all the current sources are doubled, then values of node voltages
(A) remains same
(B) will be doubled
(C) will be halved
(D) changes in some other way.

Consider a network which consists of resistors and voltage sources only. If the values of all the voltage sources are doubled, then the values of mesh current will be
(A) doubled
(B) same
(C) halved
(D) none of these

Chap 5

Circuit Theorems
mCQ 5.1.9 The value of current I in the circuit below is equal to

(A) $\frac{2}{7} \mathrm{~A}$
(B) 1 A
(C) 2 A
(D) 4 A
mce 5.1.10 In the circuit below, the 12 V source

(A) absorbs 36 W
(B) delivers 4 W
(C) absorbs 100 W
(D) delivers 36 W

MCQ 5.1.11 W hich of the following circuits is equivalent to the circuit shown below ?

(A)

(B)

(C)

(D) None of these
mсе 5.1.12 Consider a dependent current source shown in figure below.

The source transformation of above is given by
(A)

(B)

Consider a circuit shown in the figure
(D) Source transformation does not applicable to dependent sources

MCQ 5.1.13

Which of the following circuit is equivalent to the above circuit ?
(A)

(B)

(C)

(D)

mce 5.1.14 For the circuit shown in the figure the T hevenin voltage and resistance seen from the terminal a-b are respectively

10 V

(A) $34 \mathrm{~V}, 0 \Omega$
(B) $20 \mathrm{~V}, 24 \Omega$
(C) $14 \mathrm{~V}, 0 \Omega$
(D) $-14 \mathrm{~V}, 24 \Omega$

Page 228

Chap 5

Circuit Theorems

MCQ 5.1.15 .

In the following circuit, Thevenin voltage and resistance across terminal a and b respectively are

(A) $10 \mathrm{~V}, 18 \Omega$
(B) $2 \mathrm{~V}, 18 \Omega$
(C) $10 \mathrm{~V}, 18.67 \Omega$
(D) $2 \mathrm{~V}, 18.67 \Omega$

MCQ 5.1.16

The value of $R_{T h}$ and $V_{T h}$ such that the circuit of figure (B) is the T hevenin equivalent circuit of the circuit shown in figure (A), will be equal to

Fig.(A)

Fig.(B)
(A) $\mathrm{R}_{\mathrm{Th}}=6 \Omega, \mathrm{~V}_{\mathrm{Th}}=4 \mathrm{~V}$
(B) $\mathrm{R}_{\mathrm{Th}}=6 \Omega, \mathrm{~V}_{\text {Th }}=28 \mathrm{~V}$
(C) $\mathrm{R}_{\mathrm{Th}}=2 \Omega, \mathrm{~V}_{\mathrm{Th}}=24 \mathrm{~V}$
(D) $\mathrm{R}_{\mathrm{Th}}=10 \Omega, \mathrm{~V}_{\mathrm{Th}}=14 \mathrm{~V}$
mce 5.1.17 W hat values of $R_{T h}$ and $V_{T h}$ will cause the circuit of figure (B) to be the equivalent circuit of figure (A) ?

Fig.(A)

Fig.(B)
(A) $2.4 \Omega,-24 \mathrm{~V}$
(B) $3 \Omega, 16 \mathrm{~V}$
(C) $10 \Omega, 24 \mathrm{~V}$
(D) $10 \Omega,-24 \mathrm{~V}$

Common Data For Q. 18 and 19 :

Consider the two circuits shown in figure (A) and figure (B) below

Fig.(A)

Fig.(B)

The value of T hevenin voltage across terminals $a-b$ of figure (A) and figure
(B) respectively are
(A) $30 \mathrm{~V}, 36 \mathrm{~V}$
(B) $28 \mathrm{~V},-12 \mathrm{~V}$
(C) $18 \mathrm{~V}, 12 \mathrm{~V}$
(D) $30 \mathrm{~V},-12 \mathrm{~V}$

мсе 5.1.19 The value of Thevenin resistance across terminals $a-b$ of figure (A) and figure (B) respectively are
(A) zero, 3Ω
(B) $9 \Omega, 16 \Omega$
(C) $2 \Omega, 3 \Omega$
(D) zero, 16Ω

For a network having resistors and independent sources, it is desired to obtain Thevenin equivalent across the load which is in parallel with an ideal current source. Then which of the following statement is true?
(A) The Thevenin equivalent circuit is simply that of a voltage source.
(B) The T hevenin equivalent circuit consists of a voltage source and a series resistor.
(C) T he T hevenin equivalent circuit does not exist but the Norton equivalent does exist.
(D) None of these
mce 5.1.21 The Thevenin equivalent circuit of a network consists only of a resistor (Thevenin voltage is zero). Then which of the following elements might be contained in the network ?
(A) resistor and independent sources
(B) resistor only
(C) resistor and dependent sources
(D) resistor, independent sources and dependent sources.

мсе 5.1.22 For the circuit shown in the figure, the Thevenin's voltage and resistance looking into $a-b$ are

(A) $2 \mathrm{~V}, 3 \Omega$
(B) $2 \mathrm{~V}, 2 \Omega$
(C) $6 \mathrm{~V},-9 \Omega$
(D) $6 \mathrm{~V},-3 \Omega$

For the following circuit, values of voltage V for different values of R are given in the table.

R	V
3Ω	6 V
8Ω	8 V

The Thevenin voltage and resistance of the unknown circuit are respectively.
(A) $14 \mathrm{~V}, 4 \Omega$
(B) $4 \mathrm{~V}, 1 \Omega$
(C) $14 \mathrm{~V}, 6 \Omega$
(D) $10 \mathrm{~V}, 2 \Omega$

Page 230

Chap 5

Circuit Theorems
mсе 5.1.24 In the circuit shown below, the Norton equivalent current and resistance with respect to terminal $a-b$ is

(A) $\frac{17}{6} \mathrm{~A}, 0 \Omega$
(B) $2 \mathrm{~A}, 24 \Omega$
(C) $-\frac{7}{6} \mathrm{~A}, 24 \Omega$
(D) $-2 A, 24 \Omega$

MCQ 5.1.25 The Norton equivalent circuit for the circuit shown in figure is given by

(A)

W hat are the values of equivalent Norton current source (I_{N}) and equivalent resistance $\left(R_{N}\right)$ across the load terminal of the circuit shown in figure?

	\mathbf{I}_{N}	\mathbf{R}_{N}
(A)	10 A	2Ω
(B)	10 A	9Ω
(C)	3.33 A	9Ω
(D)	6.66 A	2Ω

mCQ 5.1.27 For a network consisting of resistors and independent sources only, it is desired to obtain Thevenin's or Norton's equivalent across a load which is in parallel with an ideal voltage sources.
Consider the following statements:

1. Thevenin equivalent circuit across this terminal does not exist.
2. The Thevenin equivalent circuit exists and it is simply that of a voltage source.
3. The Norton equivalent circuit for this terminal does not exist.

W hich of the above statements is/ are true ?
(A) 1 and 3
(B) 1 only
(C) 2 and 3
(D) 3 only

For a network consisting of resistors and independent sources only, it is desired to obtain Thevenin's or Norton's equivalent across a load which is in series with an ideal current sources.
Consider the following statements

1. Norton equivalent across this terminal is not feasible.
2. Norton equivalent circuit exists and it is simply that of a current source only.
3. Thevenin's equivalent circuit across this terminal is not feasible.

W hich of the above statements is/ are correct ?
(A) 1 and 3
(B) 2 and 3
(C) 1 only
(D) 3 only
mce 5.1.29 The Norton equivalent circuit of the given network with respect to the terminal $a-b$, is

In the circuit below, if R_{L} is fixed and R_{s} is variable then for what value of R_{s} power dissipated in R_{L} will be maximum ?

(A) $R_{S}=R_{L}$
(B) $R_{s}=0$
(C) $\mathrm{R}_{\mathrm{S}}=\mathrm{R}_{\mathrm{L}} / 2$
(D) $R_{S}=2 R_{L}$

Page 232

Chap 5

Circuit Theorems
mce 5.1.31 In the circuit shown below the maximum power transferred to R_{L} is $P_{\max }$, then

(A) $\mathrm{R}_{\mathrm{L}}=12 \Omega, \mathrm{P}_{\max }=12 \mathrm{~W}$
(B) $\mathrm{R}_{\mathrm{L}}=3 \Omega, \mathrm{P}_{\max }=96 \mathrm{~W}$
(C) $\mathrm{R}_{\mathrm{L}}=3 \Omega, \mathrm{P}_{\max }=48 \mathrm{~W}$
(D) $\mathrm{R}_{\mathrm{L}}=12 \Omega, \mathrm{P}_{\max }=24 \mathrm{~W}$

MCQ 5.1.32

In the circuit shown in figure (A) if current $I_{1}=2 A$, then current I_{2} and I_{3} in figure (B) and figure (C) respectively are

Fig.(A)

Fig.(C)
(A) $2 \mathrm{~A}, 2 \mathrm{~A}$
(B) $-2 A, 2 A$
(C) $2 \mathrm{~A},-2 \mathrm{~A}$
(D) $-2 A,-2 A$
mce 5.1.33 In the circuit of figure (A), if $I_{1}=20 \mathrm{~mA}$, then what is the value of current I_{2} in the circuit of figure (B) ?

Fig.(A)

Fig.(B)
(A) 40 mA
(B) -20 mA
(C) 20 mA
(D) R_{1}, R_{2} and R_{3} must be known

If $\mathrm{V}_{1}=2 \mathrm{~V}$ in the circuit of figure (A), then what is the value of V_{2} in the circuit of figure (B) ?

Fig.(A)

Fig.(B)
(A) 2 V
(B) $-2 V$
(C) 4 V
(D) R_{1}, R_{2} and R_{3} must be known

MCQ 5.1.35
The value of current I in the circuit below is equal to

(A) 100 mA
(B) 10 mA
(C) 233.34 mA
(D) none of these

MCQ 5.1.36
A simple equivalent circuit of the two-terminal network shown in figure is

(B)

(C)

(D)

mсQ 5.1.37 If $\mathrm{V}=\mathrm{AV}_{1}+\mathrm{BV}_{2}+\mathrm{Cl}_{3}$ in the following circuit, then values of A, B and C respectively are

(A) $\frac{2}{3}, \frac{2}{3}, \frac{1}{3}$
(B) $\frac{1}{3}, \frac{1}{3}, \frac{100}{3}$
(C) $\frac{1}{2}, \frac{1}{2}, \frac{1}{3}$
(D) $\frac{1}{3}, \frac{2}{3}, \frac{100}{3}$

Page 234

Chap 5

Circuit Theorems

MCQ 5.1.38
-
For the linear network shown below, V-I characteristic is also given in the figure. The value of Norton equivalent current and resistance respectively are

(A) $3 \mathrm{~A}, 2 \Omega$
(B) $6 \Omega, 2 \Omega$
(C) $6 \mathrm{~A}, 0.5 \Omega$
(D) $3 \mathrm{~A}, 0.5 \Omega$

MCQ 5.1.39
In the following circuit a network and its T hevenin and Norton equivalent are given.

The value of the parameter are

	$\mathrm{V}_{\text {Th }}$	$\mathrm{R}_{\text {Th }}$	I_{N}
(A)	4 V	2Ω	2 A
(B)	4 V	2Ω	2 A
(C)	8 V	1.2Ω	$\frac{30}{3} \mathrm{~A}$
(D) 8 V	5Ω	$\frac{8}{5} \mathrm{~A}$	3Ω
(8 V		1.2Ω

MCQ 5.1.40
For the following circuit the value of equivalent Norton current I_{N} and resistance R_{N} are

(A) $2 \mathrm{~A}, 20 \Omega$
(B) $2 \mathrm{~A},-20 \Omega$
(C) $0 \mathrm{~A}, 20 \Omega$
(D) $0 \mathrm{~A},-20 \Omega$
mce 5.1.41 Consider the following circuits shown below

Fig (A)

Fig (B)

The relation between I_{a} and I_{b} is
(A) $I_{b}=I_{a}+6$
(B) $I_{b}=I_{a}+2$
(C) $I_{b}=1.5 I_{a}$
(D) $I_{b}=I_{a}$

Common Data For Q. 42 and 43 :

In the following circuit, some measurements were made at the terminals a, b and given in the table below.

