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1.1 INTRODUCTION

We have learnt about whole numbers and integers in Class VI.
We know that integers form a bigger collection of numbers
which contains whole numbers and negative numbers. What
other differences do you find between whole numbers and
integers? In this chapter, we will study more about integers,
their properties and operations. First of all, we will review and
revise what we have done about integers in our previous class.

1.2 RECALL

We know how to represent integers on a number line. Some integers are marked on the
number line given below.

Can you write these marked integers in ascending order? The ascending order of
these numbers is – 5, – 1, 3. Why did we choose  – 5 as the smallest number?

Some points are marked with integers on the following number line. Write these integers
in descending order.

The  descending order of these integers is 14, 8, 3, ...
The above number line has only a few integers filled. Write appropriate numbers at

each dot.
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–3 –2

A B C D E F G H I J K L M N O

TRY THESE

1. A number line representing integers is given below

–3 and –2 are marked by E and F respectively. Which integers are marked by B,
D, H, J, M and O?

2. Arrange 7, –5, 4, 0 and – 4 in ascending order and then mark them on a number
line to check your answer.

We have done addition and subtraction of integers in our previous class. Read the
following statements.
On a number line when we

(i) add a positive integer, we move to the right.
(ii) add a negative integer, we move to the left.
(iii) subtract a positive integer, we move to the left.
(iv) subtract a negative integer, we move to the right.
State whether the following statements are correct or incorrect. Correct those which
are wrong:

(i) When two positive integers are added we get a positive integer.
(ii) When two negative integers are added we get a positive integer.
(iii) When a  positive integer and a  negative integer are added, we always get a negative

integer.
(iv) Additive inverse of an integer 8 is (– 8) and additive inverse of (– 8) is 8.
(v) For subtraction, we add the additive inverse of the integer that is being subtracted,

to the other integer.
(vi) (–10) + 3 = 10 – 3
(vii) 8 + (–7) – (– 4) = 8 + 7 – 4
Compare your answers with the answers given below:

(i) Correct. For example:
(a) 56 + 73 = 129 (b) 113 + 82 = 195  etc.

Construct five more examples in support of this statement.
(ii) Incorrect, since (– 6) + (– 7) = – 13, which is not a positive integer. The correct

statement is: When two negative integers are added we  get a negative integer.
For example,

(a) (– 56) + (– 73) = – 129 (b) (– 113) + (– 82) = – 195, etc.
Construct five more examples on your own to verify this statement.
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TRY THESE

(iii) Incorrect, since – 9 + 16 = 7, which is not a negative integer. The correct statement is :
When one positive and one negative integers are added, we take their difference
and place the sign of the bigger integer. The bigger integer is decided by ignoring the
signs of both the integers. For example:
(a) (– 56) + (73) = 17 (b) (– 113) + 82 = – 31
(c) 16 + (– 23) = – 7 (d) 125 + (– 101) = 24
Construct five more examples for verifying this statement.

(iv) Correct. Some other examples of additive inverse are as given below:

Integer Additive inverse
10 –10

–10 10
76 –76

–76 76

Thus, the additive inverse of any integer a is – a and additive inverse of (– a) is a.
(v) Correct. Subtraction is opposite of addition and therefore, we add the additive

inverse of the integer that is being subtracted, to the other integer. For example:
(a) 56 – 73 =  56 + additive inverse of 73 = 56 + (–73) = –17
(b) 56 – (–73) =  56 + additive inverse of (–73) = 56 + 73 = 129
(c) (–79) – 45 = (–79) + (– 45) = –124
(d) (–100) – (–172) = –100 + 172 = 72 etc.
Write atleast five such examples to verify this statement.
Thus, we find that for any two integers a and b,

a – b = a + additive inverse of b = a + (– b)
and a – (– b) = a + additive inverse of (– b) = a + b

(vi) Incorrect, since (–10) + 3 = –7 and 10 – 3 = 7
therefore, (–10) + 3 ≠ 10 – 3

(vii) Incorrect, since, 8 + (–7) – (– 4) = 8 + (–7) + 4 = 1 + 4 = 5
and 8 + 7 – 4 = 15 – 4 = 11
However, 8 + (–7) – (– 4) = 8 – 7 + 4

We have done various patterns with numbers in our previous class.
Can you find a pattern for each of the following? If yes, complete them:

(a) 7, 3, – 1, – 5, , , .
(b) – 2, – 4, – 6, – 8, , , .
(c) 15, 10, 5, 0, , , .
(d) – 11, – 8, – 5, – 2, , , .

Make some more such patterns and ask your friends to complete them.
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–10 –5 0 5 10 15 20 25

Lahulspiti Srinagar Shimla Ooty Bangalore

EXERCISE 1.1

1. Following number line shows the temperature in degree celsius (°C) at different places
on a particular day.

(a) Observe this number line and write the temperature of the places marked on it.

(b) What is the temperature difference between the hottest and the coldest places
among the above?

(c) What is the temperature difference between Lahulspiti and Srinagar?

(d) Can we say temperature of Srinagar and Shimla taken together is less than the
temperature at Shimla? Is it also less than the temperature at Srinagar?

2. In a quiz, positive marks are given for correct answers and negative marks are given
for incorrect answers. If Jack’s scores in five successive rounds were 25, – 5, – 10,
15 and 10, what was his total at the end?

3. At Srinagar temperature was – 5°C on Monday and then it dropped
by 2°C on Tuesday. What was the temperature of Srinagar on Tuesday?
On Wednesday, it rose by 4°C. What was the temperature on this
day?

4. A plane is flying at the height of 5000 m above the sea level. At a
particular point, it is exactly above a submarine floating 1200 m below
the sea level. What is the vertical distance between them?

5. Mohan deposits Rs 2,000 in his bank account and withdraws Rs 1,642
from it, the next day. If withdrawal of amount from the account is
represented by a negative integer, then how will you represent the amount
deposited? Find the balance in Mohan’s account after the withdrawal.

6. Rita goes 20 km towards east from a point A to the point B. From B,
she moves 30 km towards west along the same road. If the distance
towards east is represented by a positive integer then, how will you
represent the distance travelled towards west? By which integer will
you represent her final position from A?
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7. In a magic square each row, column and diagonal have the same sum. Check which
of the following is a magic square.

5 –1 – 4 1 –10 0
–5 –2 7 – 4 –3 –2
0 3 –3 – 6 4 –7

(i) (ii)
8. Verify a – (– b) = a + b for the following values of a and b.

(i) a = 21, b = 18 (ii) a = 118, b = 125
(iii) a = 75, b = 84 (iv) a = 28, b = 11

9. Use the sign of  >, < or =  in the box to make the statements true.
(a) (– 8) + (– 4) (–8) – (– 4)
(b) (– 3) + 7 – (19) 15 – 8 + (– 9)
(c) 23 – 41 + 11 23 – 41 – 11
(d) 39 + (– 24) – (15) 36 + (– 52) – (– 36)
(e) – 231 + 79 + 51 –399 + 159 + 81

10. A water tank has steps inside it. A monkey is sitting on the topmost step (i.e., the first
step). The water level is at the ninth step.
(i) He jumps 3 steps down and then jumps back 2 steps up.

In how many jumps will he reach the water level?
(ii) After drinking water, he wants to go back. For this, he

jumps 4 steps up and then jumps back 2 steps down
in every move. In how many jumps will he reach back
the top step?

(iii) If the number of steps moved down is represented by
negative integers and the number of steps moved up by
positive integers, represent his moves in part (i) and (ii)
by completing the following; (a) – 3 + 2 – ...  =  – 8
(b) 4 – 2 + ...  =  8. In (a) the sum (– 8) represents going
down by eight steps. So, what will the sum 8 in (b)
represent?

1.3  PROPERTIES OF ADDITION AND SUBTRACTION OF INTEGERS

1.3.1  Closure under Addition
We have learnt that sum of two whole numbers is again a whole number. For example,
17 + 24 = 41 which is again a whole number. We know that, this property is known as the
closure property for addition of the whole numbers.
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Let us see whether this property is true for integers or not.
Following are some pairs of integers. Observe the following table and complete it.

Statement Observation
(i) 17 + 23 = 40 Result is an integer
(ii) (–10) + 3 = 
(iii) (– 75) + 18 = 
(iv) 19 + (– 25) = – 6 Result is an integer
(v) 27 + (– 27) = 
(vi) (– 20) + 0 = 
(vii) (– 35) + (– 10) = 

What do you observe? Is the sum of two integers always an integer?
Did you find a pair of integers whose sum is not an integer?
Since addition of integers gives integers, we say integers are closed under addition.
In general, for any two integers a and b, a + b is an integer.

1.3.2  Closure under Subtraction

What happens when we subtract an integer from another integer? Can we say that their
difference is also an integer?

Observe the following table and complete it:

Statement Observation
(i) 7 – 9 = – 2 Result is an integer

(ii) 17 – (– 21) = 

(iii) (– 8) – (–14) = 6 Result is an integer

(iv) (– 21) – (– 10) = 

(v) 32 – (–17) = 

(vi) (– 18) – (– 18) = 

(vii) (– 29) – 0 = 

What do you observe? Is there any pair of integers whose difference is not an integer?
Can we say integers are closed under subtraction? Yes, we can see that integers are
closed under subtraction.

Thus, if a and b are two integers then a – b is also an intger. Do the whole numbers
satisfy this property?
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1.3.3  Commutative Property

We know that 3 + 5 = 5 + 3 = 8, that is, the whole numbers can be added in any order. In
other words, addition is commutative for whole numbers.
Can we say the same for integers also?
We have 5 + (– 6) = –1 and (– 6) + 5 = –1
So, 5 + (– 6) = (– 6) + 5
Are the following equal?

(i) (– 8) + (– 9) and (– 9) + (– 8)
(ii) (– 23) + 32 and 32 + (– 23)
(iii) (– 45) + 0 and 0 + (– 45)

Try this with five other pairs of integers. Do you find any pair of integers for which the
sums are different when the order is changed? Certainly not. Thus, we conclude that
addition is commutative for integers.
In general, for any two integers a and b, we can say

a + b = b + a
� We know that subtraction is not commutative for whole numbers. Is it commutative

for  integers?
Consider the integers 5 and (–3).
Is 5 – (–3) the same as (–3) –5? No, because  5 – ( –3) = 5 + 3 = 8, and (–3) – 5
= – 3 – 5 = – 8.
Take atleast five different pairs of integers and check this.
We conclude that subtraction is not commutative for integers.

1.3.4  Associative Property
Observe the following examples:

Consider the integers –3, –2 and –5.

Look at (–5) + [(–3) + (–2)] and [(–5) + (–3)] + (–2).

In the first sum (–3) and (–2) are grouped together and in the second (–5) and (–3)
are grouped together. We will check whether we get different results.

(–5) + [(–3) + (–2)] [(–5) + (–3)] + (–2)
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TRY THESE

In both the cases, we get –10.

i.e., (–5) + [(–3) + (–2)] = [(–5) + (–2)] + (–3)
Similarly consider  –3 , 1 and  –7.

( –3) + [1 + (–7)] = –3 +  = 

[(–3) + 1] + (–7) = –2 +  = 

Is (–3) + [1 + (–7)] same as [(–3) + 1] + (–7)?

Take five more such examples. You will not find any example for which the sums are
different. This shows that addition is associative for integers.

In general for any integers a, b and c, we can say
a + (b + c) = (a + b) + c

1.3.5  Additive Identity

When we add zero to any whole number, we get the same whole number. Zero is an
additive identity for whole numbers. Is it an additive identity again for integers also?
Observe the following and fill in the blanks:

(i) (– 8) + 0  = – 8 (ii) 0 + (– 8) = – 8
(iii) (–23) + 0 = (iv) 0 + (–37) = –37
(v) 0 + (–59) = (vi) 0 +  = – 43

(vii) – 61 +  = – 61 (viii)  + 0 = 
The above examples show that zero is an additive identity for integers.
You can verify it by adding zero to any other five integers.
In general, for any integer a

a + 0 = a = 0 + a

1. Write a pair of integers whose sum gives

(a) a negative integer (b) zero

(c) an integer smaller than both the integers. (d) an integer smaller than only one of the integers.
(e) an integer greater than both the integers.

2. Write a pair of integers whose difference gives
(a) a negative integer. (b) zero.
(c) an integer smaller than both the integers. (d) an integer greater than only one of the integers.
(e) an integer greater than both the integers.
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EXAMPLE 1 Write down a pair of integers whose

(a) sum is –3 (b) difference is  –5

(c) difference is 2 (d) sum is 0

SOLUTION (a) (–1) + (–2) = –3 or (–5) + 2 = –3

(b) (–9) – (– 4) = –5 or (–2) – 3 = –5

(c) (–7) – (–9) = 2 or 1 – (–1) = 2

(d) (–10) + 10 = 0 or 5 + (–5) = 0

              Can you write more pairs in these examples?

EXERCISE 1.2

1. Write down a pair of integers whose:
(a) sum is  –7 (b) difference is  –10 (c) sum is 0

2. (a) Write a pair of negative integers whose difference gives 8.
(b) Write a negative integer and a positive integer whose sum is –5.
(c) Write a negative integer and a positive integer whose difference is –3.

3. In a quiz, team A scored – 40, 10, 0 and team B scored 10, 0, – 40 in three
successive rounds. Which team scored more? Can we say that we can add
integers in any order?

4. Fill in the blanks to make the following statements true:
(i) (–5) + (............) = (– 8) + (............)
(ii) –53 + ............ = –53
(iii) 17 + ............ = 0
(iv) [13 + (– 12)] + (............) = ............ + [(–12) + (–7)]
(v) (– 4) + [............ + (–3)] = [............ + 15] + ............

1.4  MULTIPLICATION OF INTEGERS

We can add and subtract integers. Let us now learn how to multiply integers.

1.4.1  Multiplication of a Positive and a Negative Integer

We know that multiplication of whole numbers is repeated addition. For example,
5 + 5 + 5 = 3 × 5 = 15

Can you represent addition of integers in the same way?
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We have from the following number line, (–5) + (–5) + (–5) = –15

But we can also write

(–5) + (–5) + (–5) = 3 × (–5)
Therefore, 3 × (–5) = –15

Similarly (– 4) + (– 4) + (– 4) + (– 4) + (– 4) = 5 × (– 4) = –20

And (–3) + (–3) + (–3) + (–3) =  = 

Also, (–7) + (–7) + (–7) =  = 
Let us see how to find the product of a positive integer and a negative integer without

using number line.
Let us find 3 × (–5) in a different way. First find 3 × 5 and then put minus sign (–)

before the product obtained. You get –15. That is we find – (3 × 5) to get –15.
Similarly, 5 × (– 4) = – (5×4) = – 20.
Find in a similar way,

4 × (– 8) =  =  3 × (– 7) =  = 
6 × (– 5) =  =  2 × (– 9) =  = 

Using this method we thus have,
10 × (– 43) =  – (10 × 43) = – 430

Till now we multiplied integers as (positive integer) × (negative integer).
Let us now multiply them as (negative integer) × (positive integer).
We first find –3 × 5.
To find this, observe the following pattern:

We have, 3 × 5 = 15
2 × 5 = 10 = 15 – 5
1 × 5 = 5 = 10 – 5
0 × 5 = 0 = 5 – 5

So, –1 × 5 = 0 – 5 = –5

–20 –16 –12 –8 –4 0

–20 –15 –10 –5 0

TRY THESE

Find:
4 × (– 8),
8 × (–2),
3 × (–7),
10 × (–1)

using number line.

TRY THESE

Find:
(i) 6 × (–19)
(ii) 12 × (–32)
(iii) 7 × (–22)
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TRY THESE

–2 × 5 = –5 – 5 = –10
–3 × 5 = –10 – 5 = –15

We already have 3 × (–5) = –15
So we get (–3) × 5 = –15 = 3 × (–5)
Using such patterns, we also get (–5) × 4 = –20 = 5 × (– 4)

Using patterns, find (– 4) × 8, (–3) × 7, (– 6) × 5 and (– 2) × 9

Check whether, (– 4) × 8 = 4 × (– 8), (– 3) × 7 = 3 × (–7), (– 6) × 5 = 6 × (– 5)

and (– 2) × 9 = 2 × (– 9)

Using this we get, (–33) × 5 = 33 × (–5) = –165

We thus find that while multiplying a positive integer and a negative integer, we
multiply them as whole numbers and put a minus sign (–) before the product. We
thus get a negative integer.

1. Find: (a) 15 × (–16) (b) 21 × (–32)

(c) (– 42) × 12 (d) –55 × 15

2. Check if (a) 25 × (–21) = (–25) × 21 (b) (–23) × 20 = 23 × (–20)

Write five more such examples.

In general, for any two positive integers a and b we can say

a × (– b) = (– a) × b = – (a × b)

1.4.2  Multiplication of two Negative Integers

Can you find the product  (–3) × (–2)?
Observe the following:

–3 × 4 = – 12
–3 × 3 = –9 = –12 – (–3)
–3 × 2 = – 6 = –9 – (–3)
–3 × 1 = –3 = – 6 – (–3)
–3 × 0 = 0   = –3 – (–3)
–3 × –1 = 0 – (–3) = 0 + 3 = 3
–3 × –2 = 3 – (–3) = 3 + 3 = 6

Do you see any pattern? Observe how the products change.
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Based on this observation, complete the following:
–3 × –3 =  –3 × – 4 = 

Now observe these products and fill in the blanks:
– 4 × 4 = –16
– 4 × 3 = –12  = –16 + 4
– 4 × 2 =   = –12 + 4
– 4 × 1 = 
– 4 × 0 = 
– 4 × (–1) = 
– 4 × (–2) = 
– 4 × (–3) = 

From these patterns we observe that,
(–3) × (–1) = 3 = 3 × 1
(–3) × (–2) = 6 = 3 × 2
(–3) × (–3) = 9 = 3 × 3

and (– 4) × (–1) = 4 = 4 × 1
So, (– 4) × (–2) = 4 × 2   =  

(– 4) × (–3) =  = 
So observing these products we can say that the product of two negative integers is

a positive integer. We multiply the two negative integers as whole numbers and put
the positive sign before the product.

Thus, we have (–10) × (–12) = 120

Similarly (–15) × (– 6) = 90

In general, for any two positive integers a and b,

(– a) × (– b) = a × b

Find:  (–31) × (–100), (–25) × (–72), (–83) × (–28)

Game 1

(i) Take a board marked from –104 to 104 as shown in the figure.
(ii) Take a bag containing two blue and two red dice. Number of dots on the blue dice

indicate positive integers and number of dots on the red dice indicate negative integers.

(iii) Every player will place his/her counter at zero.
(iv) Each player will take out two dice at a time from the bag and throw them.

TRY THESE

(i) Starting from (–5) × 4, find (–5) × (– 6)
(ii) Starting from (– 6) × 3, find (– 6) × (–7)

TRY THESE
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104 103 102 101 100 99 98 97 96 95 94
83 84 85 86 87 88 89 90 91 92 93
82 81 80 79 78 77 76 75 74 73 72
61 62 63 64 65 66 67 68 69 70 71
60 59 58 57 56 55 54 53 52 51 50
39 40 41 42 43 44 45 46 47 48 49
38 37 36 35 34 33 32 31 30 29 28
17 18 19 20 21 22 23 24 25 26 27
16 15 14 13 12 11 10 9 8 7 6

5  4 3 2 1 0 1 2 3 4 5
 6 7  8 9 10 11 12 13 14 15 16
27 26 25 24 23 22 21 20 19 18 17
28 29 30 31 32 33 34 35 36 37 38
 49 48 47 46 45 44 43 42 41 40 39
50 51 52 53 54 55 56 57 58 59  60
71 70 69 68 67 66 65 64 63 62 61
72 73 74 75 76 77 78 79 80 81 82

93 92 91 90 89 88 87 86 85 84 83
94 95 96 97 98 99 100 101 102 103  104

(v) After every throw, the player has to multiply the numbers marked on the dice.

(vi) If the product is a positive integer then the player will move his counter towards
104; if the product is a negative integer then the player will move his counter
towards –104.

(vii) The player who reaches 104 first is the winner.
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1.4.3  Product of three or more Negative Integers
We observed that the product of two negative integers is a positive integer.
What will be the product of three negative integers? Four negative integers?
Let us observe the following examples:

(a) (– 4) × (–3) = 12
(b) (– 4) × (–3) × (–2) = [(– 4) × (–3)] × (–2) = 12 × (–2) = – 24

(c) (– 4) × (–3) × (–2) × (–1) = [(– 4) × (–3) × (–2)] × (–1) = (–24) × (–1)
(d) (–5) × [(–4) × (–3) × (–2) × (–1)] = (–5) × 24 = –120

From the above products we observe that
(a) the product of two negative integers

is a positive integer;
(b) the product of three negative integers

is a negative integer.
(c) product of four negative integers is

a positive integer.
What is the product of five negative integers in
(d)?
So what will be the product of six negative
integers?

We further see that in (a) and (c) above,
the number of negative integers that are
multiplied are even [two and four respectively]
and the product obtained in (a) and (c) are
positive integers. The number of negative
integers that are multiplied in (b) and (d) are
odd and the products obtained in (b) and (d)
are negative integers.

We find that if the number of negative integers in a product is even, then the
product is a positive integer; if the number of negative integers in a product is odd,
then the product is a negative integer.
Justify it by taking five more examples of each kind.

THINK, DISCUSS AND WRITE

(i) The product (–9) × (–5) × (– 6)×(–3) is positive whereas the product
(–9) × ( 5) × 6 × (–3) is negative. Why?

(ii) What will be the sign of the product if we multiply together:
(a) 8 negative integers and 3 positive integers?
(b) 5 negative integers and 4 positive integers?

Euler in his book Ankitung zur
Algebra(1770), was one of
the first mathematicians to
attempt to prove
 (–1) × (–1) = 1

A Special Case

Consider the following statements and
the resultant products:
(–1) × (–1) = +1
(–1) × (–1) × (–1) = –1
(–1) × (–1) × (–1) × (–1)  = +1
(–1) × (–1) × (–1) × (–1) × (–1) = –1

This means that if the integer
(–1) is multiplied even number of times,
the product is +1 and if the integer (–1)
is multiplied odd number of times, the
product is –1. You can check this by
making pairs of (–1) in the statement.
This is useful in working out products of
integers.
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(c) (–1), twelve times?
(d) (–1), 2m times, m is a natural number?

1.5  PROPERTIES OF MULTIPLICATION OF INTEGERS

1.5.1  Closure under Multiplication
1. Observe the following table and complete it:

Statement Inference

(–20) × (–5) = 100 Product is an integer

(–15) × 17 = – 255 Product is an integer

(–30) × 12 = 

(–15) × (–23) = 

(–14) × (–13) = 

12 × (–30) = 

What do you observe? Can you find a pair of integers whose product is not an integer?
No. This gives us an idea that the product of two integers is again an integer. So we can
say that integers are closed under multiplication.
In general,

a × b is an integer, for all integers a and b.

Find the product of five more pairs of integers and verify the above statement.

1.5.2  Commutativity of Multiplication

We know that multiplication is commutative for whole numbers. Can we say, multiplication
is also commutative for integers?
Observe the following table and complete it:

Statement 1 Statement 2 Inference

3 × (– 4) = –12 (– 4) × 3 = –12 3 × (– 4) = (– 4) × 3

(–30) × 12 = 12 × (–30) = 

(–15) × (–10) = 150 (–10) × (–15) = 150

(–35) × (–12) = (–12) × (–35) =

(–17) × 0 = 

 = (–1) × (–15) =



MATHEMATICS16

0 is the additive identity whereas 1 is  the
multiplicative identity for integers. We get
additive inverse of an integer a when we multiply
(–1) to a, i.e.  a × (–1) = (–1) × a = – a

What are your observations? The above examples suggest multiplication is
commutative for integers. Write five more such examples and verify.
In general, for any two integers a and b,

a × b = b × a

1.5.3  Multiplication by Zero

We know that any whole number when multiplied by zero gives zero. Observe the following
products of negative integers and zero. These are obtained from the patterns done earlier.

(–3) × 0 = 0
0 × (– 4) = 0
– 5 × 0 = 
0 × (– 6) = 

This shows that the product of a negative integer and zero is zero.
In general, for any integer a,

a × 0 = 0 × a = 0

1.5.4  Multiplicative Identity

We know that 1 is the multiplicative identity for whole numbers.
Check that 1 is the multiplicative identity for integers as well. Observe the following

products of  integers with 1.
(–3) × 1 = –3 1 × 5 = 5
(– 4) × 1 = 1 × 8 = 
1 × (–5) = 3 × 1 = 
1 × (– 6) = 7 × 1 = 

This shows that 1 is the multiplicative identity for integers also.
In general, for any integer a we have,

a × 1 = 1 × a = a
What happens when we multiply any integer with –1?  Complete the following:

(–3) × (–1) = 3
3 × (–1) = –3
(– 6) × (–1) = 
(–1) × 13 = 
(–1) × (–25) = 
18 × (–1) = 

What do you observe?
Can we say –1 is a multiplicative identity of integers? No.
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1.5.5  Associativity for Multiplication

Consider –3, –2 and 5.
Look at [(–3) × (–2)] × 5 and  (–3) × [(–2) × 5].

In the first case (–3) and (–2) are grouped together and in the second (–2) and 5 are
grouped together.
We see that [(–3) × (–2)] × 5 = 6 × 5 = 30
and   (–3) × [(–2) × 5] = (–3) × (–10) = 30
So, we get the same answer in both the cases.
Thus, [(–3) × (–2)] × 5 = (–3) × [(–2) × 5]
Look at this and complete the products:

[(7) × (– 6)] × 4 =  × 4 = 
7 × [(– 6) × 4] = 7 ×  = 
Is [7 × (– 6)] × (– 4) = 7 × [(– 6) × (– 4)]?

Does the grouping of integers affect the product of integers? No.
In general, for any three integers a, b and c

(a × b) × c = a × (b × c)

Take any five values for a, b and c each and verify this property.
Thus, like whole numbers, the product of three integers does not depend upon

the grouping of integers and this is called the associative property for multiplication
of integers.

1.5.6  Distributive Property

We know
16 × (10 + 2) = (16 × 10) + (16 × 2) [Distributivity of multiplication over addition]
Let us check if this is true for integers also.
Observe the following:

(a) (–2) × (3 + 5) = –2 × 8 = –16
and [(–2) × 3] + [(–2) × 5] = (– 6) + (–10) = –16
So, (–2) × (3 + 5) = [(–2) × 3] + [(–2) × 8]

(b) (– 4) × [(–2) + 7] = (– 4) × 5 = –20
and [(– 4) × (–2)] + [(– 4) × 7] =  8  + (–28)  = –20
So, (– 4) × [(–2) + 7]  = [(– 4) × (–2)] + [(– 4) × 7]

(c) (– 8) × [(–2) + (–1)] = (– 8) × (–3) = 24
and [(– 8) × (–2)] + [(– 8) × (–1)] =  16  + 8  = 24
So, (– 8) × [(–2) + (–1)]  = [(– 8) × (–2)] + [(– 8) × (–1)]
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TRY THESE

TRY THESE

Can we say that the distributivity of multiplication over addition is true for integers
also? Yes.
In general, for any integers a, b and c,

a × (b + c) = a × b + a × c

Take atleast five different values for each of a, b and c and verify the above Distributive
property.

(i) Is 10 × [(6 + (–2)] = 10 × 6 + 10 × (–2)?
(ii) Is (–15) × [(–7) + (–1)] = (–15) × (–7) + (–15) × (–1)?

Now consider the following:
Can we say 4 × (3 – 8) = 4 × 3 – 4 × 8?
Let us check:

4 × (3 – 8) = 4 × (–5) = –20
4 × 3 – 4 × 8 = 12  – 32 = –20

So, 4 × (3 – 8) = 4 × 3 – 4 × 8.
Look at the following:

( –5) × [( – 4)  – ( – 6)] = ( –5) × 2 =  –10
[( –5) × ( – 4)]  – [ ( –5) × ( – 6)]  = 20  – 30 =  –10

So, ( –5) × [( – 4)  – ( – 6)] = [( –5) × ( – 4)]  – [ ( –5) × ( – 6)]
Check this for ( –9) × [ 10  – ( –3)] and [( –9) × 10 ]  – [ ( –9) × ( –3)]
You will find that these are also equal.
In general, for any three integers a, b and c,

a × (b – c) = a × b – a × c

Take atleast five different values for each of a, b and c and verify this property.

(i) Is 10 × (6 – (–2)] = 10 × 6 – 10 × (–2)?
(ii) Is (–15) × [(–7) – (–1)] = (–15) × (–7) – (–15) × (–1)?

1.5.7  Making Multiplication Easier

Consider the following:
(i) We can find (–25) × 37 × 4 as

[(–25) × 37] × 4 = (– 925)× 4 = –3700
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TRY THESE

Or, we can do it this way,
(–25) × 37 × 4 = (–25) × 4 × 37 = [(–25) × 4] × 37 = (–100) × 37 = –3700
Which is the easier way?
Obviously the second way is easier because multiplication of (–25) and 4 gives
–100 which is easier to multiply with 37. Note that the second way involves
commutativity and associativity of integers.
So, we find that the commutativity, associativity and distributivity of integers help to
make our calculations simpler. Let us further see how calculations can be made
easier using these properties.

(ii) Find 16 × 12
16 × 12 can be written as 16 × (10 + 2).
16 × 12 =   16 × (10 + 2)  =  16 × 10 + 16 × 2 = 160 + 32 = 192

(iii) (–23) × 48 = (–23) × [50 – 2]  = (–23) × 50 – (–23) × 2 = (–1150) – (– 46)
= –1104

(iv) (–35) × (–98) = (–35) × [(–100) + 2] = (–35) × (–100) + (–35) × 2
= 3500 + (–70) = 3430

(v) 52 × (– 8) + (–52) × 2
(–52) × 2 can also be written as  52 × (–2).

Therefore, 52 × (– 8) + (–52) × 2 = 52 × (– 8) + 52 × (–2)
= 52 × [(– 8) + (–2)] = 52 × [(–10)] = –520

Find (ñ 49) × 18; (ñ25) × (ñ31); 70 × (–19) + (–1) × 70 using distributive property.

EXAMPLE 2 Find each of the following products:
(i) (–18) × (–10) × 9 (ii) (–20) × (–2) × (–5) × 7

(iii) (–1) × (–5) ×  (– 4) × (– 6)

SOLUTION

(i) (–18) × (–10) × 9 = [(–18) × (–10)] × 9 = 180 × 9 = 1620
(ii) (–20) × (–2) × (–5) × 7 = – 20 × (–2 × –5) × 7 = [–20 × 10] × 7 = – 1400
(iii) (–1) × (–5) ×  (– 4) × (– 6) = [(–1) × (–5)] × [(– 4) × (– 6)] = 5 × 24 = 120

EXAMPLE 3 Verify   (–30) × [13 + (–3)] =  [(–30) × 13] + [(–30) × (–3)]

SOLUTION (–30) × [13 + (–3)] = (–30) × 10 = –300
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[(–30) × 13] + [(–30) × (–3)]  = –390 + 90 = –300
So, (–30) × [13 + (–3)] =  [(–30) × 13] + [(–30) × (–3)]

EXAMPLE 4 In a class test containing 15 questions, 4 marks are given for every
correct answer and (–2) marks are given for every incorrect answer.
(i) Gurpreet attempts all questions but only 9 of her answers are correct.
What is her total score? (ii) One of her friends gets only 5 answers
correct. What will be her score?

SOLUTION

(i) Marks given for one correct answer = 4
So, marks given for 9 correct answers = 4 × 9 = 36
Marks given for one incorrect answer = – 2
So, marks given for 6 = (15 – 9) incorrect answers = (–2) × 6 = –12
Therefore, Gurpreet’s total score  = 36 + ( –12) = 24

(ii) Marks given for one correct answer = 4
So, marks given for 5 correct answers   = 4 × 5 = 20
Marks given for one incorrect answer = (–2)
So, marks given for 10 (=15 – 5) incorrect answers = (–2) × 10 = –20
Therefore, her friend’s total score = 20 + ( –20) = 0

EXAMPLE 5 Suppose we represent the distance above the ground by a positive integer
and that below the ground by a negative integer, then answer the following:

(i) An elevator descends into a mine shaft at the rate of 5 metre per minute. What will
be its position after one hour?

(ii) If it begins to descend from 15 m above the ground, what will be its position after 45
minutes?

SOLUTION

(i) Since the elevator is going down, so the distance covered by it will be represented
by a negative integer.
Change in position of the elevator in one minute = – 5 m
Position of the elevator after 60 minutes = (–5) × 60 = – 300 m, i.e., 300 m below
ground level.

(ii) Change in position of the elevator in 45 minutes = (–5) × 45 = –225 m, i.e., 225 m
below ground level.
So, the final position of the elevator = –225 + 15 = –210 m, i.e., 210 m below
ground level.
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EXERCISE 1.3

1. Find each of the following products:
(a) 3 × (–1) (b) (–1) × 225
(c) (–21) × (–30) (d) (–316) × (–1)
(e) (–15) × 0 × (–18) (f) (–12) × (–11) × (10)
(g) 9 × (–3) × (– 6) (h) (–18) × (–5) × (– 4)
(i) (–1) × (–2) × (–3) × 4 (j) (–3) × (–6) × (–2) × (–1)

2. Verify the following:
(a) 18 × [7 + (–3)] = [18 × 7] + [18 × (–3)]
(b) (–21) × [(– 4) + (– 6)] = [(–21) × (– 4)] + [(–21) × (– 6)]

3. (i) For any integer a, what is (–1) × a equal to?
(ii) Determine the integer whose product with (–1)  is

(a) –22 (b) 37 (c) 0
4. Starting from (–1) × 5, write various products showing some pattern to show

(–1) × (–1) = 1.
5. Find the product, using suitable properties:

(a) 26 × (– 48) + (– 48) × (–36) (b) 8 × 53 × (–125)
(c) 15  × (–25) × (– 4) × (–10) (d) (– 41) × 102
(e) 625 × (–35) + (– 625) × 65 (f) 7 × (50 – 2)
(g) (–17) ×  (–29) (h) (–57) × (–19) + 57

6. A certain freezing process requires that room temperature be lowered from 40°C at
the rate of 5°C every hour. What will be  the room temperature 10 hours after the
process begins?

7. In a class test containing 10 questions, 5 marks are awarded for every correct answer
and (–2) marks are awarded for every incorrect answer and 0 for questions not
attempted.
(i) Mohan gets four correct and six incorrect answers. What is his score?
(ii) Reshma gets five correct answers and five incorrect answers, what is her score?
(iii) Heena gets two correct and five incorrect answers out of seven questions she

attempts. What is her score?
8. A cement company earns a profit of Rs 8 per bag of white cement sold and a loss of

Rs 5 per bag of grey cement sold.
(a) The company sells 3,000 bags of white cement and 5,000 bags of grey cement

in a month. What is its profit or loss?
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(b) What is the number of  white cement bags it must sell to have neither profit
nor loss, if the number of grey bags sold is 6,400 bags.

9. Replace the blank with an integer to make it a true statement.

(a) (–3) ×  = 27           (b) 5 ×  = –35
(c)  × (– 8) =  –56 (d)  × (–12) = 132

1.6  DIVISION OF INTEGERS

We know that division is the inverse operation of multiplication. Let us see an example
for whole numbers.

Since 3 × 5 = 15
So    15 ÷ 5 = 3 and 15 ÷ 3 = 5
Similarly, 4 × 3 = 12 gives 12 ÷ 4 = 3 and 12 ÷ 3 = 4
We can say for each multiplication statement of whole numbers there are two

division statements.
Can you write multiplication statement and its corresponding divison statements

for integers?
� Observe the following and complete it.

Multiplication Statement

2 × (  6)  ( 12)
(  4) × 5  ( 20)
(  8) × ( 9)  72
( 3) × ( 7)  _____
(  8) × 4  ____
5 × (  9)  _____
( 10) × ( 5) 

Corresponding Division Statements

( 12) ÷ (  6)  2         ,     ( 12) ÷ 2  (  6)
( 20) ÷ (5)  (  4)      ,     ( 20) ÷ (  4)  5
72 ÷ _____  _____  ,     72 ÷ _____  _____
_____ ÷ ( 3)  ____ , _____________
_____________        , _____________
_____________        , _____________
_____________        , _____________

From the above we observe that :
(–12) ÷ 2 = (– 6)

(–20) ÷ (5) = (– 4)
(–32) ÷ 4 = – 8
(– 45) ÷ 5 = – 9

We observe that when we divide a negative integer by a positive integer, we divide
them as whole numbers and then put a minus sign (–) before the quotient. We, thus,
get a negative integer.

Find:
(a) (–100) ÷ 5 (b) (–81) ÷ 9
(c) (–75) ÷  5 (d) (–32) ÷ 2

TRY THESE
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� We also observe that:

72  ÷  (–8) = –9 and 50 ÷  (–10) = –5
72  ÷  (–9) = – 8 50  ÷  (–5) = –10
So we can say that when we divide a positive integer by a negative

integer, we first divide them as whole numbers and then put a minus
sign (–) before the quotient. That is, we get a negative integer.
In general, for any two positive integers a and b

a ÷  (–b) = (– a) ÷ b where b ≠ 0

Find:   (a)  125 ÷ (–25)      (b) 80 ÷ (–5)      (c) 64 ÷ (–16)

� Lastly, we observe that

(–12)  ÷  (– 6) = 2; (–20)  ÷  (– 4) = 5; (–32)  ÷  (– 8) = 4; (– 45)  ÷  (–9) = 5
So, we can say that when we divide a negative integer by a negative integer, we first

divide them as whole numbers and then put a positive sign (+). That is, we get a positive
integer.
In general, for any two positive integers a and b

(– a) ÷  (– b) = a ÷  b where b ≠ 0

Find:     (a)   (–36)  ÷  (– 4)           (b)   (–201)  ÷  (–3)           (c)   (–325)  ÷  (–13)

1.7 PROPERTIES OF DIVISION OF INTEGERS

Observe the following table and complete it:

TRY THESE

Can we say that
    (– 48) ÷ 8 = 48 ÷ (– 8)?

Let us check. We know that
       (– 48) ÷ 8 = – 6
and   48  ÷ (– 8) = – 6
So (– 48) ÷ 8 = 48 ÷ (– 8)
Check this for
(i) 90 ÷ (– 45) and (–90) ÷ 45
(ii) (–136) ÷ 4 and 136 ÷ (– 4)

TRY THESE

Statement Inference Statement Inference

(  8) ÷ (  4)  2 Result is an integer

(  4) ÷ (  8)  4
8 Result is not an integer

(  8) ÷ 3  

8
3

________________

3 ÷ (  8)  

3
8

________________

What do you observe? We observe that integers are not closed under division.
Justify it by taking five more examples of your own.
� We know that division is not commutative for whole numbers. Let us check it for

integers also.
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You can see from the table that (– 8) ÷ (– 4) ≠ (– 4) ÷ (– 8).

Is (– 9) ÷ 3 the same as 3 ÷ (– 9)?

Is (– 30) ÷ (– 6) the same as (– 6) ÷ (– 30)?

Can we say that division is commutative for integers? No.

You can verify it by taking five more pairs of integers.

� Like whole numbers, any integer divided by zero is meaningless and zero divided by
an integer other than zero is equal to zero i.e., for any integer a, a ÷ 0 is not defined
but 0 ÷ a = 0 for a ≠     0.

� When we divide a whole number by 1 it gives the same whole number. Let us check
whether it is true for negative integers also.

Observe the following :

(– 8) ÷ 1 = (– 8) (–11) ÷ 1 = –11 (–13) ÷ 1 = –13

(–25) ÷ 1 = (–37) ÷ 1 = (– 48) ÷ 1 = 

This shows that negative integer divided by 1 gives the same negative integer.
So, any integer divided by 1 gives the same integer.

In general, for any integer a,

a ÷ 1 = a

� What happens when we divide any integer by (–1)? Complete the following table

(– 8) ÷ (–1) = 8 11 ÷ (–1) = –11 13 ÷ (–1) = 

(–25) ÷ (–1) = (–37) ÷ (–1) = – 48 ÷ (–1) = 
What do you observe?

We can say that if any integer is divided by (–1) it does not give the same integer.

� Can we say [(–16) ÷ 4] ÷ (–2)  is the same as
(–16) ÷ [4 ÷ (–2)]?

We know that [(–16) ÷ 4] ÷ (–2) = (– 4) ÷ (–2) = 2

and (–16) ÷ [4 ÷ (–2)] = (–16) ÷ (–2) = 8

So [(–16) ÷ 4] ÷ (–2) ≠ (–16) ÷ [4 ÷ (–2)]

Can you say that division is associative for integers? No.