MCQ 5.1.42
The Thevenin equivalent of the unknown network across terminal $a-b$ is
(A) $3 \Omega, 14 \mathrm{~V}$
(B) $5 \Omega, 16 \mathrm{~V}$
(C) $16 \Omega, 38 \mathrm{~V}$
(D) $10 \Omega, 26 \mathrm{~V}$

MCQ 5.1.43
The value of R that will cause I to be $1 A$, is
(A) 22Ω
(B) 16Ω
(C) 8Ω
(D) 11Ω

MCQ 5.1.44
In the circuit shown in fig (A) if current $\mathrm{I}_{1}=2.5 \mathrm{~A}$ then current I_{2} and I_{3} in fig (B) and (C) respectively are

Fig.(A)

Fig.(B)

Fig.(C)
(A) $5 \mathrm{~A}, 10 \mathrm{~A}$
(B) $-5 \mathrm{~A}, 10 \mathrm{~A}$
(C) $5 \mathrm{~A},-10 \mathrm{~A}$
(D) $-5 \mathrm{~A},-10 \mathrm{~A}$
mce 5.1.45 The V-I relation of the unknown element X in the given network is $\mathrm{V}=\mathrm{AI}+\mathrm{B}$. The value of A (in ohm) and B (in volt) respectively are

Page 236

Chap 5

Circuit Theorems

(A) 2,20
(B) 2,8
(C) $0.5,4$
(D) $0.5,16$

мсе 5.1.46 For the following network the V -I curve with respect to terminals $\mathrm{a}-\mathrm{b}$, is given by

(A)

(B)

(C)

(D)

mсе 5.1.47 A network N feeds a resistance R as shown in circuit below. Let the power consumed by R be P. If an identical network is added as shown in figure, the power consumed by R will be

(A) equal to P
(B) less than P
(C) between P and $4 P$
(D) more than $4 P$

A certain network consists of a large number of ideal linear resistors, one of which is R and two constant ideal source. The power consumed by R is P_{1} when only the first source is active, and P_{2} when only the second source is active. If both sources are active simultaneously, then the power consumed by R is
(A) $P_{1} \pm P_{2}$
(B) $\sqrt{P_{1}} \pm \sqrt{P_{2}}$
(C) $\left(\sqrt{P_{1}} \pm \sqrt{P_{2}}\right)^{2}$
(D) $\left(P_{1} \pm P_{2}\right)^{2}$

If the 60Ω resistance in the circuit of figure (A) is to be replaced with a current source I_{s} and 240Ω shunt resistor as shown in figure (B), then magnitude and direction of required current source would be

Fig.(A)

Fig.(B)
(A) 200 mA , upward
(B) 150 mA , downward
(C) 50 mA , downward
(D) 150 mA , upward

MCQ 5.1.50
The Thevenin's equivalent of the circuit shown in the figure is

(A) $4 \mathrm{~V}, 48 \Omega$
(B) $24 \mathrm{~V}, 12 \Omega$
(C) $24 \mathrm{~V}, 24 \Omega$
(D) $12 \mathrm{~V}, 12 \Omega$

MCQ 5.1.51 The voltage V_{L} across the load resistance in the figure is given by

$$
V_{L}=V\left(\frac{R_{L}}{R+R_{L}}\right)
$$

V and R will be equal to

(A) $-10 \mathrm{~V}, 2 \Omega$
(B) $10 \mathrm{~V}, 2 \Omega$
(C) $-10 \mathrm{~V},-2 \Omega$
(D) none of these

Page 238

Chap 5

Circuit Theorems
mcQ 5.1.52 In the circuit given below, viewed from a-b, the circuit can be reduced to an equivalent circuit as

(A) 10 volt source in series with $2 \mathrm{k} \Omega$ resistor
(B) 1250Ω resistor only
(C) 20 V source in series with 1333.34Ω resistor
(D) 800Ω resistor only
mce 5.1.53 \quad TheV -I equation for the network shown in figure, is given by

(A) $7 \mathrm{~V}=200 \mathrm{I}+54$
(B) $V=100 I+36$
(C) $V=2001+54$
(D) $V=501+54$

MCQ 5.1.54
In the following circuit the value of open circuit voltage and Thevenin resistance at terminals a, b are

(A) $\mathrm{V}_{\text {oc }}=100 \mathrm{~V}, \mathrm{R}_{\mathrm{Th}}=1800 \Omega$
(B) $\mathrm{V}_{o c}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{Th}}=270 \Omega$
(C) $V_{o c}=100 \mathrm{~V}, \mathrm{R}_{\mathrm{Th}}=90 \Omega$
(D) $\mathrm{V}_{o c}=0 \mathrm{~V}, \mathrm{R}_{\text {Th }}=90 \Omega$

Ques 5.2.1 In the given network, if $\mathrm{V}_{5}=\mathrm{V}_{0}, \mathrm{I}=1 \mathrm{~A}$. If $\mathrm{V}_{5}=2 \mathrm{~V}_{0}$ then what is the value of I_{1} (in Amp) ?

QUES 5.2.2 In the given network, if $\mathrm{I}_{\mathrm{s}}=\mathrm{I}_{0}$ then $\mathrm{V}=1$ volt. W hat is the value of I_{1} (in Amp) if $I_{s}=2 I_{0}$?

QUES 5.2.3 In the circuit below, the voltage V across the 40Ω resistor would be equal to _ _ _ _ Volts.

QUES 5.2.4

QUES 5.2.5

QUES 5.2.6

The value of current I flowing through 2Ω resistance in the given circuit, equals to \qquad Amp.

In the given circuit, the value of current I will be \qquad Amps.

What is the value of current I in the given network (in Amp) ?

Page 240

Chap 5

Circuit Theorems

QUES 5.2.7 In the given network if $\mathrm{V}_{1}=\mathrm{V}_{2}=0$, then what is the value of V_{0} (in volts) ?

QUES 5.2.8 W hat is the value of current I in the circuit shown below (in A mp) ?

ques 5.2.9 How much power is being dissipated by the $4 \mathrm{k} \Omega$ resistor in the network (in mW) ?

QUES 5.2.10 Thevenin equivalent resistance $R_{T h}$ between the nodes a and b in the following circuit is \qquad Ω.

Common Data For Q. 11 and 12 :
Consider the circuit shown in the figure.

Ques 5.2.11 The equivalent Thevenin voltage across terminal a-bis _ _ _ Volts.
Ques 5.2.12 The Norton equivalent current with respect to terminal $a-b$ is \qquad Amps
QUES 5.2.13 In the circuit given below, what is the value of current I (in A mp) through 6Ω resistor

Ques 5.2.14 For the circuit below, what value of R will cause $I=3 \mathrm{~A}$ (in Ω) ?

QUES 5.2.15
The maximum power that can be transferred to the resistance R in the circuit is \square mili watts.

Ques 5.2.16 The value of current I in the following circuit is equal to \qquad Amp.

QUES 5.2.17 For the following circuit the value of $R_{T h}$ is \qquad Ω.

Page 242

Chap 5

Circuit Theorems

QUES 5.2.18 W hat is the value of current I in the given network (in A mp) ?

Ques 5.2.19 The value of current I in the figure is mA.

QUES 5.2.20
For the circuit of figure, some measurements were made at the terminals a-b and given in the table below.

What is the value of I_{L} (in Amps) for $R_{L}=20 \Omega$?

QUES 5.2.21

In the circuit below, for what value of k , load $\mathrm{R}_{\mathrm{L}}=2 \Omega$ absorbs maximum power ?

In the circuit shown below, the maximum power that can be delivered to the load R_{L} is equal to \qquad mW .

A practical DC current source provide 20 kW to a 50Ω load and 20 kW to a 200Ω load. The maximum power, that can drawn from it, is \qquad kW.

QUES 5.2.24
In the following circuit the value of voltage V_{1} is \qquad Volts.

QUES 5.2.25 If $\mathrm{I}=5 \mathrm{~A}$ in the circuit below, then what is the value of voltage source V_{s} (in volts)?

QUES 5.2.26
For the following circuit, what is the value of current $1 /$ (in A mp) ?

QUES 5.2.27
The Thevenin equivalent resistance between terminal a and b in the following circuit is \qquad Ω.

QUES 5.2.28
In the circuit shown below, what is the value of current I (in Amps)?

QUES 5.2.29
The power delivered by 12 V source in the given network is \qquad watts.

Page 244

Chap 5

Circuit Theorems

Ques 5.2.30
In the circuit shown, what value of R_{L} (in Ω) maximizes the power delivered to R_{L} ?

QUES 5.2.31 power that can be transferred to the load R_{L} will be \qquad mW

QUES 5.2.32
In the following circuit equivalent T hevenin resistance between nodes a and b is $R_{T h}=3 \Omega$. The value of α is

The maximum power that can be transferred to the load resistor R_{L} from the current source in the figure is \qquad watts.

C ommon D ata For Q. 34 and 35

An electric circuit is fed by two independent sources as shown in figure.

The power supplied by 36 V source will be \qquad watts.

The power supplied by 27 A source will be \qquad watts.

In the circuit shown in the figure, what is the power dissipated in 4Ω resistor (in watts)

QUES 5.2.37 What is the value of voltage V in the following network (in volts) ?

QUES 5.2.38 For the circuit shown in figure below the value of $R_{T h}$ is \qquad Ω.

Consider the network shown below :

The power absorbed by load resistance R_{L} is shown in table :

R_{L}	$10 \mathrm{k} \Omega$	$30 \mathrm{k} \Omega$
P	3.6 mW	4.8 mW

The value of R_{L} (in $k \Omega$), that would absorb maximum power, is \qquad

Chap 5

SOLUTIONS 5.1

Circuit Theorems
sol 5.1.1 Option (B) is correct.

For,

$$
\mathrm{V}_{\mathrm{s}}=10 \mathrm{~V}, \mathrm{P}=40 \mathrm{~W}
$$

So,

$$
I_{s}=\frac{P}{V_{s}}=\frac{40}{10}=4 \mathrm{~A}
$$

Now,

$$
\mathrm{V}_{\mathrm{s}}^{\prime}=5 \mathrm{~V}, \text { so } \mathrm{I}_{\mathrm{s}}^{\prime}=2 \mathrm{~A}
$$

(From linearity)
New value of the power supplied by source is

$$
\mathrm{P}_{\mathrm{s}}^{\prime}=\mathrm{V}_{\mathrm{s}}^{\prime} I_{\mathrm{s}}^{\prime}=5 \times 2=10 \mathrm{~W}
$$

Note: Linearity does not apply to power calculations.

Option (C) is correct.
From linearity, we know that in the circuit $\frac{V_{S}}{\Gamma_{\mathrm{L}}}$ ratio remains constant

$$
\frac{V_{S}}{I_{L}}=\frac{20}{200 \times 10^{-3}}=100
$$

Let current through load is $\mathrm{I}_{\mathrm{L}^{\prime}}$ when the power absorbed is 2.5 W , so

$$
P_{L}=\left(I_{L}^{\prime}\right)^{2} R_{L}
$$

$$
2.5=\left(I_{L^{\prime}}\right)^{2} \times 10
$$

$$
\mathrm{I}_{\mathrm{L}^{\prime}}=0.5 \mathrm{~A}
$$

$$
\frac{V_{S}}{I_{L}}=\frac{V_{S}^{\prime}}{I_{L^{\prime}}}=100
$$

So, $\quad \mathrm{V}_{\mathrm{s}}{ }^{\prime}=100 \mathrm{I}_{\mathrm{L}}{ }^{\prime}=100 \times 0.5=50 \mathrm{~V}$
Thus required values are

$$
\mathrm{I}_{\mathrm{L}^{\prime}}=0.5 \mathrm{~A}, \mathrm{~V}_{\mathrm{s}}^{\prime}=50 \mathrm{~V}
$$

Option (D) is correct.
From linearity,

$$
\begin{align*}
& \quad \mathrm{I}_{\mathrm{L}}
\end{align*}=A \mathrm{~V}_{\mathrm{S}}+B \mathrm{I}_{\mathrm{S}}, \quad \mathrm{~A} \text { and } \mathrm{B} \text { are constants }
$$

Solving equation (1) \& (2)

$$
A=0.4, B=-0.6
$$

So,

$$
I_{L}=0.4 \mathrm{~V}_{\mathrm{s}}-0.61_{\mathrm{s}}
$$

Option (B) is correct.
The circuit has 3 independent sources, so we apply superposition theorem to obtain the voltage drop.
Due to 16 V source only : (0 pen circuit 5 A source and Short circuit 32 V source)

Let voltage across R_{2} due to 16 V source only is V_{1}.

Using voltage division

$$
\begin{aligned}
V_{1} & =-\frac{8}{24+8}(16) \\
& =-4 \mathrm{~V}
\end{aligned}
$$

Due to 5A source only : (Short circuit both the 16 V and 32 V sources)
Let voltage across R_{2} due to 5 A source only is V_{2}.

$$
\begin{aligned}
\mathrm{V}_{2} & =(24 \Omega\|16 \Omega\| 16 \Omega) \times 5 \\
& =6 \times 5=30 \text { volt }
\end{aligned}
$$

Due to 32 V source only : (Short circuit 16 V source and open circuit 5 A source)
Let voltage across R_{2} due to 32 V source only is V_{3}

Using voltage division

$$
V_{3}=\frac{9.6}{16+9.6}(32)=12 \mathrm{~V}
$$

By superposition, the net voltage across R_{2} is

$$
V=V_{1}+V_{2}+V_{3}=-4+30+12=38 \text { volt }
$$

ALTERNATIVE METHOD :

The problem may be solved by applying a node equation at the top node.

Option (C) is correct

Due to 60 A Source Only : (Open circuit 30 A and short circuit 30 V sources)

$$
12 \Omega \| 6 \Omega=4 \Omega
$$

Page 248

Chap 5

Circuit Theorems

Using current division

$$
I_{a}=\frac{2}{2+8}(60)=12 \mathrm{~A}
$$

A gain, I_{a} will be distributed between parallel combination of 12Ω and 6Ω

$$
I_{1}=\frac{6}{12+6}(12)=4 \mathrm{~A}
$$

Due to 30 A source only : (Open circuit 60 A and short circuit 30 V sources)

Using current division

$$
I_{b}=\frac{4}{4+6}(30)=12 \mathrm{~A}
$$

I_{b} will be distributed between parallel combination of 12Ω and 6Ω

$$
I_{2}=\frac{6}{12+6}(12)=4 \mathrm{~A}
$$

Due to $\mathbf{3 0 V}$ Source Only : (Open circuit 60 A and 30 A sources)

Using source transformation

Using current division

$$
I_{3}=-\frac{3}{12+3}(5)=-1 \mathrm{~A}
$$

Option (C) is correct.
Using superposition, $\quad I=I_{1}+I_{2}$
Let I_{1} is the current due to 9 A source only. (i.e. short 18 V source)

$$
\mathrm{I}_{1}=\frac{6}{6+12}(9)=3 \mathrm{~A} \quad \text { (current division) }
$$

Let I_{2} is the current due to 18 V source only (i.e. open 9 A source)

$$
\mathrm{I}_{2}=\frac{18}{6+12}=1 \mathrm{~A}
$$

SOL 5.1.7

ALTERNATIVE METHOD :

Try to solve the problem by obtaining T hevenin equivalent for right half of the circuit.

Option (D) is correct.
Using source transformation of 4 A and 6 V source.

Adding parallel current sources

Page 250

Chap 5

Circuit Theorems

Source transformation of 5 A source

A pplying KVL around the anticlockwise direction

$$
\begin{aligned}
-5-1+8-21-12 & =0 \\
-9-31 & =0 \\
1 & =-3 \mathrm{~A}
\end{aligned}
$$

Power absorbed by 12 V source

$$
\begin{aligned}
\mathrm{P}_{12 \mathrm{~V}} & =12 \times \mathrm{I} \\
& =12 \times-3=-36 \mathrm{~W}
\end{aligned}
$$

or, 12 V source supplies 36 W power.
sol 5.1.11 Option (B) is correct.
We know that source transformation also exists for dependent source, so

Current source values

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{s}}=\frac{6 \mathrm{I}_{\mathrm{x}}}{2}=31_{\mathrm{x}} \text { (downward) } \\
& \mathrm{R}_{\mathrm{s}}=2 \Omega
\end{aligned}
$$

sol 5.1.12 Option (C) is correct.
We know that source transformation is applicable to dependent source also. Values of equivalent voltage source

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{s}}=\left(41_{\mathrm{x}}\right)(5)=201_{\mathrm{x}} \\
& \mathrm{R}_{\mathrm{s}}=5 \Omega
\end{aligned}
$$

Option (C) is correct.
Combining the parallel resistance and adding the parallel connected current sources.

$$
\begin{aligned}
9 \mathrm{~A}-3 \mathrm{~A} & =6 \mathrm{~A}(\text { upward }) \\
3 \Omega \| 6 \Omega & =2 \Omega
\end{aligned}
$$

Source transformation of 6 A source

Option (D) is correct.

Thevenin Voltage : (Open Circuit Voltage)

The open circuit voltage between a-b can be obtained as

Writing KCL at node a

$$
\begin{aligned}
\frac{\mathrm{V}_{\text {Th }}-10}{24}+1 & =0 \\
\mathrm{~V}_{\text {Th }}-10+24 & =0 \text { or } \mathrm{V}_{\text {Th }}=-14 \text { volt }
\end{aligned}
$$

Thevenin Resistance :
To obtain Thevenin's resistance, we set all independent sources to zero i.e., short circuit all the voltage sources and open circuit all the current sources.

$$
\mathrm{R}_{\mathrm{Th}}=24 \Omega
$$

SOL 5.1.15
Option (B) is correct.

Thevenin Voltage :

Using voltage division $\quad \mathrm{V}_{1}=\frac{20}{20+30}(10)=4$ volt
and,
$\mathrm{V}_{2}=\frac{15}{15+10}(10)=6 \mathrm{volt}$
Applying $\mathrm{KVL}, \mathrm{V}_{1}-\mathrm{V}_{2}+\mathrm{V}_{\mathrm{ab}}=0$

$$
4-6+V_{a b}=0
$$

GATE STUDY PACKAGE

Page 252

Chap 5

Circuit Theorems

Thevenin Resistance :

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{ab}}=[20 \Omega \| 30 \Omega]+[15 \Omega \| 10 \Omega]=12 \Omega+6 \Omega=18 \Omega \\
& \mathrm{R}_{\mathrm{Th}}=\mathrm{R}_{\mathrm{ab}}=18 \Omega
\end{aligned}
$$

Option (A) is a correct.
Using source transformation of 24 V source

Adding parallel connected sources

So,

$$
\mathrm{V}_{\mathrm{Th}}=4 \mathrm{~V}, \mathrm{R}_{\mathrm{Th}}=6 \Omega
$$

Option (A) is correct.
Thevenin Voltage: (Open Circuit Voltage)

Thevenin Resistance :

$$
\mathrm{R}_{\mathrm{Th}}=6 \Omega \| 4 \Omega=\frac{6 \times 4}{6+4}=2.4 \Omega
$$

SOL 5.1.18
Option (B) is correct.
For the circuit of figure (A)

$$
\begin{aligned}
V_{T h} & =V_{a}-V_{b} \\
V_{a} & =24 \mathrm{~V} \\
V_{b} & =\frac{6}{6+3}(-6)=-4 V \\
V_{T h} & =24-(-4)=28 \mathrm{~V}
\end{aligned}
$$

(Voltage division)

For the circuit of figure (B), using source transformation

Combining parallel resistances,

$$
12 \Omega \| 4 \Omega=3 \Omega
$$

Adding parallel current sources,

$$
8-4=4 \mathrm{~A}(\text { downward })
$$

$$
\mathrm{V}_{\mathrm{Th}}=-12 \mathrm{~V}
$$

Option (C) is correct.
For the circuit for fig (A)

Page 254

Chap 5

Circuit Theorems

$$
\mathrm{R}_{\mathrm{Th}}=\mathrm{R}_{\mathrm{ab}}=6 \Omega \| 3 \Omega=2 \Omega
$$

For the circuit of fig (B), as obtained in previous solution.

$$
\mathrm{R}_{\mathrm{Th}}=3 \Omega
$$

sol 5.1.20 Option (B) is correct.

The current source connected in parallel with load does not affect Thevenin equivalent circuit. Thus, Thevenin equivalent circuit will contain its usual form of a voltage source in series with a resistor.

Option (C) is correct.
The network consists of resistor and dependent sources because if it has independent source then there will be an open circuit Thevenin voltage present.

Option (D) is correct.
Thevenin Voltage (Open Circuit Voltage) :

Applying KCL at top middle node

$$
\begin{array}{r}
\frac{V_{T h}-2 V_{x}}{3}+\frac{V_{T h}}{6}+1=0 \\
\frac{V_{T h}-2 V_{T h}}{3}+\frac{V_{T h}}{6}+1=0 \\
-2 V_{T h}+V_{T h}+6=0 \\
V_{T h}=6 \text { volt }
\end{array}
$$

Thevenin Resistance :

$$
\mathrm{R}_{\mathrm{Th}}=\frac{\text { Open circuit voltage }}{\text { Short circuit current }}=\frac{\mathrm{V}_{\mathrm{Th}}}{\mathrm{~T}_{\mathrm{sc}}}
$$

To obtain Thevenin resistance, first we find short circuit current through a-b

Writing KCL at top middle node

$$
\begin{aligned}
\frac{V_{x}-2 V_{x}}{3}+\frac{V_{x}}{6}+1+\frac{V_{x}-0}{3} & =0 \\
-2 V_{x}+V_{x}+6+2 V_{x} & =0 \text { or } V_{x}=-6 \text { volt } \\
I_{s c} & =\frac{V_{x}-0}{3}=-\frac{6}{3}=-2 A
\end{aligned}
$$

Thevenin's resistance, $\quad \mathrm{R}_{\mathrm{Th}}=\frac{\mathrm{V}_{\text {Th }}}{\mathrm{T}_{\mathrm{Sc}}}=-\frac{6}{2}=-3 \Omega$

ALTERNATIVE METHOD :

Since dependent source is present in the circuit, we put a test source across $a-b$ to obtain Thevenin's equivalent.

By applying KCL at top middle node

$$
\begin{align*}
\frac{V_{x}-2 V_{x}}{3}+\frac{V_{x}}{6}+1+\frac{V_{x}-V_{\text {test }}}{3} & =0 \\
-2 V_{x}+V_{x}+6+2 V_{x}-2 V_{\text {test }} & =0 \\
2 V_{\text {test }}-V_{x} & =6 \tag{1}
\end{align*}
$$

We have $\quad I_{\text {test }}=\frac{V_{\text {test }}-V_{x}}{3}$

$$
31_{\text {test }}=V_{\text {test }}-V_{x}
$$

$$
V_{x}=V_{\text {test }}-31_{\text {test }}
$$

Put V_{x} into equation (1)

$$
\begin{align*}
2 \mathrm{~V}_{\text {test }}-\left(\mathrm{V}_{\text {test }}-31_{\text {test }}\right) & =6 \\
2 \mathrm{~V}_{\text {test }}-\mathrm{V}_{\text {test }}+31_{\text {test }} & =6 \\
\mathrm{~V}_{\text {test }} & =6-31_{\text {test }} \tag{2}
\end{align*}
$$

For Thevenin's equivalent circuit

$$
\begin{align*}
\frac{V_{\text {test }}-V_{T h}}{R_{T h}} & =I_{\text {test }} \\
V_{\text {test }} & =V_{T h}+R_{T h} I_{\text {test }} \tag{3}
\end{align*}
$$

Comparing equation (2) and (3)

$$
\mathrm{V}_{\mathrm{Th}}=6 \mathrm{~V}, \mathrm{R}_{\mathrm{Th}}=-3 \Omega
$$

Page 256

Chap 5

Circuit Theorems

SOL 5.1.23
Option (D) is correct.

Using voltage division

$$
\mathrm{V}=\mathrm{V}_{\mathrm{Th}}\left(\frac{\mathrm{R}}{\mathrm{R}+\mathrm{R}_{\mathrm{Th}}}\right)
$$

From the table,

$$
\begin{align*}
& 6=V_{T h}\left(\frac{3}{3+R_{T h}}\right) \tag{1}\\
& 8=V_{T h}\left(\frac{8}{8+R_{T h}}\right) \tag{2}
\end{align*}
$$

Dividing equation (1) and (2), we get

$$
\begin{aligned}
\frac{6}{8} & =\frac{3\left(8+R_{T h}\right)}{8\left(3+R_{T h}\right)} \\
6+2 R_{T h} & =8+R_{T h} \\
R_{T h} & =2 \Omega
\end{aligned}
$$

Substituting $R_{T h}$ into equation (1)

$$
6=\mathrm{V}_{\mathrm{Th}}\left(\frac{3}{3+2}\right) \text { or } \mathrm{V}_{\mathrm{Th}}=10 \mathrm{~V}
$$

Option (C) is correct.

N orton Current: (Short Circuit Current)

The Norton equivalent current is equal to the short-circuit current that would flow when the load replaced by a short circuit as shown below

Applying KCL at node a

$$
I_{N}+I_{1}+2=0
$$

Since

$$
I_{1}=\frac{0-20}{24}=-\frac{5}{6} \mathrm{~A}
$$

So, $\quad I_{N}-\frac{5}{6}+2=0$

$$
I_{N}=-\frac{7}{6} A
$$

Norton Resistance :

Set all independent sources to zero (i.e. open circuit current sources and short circuit voltage sources) to obtain Norton's equivalent resistance R_{N}.

$$
\mathrm{R}_{\mathrm{N}}=24 \Omega
$$

Using source transformation of 1 A source

A gain, source transformation of 2 V source

Adding parallel current sources

ALTERNATIVE METHOD :

Try to solve the problem using superposition method.
Option (C) is correct.
Short circuit current across terminal a-b is

For simplicity circuit can be redrawn as

$$
\begin{aligned}
& I_{N}=\frac{3}{3+6}(10) \\
& =3.33 \mathrm{~A}
\end{aligned}
$$

(Current division)

Norton's equivalent resistance

$$
\mathrm{R}_{\mathrm{N}}=6+3=9 \Omega
$$

Page 258

Chap 5

Circuit Theorems

SOL 5.1.27
Option (C) is correct.

The voltage across load terminal is simply V_{s} and it is independent of any other current or voltage. So, T hevenin equivalent is $V_{T h}=V_{s}$ and $R_{T h}=0$ (Voltage source is ideal).
N orton equivalent does not exist because of parallel connected voltage source.
Option (B) is correct.