Verify it by taking five more examples of your own.

EXAMPLE 6 In a test (+5) marks are given for every correct answer and (–2) marks
are given for every incorrect answer. (i) Radhika answered all the questions
and scored 30 marks though she got 10 correct answers. (ii) Jay also

TRY THESE

Is (i) 1 ÷ a = 1?
(ii) a ÷ (–1) = – a?    for any integer a.
Take different values of a and check.
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answered all the questions and scored (–12) marks though he got 4
correct answers. How many incorrect answers had they attempted?

SOLUTION

(i) Marks given for one correct answer = 5

So, marks given for 10 correct answers = 5 × 10 = 50
Radhika’s score = 30

Marks obtained for incorrect answers = 30 – 50 = – 20
Marks given for one incorrect answer = (–2)

Therefore, number of incorrect answers = (–20) ÷ (–2) = 10
(ii) Marks given for 4 correct answers = 5  4 = 20

Jay’s score = –12
Marks obtained for incorrect answers = –12 – 20 = – 32

Marks given for one incorrect answer = (–2)
Therefore number of incorrect answers = (–32) ÷ (–2) = 16

EXAMPLE 7 A shopkeeper earns a profit of  Re 1 by selling one pen and incurs a loss
of 40 paise per pencil while selling pencils of her old stock.

(i) In a particular month she incurs a loss of Rs 5. In this period, she sold 45 pens. How
many pencils did she sell in this period?

(ii) In the next month she earns neither profit nor loss. If she sold 70 pens, how many
pencils did she sell?

SOLUTION

(i) Profit earned by selling one pen = Re 1
Profit earned by selling 45 pens = Rs 45, which we denote by  + Rs 45

Total loss given =  Rs 5, which we denote by – Rs 5

Profit earned + Loss incurred = Total loss

Therefore, Loss incurred = Total Loss – Profit earned
= Rs (– 5 – 45) = Rs (–50) = –5000 paise

Loss incurred by selling one pencil =  40 paise which we write as  – 40 paise
So, number of pencils sold  =    (–5000) ÷ (– 40) = 125 pencils.

(ii) In the next month there is neither profit nor loss.

So, Profit earned + Loss incurred = 0
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i.e., Profit earned = – Loss incurred.

Now, profit earned by selling 70 pens = Rs 70
Hence, loss incurred by selling pencils =  Rs 70 which we indicate by – Rs 70 or

– 7,000 paise.
Total number of pencils sold = (–7000) ÷ (– 40) = 175 pencils.

EXERCISE 1.4

1. Evaluate each of the following:

(a) (–30) ÷ 10 (b) 50 ÷ (–5) (c) (–36) ÷ (–9)

(d) (– 49) ÷ (49) (e) 13 ÷ [(–2) + 1] (f ) 0 ÷ (–12)

(g) (–31) ÷ [(–30) + (–1)]

(h) [(–36) ÷ 12] ÷ 3 (i) [(– 6) + 5)] ÷ [(–2) + 1]

2. Verify that a ÷ (b + c) ≠ (a ÷ b) + (a ÷ c) for each of the following values of a, b and c.

(a) a = 12, b = – 4, c = 2 (b)   a = (–10), b = 1, c = 1

3. Fill in the blanks:

(a) 369 ÷  = 369 (b) (–75) ÷  = –1

(c) (–206) ÷  = 1 (d) – 87 ÷  = 87

(e)  ÷ 1 = – 87 (f)  ÷ 48 = –1

(g) 20 ÷  = –2 (h)  ÷ (4) = –3

4. Write five pairs of integers (a, b) such that a ÷ b =  –3. One such pair is (6, –2)
because 6 ÷ (–2) = (–3).

5. The temperature at 12 noon was 10°C above zero. If  it decreases at the rate of 2°C
per hour until midnight, at what time would the temperature be 8°C below zero?
What would be the temperature at mid-night?

6. In a class test (+ 3) marks are given for every correct answer and (–2) marks are
given for every incorrect answer and no marks for not attempting any question.
(i) Radhika scored 20 marks. If she has got 12 correct answers, how many questions
has she attempted incorrectly? (ii) Mohini scores –5 marks in this test, though she has
got 7 correct answers. How many questions has she attempted  incorrectly?
(iii) Rakesh scores 18 marks by attempting 16 questions. How many questions has
he attempted correctly and how many has he attempted incorrectly?

7. An elevator descends into a mine shaft at the rate of 6 m/min. If the descent starts
from 10 m above the ground level, how long will it take to reach  – 350 m.
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WHAT HAVE WE DISCUSSED?
1. Integers are a bigger collection of numbers which is formed by whole numbers and

their negatives. These were introduced in Class VI.

2. You have studied in the earlier class, about the representation of integers on the
number line and their addition and subtraction.

3. We now study the properties satisfied by addition and subtraction.

(a) Integers are closed for addition and subtraction both. That is, a + b and
a – b are again integers, where a and b are any integers.

(b) Addition is commutative for integers, i.e., a + b = b + a for all integers
a and b.

(c) Addition is associative for integers, i.e., (a + b) + c = a + (b + c) for all integers
a, b and c.

(d) Integer 0 is the identity under addition. That is, a + 0 = 0 + a = a  for every
integer a.

4. We studied, how integers could be multiplied, and found that product of a positive
and a negative integer is a negative integer, whereas the product of two negative
integers is a positive integer. For example, – 2 × 7 = – 14 and – 3 × – 8 = 24.

5. Product of even number of negative integers is positive, whereas the product of odd
number of negative integers is negative.

6. Integers show some properties under multiplication.

(a) Integers are closed under multiplication. That is, a × b is an integer for any two
integers a and b.

(b) Multiplication is commutative for integers. That is, a × b = b × a for any integers
a and b.

(c) The integer 1 is the identity under multiplication, i.e., 1 × a = a × 1 = a for any
integer a.

(d) Multiplication is associative for integers, i.e., (a × b) × c = a × (b × c) for any
three integers a, b and c.

7. Under addition and multiplication, integers show a property called distributive prop-
erty. That is, a × (b + c) = a × b + a × c for any three integers a, b and c.
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8. The properties of commutativity, associativity under addition and multiplication, and
the distributive property help us to make our calculations easier.

9. We also learnt how to divide integers. We found that,

(a) When a positive integer is divided by a negative integer, the quotient obtained is
a negative integer and vice-versa.

(b) Division of a negative integer by another negative integer gives a positive integer
as quotient.

10. For any integer a, we have

(a) a ÷ 0 is not defined

(b) a ÷ 1 = a
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2.1  INTRODUCTION

You have learnt fractions and decimals in earlier classes. The study of fractions included
proper, improper and mixed fractions as well as their addition and subtraction. We also
studied comparison of fractions, equivalent fractions, representation of fractions on the
number line and ordering of fractions.

Our study of decimals included, their comparison, their representation on the number
line and their addition and subtraction.

We shall now learn multiplication and division of fractions as well as of decimals.

2.2  HOW WELL HAVE YOU LEARNT ABOUT FRACTIONS?

A proper fraction is a fraction that represents a part of a whole. Is 7
4

a proper fraction?

Which is bigger, the numerator or the denominator?

An improper fraction is a combination of whole and a proper fraction. Is 7
4

 an

improper fraction? Which is bigger here, the numerator or the denominator?

The improper fraction 
7
4 can be written as 

31
4 .  This is a mixed fraction.

Can you write five examples each of proper, improper and mixed fractions?

EXAMPLE 1 Write five equivalent fractions of 3
5

 .

SOLUTION One of the equivalent fractions of 3
5

 is

3 3 2 6
5 5 2 10

�� �
�

.  Find the other four.

�
�
�
�
�
�
�
�
�
�
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EXAMPLE 2 Ramesh solved 
2
7 part of an exercise while Seema solved 4

5
 of it. Who

solved lesser part?

SOLUTION In order to find who solved lesser part of the exercise, let us com-

pare
2
7  and 

4
5 .

Converting them to like fractions we have, 2 10
7 35
�  , 4 28

5 35
� .

Since10 < 28 , so 
10 28
35 35

� .

Thus,
2 4<
7 5  .

Ramesh solved lesser part than Seema.

EXAMPLE 3 Sameera purchased 13
2

 kg apples and 
34
4  kg oranges. What is the

total weight of fruits purchased by her?

SOLUTION The total weight of the fruits 
1 33 4 kg
2 4

� �� �� 	
 �

= 
7 19 14 19kg kg
2 4 4 4

� � � �� � �� 	 � 	
 � 
 �

= 
33 1kg 8 kg
4 4

�

EXAMPLE 4 Suman studies for 
25
3  hours daily. She devotes 

42
5  hours of her time

for Science and Mathematics. How much time does she devote for
other subjects?

SOLUTION Total time of Suman’s study  =  
25
3

 h =  
17
3  h

Time devoted by her for Science and Mathematics = 
42
5  =  

14
5   h
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Thus, time devoted by her for other subjects = 
17 14
3 5

� ��� 	
 �  h

 = 
17 5 14 3– h

15 15
� �� �

� 	
 �  = 
85 – 42 h

15
� �
� 	
 �

 = 
43
15  h = 

132
15  h

EXERCISE 2.1

1. Solve:

(i)
32
5

� (ii)
74
8

� (iii)
3 2
5 7
� (iv)

9 4
11 15

�

(v)
7 2 3

10 5 2
� � (vi)

2 12 3
3 2
� (vii)

1 58 3
2 8
�

2. Arrange the following in descending order:

(i)
2
9

2
3

8
21

, , (ii)
1
5

3
7

7
10

, , .

3. In a “magic square”, the sum of the numbers in each row, in each column and along
the diagonal is the same. Is this a magic square?

4
11
3

11
8
11

9
11
5

11
1

11

2
11
7

11
6

11

4. A rectangular sheet of paper is 
112
2 cm long and 

210
3  cm wide.

Find its perimeter.
5. Find the perimeters of (i) 
 ABE (ii) the rectangle  BCDE in this

figure. Whose perimeter is greater?

6. Salil wants to put a picture in a frame. The picture is 7 3
5  cm wide.

To fit in the frame the picture cannot be more than 7
3

10  cm wide. How much should

the picture be trimmed?.

(Along the first row 4 9 2 15
11 11 11 11

� � � ).

5
cm

2 3
2 cm

4

33 cm
5

7 cm
6
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7. Ritu ate 
3
5  part of an apple and the remaining apple was eaten by her brother Somu.

How much part of the apple did Somu eat? Who had the larger share? By how
much?

8. Michael finished colouring a picture in
7

12   hour. Vaibhav finished colouring the same

picture in 
3
4  hour. Who worked longer? By what fraction was it longer?

2.3  MULTIPLICATION OF FRACTIONS

You know how to find the area of a rectangle. It is equal to length × breadth. If the length
and breadth of a rectangle are 7 cm and 4 cm respectively, then what will be its area? Its
area would be 7 × 4 = 28 cm2.

What will be the area of the rectangle if its length and breadth are 7 1
2  cm and

3 1
2  cm respectively? You will say it will be 7

1
2  × 3

1
2  = 

15
2  × 

7
2  cm2. The numbers 

15
2

and
7
2  are fractions. To calculate the area of the given rectangle, we need to know how to

multiply fractions. We shall learn that now.

2.3.1  Multiplication of a Fraction by a Whole Number

Observe the pictures at the left (Fig 2.1). Each shaded part is 
1
4   part of

a circle. How much will the two shaded parts represent together? They

will represent 
1 1
4 4
�  = 

12
4

� .

Combining the two shaded parts, we get  Fig 2.2 . What part of a circle does the

shaded part in Fig 2.2 represent? It represents 
2
4  part of a circle .

Fig 2.1

Fig 2.2

or



�������	
��	���
�����
 ��

The shaded portions in Fig 2.1 taken together are the same as the shaded portion in
Fig 2.2, i.e., we get Fig 2.3.

Fig 2.3

or
12
4

�  =
2
4  .

Can you now tell what this picture will represent? (Fig 2.4)

             Fig 2.4
And this? (Fig 2.5)

Fig 2.5

Let us now find 13
2

� .

We have
13
2

�  =
1 1 1 3
2 2 2 2
� � �

We also have
1 1 1
2 2 2
� �  =

1 1 1
2

� �
 = 

3 1
2
�

 = 
3
2

So
13
2

�  =
3 1

2
�

 = 
3
2

Similarly
2 5
3
�  =

2 5
3
�

 = ?

Can you tell
23
7

�  = ?
34 ?
5

� �

The fractions that we considered till now, i.e., 
1 2 2, ,
2 3 7  and 

3
5  were proper fractions.
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For improper fractions also we have,
52
3

�  =
2 5

3
�

 = 
10
3

Try,
83
7

�  = ?
74
5

�   = ?

Thus, to multiply a whole number with a proper or an improper fraction, we
multiply the whole number with the numerator of the fraction, keeping the
denominator same.

1. Find:   (a)   
2 3
7
�  (b)

9 6
7
� (c)

13
8

� (d)
13 6
11

�

         If the product is an improper fraction express it as a mixed fraction.

2. Represent pictorially :     2
2
5

4
5

� �

To multiply a mixed fraction to a whole number, first convert the
mixed fraction to an improper fraction and then multiply.

Therefore,
53 2
7

�  =
193
7

�  = 
57
7  = 

18
7 .

Similarly,
22 4
5

�  =
222
5

�  = ?

Fraction as an operator ‘of ’

Observe these figures (Fig 2.6)
The two squares are exactly similar.

Each shaded portion represents 
1
2  of 1.

So, both the shaded portions together will represent 
1
2  of 2.

Combine the 2 shaded 
1
2  parts. It represents 1.

So, we say 
1
2  of 2 is 1. We can also get it as 

1
2  × 2 = 1.

Thus,
1
2  of 2 = 

1
2  × 2 = 1

TRY THESE

TRY THESE

Find:  (i)  
35 2
7

�

 (ii)  
41 6
9
�

Fig 2.6
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Also, look at these similar squares (Fig 2.7).

Each shaded portion represents 
1
2  of 1.

So, both the shaded portions represent 
1
2  of 3.

Combine the 3 shaded parts.

It represents 1
1
2  i.e., 

3
2 .

So,
1
2  of 3 is 

3
2 . Also, 

1
2  × 3 = 

3
2 .

Thus,
1
2  of 3 = 

1
2  × 3 = 

3
2

.

So we see that ‘of’ represents multiplication.

Farida has 20 marbles. Reshma has 1 th
5

of the number of marbles what

Farida has. How many marbles Reshma has? As, ‘of ’ indicates multiplication,

so, Reshma has 
1 20
5
�  = 4 marbles.

Similarly, we have 
1
2 of 16 is

1 16
2
�  = 

16
2  =  8.

Can you tell, what is (i) 
1
2 of 10?,  (ii) 

1
4 of 16?,  (iii) 

2
5  of 25?

EXAMPLE 5 In a class of 40 students 
1
5  of the total number of studetns like to study

English,
2
5  of the total number like to study mathematics and the remaining

students like to study Science.
(i) How many students like to study English?
(ii) How many students like to study Mathematics?
(iii) What fraction of the total number of students like to study Science?

SOLUTION Total number of students in the class = 40.

(i) Of these 
1
5  of the total number of students like to study English.

Fig 2.7

TRY THESE
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Thus, the number of students who like to study English = 
1
5  of  40 = 

1 40
5
�  = 8.

(ii) Try yourself.
(iii) The number of students who like English and Mathematics = 8 + 16 = 24. Thus, the

number of students who like Science = 40 – 24 = 16.

Thus, the required fraction is 16
40

.

EXERCISE 2.2

1. Which of the drawings (a) to (d) show :

(i)
12
5

� (ii)
12
2

� (iii)
23
3

� (iv)
13
4

�

(a) (b)

(c) (d)

2. Some pictures (a) to (c) are given below. Tell which of them show:

(i)
1 33
5 5

� � (ii)
1 22
3 3

� � (iii) 3 3
4

2 1
4

� �

(a) (b)

(c)
3. Multiply and reduce to lowest form:

(i) 37
5

� (ii) 14
3

� (iii) 62
7

� (iv) 25
9

� (v)
2 4
3
�

   (vi) 5 6
2
� (vii) 411

7
� (viii) 420

5
� (ix) 113

3
� (x) 315

5
�

=

=
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4. Shade: (i)
1
2   of the circles in box (a) (ii)

2
3    of the triangles in box (b)

(iii)
3
5    of the squares in box (c).

(a) (b) (c)
5. Find:

(a)   
1
2  of   (i)  24 (ii)   46 (b)   

2
3  of (i)   18 (ii)   27

(c)
3
4  of   (i)  16 (ii)   36 (d)  

4
5  of (i)   20 (ii)   35

6. Multiply and express as a mixed fraction :

(a) 3 5 1
5

� (b)
35 6
4

� (c)    
17 2
4

�

(d)   
14 6
3

� (e)    
13 6
4
� (f)      

23 8
5
�

7. Find  (a) 1
2

 of   (i)  
32
4     (ii)  

24
9            (b)       5

8
 of      (i)    53

6
        (ii)  29

3
8. Vidya and Pratap went for a picnic. Their mother gave them a water bag that

contained 5 litres of water. Vidya consumed 
2
5  of the water. Pratap consumed the

remaining water.
(i) How much water did Vidya drink?

(ii) What fraction of the total quantity of water did Pratap drink?

2.3.2  Multiplication of a Fraction by a Fraction

Farida had a 9 cm long strip of ribbon. She cut this strip into four equal parts. How did she
do it? She folded the strip twice. What fraction of the total length will each part represent?

Each part will be 
9
4  of the strip. She took one part and divided it in two equal parts by
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folding the part once. What will one of the pieces represent? It will represent 
1
2  of 

9
4  or

1
2  ×

9
4 .

Let us now see how to find the product of two fractions like 1
2

 × 9
4

.

To do this we first learn to find the products like 1
2

 × 
1
3

.

(a) How do we find  
1
3 of a whole? We divide the whole in three equal parts. Each of

the three parts represents 
1
3 of the whole. Take one part of these three parts, and

shade it as shown in Fig 2.8.

(b) How will you find 
1
2 of this shaded part? Divide this one-third (

1
3 ) shaded part into

two equal parts. Each of these two parts represents 
1
2  of  

1
3  i.e., 

1
2  × 

1
3 (Fig 2.9).

        Take out 1 part of these two and name it ‘A’. ‘A’ represents 
1
2  × 

1
3 .

(c) What fraction is ‘A’ of the whole? For this, divide each of the remaining 
1
3  parts also

in two equal parts. How many such equal parts do you have now?
There are six such equal parts. ‘A’ is one of these parts.

So, ‘A’ is 
1
6  of the whole. Thus,  

1
2  × 

1
3   =  

1
6 .

How did we decide that ‘A’ was 
1
6  of the whole? The whole was divided in 6 = 2 × 3

parts and 1 = 1 × 1 part was taken out of it.

Thus,
1
2  × 

1
3  =

1
6   = 

1×1
2×3

or
1
2  × 

1
3  =

1×1
2×3

Fig 2.8

Fig 2.9

A
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The value of 
1
3 ×

1
2  can be found in a similar way. Divide the whole into two equal

parts and then  divide one of these parts in three equal parts. Take one of these parts. This

will represent 1
3  × 

1
2  i.e., 

1
6

.

Therefore
1
3

×
1
2

 =
1
6

 = 
1 1
3 2
�
�

 as discussed earlier.

Hence
1
2

 × 
1
3

 =
1
3

×
1
2

=
1
6

Find
1
3

×
1
4

 and 
1
4

 × 
1
3

;
1
2

×
1
5

  and  
1
5

×
1
2

 and check whether you get

1
3 ×

1
4  =

1
4  × 

1
3 ;

1
2 ×

1
5  = 

1
5 ×

1
2

Fill in these boxes:

(i)
1
2  × 

1
7  =

1 1
2 7
�
�  = (ii)

1
5 ×

1
7    =  = 

(iii)
1
7  × 

1
2    =  = (iv)

1
7  × 

1
5  =  = 

Example 6 Sushant reads 
1
3  part of a book in 1 hour. How much part of the book

will he read in 12
5

 hours?

SOLUTION   The part of the book read by Sushant in 1 hour  = 
1
3 .

So, the part of the book read by him in 
12
5  hours = 

12
5 × 

1
3

=
11
5 × 

1
3

� �
�

11 1
5 3  = 

11
15

Let us now find 
1
2 ×

5
3 . We know that   

5
3  =

1
3 × 5 .

So,
1
2 × 

5
3  =  

1
2 × 

1
3 × 5 = 

1
6

5 5
6

� �

TRY THESE
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Also,
5
6  =  

1 5
2 3
�
� . Thus, 

1
2 × 

5
3  = 

1 5
2 3
�
�  = 

5
6 .

This is also shown by the figures drawn below. Each of these five equal shapes
(Fig 2.10) are parts of five similar circles. Take one such shape. To obtain this shape
we first divide a circle in three equal parts. Further divide each of these three parts in
two equal parts. One part out of it is the shape we considered. What will it represent?

It will represent 
1
2  × 

1
3  = 

1
6 . The total of such parts would be  5 × 

1
6  = 

5
6 .

Similarly
3
5  × 

1
7  =

3 1
5 7
�
�  = 

3
35 .

We can thus find  
2
3 ×

7
5  as

2
3

 × 
7
5

 = 
2 7
3 5
�
�

 = 
14
15

.

So, we find that we multiply two fractions as Product of Numerators
Product of Denominators

.

Value of the Products

You have seen that the product of two whole numbers is bigger than each of
the two whole numbers. For example, 3 × 4 = 12 and 12 > 4, 12 > 3. What
happens to the value of the product when we multiply two fractions?
Let us first consider the product of two proper fractions.
We have,

2 4 8
3 5 15
� � 8

15
� �2

3
8

15
4
5

, Product is less than both the fractions

1 2
5 7
�    = --------- --------,--------         --------------------------------------

3
5 8
� �   =

21
40 --------,--------         --------------------------------------

2 4
9

�
�

 =  
8
45 --------,--------          --------------------------------------

TRY THESE

Find:
1
3 × 

4
5  ;  

2
3 × 

1
5

TRY THESE

Find:
8
3 × 

4
7 ;    

3
4 × 

2
3 .

Fig 2.10
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You will find that when two proper fractions are multiplied, the product is less
than both the fractions. Or, we say the value of the product of two proper fractions
is smaller than each of the two fractions.
Check this by constructing five more examples.
Let us now multiply two improper fractions.

7 5 35
3 2 6
� � 35

6
7
3

35
6

5
2

� �, Product is greater than both the fractions

6 24
5 3 15
� ��

--------,--------      ------------------------------------------

9 7 63
2 8
� �
�

--------,--------      ------------------------------------------

3 8 24
7 14

� �
�

--------,-------- ----------------------------------------

We find that the product of two improper fractions is greater than each of the
two fractions.

Or, the value of the product of two improper fraction is more than each of the
two fractions.
Construct five more examples for yourself and verify the above statement.

Let us now multiply a proper and an improper fraction, say 
2
3 and

7
5 .

We have
2
3  × 

7
5  = 

14
15 .    Here,

14
15  < 

7
5  and 

14
15  > 

2
3

The product obtained is less than the improper fraction and greater than the proper fraction
involved in the multiplication.

Check it for 
6
5 × 

2
7 ,

8
3  ×

4
5 .

EXERCISE 2.3

1. Find:

(i)
1
4   of (a)

1
4 (b)

3
5 (c)

4
3

(ii)
1
7    of (a)

2
9 (b)

6
5 (c)

3
10
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2. Multiply and reduce to lowest form (if possible) :

(i)
2 22
3 3
� (ii)

2 7
7 9
� (iii)

3 6
8 4
� (iv)

9 3
5 5
�

(v)
1 15
3 8
� (vi)

11 3
2 10
� (vii)

4 12
5 7
�

3. For the fractions given below :
(a) Multiply and reduce the product to lowest form (if possible)

(b) Tell whether the fraction obtained is proper or improper.

(c) If the fraction obtained is improper then convert it into a mixed fraction.

(i)
2 15
5 4
� (ii)

2 76
5 9
� (iii)

3 15
2 3
� (iv)

5 32
6 7
�

(v)
2 43
5 7
� (vi)

32 3
5
� (vii)

4 33
7 5
�

4. Which is greater :

(i)
2
7  of  

3
4 or

3
5  of  

5
8 (ii)

1
2  of 

6
7 or

2
3  of 

3
7

5. Saili plants 4 saplings, in a row, in her garden. The distance between two adjacent

saplings is 3
4

m. Find the distance between the first and the last sapling.

6. Lipika reads a book for 31
4

 hours every day. She reads the entire book in 6 days.

How many hours in all were required by her to read the book?

7. A car runs 16 km using 1 litre of petrol. How much distance will it cover using 
32
4

litres of petrol.

8. (a) (i) Provide the number in the box  , such that 
2 10
3 30
� � .

(ii) The simplest form of the number obtained in  is .

         (b) (i) Provide the number in the box  , such that 
3 24
5 75
� � ?

(ii) The simplest form of the number obtained in  is .

2.4  DIVISION OF FRACTIONS

John has a paper strip of length 6 cm. He cuts this strip in smaller strips of length 2 cm
each. You know that he would get 6 ÷ 2 =3 strips.
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John cuts another strip of length 6 cm into smaller strips of length
3
2 cm each. How

many strips will he get now? He will get 6 ÷ 
3
2  strips.

A paper strip of length 
15
2 cm can be cut into smaller strips of length 

3
2 cm each to give

15
2 �

3
2    pieces.

So, we are required to divide a whole number by a fraction or a fraction by another
fraction. Let us see how to do that.

2.4.1  Division of Whole Number by a Fraction

Let us find 1�
1
2 .

We divide a whole into a number of equal parts such that each part is half of the whole.

The number of such half (
1
2 ) parts would be 1÷

1
2 . Observe the figure (Fig 2.11). How

many half parts do you see?
There are two half parts.

So, 1 ÷ 
1
2  = 2. Also, 

21
1

�  = 1 × 2 = 2. Thus, 1 ÷ 
1
2  = 1 × 

2
1

Similarly, 3 �
1
4  = number of 

1
4 parts obtained when each of the 3 whole, are divided

into
1
4 equal parts = 12 (From Fig 2.12)

Fig 2.12

Observe also that, 
43
1

�  =  3 × 4  = 12. Thus, 3
1
4

3 4
1

� � �  = 12.

Find in a similar way,  3 ��
1
2 and

23
1

�  .

1
2

1
2

Fig 2.11

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4



����
�����
��

Reciprocal of a fraction

The number 
2
1 can be obtained by interchanging the numerator and denominator of

1
2 or by inverting 

1
2 . Similarly,  

3
1 is obtained by inverting 

1
3 .

Let us first see about the inverting of such numbers.
Observe these products and fill in the blanks :

17
7

�  =  1
5 4
4 5
�   =  ---------

1 9
9
�  = ------

2
7
�  -------  = 1

2 3
3 2
�   =  

2 3
3 2
�
�   =  

6
6  = 1 ------ 

5
9

�   = 1

Multiply five more such pairs.
The non-zero numbers whose product with each other is 1, are called the

reciprocals of each other. So reciprocal of
5
9 is

9
5  and the reciprocal of 

9
5  is 

5
9 . What

is the receiprocal of 
1
9 ?

2
7 ?

You will see that the reciprocal of 
2
3 is obtained by inverting it. You get 

3
2 .

THINK, DISCUSS AND WRITE

(i) Will the reciprocal of a proper fraction be again a proper fraction?
(ii) Will the reciprocal of an improper fraction be again an improper fraction?

Therefore, we can say that

1 �
1
2   =   

21
1

�   =   1× reciprocal of 
1
2 .

3 �
1
4   =  

43
1

�    =   3× reciprocal of 
1
4  .

3 �
1
2   =  ------  =    ----------------------.

So,   2 �
3
4   =  2 × reciprocal of 

3
4  = 

42
3

� .

5 �
2
9   =  5 ×   -------------------  =  5 × -------------
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Thus, to divide a whole number by any fraction, multiply that whole number by
the reciprocal of that fraction.

Find : (i) 7 ÷ 
2
5 (ii) 6  ÷ 

4
7 (iii) 2 ÷

8
9

� While dividing a whole number by a mixed fraction, first convert the mixed
fraction into improper fraction and then solve it.

Thus,   4 ÷ 
22
5   =   4 ÷

12
5   =    ? Also, 5 ÷ 3

1
3  = 3 ÷ 

10
3  = ?

2.4.2  Division of a Fraction by a Whole Number

� What will be 
3
4
� 3?

Based on our earlier observations we have: 3
4
� 3 =  

3
4

3
1

�  = 
3
4 × 

1
3  = 

3
12  = 

1
4

So, 2
3

� 7  = 
2
3 ×

1
7  =     ? What is 5

7
� 6 ,   2

7
� 8 ?

� While dividing mixed fractions by whole numbers, convert the mixed fractions into
improper fractions. That is,

2 2
3

5�  =  
8
3

5�  = ------ ;
24 3
5
�  = ------ =  ------;

32 2
5
�  = ------ =  ------

2.4.3  Division of a Fraction by Another Fraction

We can now find 
1
3 �

5
6  .

1
3 �

5
6     =

1
3 ×  reciprocal of 

5
6  =

1
3 ×

5
6  =

2
5 .

Similarly,  
8 2 8
5 3 5
� �  × reciprocal of  

2
3  = ? and,  

1
2 ��

3
4  =  ?

Find: (i)
3 1
5 2
� (ii)

1 3
2 5
� (iii)

1 32
2 5
� (iv)

1 95
6 2
�

TRY THESE

TRY THESE

Find: (i) 6 � 15
3

(ii) 7 � 42
7

TRY THESE



����
�����
�	

EXERCISE 2.4
1. Find:

(i)
312
4

� (ii)
514
6

� (iii)
78
3

� (iv)
84
3

�

(v)
13 2
3

� (vi)
45 3
7

�

2. Find the reciprocal of each of the following fractions. Classify the reciprocals as
proper fractions, improper fractions and whole numbers.

(i)
3
7 (ii)

5
8 (iii)

9
7 (iv)

6
5

   (v)
12
7 (vi)

1
8 (vii)

1
11

3. Find:

(i)
7 2
3
� (ii)

4 5
9
� (iii)

6 7
13

� (iv) 4 1
3

3�

(v)
13 4
2
� (vi)

34 7
7
�

4. Find:

(i)
2 1
5 2
� (ii)

4 2
9 3
� (iii)

3 8
7 7
� (iv)

1 32
3 5
� (v) 3 1

2
8
3

�

(vi)
2 11
5 2
� (vii)

1 23 1
5 3
� (viii)

1 12 1
5 5
�

2.4 HOW WELL HAVE YOU LEARNT ABOUT DECIMAL NUMBERS

You have learnt about decimal numbers in the earlier classes. Let us briefly recall them
here. Look at the following table and fill up the blank spaces.

Hundreds Tens Ones Tenths Hundredths Thousandths Number

(100) (10) (1)
1

10
� �
� 	
 �

1
100
� �
� 	
 �

1
1000
� �
� 	
 �

2 5 3 1 4 7 253.147
6 2 9 3 2 1 ..............
0 4 3 1 9 2 ..............

........ 1 4 2 5 1 514.251
2 ....... 6 5 1 2 236.512

........ 2 ........ 5 ........ 3 724.503
6 ....... 4 ........ 2 ....... 614.326
0 1 0 5 3 0 ...............
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In the table, you wrote the decimal number, given its place-value expansion. You can
do the reverse, too. That is, given the number you can write its expanded form. For

example, 253.417 = 2 × 100 + 5 × 10 + 3 × 1 + 4 × 
1

10
� �
� 	
 �  + 1 ×

1
100
� �
� 	
 �  + 7 ×

1
1000
� �
� 	
 � .

John has Rs 15.50 and Salma has Rs 15.75. Who has more money? To find this we
need to compare the decimal numbers 15.50 and 15.75. To do this, we first compare the
digits on the left of the decimal point, starting from the leftmost digit. Here both the digits 1
and 5, to the left of the decimal point, are same. So we compare the digits on the right of
the decimal point starting from the tenths place. We find that 5 < 7, so we say
15.50 < 15.75. Thus, Salma has more money than John.

If the digits at the tenths place are also same then compare the digits at the hundredths
place and so on.

Now compare quickly, 35.63 and 35.67; 20.1 and 20.01; 19.36 and 29.36.
While converting lower units of money, length and weight, to their higher units, we are

required to use decimals. For example, 3 paise = Rs 
3

100 = Rs 0.03, 5g = 
5

1000  g

= 0.005 kg,  7 cm = 0.07 m.
Write 75 paise = Rs , 250 g =  kg, 85 cm = m.
We also know how to add and subtract decimals. Thus, 21.36 + 37.35 is

21.36
37.35
58.71

�

What is the value of 0.19 + 2.3 ?
The difference 29.35 � 4.56 is 29.35

04.56
24.79

�

Tell the value of 39.87 � 21.98.

EXERCISE 2.5

1. Which is greater?
(i) 0.5 or 0.05 (ii) 0.7 or 0.5 (iii) 7 or 0.7

(iv) 1.37 or 1.49 (v) 2.03 or 2.30 (vi) 0.8 or 0.88.

2. Express as rupees using decimals :
(i) 7 paise (ii) 7 rupees 7 paise (iii) 77 rupees 77 paise

(iv) 50 paise (v) 235 paise.

3. (i)   Express 5 cm in metre and kilometre (ii)   Express 35 mm in cm, m and km
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4. Express in kg:
(i) 200 g (ii) 3470 g (iii) 4 kg 8 g (iv) 2598 mg

5. Write the following decimal numbers in the expanded form:
(i) 20.03 (ii) 2.03 (iii) 200.03 (iv) 2.034

6. Write the place value of 2 in the following decimal numbers:
(i) 2.56 (ii) 21.37 (iii) 10.25 (iv) 9.42 (v) 63.352.

7. Dinesh went from place A to place B and from
there to place C. A is 7.5 km from B and B is
12.7 km from C. Ayub went from place A to place
D and from there to place C. D is 9.3 km from A
and C is 11.8 km from D. Who travelled more
and by how much?

8. Shyama bought 5 kg 300 g apples and 3 kg 250 g mangoes. Sarala bought 4 kg 800 g
oranges and 4 kg 150 g bananas. Who bought more fruits?

9. How much less is 28 km than 42.6 km?

2.6  MULTIPLICATION OF DECIMAL NUMBERS

Reshma purchased 1.5kg vegetable at the rate of Rs 8.50 per kg. How much money
should she pay? Certainly it would be Rs (8.50 × 1.50). Both 8.5 and 1.5 are decimal
numbers. So, we have come across a situation where we need to know how to multiply
two decimals. Let us now learn the multiplication of two decimal numbers.
First we find 0.1 × 0.1.

Now, 0.1 = 
1

10 . So, 0.1 × 0.1 = 
1 1×

10 10
 = 

1×1
10 ×10

 = 
1

100
 = 0.01.

Let us see it’s pictorial representation (Fig 2.13)

The fraction 
1

10  represents 1 part out of 10 equal parts.

The shaded part in the picture represents 
1

10 .

We know that,

1 1
×

10 10  means 
1

10  of 
1

10 . So, divide this

1
10

th part into 10 equal parts and take one. part

out of it. Fig 2.13
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Thus, we have, (Fig 2.14).

Fig 2.14

The dotted square is one part out of 10 of the 
1

10
th part. That is, it represents

1 1×
10 10  or  0.1 × 0.1.

Can the dotted square be represented in some other way?
How many small squares do you find in Fig 2.14?
There are 100 small squares. So the dotted square represents one out of 100 or 0.01.
Hence, 0.1 × 0.1 = 0.01.

Note that 0.1 occurs two times in the product. In 0.1 there is one digit to the right of
the decimal point. In 0.01 there are two digits (i.e., 1 + 1) to the right of the decimal point.
Let us now find 0.2 × 0.3.

We have, 0.2 × 0.3 = 
2 3×

10 10

As we did for 
1

10
1

10
� , let us divide the square into 10

equal parts and take three parts out of it, to get 
3

10 . Again

divide each of these three equal parts into 10 equal parts and

take two from each. We get 2 3×
10 10

.

The dotted squares represent 
2 3×

10 10  or 0.2 × 0.3. (Fig 2.15)

Since there are 6 dotted squares out of 100, so they also
reprsent 0.06. Fig 2.15
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Thus, 0.2 × 0.3 = 0.06.
Observe that 2 × 3 = 6 and the number of digits to the right of the decimal point in

0.06 is 2 (= 1 + 1).
Check whether this applies to 0.1 × 0.1 also.
Find 0.2 × 0.4 by applying these observations.

While finding 0.1 × 0.1 and 0.2 × 0.3, you might have noticed that first we
multiplied them as whole numbers ignoring the decimal point. In 0.1 × 0.1, we found
01 × 01 or 1 × 1. Similarly in 0.2 × 0.3 we found 02 × 03 or 2 × 3.

Then, we counted the number of digits starting from the rightmost digit and moved
towards left. We then put the decimal point there. The number of digits to be counted
is obtained by adding the number of digits to the right of the decimal point in the
decimal numbers that are being multiplied.
Let us now find 1.2 × 2.5.

Multiply 12 and 25. We get 300. Both, in 1.2 and 2.5, there is 1 digit to the right
of the decimal point. So, count 1 + 1 = 2 digits from the rightmost digit (i.e., 0) in 300
and move towards left. We get 3.00 or 3.
Find in a similar way 1.5 × 1.6, 2.4 × 4.2.

While multiplying 2.5 and 1.25, you will first multiply 25 and 125. For placing the
decimal in the product obtained, you will count 1 + 2 = 3 (Why?) digits starting from
the rightmost digit. Thus, 2.5 × 1.25 = 3.225

Find 2.7 × 1.35.

   1. Find: (i) 2.7 × 4 (ii) 1.8 × 1.2 (iii) 2.3 × 4.35
   2. Arrange the products obtained in (1) in descending order.

EXAMPLE 7 The side of an equilateral triangle is 3.5 cm. Find its perimeter.

SOLUTION All the sides of an equilateral triangle are equal.
So, length of each side = 3.5 cm
Thus, perimeter = 3 × 3.5 cm = 10.5 cm

EXAMPLE 8 The length of a rectangle is 7.1 cm and its breadth is 2.5 cm. What
is the area of the rectangle?

SOLUTION Length of the rectangle = 7.1 cm
Breadth of the rectangle = 2.5 cm
Therefore, area of the rectangle = 7.1 × 2.5 cm2 = 17.75 cm2

TRY THESE
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2.6.1  Multiplication of Decimal Numbers by 10, 100 and 1000

Reshma observed that 2.3 = 
23
10  whereas 2.35 = 

235
100 . Thus, she found that depending

on the position of the decimal point the decimal number can be converted to a fraction with
denominator 10 or 100. She wondered what would happen if a decimal number is multiplied
by 10 or 100 or 1000.
Let us see if we can find a pattern of multiplying numbers by 10 or 100 or 1000.
Have a look at the table given below and fill in the blanks:

1.76 × 10  = 
176
100 × 10 = 17.6 2.35 ×10 = 12.356 × 10 =

1.76 × 100 = 
176
100 × 100 = 176 or 176.0 2.35 ×100 = 12.356 × 100 =

1.76 × 1000 = 
176
100  × 1000 = 1760   or 2.35 ×1000 = 12.356 × 1000 = 

                                                1760.0

0.5 × 10 = 
5

10  × 100 = 5     ;     0.5 × 100 =      ;     0.5 × 1000 = 

Observe the shift of the decimal point of the products in the table. Here the numbers
are multiplied by 10,100 and 1000. In 1.76 × 10 = 17.6, the digits are same i.e., 1, 7 and
6. Do you observe this in other products also? Observe 1.76 and 17.6. To which side has
the decimal point shifted, right or left? The decimal point has shifted to the right by one
place. Note that 10 has one zero over 1.

In 1.76×100 = 176.0, observe 1.76 and 176.0. To which side and by how many
digits has the decimal point shifted? The decimal point has shifted to the right by two
places.
Note that 100 has two zeros over one.
Do you observe similar shifting of decimal point in other products also?

So we say, when a decimal number is multiplied by 10, 100 or 1000, the digits in
the product the are same as in the decimal number but the decimal
point in the product is shifted to the right by as , many of places as
there are zeros over one.

Based on these observations we can now say

0.07 × 10 = 0.7, 0.07 × 100 = 7 and 0.07 × 1000 = 70.

Can you now tell 2.97 × 10 = ?    2.97 × 100 = ?    2.97 × 1000 = ?
Can you now help Reshma to find the total amount i.e., Rs 8.50 × 150, that she has

to pay?