The output current from the network is equal to the series connected current source only, so $I_{N}=I_{s}$. Thus, effect of all other component in the network does not change I_{N}.
In this case Thevenin's equivalent is not feasible because of the series connected current source.
sol 5.1.29 Option (C) is correct.
Norton Current : (Short Circuit Current)

Using source transformation

Nodal equation at top center node

$$
\begin{aligned}
\frac{0-24}{6}+\frac{0-(-6)}{3+3}+I_{N} & =0 \\
-4+1+I_{N} & =0 \\
I_{N} & =3 \mathrm{~A}
\end{aligned}
$$

N orton R esistance :

$$
\mathrm{R}_{N}=\mathrm{R}_{\mathrm{ab}}=6\|(3+3)=6\| 6=3 \Omega
$$

So, Norton equivalent will be

Option (B) is correct.

$$
V=V_{S}\left(\frac{R_{L}}{R_{S}+R_{L}}\right)
$$

Power absorbed by R_{L}

$$
P_{L}=\frac{(V)^{2}}{R_{L}}=\frac{V_{s}^{2} R_{L}}{\left(R_{s}+R_{L}\right)^{2}}
$$

From above expression, it is known that power is maximum when $R_{s}=0$

NOTE:

Do not get confused with maximum power transfer theorem. A ccording to maximum power transfer theorem if R_{L} is variable and R_{S} is fixed then power dissipated by R_{L} is maximum when $R_{L}=R_{s}$.
Option (C) is correct.
We solve this problem using maximum power transfer theorem. First, obtain Thevenin equivalent across R_{L}.
Thevenin Voltage: (Open circuit voltage)

Using source transformation

Using nodal analysis $\frac{\mathrm{V}_{\text {Th }}-24}{6}+\frac{\mathrm{V}_{\text {Th }}-24}{2+4}=0$

$$
2 \mathrm{~V}_{\mathrm{Th}}-48=0 \Rightarrow \mathrm{~V}_{\mathrm{Th}}=24 \mathrm{~V}
$$

Thevenin Resistance :

Page 260

Chap 5

Circuit Theorems

$$
\mathrm{R}_{\text {Th }}=6 \Omega \| 6 \Omega=3 \Omega
$$

Circuit becomes as

For maximum power transfer

$$
\mathrm{R}_{\mathrm{L}}=\mathrm{R}_{\mathrm{Th}}=3 \Omega
$$

Value of maximum power

$$
\mathrm{P}_{\max }=\frac{\left(\mathrm{V}_{\text {Th }}\right)^{2}}{4 \mathrm{R}_{\mathrm{L}}}=\frac{(24)^{2}}{4 \times 3}=48 \mathrm{~W}
$$

Option (D) is correct.
This can be solved by reciprocity theorem. But we have to take care that the polarity of voltage source have the same correspondence with branch current in each of the circuit.
In figure (B) and figure (C), polarity of voltage source is reversed with respect to direction of branch current so

$$
\begin{aligned}
\frac{V_{1}}{T_{1}} & =-\frac{V_{2}}{T_{2}}=-\frac{V_{3}}{I_{3}} \\
I_{2} & =I_{3}=-2 \mathrm{~A}
\end{aligned}
$$

Option (C) is correct.
According to reciprocity theorem in any linear bilateral network when a single voltage source V_{a} in branch a produces a current I_{b} in branches b , then if the voltage source V_{a} is removed(i.e. branch a is short circuited) and inserted in branch b , then it will produce a current I_{b} in branch a .
So,
$I_{2}=I_{1}=20 \mathrm{~mA}$
Option (A) is correct.
According to reciprocity theorem in any linear bilateral network when a single current source I_{a} in branch a produces a voltage V_{b} in branches b , then if the current source I_{a} is removed(i.e. branch a is open circuited) and inserted in branch b, then it will produce a voltage V_{b} in branch a .

So,

$$
\mathrm{V}_{2}=2 \mathrm{volt}
$$

Option (A) is correct.
We use M illman's theorem to obtain equivalent resistance and voltage across a-b.

$$
\mathrm{V}_{\mathrm{ab}}=\frac{-\frac{96}{240}+\frac{40}{200}+\frac{-80}{800}}{\frac{1}{240}+\frac{1}{200}+\frac{1}{800}}=-\frac{144}{5}=-28.8 \mathrm{~V}
$$

The equivalent resistance

$$
\mathrm{R}_{\mathrm{ab}}=\frac{1}{\frac{1}{240}+\frac{1}{200}+\frac{1}{800}}=96 \Omega
$$

Now, the circuit is reduced as

$$
1=\frac{28.8}{96+192}=100 \mathrm{~mA}
$$

Option (B) is correct.

Thevenin Voltage: (Open circuit voltage):

The open circuit voltage will be equal to V , i.e. $\mathrm{V}_{\mathrm{Th}}=\mathrm{V}$
Thevenin Resistance:
Set all independent sources to zero i.e. open circuit the current source and short circuit the voltage source as shown in figure

Open circuit voltage $=\mathrm{V}_{1}$

SOL 5.1.37
Option (B) is correct.
V is obtained using super position.
Due to source \mathbf{V}_{1} only : (Open circuit source I_{3} and short circuit source V_{2})

SO,
$A=\frac{1}{3}$
Due to source \mathbf{V}_{2} only : (Open circuit source I_{3} and short circuit source V_{1})

$$
V=\frac{50}{100+50}\left(V_{2}\right)=\frac{1}{3} V_{2}
$$

(Using voltage division)
So,
$B=\frac{1}{3}$
Due to source \mathbf{I}_{3} only : (short circuit sources V_{1} and V_{2})

Page 262

Chap 5

Circuit Theorems
$V=I_{3}[100| | 100| | 100]=I_{3}\left(\frac{100}{3}\right)$
So, $\quad C=\frac{100}{3}$

ALTERNATIVE METHOD :

Try to solve by nodal method, taking a supernode corresponding to voltage source V_{2}.
sol 5.1.38 Option (C) is correct.
The circuit with Norton equivalent

So,

$$
\begin{aligned}
\mathrm{I}_{\mathrm{N}}+\mathrm{I} & =\frac{\mathrm{V}}{\mathrm{R}_{\mathrm{N}}} \\
\mathrm{I} & =\frac{\mathrm{V}}{\mathrm{R}_{\mathrm{N}}}-\mathrm{I}_{\mathrm{N}}
\end{aligned}
$$

From the given graph, the equation of line

$$
I=2 V-6
$$

Comparing with general form

$$
\begin{aligned}
& \frac{1}{\mathrm{R}_{\mathrm{N}}}=2 \text { or } \mathrm{R}_{\mathrm{N}}=0.5 \Omega \\
& \mathrm{I}_{\mathrm{N}}=6 \mathrm{~A}
\end{aligned}
$$

soL 5.1.39 Option (D) is correct.
Thevenin voltage: (Open circuit voltage)

4 V

$$
\mathrm{V}_{\mathrm{Th}}=4+(2 \times 2)=4+4=8 \mathrm{~V}
$$

Thevenin Resistance:

$$
\mathrm{R}_{\mathrm{Th}}=2+3=5 \Omega=\mathrm{R}_{\mathrm{N}}
$$

N orton C urrent:

$$
\mathrm{I}_{\mathrm{N}}=\frac{\mathrm{V}_{T h}}{\mathrm{R}_{\mathrm{Th}}}=\frac{8}{5} \mathrm{~A}
$$

sol 5.1.40 Option (C) is correct.
Norton current, $\mathrm{I}_{\mathrm{N}}=0$ because there is no independent source present in the circuit.
To obtain Norton resistance we put a 1 A test source across the load terminal as shown in figure.

Norton or Thevenin resistance

$$
\mathrm{R}_{N}=\frac{\mathrm{V}_{\text {test }}}{1}
$$

Writing KVL in the left mesh

$$
\begin{aligned}
20 I_{1}+10\left(1-I_{1}\right)-30 I_{1} & =0 \\
20 I_{1}-10 I_{1}-30 \mathrm{I}_{1}+10 & =0 \\
\mathrm{I}_{1} & =0.5 \mathrm{~A}
\end{aligned}
$$

Writing KVL in the right mesh

$$
\begin{aligned}
\mathrm{V}_{\text {test }}-5(1)-30 \mathrm{I}_{1} & =0 \\
\mathrm{~V}_{\text {test }}-5-30(0.5) & =0 \\
\mathrm{~V}_{\text {test }}-5-15 & =0 \\
\mathrm{R}_{N} & =\frac{\mathrm{V}_{\text {test }}}{1}=20 \Omega
\end{aligned}
$$

Option (C) is correct.
In circuit (b) transforming the 3 A source in to 18 V source all source are 1.5 times of that in circuit (a) as shown in figure.

Using principal of linearity, $I_{b}=1.5 I_{a}$
Option (B) is correct.

$$
I=\frac{V_{T h}}{R+R_{T h}}
$$

From the table,

$$
\begin{align*}
2 & =\frac{V_{T h}}{3+R_{T h}} \\
1.6 & =\frac{V_{T h}}{5+R_{T h}}
\end{align*}
$$

Dividing equation (1) and (2), we get

$$
\begin{aligned}
\frac{2}{1.6} & =\frac{5+R_{\text {Th }}}{3+R_{T h}} \\
6+2 \mathrm{R}_{\text {Th }} & =8+1.6 \mathrm{R}_{\text {Th }} \\
0.4 \mathrm{R}_{\text {Th }} & =2
\end{aligned}
$$

Page 264

Chap 5

Circuit Theorems

SOL 5.1.43
Option (D) is correct.
We have, $\quad I=\frac{V_{T h}}{R_{T h}+R}$

$$
\begin{gathered}
\mathrm{V}_{\text {Th }}=16 \mathrm{~V}, \mathrm{R}_{\text {Th }}=5 \Omega \\
\mathrm{I}=\frac{16}{5+\mathrm{R}}=1 \\
16=5+\mathrm{R} \\
\mathrm{R}=11 \Omega
\end{gathered}
$$

sol 5.1.44 Option (B) is correct.

$$
\mathrm{R}_{\mathrm{Th}}=5 \Omega
$$

Substituting $R_{T h}$ into equation (1)

$$
\begin{aligned}
2 & =\frac{\mathrm{V}_{\mathrm{Th}}}{3+5} \\
\mathrm{~V}_{\mathrm{Th}} & =2(8)=16 \mathrm{~V}
\end{aligned}
$$

It can be solved by reciprocity theorem. Polarity of voltage source should have same correspondence with branch current in each of the circuit. Polarity of voltage source and current direction are shown below
So,

$$
\begin{aligned}
\frac{V_{1}}{I_{1}} & =-\frac{V_{2}}{I_{2}}=\frac{V_{3}}{I_{3}} \\
\frac{10}{2.5} & =-\frac{20}{I_{2}}=\frac{40}{I_{3}} \\
I_{2} & =-5 \mathrm{~A} \\
I_{3} & =10 \mathrm{~A}
\end{aligned}
$$

Option (A) is correct.
To obtain V-I equation we find the T hevenin equivalent across the terminal at which X is connected.

Thevenin Voltage : (Open Circuit Voltage)

$$
\begin{aligned}
& \mathrm{V}_{1}=6 \times 1=6 \mathrm{~V} \\
& 12+\mathrm{V}_{1}-\mathrm{V}_{3}=0 \\
& \mathrm{~V}_{3}=12+6=18 \mathrm{~V} \\
& \mathrm{~V}_{\text {Th }}-\mathrm{V}_{2}-\mathrm{V}_{3}=0 \\
& \mathrm{~V}_{\text {Th }}=\mathrm{V}_{2}+\mathrm{V}_{3} \\
&\left(\mathrm{~V}_{2}=2 \times 1=2 \mathrm{~V}\right) \\
& \mathrm{V}_{\text {Th }}=2+18=20 \mathrm{~V}
\end{aligned}
$$

(KVL in outer mesh)
(KVL in B ottom right mesh)

Thevenin Resistance :

$$
\mathrm{R}_{\mathrm{Th}}=1+1=2 \Omega
$$

Now, the circuit becomes as

$$
V=R_{T h} I+V_{T h}
$$

so

$$
I=\frac{V-V_{T h}}{R_{T h}}
$$

$\mathrm{A}=\mathrm{R}_{\mathrm{Th}}=2 \Omega$
$\mathrm{B}=\mathrm{V}_{\mathrm{Th}}=20 \mathrm{~V}$

ALTERNATIVE METHOD :

In the mesh $A B C D E A$, we have $K V L$ equation as

$$
\begin{aligned}
V-1(I+2)-1(I+6)-12 & =0 \\
V & =2 I+20 \\
A & =2, \quad B=2
\end{aligned}
$$

So,
Option (A) is correct.
To obtain V -I relation, we obtain either Norton equivalent or Thevenin equivalent across terminal $a-b$.
Norton Current (short circuit current) :

A pplying nodal analysis at center node

$$
I_{N}+2=\frac{24}{4} \text { or } I_{N}=6-2=4 \mathrm{~A}
$$

Page 266

Chap 5

Circuit Theorems

Norton Resistance :

$$
\mathrm{R}_{N}=4 \Omega
$$

(Both 2Ω resistor are short circuited)
Now, the circuit becomes as

$$
\begin{aligned}
\mathrm{I}_{\mathrm{N}} & =\frac{\mathrm{V}}{\mathrm{R}_{\mathrm{N}}}+\mathrm{I} \\
4 & =\frac{\mathrm{V}}{4}+\mathrm{I} \\
16 & =\mathrm{V}+4 \mathrm{l}
\end{aligned}
$$

or

$$
V=-4 I+16
$$

$I(\mathrm{amp})$

ALTERNATIVE METHOD :

Solve by writing nodal equation at the center node.
Option (C) is correct.
Let T hevenin equivalent of both networks are as shown below.

$$
\begin{array}{rll}
P & =\left(\frac{V_{T h}}{R_{T h}+R}\right)^{2} R & \text { (Single network } N \text {) } \\
P^{\prime} & =\left(\frac{V_{T h}}{R+\frac{R_{T h}}{2}}\right)^{2} R=4\left(\frac{V_{T h}}{2 R+R_{T h}}\right)^{2} R & (T \text { wo } N \text { are added) }
\end{array}
$$

Thus $\mathrm{P}<\mathrm{P}^{\prime}<4 \mathrm{P}$
sol 5.1.48 Option (C) is correct.

$$
\begin{gathered}
I_{1}=\sqrt{\frac{P_{1}}{R}} \text { and } I_{2}=\sqrt{\frac{P_{2}}{R}} \\
\text { Using superposition } \quad \begin{aligned}
I & =I_{1} \pm I_{2}=\sqrt{\frac{P_{1}}{R}} \pm \sqrt{\frac{P_{2}}{R}} \\
I^{2} R & =\left(\sqrt{P_{1}} \pm \sqrt{P_{2}}\right)^{2}
\end{aligned}
\end{gathered}
$$

Option (B) is correct.
From the substitution theorem we know that any branch within a circuit can be replaced by an equivalent branch provided that replacement branch has the same current through it and voltage across it as the original branch. The voltage across the branch in the original circuit

$$
V=\frac{40| | 60}{(40 \| 60)+16}(20)=\frac{24}{40} \times 20=12 \mathrm{~V}
$$

Current entering terminal $a-b$ is

$$
\mathrm{I}=\frac{\mathrm{V}}{\mathrm{R}}=\frac{12}{60}=200 \mathrm{~mA}
$$

In fig(B), to maintain same voltageV $=12 \mathrm{~V}$ current through 240Ω resistor must be

$$
\mathrm{I}_{\mathrm{R}}=\frac{12}{240}=50 \mathrm{~mA}
$$

Using KCL at terminal a, as shown

$$
\begin{aligned}
I & =I_{R}+I_{S} \\
200 & =50+I_{S} \\
I_{S} & =150 \mathrm{~mA} \quad \text { down wards }
\end{aligned}
$$

Option (B) is correct.

Thevenin voltage: (Open Circuit Voltage)

In the given problem, we use mesh analysis method to obtain Thevenin voltage

$$
I_{3}=0
$$

($a-b$ is open circuit)
Writing mesh equations
Mesh 1: $\quad 36-12\left(I_{1}-I_{2}\right)-6\left(I_{1}-I_{3}\right)=0$
$36-12 I_{1}+12 I_{2}-6 I_{1}=0$
$3 I_{1}-2 I_{2}=6$
$\left(I_{3}=0\right)$

Mesh 2: $-24 I_{2}-20\left(I_{2}-I_{3}\right)-12\left(I_{2}-I_{1}\right)=0$

Page 268

Chap 5

Circuit Theorems

$$
\begin{align*}
-24 I_{2}-20 I_{2}-12 I_{2}+12 I_{1} & =0 \tag{3}\\
14 I_{2} & =3 I_{1} \tag{2}
\end{align*}
$$

From equation (1) and (2)

$$
\begin{aligned}
& I_{1}=\frac{7}{3} A, I_{2}=\frac{1}{2} A \\
& \text { M esh 3: } \quad-6\left(I_{3}-I_{1}\right)-20\left(I_{3}-I_{2}\right)-V_{T h}=0 \\
&-6\left[0-\frac{7}{3}\right]-20\left[0-\frac{1}{2}\right]-V_{T h}=0 \\
& 14+10=V_{T h} \\
& V_{T h}=24 \text { volt }
\end{aligned}
$$

Thevenin Resistance :

$$
\mathrm{R}_{\mathrm{Th}}=(20+4)\|24 \Omega=24 \Omega\| 24 \Omega=12 \Omega
$$

ALTERNATIVE METHOD :

V_{Th} can be obtained by writing nodal equation at nodea and at center node.

We obtain Thevenin's equivalent across load terminal.
Thevenin Voltage : (Open Circuit Voltage)

Using KCL at top left node

$$
\begin{array}{ll}
& 5=I_{x}+0 \text { or } I_{x}=5 \mathrm{~A} \\
\text { Using KVL } & 2 I_{\mathrm{x}}-4 I_{\mathrm{x}}-\mathrm{V}_{\text {Th }}=0 \\
& 2(5)-4(5)=V_{T h} \text { or } V_{T h}=-10 \text { volt }
\end{array}
$$

Thevenin Resistance :

First we find short circuit current through a-b

Using KCL at top left node

$$
\begin{aligned}
5 & =I_{\mathrm{x}}+I_{\mathrm{sc}} \\
I_{\mathrm{x}} & =5-I_{s c}
\end{aligned}
$$

A pplying KVL in the right mesh

So,

$$
\begin{aligned}
2 \mathrm{I}_{\mathrm{x}}-4 \mathrm{I}_{\mathrm{x}}+0 & =0 \text { or } \mathrm{I}_{\mathrm{x}}=0 \\
5-\mathrm{I}_{\mathrm{sc}} & =0 \text { or } \mathrm{I}_{\mathrm{sc}}=5 \mathrm{~A} \\
\mathrm{R}_{\text {Th }} & =\frac{\mathrm{V}_{\text {Th }}}{\mathrm{I}_{\mathrm{sc}}}=-\frac{10}{5}=-2 \Omega
\end{aligned}
$$

Now, the circuit becomes as

$$
V=V_{T h}\left(\frac{R}{R+R_{L}}\right)
$$

(Using voltage division)
So,

$$
\begin{aligned}
& \mathrm{V}=\mathrm{V}_{\mathrm{Th}}=-10 \text { volt } \\
& \mathrm{R}=\mathrm{R}_{\mathrm{Th}}=-2 \Omega
\end{aligned}
$$

Option (D) is correct.
We obtain Thevenin equivalent across terminal $a-b$.

Thevenin Voltage :

Since there is no independent source present in the network, Thevenin voltage is simply zero i.e. $\mathrm{V}_{\mathrm{Th}}=0$
Thevenin Resistance :
Put a test source across terminal $a-b$

$$
R_{T h}=\frac{V_{\text {test }}}{I_{\text {test }}}
$$

For the super node

$$
\begin{aligned}
\mathrm{V}_{1}-\mathrm{V}_{\text {test }} & =2000 \mathrm{I}_{\mathrm{x}} \\
\mathrm{~V}_{1}-\mathrm{V}_{\text {test }} & =2000\left(\frac{\mathrm{~V}_{1}}{4000}\right) \\
\frac{\mathrm{V}_{1}}{2} & =\mathrm{V}_{\text {test }} \text { or } \mathrm{V}_{1}=2 \mathrm{~V}_{\text {test }}
\end{aligned}
$$

A pplying KCL to the super node

Page 270

Chap 5

Circuit Theorems

$$
\begin{aligned}
\frac{\mathrm{V}_{1}-0}{4 \mathrm{k}}+\frac{\mathrm{V}_{1}}{4 \mathrm{k}}+\frac{\mathrm{V}_{\text {test }}}{4 \mathrm{k}} & =\mathrm{I}_{\text {test }} \\
2 \mathrm{~V}_{1}+\mathrm{V}_{\text {test }} & =4 \times 10^{3} I_{\text {test }} \\
2\left(2 \mathrm{~V}_{\text {test }}\right)+\mathrm{V}_{\text {test }} & =4 \times 10^{3} I_{\text {test }} \\
\frac{\mathrm{V}_{\text {test }}}{I_{\text {test }}} & =\frac{4 \times 10^{3}}{5}=800 \Omega
\end{aligned} \quad\left(\mathrm{~V}_{1}=2 \mathrm{~V}_{\text {test }}\right)
$$

sol 5.1.53 Option (C) is correct.
Equation for V -I can be obtained with T hevenin equivalent across $\mathrm{a}-\mathrm{b}$ terminals.
Thevenin Voltage: (Open circuit voltage)

Writing KCL at the top node

$$
\begin{aligned}
\frac{V_{x}}{40} & =\frac{V_{T h}-V_{x}}{20} \\
V_{x} & =2 \mathrm{~V}_{\text {Th }}-2 \mathrm{~V}_{\mathrm{x}} \\
3 \mathrm{~V}_{\mathrm{x}} & =2 \mathrm{~V}_{\text {Th }} \Rightarrow \mathrm{V}_{\mathrm{x}}=\frac{2}{3} \mathrm{~V}_{\text {Th }}
\end{aligned}
$$

KCL at the center node

$$
\begin{aligned}
\frac{V_{x}-}{20} V_{T h}+\frac{V_{x}}{30} & =0.3 \\
3 V_{x}-3 V_{T h}+2 V_{x} & =18 \\
5 V_{x}-3 V_{T h} & =18 \\
5\left(\frac{2}{3}\right) V_{T h}-3 V_{T h} & =18
\end{aligned}
$$

$$
\left(V_{x}=\frac{2}{3} V_{T h}\right)
$$

$10 \mathrm{~V}_{\text {Th }}-9 \mathrm{~V}_{\text {Th }}=54$ or $\mathrm{V}_{\mathrm{Th}}=54$ volt
Thevenin Resistance:
When a dependent source is present in the circuit the best way to obtain Thevenin resistance is to remove all independent sources and put a test source across a-b terminals as shown in figure.

$$
\mathrm{R}_{\mathrm{Th}}=\frac{\mathrm{V}_{\text {test }}}{\mathrm{I}_{\text {test }}}
$$

KCL at the top node

$$
\begin{aligned}
\frac{V_{x}}{40}+I_{\text {test }} & =\frac{V_{\text {test }}}{20+30} \\
\frac{V_{x}}{40}+I_{\text {test }} & =\frac{V_{\text {test }}}{50} \\
V_{x} & =\frac{30}{30+20}\left(V_{\text {test }}\right)=\frac{3}{5} V_{\text {test }} \quad \text { (using voltage division) }
\end{aligned}
$$

Substituting V_{x} into equation (1), we get

$$
\begin{aligned}
\frac{3 V_{\text {test }}}{5(40)}+I_{\text {test }} & =\frac{V_{\text {test }}}{50} \\
I_{\text {test }} & =V_{\text {test }}\left(\frac{1}{50}-\frac{3}{200}\right)=\frac{V_{\text {test }}}{200} \\
R_{\text {Th }} & =\frac{V_{\text {test }}}{I_{\text {test }}}=200 \Omega
\end{aligned}
$$

The circuit now reduced as

$$
\begin{aligned}
\mathrm{I} & =\frac{\mathrm{V}-\mathrm{V}_{\mathrm{Th}}}{\mathrm{R}_{T h}}=\frac{\mathrm{V}-54}{200} \\
\mathrm{~V} & =200 \mathrm{I}+54
\end{aligned}
$$

Option (D) is correct.
To obtain Thevenin resistance put a test source across the terminal a, b as shown.

$$
V_{\text {test }}=V_{x}, I_{\text {test }}=I_{x}
$$

Writing loop equation for the circuit

$$
\begin{align*}
& V_{\text {test }}=600\left(I_{1}-I_{2}\right)+300\left(I_{1}-I_{3}\right)+900\left(I_{1}\right) \\
& V_{\text {test }}=(600+300+900) I_{1}-600 I_{2}-300 I_{3} \\
& V_{\text {test }}=1800 I_{1}-600 I_{2}-300 I_{3} \tag{1}
\end{align*}
$$

The loop current are given as,

$$
I_{1}=I_{\text {test }}, \quad I_{2}=0.3 \mathrm{~V}_{5}, \quad \text { and } \quad I_{3}=3 I_{\text {test }}+0.2 \mathrm{~V}_{\mathrm{s}}
$$

Substituting theses values into equation (1),

$$
\begin{aligned}
\mathrm{V}_{\text {test }} & =1800 I_{\text {test }}-600\left(0.01 \mathrm{~V}_{\mathrm{s}}\right)-300\left(31_{\text {test }}+0.01 \mathrm{~V}_{\mathrm{s}}\right) \\
\mathrm{V}_{\text {test }} & =1800 I_{\text {test }}-6 \mathrm{~V}_{\mathrm{s}}-900 \mathrm{I}_{\text {test }}-3 \mathrm{~V}_{\mathrm{s}} \\
10 \mathrm{~V}_{\text {test }} & =900 \mathrm{I}_{\text {test }} \text { or } \mathrm{V}_{\text {test }}=90 \mathrm{I}_{\text {test }}
\end{aligned}
$$

Thevenin resistance

$$
\mathrm{R}_{\text {Th }}=\frac{\mathrm{V}_{\text {test }}}{I_{\text {test }}}=90 \Omega
$$

Thevenin voltage or open circuit voltage will be zero because there is no independent source present in the network, i.e. $\mathrm{V}_{\text {oc }}=0 \mathrm{~V}$

Chap 5

SOLUTIONS 5.2

Circuit Theorems
sol 5.2.1 Correct answer is 3.
We solve this problem using principal of linearity.