TRY THESE

Find: (i) 0.3 × 10
(ii) 1.2 × 100
(iii) 56.3 × 1000
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EXERCISE 2.6

1. Find:
(i) 0.2 × 6 (ii) 8 × 4.6 (iii) 2.71 × 5 (iv) 20.1 × 4
(v) 0.05 × 7 (vi) 211.02 × 4 (vii) 2 × 0.86

2. Find the area of rectangle whose length is 5.7cm and breadth is 3 cm.
3. Find:

(i) 1.3 × 10 (ii) 36.8 × 10 (iii) 153.7 × 10 (iv) 168.07 × 10
(v) 31.1 × 100 (vi) 156.1 × 100 (vii) 3.62 × 100 (viii) 43.07 × 100
(ix) 0.5 × 10 (x) 0.08 × 10 (xi) 0.9 × 100 (xii) 0.03 × 1000

4. A two-wheeler covers a distance of 55.3 km in one litre of petrol. How much distance
will it cover in 10 litres of petrol?

5. Find:
(i) 2.5 × 0.3 (ii) 0.1 × 51.7 (iii) 0.2 × 316.8 (iv) 1.3 × 3.1
(v) 0.5 × 0.05 (vi) 11.2 × 0.15 (vii) 1.07 × 0.02

(viii) 10.05 × 1.05 (ix) 101.01 × 0.01 (x) 100.01 × 1.1

2.7  DIVISION OF DECIMAL NUMBERS

Savita was preparing a design to decorate her classroom. She needed a few coloured
strips of paper of length 1.9 cm each. She had a strip of coloured paper of length 9.5 cm.
How many pieces of the required length will she get out of this strip? She thought it would

be 9.5
1.9

cm. Is she correct?

Both 9.5 and 1.9 are decimal numbers. So we need to know the division of
decimal numbers too!

2.7.1  Division by 10, 100 and 1000

Let us find the division of a decimal number by 10, 100 and 1000.
Consider  31.5 � 10.

31.5 � 10 = 
315 1×
10 10  = 

315
100  = 3.15

Similarly, 31 5 100 315
10

1
100

. � � � � �315
1000

0 315.

Let us see if we can find a pattern for dividing numbers by 10, 100 or 1000. This may
help us in dividing numbers by 10, 100 or 1000 in a shorter way.

31.5 ÷ 10 = 3.15 231.5 ÷ 10 = 1.5 ÷ 10 = 29.36 ÷ 10 =
31.5 ÷ 100 = 0.315 231.5 ÷ 10 = 1.5 ÷ 100 = 29.36 ÷ 100 =
31.5 ÷ 1000 = 0.0315 231.5 ÷ 1000 = 1.5 ÷ 1000 = 29.36 ÷ 1000 =
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Take 31.5 10 = 31.5. In 31.5 and 3.15, the digits are
same i.e., 3, 1, and 5 but the decimal point has shifted in the
quotient. To which side and by how many digits? The decimal
point has shifted to the left by one place. Note that 10 has one
zero over one.

Consider now 31.5 ÷ 100 = 0.315. In 31.5 and 0.315 the
digits are same, but what about the decimal point in the quotient?
It has shifted to the left by two places. Note that 100 has two zeros over one.

So we can say that, while dividing a number by 10, 100 or 1000, the digits of the
number and the quotient are same but the decimal point in the quotient shifts to the
left by as many places as there are zeros over one. Using this observation let us now
quickly find:        2.38 ÷ 10 = 0.238,  2.38 ÷ 100 = 0.0238, 2.38 ÷ 1000 = 0.00238

2.7.2  Division of a Decimal Number by a Whole Number

Let us find 6.4
2

. Remember we also write it as 6.4 � 2.

So, 6.4 � 2 = 
64
10

�� 2  = 
64 1
10 2

�  as learnt in fractions..

=
64 1
10 2

1 64
10 2

1
10

64
2

�
�

� �
�

� � =
1

10
32 32

10
3 2� � � .

Or, let us first divide 64 by 2. We get 32. There is one digit to the right of the decimal
point in 6.4. Place the decimal in 32 such that there would be one digit to its
right. We get 3.2 again.

To find 19.5 ÷ 5, first find 195 ÷5. We get 39. There is one digit to the
right of the decimal point in 19.5. Place the decimal point in 39 such that there
would be one digit to its right. You will get 3.9.

Now, 12.96 � 4 = 
1296

4
100

�  = 
1296 1

×
100 4 =

1 1296
×

100 4 =
1

× 324
100 = 3.24

Or, divide 1296 by 4. You get 324. There are two digits to the right of the decimal in
12.96. Making similar placement of the decimal in 324, you will get 3.24.

Note that here and in the next section, we have considered only those
divisions in which, ignoring the decimal, the number would be completely
divisible by another number to give remainder zero. Like, in 19.5 ÷ 5, the
number 195 when divided by 5, leaves remainder zero.

However, there are situations in which the number may not be completely
divisible by another number, i.e., we may not get remainder zero. For example, 195 ÷ 7.
We deal with such situations in later classes.
Thus, 40.86 � 6 = 6.81

TRY THESE

Find: (i) 235.4 ÷ 10

  (ii) 235.4 ÷100

 (iii) 235.4 ÷ 1000

(i) 35.7 � 3 = ?;
(ii) 25.5 � 3 = ?

TRY THESE

TRY THESE

(i) 43.15 � 5 = ?;
(ii) 82.44 � 6 = ?

TRY THESE

Find: (i) 15.5 � 5
(ii) 126.35 � 7
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EXAMPLE 9 Find the average of 4.2, 3.8 and 7.6.

SOLUTION The average of 4.2, 3.8 and 7.6 is 4.2 3.8 7.6
3

� � =
15.6

3
 = 5.2.

2.7.3 Division of a Decimal Number by another Decimal
Number

Let us find
25.5
0.5  i.e., 25.5 � 0.5.

We have 25.5 � 0.5 = 
255 5
10 10

�  = 
255 10

×
10 5 = 51. Thus, 25.5 � 0.5 = 51

What do you observe? For 
25.5
0.5 , we find that there is one digit to the right of the

decimal in 0.5. This could be converted to whole number by dividing by 10. Accordingly
25.5 was also converted to a fraction by dividing by 10.

Or, we say the decimal point was shifted by one place to the right in 0.5 to make it 5.
So, there was a shift of one decimal point to the right in 25.5 also to make it 255.

Thus, 22.5 ÷ 1.5  = 
22 5
1 5

.
.  = 

225
15  = 15

Find
20 3
0 7

.
.

 and 
15 2
0 8

.
.

 in a similar way.

Let us now find 20.55 � 1.5.

We can write it is as 205.5 � 15, as discussed above. We get 13.7. Find 3.96
0.4

, 2.31
0.3

.

Consider now, 33.725
0.25

. We can write it as 3372.5
25

 (How?) and we get the quotient

as 134.9. How will you find 27
0.03

? We know that 27 can be written as 27.0.

So,
27 27.00 2700

0.03 0.03 3
� � = ?

EXAMPLE 10 Each side of a regular polygon is 2.5 cm in length. The perimeter of the
polygon is 12.5cm. How many sides does the polygon have?

SOLUTION The perimeter of a regular polygon is the sum of the lengths of all its
equal sides = 12.5 cm.

Length of each side = 2.5 cm. Thus, the number of sides = 
12.5
2.5  = 

125
25  = 5

The polygon has 5 sides.

Find:  (i)  
7.75
0.25   (ii)  

42.8
0.02   (iii)  

5.6
1.4

TRY THESE
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EXAMPLE 11 A car covers a distance of 89.1 km in 2.2 hours. What is the average
distance covered by it in 1 hour?

SOLUTION Distance covered by the car = 89.1 km.
Time required to cover this distance = 2.2 hours.

So distance covered by it in 1 hour    = 
89.1
2.2  = 

891
22  = 40.5 km.

EXERCISE 2.7
1. Find:

(i) 0.4 � 2 (ii) 0.35 � 5 (iii) 2.48 � 4 (iv) 65.4 � 6
(v) 651.2 � 4 (vi) 14.49 � 7 (vii) 3.96 � 4 (viii) 0.80 � 5

2. Find:
(i) 4.8 � 10 (ii) 52.5 � 10 (iii) 0.7 � 10 (iv) 33.1 � 10
(v) 272.23 � 10 (vi) 0.56 � 10 (vii) 3.97 �10

3. Find:
(i) 2.7 � 100 (ii) 0.3 � 100 (iii) 0.78 � 100

(iv) 432.6 � 100 (v) 23.6 �100 (vi) 98.53 � 100
4. Find:

(i) 7.9 ÷ 1000 (ii) 26.3 ÷ 1000 (iii) 38.53 ÷ 1000
(iv) 128.9 ÷ 1000 (v) 0.5 ÷ 1000

5. Find:
(i) 7 � 3.5 (ii) 36 � 0.2 (iii) 3.25 � 0.5 (iv) 30.94 � 0.7
(v) 0.5 � 0.25 (vi) 7.75 � 0.25 (vii) 76.5 � 0.15 (viii) 37.8 � 1.4
(ix) 2.73 � 1.3

6. A vehicle covers a distance of 43.2 km in 2.4 litres of petrol. How much distance will
it cover in one litre of petrol?

WHAT HAVE WE DISCUSSED?
1. We have learnt about fractions and decimals alongwith the operations of addition and

subtraction on them, in the earlier class.
2. We now study the operations of multiplication and division on fractions as well as on

decimals.
3. We have learnt how to multiply fractions. Two fractions are multiplied by multiplying

their numerators and denominators seperately and writing the product as
product of numerators

product of denominators
.  For example, 2 5 2 × 5 10×

3 7 3× 7 21
� � .

4. A fraction acts as an operator ‘of ’. For example, 
1
2

 of  2 is 
1
2

 × 2 = 1.
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5. (a) The product of two proper fractions is less than each of the fractions that are
multiplied.

(b) The product of a proper and an improper fraction is less than the improper
fraction and greater than the proper fraction.

(c) The product of two imporper fractions is greater than the two fractions.
6. A reciprocal of a fraction is obtained by inverting it upside down.
7. We have seen how to divide two fractions.

(a) While dividing a whole number by a fraction, we multiply the whole number
with the reciprocal of that fraction.

For example, 3 5 102 2
5 3 3

� � � �

(b) While dividing a fraction by a whole number we multiply the fraction by the
reciprocal of the whole number.

For example, 2 2 1 27 ×
3 3 7 21
� � �

(c) While dividing one fraction by another fraction, we multuiply the first fraction by

the reciprocal of the other. So, 2 5 2 7 14×
3 7 3 5 15
� � � .

8. We also learnt how to multiply two decimal numbers. While multiplying two decimal
numbers, first multiply them as whole numbers. Count the number of digits to the right
of the decimal point in both the decimal numbers. Add the number of digits counted.
Put the decimal point in the product by counting the digits from its rightmost place.
The count should be the sum obtained earlier.
For example, 0.5 × 0.7 = 0.35

9. To multiply a decimal number by 10, 100 or 1000, we move the decimal point in the
number to the right by as many places as there are zeros over 1.
Thus  0.53 × 10 = 5.3,     0.53 × 100 = 53,      0.53 × 1000 = 530

10. We have seen how to divide decimal numbers.
(a) To divide a decimal number by a whole number, we first divide them as whole

numbers. Then place the decimal point in the quotient as in the decimal number.
For example, 8.4 � 4 = 2.1
Note that here we consider only those divisions in which the remainder is zero.

(b) To divide a decimal number by 10, 100 or 1000, shift the digits in the decimal
number to the left by as many places as there are zeros over 1, to get the
quotient.
So, 23.9 � 10 = 2.39,23.9 � 100 = 0 .239, 23.9 � 1000 = 0.0239

(c) While dividing two decimal numbers, first shift the decimal point to the right by
equal number of places in both, to convert the divisor to a whole number. Then
divide. Thus, 2.4 � 0.2 = 24 � 2 = 12.
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3.1  INTRODUCTION

In your previous classes, you have dealt with various types of data. You have learnt to
collect data, tabulate and put it in the form of bar graphs. The collection, recording and
presentation of data help us organise our experiences and draw inferences from them.
In this chapter, we will take one more step towards learning how to do this. You will
come across some more kinds of data and graphs. You have seen several kinds of data
through newspapers, magazines, television and other sources. You also know that all
data give us some sort of information. Let us look at some common forms of data that
you come across:

�
�


�
�
�
�
�
�
�

�
�


�
������

Temperatures of cities
as on 20.6.2006

Max. Min.
Ahmedabad 38�C 29�C
Amritsar 37�C 26�C
Bangalore 28�C 21�C
Chennai 36�C 27�C
Delhi 38�C 28�C
Jaipur 39�C 29�C
Jammu 41�C 26�C
Mumbai 32�C 27�C

Table 3.1

Marks of five students in a Hindi test
of 10 marks are: 4, 5, 8, 6, 7

Table 3.2

Table 3.3

Football
World Cup 2006

Ukraine beat Saudi Arabia by 4 - 0
Spain beat Tunisia by 3 - 1
Switzerland beat Togo by 2 - 0

Data showing weekly absentees
in a class

Monday
Tuesday
Wednesday -

Thursday
Friday
Saturday

 represents one child
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What do these collections of data tell you?
For example you can say that the highest maximum temperature was in Jammu on

20.06.2006 (Table 3.1) or we can say that, on Wednesday, no child was absent.
(Table 3.3)

Can we organise and present these data in a different way, so that their analysis and
interpretation becomes better? We shall address such questions in this chapter.

3.2  COLLECTING DATA

The data about the temperatures of cities (Table 3.1) can tell us many things, but it cannot
tell us the city which had the highest maximum temperature during the year. To find that, we
need to collect data regarding the highest maximum temperature reached in each of these
cities during the year. In that case, the temperature chart of one particular date of the year,
as given in Table 3.1 will not be sufficient.

This shows that a given collection of data may not give us a specific information related
to that data. For this we need to collect data keeping in mind that specific information. In
the above case the specific information needed by us, was about the highest maximum
temperature of the cities during the year, which we could not get from Table 3.1
Thus, before collecting data, we need to know what we would use it for.
Given below are a few situations.
You want to study the
– Performance of your class in Mathematics.
– Performance of India in football or in cricket.
– Female literacy rate in a given area, or
– Number of children below the age of five in the families around you..

What kind of data would you need in the above situations? Unless and until you collect
appropriate data, you cannot know the desired information. What is the appropriate data

for each?
Discuss with your friends and identify the data you would need for each.

Some of this data is easy to collect and some difficult.

3.3  ORGANISATION OF DATA

When we collect data, we have to record and organise it. Why do we need to
do that? Consider the following example.

Ms Neelam, class teacher wanted to find how children had performed
in English. She writes down the marks obtained by the students in the
following way:

23, 35, 48, 30, 25, 46, 13, 27, 32, 38
In this form, the data was not easy to understand. She also did not know whether her

impression of the students matched their performance.
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Neelam’s colleague helped her organise the data in the following way (Table 3.4).

Table 3.4

Roll No. Names Marks Roll No. Names Marks
Out of 50 Out of 50

1 Ajay 23 6 Govind 46
2 Armaan 35 7 Jay 13
3 Ashish 48 8 Kavita 27
4 Dipti 30 9 Manisha 32
5 Faizaan 25 10 Neeraj 38

In this form, Neelam was able to know which student has got how many marks. But she
wanted more. Deepika suggested another way to organise this data (Table 3.5).

Table 3.5

Roll No. Names Marks Roll No. Names Marks
Out of 50 Out of 50

3 Ashish 48 4 Dipti 30
6 Govind 46 8 Kavita 27

10 Neeraj 38 5 Faizaan 25
2 Armaan 35 1 Ajay 23
9 Manisha 32 7 Jay 13

Now Neelam was able to see who had done the best and who needed help.
Many kinds of data we come across are put in tabular form. Our school rolls, progress

report, index in the note books, temperature record and many others are all in tabular
form. Can you think of a few more data that you come across in tabular form?
When we put data in a proper table it becomes easy to understand and interpret.

Weigh (in kg) atleast 20 children (girls and boys) of your class. Organise the data, and
answer the following questions using this data.
(i) Who is the heaviest of all? (ii) What is the most common weight?

(iii) What is the difference between your weight and that of your best friend?

3.4  REPRESENTATIVE VALUES

You might be aware of the term average and would have come across statements involving
the term ‘average’ in your day-to-day life:
� Isha spends on an average of about 5 hours daily for her studies.

TRY THESE
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� The average temperature at this time of the year is about 40 degree Celsius.
� The average age of pupils in my class is 12 years.
� The average attendance of students in a school during its final examination was

98 per cent.
Many more of such statements could be there. Think about the statements given above.
Do you think that the child in the first statement studies exactly for 5 hours daily?
Or, is the temperature of the given place during that particular time always 40 degrees?
Or, is the age of each pupil in that class 12 years? Obviously not.

Then what do these statements tell you?
By average we understand that Isha, usually, studies for 5 hours. On some days,

she may study for less number of hours and on the other days she may study longer.
Similarly, the average temperature of 40 degree celsius, means that, very often,

the temperature at this time of the year is around 40 degree celsius. Sometimes, it may
be less than 40 degree celsius and at other times, it may be more than 40°C.

Thus, we realise that average is a number that represents or shows the central tendency
of a group of observations or data. Since average lies between the highest and the lowest
value of the given data so, we say average is a measure of the central tendency of the group
of data. Different forms of data need different forms of representative or central value to
describe it. One of these representative values is the “Arithmetic Mean”. You will learn
about the other representative values in the later of the chapter.

3.5  ARITHMETIC MEAN

The most common representative value of a group of data is the arithmetic mean or the
mean. To understand this in a better way, let us look at the following example:

Two vessels contain 20 litres and 60 litres of milk respectively. What is the amount that
each vessel would have, if  both share the milk equally? When we ask this question we are
seeking the arithmetic mean.
In the above case, the average or the arithmetic mean would be

Total quantity of milk
Number of vessels  = 

20 60
2
�

 litres = 40 litres.

Thus, each vessels would have 40 litres of milk.
The average or Arithmetic mean (A.M.) or simply mean is defined as follows:

mean = 
Sum of all observations
number of observations

Consider these examples.

EXAMPLE 1 Ashish studies for 4 hours, 5 hours and 3 hours respectively on three
consecutive days. How many hours does he study daily on an average?
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SOLUTION The average study time of Ashish would be
Total number of study hours

Number of days for which he studdied  = 
4 5 3

3
� �

 hours = 4 hours per day

Thus, we can say that Ashish studies for 4 hours daily on an average.

EXAMPLE 2 A batsman scored the following number of runs in six innings:
36, 35, 50, 46, 60, 55

Calculate the mean runs scored by him in an inning.
SOLUTION Total runs = 36 + 35 + 50 + 46 + 60 + 55 = 282.

To find the mean, we find the sum of all the observations and divide it by the number of
observations.

Therefore, in this case, mean = 
282
6  = 47. Thus, the mean runs scored in an inning are 47.

Where does the arithmetic mean lie

TRY THESE

How would you find the average of your study hours for the whole week?

THINK, DISCUSS AND WRITE

Consider the data in the above examples and think on the following:
� Is the mean bigger than each of the observations?
� Is it smaller than each observation?

Discuss with your friends. Frame one more example of this type and answer the
same questions.
You will find that the mean lies inbetween the greatest and the smallest observations.

In particular, the mean of two numbers will always lie between the two numbers.

For example the mean of 5 and 11 is 
5 11

2
8� � , which lies between 5 and 11.

Can you use this idea to show that between any two fractional numbers, you can find

as many fractional numbers as you like. For example between 
1
2  and 

1
4  you have their

average

1
2

1
4

2

�
 = 

3
8  and then between 

1
2  and 

3
8 , you have their average 

7
16

and so on.

1. Find the mean of your sleeping hours during one week.

2. Find atleast 5 numbers between 
1
2  and 

1
3 .

TRY THESE
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3.5.1  Range
The difference between the highest and the lowest observation gives us an idea of the
spread of the observations. This can be found by subtracting the lowest observation from
the highest observation. We call the result the range of the observation. Look at the
following example:

EXAMPLE 3 The ages in years of 10 teachers of a school are:
32, 41, 28, 54, 35, 26, 23, 33, 38, 40

(i) What is the age of the oldest teacher and that of the youngest teacher?
(ii) What is the range of the ages of the teachers?
(iii) What is the mean age of these teachers?

SOLUTION

(i) Arranging the ages in ascending order, we get:
23, 26, 28, 32, 33, 35, 38, 40, 41, 54
We find that the age of the oldest teacher is 54 years and the age of the youngest
teacher is 23 years.

(ii) Range of the ages of the teachers = (54 – 23) years = 31 years
(iii) Mean age of the teachers

=
23 26 28 32 33 35 38 40 41 54

10
� � � � � � � � � years

=
350
10

years  = 35 years

EXERCISE 3.1

1. Find the range of heights of any ten students of your class.
2. Organise the following marks in a class assessment, in a tabular form.

4 6 7 5 3 5 4 5 2 6
2 5 1 9 6 5 8 4 6 7

(i) Which number  is the highest? (ii) Which number is the lowest?

(iii) What is the range of the data? (iv) Find the arithmetic mean.

3. Find the mean of the first five whole numbers.
4. A cricketer scores the following runs in eight innings:

58, 76, 40, 35, 46, 45, 0, 100.
Find the mean score.
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5. Following table shows the points of each player scored in four games:

Player Game Game Game Game
1 2 3 4

A 14 16 10 10
B 0 8 6 4
C 8 11 Did not 13

Play

Now answer the following questions:
(i) Find the mean to determine A’s average number of points scored per game.

(ii) To find the mean number of points per game for C, would you divide the total
points by 3 or by 4? Why?

(iii) B played in all the four games. How would you find the mean?

(iv) Who is the best performer?

6. The marks (out of 100) obtained by a group of students in a science test are 85, 76,
90, 85, 39, 48, 56, 95, 81 and 75. Find the:
(i) Highest and the lowest marks obtained by the students.

(ii) Range of the marks obtained.

(iii) Mean marks obtained by the group.

7. The enrolment in a school during six consecutive years was as follows:
1555, 1670, 1750, 2013, 2540, 2820
Find the mean enrolment of the school for this period.

8. The rainfall (in mm) in a city on 7 days of a certain week was recorded as follows:

Day Mon Tue Wed Thurs Fri Sat Sun
Rainfall 0.0 12.2 2.1 0.0 20.5 5.5 1.0
(in mm)

(i) Find the range of the rainfall in the above data.

(ii) Find the mean rainfall for the week.
(iii) On how many days was the rainfall less than the mean rainfall.

9. The heights of 10 girls were measured in cm and the results are as follows:
135, 150, 139, 128, 151, 132, 146, 149, 143, 141.
(i) What is the height of the tallest girl? (ii) What is the height of the shortest girl?

(iii) What is the range of the data? (iv) What is the mean height of the girls?

(v) How many girls have heights more than the mean height.
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3.6  MODE

As we have said Mean is not the only measure of Central tendency or the only form of
representative value. For different requirements from a data other measures of Central
tendencies are used.

Look at the following example

To find out the weekly demand for different sizes of shirt, a shopkeeper kept records of sales
of sizes 90 cm, 95 cm, 100 cm, 105 cm, 110 cm.. Following is the record for a week:

Size (in inches) 90 cm 95 cm 100 cm 105 cm 110 cm Total
Number of shirts sold 8 22 32 37 6 105

If he found the mean number of shirts sold, do you think that he would be able to
decide which shirt sizes to keep in stock?

Mean of total shirts sold = 
Total number of shirts sold

Number of different sizes of shiirts
� �105

5
21

Should he obtain 21 shirts of each size? If he does so, will he be able to cater to the
needs of the customers?

The shopkeeper, on looking at the record, decides to procure shirts of sizes 95cm,
100cm, 105cm. He decided to postpone the procurement of the shirts of other sizes
because of their small number of buyers.

Look at another example

The owner of a readymade dress shop says, “The most popular size of dress I sell is the
size 90cm.

Observe that here also, the owner is concerned about the number
of shirts of different sizes sold. She is however looking at the shirt size
that is sold the most. This is another representative value for the data.
The highest occuring event is the sale of size 90cm.This representative
value is called the mode of the data.
The mode of a set of observations is the observation that occurs
most often.

EXAMPLE 4 Find the mode of the given set of numbers: 1, 1, 2, 4, 3, 2, 1, 2, 2, 4

SOLUTION Arranging the numbers with same values together, we get
1, 1, 1, 2, 2, 2, 2, 3, 4, 4

Mode of this data is 2 because it occurs more frequently than other observations.

3.6.1  Mode of Large Data
Putting the same observations together and counting them is not easy if the number of
observations is large. In such cases we tabulate the data. Tabulation can begin by putting
tally marks and finding the frequency, as you did in your previous class.
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Look at the following example:

EXAMPLE 5 Following are the margins of victory in the football
matches of a league.
1, 3, 2, 5, 1, 4, 6, 2, 5, 2, 2, 2, 4, 1, 2, 3, 1, 1, 2, 3, 2,
6, 4, 3, 2, 1, 1, 4, 2, 1, 5, 3, 3, 2, 3, 2, 4, 2, 1, 2

Find the mode of this data.

SOLUTION Let us put the data  in a tabular form:

Margins of victory Tallybars Number of matches

1 9

2 14

3 7
4 5
5 3
6 2

Total 40

Looking at the table, we can quickly say that 2 is the ‘mode’ since 2 has occured the
highest number of times. Thus, most of the matches have been won with a victory margin
of 2 goals.

THINK, DISCUSS AND WRITE

Can a set of numbers have more than one mode?

EXAMPLE 6 Find the mode of the numbers:  2, 2, 2, 3, 3, 4, 5, 5, 5, 6, 6, 8

SOLUTION Here, 2 and 5 both occur three times. Therefore, they both are modes of
the data.

 1. Rec ord the age in years of all your classmates. Tabulate the data and find the mode.
 2. Record the heights in centimetres of your classmates and find the mode.

1. Find the mode of the following data:
12, 14, 12, 16, 15, 13, 14, 18, 19, 12, 14, 15, 16, 15, 16, 16, 15,
17, 13, 16, 16, 15, 15, 13, 15, 17, 15, 14, 15, 13, 15, 14

Find the mode of
(i) 2, 6, 5, 3, 0, 3, 4, 3, 2, 4, 5,

2, 4,

(ii) 2, 14, 16, 12, 14, 14, 16,
14, 10, 14, 18, 14

TRY THESE

DO THIS

TRY THESE
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2. Heights (in cm) of 25 children are given below:
168, 165, 163, 160, 163, 161, 162, 164, 163,  162, 164, 163, 160, 163, 16, 165,
163, 162, 163, 164, 163, 160, 165, 163, 162
What is the mode of their heights?  What do we understand by Mode here?

Whereas mean gives us the average of all observations of the data, the mode gives that
observation which occurs most frequently in the data.
Let us consider the following examples:
(a) You have to decide upon the number of chapattis needed for 25 people called for a

feast.
(b) A shopkeeper selling shirts has decided to replenish her stock.
(c) We need to find the height of the door needed in our house.
(d) When going on a picnic, if only one fruit can be bought for everyone, which is the

fruit that we would get.
In which of these situations can we use the mode as a good estimate?

Consider the first statement. Suppose the number of chapattis needed by each person
is    2, 3, 2, 3, 2, 1, 2, 3, 2, 2, 4, 2, 2, 3, 2, 4, 4, 2, 3, 2, 4, 2, 4, 3, 5

The mode of the data is 2 chapattis. If we use mode as the representative value for this
data, then we need 50 chapattis only, 2 for each of the 25 persons. However the total
number would clearly be inadequate. Would mean be an appropriate representative value?

For the third statement the height of the door is related to the height of the persons
using that door. Suppose there are 5 children and 4 adults using the door and the height of

each of 5 children is around 135 cm. The mode for the heights is 135
cm. Should we get a door that is 144 cm high? Would all the adults be
able to go through that door? It is clear that mode is not the appropriate
representative value for this data. Would mean be an appropriate
representative value here?

Why not? Which representative value of height should be used to
decide the doorheight?

Similarly analyse the rest of the statements and find the representative
value useful for that issue.

Discuss with your friends and give
(a) Two situations where mean would be an appropriate representative value to

use, and
(b) Two situations where mode would be  and appropriate representative value to use.

TRY THESE



����������	�
 ��

3.7  MEDIAN

We have seen that in some situations, arithmetic mean is an appropriate measure of central
tendency whereas in some other situations, mode is the appropriate measure of central
tendency.
Let us now look at another example. Consider a group of 17 students with the following
heights (in cm): 106, 110, 123, 125, 117, 120, 112, 115, 110, 120, 115, 102, 115, 115,
109, 115, 101.

The games teacher wants to divide the class into two groups so that each group has
equal number of students, one group has students with height lesser than a particular height
and the other group has student with heights greater than the particular height. How would
she do that?
Let us see the various options she has:

(i) She can find the mean. The mean is

Your friend found the median and the
mode of a given data. Describe and
correct your friends error if any:

35, 32, 35, 42, 38, 32, 34
Median = 42, Mode = 32

TRY THESE

� �1930
17

113 5.

106 110 123 125 117 120 112 115 110 120 115 102 115 115 10� � � � � � � � � � � � � � 99 115 101
17

� �

So, if the teacher divides the students into two groups on the basis of this mean height,
such that one group has students of height less than the mean height and the other group
has students with height more than the mean height, then the groups would be of unequal
size. They would have 7 and 10 members respectively.
(ii) The second option for her is to find mode. The observation with highest frequency is

115 cm, which would be taken as mode.
There are 7 children below the mode and 10 children at the mode and above the

mode. Therefore, we cannot divide the group into equal parts.
Let us therefore think of an alternative representative value or measure of central

tendency. For doing this we again look at the given heights (in cm) of students arrange
them in ascending order. We have the following observations:
101, 102, 106, 109, 110, 110, 112, 115, 115, 115, 115, 115, 117, 120, 120, 123, 125

The middle value in this data is 115 because this value divides the students into two
equal groups of 8 students each. This value is called as Median. Median refers to the
value which lies in the middle of the data (when arranged in an
increasing or decreasing order) with half of the observations
above it and the other half below it. The games teacher decides
to keep the middle student as a refree in the game.

Here, we consider only those cases where number of
observations is odd.

Thus, in a given data, arranged in ascending or descending
order, the median gives us the middle observation.
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Note that in general, we may not get the same value for median and mode.
Thus we realise that mean, mode and median are the numbers that are the representative

values of a group of observations or data. They lie between the minimum and maximum
values of the data. They are also called the measures of the central tendency.
EXAMPLE 7 Find the median of the data: 24, 36, 46, 17, 18, 25, 35

SOLUTION We arrange the data in ascending order, we get 17, 18, 24, 25, 35, 36, 46
Median is the middle observation. Therefore 25 is the median.

EXERCISE 3.2
1. The scores in mathematics test (out of 25) of 15 students is as follows:

19, 25, 23, 20, 9, 20, 15, 10, 5, 16, 25, 20, 24, 12, 20
Find the mode and median of this data. Are they same?

2. The runs scored in a cricket match by 11 players is as follows:
6, 15, 120, 50, 100, 80, 10, 15, 8, 10, 15

Find the mean, mode and median of this data. Are the three same?
3. The weights (in kg.) of 15 students of a class are:

38, 42, 35, 37, 45, 50, 32, 43, 43, 40, 36, 38, 43, 38, 47
(i) Find the mode and median of this data.
(ii) Is there more than one mode?

4. Find the mode and median of the data: 13, 16, 12, 14, 19, 12, 14, 13, 14
5. Tell whether the statement is true or false:

(i) The mode is always one of the numbers in a data.
(ii) The mean can be one of the numbers in a data.
(iii) The median is always one of the numbers in a data.
(iv) A data always has a mode.
(v) The data 6, 4, 3, 8, 9, 12, 13, 9 has mean 9.

3.8  USE OF BAR GRAPHS WITH A DIFFERENT PURPOSE

We have seen last year how information collected could be first arranged in a frequency
distribution table and then this information could be put as a visual representation in the
form of pictographs or bar graphs. You can look at the bar graphs and make deductions
about the data. You can also get information based on these bar graphs. For example, you
can say that the mode is the longest bar if the bar represents the frequency.

3.8.1 Choosing a Scale
We know that a bar graph is a representation of numbers using bars of uniform width and
the lengths of the bars depend upon the frequency and the scale you have chosen. For
example, in a bar graph where numbers in units are to be shown, the graph represents one
unit length for one observation and if it has to show numbers in tens or hundreds, one unit
length can represent 10 or 100 observations. Consider the following examples:
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EXAMPLE 8 Two hundred students of 6th and 7th class were asked to name their favourite
colour so as to decide upon what should be the colour of their School
Building. The results are shown in the following table. Represent the given
data on a bar graph.

Favourite Colour Red Green Blue Yellow Orange

Number of Students 43 19 55 49 34

Answer the following questions with the help of the bar graph:
(i) Which is the most preferred colour and which is the least preferred?
(ii) How many colours are there in all? What are

they?

SOLUTION Choose a suitable scale as follows:
Start the scale at 0. The greatest value in the data is
55, so end the scale at a value greater than 55,
such as 60. Use equal divisions along the axes, such
as increments of 10. You know that all the bars
would lie between 0 and 60. We choose the scale
such that the length between 0 and 60 is neither
too long nor too small. Here we take 1 unit for 10
students.
We then draw and label the graph as shown.
From the bar graph we conclude that

(i) Blue is the most preferred colour (Because the bar representing Blue is the tallest).
(ii) Green is the least preferred colour. (Because the bar representing Green is the

shortest).
(iii) There are five colours. They are Red, Green, Blue, Yellow and Orange. (These are

observed on the horizontal line)

EXAMPLE 9 Following data gives total marks (out of 600) obtained by six children of
a particular class. Represent the data on a bar graph.

Students Ajay Bali Dipti Faiyaz Geetika Hari

Marks Obtained 450 500 300 360 400 540

SOLUTION

(i) To choose an appropriate scale we make equal divisions taking increments of 100.
Thus 1 unit will represent 100 marks. (What would be the difficulty if we choose one
unit to represent 10 marks?)

Scale : 1 unit 10 students
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(ii) Now represent the data on the bar graph.

Drawing Double Bar Graph

Consider the following two collections data giving the average daily hours of sunshine in
two cities Aberdeen and Margate for all the twelve months of the year. These cities are
near the south pole and hence have only a few hourse of sunshine each day.

In Margate

Jan Feb Mar April May June July Aug Sept. Oct. Nov. Dec.

Average
hours of 2 4 4 8 7 6 4 2
Sunshine

In Aberdeen
Average
hours of 3 6 5 4 3
Sunshine

By drawing individual bar graphs you could answer questions like
(i) In which month does each city has maximum sunlight?    or
(ii) In which months does each city has minimum sunlight?

However, to answer questions like “In a particular month, which city has more sunshine
hours”, we need to compare the average hours of sunshine of both the cities. To do this we
will learn to draw what is called a double bar graph giving the information of both cities
side by side.
This bar graph (Fig 3.1) shows the average sunshine of both the cities.

For each month we have two bars, the heights of which give the average hours of
sunshine in each city. From this we can infer that except for the month of April, there is
always more sunshine in Margate than in Aberdeen. You could put together a similiar bar
graph for your area or for your city.
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Let us look at another example more related to us.

EXAMPLE 10 A mathematics teacher wants to see, whether the new technique of teach-
ing she applied after quarterly test was effective or not. She takes the
scores of the 5 weakest children in the quarterly test (out of 25) and in
the half yearly test (out of 25):

Students Ashish Arun Kavish Maya Rita
Quarterly 10 15 12 20 9
Half yearly 15 18 16 21 15

SOLUTION Since there seems to be a marked improvement in most of
the students, the teacher decides that she should continue to
use the new technique of teaching.

Can you think of a few more situtions where you could use double
bar graphs?

1. The bar chart (Fig 3.2) shows the result of a survey to test water resistant watches
made by different companies.
Each of these companies claimed that their watches were water resistant. After a
test the above results were revealed.
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TRY THESE
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(a) Can you work a fraction of the number of watches that
leaked to the number tested for each company?

(b) Could you tell on this basis which company has better
watches?

2. Sale of English and Hindi books in the years 1995, 1996,
1997 and 1998 are given below:

Fig 3.2

1995 1996 1997 1998
English 350 400 450 620
Hindi 500 525 600 650

Draw a double bar graph and answer the following questions:
(a) In which year was the difference in the sale of the two

language books least?.

(b) Can you say that the demand for English books rose
faster? Justify.

EXERCISE 3.3

1. Use the bar graph (Fig 3.3) to answer the following questions.
(a) Which is the most popular pet? (b) How many children have dog as a pet?

Fig 3.3

2. Read the bar graph (Fig 3.4) and answer the questions that follow:
Number of books sold by a bookstore during five consecutive years.
(i) About how many books were sold in 1989? 1990? 1992?
(ii) In which year were about 475 books sold? About 225 books sold?

Fig 3.4

Scale : 1cm = 100 books
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(iii) In which years were fewer than 250 books sold?
(iv) Can you explain how you would estimate the number of books sold in 1989?

3. Number of children in six different classes are given below. Represent the data on a
bar graph.

Class Fifth Sixth Seventh Eighth Ninth Tenth

Number of Children 135 120 95 100 90 80

(a) How would you choose a scale.
(b) Answer the following questions:
(i) Which class has the maximum number of children? And the minimum?
(ii) Find the ratio of students of class sixth to the students of class eight.

4. The performance of students in 1st Term and 2nd Term is given. Draw a double bar
graph choosing appropriate scale and answer the following:

Subject English Hindi Maths Science S. Science

1st Term (M.M. 100) 67 72 88 81 73

2nd Term (M.M. 100) 70 65 95 85 75

(i) In which subject, has the child improved his performance the most?
(ii) In which subject is the improvement the least?
(iii) Has the performance gone down in any subject?.

5. Consider this data collected from a survey of a colony.

Favourite Sport Cricket Basket Ball Swimming Hockey Athletics

Watching 1240 470 510 423 250
Participating 620 320 320 250 105

(i) Draw a double bar graph choosing an appropriate scale.
What do you infer from the bar graph?

(ii) Which sport is most popular?
(iii) Which is more preferred, watching or participating in sports?

6. Take the data giving the minimum and the maximum temperature of various cities
given in the beginning of this chapter (Table 3.1). Plot a double bar graph using the
data and answer the following:
(i) Which city has the largest difference in the minimum and maximum temperature

on the given date?
(ii) Which is the hottest city and which is the coldest city?
(iii) Name two cities where maximum temperature of one was less than the minimum

temperature of the other.
(iv) Name the city which has the least difference between its minimum and the

maximum temperature.
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3.9  CHANCE AND PROBABILITY

These words often come up in our daily life. We often say, “there is no chance of it
raining today” and also say things like “it is quite probable that India will win the
World Cup.” Let us try and understand these terms a bit more. Consider the statements;

(i) The Sun coming up from the West (ii) An ant growing to 3 m height.
(iii) If you take a cube of larger volume its side will also be larger.
(iv) If you take a circle with larger area then it’s radius will also be larger.
(v) India winning the next test series.

If  we look at the statements given above you would say that the Sun coming up from
the West is impossible, an ant growing to 3 m  is also not possible. On the other hand if
the circle is of a larger area it is certain that it will have a larger radius. You can say the same
about the larger volume of  the cube and the larger side. On the other hand India can win
the next test series or lose it. Both are possible.

3.9.1  Chance
If you toss a coin, can you always correctly predict what you will get? Try tossing
a coin and predicting the outcome each time. Write your observations in the
following table:

Toss number Prediction Outcome

Do this 10 times. Look at the observed outcomes. Can you see a pattern in
them? What do you get after each head? Is it that you get head all the time? Repeat the
observation for another 10 tosses and write the observations in the table.

You will find that the observations show no clear pattern. In the table below we give
you observations generated in 25 tosses by Sushila and Salma. Here H represents Head
and T represents Tail.

No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Outcome H T T H T T T H T T H H H H H
No. 16 17 18 19 20 21 22 23 24 25
Outcome T T H T T T T T T T
What does this data tell you? Can you find a predictable pattern for head and tail?

Clearly there is no fixed pattern of occurrence of head and tail. When you throw the coin
each time the outcome of every throw can be either head or tail. It is a matter of chance
that in one particular throw you get either of these.

In the above data, count the number of heads and the number of tails. Throw the coin
some more times and keep recording what you obtain. Find out the total number of times
you get a head and the total number of times you get a tail.
You also might have played with a die. The die has six faces. When you throw a die, can
you predict the number that will be obtained? While playing Ludo or Snake and ladders
you may have often wished that in a throw you get a particular outcome.

Think of
some
situations,
atleast 3
examples of
each, that are
certain to
happen, some
that are
impossible
and some that
may or may
not happen
i.e., situations
that have
some chance
of happening.