In the left, 4Ω and 2Ω are in series and has same current $\mathrm{I}=1 \mathrm{~A}$.

$$
\begin{align*}
\mathrm{V}_{3} & =4 \mathrm{I}+2 \mathrm{I} \tag{usingKVL}\\
& =6 \mathrm{I}=6 \mathrm{~V} \\
\mathrm{I}_{3} & =\frac{\mathrm{V}_{3}}{3}=\frac{6}{3}=2 \mathrm{~A} \\
\mathrm{I}_{2} & =\mathrm{I}_{3}+\mathrm{I} \\
& =2+1=3 \mathrm{~A} \\
\mathrm{~V}_{1} & =(1) \mathrm{I}_{2}+\mathrm{V}_{3} \\
& =3+6=9 \mathrm{~V} \\
\mathrm{I}_{1} & =\frac{\mathrm{V}_{1}}{6}=\frac{9}{6}=\frac{3}{2} \mathrm{~A}
\end{align*}
$$

A pplying principal of linearity
For $\mathrm{V}_{\mathrm{s}}=\mathrm{V}_{0}, \quad \mathrm{I}_{1}=\frac{3}{2} \mathrm{~A}$
So for $\mathrm{V}_{\mathrm{s}}=2 \mathrm{~V}_{0}, \quad \mathrm{I}_{1}=\frac{3}{2} \times 2=3 \mathrm{~A}$
Correct answer is 3 .
We solve this problem using principal of linearity.

$$
\begin{aligned}
\mathrm{I} & =\frac{\mathrm{V}}{1}=\frac{1}{1}=1 \mathrm{~A} \\
\mathrm{~V}_{2} & =2 \mathrm{I}+(1) \mathrm{I}=3 \mathrm{~V} \\
\mathrm{I}_{2} & =\frac{\mathrm{V}_{2}}{6}=\frac{3}{6}=\frac{1}{2} \mathrm{~A} \\
\mathrm{I}_{1} & =\mathrm{I}_{2}+\mathrm{I} \\
& =\frac{1}{2}+1=\frac{3}{2} \mathrm{~A}
\end{aligned}
$$

Applying principal of superposition
W hen $I_{s}=I_{0}$, and $V=1 V$,

$$
I_{1}=\frac{3}{2} \mathrm{~A}
$$

So, if $I_{s}=2 I_{0}$,

$$
I_{1}=\frac{3}{2} \times 2=3 \mathrm{~A}
$$

Correct answer is 160 .
We solve this problem using superposition.
Due to 9A source only : (Open circuit 6 A source)

Using current division

$$
\frac{\mathrm{V}_{1}}{40}=\frac{20}{20+(40+30)}(9) \Rightarrow \mathrm{V}_{1}=80 \text { volt }
$$

Due to 6 A source only : (Open circuit 9 A source)

Using current division,

$$
\frac{V_{2}}{40}=\frac{30}{30+(40+20)}(6) \Rightarrow V_{2}=80 \text { volt }
$$

From superposition,

$$
\mathrm{V}=\mathrm{V}_{1}+\mathrm{V}_{2}=80+80=160 \text { volt }
$$

ALTERNATIVE METHOD :

The problem may be solved by transforming both the current sources into equivalent voltage sources and then applying voltage division.
sol 5.2.4 Correct answer is 5.
Using super position, we obtain I.
Due to 10 V source only : (Open circuit 5 A source)

$$
\mathrm{I}_{1}=\frac{10}{2}=5 \mathrm{~A}
$$

Due to 5 A source only : (Short circuit 10 V source)

$$
\begin{aligned}
I_{2} & =0 \\
I & =I_{1}+I_{2}=5+0=5 \mathrm{~A}
\end{aligned}
$$

ALTERNATIVE METHOD:

We can see that voltage source is in parallel with resistor and current source so voltage across parallel branches will be 10 V and $\mathrm{I}=10 / 2=5 \mathrm{~A}$

Page 274

Chap 5

Circuit Theorems

SOL 5.2.5

.

Correct answer is -0.5 .
A pplying superposition,
Due to 6 V source only : (Open circuit 2 A current source)

$$
I_{1}=\frac{6}{6+6}=0.5 \mathrm{~A}
$$

Due to 2 A source only: (Short circuit 6 V source)

$$
I_{2}=\frac{6}{6+6}(-2)
$$

$$
=-1 \mathrm{~A}
$$

$$
1=I_{1}+I_{2}=0.5-1=-0.5 \mathrm{~A}
$$

ALTERNATIVE METHOD :

This problem may be solved by using a single KVL equation around the outer loop.

Correct answer is 4.
Applying superposition,
Due to 24 V Source Only : (Open circuit 2 A and short circuit 20 V source)

$$
\mathrm{I}_{1}=\frac{24}{8}=3 \mathrm{~A}
$$

Due to 20 V source only : (Short circuit 24 V and open circuit 2 A source)

So
Due to 2A source only: (Short circuit 24 V and 20 V sources)

$$
\begin{aligned}
I_{3} & =\frac{4}{4+4}(2) \\
& =1 \mathrm{~A}
\end{aligned}
$$

So
$I=I_{1}+I_{2}+I_{3}=3+0+1=4 \mathrm{~A}$
Alternate Method: We can see that current in the middle 4Ω resistor is I -2 , therefore I can be obtained by applying KVL in the bottom left mesh. Correct answer is 0 .

$$
V_{0}=0
$$

(short circuit both sources)

(using current division)

$$
0
$$

Correct answer is 1.5 .
Using source transformation of 48 V source and the 24 V source

using parallel resistances combination

Source transformation of 8 A and 6 A sources

Page 276

Chap 5

Circuit Theorems

Writing KVL around anticlock wise direction

$$
\begin{aligned}
-12-2|+40-4|-2 \mid-16 & =0 \\
12-8 \mid & =0 \\
1 & =\frac{12}{8}=1.5 \mathrm{~A}
\end{aligned}
$$

sol 5.2.9 Correct answer is 2.25.
We apply source transformation as follows.
Transforming 3 mA source into equivalent voltage source and 18 V source into equivalent current source.

$6 \mathrm{k} \Omega$ and $3 \mathrm{k} \Omega$ resistors are in parallel and equivalent to 2Ω.

A gain transforming 3 mA source

$$
\begin{aligned}
I & =\frac{6+6}{2+8+4+2}=\frac{3}{4} \mathrm{~mA} \\
\mathrm{P}_{4 \mathrm{k} \Omega} & =I^{2}\left(4 \times 10^{3}\right)=\left(\frac{3}{4}\right)^{2} \times 4=2.25 \mathrm{~mW}
\end{aligned}
$$

sol 5.2.10 Correct answer is 3.
Set all independent sources to zero (i.e. open circuit current sources and short circuit voltage sources) to obtain R_{Th}

$$
\mathrm{R}_{\mathrm{Th}}=12 \Omega \| 4 \Omega=3 \Omega
$$

Correct answer is 16.8 .

Using current division

$$
I_{1}=\frac{(5+1)}{(5+1)+(3+1)}(12)=\frac{6}{6+4}(12)=7.2 \mathrm{~A}
$$

$$
\begin{gather*}
\mathrm{V}_{1}=\mathrm{I}_{1} \times 1=7.2 \mathrm{~V} \\
\mathrm{I}_{2}=\frac{(3+1)}{(3+1)+(5+1)}(12)=4.8 \mathrm{~A} \\
\mathrm{~V}_{2}=5 \mathrm{I}_{2}=5 \times 4.8=24 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{Th}}+\mathrm{V}_{1}-\mathrm{V}_{2}=0 \tag{KVL}\\
\mathrm{~V}_{\mathrm{Th}}=\mathrm{V}_{2}-\mathrm{V}_{1}=24-7.2=16.8 \mathrm{~V} \\
12 \mathrm{I}
\end{gather*}
$$

Correct answer is 7.
We obtain T hevenin's resistanceacrossa -b and then usesourcetransformation of Thevenin's circuit to obtain equivalent Norton circuit.

$$
\mathrm{R}_{\mathrm{Th}}=(5+1)\|(3+1)=6\| 4=2.4 \Omega
$$

Thevenin's equivalent is

Norton equivalent

Correct answer is -0.5 .
Current I can be easily calculated by Thevenin's equivalent across 6Ω.
Thevenin Voltage : (Open Circuit Voltage)

Page 278

Chap 5

Circuit Theorems

$$
\begin{aligned}
& \text { In the bottom mesh } \begin{aligned}
\mathrm{I}_{2} & =1 \mathrm{~A} \\
\text { In the bottom left mesh }-\mathrm{V}_{\mathrm{Th}}-12 \mathrm{I}_{2}+3 & =0 \\
\mathrm{~V}_{\mathrm{Th}} & =3-(12)(1)=-9 \mathrm{~V}
\end{aligned}
\end{aligned}
$$

Thevenin Resistance:

(both 4Ω resistors are short circuit)
so, circuit becomes as

$$
I=\frac{V_{T h}}{R_{T h}+6}=\frac{-9}{12+6}=-\frac{9}{18}=-0.5 \mathrm{~A}
$$

N ote: The problem can be solved easily by a single node equation. Take the nodes connecting the top $4 \Omega, 3 \mathrm{~V}$ and 4Ω as supernode and apply KCL .
Correct answer is 0 .
We obtain Thevenin's equivalent across R .
Thevenin Voltage: (Open circuit voltage)

Applying KVL

$$
\begin{aligned}
18-6 I_{\mathrm{x}}-2 \mathrm{I}_{\mathrm{x}}-(1) \mathrm{I}_{\mathrm{x}} & =0 \\
\mathrm{I}_{\mathrm{x}} & =\frac{18}{9}=2 \mathrm{~A} \\
\mathrm{~V}_{\mathrm{Th}} & =(1) \mathrm{I}_{\mathrm{x}}=(1)(2)=2 \mathrm{~V}
\end{aligned}
$$

Thevenin Resistance :

$$
I_{x}=0
$$

(Due to short circuit)

So dependent source also becomes zero.

Thevenin resistance,

$$
\mathrm{R}_{\mathrm{Th}}=\frac{\mathrm{V}_{\mathrm{Th}}}{\mathrm{I}_{\mathrm{sc}}}=\frac{2}{3} \Omega
$$

Now, the circuit becomes as

$$
\begin{aligned}
1 & =\frac{2}{\frac{2}{3}+R}=3 \\
2 & =2+3 R \\
R & =0
\end{aligned}
$$

Correct answer is 121.5 .
We obtain Thevenin's equivalent across R. By source transformation of both voltage sources

Adding parallel sources and combining parallel resistances

Here,

$$
\mathrm{V}_{\mathrm{Th}}=5.4 \mathrm{~V}, \quad \mathrm{R}_{\mathrm{Th}}=60 \Omega
$$

For maximum power transfer

$$
\mathrm{R}=\mathrm{R}_{\mathrm{Th}}=60 \Omega
$$

Page 280

Chap 5

Circuit Theorems

Maximum Power absorbed by R

$$
P=\frac{\left(V_{T h}\right)^{2}}{4 R}=\frac{(5.4)^{2}}{4 \times 60}=121.5 \mathrm{~mW}
$$

ALTERNATIVE METHOD:

Thevenin voltage (open circuit voltage) may be obtained using node voltage method also.
sol 5.2.16 Correct answer is 3 .
First we obtain equivalent voltage and resistance across terminal a-b using Millman's theorem.

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{ab}}=\frac{-\frac{60}{15}+\left(-\frac{120}{15}\right)+\frac{20}{5}}{\frac{1}{15}+\frac{1}{15}+\frac{1}{5}}=-24 \mathrm{~V} \\
& \mathrm{R}_{\mathrm{ab}}=\frac{1}{\frac{1}{15}+\frac{1}{15}+\frac{1}{5}}=3 \Omega
\end{aligned}
$$

So, the circuit is reduced as

Correct answer is 6 .
Set all independent sources to zero as shown,

Correct answer is 0.5 .
We solve this problem using linearity and taking assumption that $I=1 \mathrm{~A}$.

In the circuit,

$$
\begin{aligned}
\mathrm{V}_{2} & =4 \mathrm{I}=4 \mathrm{~V} \\
\mathrm{I}_{2} & =I+\mathrm{I}_{1} \\
& =1+\frac{\mathrm{V}_{2}}{4+8}=1+\frac{4}{12}=\frac{4}{3} \mathrm{~A} \\
\mathrm{~V}_{3} & =3 \mathrm{I}_{2}+\mathrm{V}_{2} \\
& =3 \times \frac{4}{3}+4=8 \mathrm{~V} \\
\mathrm{I}_{\mathrm{s}} & =\mathrm{I}_{3}+\mathrm{I}_{2} \\
& =\frac{\mathrm{V}_{3}}{3}+\mathrm{I}_{2}=\frac{8}{3}+\frac{4}{3}=4 \mathrm{~A}
\end{aligned}
$$

(Using Ohm's law)
(Using KCL)
(Using K VL)
(Using KCL)

Correct answer is -1 .
Solving with superposition,
Due to 6V Source Only : (Open Circuit 2 mA source)

$$
\begin{aligned}
& I_{s}=\frac{6}{6+6 \| 12}=\frac{6}{6+4}=0.6 \mathrm{~mA} \\
& I_{1}=\frac{6}{6+12}\left(I_{s}\right)=\frac{6}{18} \times 0.6=0.2 \mathrm{~mA} \quad \text { (Using current division) }
\end{aligned}
$$

Due to 2 mA source only : (Short circuit 6 V source) :

Combining resistances,

$$
\begin{array}{r}
6 \mathrm{k} \Omega \| 6 \mathrm{k} \Omega=3 \mathrm{k} \Omega \\
3 \mathrm{k} \Omega+6 \mathrm{k} \Omega=9 \mathrm{k} \Omega
\end{array}
$$

$$
\begin{aligned}
\mathrm{I}_{2} & =\frac{9}{9+6}(-2)=-1.2 \mathrm{~mA} \\
\mathrm{I} & =\mathrm{I}_{1}+\mathrm{I}_{2} \\
& =0.2-1.2=-1 \mathrm{~mA}
\end{aligned}
$$

(Current division)
(Using superposition)

ALTERNATIVE METHOD :

Try to solve the problem using source conversion.
Correct answer is 4.
We find Thevenin equivalent across a-b.

Page 282

Chap 5

Circuit Theorems

$$
\mathrm{I}_{\mathrm{L}}=\frac{\mathrm{V}_{T h}}{\mathrm{R}_{\mathrm{Th}}+\mathrm{R}_{\mathrm{L}}}
$$

From the data given in table

$$
\begin{align*}
10 & =\frac{V_{T h}}{R_{T h}+2} \tag{1}\\
6 & =\frac{V_{T h}}{R_{T h}+10} \tag{2}
\end{align*}
$$

Dividing equation (1) and (2), we get

$$
\begin{aligned}
\frac{10}{6} & =\frac{\mathrm{R}_{\text {Th }}+10}{\mathrm{R}_{\text {Th }}+2} \\
10 \mathrm{R}_{\text {Th }}+20 & =6 \mathrm{R}_{\text {Th }}+60 \\
4 \mathrm{R}_{\text {Th }} & =40 \Rightarrow \mathrm{R}_{\text {Th }}=10 \Omega
\end{aligned}
$$

Substituting $R_{T h}$ into equation (1)

$$
\begin{aligned}
10 & =\frac{\mathrm{V}_{\mathrm{Th}}}{10+2} \\
\mathrm{~V}_{\mathrm{Th}} & =10(12)=120 \mathrm{~V}
\end{aligned}
$$

For $R_{L}=20 \Omega, \quad \mathrm{I}_{\mathrm{L}}=\frac{\mathrm{V}_{T h}}{\mathrm{R}_{\mathrm{Th}}+\mathrm{R}_{\mathrm{L}}}$

$$
=\frac{120}{10+20}=4 \mathrm{~A}
$$

sol 5.2.21 Correct answer is 4.

For maximum power transfer

$$
\mathrm{R}_{\mathrm{Th}}=\mathrm{R}_{\mathrm{L}}=2 \Omega
$$

To obtain $R_{T h}$ set all independent sources to zero and put a test source across the load terminals.

$$
\mathrm{R}_{\mathrm{Th}}=\frac{\mathrm{V}_{\text {test }}}{\mathrm{I}_{\text {test }}}
$$

Using K VL,

$$
\begin{aligned}
V_{\text {test }}-4 I_{\text {test }}-2 I_{\text {test }}-k V_{x}-4 I_{\text {test }} & =0 \\
V_{\text {test }}-10 I_{\text {test }}-k\left(-2 I_{\text {test }}\right) & =0
\end{aligned} \quad\left(V_{x}=-2 I_{\text {test }}\right)
$$

$$
\begin{aligned}
\mathrm{V}_{\text {test }} & =(10-2 \mathrm{k}) I_{\text {test }} \\
\mathrm{R}_{\text {Th }} & =\frac{\mathrm{V}_{\text {test }}}{\mathrm{I}_{\text {test }}}=10-2 \mathrm{k}=2 \\
8 & =2 \mathrm{k} \text { or } \mathrm{k}=4
\end{aligned}
$$

Correct answer is 18 .
To calculate maximum power transfer, first we will find T hevenin equivalent across load terminals.
Thevenin Voltage: (Open Circuit Voltage)

Using source transformation

$$
\begin{aligned}
V_{T h} & =\frac{2}{2+2}(24) \\
& =12 \mathrm{~V}
\end{aligned}
$$

Thevenin Resistance :

$$
\mathrm{R}_{\mathrm{Th}}=1+2 \| 2=1+1=2 \mathrm{k} \Omega
$$

Circuit becomes as

$$
V_{L}=\frac{R_{L}}{R_{T h}+R_{L}} V_{T h}
$$

For maximum power transfer $R_{L}=R_{T h}$

$$
V_{L}=\frac{V_{T h}}{2 R_{T h}} \times R_{T h}=\frac{V_{T h}}{2}
$$

So maximum power absorbed by R_{L}

(Using voltage division)

Page 284

Chap 5

Circuit Theorems

$$
P_{\max }=\frac{V_{L}^{2}}{R_{L}}=\frac{V_{T h}^{2}}{4 R_{T h}}=\frac{(12)^{2}}{4 \times 2}=18 \mathrm{~mW}
$$

Correct answer is 22.5 .
The circuit is as shown below

W hen $\mathrm{R}_{\mathrm{L}}=50 \Omega$, power absorbed in load will be

$$
\begin{equation*}
\left(\frac{R_{s}}{R_{s}+50} I_{s}\right)^{2} 50=20 \mathrm{~kW} \tag{1}
\end{equation*}
$$

W hen $R_{L}=200 \Omega$, power absorbed in load will be

$$
\begin{equation*}
\left(\frac{R_{s}}{R_{s}+200} l_{s}\right)^{2} 200=20 \mathrm{~kW} \tag{2}
\end{equation*}
$$

Dividing equation (1) and (2), we have

$$
\begin{aligned}
\left(R_{s}+200\right)^{2} & =4\left(R_{s}+50\right)^{2} \\
R_{s} & =100 \Omega \text { and } I_{s}=30 A
\end{aligned}
$$

From maximum power transfer, the power supplied by source current I_{s} will be maximum when load resistance is equal to source resistance i.e. $R_{L}=R_{s}$. M aximum power is given as

$$
P_{\max }=\frac{1_{s}^{2} R_{s}}{4}=\frac{(30)^{2} \times 100}{4}=22.5 \mathrm{~kW}
$$

Correct answer is 6.

If we solve this circuit directly by nodal analysis, then we have to deal with three variables. We can replace the left most and write most circuit by their Thevenin equivalent as shown below.

Now the circuit becomes as shown

Writing node equation at the top center node

$$
\frac{V_{1}-4}{1+1}+\frac{V_{1}}{6}+\frac{V_{1}-12}{1+2}=0
$$

$$
\begin{aligned}
\frac{V_{1}+4}{2}+\frac{V_{1}}{6}+\frac{V_{1}-12}{3} & =0 \\
3 V_{1}-12+V_{1}+2 V_{1}-24 & =0 \\
6 V_{1} & =36 \\
V_{1} & =6 \mathrm{~V}
\end{aligned}
$$

Correct answer is 56 .

6Ω and 3Ω resistors are in parallel, which is equivalent to 2Ω.

Using source transformation of 6 A source

Source transform of 4 A source

Adding series resistors and sources on the left

Source transformation of 48 V source

Page 286

Chap 5

Circuit Theorems

Source transformation of $\frac{4}{3} \mathrm{~A}$ source.

$$
\begin{aligned}
\mathrm{I} & =\frac{12+72+\mathrm{V}_{\mathrm{s}}}{19+9} \\
\mathrm{~V}_{\mathrm{s}} & =(28 \times \mathrm{I})-12-72=(28 \times 5)-12-72=56 \mathrm{~V}
\end{aligned}
$$

Correct answer is 0.5 .
We obtain I using superposition.
Due to 24 V source only: (Open circuit 6A)

Applying K VL

$$
\begin{aligned}
24-6 I_{1}-3 I_{1}-3 I_{1} & =0 \\
I_{1} & =\frac{24}{12}=2 \mathrm{~A}
\end{aligned}
$$

Due to 6 A source only : (Short circuit 24 V source)

A pplying KVL to supermesh

$$
\begin{aligned}
-6 I_{2}-3\left(6+I_{2}\right)-3 I_{2} & =0 \\
6 I_{2}+18+3 I_{2}+3 I_{2} & =0 \\
I_{2} & =-\frac{18}{12}=-\frac{3}{2} \mathrm{~A}
\end{aligned}
$$

From superposition,

$$
\begin{aligned}
I & =I_{1}+I_{2} \\
& =2-\frac{3}{2}=\frac{1}{2}=0.5 \mathrm{~A}
\end{aligned}
$$

ALTERNATIVE METHOD:

Note that current in 3Ω resistor is $(1+6) A$, so by applying $K V L$ around the outer loop, we can find current I.
Correct answer is 11.

$$
R_{T h}=\frac{V_{o c}}{I_{s c}}=\frac{\text { Open circuit voltage }}{\text { short circuit }}
$$

Thevenin Voltage: (Open Circuit Voltage $\mathbf{V}_{\text {oc }}$)
Using source transformation of the dependent source

A pplying KCL at top left node

$$
24=\frac{V_{x}}{6} \Rightarrow V_{x}=144 V
$$

Using KVL, $\quad V_{x}-8 I-\frac{V_{x}}{2}-V_{o c}=0$

$$
\begin{aligned}
144-0-\frac{144}{2} & =V_{o c} \\
V_{o c} & =72 \mathrm{~V}
\end{aligned}
$$

Short circuit current (\mathbf{I}_{sc}):

A pplying KVL in the right mesh

$$
V_{x}-8 I_{s c}-\frac{V_{x}}{2}=0
$$

$$
\begin{aligned}
& \frac{V_{x}}{2}=81_{s c} \\
& V_{x}=161_{s c}
\end{aligned}
$$

KCL at the top left node

$$
\begin{aligned}
24 & =\frac{V_{x}}{6}+\frac{V_{x}-V_{x} / 2}{8} \\
24 & =\frac{V_{x}}{6}+\frac{V_{x}}{16} \\
V_{x} & =\frac{1152}{11} \mathrm{~V} \\
\mathrm{I}_{\mathrm{sc}} & =\frac{V_{x}}{16}=\frac{1152}{11 \times 16}=\frac{72}{11} \mathrm{~A} \\
\mathrm{R}_{\text {Th }} & =\frac{V_{o c}}{1_{s c}}=\frac{72}{\frac{72}{11}}=11 \Omega
\end{aligned}
$$

ALTERNATIVE METHOD :

We can obtain Thevenin equivalent resistance without calculating the Thevenin voltage (open circuit voltage). Set all independent sources to zero (i.e. open circuit current sources and short circuit voltage sources) and put a test source $V_{\text {test }}$ between terminal $a-b$ as shown

Page 288

Chap 5

Circuit Theorems

$$
\begin{aligned}
& \mathrm{R}_{\text {Th }}=\frac{\mathrm{V}_{\text {test }}}{1_{\text {test }}} \\
& 6 \mathrm{I}+8 \mathrm{I}-\frac{\mathrm{V}_{\mathrm{x}}}{2}-\mathrm{V}_{\text {test }}=0 \\
& 14 \mathrm{l}-\frac{6 \mathrm{I}}{2}-\mathrm{V}_{\text {test }}=0 \\
& 11 \mathrm{l}=\mathrm{V}_{\text {test }} \\
&(\mathrm{KVL}) \\
& 0 \quad \mathrm{R}_{\mathrm{Th}}=\frac{\mathrm{V}_{\text {test }}}{1_{\text {test }}}=11 \Omega
\end{aligned} \quad \mathrm{~V}_{\mathrm{x}}=61_{\text {test }} \text { (Using Ohm's law) }
$$

Correct answer is 4 .
We solve this problem using linearity and assumption that $I=1 \mathrm{~A}$.

$$
\begin{aligned}
\mathrm{V}_{1} & =4 \mathrm{I}+2 \mathrm{I} \\
& =6 \mathrm{~V} \\
\mathrm{I}_{2} & =\mathrm{I}_{1}+\mathrm{I} \\
& =\frac{\mathrm{V}_{1}}{4}+\mathrm{I}=\frac{6}{4}+1=2.5 \mathrm{~A} \\
\mathrm{~V}_{2} & =4 \mathrm{I}_{2}+\mathrm{V}_{1} \\
& =4(2.5)+6=16 \mathrm{~V} \\
\mathrm{I}_{5}+\mathrm{I}_{3} & =\mathrm{I}_{2} \\
\mathrm{I}_{\mathrm{s}}-\frac{\mathrm{V}_{2}}{4+12} & =\mathrm{I}_{2} \\
\mathrm{I}_{\mathrm{s}} & =\frac{16}{16}+2.5=3.5 \mathrm{~A}
\end{aligned}
$$

When $I_{s}=3.5 \mathrm{~A}$,

$$
\begin{aligned}
& I=1 \mathrm{~A} \\
& \mathrm{I}=\frac{.1}{3.5} \times 14=4 \mathrm{~A}
\end{aligned}
$$

But $I_{s}=14 \mathrm{~A}$, so
sol 5.2.29 Correct answer is 120 .
This problem will easy to solve if we obtain Thevenin equivalent across the 12 V source.
Thevenin Voltage : (Open Circuit Voltage)

M esh currents are
Mesh 1: $\quad I_{1}=0$
(due to open circuit)
M esh 2: $\quad I_{1}-I_{3}=2$ or $I_{3}=-2 A$
M esh 3: $\quad I_{3}-I_{2}=4$ or $I_{2}=-6 A$
M esh equation for outer loop

$$
\begin{aligned}
\mathrm{V}_{\text {Th }}-1 \times \mathrm{I}_{3}-1 \times \mathrm{I}_{2} & =0 \\
\mathrm{~V}_{\text {Th }}-(-2)-(-6) & =0 \\
\mathrm{~V}_{\text {Th }}+2+6 & =0 \\
\mathrm{~V}_{\text {Th }} & =-8 \mathrm{~V}
\end{aligned}
$$

Thevenin Resistance :

$$
\mathrm{R}_{\mathrm{Th}}=1+1=2 \Omega
$$

circuit becomes as

$$
\mathrm{I}=\frac{12-\mathrm{V}_{\mathrm{Th}}}{\mathrm{R}_{\mathrm{Th}}}=\frac{12-(-8)}{2}=10 \mathrm{~A}
$$

Power supplied by 12 V source

$$
P_{12 \mathrm{v}}=10 \times 12=120 \mathrm{~W}
$$

ALTERNATIVE METHOD :

KVL in the loop ABCDA

$$
\begin{aligned}
12-1(I-2)-1(I-6) & =0 \\
2 \mid & =20 \\
I & =10 \mathrm{~A}
\end{aligned}
$$

Power supplied by 12 V source

$$
P_{12 \mathrm{~V}}=10 \times 12=120 \mathrm{~W}
$$

Correct answer is 286.
For maximum power transfer $R_{L}=R_{T h}$. To obtain Thevenin resistance set all independent sources to zero and put a test source across load terminals.