  TRY THESE
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Does the die always fall according to your wishes? Take a die and throw it 150
times and fill the data in the following table:

Number on Die Tally Marks Number of times it occured

1
2

Make a tally mark each time you get the outcome, against the appropriate number.
For example in the first throw you get 5. Put a tally in front of 5. The next throw gives you
1. Make a tally for 1. Keep on putting tally marks for the appropriate number.  Repeat
this exercise for 150 throws and find out the number of each outcome for 150 throws.

Make bar graph using the above data showing the number of times 1, 2, 3, 4, 5, 6
have occured in the data.

(Do in a group)
1. Toss a coin 100 times and record the data. Find the number of times heads and tails

occur in it.
2. Aftaab threw a die 250 times and got the following table. Draw a bar graph for this data.

Number on the Die Tally Marks
1

2

3

4

5

6

3. Throw a die 100 times and record the data. Find the number of times 1, 2, 3, 4, 5,
6 occur.

What is probability?

We know that when a coin is thrown, it has two possible outcomes, Head  or Tail and for
a die we have 6 possible outcomes. We also know from experience that for a coin, Head
or Tail is equally likely to be obtained. We say that the probability of getting Head or Tail

is equal and is 
1
2  for each.

For a die, possibility of getting either of 1, 2, 3, 4, 5 or 6 is equal. That is for a die
there are 6 equally likely possible outcomes. We say each of  1, 2, 3, 4, 5, 6 has one-

sixth (
1
6 ) probability. We will learn about this in the later classes. But from what we have

done, it may perhaps be obvious that events that have many possibilities can have probability

TRY THESE
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between 0 and 1. Those which have no chance of happening have probability 0 and
those that are bound to happen have probability 1.

Given any situation we need to understand the different possible outcomes
and study the possible chances for each outcome. It may be possible that the
outcomes may not have equal chance of occuring unlike the cases of the coin and
die. For example if a container has 5 red balls and 9 white balls and if a ball is
pulled out without seeing, the chances of getting a red ball are much more. Can
you see why? How many times are the chances of getting a red ball than getting
a white ball, probabilities for both being between 0 and 1.

EXERCISE 3.4
1. Tell whether the following is certain to happen, impossible, can happen but not certain.

(i) You are older today than yesterday. (ii) A tossed coin will land heads up.
(iii) A die when tossed shall land up with 8 on top.
(iv) The next traffic light seen will be green. (v) Tomorrow will be a cloudy day.

2. There are 6 marbles in a box with numbers from 1 to 6 marked on each of them.
(i) What is the probability of drawing a marble with number 2?
(ii) What is the probability of drawing a marble with number 5?

3. A coin is flipped to decide which team starts the game. What is the probability that
your team will start?

4. A box contains pairs of socks of two colours (black and white). I have picked out a
white sock. I pick out one more with my eyes closed. What is the probability that it
will make a pair?

WHAT HAVE WE DISCUSSED?
1. The collection, recording and presentation of data help us organise our experiences

and draw inferences from them.
2. Before collecting data we need to know what we would use it for.
3. The data that is collected needs to be organised in a proper table, so that it becomes

easy to understand and interpret.
4. Average is a number that represents or shows the central tendency of a group of

observations or data.
5. Arithmetic mean is one of the representative values of data.
6. Mode is another form of central tendency or representative value. The mode of a set

of observations is the observation that occurs most often.
7. Median is also a form of representative value. It refers to the value which lies in the

middle of the data with half of the observations above it and the other half below it.
8. A bar graph is a representation of numbers using bars of uniform widths.
9. Double bar graphs help to compare two collections of data at a glance.

10. There are situations in our life, that are certain to happen, some that are impossible
and some that may or may not happen. The situation that may or may not happen has
a chance of happening.

Construct or
think of five
situations where
outcomes do not
have equal
chances.

  TRY THESE
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4.1 A MIND-READING GAME!
The teacher has said that she would be starting a new chapter in
mathematics and it is going to be simple equations. Appu, Sarita
and Ameena have revised what they learnt in algebra chapter in
Class VI. Have you? Appu, Sarita and Ameena are excited because
they have constructed a game which they call mind reader and they
want to present it to the whole class.

The teacher appreciates their enthusiasm and invites them to present their game. Ameena
begins; she asks Sara to think of a number, multiply it by 4 and add 5 to the product. Then,
she asks Sara to tell the result. She says it is 65. Ameena instantly declares that the number
Sara had thought of is 15. Sara nods. The whole class including Sara is surprised.

It is Appu’s turn now. He asks Balu to think of a number, multiply it by 10 and subtract
20 from the product. He then asks Balu what his result is? Balu says it is 50. Appu
immediately tells the number thought by Balu. It is 7,  Balu confirms it.

Everybody wants to know how the ‘mind reader’ presented by Appu, Sarita and
Ameena works. Can you see how it works? After studying this chapter and chapter 12,
you will very well know how the game works.

4.2  SETTING UP OF AN EQUATION

Let us take Ameena’s example. Ameena asks Sara to think of a number. Ameena does not
know the number. For her, it could be anything 1, 2, 3, . . ., 11, . . . , 100, . . . . Let us
denote this unknown number by a letter, say x. You may use y or t or some other letter in
place of x. It does not matter which letter we use to denote the unknown number Sara has
thought of. When Sara multiplies the number by 4, she gets 4x. She then adds 5 to the
product, which gives 4x + 5. The value of (4x + 5) depends on the value of x. Thus
if x = 1, 4x + 5 = 4 ×1 + 5 = 9. This means that if Sara had 1 in her mind, her result would
have been 9. Similarly, if she thought of 5, then for x  = 5, 4x + 5 = 4 × 5 + 5 = 25; Thus
if Sara had chosen 5, the result would have been 25.
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To find the number thought by Sara let us work backward from her answer 65. We
have to find x such that

4x + 5 = 65 (4.1)
Solution to the equation will give us the number which Sara held in her mind.

Let us similarly look at Appu’s example. Let us call the number Balu chose as y. Appu
asks Balu to multiply the number by 10 and subtract 20 from the product. That is, from y,
Balu first gets 10y and from there (10y – 20). The result is known to be 50.
Therefore, 10y – 20 = 50 (4.2)
The solution of this equation will give us the number Balu had thought of.

4.3  REVIEW OF WHAT WE KNOW

Note, (4.1) and (4.2) are equations. Let us recall what we learnt about equations in Class
VI. An equation is a condition on a variable. In equation (4.1), the variable is x; in
equation (4.2), the variable is y.

The word variable means something that can vary, i.e. change. A variable takes on
different numerical values; its value is not fixed. Variables are denoted usually by
letters of the alphabet, such as x, y, z, l, m, n, p etc. From variables, we form
expressions. The expressions are formed by performing operations like addition, subtraction,
multiplication and division on the variables. From x, we formed the expression (4x + 5).
For this, first we multiplied x by 4 and then added 5 to the product. Similarly, from y, we
formed the expression (10y – 20). For this, we multiplied y by 10 and then subtracted 20
from the product. All these are examples of expressions.

The value of an expression thus formed depends upon the chosen value of the variable.
As we have already seen, when x = 1, 4x + 5 = 9; when x = 5, 4x + 5 = 25. Similarly,
when x = 15,  4 x + 5 = 4×15 + 5 = 65;
when x = 0,  4 x + 5 = 4 × 0 + 5 = 5; and so on.

Equation (4.1) is a condition on the variable x. It states that the value of the expression
(4x + 5) is 65. The condition is satisfied when x = 15. It is the solution to the equation
4x + 5 = 65. When x = 5, 4x + 5 = 25 and not 65. Thus x = 5 is not a solution to the
equation. Similarly, x = 0 is not a solution to the equation. No other value of x other than
15 satisfies the condition 4x + 5 = 65.

The value of the expression (10y – 20) depends on the value of y. Verify this by
giving five different values to y and finding for each y the value of (10 y – 20). From
the different values of (10y – 20) you obtain, do you see a solution to 10y – 20 = 50?
If there is no solution, try giving more values to y and find whether the condition
10y – 20 = 50 is met.

TRY THESE
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4.4  WHAT EQUATION IS?
In an equation there is always an equality sign. The equality sign shows that the value of
the expression to the left of the sign (the left hand side or L.H.S.) is equal to
the value of the expression to the right of the sign (the right hand side or R.H.S.). In
Equation (4.1), the L.H.S. is (4x + 5) and the R.H.S. is 65. In equation (4.2), the L.H.S.
is (10y – 20) and the R.H.S. is 50.

If there is some sign other than the equality sign between the L.H.S. and the R.H.S.,
it is not an equation. Thus, 4x + 5 > 65 is not an equation.
It says that, the value of (4x + 5) is greater than 65.
Similarly,  4x + 5 < 65 is not an equation. It says that the value of (4x + 5) is smaller
than 65.

In equations, we often find that the R.H.S. is just a number. In Equation (4.1), it is 65
and in Equation (4.2), it is 50. But this need not be always so. The R.H.S. of an equation
may be an expression containing the variable. For example, the equation

4x + 5 = 6x – 25
has the expression (4x + 5) on the left and (6x – 25) on the right of the equality sign.

In short, an equation is a condition on a variable. The condition is that two
expressions should have equal value. Note that at least one of the two expressions
must contain the variable.

We also note a simple and useful property of equations. The equation 4x +5 = 65 is
the same as 65 = 4x + 5. Similarly, the equation 6x – 25 = 4x +5 is the same as
4x  + 5 = 6x – 25. An equation remains the same, when the expression on the left
and on the right are interchanged. This property is often useful in solving equations.

EXAMPLE 1 Write the following statements in the form of equations:
(i) The sum of three times x and 11 is 32.
(ii) If you subtract 5 from 6 times a number, you get 7.
(iii) One fourth of m is 3 more than 7.
(iv) One third of a number plus 5 is 8.

SOLUTION

(i) Three times x is 3x.
Sum of 3x and 11 is 3x + 11. The sum is 32.
The equation is 3x + 11 = 32.

(ii) Let us say the number is z; z multiplied by 6 is 6z.
Subtracting 5 from 6z, one gets 6z – 5. The result is 7.
The equation is 6z – 5 = 7
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(iii) One fourth of m is 
m
4 .

It is greater than 7 by 3. This means the difference (
m
4

7� ) is 3.

The equation is 
m
4

7�  = 3.

(iv) Take the number to be n. One third of n is 
n
3 .

The number plus 5 is 
n
3  + 5. It is 8.

The equation is 
n
3  + 5 = 8.

EXAMPLE 2 Convert the following equations in statement form:

(i) x – 5 = 9 (ii) 5p = 20 (iii) 3n + 7 = 1 (iv)
m
5  – 2 = 6

SOLUTION (i) Taking away 5 from x gives 9.
(ii) Five times a number p is 20.
(iii) Add 7 to three times n to get 1.
(iv) You get 6, when you subtract 2 from one fifth of a number m.

What is important to note is that for a given equation, not just one, but many statements
forms can be given. For example, for Equation (i) above, you can say:

Subtract 5 from x, you get 9.
or The number x is 5 more than 9.
or The number x is greater by 5 than 9.
or The difference between x and 5 is 9, and so on.

EXAMPLE 3 Consider the following situation:
Raju’s father’s age is 5 years more than three times Raju’s age. Raju’s father is 44 years
old. Set up an equation to find Raju’s age.

SOLUTION We do not know Raju’s age. Let us take it to be y years. Three times
Raju’s age is 3y years. Raju’s father’s age is 5 years more than 3y; that
is, Raju’s father is (3y + 5) years old. It is also given that Raju’s father
is 44 years old.

Therefore, 3y + 5 = 44 (4.3)
This is an equation in y. It will give Raju’s age when solved.
EXAMPLE 4 A shopkeeper sells mangoes in two types of boxes, one small and one

large. A large box contains as many as 8 small boxes plus 4 loose man-
goes. Set up an equation which gives the number of mangoes in each small
box. The number of mangoes in a large box is given to be 100.

SOLUTION Let a small box contain m mangoes. A large box contains 4 more than 8
times m, that is, 8m + 4 mangoes. But this is given to be 100. Thus

8m + 4 = 100 (4.4)
You can get the number of mangoes in a small box by solving this equation.

Write at least one other form for
each Equation (ii), (iii) and (iv).

TRY THESE
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EXERCISE 4.1

1. Complete the last column of the table.

S. Equation Value Say, whether the equation
No. is satisfied. (Yes/ No)

(i) x + 3 = 0 x = 3
(ii) x + 3 = 0 x = 0
(iii) x + 3 = 0 x = – 3
(iv) x – 7 = 1 x = 7
(v) x – 7 = 1 x = 8
(vi) 5x  = 25 x = 0
(vii) 5x  = 25 x = 5
(viii) 5x  = 25 x = – 5

(ix)
m
3 = 2 m = – 6

(x)
m
3 = 2 m = 0

(xi)
m
3 = 2 m = 6

2. Check whether the value given in the brackets is a solution to the given equation or
not:
(a) n + 5 = 19 (n = 1) (b) 7n + 5 = 19 (n = – 2) (c) 7n + 5 = 19 (n = 2)
(d) 4p – 3 = 13 (p = 1) (e) 4p – 3 = 13 (p = – 4) (f) 4p – 3 = 13 (p = 0)

3. Solve the following equations by trial and error method:
(i) 5p + 2 = 17 (ii) 3m – 14 = 4

4. Write equations for the following statements:
(i) The sum of numbers x and 4 is 9. (ii) The difference between y and 2 is 8.

(iii) Ten times a is 70. (iv) The number b divided by 5 gives 6.
(v) Three fourth of t is 15. (vi) Seven times m plus 7 gets you 77.

(vii) One fourth of a number minus 4 gives 4.
(viii) If you take away 6 from 6 times y, you get 60.
(ix) If you add 3 to one third of z, you get 30.

5. Write the following equations in statement forms:

(i) p + 4 = 15 (ii) m – 7 = 3 (iii) 2m = 7 (iv)
m
5  = 3

(v)
3
5
m

 = 6 (vi) 3p + 4 = 25 (vii) 4p – 2 = 18 (viii)
p
2  + 2 = 8
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6. Set up an equation in the following cases:
(i) Irfan says that he has 7 marbles more than five times the marbles Parmit has.

Irfan has 37 marbles. (Take m to be the number of Parmit’s marbles.)
(ii) Laxmi’s father is 49 years old. He is 4 years older than three times Laxmi’s age.

(Take Laxmi’s age to be y years.)
(iii) The teacher tells the class that the highest marks obtained by a student in her

class is twice the lowest marks plus 7. The highest score is 87. (Take the lowest
score to be l.)

(iv) In an isosceles triangle, the vertex angle is twice either base angle. (Let the base
angle be b in degrees. Remember that the sum of angles of a triangle is 180
degrees).

4.4.1  Solving an Equation
Consider 8 – 3 = 4 + 1 (4.5)
Since there is an equality sign between the two sides, so, at present we call it a numerical
equation. You will study about its formal terminology in the later classes.

The equation (4.5) is true. Let us call it balanced, since both sides of the equation are
equal. (Each is equal to 5).
� Let us now add 2 to both sides; as a result

L.H.S. = 8 – 3 + 2 = 5 + 2 = 7, R.H.S. = 4 + 1 + 2 = 5 + 2 = 7.
Again we have an equation that is balanced. We say that the balance is retained or
undisturbed.
Thus if we add the same number to both sides of a balance equation, the balance
is undisturbed.

� Let us now subtract 2 from both the sides; as a result,
L.H.S. = 8  – 3 – 2 = 5 – 2 = 3, R.H.S. = 4 + 1 – 2 = 5 – 2 = 3.
Again, we get a balanced equation.
Thus if we subtract the same number from both sides of a balance equation, the
balance is undisturbed.

� Similarly, if we multiply or divide both sides of the equation by the same number,
the balance is undisturbed.
For example let us multiply both the sides of the equation by 3, we get
L.H.S. = 3 × (8 – 3) = 3 × 5 = 15, R.H.S. = 3 × (4 + 1) = 3 × 5 = 15.
The balance is undisturbed.
Let us now divide both sides of the equation by 2.

L.H.S. = (8 – 3) ÷ 2 = 5 ÷ 2 = 
5
2

R.H.S. = (4+1) ÷ 2 = 5 ÷ 2 = 
5
2  = L.H.S.

Again, the balance is undisturbed.
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If we take any other numerical equation, we shall find the same conclusions.
Suppose, we do not observe these rules. Specificially, suppose we add different

numbers, to the two sides of a balanced equation. We shall find in this case that the balance
is disturbed. For example, let us take again Equation (4.5),

8 – 3 = 4 + 1
add 2 to the L.H.S. and 3 to the R.H.S. The new L.H.S. is 8 – 3 + 2 = 5 + 2 = 7 and the
new R.H.S. is 4 + 1 + 3 = 5 + 3 = 8. The balance is disturbed, because the new L.H.S.
and R.H.S. are not equal.

Thus if we fail to do the same mathematical operation on both sides of a balanced
equation, the balance is disturbed.

These conclusions are also valid for equations with variables as, in each
equation variable represents a number only.

Often an equation is said to be like a weighing balance. Doing a mathematical operation
on an equation is like adding weights to or removing weights from the pans of a weighing
balance.

A balanced equation is like a weighing balance with equal
weights on both its pans, in which case the arm of the balance is
exactly horizontal. If we add the same weights to both the pans,
the arm remains horizontal. Similarly, if we remove the same weights
from both the pans, the arm remains horizontal. On the other hand
if we add different weights to the pans or remove different weights
from them, the balance is tilted; that is, the arm of the balance
does not remain horizontal.

We use this principle for solving an equation. Here, ofcourse,
the balance is imaginary and numbers can be used as weights that can be physically
balanced against each other. This is the real purpose in presenting the principle. Let us
take some examples.
� Consider the equation:     x + 3 = 8 (4.6)

We shall subtract 3 from both sides of this equation.
The new L.H.S. is x + 3 – 3 = x and the new R.H.S. is 8 – 3 = 5

Since this does not disturb the balance, we have
New L.H.S. = New R.H.S. or x = 5

which is exactly what we want, the solution of the equation (4.6).

Why should we subtract
3, and not some other
number? Try adding 3.
Will it help? Why not?

It is because subtract
ing 3 reduces the L.H.S.
to �.

A balanced equation is like a
weighing balance with equal weights
in the two pans.

L.H.S. R.H.S.
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To confirm whether we are right, we shall put x = 5 in the original equation. We get
L.H.S. = x + 3 = 5 + 3 = 8, which is equal to the R.H.S. as required.
By doing the right mathematical operation (i.e., subtracting 3) on both the sides of the
equation, we arrived at the solution of the equation.

� Let us look at another equation x – 3 = 10 (4.7)
What should we do here? We should add 3 to both the sides, By doing so, we shall
retain the balance and also the L.H.S. will reduce to just x.

New L.H.S. = x – 3 + 3 = x  ,   New R.H.S. = 10 + 3 = 13
Therefore, x = 13,  which is the required solution.
By putting x = 13 in the original equation (4.7) we confirm that
the solution is correct:
L.H.S. of original equation = x – 3 = 13 – 3 = 10
This is equal to the R.H.S. as required.

� Similarly, let us look at the equations
5y = 35 (4.8)
m
2  = 5  (4.9)

In the first case, we shall divide both the sides by 5. This will give us just y on L.H.S.

New L.H.S. = 
5
5

5
5

y y y� � � ,  New R.H.S. = 
35
5

5 7
5

7� � �

Therefore, y = 7
This is the required solution. We can substitute y = 7 in Eq. (4.8) and check that it is
satisfied.
In the second case, we shall multiply both sides by 2. This will give us just m on the
L.H.S.

The new L.H.S. =
m
2

2�  = m. The new R.H.S. = 5 × 2 = 10.
Hence, m = 10 (It is the required solution. You can check whether the solution is correct).
One can see that in the above examples, the operation we need to perform depends

on the equation. Our attempt should be to get the variable in the equation separated.
Sometimes, for doing so we may have to carry out more than one mathematical operation.
Let us solve some more equations with this in mind.

EXAMPLE 5 Solve: (a) 3n + 7 = 25 (4.10)
(b) 2p – 1 = 23 (4.11)

SOLUTION

(a) We go stepwise to separate the variable n on the L.H.S. of the equation. The L.H.S.
is 3n + 7. We shall first subtract 7 from it so that we get 3n. From this, in the next
step we shall divide by 3 to get n. Remember we must do the same operation on
both sides of the equation. Therefore, subtracting 7 from both sides,

3n + 7 – 7 = 25 – 7 (Step 1)
or 3n = 18
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Now divide both sides by 3,

3
3
n

 =
18
3 (Step 2)

or n = 6, which is the solution.
(b) What should we do here? First we shall add 1 to both the sides:

2p – 1 + 1 = 23 + 1 (Step 1)
or 2p = 24

Now divide both sides by 2, we get 
2
2

24
2

p � (Step 2)

or p = 12, which is the solution.
One good practice you should develop is to check the solution you have obtained.

Although we have not done this for (a) above, let us do it for this example.
Let us put the solution p = 12 back into the equation.

L.H.S. = 2p – 1 = 2 × 12 – 1 = 24 – 1
= 23 = R.H.S.

The solution is thus checked for its correctness.
Why do you not check the solution of (a) also?

We are now in a position to go back to the mind-reading game presented by Appu,
Sarita, and Ameena and understand how they got their answers. For this purpose, let us
look at the equations (4.1) and (4.2) which correspond respectively to Ameena’s and
Appu’s examples.
� First consider the equation 4x + 5 = 65. (4.1)

Subtract 5 from both sides,  4x + 5 – 5 = 65 – 5.
i.e. 4x = 60

Divide both sides by 4; this will separate x. We get 
4
4
x

 = 
60
4

or x = 15, which is the solution. (Check, if it is correct.)
� Now consider,10y – 20 = 50 (4.2)

Adding 20 to both sides, we get 10y – 20 + 20 = 50 + 20  or  10y = 70

Divide both sides by 10, we get
10
10

y
 =  

70
10

or y = 7, which is the solution. (Check if it is correct.)
You will realise that exactly these were the answers given by Appu, Sarita and Ameena.

They had learnt to set-up equations and solve them. That is why they could construct their
mind reader game and impress the whole class.  We shall come back to this in Section 4.7.
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EXERCISE 4.2

1. Give first the step you will use to separate the variable and then solve the equation:
(a) x – 1 = 0 (b) x + 1 = 0 (c) x – 1 = 5 (d) x + 6 = 2
(e) y – 4 = – 7 (f) y – 4 = 4 (g) y + 4 = 4 (h) y + 4  = – 4

2. Give first the step you will use to separate the variable and then solve the equation:

(a) 3l = 42 (b)
b
2

6� (c)
p
7

4� (d) 4x = 25

(e) 8y = 36 (f)
z
3

5
4

� (g)
a
5

7
15

� (h) 20t = – 10

3. Give the steps you will use to separate the variable and then solve the equation:

(a) 3n – 2 = 46 (b) 5m + 7 = 17 (c)
20

3
40p � (d)

3
10

6p �

4. Solve the following equations:

(a) 10p = 100 (b) 10p + 10 = 100 (c)
p
4

5� (d)
�p
3

5�

(e)
3
4

6p � (f) 3s = –9 (g) 3s + 12 = 0 (h) 3s = 0

(i) 2q = 6 (j) 2q – 6 = 0 (k) 2q + 6 = 0 (l) 2q + 6 = 12

4.5 MORE EQUATIONS

Let us practise solving some more equations. While solving these equations, we shall learn
about transposing a number, i.e., moving it from one side to the other. We can transpose a
number instead of adding or subtracting it from both sides of the equation.

EXAMPLE 6 Solve:  12p – 5  = 25 (4.12)

SOLUTION

� Adding 5 on both sides of the equation,
12p – 5 + 5 = 25 + 5 or 12p = 30

� Dividing both sides by 12,
12
12

30
12

p � or p = 
5
2

Check  Putting p = 
5
2  in the L.H.S. of equation 4.12,

L.H.S. = 12 5
2

5� �  = 6 × 5 – 5
= 30 – 5 = 25 = R.H.S.

Note adding 5 to both sides
is the same as changing side
of (– 5).

12p – 5 = 25
12p = 25 + 5

Changing side is called
transposing. While trans-
posing a number, we change
its sign.



�	����������	��� ��

As we have seen, while solving equations one commonly used operation is adding or
subtracting the same number on both sides of the equation. Transposing a number (i.e.
changing the side of the number) is the same as adding or subtracting the number
from both sides. In doing so, the sign of the number has to be changed. What applies to
numbers also applies to expressions. Let us take two more examples of transposing.

Adding or Subtracting Transposing
on both sides
(i) 3p – 10 = 5 (i) 3p – 10 = 5

Add 10 to both sides Transpose (–10) from L.H.S. to R.H.S.
3p – 10 + 10 = 5 + 10 (On transposing – 10 becomes + 10).

or 3p = 15 3p = 5 + 10   or   3p = 15
(ii) 5x + 12 = 27 (ii) 5x + 12 = 27

Subtract 12 from both sides Transposing  + 12
(On transposing + 12 becomes – 12)

5x + 12 – 12 = 27 – 12 5x = 27 – 12
or 5x = 15 or  5x = 15

We shall now solve two more equations. As you can see they involve brackets, which
have to be solved before proceeding.
EXAMPLE 7 Solve
(a) 4 (m + 3)  = 18 (b) – 2(x + 3) = 5

SOLUTION

(a) 4(m + 3)  = 18
Let us divide both the sides by 4. This will remove the brackets in the L.H.S. We get,

m � �3 18
4 or m � �3 9

2

or m � 9
2

3�    (transposing 3 to R.H.S.)

or m � 3
2 (required solution) as 9

2
3 9

2
6
2

3
2

� � � ��

�

�
�	

Check L.H.S. = 4 3
2

3 4 3
2

4 3 2 3 4 3��
��

�
��
� � � � � � � �  [put m = 

3
2 ]

= 6 + 12 = 18 = R.H.S.
(b) –2(x + 3) = 5

We divide both sides by (– 2), so as to remove the brackets in the L.H.S. We get,

x � �3 5
2

� or x = � �5
2

3 (transposing 3 to R.H.S.)

i.e. x = 
� �5 6

2
or x = 

11
2
�

(required solution)
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Check L.H.S. = � � � � �2 11
2

3 2 11
2

6
2

2 11 6
2

��

�

�
�	
� ��


�
�
�	
� � ��


�
�
�	

= –2 �5
2

2 5
2

5�

�

�
�	
� � �  = R.H.S.    as required.

4.6 FROM SOLUTION TO EQUATION

Atul always thinks differently. He looks at successive steps that one takes to solve an
equation. He wonders why not follow the reverse path:

Equation Solution (normal path)
Solution Equation (reverse path)

He follows the path given below:
Start with x = 5
Multiply both sides by 4, 4x = 20 Divide both sides by 4.
Subtract 3 from both sides, 4x – 3 = 17 Add 3 to both sides.
This has resulted in an equation. If we follow the reverse path with each

step, as shown on the right, we get the solution of the equation.
Hetal feels interested. She starts with the same first step and builds up another
equation.

x = 5
Multiply both sides by 3 3x = 15
Add 4 to both sides 3x + 4 = 19

Start with y = 4 and make two different equations. Ask three of your friends to do the
same. Are their equations different from yours?

Is it not nice that not only can you solve an equation, but you can make
equations? Further, did you notice that given an equation, you get one solution;
but given a solution, you can make many equations?

Now, Sara wants the class to know what she is thinking. She says, “I shall take Hetal’s
equation and put it into a statement form and that makes a puzzle. For example,
Think of a number; multiply it by 3 and add 4 to the product. Tell me the sum you get.

If the sum is 19, the equation Hetal got will give us the solution to the puzzle. In fact, we
know it is 5, because Hetal started with it.”

She turns to Appu, Ameena and Sarita to check whether they made
their puzzle this way. All three say, “Yes!”
We now know how to create number puzzles and many other similar
problems.

Try to make two number
puzzles, one with the solution
11 and another with 100

TRY THESE

Start with the same step
x = 5 and make two different
equations. Ask two of your
classmates to solve the
equations. Check whether
they get the solution x = 5.

TRY THESE
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EXERCISE 4.3

1. Solve the following equations.

(a) 2 5
2

37
2

y � � (b) 5t + 28 = 10 (c)
a
5

3 2� � (d)
q
4

7 5� �

(e)
5
2

10x � � (f)
5
2

25
4

x � (g) 7 19
2

13m � � (h) 6z + 10 = –2

(i)
3
2

2
3

l � (j)
2
3

5 3b � �

2. Solve the following equations.
(a) 2(x + 4) = 12 (b) 3(n – 5) = 21 (c) 3(n – 5) = – 21

(d) 3 – 2(2 – y ) =  7 (e) – 4(2 – x) = 9 (f) 4(2 – x) = 9
(g) 4 + 5 (p – 1) = 34 (h) 34 – 5(p – 1) = 4

3.  Solve the following equations.
(a) 4 = 5(p – 2) (b) – 4 = 5(p – 2) (c) –16 = –5 (2 – p)
(d) 10 = 4 + 3(t + 2) (e) 28 = 4 + 3(t + 5) (f) 0 = 16 + 4(m – 6)

4. (a) Construct 3 equations starting with x  = 2
(b) Construct 3 equations starting with x  = – 2

4.7 APPLICATIONS OF SIMPLE EQUATIONS TO PRACTICAL

SITUATIONS

We have already seen examples in which we have taken statements in everyday language
and converted them into simple equations. We also have learnt how to solve simple equations.
Thus we are ready to solve puzzles/problems from practical situations. The method is first
to form equations corresponding to such situations and then to solve those equations to
give the solution to the puzzles/problems. We begin with what we have already seen
(Example 1 (i) and (iii), Section 4.2)

EXAMPLE 8 The sum of three times a number and 11 is 32. Find the number.

SOLUTION

� If the unknown number is taken to be x, then three times the number is 3x and the sum
of 3x and 11 is 32. That is,  3x + 11 = 32

� To solve this equation, we transpose 11 to R.H.S., so that
3x = 32 – 11    or     3x = 21
Now, divide both sides by 3

So x =
21
3

 = 7

This equation was obtained
earlier in Section 4.2, Example 1.
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The required number is 7. (We may check it by taking 3 times 7 and adding 11 to it. It
gives 32 as required.)

EXAMPLE 9 Find a number, such that one fourth of the number is 3 more than 7.

SOLUTION

� Let us take the unknown number to be y; one fourth of y is 
y
4 .

This number 
y
4

�

�

�
�	  is more than 7 by 3.

Hence we get the equation for y as 
y
4  – 7 = 3

� To solve this equation, first transpose 7 to R.H.S. We get,

y
4  = 3 + 7 = 10.

We then multiply both sides of the equation by 4, to get
y
4  × 4 = 10 × 4        or y = 40 (the required number)

Let us check the equation formed. Putting the value of y in the equation,

L.H.S. = 
40
4  – 7 = 10 – 7 = 3 = R.H.S.,    as required.

EXAMPLE 10 Raju’s father’s age is 5 years more than three times Raju’s age. Find
Raju’s age, if his father is 44 years old.

SOLUTION

� If Raju's age is taken to be y years, his father's age is 3y + 5 and this is given to be 44.
Hence, the equation that gives Raju's age is 3y + 5 = 44

� To solve it, we first transpose 5, to get 3y = 44 – 5 = 39
Dividing both sides by 3, we get y = 13
That is, Raju's age is 13 years. (You may check the answer.)

TRY THESE

(i) When you multiply a
number by 6 and subtract
5 from the product, you
get 7. Can you tell what
the number is?

(ii) What is that number one
third of which added to 5
gives 8?

TRY THESE

There are two types of boxes containing mangoes. Each box of the larger type contains
4 more mangoes than the number of mangoes contained in 8 boxes of the smaller type.
Each larger box contains 100 mangoes. Find the number of mangoes contained in the
smaller box?
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EXERCISE 4.4

1. Set up equations and solve them to find the unknown numbers in the following cases:
(a) Add 4 to eight times a number; you get 60.

(b) One fifth of a number minus 4 gives 3.

(c) If I take three fourths of a number and count up 3 more, I get 21.

(d) When I subtracted 11 from twice a number, the result was 15.

(e) Munna subtracts thrice the number of notebooks he has from 50, he finds the
result to be 8.

(f) Ibenhal thinks of a number. If she adds 19 to it and divides the sum by 5, she
will get 8.

(g) Anwar thinks of a number. If he takes away 7 from 
5
2  of the number, the

result is 
11
2 .

2. Solve the following:
(a) The teacher tells the class that the highest marks obtained by a student in her

class is twice the lowest marks plus 7. The highest score is 87. What is the
lowest score?

(b) In an isosceles triangle, the base angles are equal. The vertex angle is 40°.
What are the base angles of the triangle? (Remember, the sum of three angles of
a triangle is 180°).

(c) Smita’s mother is 34 years old. Two years from now mother’s age will be 4
times Smita’s present age. What is Smita’s present age?

(d) Sachin scored twice as many runs as Rahul. Together, their runs fell two short
of a double century. How many runs did each one score?

3. Solve the following:
(i) Irfan says that he has 7 marbles more than five times the marbles Parmit has.

Irfan has 37 marbles. How many marbles does Parmit have?
(ii) Laxmi's father is 49 years old. He is 4 years older than three times Laxmi's age.

What is Laxmi's age?
(iii) Maya, Madhura and Mohsina are friends studying in the same class. In a class

test in geography, Maya got 16 out of 25. Madhura got 20. Their average score
was 19. How much did Mohsina score?

(iv) People of Sundargram planted a total of 102 trees in the village garden. Some of
the trees were fruit trees. The number of non-fruit trees were two more than
three times the number of fruit trees. What was the number of fruit trees planted?
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4. Solve the following riddle:
I am a number,

Tell my identity!
Take me seven times over

And add a fifty!
To reach a triple century

You still need forty!

WHAT HAVE WE DISCUSSED?
1. An equation is a condition on a variable such that two expressions in the variable

should have equal value.
2. The value of the variable for which the equation is satisfied is called the solution of the

equation.
3. An equation remains the same if the L.H.S. and the R.H.S. are interchanged.
4. In case of the balanced equation, if we

(i)  add the same number to both the sides, or  (ii)   subtract the same number from
both the sides, or (iii)  multiply both sides by the same number, or  (iv)  divide both
sides by the same number, the balance remains undisturbed, i.e., the value of the
L.H.S. remains equal to the value of the R.H.S.

5. The above property gives a systematic method of solving an equation. We carry out
a series of identical mathematical operations on the two sides of the equation in such
a way that on one of  the sides we get just the variable. The last step is the solution of
the equation.

6. Transposing means moving to the other side. Transposition of a number has the same
effect as adding same number to (or subtracting the same number from) both sides of
the equation. When you transpose a number from one side of the equation to the
other side, you change its sign. For example, transposing +3 from the L.H.S. to the
R.H.S. in equation x + 3 = 8 gives x = 8 – 3 (= 5). We can carry out the transposition
of an expression in the same way as the transposition of a number.

7. We have learnt how to construct simple algebraic expressions corresponding to
practical situations.

8. We also learnt how, using the technique of doing the same mathematical operation
(for  example adding the same number) on both sides, we could build an equation
starting from its  solution. Further, we also learnt that we could relate a given equation
to some appropriate  practical situation and build a practical word problem/puzzle
from the equation.



  

5.1 INTRODUCTION

You already know how to identify different lines, line segments and angles in a given
shape. Can you identify the different line segments and angles formed in the following
figures? (Fig 5.1)

(i) (ii) (iii) (iv)
Fig 5.1

Can you also identify whether the angles made are acute or obtuse or right?
Recall that a line segment has two end points. If we extend the two end points in either

direction endlessly, we get a line. Thus, we can say that a line has no end points. On the other
hand, recall that a ray has one end point (namely its starting point). For example, look at the
figures given below:

Fig 5.2
Here, Fig 5.2 (i) shows a line segment, Fig 5.2 (ii) shows a line and Fig 5.2 (iii) is that

of a ray. A line segment PQ is generally denoted by the symbol PQ , a line AB is denoted by

the symbol AB
����

and the ray OP is denoted by OP
� ���

. Give some examples of line segments and
rays from your daily life and discuss them with your friends.

C
ha

pt
er

  
5

Lines and
Angles

(iii)

(i) (ii)
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Again recall that an angle is formed when lines or line segments meet. In Fig 5.1,
observe the corners. These corners are formed when two lines or line segments intersect
at a point. For example, look at the figures given below:

Fig 5.3
In Fig 5.3 (i) line segments AB and BC intersect at B to form angle ABC, and again

line segments BC and AC intersect at C to form angle ACB and so on. Whereas, in
Fig 5.3 (ii) lines PQ and RS intersect at O to form four angles POS,
SOQ, QOR and ROP. An angle ABC is represented by the symbol
∠ABC. Thus, in Fig 5.3 (i), the three angles formed are ∠ABC, ∠BCA
and ∠BAC, and in Fig 5.3 (ii), the four angles formed are ∠POS, ∠SOQ,
∠QOR and ∠POR. You have already studied how to classify the angles
as acute, obtuse or right angle.

Note: While referring to the measure of an angle ABC, we shall write m∠ABC as simply
∠ABC. The context will make it clear, whether we are referring to the angle or its measure.

5.2 RELATED ANGLES

5.2.1  Complementary Angles
When the sum of the measures of two angles is 90°, the angles are called complementary
angles.

(i) (ii)

List ten figures around you
and identify the acute, obtuse
and right angles found in them.

TRY THESE

Whenever two angles are complementary, each angle is said to be the complement
of the other angle. In the above diagram (Fig 5.4), the ‘30° angle’ is the complement of the
‘60° angle’ and vice versa.

Are these two angles complementary?
No

(i) (ii) (iii) (iv)

Are these two angles complementary?
Yes Fig 5.4
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THINK, DISCUSS AND WRITE

1. Can two acute angles be complement to each other?
2. Can two obtuse angles be complement to each other?
3. Can two right angles be complement to each other?

1. Which pairs of following angles are complementary? (Fig 5.5)

Fig 5.5
2. What is the measure of the complement of each of the following angles?

(i) 45º (ii) 65º (iii) 41º (iv) 54º
3. The difference in the measures of two complementary angles is 12o. Find the measures of the angles.

5.2.2  Supplementary Angles
Let us now look at the following pairs of angles (Fig 5.6):

TRY THESE

(i) (ii)

(iii) (iv)

(i) (ii)
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Fig 5.6

Do you notice that the sum of the measures of the angles in each of the above pairs
(Fig 5.6) comes out to be 180º? Such pairs of angles are called supplementary angles.
When two angles are supplementary, each angle is said to be the supplement of the other.

THINK, DISCUSS AND WRITE

1. Can two obtuse angles be supplementary?
2. Can two acute angles be supplementary?
3. Can two right angles be supplementary?

1. Find the pairs of supplementary angles in Fig 5.7:

Fig 5.7

(iii) (iv)

TRY THESE

(iii) (iv)

(i) (ii)
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2. What will be the measure of the supplement of each one of the following angles?
(i) 100º (ii) 90º (iii) 55º (iv) 125º

3. Among two supplementary angles the measure of the larger angle is 44o more than
the measure of the smaller. Find their measures.

5.2.3.  Adjacent Angles
Look at the following figures:

 Fig 5.8
At both the  vertices A and B, we find, a pair of angles are placed next to each other.
These angles are such that:

(i) they have a common vertex;
(ii) they have a common arm; and
(iii) the non-common arms are on either side of the common arm.

Such pairs of angles are called adjacent angles. Adjacent angles have a common
vertex and a common arm but no common interior points.

1. Are the angles marked 1 and 2 adjacent? (Fig 5.9). If they are not adjacent,
say, ‘why’.

A
B

When you open a book it looks like the above
figure. In A and B, we find a pair of angles,
placed next to each other.

Look at this steering wheel of a car. At the
centre of the wheel you find three angles
being formed, lying next to one another.

TRY THESE

(i) (ii) (iii)



MATHEMATICS98

Fig 5.9

2. In the given Fig 5.10, are the following adjacent angles?
(a) ∠AOB and ∠BOC
(b) ∠BOD and ∠BOC
Justify your answer.

THINK, DISCUSS AND WRITE

1. Can two adjacent angles be supplementary?
2. Can two adjacent angles be complementary?
3. Can two obtuse angles be adjacent angles?
4. Can an acute angle be adjacent to an obtuse angle?

5.2.4  Linear Pair
A linear pair is a pair of adjacent angles whose non-common sides are opposite rays.

Are ∠1, ∠2 a linear pair? Yes Are ∠1, ∠2 a linear pair? No! (Why?)
(i) Fig 5.11 (ii)

In Fig 5.11 (i) above, observe that the opposite rays (which are the non-common
sides of ∠1 and ∠2) form a line. Thus, ∠1 + ∠2 amounts to 180o.
The angles in a linear pair are supplementary.
Have you noticed models of a linear pair in your environment?