Page 290

Chap 5

Circuit Theorems

$$
\mathrm{R}_{\mathrm{Th}}=\frac{\mathrm{V}_{\text {test }}}{\mathrm{I}_{\text {test }}}
$$

Writing KCL at the top center node

Also,
so

$$
\begin{equation*}
\frac{\mathrm{V}_{\text {test }}}{2 \mathrm{k}}+\frac{\mathrm{V}_{\text {test }}-2 \mathrm{~V}_{\mathrm{x}}}{1 \mathrm{k}}=\mathrm{I}_{\text {test }} \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
\mathrm{V}_{\text {test }}+\mathrm{V}_{\mathrm{x}} & =0 \\
\mathrm{~V}_{\mathrm{x}} & =-\mathrm{V}_{\text {test }}
\end{aligned}
$$

Substituting $\mathrm{V}_{\mathrm{x}}=-\mathrm{V}_{\text {test }}$ into equation (1)

$$
\begin{aligned}
\frac{\mathrm{V}_{\text {test }}}{2 \mathrm{k}}+\frac{\mathrm{V}_{\text {test }}-2\left(-\mathrm{V}_{\text {test }}\right)}{1 \mathrm{k}} & =I_{\text {test }} \\
\mathrm{V}_{\text {test }}+6 \mathrm{~V}_{\text {test }} & =2 I_{\text {test }} \\
\mathrm{R}_{\text {Th }} & =\frac{\mathrm{V}_{\text {test }}}{I_{\text {test }}}=\frac{2}{7} \mathrm{k} \Omega \simeq 286 \Omega
\end{aligned}
$$

sol 5.2.31 Correct answer is 4.
Redrawing the circuit in Thevenin equivalent form

$$
\mathrm{I}=\frac{\mathrm{V}_{T h}-\mathrm{V}}{\mathrm{R}_{T h}}
$$

or,

$$
V=-R_{T h} I+V_{T h}
$$

(General form)
From the given graph

$$
\begin{gathered}
\mathrm{V}=-4 \mathrm{I}+8 \\
\text { So, by comparing } \quad \mathrm{R}_{\mathrm{Th}}=4 \mathrm{k} \Omega, \quad \mathrm{~V}_{\mathrm{Th}}=8 \mathrm{~V}
\end{gathered}
$$

For maximum power transfer $R_{L}=R_{T h}$ Maximum power absorbed by R_{L}

$$
P_{\max }=\frac{V_{T h}^{2}}{4 R_{T h}}=\frac{(8)^{2}}{4 \times 4}=4 \mathrm{~mW}
$$

Correct answer is 3.
To fine out Thevenin equivalent of the circuit put a test source between node a and b,

$$
\mathrm{R}_{\mathrm{Th}}=\frac{\mathrm{V}_{\text {test }}}{\mathrm{I}_{\text {test }}}
$$

Writing node equation at V_{1}

$$
\begin{align*}
\frac{\mathrm{V}_{1}-\alpha \mathrm{I}_{\mathrm{x}}}{1}+\frac{\mathrm{V}_{1}}{1} & =\mathrm{I}_{\mathrm{x}} \\
2 \mathrm{~V}_{1} & =(1+\alpha) \mathrm{I}_{\mathrm{x}} \tag{1}
\end{align*}
$$

I_{x} is the branch current in 1Ω resistor given as

$$
\mathrm{I}_{\mathrm{x}}=\frac{\mathrm{V}_{\text {test }}-\mathrm{V}_{1}}{1}
$$

$$
\mathrm{V}_{1}=\mathrm{V}_{\text {test }}-\mathrm{I}_{\mathrm{x}}
$$

Substituting V_{1} into equation (1)

$$
\begin{aligned}
\left.2 \mathrm{~V}_{\text {test }}-\mathrm{I}_{\mathrm{x}}\right) & =(1+\alpha) \mathrm{I}_{\mathrm{x}} \\
2 \mathrm{~V}_{\text {test }} & =(3+\alpha) \mathrm{I}_{\mathrm{x}} \\
2 \mathrm{~V}_{\text {test }} & =(3+\alpha) I_{\text {test }} \\
\mathrm{R}_{\text {Th }} & =\frac{\mathrm{V}_{\text {test }}}{I_{\text {test }}}=\frac{3+\alpha}{2}=3 \\
3+\alpha & =6 \\
\alpha & =3 \Omega
\end{aligned}
$$

$$
2 V_{\text {test }}=(3+\alpha) I_{\text {test }} \quad\left(I_{x}=I_{\text {test }}\right)
$$

Correct answer is 16 .
We obtain Thevenin equivalent across the load terminals
Thevenin Voltage : (Open circuit voltage)

$$
V_{T h}=V_{a}-V_{b}
$$

R otating the circuit, makes it simple

	$I_{1}=\frac{340}{340+60}(40)=34 \mathrm{~A}$	(Current division)
Similarly,	$V_{a}=20 I_{1}=20 \times 34=680 \mathrm{~V}$	(Ohm's Law)
$I_{2}=\frac{60}{60+340}(40)=6 \mathrm{~A}$	(Current division)	
$V_{b}=100 I_{2}=100 \times 6=600 \mathrm{~V}$	(Ohm's Law)	

Thevenin voltage $\mathrm{V}_{\text {Th }}=680-600=80 \mathrm{~V}$
Thevenin Resistance :

Page 292

Chap 5

Circuit Theorems

Correct answer is 108.
We use source transformation as follows

$$
I=\frac{36-12}{6+2}=3 \mathrm{~A}
$$

Power supplied by 36 V source

$$
P_{36 v}=3 \times 36=108 \mathrm{~W}
$$

Correct answer is 1026.
Now, we do source transformation from left to right as shown

$$
\begin{aligned}
\mathrm{V}_{\mathrm{s}} & =(27+1.5)(4 \Omega \| 2 \Omega) \\
& =28.5 \times \frac{4}{3} \\
& =38 \mathrm{~V}
\end{aligned}
$$

Power supplied by 27 A source

$$
\begin{aligned}
\mathrm{P}_{27 \mathrm{~A}} & =\mathrm{V}_{\mathrm{s}} \times 27=38 \times 27 \\
& =1026 \mathrm{~W}
\end{aligned}
$$

Correct answer is 9 .
First, we find current I in the 4Ω resistors using superposition.
Due to 18 V source only : (Open circuit 4A and short circuit 12 V source)

Due to 12 V source only : (Open circuit 4 A and short circuit 18 V source)

Page 294

Chap 5

Circuit Theorems

$$
\mathrm{I}_{2}=-\frac{12}{4}=-3 \mathrm{~A}
$$

Due to 4 A source only: (Short circuit 12 V and 18 V sources)

$$
I_{3}=0
$$

(Due to short circuit)

So,

$$
\begin{aligned}
\mathrm{I} & =\mathrm{I}_{1}+\mathrm{I}_{2}+\mathrm{I}_{3} \\
& =4.5-3+0 \\
& =1.5 \mathrm{~A}
\end{aligned}
$$

Power dissipated in 4Ω resistor

$$
P_{4 \Omega}=I^{2}(4)=(1.5)^{2} \times 4=9 W
$$

Alternate M ethod: Let current in 4Ω resistor is I , then by applying KVL around the outer loop

$$
\begin{aligned}
18-12-4 \mid & =0 \\
I & =\frac{6}{4}=1.5 \mathrm{~A}
\end{aligned}
$$

So, power dissipated in 4Ω resistor

$$
\begin{aligned}
P_{4 \Omega} & =I^{2}(4)=(1.5)^{2} \times 4 \\
& =9 \mathrm{~W}
\end{aligned}
$$

Correct answer is -10 .
Using, Thevenin equivalent circuit
Thevenin Voltage : (Open Circuit Voltage)

$$
\mathrm{I}_{\mathrm{x}}=-4 \mathrm{~A}
$$

(due to open circuit)
Writing KVL in bottom right mesh

$$
\begin{aligned}
-24-(1) I_{x}-V_{T h} & =0 \\
V_{T h} & =-24+4=-20 \mathrm{~V}
\end{aligned}
$$

Thevenin Resistance :

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{Th}}=\frac{\text { open circuit voltage }}{\text { short circuit current }}=\frac{\mathrm{V}_{o c}}{\mathrm{I}_{\mathrm{sc}}} \\
& \mathrm{~V}_{\mathrm{oc}}=\mathrm{V}_{\mathrm{Th}}=-20 \mathrm{~V}
\end{aligned}
$$

$I_{\text {sc }}$ is obtained as follows

$$
\begin{align*}
\mathrm{I}_{\mathrm{x}} & =-\frac{24}{1}=-24 \mathrm{~A} \\
\mathrm{I}_{\mathrm{x}}+4 & =\mathrm{I}_{\mathrm{sc}} \tag{usingKCL}\\
-24+4 & =\mathrm{I}_{\mathrm{sc}} \\
\mathrm{I}_{\mathrm{sc}} & =-20 \mathrm{~A} \\
\mathrm{R}_{\mathrm{Th}} & =\frac{-20}{-20}=1 \Omega
\end{align*}
$$

The circuit is as shown below

$$
V=\frac{1}{1+R_{T h}}\left(V_{T h}\right)=\frac{1}{1+1}(-20)=-10 \text { volt (Using voltage division) }
$$

ALTERNATIVE METHOD:

Note that current in bottom right most 1Ω resistor is ($\mathrm{I}_{\mathrm{x}}+4$), so applying KVL around the bottom right mesh,

$$
\begin{aligned}
&-24-I_{x}-\left(I_{x}+4\right)=0 \\
& I_{x}=-14 \mathrm{~A} \\
& \text { So, } \quad \begin{aligned}
& =1 \times\left(I_{x}+4\right)=-14+4=-10 \mathrm{~V}
\end{aligned}
\end{aligned}
$$

Correct answer is 100 .
Writing currents into 100Ω and 300Ω resistors by using KCL as shown in figure.

$$
\mathrm{I}_{\mathrm{x}}=1 \mathrm{~A}, \mathrm{~V}_{\mathrm{x}}=\mathrm{V}_{\text {test }}
$$

Writing mesh equation for bottom right mesh.

$$
\begin{aligned}
\mathrm{V}_{\text {test }} & =100\left(1-21_{x}\right)+300\left(1-21_{x}-0.01 \mathrm{~V}_{x}\right)+800 \\
& =100 \mathrm{~V}
\end{aligned}
$$

Page 296

Chap 5

Circuit Theorems

$$
\mathrm{R}_{\mathrm{Th}}=\frac{\mathrm{V}_{\text {test }}}{1}=100 \Omega
$$

Correct answer is 30.

$$
\begin{align*}
\text { For } \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{ab} 1} & =\sqrt{10 \mathrm{k} \times 3.6 \mathrm{~m}}=6 \mathrm{~V} \\
\text { For } \mathrm{R}_{\mathrm{L}}=30 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{ab} 2} & =\sqrt{30 \mathrm{k} \times 4.8 \mathrm{~m}}=12 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{ab} 1} & =\frac{10}{10+\mathrm{R}_{\mathrm{Th}}} \mathrm{~V}_{\mathrm{Th}}=6 \tag{1}\\
\mathrm{~V}_{\mathrm{ab} 2} & =\frac{30}{30+\mathrm{R}_{\mathrm{Th}}} \mathrm{~V}_{\mathrm{Th}}=12 \tag{2}
\end{align*}
$$

Dividing equation (1) and (2), we get $\mathrm{R}_{\mathrm{Th}}=30 \mathrm{k} \Omega$. M aximum power will be transferred when $R_{L}=R_{T h}=30 \mathrm{k} \Omega$.