Note carefully that a pair of supplementary angles form a linear pair when
placed adjacent to each other. Do you find examples of linear pair in your daily life?

 (iv) (v)

Fig 5.10
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Observe a vegetable chopping board (Fig 5.12).

A vegetable chopping board A pen stand
The chopping blade makes a The pen makes a linear

linear pair of angles with the board. pair of angles with the stand.

Fig 5.12

Can you say that the chopping blade is making a linear pair of angles with the board?
Again, look at a pen stand (Fig 5.12). What do you observe?

THINK, DISCUSS AND WRITE

1. Can two acute angles form a linear pair?
2. Can two obtuse angles form a linear pair?
3. Can two right angles form a linear pair?

Check which of the following pairs of angles form a linear pair (Fig 5.13):

TRY THESE

80°

90°
65°

40°

60°

60°

Fig 5.13

(i) (ii)

(iii) (iv)
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5.2.5  Vertically Opposite Angles
Next take two pencils and tie them with the help of a rubber band at the middle as shown
(Fig 5.14).
Look at the four angles formed ∠1, ∠2, ∠3 and ∠4.
∠1 is vertically opposite to ∠3.
and ∠2 is vertically opposite to ∠4.
We call ∠1 and ∠3, a pair of vertically opposite angles.
Can you name the other pair of vertically opposite angles?
Does ∠1 appear to be equal to ∠3? Does ∠2 appear to be equal to ∠4?

Before checking this, let us see some real life examples for vertically opposite angles
(Fig 5.15).

Fig 5.15

Draw two lines l and m, intersecting at a point. You can now mark ∠1, ∠2, ∠3 and
∠4 as in the Fig (5.16).

Take a tracecopy of the figure on a transparent sheet.
Place the copy on the original such that ∠1 matches with its copy, ∠2 matches with

its copy, ... etc.
Fix a pin at the point of intersection. Rotate the copy by 180o. Do the lines coincide

again?

can be rotated to get

Fig 5.16

You find that ∠1 and ∠3 have interchanged their positions and so have ∠2 and ∠4.
This has been done without disturbing the position of the lines.
Thus, ∠1 = ∠3 and ∠2 = ∠4.

Fig 5.14

DO THIS
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We conclude that when two lines intersect, the vertically opposite angles so
formed are equal.
Let us try to prove this using Geometrical Idea.
Let us consider two lines l and m. (Fig 5.17)
We can arrive at this result through logical reasoning as follows:
Let l and m be two lines, which intersect at O,
making angles ∠1, ∠2, ∠3 and ∠4.
We want to prove that   ∠1  = ∠3   and   ∠2  = ∠4
Now, ∠1 = 180º  – ∠2 (Because ∠1, ∠2 form a linear pair, so, ∠1 + ∠2 = 180o) (i)
Similarly, ∠3 = 180º – ∠2 (Since ∠2, ∠3 form a linear pair, so, ∠2 + ∠3 = 180o)    (ii)
Therfore, ∠1 = ∠3 [By (i) and (ii)]
Similarly, we can prove that ∠2 = ∠4, (Try it!)

 1. In the given figure, if
∠1 = 30º, find ∠2 and ∠3.

 2. Give an example for vertically opposite angles in
your surroundings.

EXAMPLE 1 In Fig (5.18) identify:
(i) Five pairs of adjacent angles. (ii) Three linear pairs.

(iii) Two pairs of vertically opposite angles.

SOLUTION

 (i) Five pairs of adjacent angles are (∠AOE, ∠EOC), (∠EOC, ∠COB),
 (∠AOC, ∠COB), (∠COB, ∠BOD),  (∠EOB, ∠BOD)

(ii) Linear pairs are (∠AOE, ∠EOB), (∠AOC, ∠COB),
 (∠COB, ∠BOD)

(iii) Vertically opposite angles are: (∠COB, ∠AOD), and (∠AOC, ∠BOD)

EXERCISE 5.1

1. Find the complement of each of the following angles:

(i) (ii) (iii)

Fig 5.17

TRY THESE

Fig 5.18
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2. Find the supplement of each of the following angles:

(i) (ii) (iii)

3. Identify which of the following pairs of angles are complementary and which are
supplementary.
(i) 65º, 115º (ii) 63º,  27º (iii) 112º,  68º

(iv) 130º,  50º (v) 45º,  45º (vi) 80º,  10º
4. Find the angle which is equal to its complement.
5. Find the angle which is equal to its supplement.
6. In the given figure, ∠1 and ∠2 are supplementary

angles.
If ∠1 is decreased, what changes should take place
in ∠2 so that both the angles still remain
supplementary.

7. Can two angles be supplementary if both of them are:
(i) acute? (ii) obtuse? (iii) right?

8. An angle is greater than 45º. Is its complementary angle greater than 45º or equal to
45º or less than 45º?

9. In the adjoining figure:
(i) Is ∠1 adjacent to ∠2?
(ii) Is ∠AOC adjacent to ∠AOE?
(iii) Do ∠COE and ∠EOD form  a linear pair?
(iv) Are ∠BOD and ∠DOA supplementary?
(v) Is ∠1 vertically opposite to ∠4?
(vi) What is the vertically opposite angle of ∠5?

10. Indicate which pairs of angles are:
(i) Vertically opposite angles. (ii) Linear pairs.
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11. In the following figure, is ∠1 adjacent to ∠2? Give reasons.

12. Find the values of the angles x, y, and z in each of the following:

(i) (ii)
13. Fill in the blanks:

(i) If two angles are complementary, then the sum of their measures is .
(ii) If two angles are supplementary, then the sum of their measures is .
(iii) Two angles forming a linear pair are .
(iv) If two adjacent angles are supplementary, they form a .
(v) If two lines intersect at a point, then the vertically opposite angles are always

.
(vi) If two lines intersect at a point, and if one pair of vertically opposite angles are

acute angles, then the other pair of vertically opposite angles are .
14. In the adjoining figure, name the following pairs of angles.

(i) Obtuse vertically opposite angles
(ii) Adjacent complementary angles
(iii) Equal supplementary angles
(iv) Unequal supplementary angles
(v) Adjacent angles that do not form a linear pair

5.3  PAIRS OF LINES

5.3.1 Intersecting Lines

Fig 5.19
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The blackboard on its stand, the letter Y made up of line segments and the grill-door of
a window (Fig 5.19), what do all these have in common? They are examples of intersecting
lines.

Two lines l and m intersect if they have a point in common. This common point O is
their point of intersection.

THINK, DISCUSS AND WRITE

In Fig 5.20, AC and BE intersect at P.
AC and BC intersect at C, AC and EC intersect at C.
Try to find another ten pairs of intersecting line segments.

Should any two lines or line segments necessarily
intersect? Can you find two pairs of non-intersecting line
segments in the figure?
Can two lines intersect in more than one point? Think about it.

1. Find examples from your surroundings where lines intersect at right angles.
2. Find the measures of the angles made by the intersecting lines at the vertices of an

equilateral triangle.
3. Draw any rectangle and find the measures of angles at the four vertices made by the

intersecting lines.
 4. If two lines intersect, do they always intersect at right angles?

5.3.2  Transversal
You might have seen a road crossing two or more roads or a railway line crossing several
other lines (Fig 5.21). These give an idea of a transversal.

(i) Fig 5.21 (ii)

A line that intersects two or more lines at distinct points is called a transversal.

Fig 5.20

TRY THESE
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In the Fig 5.22, p is a transversal to the lines l and m.

Fig 5.22 Fig 5.23

In Fig 5.23 the line p is not a transversal, although it cuts two
lines l�and m. Can you say, ‘why’?

5.3.3. Angles made by a Transversal
In Fig 5.24, you see lines l�and m cut by transversal p. The eight
angles marked 1 to 8 have their special names:

TRY THESE

1. Suppose two lines are given.
How many transversals can you
draw for these lines?

2. If a line is a transversal to three
lines, how many points of
intersections are there?

3. Try to identify a few transversals
in your surroundings.

Fig 5.24

Interior angles ∠3, ∠4, ∠5, ∠6
Exterior angles ∠1, ∠2, ∠7, ∠8
Pairs of Corresponding angles ∠1 and ∠5, ∠2 and ∠6,

∠3 and ∠7, ∠4 and ∠8
Pairs of Alternate interior angles ∠3 and ∠6, ∠4 and ∠5
Pairs of Alternate exterior angles ∠1 and ∠8, ∠2 and ∠7
Pairs of interior angles on the ∠3 and ∠5, ∠4 and ∠6
same side of the transversal

Note: Corresponding angles (like ∠1 and ∠5 in Fig 5.25) include
 (i) different vertices (ii) are on the same side of the transversal and
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(iii) are in ‘corresponding’ positions (above or below, left or right) relative to the
two lines.

Fig 5.25

Alternate interior angles (like ∠3 and ∠6 in Fig 5.26)
(i) have different vertices
(ii) are on opposite sides of the transversal and
(iii) lie ‘between’ the two lines.

TRY THESE

Fig 5.26

Name the pairs of angles in each figure:

5.3.4 Transversal of Parallel Lines
Do you remember what parallel lines are? They are lines on a plane that do not meet
anywhere. Can you identify parallel lines in the following figures? (Fig 5.27)

Transversals of parallel lines give rise to quite interesting results.
Fig 5.27
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Take a ruled sheet of paper. Draw (in thick colour) two parallel lines l and m.
Draw a transversal t to the lines l and m. Label ∠1 and ∠2 as shown [Fig 5.28(i)].
Place a tracing paper over the figure drawn. Trace the lines l, m and t.
Slide the tracing paper along t, until l coincides with m.
You find that ∠1 on the traced figure coincides with ∠2 of the original figure.
In fact, you can see all the following results by similar tracing and sliding activity.
(i)   ∠1 = ∠2 (ii)   ∠3 = ∠4 (iii)   ∠5 = ∠6 (iv)   ∠7 = ∠8

DO THIS

This activity illustrates the following fact:

If two parallel lines are cut by a transversal, each pair of corresponding angles are
equal in measure.

We use this result to get another interesting result. Look at Fig 5.29.
When t cuts the parallel lines, l, m, we get, ∠3 = ∠7 (vertically opposite angles).
But ∠7 = ∠8 (corresponding angles). Therefore,  ∠3 = ∠8

Fig 5.28(iii) (iv)

(i) (ii)
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You can similarly show that ∠1 = ∠6. Thus, we have
the following result :

If two parallel lines are cut by a transversal, each
pair of alternate interior angles are equal.

This second result leads to another interesting
property. Again, from Fig 5.29.
∠3 + ∠1 = 180° (∠3 and ∠1 form a linear pair)
But ∠1 = ∠6 (A pair of alternate interior angles)
Therefore,  we can say that ∠3 + ∠6 = 180°.
Similarly,  ∠1 + ∠8 = 180°. Thus, we obtain the following result:
If two parallel lines are cut by a transversal, then each pair of interior angles on the same
side of the transversal are supplementary.

You can very easily remember these results if you can look for relevant ‘shapes’.
The F-shape stands for corresponding angles:

The Z - shape stands for alternate angles.

Fig 5.29

DO THIS

Draw a pair of parallel lines and a transversal. Verify the above three statements by actually
measuring the angles.
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Lines l�|| m; Lines a�|| b; l1, l2 be two lines
t is a transversal c is a transversal t is a transversal

∠ x = ? ∠ y = ? Is ∠ 1 = ∠2 ?

Lines l�|| m; Lines l�|| m; Lines l�|| m, p�|| q;
t is a transversal t is a transversal Find a, b, c, d

∠ z = ? ∠ x = ?

TRY THESE

5.4  CHECKING FOR PARALLEL LINES

If two lines are parallel, then you know that a transversal gives rise to
pairs of equal corresponding angles, equal alternate interior angles
and interior angles on the same side of the transversal being
supplementary.

When two lines are given, is there any method to check if they are
parallel or not? You need this skill in many life-oriented situations.

A draftsman uses a carpenter’s square and a straight edge (ruler)
to draw these segments (Fig 5.30). He claims they are parallel. How?

Are you able to see that he has kept the corresponding angles to
be equal? (What is the transversal here?)

Thus, when a transversal cuts two lines, such that pairs of
corresponding angles are equal, then the lines have to be parallel.

Look at the letter Z(Fig 5.31). The horizontal segments here are
parallel, because the alternate angles are equal.

When a transversal cuts two lines, such that pairs of alternate
interior angles are equal, the lines have to be parallel.

Fig 5.30

Fig 5.31
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Draw a line l (Fig 5.32).
Draw a line m, perpendicular to l. Again draw a line p,
such that p is perpendicular to m.
Thus, p is perpendicular to a perpendicular to l.
You find p || l. How? This is because you draw p such
that ∠1 + ∠2 = 180o.

Thus, when a transversal cuts two lines, such that pairs of interior angles on the
same side of the transversal are supplementary, the lines have to be parallel.

Fig 5.32

TRY THESE

Is l�|| m? Why?           Is l�|| m ? Why?             If l�|| m, what is ∠x?

EXERCISE 5.2

1. State the property that is used in each of the
following statements?

(i) If  a || b, then ∠1 = ∠5.

(ii) If ∠4 = ∠6, then a || b.

(iii) If ∠4 + ∠5 = 180°, then a || b.

2. In the adjoining figure, identify

(i) the pairs of corresponding angles.

(ii) the pairs of alternate interior angles.

(iii) the pairs of interior angles on the same

side of the transversal.

(iv) the vertically opposite angles.

3. In the adjoining figure, p || q. Find the unknown
angles.
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4. Find the value of x in each of the following figures if l || m.

(i) (ii) (iii)
5. In the given figure, the arms of two angles are parallel.

If ∠ABC = 70º, then find
(i) ∠DGC
(ii) ∠DEF

6. In the given figures below, decide whether l  is parallel to m.

WHAT HAVE WE DISCUSSED?
1. We recall that (i) A line-segment has two end points.

(ii) A ray has only one end point (its vertex); and
(iii) A line has no end points on either side.

2. An angle is formed when two lines (or rays or line-segments) meet.

Pairs of Angles Condition
Two complementary angles Measures add up to 90°
Two supplementary angles Measures add up to 180°
Two adjacent angles Have a common vertex and a common

arm but no common interior.
Linear pair Adjacent and supplementary

3. When two lines l and m meet, we say they intersect; the meeting point is called the
point of intersection.
When lines drawn on a sheet of paper do not meet, however far produced, we call
them to be parallel lines.

(i) (ii) (iii) (iv)

l m
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4. (i) When two lines intersect (looking like the letter X) we have two pairs of opposite
angles. They are called vertically opposite angles. They are equal in measure.

(ii) A transversal is a line that intersects two or more lines at distinct points.
(iii) A transversal gives rise to several types of angles.
(iv) In the figure, we have

Types of Angles Angles Shown
Interior ∠3, ∠4, ∠5, ∠6
Exterior ∠1, ∠2, ∠7, ∠8
Corresponding ∠1 and ∠5, ∠2 and ∠6,

∠3 and ∠7, ∠4 and ∠8
Alternate interior ∠3 and ∠6, ∠4 and ∠5
Alternate exterior ∠1 and ∠8, ∠2 and ∠7
Interior, on the same ∠3 and ∠5, ∠4 and ∠6
side of transversal

(v) When a transversal cuts two parallel lines, we have the following interesting
relationships:

Each pair of corresponding angles are equal.
∠1 = ∠5, ∠3 = ∠7, ∠2 = ∠6, ∠4 = ∠8

Each pair of alternate interior angles are equal.
∠3 = ∠6, ∠4 = ∠5

Each pair of interior angles on the same side of transversal are supplementary.
∠3 + ∠5 = 180°, ∠4 + ∠6 = 180°



    

6.1 INTRODUCTION

A triangle, you have seen, is a simple closed curve made of three line
segments. It has three vertices, three sides and three angles.
Here is ΔABC (Fig 6.1). It has

Sides: AB , BC , CA
Angles: ∠BAC, ∠ABC, ∠BCA
Vertices: A, B, C
The side opposite  to the vertex A is BC. Can you name the angle opposite to the side AB?
You know how to classify triangles based on the (i) sides (ii) angles.

(i) Based on Sides: Scalene, Isosceles and Equilateral triangles.
(ii) Based on Angles: Acute-angled, Obtuse-angled and Right-angled triangles.

Make paper-cut models of the above triangular shapes. Compare your models with those
of your friends and discuss about them.

1. Write the six elements (i.e., the 3 sides and the 3 angles) of ΔABC.
2. Write the:

(i) Side opposite to the vertex Q of ΔPQR
(ii) Angle opposite to the side LM of ΔLMN
(iii) Vertex opposite to the side RT of ΔRST

3. Look at Fig 6.2 and classify each of the triangles according to its
(a) Sides
(b) Angles

C
h
a
p
t
e
r
 
 
6

The Triangle and

its Properties

Fig 6.1

TRY THESE
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Fig 6.2

Now, let us try to explore something more about triangles.

6.2  MEDIANS OF A TRIANGLE

Given a line segment, you know how to find its perpendicular bisector by paper folding.
Cut out a triangle ABC from a piece of paper (Fig 6.3). Consider any one of its sides, say,

BC . By paper-folding, locate the perpendicular bisector of BC . The folded crease meets
BC  at D, its mid-point. Join AD .

Fig 6.3

The line segment AD , joining the mid-point of BC  to its opposite vertex A is called a
median of the triangle.

Consider the sides AB and CA  and find two more medians of the triangle.
A median connects a vertex of a triangle to the mid-point of the opposite side.

THINK, DISCUSS AND WRITE

1. How many medians can a triangle have?
2. Does a median lie wholly in the interior of the triangle? (If you think that this is not

true, draw a figure to show such a case).

P

Q R6cm

10
cm 8cm

(ii)

L

M N
7cm

7cm

(iii)

A

B C
D

A

B C
D
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6.3  ALTITUDES OF A TRIANGLE

Make a triangular shaped cardboard ABC. Place it upright, on a
table. How “tall” is the triangle? The height is the distance from

vertex A (in the Fig 6.4) to the base BC .

From A to BC  you can think of many line segments (see the
next Fig 6.5). Which among them will represent its height?

The height is given by the line segment that starts from A,

comes straight down to BC , and is perpendicular to BC .

This line segment AL  is an altitude of the triangle.
An altitude has one end point at a vertex of the triangle

and the other on the line containing the opposite side. Through
each vertex, an altitude can be drawn.

THINK, DISCUSS AND WRITE

1. How many altitudes can a triangle have?

2. Draw rough sketches of altitudes from A to BC  for the following triangles (Fig 6.6):

Acute-angled Right-angled Obtuse-angled
(i) (ii) (iii)

Fig 6.6
3. Will an altitude always lie in the interior of a triangle? If you think that this need not be

true, draw a rough sketch to show such a case.
4. Can you think of a triangle in which two altitudes of the triangle are two of its sides?
5. Can the altitude and median be same for a triangle?

(Hint: For Q.No.  4 and 5, investigate by drawing the altitudes for every type of triangle).

Take several cut-outs of
 (i) an equilateral triangle (ii) an isosceles triangle and
(iii) a scalene triangle.
Find their altitudes and medians. Do you find anything special about them? Discuss it
with your friends.

A

B C

Fig 6.4
A

B CL
Fig 6.5

A

B C

A

B C

A

B C

DO THIS
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EXERCISE 6.1

1. In Δ PQR, D is the mid-point of QR .

PM  is _________________.
PD  is _________________.
Is QM  MR?

2. Draw rough sketches for the following:
(a) In ΔABC, BE is a median.
(b) In ΔPQR, PQ and PR are altitudes of the triangle.
(c) In ΔXYZ, YL is an altitude in the exterior of the triangle.

3. Verify by drawing a diagram if the median and altitude of an isosceles triangle can be
same.

6.4 EXTERIOR ANGLE OF A TRIANGLE AND ITS PROPERTY

1. Draw a triangle ABC and produce one of its sides,
say BC as shown in Fig 6.7. Observe the angle
ACD formed at the point C. This angle lies in the
exterior of ΔABC. We call it an exterior angle
of the ΔABC formed at vertex C.
Clearly ∠BCA is an adjacent angle to ∠ACD. The

remaining two angles of the triangle namely ∠A and ∠B are
called  the two interior opposite angles or the two remote

interior angles of ∠ACD. Now cut out (or make trace copies of) ∠A and ∠B and
place them adjacent to each other as shown in Fig 6.8.
Do these two pieces together entirely cover ∠ACD?
Can you say that
m ∠ACD  m ∠A + m ∠B?

2. As done earlier, draw a triangle ABC and form an exterior angle ACD. Now take a
protractor and measure ∠ACD, ∠A
and ∠B.
Find the sum ∠A + ∠B and compare
it with the measure of ∠ACD. Do you
observe that ∠ACD is equal (or nearly
equal, if there is an error in
measurement) to ∠A + ∠B?

P

Q R
DM

DO THIS

Fig 6.7

Fig 6.8
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You may repeat the above two activities by drawing some more triangles along with
their exterior angles. Every time, you will find that the exterior angle of a triangle is equal to
the sum of its two interior opposite angles.
A logical step-by-step argument can further confirm this fact.

An exterior angle of a triangle is equal to the sum of its interior opposite
angles.
Given Consider ΔABC.
∠ACD is an exterior angle.
To Show: m∠ACD m∠A + m∠B

Through C draw CE , parallel to BA .

Justification

Steps Reasons

(a) ∠1  ∠x BA CE||  and AC  is a transversal.
Therefore, alternate angles should be equal.

(b) ∠2  ∠y BA CE||  and BD  is a transversal.

Therefore, corresponding angles should be equal.
(c) ∠1 + ∠2  ∠x + ∠y
(d) Now, ∠x + ∠y m ∠ACD From Fig 6.9

Hence, ∠1 + ∠2  ∠ACD
The above relation between an exterior angle and its two interior opposite angles is

referred to as the Exterior Angle Property of a triangle.

THINK, DISCUSS AND WRITE

1. Exterior angles can be formed for a triangle in many ways. Three of them are shown
here (Fig 6.10)

Fig 6.10
There are three more ways of getting exterior angles. Try to produce those rough
sketches.

2. Are the exterior angles formed at each vertex of a triangle equal?
3. What can you say about the sum of an exterior angle of a triangle and its adjacent

interior angle?

Fig 6.9
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EXAMPLE 1 Find angle x in Fig 6.11.

SOLUTION Sum of interior opposite angles  Exterior angle
or 50° + x 110°
or x 60°

THINK, DISCUSS AND WRITE

1. What can you say about each of the interior opposite angles, when the exterior angle is
(i) a right angle? (ii) an obtuse angle? (iii) an acute angle?

2. Can the exterior angle of a triangle be a straight angle?

1. An exterior angle of a triangle is of measure 70º and one of its interior opposite
angles is of measure 25º. Find the measure of the other interior opposite
angle.

2. The two interior opposite angles of an exterior angle of a triangle are 60º and
80º. Find the measure of the exterior angle.

3. Is something wrong in this diagram (Fig 6.12)? Comment.

EXERCISE 6.2

1. Find the value of the unknown exterior angle x in the following diagrams:

Fig 6.11

TRY THESE

Fig 6.12
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2. Find the value of the unknown interior angle x in the following figures:

6.5  ANGLE SUM PROPERTY OF A TRIANGLE

There is a remarkable property connecting the three angles of a triangle. You are going to
see this through the following four activities.

1. Draw a triangle. Cut on the three angles. Rearrange them as shown in Fig 6.13 (i), (ii).
The three angles now constitute one angle. This angle is a straight angle and so has
measure 180°.

Fig 6.13

Thus, the sum of the measures of the three angles of a triangle is 180°.
2. The same fact you can observe in a different way also. Take three copies of any

triangle, say ΔABC (Fig 6.14).

(i)       (ii)

Fig 6.14
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Arrange them as in Fig 6.15.
What do you observe about ∠1 + ∠2 + ∠3?
(Do you also see the ‘exterior angle
property’?)

3. Take a piece of paper and cut out a triangle, say, ΔABC (Fig 6.16).
Make the altitude AM by folding ΔABC such that it passes through A.
Fold now the three corners such that all the three vertices A, B and C touch at M.

(i) (ii) (iii)
Fig 6.16

You find that all the three angles form together a straight angle. This again shows that
the sum of the measures of the three angles of a triangle is 180°.
4. Draw any three triangles, say ΔABC, ΔPQR and ΔXYZ in your notebook.

Use your protractor and measure each of the angles of these triangles.
Tabulate your results

Name of ΔΔ Measures of Angles Sum of the Measures
of the three Angles

ΔABC m∠A m∠B m∠C m∠A + m∠B + m∠C 
ΔPQR m∠P m∠Q m∠R m∠P + m∠Q + m∠R 
ΔXYZ m∠X m∠Y m∠Z m∠X + m∠Y + m∠Z 

Allowing marginal errors in measurement, you will find that the last column always
gives 180° (or nearly 180°).

When perfect precision is possible, this will also show that the sum of the measures of
the three angles of a triangle is 180°.

You are now ready to give a formal justification of your assertion through logical
argument.
Statement The total measure of

the three angles of a
triangle is 180°.

To justify this let us use the exterior
angle property of a triangle.

A

M M

A
B C

B C

A

Fig 6.17

Fig 6.15
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Given ∠1, ∠2, ∠3 are angles of ΔABC (Fig 6.17).
∠4 is the exterior angle when BC is extended to D.

Justification ∠1 + ∠2  ∠4 (by exterior angle property)
∠1 + ∠2 + ∠3  ∠4 + ∠3 (adding ∠3 to both the sides)

But ∠4 and ∠3 form a linear pair so it is 180°. Therefore, ∠1 + ∠2 + ∠3  180°.
Let us see how we can use this property in a number of ways.

EXAMPLE 2 In the given figure (Fig 6.18) find m∠P.

SOLUTION By angle sum property of a triangle,
m∠P + 47° + 52° 180°

Therefore m∠P 180°  47°  52°
180°  99°  81°

EXERCISE 6.3

1. Find the value of the unknown x in the following diagrams:

2. Find the values of the unknowns x and y in the following diagrams:

Fig 6.18

P

47° 52°Q R
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1. Two angles of a triangle are 30º and 80º. Find the third angle.
2. One of the angles of a triangle is 80º and the other two angles are equal. Find the

measure of each of the equal angles.
3. The three angles of a triangle are in the ratio 1:2:1. Find all the angles of the triangle.

Classify the triangle in two different ways.

THINK, DISCUSS AND WRITE

1. Can you have a triangle with two right angles?
2. Can you have a triangle with two obtuse angles?

3. Can you have a triangle with two acute angles?
4. Can you have a triangle with all the three angles greater than 60º?
5. Can you have a triangle with all the three angles equal to 60º?
6. Can you have a triangle with all the three angles less than 60º?

6.6 TWO SPECIAL TRIANGLES : EQUILATERAL AND ISOSCELES

A triangle in which all the three sides are of equal lengths is called an equilateral
triangle.

Take two copies of an equilateral triangle ABC (Fig 6.19). Keep one of them fixed.
Place the second triangle on it. It fits exactly into the first. Turn it round in any way and still
they fit with one another exactly. Are you
able to see that when the three sides of a
triangle have equal lengths then the three
angles are also of the same size?
We conclude that in an equilateral triangle:

(i) all sides have same length.
(ii) each angle has measure 60°.

TRY THESE

C

A

B
(i) (ii)

Fig 6.19
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A triangle in which two sides are of equal lengths is called an isosceles triangle.

Fig 6.20
From a piece of paper cut out an isosceles triangle XYZ, with XY XZ (Fig 6.20).

Fold it such that Z lies on Y. The line XM through X is now the axis of symmetry (which
you will read in Chapter 14). You find that  ∠Y and  ∠Z fit on each other exactly. XY and
XZ are called equal sides;  YZ is called the base; ∠Y and  ∠Z are called base angles and
these are also equal.
Thus, in an isosceles triangle:

(i) two sides have same length.
(ii) base angles opposite to the equal sides are equal.

1. Find angle x in each figure:

TRY THESE
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2. Find angles x and y in each figure.

6.7  SUM OF THE LENGTHS OF TWO SIDES OF A TRIANGLE

1. Mark three non-collinear spots A, B and C in your playground. Using lime powder
mark the paths AB, BC and AC.

Ask your friend to start from A and reach C, walking along one or

more of these paths. She can, for example, walk first along AB  and then

along BC  to reach C; or she can walk straight along AC . She will naturally

prefer the direct path AC. If she takes the other path  ( AB and then BC ),
she will have to walk more. In other words,

AB + BC > AC (i)
Similarly, if one were to start from B and go to A, he or she will not take the route

BC  and CA  but will prefer BA  This is because
BC + CA > AB (ii)

By a similar argument, you find that
CA + AB > BC (iii)

These observations suggest that the sum of the lengths of any two sides of a
triangle is greater than the third side.

2. Collect fifteen small sticks (or strips) of different lengths, say, 6 cm, 7 cm, 8 cm,
9 cm, ..., 20 cm.
Take any three of these sticks and try to form a triangle. Repeat this by choosing
different combinations of three sticks.
Suppose you first choose two sticks of length 6 cm and 12 cm. Your third stick has to
be of length more than 12  6  6 cm and less than 12 + 6  18 cm. Try this and find
out why it is so.
To form a triangle you will need any three sticks such that the sum of the lengths of
any two of them will always be greater than the length of the third stick.
This also suggests that the sum of the lengths of any two sides of a triangle is greater
than the third side.

Fig 6.21
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3. Draw any three triangles, say ΔABC, ΔPQR and ΔXYZ in your notebook
(Fig 6.22).

(i) (ii) (iii)
              Fig 6.22

Use your ruler to find the lengths of their side and then tabulate your results as follows:

Name of ΔΔ Lengths of Sides Is this True?

Δ ABC AB ___ AB  BC < CA (Yes/No)
___ + ___ > ___

BC ___ BC   CA  <  AB (Yes/No)
___ + ___ > ___

CA  ___ CA  AB < BC (Yes/No)
___ + ___ > ___

Δ PQR PQ ___ PQ   QR < RP (Yes/No)
___ + ___ > ___

QR ___ QR   RP < PQ (Yes/No)
___ + ___ > ___

RP ___ RP  PQ < QR (Yes/No)
___ + ___ > ___

Δ XYZ XY ___ XY  YZ < ZX (Yes/No)
___ + ___ > ___

YZ  ___ YZ  ZX < XY (Yes/No)
___ + ___ > ___

ZX ___ ZX  XY < YZ (Yes/No)
___ + ___ > ___

This also strengthens our earlier guess. Therefore, we conclude that sum of the lengths
of any two sides of a triangle is greater than the length of the third side.

We also find that the difference between the length of any two sides of a triangle is
smaller than the length of the third side.

A

B C

R

P Q
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EXAMPLE 3 Is there a triangle whose sides have lengths 10.2 cm, 5.8 cm and 4.5 cm?

SOLUTION Suppose such a triangle is possible. Then the sum of the lengths of any two
sides would be greater than the length of the third side. Let us check this.

Is 4.5 + 5.8 > 10.2? Yes
Is 5.8 + 10.2 > 4.5? Yes
Is 10.2 + 4.5 > 5.8? Yes

Therefore, the triangle is possible.

EXAMPLE 4 The lengths of two sides of a triangle are 6 cm and 8 cm. Between which
two numbers can length of the third side fall?

SOLUTION We know that the sum of two sides of a triangle is always greater than
the third.

Therefore, one-third side has to be less than the sum of the two sides. The third side is
thus less than 8 + 6  14 cm.

The side cannot be less than the difference of the two sides. Thus the third side has to
be more than 8  6  2 cm.
The length of the third side could be any length greater than 2 and less than 14 cm.

EXERCISE 6.4

1. Is it possible to have a triangle with the following sides?
(i) 2 cm, 3 cm, 5 cm (ii) 3 cm, 6 cm, 7 cm

(iii) 6 cm, 3 cm, 2 cm

2. Take any point O in the interior of a triangle PQR. Is
(i) OP + OQ > PQ?
(ii) OQ + OR > QR?
(iii) OR + OP > RP?

3. AM is a median of a triangle ABC.
Is AB + BC + CA > 2 AM?
(Consider the sides of triangles
ΔABM and ΔAMC.)

4. ABCD is a quadrilateral.
Is AB + BC + CD + DA > AC + BD?

5. ABCD is quadrilateral. Is
AB + BC + CD + DA < 2 (AC + BD)?

R

P Q
O

A

B C
M
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6. The lengths of two sides of a triangle are 12 cm and 15 cm. Between what two
measures should the length of the third side fall?

THINK, DISCUSS AND WRITE

1. Is the sum of any two angles of a triangle always greater than the third angle?

6.8  RIGHT-ANGLED TRIANGLES AND PYTHAGORAS PROPERTY

Pythagoras, a Greek philosopher of sixth century
B.C. is said to have found a very important and useful
property of right-angled triangles given in this section.
The property is hence named after him. In fact, this
property was known to people of many other
countries too. The Indian mathematician Baudhayan
has also given an equivalent form of this property.
We now try to explain the Pythagoras property.

In a right angled triangle, the sides have some
special names. The side opposite to the right angle
is called the hypotenuse; the other two sides are
known as the legs of the right-angled triangle.

In ΔABC (Fig 6.23), the right-angle is at B. So,
AC is the hypotenuse. AB  and BC  are the legs of
ΔABC.

Make eight identical copies of right angled
triangle of any size you prefer. For example, you
make a right-angled triangle whose hypotenuse is a
units long and the legs are of lengths b units and c
units (Fig 6.24).

Draw two identical squares on a sheet with sides
of lengths b + c.

You are to place four triangles in one square and the remaining four triangles in the
other square, as shown in the following diagram (Fig 6.25).

Square A Square B

Fig 6.23

Fig 6.24

Fig 6.25
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The squares are identical; the eight triangles inserted are also identical.
Hence the uncovered area of square A  Uncovered area of square B.
i.e., Area of inner square of square A  The total area of two uncovered squares in square B.

a2 b2 + c2

This is Pythagoras property. It may be stated as follows:

In a right-angled triangle,
the square on the hypotenuse  sum of the squares on the legs.

Pythagoras property is a very useful tool in mathematics. It is formally proved as a
theorem in later classes. You should be clear about its meaning.

It says that for any right-angled triangle, the area of the square on the hypotenuse is
equal to the sum of the areas of the squares on the legs.

Draw a right triangle, preferably on
a square sheet, construct squares on
its sides, compute the area of these
squares and verify the theorem
practically (Fig 6.26).

If you have a right-angled triangle,
the Pythagoras property holds. If the
Pythagoras property holds for some
triangle, will the triangle be right-
angled? (Such problems are known as
converse problems). We will try to
answer this. Now, we will show that,
if there is a triangle such that sum of
the squares on two of its sides is equal
to the square of the third side, it must
be a right-angled triangle.

1. Have cut-outs of squares with sides 4 cm,
5 cm, 6 cm long. Arrange to get a triangular
shape by placing the corners of the squares
suitably as shown in the figure (Fig 6.27).
Trace out the triangle formed. Measure each
angle of the triangle. You find that there is no
right angle at all.
In fact, in this case each angle will be acute! Note
that 42 + 52 ≠ 62, 52 + 62 ≠ 42 and 62 + 42 ≠ 52.

Fig 6.26

DO THIS

5
2

6
2

4
2

5
6

4

Fig 6.27
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2. Repeat the above activity with squares whose sides have lengths 4 cm, 5 cm and
7 cm. You get an obtuse angled triangle! Note that

42 + 52 ≠ 72 etc.

This shows that Pythagoras property holds if and only if the triangle is right-angled.
Hence we get this fact:

If  the Pythagoras property holds, the triangle must be right-angled.

EXAMPLE 5 Determine whether the triangle whose lengths of sides are 3 cm, 4 cm,
5 cm is a right-angled triangle.

SOLUTION 32  3 × 3  9; 42  4 × 4  16; 52  5 × 5  25
We find 32 + 42  52.
Therefore, the triangle is right-angled.
Note: In any right-angled triangle, the hypotenuse happens to be the longest side. In this

example, the side with length 5 cm is the hypotenuse.

EXAMPLE 6 Δ ABC is right-angled at C. If
AC  5 cm and BC  12 cm find
the length of AB.

SOLUTION A rough figure will help us (Fig 6.28).
By Pythagoras property,

AB2 AC2 + BC2

52 + 122   25 + 144  169  132

or AB2 132.  So,   AB  13
or the length of AB is 13 cm.
Note: To identify perfect squares, you may use prime factorisation technique.

Find the unknown length x in the following figures (Fig 6.29):

Fig 6.28

TRY THESE
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EXERCISE 6.5

1. PQR is a triangle right angled at P. If PQ  10 cm
and PR  24 cm, find QR.

2. ABC is a triangle right angled at C. If AB  25 cm
and AC  7 cm, find BC.

3. A 15 m long ladder reached a window 12 m high
from the ground on placing it against a wall at a
distance a. Find the distance of the foot of  the
ladder from the wall.

4. Which of the following can be the sides of a right
triangle?
(i) 2.5 cm,6.5 cm, 6 cm.
(ii) 2 cm, 2 cm, 5 cm.
(iii) 1.5 cm, 2cm, 2.5 cm.
In the case of right-angled triangles, identify the
right angles.

5. A tree is broken at a height of 5 m from the ground
and its top touches the ground at a distance of
12 m from the base of the tree. Find the original
height of the tree.

6. Angles Q and R of a ΔPQR are 25º and 65º.
Write which of the following is true:
(i) PQ2 + QR2   RP2

(ii) PQ2 + RP2  QR2

(iii) RP2 + QR2  PQ2

7. Find the perimeter of the rectangle whose length is 40 cm and a diagonal is 41 cm.
8. The diagonals of a rhombus measure 16 cm and 30 cm. Find its perimeter.

x

24

7

(iv)

x

37 37

(v)

12

Fig 6.29

25° 65°

P

Q R
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THINK, DISCUSS AND WRITE

1. Which is the longest side in the triangle PQR right angled at P?
2. Which is the longest side in the triangle ABC right angled at B?
3. Which is the longest side of a right triangle?
4. “The diagonal of a rectangle produce by itself the same area as produced by its

length and breadth”  This is Baudhayan Theorem. Compare it with the Pythagoras
property.

Enrichment activity

There are many proofs for Pythagoras theorem, using ‘dissection’ and ‘rearrangement’
procedure. Try to collect a few of them and draw charts explaining them.

WHAT HAVE WE DISCUSSED?
1. The six elements of a triangle are its three angles and the three sides.

2. The line segment joining a vertex of a triangle to the mid point of its opposite side is
called a median of the triangle.   A triangle has 3 medians.

3. The perpendicular line segment from a vertex of a triangle to its opposite side is
called an altitude of the triangle.    A triangle has 3 altitudes.

4. An exterior angle of a triangle is formed when a side of a triangle is produced. At
each vertex, you have two ways of forming an exterior angle.

5. A property of exterior angles:
The measure of any exterior angle of a triangle is equal to the sum of the measures of
its interior opposite angles.

6. The angle sum property of a triangle:
The total measure of the three angles of a triangle is 180°.

7. A triangle is said to be equilateral if each one of its sides has the same length.
In an equilateral triangle, each angle has measure 60°.

8. A triangle is said to be isosceles if atleast any two of its sides are of same length.
The non-equal side of an isosceles triangle is called its base; the base angles of an
isosceles triangle have equal measure.

9. Property of the lengths of sides of a triangle:
The sum of the lengths of any two sides of a triangle is greater than the length of the
third side.
The difference between the lengths of any two sides is smaller than the length of the
third side.

DO THIS



MATHEMATICS132

This property is useful to know if it is possible to draw a triangle when the lengths of
the three sides are known.

10. In a right angled triangle, the side opposite to the right angle is called the hypotenuse
and the other two sides are called its legs.

11. Pythagoras Property:
In a right-angled triangle,
the square on the hypotenuse  the sum of the squares on its legs.
If a triangle is not right angled this property does not hold good.  This property is
useful to decide whether a given triangle is right angled or not.



  

7.1  INTRODUCTION

You are now ready to learn a very important geometrical idea, Congruence. In particular,
you will study a lot about congruence of triangles.
To understand what congruence is, we turn to some activities.

Take two stamps (Fig 7.1) of same denomination. Place one stamp over
the other. What do you observe?

Fig 7.1
One stamp covers the other completely and exactly. This means that the two stamps are

of the same shape and same size. Such objects are said to be congruent. The two stamps
used by you are congruent to one another. Congruent objects are exact copies of one
another.
Can you, now, say if the following objects are congruent or not?

 1. Shaving blades of the same company [Fig 7.2 (i)].
 2. Sheets of the same letter-pad [Fig 7.2 (ii)]. 3. Biscuits in the same packet [Fig 7.2 (iii)].
4. Toys made of the same mould. [Fig 7.2(iv)]

(i) (ii) (iii) (iv)

C
ha

pt
er

  
7

Congruence of
Triangles

DO THIS

Fig 7.2
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The relation of two objects being congruent is called congruence. For the present,
we will deal with plane figures only, although congruence is a general idea applicable to
three-dimensional shapes also. We will try to learn a precise meaning of the congruence
of plane figures already known.

7.2  CONGRUENCE OF PLANE FIGURES

Look at the two figures given here (Fig 7.3). Are they congruent?

(i) (ii)
Fig 7.3

You can use the method of superposition. Take a trace-copy of one of them and place
it over the other. If the figures cover each other completely, they are congruent. Alternatively,
you may cut out one of them and place it over the other. Beware! You are not allowed to
bend, twist or stretch the figure that is cut out (or traced out).
In Fig 7.3, if figure F1 is congruent to figure F2 , we write F1 ≅ F2.

7.3  CONGRUENCE AMONG LINE SEGMENTS

When are two line segments congruent?  Observe the two pairs of line segments given
here (Fig 7.4).

       (i) (ii)
Fig 7.4

Use the ‘trace-copy’ superposition method for the pair of line segments in [Fig 7.4(i)].

Copy CD and place it on AB . You find that CD  covers AB , with C on A and D on B.

Hence, the line segments are congruent.   We write AB CD≅ .
Repeat this activity for the pair of line segments in [Fig 7.4(ii)]. What do you find?

They are not congruent.  How do you know it?  It is because the line segments do not
coincide when placed one over other.

You should have by now noticed that the pair of line segments in [Fig 7.4(i)] matched
with each other because they had same length; and this was not the case in [Fig 7.4(ii)].

If two line segments have the same (i.e., equal) length, they are congruent.  Also,
if two line segments are congruent, they have the same length.
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In view of the above fact, when two line segments are congruent, we sometimes just
say that the line segments are equal; and we also write AB = CD. (What we actually mean

is AB ≅ CD ).

7.4  CONGRUENCE OF ANGLES

Look at the four angles given here (Fig 7.5).

(i)  (ii)             (iii)         (iv)
Fig 7.5

Make a trace-copy of ∠PQR. Try to superpose it on ∠ABC. For this, first place Q
on B and QP

����
 along AB

� ���
. Where does 

Q
����

 fall? It falls on 

BC
����

.
Thus, ∠PQR matches exactly with ∠ABC.
That is, ∠ABC and ∠PQR are congruent.
(Note that the measurement of these two congruent angles are same).
We write ∠ABC ≅ ∠PQR (i)
or m∠ABC = m ∠PQR(In this case, measure is 40°).

Now, you take a trace-copy of ∠LMN. Try to superpose it on ∠ABC. Place M on B
and

����

 along 

A
����

. Does 

MN
�����

 fall on 

BC
����

? No, in this case it does not happen. You find
that ∠ABC and ∠LMN do not cover each other exactly. So, they are not congruent.
(Note that, in this case, the measures of ∠ABC and ∠LMN are not equal).

What about angles ∠XYZ and ∠ABC? The rays

YX
����

 and 

YZ
����

, respectively appear
[in Fig 7.5 (iv)] to be longer than 

A
����

 and 

BC
����

. You may, hence, think that ∠ABC is
‘smaller’ than ∠XYZ. But remember that the rays in the figure only indicate the direction
and not any length. On superposition, you will find that these two angles are also congruent.
We write ∠ABC ≅ ∠XYZ (ii)
or m∠ABC = m∠XYZ
In view of (i) and (ii), we may even write

∠ABC ≅ ∠PQR ≅ ∠XYZ
If two angles have the same measure, they are congruent. Also, if two angles are

congruent, their measures are same.
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As in the case of line segments, congruency of angles entirely depends on the equality
of their measures. So, to say that two angles are congruent, we sometimes just say that the
angles are equal; and we write

∠ABC = ∠PQR  (to mean ∠ABC ≅ ∠PQR).

7.5  CONGRUENCE OF TRIANGLES

We saw that two line segments are congruent where one of them, is just a copy of the
other. Similarly, two angles are congruent if one of them is a copy of the other. We extend
this idea to triangles.

Two triangles are congruent if they are copies of each other and when superposed,
they cover each other exactly.

(i) (ii)
Fig 7.6

ΔABC and ΔPQR have the same size and shape. They are congruent. So, we would
express this as

ΔABC ≅ ΔPQR
This means that, when you place ΔPQR on ΔABC, P falls on  A, Q falls on B and R

falls on C, also  falls along AB  , QR falls along BC and PR  falls along AC. If, under
a given correspondence, two triangles are congruent, then their corresponding parts
(i.e., angles and sides) that match one another are equal. Thus, in these two congruent
triangles, we have:

Corresponding vertices : A and P, B and Q, C and R.

Corresponding sides : AB and PQ , BC  and QR , AC  and PR .
Corresponding angles : ∠A and ∠P,   ∠B and ∠Q, ∠C and ∠R.

If you place ΔPQR on ΔABC such that P falls on B, then, should the other vertices
also correspond suitably? It need not happen! Take trace, copies of the triangles and try
to find out.

This shows that while talking about congruence of triangles, not only the measures of
angles and lengths of sides matter, but also the matching of vertices. In the above case, the
correspondence is

A ↔ P, B ↔ Q, C ↔ R
We may write this as ABC ↔ PQR

A

B C
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EXAMPLE 1 ΔABC and ΔPQR are congruent under the correspondence:
ABC ↔ RQP

Write the parts of ΔABC that correspond to

(i) ∠P (ii) ∠Q (iii) RP

SOLUTION  For better understanding of the correspondence, let us use a diagram (Fig 7.7).

Fig 7.7
The correspondence is ABC ↔ RQP. This means

A ↔ R  ; B ↔ Q; and C ↔ P.

So, (i) PQ ↔ CB (ii) ∠Q ↔ ∠B   and (iii) RP ↔ AC

THINK, DISCUSS AND WRITE

When two triangles, say ABC and PQR are given, there are, in all, six possible matchings
or correspondences. Two of them are

(i) ABC ↔ PQR and (ii) ABC ↔ QRP.
Find the other four correspondences by using two cutouts of triangles. Will all these

correspondences lead to congruence? Think about it.

EXERCISE 7.1

1. Complete the following statements:
(a) Two line segments are congruent if .

(b) Among two congruent angles, one has a measure of 70°; the measure of the
other angle is .

(c) When we write  ∠A = ∠B, we actually mean .
2. Give any two real-life examples for congruent shapes.
3. If ΔABC ≅ ΔFED under the correspondence ABC ↔ FED, write all the

corresponding congruent parts of the triangles.
4. If ΔDEF ≅ ΔBCA, write the part(s) of ΔBCA that correspond to

(i) ∠E (ii) EF (iii) ∠F (iv) DF
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7.6  CRITERIA FOR CONGRUENCE OF TRIANGLES

We make use of triangular structures and patterns frequently in day-to-day life. So, it is
rewarding to find out when two triangular shapes will be congruent. If you have two triangles
drawn in your notebook and want to verify if they are congruent, you cannot everytime cut
out one of them and use method of superposition. Instead, if we can judge congruency in
terms of approrpriate measures, it would be quite useful. Let us try to do this.

A Game
Appu and Tippu play a game. Appu has drawn a triangle ABC (Fig 7.8) and
has noted the length of each of its sides and measure of each of its angles.
Tippu has not seen it. Appu challenges Tippu if he can draw a copy of his
ΔABC based on bits of information that Appu would give. Tippu attempts to
draw a triangle congruent to ΔABC, using the information provided by Appu.
The game starts. Carefully observe their conversation and their games.

SSS Game
Appu  : One side of ΔABC is 5.5 cm.
Tippu : With this information, I can draw any number of triangles (Fig 7.9)
but they need not be copies of ΔABC. The triangle I draw may be

obtuse-angled or right-angled or acute-angled. For example, here are a few.

(Obtuse-angled) (Right-angled) (Acute-angled)

Fig 7.9
I have used some arbitrary lengths for other sides. This gives me many triangles with

length of base 5.5 cm.
So, giving only one side-length will not help me to produce a copy of ΔABC.
Appu : Okay. I will give you the length of one more side. Take two sides of ΔABC to be
of lengths 5.5 cm and 3.4 cm.
Tippu : Even this will not be sufficient for the purpose. I can draw several triangles
(Fig 7.10) with the given information which may not be copies of ΔABC. Here are a few
to support my argument:

Fig 7.10
One cannot draw an exact copy of your triangle, if only the lengths of two sides

are given.

Fig 7.8
Triangle drawn by

Appu

5.5 cm 5.5 cm 5.5 cm
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Fig 7.11

Appu : Alright. Let me give the lengths of all the three sides. In ΔABC, I have AB = 5cm,
BC = 5.5 cm and AC = 3.4 cm.
Tippu : I think it should be possible. Let me try now.
First I draw a rough figure so that I can remember the lengths easily.

I draw BC with length 5.5 cm.
With B as centre, I draw an arc of radius 5 cm. The point A has to be somewhere on

this arc. With C as centre, I draw an arc of radius 3.4 cm. The point A has to be on this arc
also.
So, A lies on both the arcs drawn. This means A is the point of intersection of the arcs.

I know now the positions of points A, B and C. Aha! I can join them and get ΔABC
(Fig 7.11).
Appu : Excellent. So, to draw a copy of a given ΔABC (i.e., to draw a triangle
congruent to ΔABC), we need the lengths of three sides. Shall we call this condition
as side-side-side criterion?
Tippu : Why not we call it SSS criterion, to be short?

SSS Congruence criterion:
If under a given correspondence, the three sides of one triangle are equal to the three
corresponding sides of another triangle, then the triangles are congruent.

EXAMPLE 2 In triangles ABC and PQR, AB = 3.5 cm, BC = 7.1 cm,
AC = 5 cm, PQ = 7.1 cm, QR = 5 cm and PR = 3.5 cm.
Examine whether the two triangles are congruent or not.
If yes, write the congruence relation in symbolic form.

SOLUTION Here, AB = PR (= 3.5 cm),
BC = PQ ( = 7.1 cm)

and AC = QR (= 5 cm)
This shows that the three sides of one triangle are equal to the three sides
of the other triangle. So, by SSS congruence rule, the two triangles are
congruent. From the above three equality relations, it can be easily seen
that A ↔ R, B ↔ P and C ↔ Q.
So, we have ΔABC ≅ ΔRPQ

Important note: The order of the letters in the names of congruent triangles displays the
corresponding relationships. Thus, when you write ΔABC ≅ ΔRPQ, you would know

that A lies on R, B on P, C on Q, AB  along RP , BC  along PQ  and AC  along RQ .

QP

R

7.1 cm

5
cm

3.5
cm

Fig 7.12
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EXAMPLE 3 In Fig 7.13, AD = CD and AB = CB.
(i) State the three pairs of equal parts in ΔABD and  ΔCBD.
(ii) Is ΔABD ≅ ΔCBD? Why or why not?
(iii) Does BD bisect ∠ABC? Give reasons.

SOLUTION

(i) In ΔABD and ΔCBD, the three pairs of equal parts are as given below:
AB = CB  (Given)
AD = CD  (Given)

and BD = BD  (Common in both)
(ii) From (i) above, ΔABD ≅ ΔCBD  (By SSS congruence rule)

(iii) ∠ABD = ∠CBD (Corresponding parts of congruent triangles)

So, BD bisects ∠ABC.

1. In Fig 7.14, lengths of the sides of the triangles are indicated. By applying the SSS
congruence rule, state which pairs of triangles are congruent. In case of congruent
triangles, write the result in symbolic form:

Fig 7.13

TRY THESE

(i)
(ii)

(iii) (iv)Fig 7.14
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Fig 7.15

A

B C
D

2. In Fig 7.15, AB = AC and D is the mid-point of BC .
(i) State the three pairs of equal parts in

ΔADB and ΔADC.
(ii) Is ΔADB ≅ ΔADC? Give reasons.
(iii) Is ∠B = ∠C? Why?

3. In Fig 7.16, AC = BD and AD = BC. Which
of the following statements is meaningfully written?
(i) ΔABC ≅ ΔABD (ii) ΔABC ≅ ΔBAD.

THINK, DISCUSS AND WRITE

ABC is an isosceles triangle with AB = AC (Fig 7.17).
Take a trace-copy of ΔABC and also name it as ΔABC.

(i) State the three pairs of equal parts in ΔABC and ΔACB.
(ii) Is ΔABC ≅ ΔACB? Why or why not?
(iii) Is ∠B = ∠C ? Why or why not?

Appu and Tippu now turn to playing the game with a slight modification.

SAS Game

Appu : Let me now change the rules of the triangle-copying game.
Tippu : Right, go ahead.
Appu : You have already found that giving the length of only one side is useless.
Tippu : Of course, yes.
Appu : In that case, let me tell that in ΔABC, one side is 5.5 cm and one angle is 65°.
Tippu : This again is not sufficient for the job. I can find many triangles satisfying your
information, but are not copies of ΔABC. For example, I have given here some of them
(Fig 7.18):

Fig 7.18

CD

A B
Fig 7.16

A

B C

Fig 7.17
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Appu  : So, what shall we do?
Tippu : More information is needed.
Appu  : Then, let me modify my earlier statement. In ΔABC, the length of two sides are
5.5 cm and 3.4 cm, and the angle between these two sides is 65°.

Tippu : This information should help me. Let me try. I draw first BC  of length 5.5. cm
[Fig 7.19 (i)]. Now I make 65° at C [Fig 7.19 (ii)].

Fig 7.19

Yes, I got it, A must be 3.4 cm away from C along this angular line through C.
I draw an arc of 3.4 cm with C as centre. It cuts the 65° line at A.
Now, I join AB and get ΔABC [Fig 7.19(iii)].
Appu : You have used side-angle-side, where the angle is ‘included’ between the sides!
Tippu : Yes. How shall we name this criterion?
Appu : It is SAS criterion. Do you follow it?
Tippu : Yes, of course.

SAS Congruence criterion:
If under a correspondence, two sides and the angle included between them of a triangle
are equal to two corresponding sides and the angle included between them of another
triangle, then the triangles are congruent.

EXAMPLE 4 Given below are measurements of some parts of two triangles. Examine
whether the two triangles are congruent or not, by using SAS congruence
rule. If the triangles are congruent, write them in symbolic form.

ΔABC ΔDEF
(a) AB = 7 cm, BC = 5 cm, ∠B = 50° DE = 5 cm, EF =  7 cm, ∠E = 50°
(b) AB = 4.5 cm, AC = 4 cm, ∠A = 60° DE = 4 cm, FD =  4.5 cm, ∠D = 55°
(c) BC = 6 cm, AC = 4 cm, ∠B = 35° DF = 4 cm, EF = 6 cm, ∠E = 35°

(It will be always helpful to draw a rough figure, mark the measurements and then
probe the question).

5.5 cm
B C

5.5 cm
B C

65°

(i) (ii) (iii)
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D

E F35°

6 cm

4
cm

SOLUTION

(a) Here,   AB = EF  ( = 7 cm), BC = DE ( = 5 cm) and
included ∠B = included ∠E ( = 50°). Also, A ↔ F  B ↔ E and C ↔ D.
Therefore, ΔABC ≅ ΔFED (By SAS congruence rule) (Fig 7.20)

(b) Here, AB = FD and  AC = DE (Fig 7.21).
But included ∠A ≠ included ∠D. So, we cannot say that the triangles are
congruent.

(c) Here, BC = EF,  AC = DF and ∠B = ∠E.
But ∠B is  not the included angle between the sides AC and BC.
Similarly, ∠E is not the included angle between the sides EF and DF.
So, SAS congruence rule cannot be applied and we cannot conclude
that the two triangles are congruent.

EXAMPLE 5 In Fig 7.23, AB = AC and AD is the bisector of ∠BAC.
(i) State three pairs of equal parts in triangles ADB and ADC.
(ii) Is ΔADB ≅ ΔADC? Give reasons.
(iii) Is ∠B = ∠C? Give reasons.

SOLUTION

 (i) The three pairs of equal parts are as follows:
AB = AC  (Given)
∠BAD  = ∠CAD  (AD bisects ∠BAC) and AD = AD  (common)

(ii) Yes, ΔADB ≅ ΔADC (By SAS congruence rule)
(iii) ∠B = ∠C  (Corresponding parts of congruent triangles)

1. Which angle is included between the sides DE  and EF  of ΔDEF?
2. By applying SAS congruence rule, you want to establish that ΔPQR ≅ ΔFED. It is

given that  PQ = FE  and RP = DF. What additional information is needed to establish
the congruence?

Fig 7.21

B

A

C

4

60°

4.
5

cm

Fig 7.20

B

A

C
5 cm

7
cm

50° E

D

F
7 cm

5
cm

50°

Fig 7.22

Fig 7.23

A

B C
D

TRY THESE
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3. In Fig 7.24, measures of some parts of the triangles are indicated. By applying SAS
congruence rule, state the pairs of congruent triangles, if any, in each case. In case
of congruent triangles, write them in symbolic form.

4. In Fig 7.25, AB  and CD  bisect each other at O.

(i) State the three pairs of equal parts in two
triangles AOC and BOD.

(ii) Which of the following statements are true?

(a) ΔAOC ≅ ΔDOB

(b) ΔAOC ≅ ΔBOD

ASA Game
Can you draw Appu’s triangle, if you know

(i) only one of its angles? (ii) only two of its angles?
(iii) two angles and any one side?
(iv) two angles and the side included between them?

Attempts to solve the above questions lead us to the following criterion:

ASA Congruence criterion:
If under a correspondence, two angles and the included side of a triangle are equal to
two corresponding angles and the included side of another triangle, then the triangles
are congruent.

EXAMPLE 6 By applying ASA congruence rule, it is to be established that ΔABC≅ΔQRP
and it is given that BC = RP. What additional information is needed to
establish the congruence?

(i)

Fig 7.24(iii) (iv)

(ii)

Fig 7.25
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SOLUTION For ASA congruence rule, we need the two angles between which the
two sides BC and RP are included. So, the additional information is
as follows:

∠B = ∠R
and ∠C = ∠P

EXAMPLE 7 In Fig 7.26, can you use ASA congruence
rule and conclude that ΔAOC ≅ ΔBOD?

SOLUTION In the two triangles AOC and BOD, ∠C = ∠D (each 70° )
Also, ∠AOC = ∠BOD = 30°  (vertically opposite angles)
So, ∠A of ΔAOC = 180° – (70° + 30°)   =  80°

(using angle sum property of a triangle)
Similarly, ∠B of ΔBOD = 180° – (70° + 30°) =  80°
Thus, we have ∠A = ∠B,   AC = BD and ∠C = ∠D
Now, side AC is between ∠A and ∠C and side BD is between ∠B and ∠D.
So, by ASA congruence rule, ΔAOC ≅ ΔBOD.

Remark
Given two angles of a triangle, you can always find the third angle of the triangle. So,
whenever, two angles and one side of one triangle are equal to the corresponding two
angles and one side of another triangle, you may convert it into ‘two angles and the included
side’ form of congruence and then apply the ASA congruence rule.

1. What is the side included between the angles M and N of ΔMNP?
2. You want to establish ΔDEF ≅ ΔMNP, using the ASA congruence rule. You are

given that ∠D = ∠M and ∠F = ∠P. What information is needed to establish the
congruence? (Draw a rough figure and then try!)

3. In Fig 7.27, measures of some parts are indicated. By applying ASA congruence
rule, state which pairs of triangles are congruent. In case of congruence, write the
result in symoblic form.

Fig 7.26

TRY THESE

(i) (ii)
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4. Given below are measurements of some parts of two triangles. Examine whether the
two triangles are congruent or not, by ASA congruence rule. In case of congruence,
write it in symbolic form.

ΔΔDEF ΔΔPQR
 (i) ∠D = 60º, ∠F = 80º, DF = 5 cm ∠Q = 60º, ∠R = 80º,   QR = 5 cm
 (ii) ∠D = 60º, ∠F = 80º, DF = 6 cm ∠Q = 60º, ∠R = 80º,   QP = 6 cm
 (iii) ∠E = 80º, ∠F = 30º,  EF = 5 cm ∠P = 80º,   PQ = 5 cm, ∠R = 30º

5. In Fig 7.28, ray AZ bisects ∠DAB as well as
∠DCB.
(i) State the three pairs of equal parts in

triangles  BAC and DAC.
(ii) Is  ΔBAC ≅ ΔDAC?  Give reasons.
(iii) Is AB = AD? Justify your answer.
(iv) Is CD = CB? Give reasons.

7.7 CONGRUENCE AMONG RIGHT-ANGLED TRIANGLES

Congruence in the case of two right triangles deserves special attention. In such triangles,
obviously, the right angles are equal. So, the congruence criterion becomes easy.
Can you draw ΔABC (shown in Fig 7.29) with ∠B = 90°, if
 (i) only BC is known? (ii) only ∠C is known?
(iii) ∠A and ∠C are known? (iv) AB and BC are known?
(v) AC and one of AB or BC are known?

Try these with rough sketches. You will find that (iv) and (v) help you to draw the
triangle. But case (iv) is simply the SAS condition. Case (v) is something new. This leads to
the following criterion:

RHS Congruence criterion:
If under a correspondence, the hypotenuse and one side of a right-angled triangle are
respectively equal to the hypotenuse and one side of another right-angled triangle, then
the triangles are congruent.

Why do we call this ‘RHS’ congruence? Think about it.

CD

A B

45°
30° 30°

45°

(iii) (iv)

Fig 7.28

Fig 7.27

Fig 7.29
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EXAMPLE 8 Given below are measurements of some parts of two triangles. Examine
whether the two triangles are congruent or not, using RHS congruence
rule. In case of congruent triangles, write the result in symbolic form:

ΔABC ΔPQR
(i) ∠B = 90°, AC = 8 cm, AB = 3 cm ∠P = 90°, PR = 3 cm, QR = 8 cm
(ii) ∠A = 90°, AC = 5 cm, BC = 9 cm ∠Q = 90°, PR = 8 cm, PQ = 5 cm

SOLUTION

  (i) Here,  ∠B = ∠P = 90º,
hypotenuse, AC = hypotenuse, RQ (= 8 cm) and
side AB = side RP ( = 3 cm)
So, ΔABC ≅ ΔRPQ (By RHS Congruence rule). [Fig 7.30(i)]

(i) (ii)

(ii) Here, ∠A = ∠Q (= 90°) and
side AC = side PQ ( = 5 cm).
But hypotenuse BC ≠ hypotenuse PR [Fig 7.30(ii)]
So, the triangles are not congruent.

EXAMPLE 9 In Fig 7.31, DA  ⊥ AB, CB ⊥ AB and AC = BD.
State the three pairs of equal parts in ΔABC and ΔDAB.
Which of the following statements is meaningful?

(i) ΔABC ≅ ΔBAD (ii) ΔABC ≅ ΔABD

SOLUTION The three pairs of equal parts are:
∠ABC = ∠BAD  (= 90°)

AC = BD  (Given)
AB = BA (Common side)

From the above, ΔABC ≅ ΔBAD  (By RHS congruence rule).
So, statement  (i) is true

Statement (ii) is not meaningful, in the sense that the correspondence among the vertices
is not satisfied.

Fig 7.30

Fig 7.31
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1. In Fig 7.32, measures of some parts of triangles are given.By applying RHS
congruence rule, state which pairs of triangles are congruent. In case of congruent
triangles, write the result in symbolic form.

TRY THESE

2. It is to be established by RHS congruence rule that ΔABC ≅ ΔRPQ.
What additional information is needed, if it is given that

∠B = ∠P = 90º and AB = RP?

3. In Fig 7.33, BD and CE are altitudes of ΔABC such that BD = CE.

(i) State the three pairs of equal parts in ΔCBD and ΔBCE.

(ii) Is ΔCBD ≅ ΔBCE? Why or why not?

(iii) Is ∠DCB = ∠EBC? Why or why not?

4. ABC is an isosceles triangle with AB = AC and AD is one of its
altitudes (Fig 7.34).

(i) State the three pairs of equal parts in ΔADB and ΔADC.

(ii) Is ΔADB ≅ ΔADC? Why or why  not?

(iii) Is  ∠B = ∠C? Why or why not?

(iv) Is BD = CD? Why or why not?

Fig 7.33

(i) (ii)

Fig 7.32

B

A

C
D

Fig 7.34

(iii) (iv)
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We now turn to examples and problems based on the criteria seen so far.

EXERCISE 7.2

1. Which congruence criterion do you use in the following?

(a) Given: AC = DF

AB = DE

BC = EF

So, ΔABC ≅ ΔDEF

(b) Given: ZX = RP

RQ = ZY

∠PRQ = ∠XZY

So, ΔPQR ≅ ΔXYZ

(c) Given: ∠MLN = ∠FGH

∠NML = ∠GFH

 ML = FG

So, ΔLMN ≅ ΔGFH

(d) Given: EB = DB

AE = BC

∠A = ∠C = 90°

So, ΔABE ≅ ΔCDB

2. You want to show that ΔART ≅ ΔPEN,

(a) If you have to use SSS criterion, then you need to show

(i) AR = (ii) RT = (iii) AT =

(b) If it is given that ∠T = ∠N and you are to use SAS criterion,
you need to have

(i)  RT = and (ii) PN =

(c) If it is given that AT = PN and you are to use ASA criterion,
you need to have

(i) ? (ii)  ?

A

B C E F

D

R

P
Q

Z

X
Y

L

M

N
F

H

G

D

E

A B C
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3. You have to show that ΔAMP ≅ ΔAMQ.

In the following proof, supply the missing reasons.

Steps Reasons
(i) PM = QM (i)   ...
(ii) ∠PMA = ∠QMA (ii)   ...
(iii) AM = AM (iii)   ...
(iv) ΔAMP ≅ ΔAMQ (iv)   ...

4. In ΔABC, ∠A = 30° ,    ∠B = 40°  and ∠C = 110°

In ΔPQR, ∠P = 30° ,    ∠Q = 40°  and ∠R = 110°

A student says that ΔABC ≅ ΔPQR by AAA
congruence criterion. Is he justified? Why or
why not?

5. In the figure, the two triangles are congruent.
The corresponding parts are marked. We can
write ΔRAT ≅   ?

6. Complete the congruence statement:

ΔBCA ≅   ? ΔQRS ≅   ?
7. In a squared sheet, draw two triangles of equal areas such that

(i) the triangles are congruent.
(ii) the triangles are not congruent.
What can you say about their perimeters?

8. Draw a rough sketch of two triangles such
that they have five pairs of congruent parts
but still the triangles are not congruent.

9. If ΔABC and ΔPQR are to be congruent,
name one additional pair of corresponding
parts. What criterion did you use?

R

A T

N O

W

P
Q R

T

S
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10. Explain, why
ΔABC ≅ ΔFED.

Enrichment activity

We saw that superposition is a useful method to test congruence of plane figures. We
discussed conditions for congruence of line segments, angles and triangles. You can now
try to extend this idea to other plane figures as well.

1. Consider cut-outs of different sizes of squares. Use the method of superposition to
find out the condition for congruence of squares. How does the idea of
‘corresponding parts’ under congruence apply? Are there corresponding sides? Are
there corresponding diagonals?

2. What happens if you take circles? What is the condition for congruence of two
circles? Again, you can use the method of superposition. Investigate.

3. Try to extend this idea to other plane figures like regular hexagons, etc.
4. Take two congruent copies of a triangle. By paper folding, investigate if they have

equal altitudes. Do they have equal medians? What can you say about their perimeters
and areas?

WHAT HAVE WE DISCUSSED?
1. Congruent objects are exact copies of one another.
2. The method of superposition examines the congruence of plane figures.
3. Two plane figures, say, F1 and F2 are congruent if the trace-copy of F1 fits exactly on

that of F2. We write this as F1 ≅ F2.

4. Two line segments, say, AB  and CD , are congruent if they have equal lengths. We

write this as AB CD . However, it is common to write it as AB  = CD .

5. Two angles, say, ∠ABC and ∠PQR, are congruent if their measures are equal. We
write this as ∠ABC ≅ ∠PQR or as m∠ABC = m∠PQR. However, in practice, it is
common to write it as ∠ABC = ∠PQR.

6. SSS Congruence of two triangles:
Under a given correspondence, two triangles are congruent if the three sides of the
one are equal to the three corresponding sides of the other.

7. SAS Congruence of two triangles:
Under a given correspondence, two triangles are congruent if two sides and the angle
included between them in one of the triangles are equal to the corresponding sides and
the angle included between them of the other triangle.

A

B C

D E

F
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8. ASA Congruence of two triangles:
Under a given correspondence, two triangles are congruent if two angles and the side
included between them in one of the triangles are equal to the corresponding angles
and the side included between them of the other triangle.

9. RHS Congruence of two right-angled triangles:
Under a given correspondence, two right-angled triangles are congruent if the hypotenuse
and a leg of one of the triangles are equal to the hypotenuse and the corresponding leg
of the other triangle.

10. There is no such thing as AAA Congruence of two triangles:
Two triangles with equal corresponding angles need not be congruent. In such a
correspondence, one of them can be an enlarged copy of the other.  (They would be
congruent only if they are exact copies of one another).



 

8.1  INTRODUCTION

In our daily life, there are many occasions when we compare two quantities.
Suppose we are comparing heights of Heena and Amir. We find that

1. Heena is two times taller than Amir.
Or

2. Amir’s height is 
1
2  of Heena’s height.

Consider another example, where 20 marbles are divided between Rita and
Amit such that Rita has 12 marbles and
Amit has 8 marbles. We say,

1.  Rita has 
3

2
 times the marbles that Amit has.

        Or

2. Amit has  
2
3  part of what Rita has.

Yet another example is where we compare
speeds of a Cheetah and a Man.
The speed of a Cheetah is 6 times the speed
of a Man.

      Or

The speed of a Man is 
1
6  of the speed of

the Cheetah.
Do you remember comparisons like this? In Class VI, we have learnt to make comparisons
by saying how many times one quantity is of the other. Here, we see that it can also be
inverted and written as what part one quantity is of the other.

C
ha

pt
er

  
8

Comparing
Quantities

150 cm 75 cm
Heena Amir

150

75

Speed of Cheetah Speed of Man
120 km per hour 20 km per hour
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In the given cases, we write the ratio of the heights as :
Heena’s height : Amir’s height is 150 : 75  or 2 : 1.
Can you now write the ratios for the other comparisons?
These are relative comparisons and could be same for two different situations.
If Heena’s height was 150 cm and Amir’s was 100 cm, then the ratio of their heights would be,

Heena’s height : Amir’s height = 150 : 100 = 
150

100

3

2
=  or 3 : 2.

This is same as the ratio for Rita’s to Amit’s share of marbles.
Thus, we see that the ratio for two different comparisons may be the same. Remember

that to compare two quantities, the units must be the same.

EXAMPLE 1 Find the ratio of 3 km to 300 m.

SOLUTION First convert both the distances to the same unit.
So, 3 km = 3 × 1000 m = 3000 m.
Thus, the required ratio, 3 km : 300 m is 3000 : 300 = 10 : 1.

8.2  EQUIVALENT RATIOS

Different ratios can also be compared with each other to know whether they are equivalent
or not. To do this, we need to write the ratios in the form of fractions and then compare
them by converting them to like fractions. If these like fractions are equal, we say the given
ratios are equivalent.

EXAMPLE 2 Are the ratios 1:2 and 2:3 equivalent?

SOLUTION To check this, we need to know whether 1

2

2

3
= .

We have,
1 1 3 3
2 2 3 6

×= =
× ;

2

3

2 2

3 2

4

6
= ×

×
=

We find that
3

6

4

6
< , which means that 

1

2

2

3
< .

Therefore, the ratio 1:2 is not equivalent to the ratio 2:3.
Use of such comparisons can be seen by the following example.

EXAMPLE 3 Following is the performance of a cricket team in the matches it played:

Year Wins Losses

Last year 8 2 In which year was the record better?
This year 4 2 How can you say so?
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SOLUTION Last year, Wins: Losses = 8 : 2 = 4 : 1
This year, Wins: Losses = 4 : 2 = 2 : 1

Obviously, 4 : 1 > 2 : 1 (In fractional form, 
4

1

2

1
> )

Hence, we can say that the team performed better last year.
In Class VI, we have also seen the importance of equivalent ratios. The ratios which

are equivalent are said to be in proportion. Let us recall the use of proportions.

Keeping things in proportion and getting solutions

Aruna made a sketch of the building she lives in and drew sketch of her
mother standing beside the building.
Mona said, “There seems to be something wrong with the drawing”
Can you say what is wrong? How can you say this?

In this case, the ratio of heights in the drawing should be the same as the
ratio of actual heights. That is

Actual height of building

Actual height of mother
 = 

Height of building in drawing

Height of mother in the drawinng
 .

Only then would these be in proportion. Often when proportions are maintained, the
drawing seems pleasing to the eye.
Another example where proportions are used is in the making of national flags.

Do you know that the flags are always made in a fixed ratio of length to its breadth?
These may be different for different countries but are mostly around 1.5 : 1 or 1.7 : 1.

We can take an approximate value of this ratio as 3 : 2. Even the Indian post card is
around the same ratio.

Now, can you say whether a card with length 4.5 cm and breadth 3.0 cm
is near to this ratio. That is we need to ask, is 4.5 : 3.0 equivalent to 3 : 2?

We note that     4 5 3 0
4 5

3 0

45

30

3

2
. : .

.

.
= = =

Hence, we see that 4.5 : 3.0 is equivalent to 3 : 2.
We see a wide use of such proportions in real life. Can you think of some more

situations?
We have also learnt a method in the earlier classes known as Unitary Method in

which we first find the value of one unit and then the value of the required number of units.
Let us see how both the above methods help us to achieve the same thing.

EXAMPLE 4 A map is given with a scale of 2 cm = 1000 km. What is the actual distance
between the two places in kms, if the distance in the map is 2.5 cm?
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SOLUTION

Arun does it like this Meera does it like this
Let distance = x km 2 cm means 1000 km.

then, 1000 : x = 2 : 2.5 So, 1 cm means 
1000 km

2

1000 2

2 5x
=

.
Hence, 2.5 cm means 1000

2
2 5km.

1000 2 5 2

2 5
2 5

x

x
x

.

.
.= = 1250 km

1000 × 2.5 = x × 2 x = 1250

Arun has solved it by equating ratios to make proportions and then by solving the
equation. Meera has first found the distance that corresponds to 1 cm and then used that to
find what 2.5 cm would correspond to. She used the unitary method.
Let us solve some more examples using the unitary method.

EXAMPLE 5 6 bowls cost Rs 90. What would be the cost of 10 such bowls?

SOLUTION Cost of 6 bowls is Rs 90.

Therefore, cost of 1 bowl = Rs 
90

6

Hence, cost of 10 bowls = Rs 
90

6
× 10 = Rs 150

EXAMPLE 6 The car that I own can go 150 km with 25 litres of petrol. How far can
it go with 30 litres of petrol?

SOLUTION With 25 litres of petrol, the car goes 150 km.

With 1 litre the car will go 150
25

 km.

Hence, with 30 litres of petrol it would go 
150 30
25

×  km = 180 km

In this method, we first found the value for one unit or the unit rate. This is done by the
comparison of two different properties. For example, when you compare total cost to
number of items, we get cost per item or if you take distance travelled to time taken, we get
distance per unit time.
Thus, you can see that we often use  per  to mean   for each.
For example, km per hour, children per teacher etc., denote unit rates.
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THINK, DISCUSS AND WRITE

An ant can carry 50 times its weight. If a person can do the same, how much would
you be able to carry?

EXERCISE 8.1

1. Find the ratio of:
(a) Rs 5 to 50 paise (b) 15 kg to 210 g
(c) 9 m to 27 cm (d) 30 days to 36 hours

2. In a computer lab, there are 3 computers for every 6 students. How many
computers will be needed for 24 students?

3. Population of Rajasthan = 570 lakhs and population of UP = 1660 lakhs.
Area of Rajasthan = 3 lakh km2 and area of UP = 2 lakh km2.
(i) How many people are there per km2 in both these States?
(ii) Which State is less populated?

8.3  PERCENTAGE – ANOTHER WAY OF COMPARING QUANTITIES

Anita’s Report Rita’s Report
Total 320/400 Total 300/360
Percentage: 80 Percentage: 83.3

Anita said that she has done better as she got 320 marks whereas Rita got only 300. Do
you agree with her? Who do you think has done better?

Mansi told them that they cannot decide who has done better by just comparing the
total marks obtained because the maximum marks out of which they got the marks are not
the same.
She said why don’t you see the Percentages given in your report cards?
Anita’s Percentage was 80 and Rita’s was 83. So, this shows Rita has done better.
Do you agree?

Percentages are numerators of fractions with denominator 100 and have been
used in comparing results. Let us try to understand in detail about it.

8.3.1  Meaning of Percentage

Per cent is derived from Latin word ‘per centum’ meaning ‘per hundred’.

Per cent is represented by the symbol % and means hundredths too. That is 1% means

1 out of hundred or one hundredth. It can be written as:  1% = 
1

100
 = 0.01
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To understand this, let us consider the following example.
Rina made a table top of 100 different coloured tiles. She counted yellow, green, red

and blue tiles separately and filled the table below. Can you help her complete the table?

 Colour Number Rate per Fraction Written as Read as
of Tiles Hundred

 Yellow 14 14
14
100 14% 14 per cent

 Green 26 26
26

100 26% 26 per cent

 Red 35 35   ---- ---- ----
 Blue 25 --------   ---- ---- ----
Total 100

1. Find the Percentage of children of different heights for the following data.

Height Number of Children In Fraction In Percentage
110 cm 22
120 cm 25
128 cm 32
130 cm 21
Total 100

2. A shop has the following number of shoe pairs of different
sizes.

Size 2 : 20 Size 3 : 30 Size 4 : 28

Size 5 : 14 Size 6 : 8

Write this information in tabular form as done earlier and
find the Percentage of each shoe size available in the shop.

Percentages when total is not hundred

In all these examples, the total number of items add up to 100. For example, Rina had 100
tiles in all, there were 100 children and 100 shoe pairs. How do we calculate Percentage
of an item if the total number of items do not add up to 100? In such cases, we need to
convert the fraction to an equivalent fraction with denominator 100. Consider the following
example. You have a necklace with twenty beads in two colours.

TRY THESE
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Colour Number Fraction Denominator  Hundred In Percentage
of Beads

Red 8
8
20

8

20

100

100

40

100
× = 40%

Blue 12
12

20

12

20

100

100

60

100
× = 60%

Total   20

We see that these three methods can be used to find the Percentage when the total
does not add to give 100. In the method shown in the table, we multiply the fraction by
100

100
. This does not change the value of the fraction. Subsequently, only 100 remains in the

denominator.

Anwar has used the unitary method. Asha has multiplied by 
5

5
 to get 100 in the

denominator. You can use whichever method you find suitable. May be, you can make
your own method too.

The method used by Anwar can work for all ratios. Can the method used by Asha also
work for all ratios? Anwar says Asha’s method can be used only if you can find a natural
number which on multiplication with the denominator gives 100. Since denominator was 20,
she could multiply it by 5 to get 100. If the denominator was 6, she would not have been
able to use this method. Do you agree?

1. A collection of 10 chips with different colours is given .

Colour Number Fraction Denominator Hundred In Percentage

Green
Blue
Red
Total

Fill the table and find the percentage of chips of each colour.

Asha does it like this
8

20

8 5

20 5
= ×

×

==
40

100
 =  40%

Anwar found the Percentage of red beads like this
Out of 20 beads, the number of red beads are 8.
Hence, out of 100, the number of red beads are
8 100 40
20

× =  (out of hundred) = 40%

TRY THESE

G G G G

R R R
BBB
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2. Mala has a collection of bangles. She has 20 gold bangles and 10 silver bangles.
What is the percentage of bangles of each type? Can you put it in the tabular form
as done in the above example?

THINK, DISCUSS AND WRITE

1. Look at the examples below and in each of them, discuss which is better for
comparison.
In the atmosphere, 1 g of air contains:

.78 g Nitrogen 78% Nitrogen
.21 g Oxygen or 21% Oxygen

.01 g Other gas 1% Other gas
2. A shirt has:

3
5  Cotton 60% Cotton

2
5  Polyster 40% Polyster

8.3.2  Converting Fractional Numbers to Percentage
Fractional numbers can have different denominator. To compare fractional numbers, we
need a common denominator and we have seen that it is more convenient to compare if
our denominator is 100. That is, we are converting the fractions to Percentages. Let us try
converting different fractional numbers to Percentages.

EXAMPLE 7 Write 
1

3
 as per cent.

SOLUTION We have, 
1 1 100 1 100%
3 3 100 3

= × = ×

=
100 1% 33 %

3 3
=

XAMPLE 8 Out of 25 children in a class, 15 are girls. What is the percentage of girls?

OLUTION Out of 25 children, there are 15 girls.

Therefore, percentage of girls = 
15

25
100 60= . There are 60% girls in the class.

EXAMPLE 9 Convert
5

4
 to per cent.

SOLUTION We have, 
5

4

5

4
100 125= × =% %

or
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From these examples, we find that the percentages related to proper fractions are less
than 100 whereas percentages related to improper fractions are more than 100.

THINK AND DISCUSS

(i) Can you eat 50% of a cake? Can you eat 100% of a cake?
Can you eat 150% of a cake?

(ii) Can a price of an item go up by 50%? Can a price of an item go up by 100%?
Can a price of an item go up by 150%?

8.3.3  Converting Decimals to Percentage
We have seen how fractions can be converted to per cents. Let us now find how decimals
can be converted to pre cents.

EXAMPLE 10  Convert the given decimals to per cents:
(a) 0.75 (b) 0.09 (c) 0.2

SOLUTION

(a) 0.75 = 0.75 × 100 % (b) 0.09 = 
9

100
 = 9 %

=
75

100
 × 100 % = 75%

(c) 0.2 = 
2

10  × 100% = 20 %

1. Convert the following to per cents:

(a)
12
16 (b) 3.5 (c)

49

50
(d)

2
2 (e) 0.05

2. (i) Out of 32 students, 8 are absent. What per cent of the students are absent?
(ii) There are 25 radios, 16 of them are out of order. What per cent of radios are

out of order?
(iii) A shop has 500 parts, out of which 5 are defective. What per cent are defective?
(iv) There are 120 voters, 90 of them voted yes. What per cent voted yes?

8.3.4  Converting Percentages to Fractions or Decimals

We have so far converted fractions and decimals to percentages. We can also do the
reverse. That is, given per cents, we can convert them to decimals or fractions. Look at the

TRY THESE
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table, observe and complete it:

Per cent 1% 10% 25% 50% 90% 125% 250%

Fraction
1

100
10

100

1

10
=

Decimal 0.01 0.10

Parts always add to give a whole

In the examples for coloured tiles, for the heights of
children and for gases in the air, we find that when we
add the Percentages we get 100. All the parts that form
the whole when added together gives the whole or 100%.
So, if we are given one part, we can always find out the
other part. Suppose, 30% of a given number of students are boys.

This means that if there were 100 students, 30 out of them would be boys and the
remaining  would be girls.

Then girls would obviously be (100 – 30)% = 70%.

1. 35% + % = 100%, 64% + 20% +  %  = 100%

45% = 100%  –  %, 70% = % – 30%

2. If 65% of students in a class have a bicycle, what per cent
of  the student do  not have bicycles?

3. We have a basket full of apples, oranges and mangoes.
If 50% are apples, 30% are oranges, then what per cent
are mangoes?

THINK, DISCUSS AND WRITE

Consider the expenditure made on a dress
20% on embroidery, 50% on cloth, 30% on stitching.
Can you think of more such examples?

=

TRY THESE

Make some
more such
examples and
solve them.
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8.3.5  Fun with Estimation
Percentages help us to estimate the parts of an area.

EXAMPLE 11 What per cent of the adjoining figure is shaded?

SOLUTION We first find the fraction of the figure that is shaded. From this fraction,
the percentage of the shaded part can be found.

You will find that half of the figure is shaded. And,
1 1 ×100 % 50 %
2 2

  

Thus, 50 % of the figure is shaded.

What per cent of these figures are shaded?
(i) (ii)

Tangram
You can make some more figures yourself and ask your friends to estimate the
shaded parts.

8.4  USE OF PERCENTAGES

8.4.1  Interpreting Percentages
We saw how percentages were helpful in comparison. We have also learnt to convert
fractional numbers and decimals to percentages. Now, we shall learn how percentages
can be used in real life. For this, we start with interpreting the following statements:
— 5% of the income is saved by Ravi. — 20% of Meera’s dresses are blue in colour.
— Rekha gets 10% on every book sold by her.

What can you infer from each of these statements?

By 5% we mean 5 parts out of 100 or we write it as 
5

100 . It means Ravi is saving
Rs 5 out of every Rs 100 that he earns. In the same way, interpret the rest of the statements
given above.
8.4.2  Converting Percentages to “How Many”
Consider the following examples:

EXAMPLE 12 A survey of 40 children showed that 25% liked playing football. How
many children liked playing football?

SOLUTION Here, the total number of children are 40. Out of these, 25% like playing
football. Meena and Arun used the following methods to find the number.
You can choose either method.

TRY THESE

1
1 6

1
1 6

1
4

1
8

1
4

1
8

1
8
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TRY THESE

Arun does it like this
Out of 100, 25 like playing football
So out of 40, number of children who like

playing football = 
25 × 40

100
 = 10

Hence, 10 children out of 40 like
playing football.

Meena does it like this

25% of 40 =
25 × 40

100
= 10

1. Find:

(a) 50% of 164 (b) 75% of 12 (c)
112
2 % of 64

2. 8% children of a class of 25 like getting wet in the rain. How many children like
getting wet in the rain.

EXAMPLE 13 Rahul bought a sweater and saved Rs 20 when a discount of 25% was
given. What was the price of the sweater before the discount?

SOLUTION Rahul has saved Rs 20 when price of sweater is reduced by 25%. This
means that 25% reduction in price is the amount saved by Rahul. Let us
see how Mohan and Abdul have found the original cost of the sweater.

Mohan’s solution Abdul’s solution
25% of the original price = Rs 20 Rs 25 is saved for every Rs 100
Let the price (in Rs) be P Amount for which Rs 20 is saved

So, 25% of P = 20 or 
25 20

100
� �P =

100 20
25

× =  Rs 80

or, 20
4
P   or P = 20 × 4

Therefore, P = 80

1. 9 is 25% of what number? 2. 75% of what number is 15?

EXERCISE 8.2

1. Convert the given fractional numbers to per cents.

(a)
1
8 (b)

5
4 (c)

3
40 (d)

2
7

Thus both obtained the original price of
sweater as Rs 80.

TRY THESE
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2. Convert the given decimal fractions to per cents.
(a) 0.65 (b) 2.1 (c) 0.02 (d) 12.35

3. Estimate what part of the figures is coloured and hence find the per cent which is
coloured.

4. Find:
(a) 15% of 250 (b) 1% of 1 hour (c) 20% of Rs 2500 (d) 75% of 1 kg

5. Find the whole quantity if
(a) 5% of it is 600. (b) 12% of it is Rs 1080. (c) 40% of it is 500 km.

(d) 70% of it is 14 minutes. (e) 8% of it is 40 litres.

6. Convert given per cents to decimal fractions and also to fractions in simplest forms:
(a) 25% (b) 150% (c) 20% (d) 5%

7. In a city, 30% are females, 40% are males and remaining are children. What per cent
are children?

8. Out of 15,000 voters in a constituency, 60% voted. Find the percentage of voters
who did not vote. Can you now find how many actually did not vote?

9. Meeta saves Rs 400 from her salary. If this is 10% of her salary. What is her salary?
10. A local cricket team played 20 matches in one season. It won 25% of them. How

many matches did they win?

8.4.3  Ratios to Percents
Sometimes, parts are given to us in the form of ratios and we need to convert those to
percentages. Consider the following example:

EXAMPLE 14 Reena’s mother said, to make idlis, you must take two parts rice and
one part urad dal. What percentage of such a mixture would be rice
and what percentage would be urad dal?

SOLUTION In terms of ratio we would write this as Rice : Urad dal = 2 : 1.

Now, 2 + 1=3 is the total of all parts. This means 
2
3

 part is rice and 
1
3

 part is urad dal.

Then, percentage of rice would be 2

3
100

200

3
66

2

3
× = =% % .

Percentage of urad dal would be 
1 100 1100 % 33 %
3 3 3

   .

(i) (ii) (iii)
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EXAMPLE 15If Rs 250 is to be divided amongst Ravi, Raju and Roy, so that Ravi
gets two parts, Raju three parts and Roy five parts. How much money
will each get? What will it be in percentages?

OLUTION The parts which the three boys are getting can be written in terms of
ratios as 2 : 3 : 5. Total of the parts is 2 + 3 + 5 = 10.

Amounts received by each Percentages of money for each

2

10
250× Rs  = Rs 50 Ravi gets 2 ×100 % 20 %

10
 

3 Rs 250
10

  = Rs 75 Raju gets 3 ×100 % 30 %
10

 

5 Rs 250
10

 = Rs 125 Roy gets 5 ×100 % 50 %
10

 

1. Divide 15 sweets between Manu and Sonu so that they get 20 %
and 80 % of them respectively.

2. If angles of a triangle are in the ratio 2 : 3 : 4. Find the value of
each angle.

8.4.4  Increase or Decrease as Per Cent
There are times when we need to know the increase or decrease in a certain quantity as
percentage. For example, if the population of a state increased from 5,50,000 to
6,05,000. Then the increase in population can be understood better if we say, the
population increased by 10 %.

How do we convert the increase or decrease in a quantity as a percentage of the initial
amount? Consider the following example.

EXAMPLE 16 A school team won 6 games this year against 4 games won last year.
What is the per cent increase?

OLUTION The increase in the number of wins (or amount of change) = 6 – 4 = 2.

Percentage increase =
amount of change

original amount or base
100

=
increase in the number of wins ×100

original number of wins  = 
2

4
100 = 50

EXAMPLE 17 The number of illiterate persons in a country decreased from 150 lakhs
to 100 lakhs in 10 years. What is the percentage of decrease?

OLUTION Original amount = the number of illiterate persons initially = 150 lakhs.

TRY THESE
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Amount of change = decrease in the number of illiterate persons = 150 – 100 = 50 lakhs
Therefore, the percentage of decrease

=
amount of change

original amount
100  = 

50

150
100 33

1

3
× =

1. Find Percentage of increase or decrease:
– Price of shirt decreased from Rs 80 to Rs 60.
– Marks in a test increased from 20 to 30.

2. My mother says, in her childhood petrol was Re 1 a litre. It is Rs 52 per litre today.
By what Percentage has the price gone up?

8.5  PRICES RELATED TO AN ITEM OR BUYING AND SELLING

I bought it for Rs 600

          and will sell it for Rs 610

The buying price of any item is known as its cost price. It is written in short as CP.
The price at which you sell is known as the selling price or in short SP.

What would you say is better, to you sell the item at a lower price, same price or higher
price than your buying price? You can decide whether the sale was profitable or not
depending on the CP and SP. If CP < SP  then you made a profit = SP – CP.

If CP = SP  then you are in a no profit no loss situation.
If CP > SP  then you have a loss = CP – SP.

Let us try to interpret the statements related to prices of items.
� A toy bought for Rs 72 is sold at Rs 80.
� A T-shirt bought for Rs 120 is sold at Rs 100.
� A cycle bought for Rs 800 is sold for Rs 940.

Let us consider the first statement.
The buying price (or CP) is Rs 72 and the selling price (or SP) is Rs 80. This means SP

is more than CP. Hence profit made  = SP – CP  = Rs 80 – Rs 72 = Rs 8
Now try interpreting the remaining statements in a similar way.

8.5.1  Profit or Loss as a Percentage
The profit or loss can be converted to a percentage. It is always calculated on the CP.
For the above examples, we can find the profit % or loss %.

Let us consider the example related to the toy. We have CP = Rs 72, SP = Rs 80,
Profit = Rs 8. To find the percentage of profit, Neha and Shekhar have used the following
methods.

TRY THESE
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Thus, the profit is Rs 8 and

profit Per cent is 111
9

.

Neha does it this way Shekhar does it this way

Profit per cent =
Profit

CP × 100 = 
8

72
100 On Rs 72 the profit is Rs 8

=
1

9
100×  = 11

1

9
On Rs 100,  profit =

8

72
100

 = 11
1

9
. Thus, profit per cent = 

111
9

Similarly you can find the loss per cent in the second situation. Here,
CP = Rs 120, SP = Rs 100.
Therefore,  Loss = Rs 120 – Rs 100 = Rs 20

 Loss per cent =
Loss ×100
CP

=
20 ×100

120 = × = =20

120
100

50

3
16

2

3

=
50 216
3 3

 Thus, loss per cent is 
216
3

Try the last case.
Now we see that given any two out of the three quantities related to prices that is, CP,

SP, amount of Profit or Loss or their percentage, we can find the rest.

EXAMPLE 18 The cost of a flower vase is Rs 120. If the shopkeeper sells it at a loss
of 10%, find the price at which it is sold.

OLUTION We are given that CP = Rs 120 and Loss per cent = 10. We have to
find the SP.

Sohan does it like this Anandi does it like this
Loss of 10% means if  CP is Rs 100, Loss is 10% of the cost price
Loss is Rs 10 = 10% of Rs 120

Therefore, SP would be =
10 120

100
×  = Rs 12

Rs (100 – 10) = Rs 90  Therefore
When CP is Rs 100, SP is Rs 90. SP = CP – Loss
Therefore, if CP were  Rs 120 then = Rs 120 – Rs 12 = Rs 108

SP = 
90 120

100
  = Rs 108

On Rs 120, the loss is Rs 20
So on Rs 100, the loss

Thus, by both methods we get the SP as
Rs 108.
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EXAMPLE 19 Selling price of a toy car is Rs 540. If the profit made by shop-
keeper is 20%, what is the cost price of this toy?

SOLUTION We are given that SP = Rs 540 and the  Profit = 20%. We need to find the CP.

Amina does it like this Arun does it like this
20% profit will mean if CP is Rs 100, Profit = 20% of CP and SP = CP + Profit
profit is Rs 20 So, 540 = CP + 20% of CP

= CP + 
20

100
 × CP = 

11 CP
5

⎡ ⎤+⎢ ⎥⎣ ⎦

=
6 CP
5

.  Therefore,   5540 CP
6

× =

or  Rs 450 = CP

Thus, by both methods, the cost price is Rs 450.

1. A shopkeeper bought a chair for Rs 375 and sold it for Rs 400. Find the gain
Percentage.

2. Cost of an item is Rs 50. It was sold with a profit of 12%. Find the selling price.
3. An article was sold for Rs 250 with a profit of 5%. What was its cost price?
4. An item was sold for Rs 540 at a loss of 5%. What was its cost price?

8.6 CHARGE GIVEN ON BORROWED MONEY OR SIMPLE

INTEREST

Sohini said that they were going to buy a new scooter. Mohan asked her
whether they had the money to buy it. Sohini said her father was going
to take a loan from a bank. The money you borrow is known as sum
borrowed or principal.

This money would be used by the borrower for some time before it is
returned. For keeping this money for some time the borrower has to pay
some extra money to the bank. This is known as Interest.

You can find the amount you have to pay at the end of the year by adding the sum
borrowed and the interest. That is, Amount = Principal + Interest.

Interest is generally given in per cent for a period of one year. It is written as  say 10%
per year or per annum or in short as 10% p.a. (per annum).

10% p.a. means on every Rs 100 borrowed, Rs 10 is the interest you have to pay for
one year. Let us take an example and see how this works.

EXAMPLE 20 Anita takes a loan of Rs 5,000 at 15% per year as rate of interest. Find
the interest she has to pay at end of one year.

Therefore, SP = 100 + 20  = 120
Now, when SP is Rs 120,
then CP is Rs 100.
Therefore, when SP is Rs 540,

then CP = 
100 540
120

  = Rs 450

TRY THESE
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SOLUTION The sum borrowed = Rs 5,000, Rate of interest = 15% per year.
This means if Rs 100 is borrowed, she has to pay Rs 15 as interest for one year. If she has
borrowed Rs 5,000, then the interest she has to pay for one year

= Rs 
15 5000

100
×  = Rs 750

So,  at the end of the year she has to give an amount of  Rs 5,000 + Rs 750 =  Rs 5,750.
We can write a general relation to find interest for one year. Take P as the principal or

sum and R % as Rate per cent per annum.
Now on every Rs 100 borrowed, the interest paid is Rs R

Therefore, on Rs P borrowed, the interest paid for one year would be 100
R P×

 = 
P R×
100

.

8.6.1  Interest for Multiple Years
If the amount is borrowed for more than one year the interest is calculated for the period
the money is kept for. For example, if Anita returns the money at the end of two years and
the rate of interest is the same then she would have to pay twice the interest i.e., Rs 750 for
the first year and Rs 750 for the second. This way of calculating interest where principal is
not changed is known as simple interest. As the number of years increase the interest
also increases. For Rs 100 borrowed for 3 years at 18%, the interest to be paid at the end
of 3 years is 18 + 18 + 18 = 3 × 18 = Rs 54.
We can find the general form for simple interest for more than one year.

We know that on a principal of Rs P at R% rate of interest per year, the interest paid

for one year is . Therefore, interest I paid for T years would be

And amount you have to pay at the end of T years is A = P + I

1. Rs 10,000 is invested at 5% interest rate p.a. Find the interest at the end of one
year.

2. Rs 3,500 is given at 7% p.a. rate of interest. Find the interest which will be received
at the end of two years.

3. Rs 6,050 is borrowed at 6.5% rate of interest p.a.. Find the interest and the amount
to be paid at the end of 3 years.

4. Rs 7,000 is borrowed at 3.5% rate of interest p.a. borrowed for 2 years. Find the
amount to be paid at the end of the second year.

Just as in the case of prices related to items, if you are given any two of the three

quantities in the relation 
100

P T RI × ×= , you could find the remaining quantity.

TRY THESE
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EXAMPLE 21If Manohar pays an interest of Rs 750 for 2 years on a sum of
Rs 4,500, find the rate of interest.

Solution 1

I
100

= × ×P T R

Therefore, 750
4500 2

100
= × × R

or
750

45 2×
= R

Therefore, Rate  = 8
1

3
%

Solution 2
For 2 years, interest paid is Rs 750

Therefore, for 1 year, interest paid Rs
750

2
375= Rs 

On Rs 4,500,  interest paid is Rs 375
Therefore, on Rs 100, rate of interest paid

= × =375 100

4500
8

1

3
%

1. You have Rs 2,400 in your account and the interest rate is 5%. After how many years
would you earn Rs 240 as interest.

2. On a certain sum the interest paid after 3 years is Rs 450 at 5% rate of interest per
annum. Find the sum.

EXERCISE 8.3

1. Tell what is the profit or loss in the following transactions. Also find profit per cent or
loss per cent in each case.
(a) Gardening shears bought for Rs 250 and sold for Rs 325.
(b) A refrigerater bought for Rs 12,000 and sold at Rs 13,500.
(c) A cupboard bought for Rs 2,500 and sold at Rs 3,000.
(d) A skirt bought for Rs 250 and sold at Rs 150.

2. Convert each part of the ratio to percentage:
(a)  3:1 (b)  2:3:5 (c) 1:4 (d) 1: 2:5

3. The population of a city decreased from 25,000 to 24,500. Find the percentage
decrease.

4. Arun bought a car for Rs 3,50,000. The next year, the price went upto
Rs 3,70,000. What was the Percentage of price increase?

5. I buy a T.V. for Rs 10,000 and sell it at a profit of 20%. How much money do I get
for it?

6. Juhi sells a washing machine for Rs 13,500. She loses 20% in the bargain. What was
the price at which she bought it?

7. (i) Chalk contains calcium, carbon and oxygen in the ratio 10:3:12. Find the percentage
of carbon in chalk.

(ii) If in a stick of chalk, carbon is 3g, what is the weight of the chalk stick?

TRY THESE
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8. Amina buys a book for Rs 275 and sells it at a loss of 15%. How much does she sell
it for?

9. Find the amount to be paid at the end of 3 years in each case:
(a) Principal = Rs 1,200 at 12% p.a. (b) Principal = Rs 7,500 at 5% p.a.

10. What rate gives Rs 280 as interest on a sum of Rs 56,000 in 2 years?
11. If Meena gives an interest of Rs 45 for one year at 9% rate p.a.. What is the sum she

has borrowed?

WHAT HAVE WE DISCUSSED?
1. We are often required to compare two quantities in our daily life. They may be heights,

weights, salaries, marks etc.
2. While comparing heights of two persons with heights150 cm and 75 cm, we write it

as the ratio 150 : 75  or 2 : 1.
3. Two ratios can be compared by converting them to like fractions. If the two fractions

are equal, we say the two given ratios are equivalent.
4. If two ratios are equivalent then the four quantities are said to be in proportion. For

example, the ratios 8 : 2 and 16 : 4 are equivalent therefore 8, 2, 16 and 4 are in
proportion.

5. A way of comparing quantities is percentage. Percentages are numerators of fractions
with denominator 100. Per cent means per hundred.
For example 82% marks means 82 marks out of hundred.

6. Fractions can be converted to percentages and vice-versa.

For example, 1 1 100 %
4 4

   whereas, 75% = 
75 3

100 4
 

7. Decimals too can be converted to percentages and vice-versa.
For example, 0.25 = 0.25 × 100% =  = 25%

8. Percentages are widely used in our daily life,
(a) We have learnt to find exact number when a certain per cent of the total quantity

is given.
(b) When parts of a quantity are given to us as ratios, we have seen how to convert

them to percentages.
(c) The increase or decrease in a certain quantity can also be expressed as percentage.
(d) The profit or loss incurred in a certain transaction can be expressed in terms of

percentages.
(e) While computing interest on an amount borrowed, the rate of interest is given in

terms of per cents. For example, Rs 800 borrowed for 3 years at 12% per
annum.



 

9.1  INTRODUCTION

You began your study of numbers by counting objects around you.
The numbers used for this purpose were called counting numbers or
natural numbers. They are 1, 2, 3, 4, ... By including 0 to natural
numbers, we got the whole numbers, i.e., 0, 1, 2, 3, ... The negatives
of natural numbers were then put together with whole numbers to make
up integers. Integers are ..., –3, –2, –1, 0, 1, 2, 3, .... We, thus, extended
the number system, from natural numbers to whole numbers and from
whole numbers to integers.

You were also introduced to fractions. These are numbers of the form numerator
denominator

,

where the numerator is either 0 or a positive integer and the denominator, a positive integer.
You compared two fractions, found their equivalent forms and studied all the four basic
operations of addition, subtraction, multiplication and division on them.

In this Chapter, we shall extend  the number system further. We shall introduce the concept
of rational numbers alongwith their addition, subtraction, multiplication and division operations.

9.2  NEED FOR RATIONAL NUMBERS

Earlier, we have seen how integers could be used to denote opposite situations involving
numbers. For example, if the distance of 3 km to the right of a place was denoted by 3, then
the distance of 5 km to the left of the same place could be denoted by –5. If a profit of Rs 150
was represented by 150 then a loss of Rs 100 could be written as –100.

There are many situations similar to the above situations that involve fractional numbers.

You can represent a distance of 750m above sea level as
3
4  km. Can we represent 750m

below sea level in km? Can we denote the distance of
3
4  km below sea level by

–3
4 ? We can

see
–3
4  is neither an integer, nor a fractional number. We need to extend our number system

to include such numbers.

C
h
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9.3  WHAT ARE RATIONAL NUMBERS?
The word ‘rational’ arises from the term ‘ratio’. You know that a ratio like 3:2 can also be

written as 3
2

. Here, 3 and 2 are natural numbers.

Similarly, the ratio of two integers p and q (q ≠ 0), i.e., p:q can be written in the form
p
q . This is the form in which rational numbers are expressed.

A rational number is defined as a number that can be expressed in the

form p
q , where p and q are integers and q ≠  0.

Thus,
4
5  is a rational number. Here, p = 4 and q = 5.

Is
–3
4  also a rational number? Yes, because p = – 3 and q = 4 are integers.

� You have seen many fractions like
3 4 2, ,1
8 8 3  etc. All fractions are rational

numbers. Can you say why?
How about the decimal numbers like 0.5, 2.3, etc.? Each of such numbers can be

written as an ordinary fraction and, hence, are rational numbers. For example, 0.5 =
5

10 ,

0.333 =
333

1000  etc.

1. Is the number
2
–3  rational? Think about it. 2. List ten rational numbers.

Numerator and Denominator

In
p
q , the integer p is the numerator, and the integer q (≠ 0) is the denominator..

Thus, in
–3
7 , the numerator is –3 and the denominator is 7.

Mention five rational numbers each of whose
(a) Numerator is a negative integer and denominator is a positive integer.
(b) Numerator is a positive integer and denominator is a negative integer.
(c) Numerator and denominator both are negative integers.
(d) Numerator and denominator both are positive integers.
� Are integers also rational numbers?
Any integer can be thought of as a rational number. For example, the integer – 5 is a

rational number, because you can write it as –5
1

. The integer 0 can also be written as
0 00 or
2 7  etc. Hence, it is also a rational number..

Thus, rational numbers include integers and fractions.

TRY THESE
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Equivalent rational numbers

A rational number can be written with different numerators and denominators. For example,

consider the rational number
–2
3 .

–2
3

 =
2 × 2 4

3× 2 6
. We see that

–2
3  is the same as – 4

6
.

Also,
–2
3

 =
( ) ( )

( )
– 2 × – 5 10
3× – 5 –15

. So, – 2
3

 is also the same as
10
15 .

Thus,
–2
3

 =
– 4
6

 =
10
15 . Such rational numbers that are equal to each other are said to

be equivalent to each other.

Again,
10
15  =

10
15

 (How?)

By multiplying the numerator and denominator of a rational
number by the same non zero integer, we obtain another rational
number equivalent to the given rational number. This is exactly like
obtaining equivalent fractions.

Just as multiplication, the division of the numerator and denominator
by the same non zero integer, also gives equivalent rational numbers. For
example,

10
–15

 =
( )
( )

10 –5 –2
–15 –5 3

÷
÷

     ,
–12
24

 =
–12 12 –1
24 12 2

÷
÷

We write –2 2 –10 10as – , as –
3 3 15 15

, etc.

9.4  POSITIVE AND NEGATIVE RATIONAL NUMBERS

Consider the rational number 2
3

. Both the numerator and denominator of this number are

positive integers. Such a rational number is called a positive rational number. So,
3 5 2, ,
8 7 9

etc. are positive rational number.

The numerator of
–3
5  is a negative integer, whereas the denominator

is a positive integer. Such a rational number is called a negative rational

number. So,
–5 –3 –9, ,
7 8 5  etc. are negative rational numbers.

TRY THESE

Fill in the boxes:

(i)
5 25 –15
4 16

(ii)
–3 9 –6
7 14

TRY THESE

1. Is 5 a positive rational
number?

2. List five more positive
rational numbers.
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� Is 8
3

 a negative rational number? We know that
8
3

 =
8× 1
3× 1 =

8
3 ,

and
8

3  is a negative rational number. So,
8
3  is a negative rational number.

Similarly,
5 6 2, ,
–7 –5 –9  etc. are all negative rational numbers. Note that their

numerators are positive and their denominators negative.
� The number 0 is neither a positive nor a negative rational number.

� What about
–3
–5 ?

You will see that 3 3 ( 1) 3
5 5 ( 1) 5

×
×

. So,
–3
–5  is a positive rational number.

Thus,
–2 –5,
–5 –3  etc. are positive rational numbers.

Which of these are negative rational numbers?

(i)
–2
3 (ii)

5
7 (iii)

3
–5 (iv) 0 (v)

6
11 (vi)

–2
–9

9.5  RATIONAL NUMBERS ON A NUMBER LINE

You know how to represent integers on a number line. Let us draw one such number line.

The points to the right of 0 are denoted by + sign and are positive integers. The points
to the left of 0 are denoted by – sign and are negative integers.
Representation of fractions on a number line is also known to you.
Let us see how the rational numbers can be represented on a number line.

Let us represent the number
1
2  on the number line.

As done in the case of positive integers, the positive rational numbers would be marked
on the right of 0 and the negative rational numbers would be marked on the left of 0.

To which side of 0 will you mark
1
2 ? Being a negative rational number, it would be

marked to the left of 0.
You know that while marking integers on the number line, successive integers are

marked at equal intervels. Also, from 0, the pair 1 and –1 is equidistant. So are the pairs 2
and –2, 3 and –3.

TRY THESE

1. Is – 8 a negative
rational number?

2. List five more
negative rational
numbers.

TRY THESE
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In the same way, the rational numbers
1
2  and

1
2  would be at equal distance from 0.

We know how to mark the rational number
1
2 . It is marked at a point which is half the

distance between 0 and 1. So,
1
2  would be marked at a point half the distance between

0 and –1.

We know how to mark
3
2  on the number line. It is marked on the right of 0 and lies

halfway between 1 and 2. Let us now mark
3

2  on the number line. It lies on the left of 0

and is at the same distance as
3
2  from 0.

In decreasing order, we have,
1 2, ( 1)

2 2 ,
3 4, ( 2)

2 2 . This shows that

3
2  lies between – 1 and – 2. Thus,

3
2  lies halfway between – 1 and – 2.

Mark
5

2  and
7

2  in a similar way..

Similarly,
1
3  is to the left of zero and at the same distance from zero as

1
3  is to the

right. So as done above,
1
3  can be represented on the number line. Once we know how

to represent
1
3  on the number line, we can go on representing

2 4 5, – , –
3 3 3  and so on.

All other rational numbers with different denominators can be represented in a similar way

9.6  RATIONAL NUMBERS IN STANDARD FORM

Observe the rational numbers 3 5 2 7, , ,
5 8 7 11

.

The denominators of these rational numbers are positive integers and 1 is
the only common factor between the numerators and denominators. Further,
the negative sign occurs only in the numerator.
Such rational numbers are said to be in standard form.

3
2

( )2 –1
2

1
2

( )0 0
2

1
2

( )2 1
2

3
2

( )4 2
2

( )4 –2
2
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A rational number is said to be in the standard form if its denominator is a
positive integer and the numerator and denominator have no common factor other
than 1.

If a rational number is not in the standard form, then it can be reduced to the
standard form.

Recall that for reducing fractions to their lowest forms, we divided the numerator and
the denominator of the fraction by the same non zero positive integer. We shall use the
same method for reducing rational numbers to their standard form.

EXAMPLE 1 Reduce
– 45
30  to the standard form.

SOLUTION We have,
– 45 – 45 3 –15 –15 5 – 3
30 30 3 10 10 5 2

÷ ÷
÷ ÷

We had to divide twice. First time by 3 and then by 5. This could also be done as
– 45 – 45 15 – 3
30 30 15 2

÷
÷

In this example, note that 15 is the HCF of 45 and 30.
Thus, to reduce the rational number to its standard form, we divide its numerator

and denominator by their HCF ignoring the negative sign, if any. (The reason for
ignoring the negative sign will be studied in Higher Classes)
If there is negative sign in the denominator, divide by ‘– HCF’.

EXAMPLE 2 Reduce to standard form:

(i)
36
–24 (ii)

–3
–15

SOLUTION

(i) The HCF of 36 and 24 is 12.
Thus, its standard form would be obtained by dividing by –12.

36 36 ( 12) 3
24 24 ( 12) 2

÷
÷

(ii) The HCF of 3 and 15 is 3.

Thus,
–3 –3 (–3) 1

–15 –15 (–3) 5
÷
÷

Find the standard form of (i)
–18
45 (ii)

–12
18

TRY THESE
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9.7  COMPARISON OF RATIONAL NUMBERS

We know how to compare two integers or two fractions and tell which is smaller or which
is greater among them. Let us now see how we can compare two rational numbers.

� Two positive rational numbers, like
2 5and
3 7  can be compared as studied earlier in the

case of fractions.

� Mary compared two negative rational numbers
1
2  and

1
5  using number line. She

knew that the integer which was on the right side of the other integer, was the greater
integer.
For example, 5 is to the right of 2 on the number line and 5 > 2. The integer – 2 is on

the right of – 5 on the number line and  – 2 > – 5.
She used this method for rational numbers also. She knew how to mark rational numbers

on the number line. She marked
1
2  and

1
5  as follows:

Has she correctly marked the two points? How and why did she convert
1
2  to

5
10

and
1
5  to

2
10 ? She found that

1
5  is to the right of

1
2 . Thus,

1
5 >

1
2  or

1
2 <

1
5 .

Can you compare
3
4  and

2
3 ?

1
3  and

1
5 ?

We know from our study of fractions that
1
5 <

1
2 . And what did Mary get for

1
2

and
1
5 ? Was it not exactly the opposite?

You will find that,
1
2 >

1
5  but

1
2 <

1
5 .

Do you observe the same for
3
4 ,

2
3  and

1
3 ,

1
5 ?

Mary remembered that in integers she had studied  4 > 3
but – 4 < –3, 5 > 2 but –5 < –2 etc.

1 5
2 10

1 2
5 10



MATHEMATICS1 8 0

� The case of pairs of negative rational numbers is similar. To compare two negative
rational numbers, we compare them ignoring their negative signs and then reverse
the order.

For example, to compare
7
5  and

5
3 , we first compare

7
5  and

5
3 .

We get
7
5  <

5
3  and conclude that

–7 –5>
5 3 .

Take five more such pairs and compare them.

Which is greater
3
8  or

2
7 ?;

4
3  or

3
2 ?

� Comparison of a negative and a positive rational number is obvious. A negative rational
number is to the left of zero whereas a positive rational number is to the right of zero on
a number line. So, a negative rational number will always be less than a positive rational
number.

Thus,
2 1– <
7 2 .

� To compare rational numbers
3 2and
5 7  reduce them to their standard forms and

then compare them.

EXAMPLE 3 Do
4
9  and

16
36  represent the same rational number?

SOLUTION Yes, because 4 4 (– 4) –16 –16 –16 – 4 4 or
– 9 – 9 (– 4) 36 36 36 – 4 – 9

× ÷
× ÷

.

9.8 RATIONAL NUMBERS BETWEEN TWO RATIONAL NUMBERS

Reshma wanted to count the whole numbers between 3 and 10. From her earlier classes,
she knew there would be exactly 6 whole numbers between 3 and 10. Similarly, she
wanted to know the total number of integers between –3 and 3. The integers between –3
and 3 are –2, –1, 0, 1, 2. Thus, there are exactly 5 integers between –3 and 3.

Are there any integers between –3 and –2? No, there is no integer between
–3 and –2. Between two successive integers the number of integers is 0.
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Thus, we find that number of integers between two integers are limited (finite).
Will the same happen in the case of rational numbers also?

Reshma took two rational numbers – 3 –1and
5 3

.

She converted them to rational numbers with same denominators.

So
– 3 – 9 –1 – 5and
5 15 3 15

We have
–9 –8 –7 –6 –5
15 15 15 15 15

< < < <  or
–3 –8 –7 –6 –1
5 15 15 15 3
< < < <

She could find rational numbers
–8 –7 –6, ,
15 15 15  between 3 1and

5 3
.

Are the numbers
8 7 6, ,

15 15 15  the only rational numbers between
3 1and
5 3 ?

We have
– 3 –18 –8 –16and
5 30 15 30

And
–18 –17 –16
30 30 30

< < . i.e.,
– 3 –17 –8
5 30 15
< <

Hence
– 3 –17 – 8 – 7 – 6 –1
5 30 15 15 15 3
< < < < <

So, we could find one more rational number between – 3 –1and
5 3

.

By using this method, you can insert as many rational numbers as you want between
two rational numbers.

For example,
–3 –3 30 –90 –1 –1 50 –50and
5 5 30 150 3 3 50 150

× ×
× ×

We get 39 rational numbers
89 51, ...,

150 150
⎛ ⎞
⎜ ⎟⎝ ⎠  between

– 90 – 50and
150 150  i.e., between

–3 –1and
5 3 . You will find that the list is unending.

Can you list five rational numbers between
– 5 – 8and
3 7 ?

We can find unlimited number of rational numbers between any two
rational numbers.

TRY THESE

Find five rational numbers

between
5 3and

7 8 .
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EXAMPLE 4 List three rational numbers between – 2 and – 1.

SOLUTION Let us write –1 and –2 as rational numbers with denominator 5. (Why?)

We have, –1 =
5

5  and –2 =
10
5

So,
–10 –9 –8 –7 –6 –5
5 5 5 5 5 5

< < < < <  or
– 9 – 8 – 7 – 6– 2 –1
5 5 5 5

< < < < <

The three rational numbers between –2 and –1 would be,
9 8 7, ,

5 5 5

(You can take any three of
– 9 –8 – 7 – 6, , ,
5 5 5 5 )

EXAMPLE 5 Write four more numbers in the following pattern:

1 2 3 4, , , ,...
3 6 9 12

SOLUTION We have,

2 1 2 3 1 3 4 1 4, ,
6 3 2 9 3 3 12 3 4

× × ×
× × ×

or
–1 1 1 –1 2 – 2 –1 3 – 3 –1 4 – 4, , ,
3 1 3 3 2 6 3 3 9 3 4 12
× × × ×
× × × ×

Thus, we observe a pattern in these numbers.

The other numbers would be 1 5 5 1 6 6 1 7 7, ,
3 5 15 3 6 18 3 7 21
× × ×
× × ×

.

EXERCISE 9.1

1. List five rational numbers between:

(i) –1 and 0 (ii) –2 and –1 (iii)
4 2and

5 3 (iv)
1 2– and
2 3

2. Write four more rational numbers in each of the following patterns:

(i)
3 6 9 12, , , ,.....

5 10 15 20 (ii)
1 2 3, , ,.....

4 8 12
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(iii)
1 2 3 4, , , ,.....

6 12 18 24 (iv)
2 2 4 6, , , ,.....

3 3 6 9

3. Give four rational numbers equivalent to:

(i)
2

7 (ii)
5
3 (iii)

4
9

4. Draw the number line and represent the following rational numbers on it:

(i)
3
4 (ii)

5
8 (iii)

7
4 (iv)

7
8

5. The points P, Q, R, S, T, U, A and B on the number line are such that, TR = RS = SU
and AP = PQ = QB. Name the rational numbers represented by P, Q, R and S.

6. Which of the following pairs represent the same rational number?

(i)
7 3and

21 9 (ii)
16 20and

20 25 (iii)
2 2and
3 3

(iv)
3 12and

5 20 (v)
8 24and
5 15 (vi)

1 1and
3 9

(vii)
5 5and
9 9

7. Rewrite the following rational numbers in the simplest form:

(i)
8

6 (ii)
25
45 (iii)

44
72 (iv)

8
10

8. Fill in the boxes with the correct symbol out of  >, <, and =.

(i)
5 2

7 3 (ii)
4 5

5 7 (iii)
7 14

8 16

(iv)
8 7

5 4 (v)
1 1
3 4 (vi)

5 5
11 11

(vii) 70
6
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9. Which is greater in each of the following:

(i)
2 5,
3 2 (ii)

5 4,
6 3 (iii)

3 2,
4 3

(iv)
1 1,

4 4 (v)
2 43 , 3
7 5

10. Write the following rational numbers in ascending order:

(i)
3 2 1, ,

5 5 5 (ii)
–1 2 4, ,
3 9 3 (iii)

3 3 3, ,
7 2 4

9.9  OPERATIONS ON RATIONAL NUMBERS

You know how to add, subtract, multiply and divide integers as well as fractions. Let us
now study these basic operations on rational numbers.

9.9.1  Addition

� Let us add two rational numbers with same denominators, say 7 5and
3 3

.

We find
7 5
3 3

⎛ ⎞+ ⎜ ⎟⎝ ⎠

On the number line, we have:

The distance between two consecutive points is
1
3 . So adding 5

3
 to

7
3  will

mean, moving to the left of 7
3

, making 5 jumps. Where do we reach? We reach at
2
3 .

So,
7 5 2
3 3 3

⎛ ⎞+ ⎜ ⎟⎝ ⎠ .

Let us now try this way:

( ) ( )5 7 57 2
3 3 3 3

+
+

We get the same answer.

Find
( ) ( )2 56 3,

5 5 7 7
+ +  in both ways and check if you get the same answers.

3
3

2
3

1
3

0
3

1
3

2
3

3
3

4
3

5
3

6
3

7
3

8
3
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Similarly,
7 5

8 8
+  would be

What do you get?

Also,
7 5 7 5 ?

8 8 8
+

+  Are the two values same?

So, we find that while adding rational numbers with same denominators, we add
the numerators keeping the denominators same.

Thus,
11 7 11 7 4
5 5 5 5

+
+

� How do we add rational numbers with different denominators? As in the case of
fractions, we first find the LCM of the two denominators. Then, we find the equivalent
rational numbers of the given rational numbers with this LCM as the denominator.
Then, add the two rational numbers.

For example, let us add 7 2and
5 3

.

LCM of 5 and 3 is 15.

So,
7 21 2 10and

5 15 3 15

Thus,
( ) ( )2 107 21

5 3 15 15
+ +

31
15

Additive Inverse

What will be
4 4 ?

7 7
+

4 4 4 4 0
7 7 7

+
+ . Also,

4 4 0
7 7

⎛ ⎞+ ⎜ ⎟⎝ ⎠ .

TRY THESE

Find: 13 6
7 7

+  ,
19 7
5 5
+

TRY THESE

Find:

(i)
3 2

7 3
+

(ii)
5 3

6 11
+

7
8

6
8

5
8

4
8

3
8

2
8

1
8

0
8

1
8

2
8

3
8

5
8

4
8
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Similarly,
2 2 2 20

3 3 3 3
⎛ ⎞+ +⎜ ⎟
⎝ ⎠

.

In the case of integers, we call – 2 as the additive inverse
of 2 and 2 as the additive inverse of – 2.

For rational numbers also, we call
4

7  as the additive

inverse of
4
7  and

4
7  as the additive inverse of 4

7
.  Similarly,,

2
3  is the additive inverse of

2
3  and

2
3  is the additive inverse of

2
3  .

What will be the additive inverse of
3 9 5?, ?, ?

9 11 7

EXAMPLE 6 Satpal walks
2
3  km from a place P, towards east and then from there

51
7  km towards west. Where will he be now from P?

SOLUTION Let us denote the distance travelled towards east by positive sign. So,
the distances towards west would be denoted by negative sign.

Thus, distance of Satpal from the point P would be

2 5
1

3 7
⎛ ⎞+ ⎜ ⎟⎝ ⎠ =

( ) ( )12 12 32 2 7
3 7 3 7 7 3

××
+ +

× ×

=
14 36 22

21 21
11
21

Since it is negative, it means Satpal is at a distance
11
21  km towards west of P..

9.9.2  Subtraction

Savita found the difference of two rational numbers
5 3and
7 8

 in this way:

5 3
7 8 =

40 21 19
56 56

Farida knew that for two integers a and b she could write a – b = a + (– b)

TRY THESE

P
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She tried this for rational numbers also and found,
( )35 3 5 19

7 8 7 8 56
+ .

Both obtained the same difference.

Try to find
7 5 3 8,
8 9 11 7  in both ways. Did you get the same answer?

So, we say while subtracting two rational numbers, we add the additive inverse of
the rational number that is being subtracted, to the other rational number.

Thus,
2 4 5 141 2
3 5 3 5

 =
5
3  + additive inverse of

( )1414 5
5 3 5

+

17 21
15 15 .

What will be
2 5

?
7 6

⎛ ⎞
⎜ ⎟⎝ ⎠

2 5 2
7 6 7

⎛ ⎞ +⎜ ⎟⎝ ⎠
additive inverse of 5

6
⎛ ⎞
⎜ ⎟⎝ ⎠

2 5 47 51
7 6 42 42
+

9.9.3  Multiplication

Let us multiply the rational number
3

5  by 2, i.e., we find
3 × 2

5 .

On the number line, it will mean two jumps of
3
5  to the left.

Where do we reach? We reach at
6

5 . Let us find it as we did in fractions.

3 3× 2 6× 2
5 5 5

We arrive at the same rational number.

Find
4 6× 3, × 4

7 5  using both ways. What do you observe?

TRY THESE

Find:

(i)
7 2
9 5 (ii)

( )112
5 3

6
5

5
5

4
5

3
5

2
5

1
5

0 ( 0)
5

1
5

2
5

3
5
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So, we find that while multiplying a rational number by a positive integer, we
multiply the numerator by that integer, keeping the denominator unchanged.
Let us now multiply a rational number by a negative integer,

2 × ( 5)
9

 =
2 × ( 5) 10

9 9

Remember, –5 can be written as
5

1 .

So,
2 5×

9 1
 =

( )2 × 510
9 9 ×1

Similarly,
3 × ( 2)

11
 =

3× ( 2) 6
11×1 11

Based on these observations, we find that,
3 5 3 5 15

8 7 8 7 56
×

×
×

So, as we did in the case of fractions, we multiply two rational numbers in the
following way:

Step 1 Multiply the numerators of the two rational numbers.
Step 2 Multiply the denominators of the two rational numbers.

Step 3 Write the product as Result of Step 1
Result of Step 2

Thus, 3 2 3 2 6
5 7 5 7 35

×
×

×
.

        Also, 5 9 5 ( 9) 45
8 7 8 7 56

×
×

×

9.9.4  Division

We have studied reciprocals of a fraction earlier. What is the reciprocal of
2
7 ? It will be

7
2 . We extend this idea of reciprocals to rational numbers also.

The reciprocal of
2

7  will be
7
2  i.e.,

7
2 ; that of

3
5  would be

5
3 .

TRY THESE

What will be

( )3 6(i) 7? (ii) 2 ?
5 5
× ×

Find:

(i)
3 1

4 7
×

(ii)
2 –5
3 9
×

TRY THESE
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What will be the reciprocal of
6 8? and ?

11 5

Product of reciprocals

The product of a rational number  with its reciprocal is always 1.

For example,
– 4 – 4reciprocal of
9 9

⎛ ⎞× ⎜ ⎟⎝ ⎠

=
– 4 – 9 1
9 4
×

Similarly,
– 6 –13×
13 6

 = 1

Try some more examples and confirm this observation.

Savita divided a rational number
4
9  by another rational number

5
7  as,

4 5 4 7 28
9 7 9 5 45
÷ × .

She used the idea of reciprocal as done in fractions.

Arpit first divided
4
9  by

5
7  and got

28
45

.

He finally said
4 5 28
9 7 45
÷ . How did he get that?

He divided them as fractions, ignoring the negative sign and then put the negative sign
in the value so obtained.

Both of them got the same value
28

45 . Try dividing
2
3  by

5
7  both ways and see if

you get the same answer.
This shows, to divide one rational number by the other rational numbers we

multiply the rational number by the reciprocal of the other.

Thus,
6 2 6 –2 6 3 18reciprocal of
5 3 –5 3 5 2 10

⎛ ⎞÷ × ×⎜ ⎟
⎝ ⎠

TRY THESE
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EXERCISE 9.2

1. Find the sum:

(i)
5 11
4 4

⎛ ⎞+ ⎜ ⎟⎝ ⎠ (ii)
5 3
3 5
+ (iii)

9 22
10 15

+

(iv)
3 5
11 9
+ (v)

( )28
19 57

+ (vi)
2 0

3
+

(vii)
1 32 4
3 5
+

2. Find

(i)
7 17
24 36 (ii)

5 6
63 21

⎛ ⎞
⎜ ⎟⎝ ⎠ (iii)

6 7
13 15

⎛ ⎞
⎜ ⎟⎝ ⎠

(iv)
3 7

8 11 (v)
12 6
9

3. Find the product:

(i)
9 7
2 4

⎛ ⎞× ⎜ ⎟⎝ ⎠ (ii) ( )3 9
10

× (iii)
6 9

5 11
×

(iv)
3 2
7 5

⎛ ⎞× ⎜ ⎟⎝ ⎠ (v)
3 2

11 5
× (vi)

3 5
5 3
×

4. Find the value of:

(i)
2( 4)
3

÷ (ii)
3 2

5
÷ (iii) ( )4 3

5
÷

(iv)
1 3

8 4
÷ (v)

2 1
13 7

÷ (vi)
7 2

12 13
⎛ ⎞÷ ⎜ ⎟⎝ ⎠

(vii)
3 4

13 65
⎛ ⎞÷ ⎜ ⎟⎝ ⎠

TRY THESE

Find: (i)
2 7
3 8
× (ii)

– 6 5
7 7
×
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WHAT HAVE WE DISCUSSED?

1. A number that can be expressed in the form
p
q , where p and q are integers and

q ≠  0, is called a rational number. The numbers 2 3, ,3
7 8

 etc. are rational numbers.

2. All integers and fractions are rational numbers.
3. If the numerator and denominator of a rational number are multiplied or divided by a

non-zero integer, we get a rational number which is said to be equivalent to the given

rational number. For example 3 3 2 6
7 7 2 14

×
×

. So, we say 6
14

 is the equivalent

form of 3
7

. Also note that 6 6 2 3
14 14 2 7

÷
÷

.

4. Rational numbers are classified as Positive and Negative rational numbers. When the
numerator and denominator, both, are positive integers, it is a positive rational number.
When either the numerator or the denominator is a negative integer, it is a negative

rational number. For example, 3
8

 is a positive rational number whereas 8
9

 is a

negative rational number.
5. The number 0 is neither a positive nor a negative rational number.
6. A rational number is said to be in the standard form if its denominator is a positive

integer and the numerator and denominator have no common factor other than 1.

The numbers 1 2,
3 7

 etc. are in standard form.

7. There are unlimited number of rational numbers between two rational numbers.
8. Two rational numbers with the same denominator can be added by adding their

numerators, keeping the denominator same. Two rational numbers with different
denominators are added by first taking the LCM of the two denominators and
then converting both the rational numbers to their equivalent forms having the

LCM as the denominator. For example, 2 3 16 9 16 9 7
3 8 24 24 24 24

++ + . Here,

LCM of 3 and 8 is 24.
9. While subtracting two rational numbers, we add the additive inverse of the rational

number to be subtracted to the other rational number.

Thus, 7 2 7 2additive inverse of
8 3 8 3

+ = 7 ( 2) 21 ( 16) 5
8 3 24 24

++ .
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10. To multiply two rational numbers, we multiply their numerators and denominators

separately, and write the product as productof numerators .
product of denominators

11. To divide one rational number by the other non-zero rational number, we multiply the
rational number by the reciprocal of the other. Thus,

7 4 7
2 3 2
÷  × (reciprocal of 4

3
) 7 3 21×

2 4 8
.



 

10.1  INTRODUCTION

You are familiar with a number of shapes. You learnt how to draw some of them in the earlier
classes. For example, you can draw a line segment of given length, a line perpendicular to a
given line segment, an angle, an angle bisector, a circle etc.
Now, you will learn how to draw parallel lines and some types of triangles.

10.2 CONSTRUCTION OF A LINE PARALLEL TO A GIVEN LINE,
THROUGH A POINT NOT ON THE LINE

Let us begin with an activity (Fig 10.1)
(i) Take a sheet of paper. Make a fold. This

fold represents a line l.

(ii) Unfold the paper. Mark a point A on the
paper outside l.

(iii) Fold the paper perpendicular to the line such
that this perpendicular passes through A.
Name the perpendicular AN.

(iv) Make a fold perpendicular to this
perpendicular through the point A. Name
the new perpendicular line as m. Now, l ||
m. Do you see ‘why’?

Which property or properties of parallel lines
can help you here to say that lines l and m
are parallel.

C
ha

pt
er

  
1
0

Practical
Geometry

(i) (ii)

(iii) (iv)

(v)

Fig 10.1
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You can use any one of the properties regarding the transversal and parallel lines to
make this construction using ruler and compasses only.
Step 1 Take a line ‘l ’ and a point ‘A’ outside ‘l ’ [Fig10.2 (i)].

Step 2 Take any point B on l and join B to A  [Fig 10.2(ii)].

Step 3 With B as centre and a convenient radius, draw an arc cutting l  at C and BA at D
[Fig 10.2(iii)].

Step 4 Now with A as centre and the same radius as in Step 3, draw an arc EF cutting AB
at G [Fig 10.2 (iv)].



PRACTICAL GEOMETRY 195

Step 5 Place the pointed tip of the compasses at C and adjust the opening so that the
pencil tip is at D [Fig 10.2 (v)].

Step 6 With the same opening as in Step 5 and with G as centre, draw an arc cutting the
arc EF at H [Fig 10.2 (vi)].

Step 7 Now, join AH to draw a line ‘m’ [Fig 10.2 (vii)].

Note that ∠ABC and ∠BAH are alternate interior angles.
Therefore m ||�l

THINK, DISCUSS AND WRITE

1. In the above construction, can you draw any other line through A that would be also
parallel to the line l?

2. Can you slightly modify the above construction to use the idea of equal corresponding
angles instead of equal alternate angles?

Fig 10.2 (i)–(vii)
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EXERCISE 10.1

1. Draw a line, say AB, take a point C outside it. Through C, draw a line parallel to AB
using ruler and compasses only.

2. Draw a line l. Draw a perpendicular to l at any point on l. On this perpendicular
choose a point X, 4 cm away from l. Through X, draw a line m parallel to l.

3. Let l be a line and P be a point not on l. Through P, draw a line m parallel to l. Now
join P to any point Q on l. Choose any other point R on m. Through R, draw a line
parallel to PQ. Let this meet l at S. What shape do the two sets of parallel lines enclose?

10.3  CONSTRUCTION OF TRIANGLES

It is better for you to go through this section after recalling ideas
on triangles, in particular, the chapters on properties of triangles
and congruence of triangles.

You know how triangles are classified based on sides or
angles and the following important properties concerning triangles:
(i) The exterior angle of a triangle is equal in measure to the

sum of interior opposite angles.
(ii) The total measure of the three angles of a triangle is 180°.
(iii) Sum of the lengths of any two sides of a triangle is greater

than the length of the third side.
(iv) In any right-angled triangle, the square of the length of

hypotenuse is equal to the sum of the squares of the lengths of the other two
sides.

In the chapter on ‘Congruence of Triangles’, we saw that a triangle can be drawn if any
one of the following sets of measurements are given:

(i) Three sides.
(ii) Two sides and the angle between them.
(iii) Two angles and the side between them.
(iv) The hypotenuse and a leg in the case of a right-angled triangle.

We will now attempt to use these ideas to construct triangles.

10.4 CONSTRUCTING A TRIANGLE WHEN THE LENGTHS OF
ITS THREE SIDES ARE KNOWN (SSS CRITERION)

In this section, we would construct triangles when all its sides are known. We draw first a
rough sketch to give an idea of where the sides are and then begin by drawing any one of

∠3 = ∠1 + ∠2

a+ b > c

∠1 + ∠2 + ∠3= 180°

b2+ a2 = c2
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the three lines. See the following example:

EXAMPLE 1 Construct a triangle ABC, given that AB = 5 cm, BC = 6 cm and AC = 7 cm.

SOLUTION

Step 1 First, we draw a rough sketch with given measure, (This will help us in
deciding how to proceed) [Fig 10.3(i)].

Step 2 Draw a line segment BC of length 6 cm [Fig 10.3(ii)].

Step 3 From B, point A is at a distance of 5 cm. So, with B as centre, draw an arc of
radius 5 cm. (Now A will be somewhere on this arc. Our job is to find where
exactly A is) [Fig 10.3(iii)].

Step 4 From C, point A is at a distance of 7 cm. So, with C as centre, draw an arc of
radius 7 cm. (A will be somewhere on this arc, we have to fix it) [Fig 10.3(iv)].

(ii)

(i)

(iii)

(iv)

(Rough Sketch)
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Step 5 A has to be on both the arcs drawn. So, it is the point of intersection of arcs.
Mark the point of intersection of arcs as A. Join AB and AC. ΔABC is now ready
[Fig 10.3(v)].

Now, let us construct another triangle DEF such that DE = 5 cm, EF = 6 cm, and
DF = 7 cm. Take a cutout of ΔDEF and place it on ΔABC. What do we observe?

We observe that ΔDEF exactly coincides with ΔABC. (Note that the triangles have
been constructed when their three sides are given.) Thus, if three sides of one triangle are
equal to the corresponding three sides of another triangle, then the two triangles are
congruent. This is SSS congruency rule which we have learnt in our earlier chapter.

THINK, DISCUSS AND WRITE

A student attempted to draw a triangle whose rough figure is given here. He drew QR first.
Then with Q as centre, he drew an arc of 3 cm and with R as centre, he drew an arc of

2 cm. But he could not get P. What is the reason? What property of
triangle do you know in connection with this problem?

Can such a triangle exist? (Remember the property of triangles
‘The sum of any two sides of a traingle is always greater than the
third side’!)

Fig 10.3 (i) – (v)
(v)

DO THIS

Q 6 cm R

3 cm 2 cm
P

Fig 10.4 Think: Is this right?
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EXERCISE 10.2

1. Construct ΔXYZ in which XY = 4.5 cm, YZ = 5 cm and ZX = 6 cm.
2. Construct an equilateral triangle of side 5.5 cm.
3. Draw ΔPQR with PQ = 4 cm, QR = 3.5 cm and PR = 4 cm. What type of triangle

is this?
4. Construct ΔABC such that AB = 2.5 cm, BC = 6 cm and AC = 6.5 cm. Measure ∠B.

10.5 CONSTRUCTING A TRIANGLE WHEN THE LENGTHS OF TWO

SIDES AND THE MEASURE OF THE ANGLE BETWEEN THEM

ARE KNOWN. (SAS CRITERION)

Here, we have two sides given and the one angle between them. We first draw a sketch
and then draw one of the given line segments. The other steps follow. See Example 2.

EXAMPLE 2 Construct a triangle PQR, given
that PQ = 3 cm, QR = 5.5 cm
and ∠PQR = 60°.

SOLUTION

Step 1 First, we draw a rough sketch with
given measures. (This helps us
to determine the procedure in
construction) [Fig 10.5(i)].

Step 2 Draw a line segment QR of length
5.5 cm [Fig 10.5(ii)].

Step 3 At Q, draw QX making 60° with QR.
(The point P must be somewhere
on this ray of the angle)
[Fig 10.5(iii)].

Step 4 (To fix P, the distance QP has been
given).
With Q as centre, draw an arc of radius
3 cm. It cuts QX at the point P
[Fig 10.5(iv)].

(Rough Sketch)

(i)

(ii)

(iii)

(iv)
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Step 5 Join PR. ΔPQR is now obtained (Fig 10.5(v)).

Let us now construct another triangle ABC such that AB = 3 cm, BC = 5.5 cm and
m∠ABC = 60°. Take a cut out of ΔABC and place it on ΔPQR.What do we observe?
We observe that ΔABC exactly coincides with ΔPQR. Thus, if two sides and the included
angle of one triangle are equal to the corresponding two sides and the included angle of
another triangle, then the two triangles are congruent. This is SAS congruency rule which
we have learnt in our earlier chapter. (Note that the triangles have been constructed when
their two sides and the angle included between these two sides are given.)

THINK, DISCUSS AND WRITE

In the above construction, lengths of two sides and measure of one angle were given. Now
study the following problems:

In ΔABC, if AB = 3cm, AC = 5 cm and m∠C = 30°. Can we draw this triangle? We
may draw AC = 5 cm and draw ∠C of measure 30°. CA is one arm of ∠C. Point B should
be lying on the other arm of ∠C. But, observe that point B cannot be located uniquely.
Therefore, the given data is not sufficient for construction of ΔABC.

Now, try to construct ΔABC if AB = 3cm, AC = 5 cm and m∠B = 30°. What do we
observe? Again, ΔABC cannot be constructed uniquely. Thus, we can conclude that a
unique triangle can be constructed only if the lengths of its two sides and the measure of the
included angle between them is given.

EXERCISE 10.3

1. Construct ΔDEF such that DE = 5 cm, DF = 3 cm and m∠EDF = 90°.
2. Construct an isosceles triangle in which the lengths of each of its equal sides is 6.5 cm

and the angle between them is 110°.
3. Construct ΔABC with BC = 7.5 cm, AC = 5 cm and m∠C = 60°.

Fig 10.5 (i) – (v)

DO THIS

(v)
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10.6 CONSTRUCTING A TRIANGLE WHEN THE MEASURES OF

TWO OF ITS ANGLES AND THE LENGTH OF THE SIDE

INCLUDED BETWEEN THEM IS GIVEN. (ASA CRITERION)
As before, draw a rough sketch. Now, draw the given line segment. Make angles on the
two ends. See the Example 3.

EXAMPLE 3 Construct ΔXYZ if it is given that XY = 6 cm,
m∠ZXY = 30° and m∠XYZ = 100°.

SOLUTION

Step 1 Before actual construction, we draw
a rough sketch with measures marked
on it. (This is just to get an idea as
how to proceed)
[Fig 10.6(i)].

Step 2 Draw XY of length 6 cm.

Step 3 At X, draw a ray XP making an angle
of 30° with XY. By the given condition
Z must be somewhere on the XP.

Step 4 At Y, draw a ray YQ making an
angle of 100° with YX. By the
given condition, Z must be on the
ray YQ also.

Step 5 Z has to lie on both the rays XP and
YQ. So, the point of intersection of
the two rays is Z.

ΔXYZ is now completed.

(Rough Sketch)

(i)

(ii)

(iii)

(iv)

Fig 10.6 (i) – (v) (v)
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Now, draw another ΔLMN, where m∠NLM = 30°, LM = 6 cm and
m∠NML = 100°. Take a cutout of ΔLMN and place it on the ΔXYZ. We observe
that ΔLMN exactly coincides with ΔXYZ. Thus, if two angles and the included
side of one triangle are equal to the corresponding two angles and the included side
of another triangle, then the two triangles are congruent. This is ASA congruency
rule which you have learnt in the earlier chapter. (Note that the triangles have been
constructed when two angles and the included side between these angles are given.)

THINK, DISCUSS AND WRITE

In the above example, length of a side and measures of two angles were given. Now study
the following problem:

In ΔABC, if AC = 7 cm, m∠A = 60° and m∠B = 50°, can you draw the triangle?
(Angle-sum property of a triangle may help you!)

EXERCISE 10.4

1. Construct ΔABC, given m∠A = 60°, m∠B = 30° and AB = 5.8 cm.
2. Construct ΔPQR if PQ = 5 cm, m∠PQR = 105° and m∠QRP = 40°.

(Hint: Recall angle-sum property of a triangle).
3. Examine whether you can construct ΔDEF such that EF = 7.2 cm, m∠E = 110° and

m∠F = 80°. Justify your answer.

10.7 CONSTRUCTING A RIGHT-ANGLED TRIANGLE WHEN THE

LENGTH OF ONE LEG AND ITS HYPOTENUSE ARE GIVEN

(RHS CRITERION)
Here it is easy to make the rough sketch. Now, draw a line as per the given side.
Make a right angle on one of its points. Use compasses to mark length of side and
hypotenuse of the triangle. Complete the triangle. Consider the following:

EXAMPLE 4 Construct ΔLMN, right-angled at M, given that LN = 5 cm and
MN = 3 cm.

SOLUTION

Step 1 Draw a rough sketch and mark the measures. Remember to mark the
right angle [Fig 10.7(i)].

Step 2 Draw MN of length 3 cm.
[Fig 10.7(ii)].

DO THIS

(Rough Sketch)

(i)

(ii)
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Step 3 At M, draw MX ⊥ MN. (L should be
somewhere on this perpendicular)
[Fig 10.7(iii)].

Step 4 With N as centre, draw an arc of radius 5 cm.
(L must be on this arc, since it is at a distance
of 5 cm from N) [Fig 10.7(iv)].

Step 5 L has to be on the perpendicular line MX
as well as on the arc drawn with centre N.
Therefore, L is the meeting point of these
two.

ΔLMN is now obtained.
[Fig 10.7 (v)]

EXERCISE 10.5

1. Construct the right angled ΔPQR, where m∠Q = 90°, QR = 8cm and
PR = 10 cm.

2. Construct a right-angled triangle whose hypotenuse is 6 cm long and one of the legs
is 4 cm long.

3. Construct an isosceles right-angled triangle ABC, where m∠ACB = 90° and
AC = 6 cm.

(iii)

(iv)

(v)

M N

Fig 10.7 (i) – (v)
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Miscellaneous questions
Below are given the measures of certain sides and angles of triangles. Identify those

which cannot be constructed and, say why you cannot construct them. Construct rest of
the triangles.

Triangle Given measurements
1. ΔABC m∠A = 85°; m∠B = 115°; AB = 5 cm.
2. ΔPQR m∠Q = 30°; m∠R = 60°; QR = 4.7 cm.
3. ΔABC m∠A = 70°; m∠B = 50°; AC = 3 cm.
4. ΔLMN m∠L = 60°; m∠N = 120°; LM = 5 cm.
5. ΔABC BC = 2 cm; AB = 4 cm; AC = 2 cm.
6. ΔPQR PQ = 3.5 cm.; QR = 4 cm.; PR = 3.5 cm.
7. ΔXYZ XY = 3 cm; YZ = 4 cm; XZ = 5 cm
8. ΔDEF DE = 4.5cm; EF = 5.5cm; DF = 4 cm.

WHAT HAVE WE DISCUSSED?
In this Chapter, we looked into the methods of some ruler and compassesconstructions.

1. Given a line l and a point not on it, we used the idea of ‘equal alternate angles’ in a
transversal diagram to draw a line parallel to l.
We could also have used the idea of ‘equal corresponding angles’ to do the
construction.

2. We studied the method of drawing a triangle, using indirectly the concept of congruence
of triangles.

The following cases were discussed:
(i) SSS: Given the three side lengths of a triangle.

(ii) SAS: Given the lengths of any two sides and the measure of the
angle between these sides.

(iii) ASA: Given the measures of two angles and the length of side
included between them.

(iv) RHS: Given the length of hypotenuse of a right-angled triangle and
the length of one of its legs.



  

11.1  INTRODUCTION

In Class VI, you have already learnt perimeters of plane figures and areas of squares and
rectangles. Perimeter is the distance around a closed figure while area is the part of plane or
region occupied by the closed figure.
In this class, you will learn about perimeters and areas of a few more plane figures.

11.2  SQUARES AND RECTANGLES

Ayush and Deeksha made pictures. Ayush made his picture on a rectangular sheet of length
60 cm and breadth 20 cm while Deeksha made hers on a rectangular sheet of length 40 cm
and breadth 35 cm. Both these pictures have to be separately framed and laminated.
Who has to pay more for framing, if the cost of framing is Rs 3.00 per cm?
If the cost of lamination is Rs 2.00 per cm2, who has to pay more for lamination?

For finding the cost of framing, we need to find perimeter and then multiply it by the rate
for framing. For finding the cost of lamination, we need to find area and then multiply it by the
rate for lamination.

What would you need to find, area or perimeter, to answer the following?
1. How much space does a blackboard occupy?
2. What is the length of a wire required to fence a rectangular flower bed?
3. What distance would you cover by taking two rounds of a triangular park?
4. How much plastic sheet do you need to cover a rectangular swimming pool?

Do you remember,
Perimeter of a regular polygon = number of sides × length of one side

Perimeter of a square = 4 × side

C
ha

pt
er

  
1
1

Perimeter and
Area

TRY THESE
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Perimeter of a rectangle = 2 × (l + b)
Area of a rectangle = l × b, Area of a square = side × side

Tanya needed a square of side 4 cm for completing a collage. She had a
rectangular sheet of length 28 cm and breadth 21 cm (Fig 11. 1). She cuts off
a square of side 4 cm from the rectangular sheet. Her friend saw the remaining
sheet (Fig 11.2) and asked Tanya, “Has the perimeter of the sheet  increased
or decreased now?”
Has the total length of side AD increased after cutting off the square?
Has the area increased or decreased?
Tanya cuts off one more square from the opposite side (Fig 11.3).
Will the perimeter of the remaining sheet increase further?
Will the area increase or decrease further?
So, what can we infer from this?
It is clear that the increase of perimeter need not lead to increase in area.

1. Experiment with several such shapes and cut-outs. You might find it useful to draw
these shapes on squared sheets and compute their areas and perimeters.
You have seen that increase in perimeter does not mean that area will also increase.

2. Give two examples where the area increases as the perimeter increases.
3. Give two examples where the area does not increase when perimeter increases.

EXAMPLE 1 A door-frame of dimensions 3 m × 2 m is fixed on the wall of dimension
10 m × 10 m. Find the total labour charges for painting the wall if the
labour charges for painting 1 m2 of the wall is Rs 2.50.

SOLUTION Painting of the wall has to be done excluding the area of the door.
Area of the door = l × b

= 3 × 2 m2  = 6 m2

Area of wall including door = side × side = 10 m × 10 m = 100 m2

Area of wall excluding door = (100 − 6) m2 = 94 m2

Total labour charges for painting the wall = Rs 2.50 × 94 = Rs 235

EXAMPLE 2 The area of a rectangular sheet is 500 cm2. If the length of the sheet is
25 cm, what is its width? Also find the perimeter of the rectangular sheet.

SOLUTION Area of the rectangular sheet  = 500 cm2

Length (l) = 25 cm

Fig 11.2

B

A D

CFig 11.3

A D

B C

Fig 11.1

TRY THESE

Fig 11. 4
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Area of the rectangle = l × b  (where  b = width of the sheet)

Therefore, width b =
Area

l
 = 

500

25
 = 20 cm

Perimeter of sheet = 2 × (l�+ b) = 2 × (25 + 20) cm = 90 cm
So, the width of the rectangular sheet is 20 cm and its perimeter is 90 cm.

EXAMPLE 3Anu wants to fence the garden in front of her
house (Fig 11.5), on three sides with lengths
20 m, 12 m and 12 m. Find the cost of fencing
at the rate of Rs 150 per metre.

SOLUTION The length of the fence required is the perimeter
of the garden (excluding one side) which is
equal to 20 m + 12 m + 12 m, i.e.,  44 m.
Cost of fencing = Rs 150 × 44 = Rs 6,600.

EXAMPLE 4A wire is in the shape of a square of side 10 cm. If the wire is
rebent into a rectangle of length 12 cm, find its breadth. Which encloses
more area, the square or the rectangle?

SOLUTION Side of the square = 10 cm
Length of the wire = Perimeter of the square = 4 × side = 4 × 10 cm

= 40 cm
Length of the rectangle, l�= 12 cm. Let b be the breadth of the rectangle.

Perimeter of rectangle = Length of wire = 40 cm
Perimeter of the rectangle = 2 (l + b)

Thus, 40 = 2 (12 + b)

or
40

2
 = 12 + b

Therefore, b = 20 − 12 = 8 cm
The breadth of the rectangle is 8 cm.

Area of the square = (side)2

= 10 cm × 10 cm = 100 cm2

Area of the rectangle = l × b
= 12 cm × 8 cm = 96 cm2

So, the square encloses more area even though its perimeter is the same as that of the rectangle.

EXAMPLE 5The area of a square and a rectangle are equal. If the side of the square is
40 cm and the breadth of the rectangle is 25 cm, find the length of the
rectangle. Also, find the perimeter of the rectangle.

SOLUTION Area of square = (side)2

= 40 cm × 40 cm = 1600 cm2

Fig 11.5
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It is given that,
The area of the rectangle = The area of the square

Area of the rectangle = 1600 cm2, breadth of the rectangle = 25 cm.
Area of the rectangle = l × b

or 1600 = l × 25

or
1600

25
 = l or l�= 64 cm

So, the length of rectangle is 64 cm.
Perimeter of the rectangle = 2 (l + b) = 2 (64 + 25) cm

= 2 × 89 cm = 178 cm
So, the perimeter of the rectangle is 178 cm even though its area is the same as that of

the square.

EXERCISE 11.1

1. The length and the breadth of a rectangular piece of land are 500 m and 300 m
respectively. Find

(i) its area (ii) the cost of the land, if 1 m2 of the land costs Rs 10,000.

2. Find the area of a square park whose perimeter is 320 m.

3. Find the breadth of a rectangular plot of land, if its area is 440 m2 and the length is
22 m. Also find its perimeter.

4. The perimeter of a rectangular sheet is 100 cm. If the length is 35 cm, find its breadth.
Also find the area.

5. The area of a square park is the same as of a rectangular park. If the side of the
square park is 60 m and the length of the rectangular park is 90 m, find the breadth of
the rectangular park.

6. A wire is in the shape of a rectangle. Its length is 40 cm and breadth is 22 cm. If the
same wire is rebent in the shape of a square, what will be the measure of each side.

Also find which shape encloses more area?

7. The perimeter of a rectangle is 130 cm. If the breadth of the rectangle is
30 cm, find its length. Also find the area of the rectangle.

8. A door of length 2 m and breadth  1m is fitted in a wall. The length of the
wall is 4.5 m and the breadth is 3.6 m (Fig11.6). Find the cost of white
washing the wall, if the rate of white washing the wall is Rs 20 per m2.Fig 11.6
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11.2.1  Triangles as Parts of Rectangles
Take a rectangle of sides 8 cm and 5 cm. Cut the rectangle along its diagonal to get two
triangles (Fig 11.7).
Superpose one triangle on the other.
Are they exactly the same in size?
Can you say that both the triangles are equal in area?
Are the triangles congruent also?
What is the area of each of these triangles?

You were find that sum of the areas of the two triangles is the same as the area of the
rectangle. Both the triangles are equal in area.

The area of each triangle =
1

2
(Area of the rectangle)

=
1

2
× ×( )l b  = 

1

2
8 5( )×

 =
40

2
20 2= cm

Take a square of side 5 cm and divide it into 4 triangles as shown (Fig 11.8).
Are the four triangles equal in area?
Are they congruent to each other? (Superpose the triangles to check).
What is the area of each triangle?

The area of each triangle =
1

4
Area of the square( )

=
1

4

1

4
5 2( ( )side) cm2 2=  = 6.25 cm2

11.2.2  Generalising for other Congruent Parts of Rectangles
A rectangle of length 6 cm and breadth 4 cm is divided into two
parts as shown in the Fig (11.9). Trace the rectangle on another
paper and cut off the rectangle along EF to divide it into two parts.

Superpose one part on the other, see if they match. (You may
have to rotate them).
Are they congurent? The two parts are congruent to each other. So,
the area of one part is equal to the area of the other part.

Therefore, the area of each congruent part = 
1

2
(The area of the rectangle)

= 
1

2
6 4× ×( )cm2  = 12 cm2

Fig 11.7

Fig 11.8

Fig 11.9
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Each of the following rectangles of length 6 cm and breadth 4 cm is composed of
congruent polygons. Find the area of each polygon.

11.3  AREA OF A PARALLELOGRAM

We come across many shapes other than squares and rectangles.
How will you find the area of a land which is a parallelogram in shape?
Let us find a method to get the area of a parallelogram.
Can a parallelogram be converted into a rectangle of equal area?

Draw a parallelogram on a graph paper as shown in Fig 11.10(i). Cut out the
parallelogram. Draw a line from one vertex of the parallelogram perpendicular to the
opposite side [Fig 11.10(ii)]. Cut out the triangle. Move the triangle to the other side of
the parallelogram.

TRY THESE

(i) (ii) (iii)
Fig 11.10

What shape do you get? You get a rectangle.
Is the area of the parallelogram equal to the area of the rectangle formed?
Yes, area of the parallelogram = area of the rectangle formed

What are the length and the breadth of the rectangle?
We find that the length of the rectangle formed is equal to the

base of the parallelogram and the breadth of the rectangle is equal to
the height of the parallelogram (Fig 11.11).
Now, Area of parallelogram = Area of rectangle

= length × breadth = l × b
But the length l and breadth b of the  rectangle are exactly the

base b and the height h, respectively of the parallelogram.
Thus, the area of parallelogram = base × height = b × h.Fig 11.11
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Any side of a parallelogram can be chosen as base of the
parallelogram. The perpendicular dropped on that side from the opposite
vertex is known as height (altitude). In the parallelogram ABCD, DE is

perpendicular to AB.  Here AB is the
base and DE is the height of the
parallelogram.

In this parallelogram ABCD, BF is the
perpendicular to opposite side AD. Here AD is the
base and BF is the height.

Consider the following parallelograms (Fig 11.12).

base

D
C

A B

height

F

D C

A E
base

B

height

Find the areas of the parallelograms by counting the squares enclosed within the figures
and also find the perimeters by measuring the sides.
Complete the following table:

Parallelogram Base Height Area Perimeter
(a) 5 units 3 units 5 × 3 = 15 sq units
(b)
(c)
(d)
(e)
(f)

(g)

You will find that all these parallelograms have equal areas but different perimeters. Now,

Fig 11.12
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consider the following parallelograms with sides 7 cm and 5 cm (Fig 11.13).

Fig 11.13
Find the perimeter and area of each of these parallelograms. Analyse your results.
You will find that these parallelograms have different areas but equal perimeters.

This shows that to find the area of a parallelogram, you need to know only the base
and the corresponding height of the parallelogram.

11.4  AREA OF A TRIANGLE

A gardener wants to know the cost of covering the whole of a triangular garden with
grass.

In this case we need to know the area of the triangular region.
Let us find a method to get the area of a triangle.

TRY THESE

Find the area of following parallelograms:

(i) (ii)

(iii) In a parallelogram ABCD, AB = 7.2 cm and the perpendicular from C on AB is 4.5 cm.
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Draw a scalene triangle on a piece of paper. Cut out the triangle.
Place this triangle on another piece of paper and cut out another
triangle of the same size.
So now you have two scalene triangles of the same size.
Are both the triangles congruent?

Superpose one triangle on the other so that they match.
You may have to rotate one of the two triangles.

Now place both the triangles such that their corresponding
sides are joined (as shown in Fig 11.14).
Is the figure thus formed a parallelogram?
Compare the area of each triangle to the area of the
parallelogram.

Compare the base and height of the triangles with the base
and height of the parallelogram.

You will find that the sum of the areas of both the triangles
is equal to the area of the parallelogram. The base and the
height of the triangle are the same as the base and the height of
the parallelogram, respectively.

Area of each triangle =
1

2
(Area of parallelogram)

=
1

2
(base × height) (Since area of a parallelogram = base × height)

=
1

2
( )b h×  (or 

1

2
bh , in short)

1. Try the above activity with different types of triangles.
2. Take different parallelograms. Divide each of the parallelograms into two triangles by

cutting along any of its diagonals. Are the triangles congruent?

In the figure (Fig 11.15) all the triangles are on the base AB = 6 cm.
What can you say about the height of each of the triangles
corresponding to the base AB?
Can we say all the triangles are equal in area? Yes.
Are the triangles congruent also? No.

We conclude that all the congruent triangles are equal in
area but the triangles equal in area need not be congruent.

Fig 11.14

D

E

F

A

B

C

TRY THESE

Fig 11.15

6 cm
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Consider the obtuse-angled triangle ABC of base 6 cm (Fig 11.16).
Its height AD which is perpendicular from the vertex A is outside the
triangle.
Can you find the area of the triangle?

EXAMPLE 6 One of the sides and the corresponding height of a
parallelogram are 4 cm and 3 cm respectively. Find the
area of the parallelogram (Fig 11.17).

SOLUTION Given that length of base (b) = 4 cm, height (h) = 3 cm
Area of the parallelogram = b × h

= 4 cm × 3 cm = 12 cm2

EXAMPLE 7 Find the height ‘x’ if the area of the
parallelogram is 24 cm2 and the base is
4 cm.

SOLUTION  Area of parallelogram = b × h

Therefore, 24 = 4 × x (Fig 11.18)

or
24

4
 = x or x = 6 cm

So, the height of the parallelogram is 6 cm.

EXAMPLE 8 The two sides of the parallelogram ABCD are 6 cm and 4 cm. The height
corresponding to the base CD is 3 cm (Fig 11.19). Find the

(i) area of the parallelogram. (ii) the height corresponding to the base AD.

SOLUTION

(i) Area of parallelogram = b × h

= 6 cm × 3 cm = 18 cm2

(ii) base (b) = 4 cm,  height = x (say),

 Area = 18 cm2

Area of parallelogram = b × x

18 = 4 × x

18

4
 = x

Therefore, x = 4.5 cm
Thus, the height corresponding to base AD is 4.5 cm.

A

D C

4
cm

6 cmB

Fig 11.16

Fig 11.17

Fig 11.18

A B

D C

x

4 c
m

6 cm

3 
cm

Fig 11.19
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EXAMPLE 9 Find the area of the following triangles (Fig 11.20).

(i) Fig 11.20 (ii)
SOLUTION

(i) Area of triangle = 
1

2
bh = 

1

2
× QR × PS

= 
1

2
4 2× ×cm cm  = 4 cm2

(ii) Area of triangle = 
1

2
bh = 

1

2
 × MN × LO

= 
1

2
3 2× ×cm cm = 3 cm2

EXAMPLE 10 Find BC, if the area of the triangle ABC is 36 cm2 and the height AD is
3 cm (Fig 11.21).

SOLUTION Height = 3 cm, Area = 36 cm2

Area of the triangle ABC =
1

2
bh

or 36 =
1

2
3× ×b  i.e., b = 

36 2

3

×
 = 24 cm

So, BC = 24 cm

EXAMPLE 11 In ΔPQR, PR = 8 cm, QR = 4 cm and PL = 5 cm (Fig 11.22). Find:
(i) the area of the ΔPQR (ii) QM

SOLUTION

(i) QR = base = 4 cm, PL = height = 5 cm

Area of the triangle PQR =
1

2
bh

=
1

2
4 5× ×cm cm  = 10 cm2

Fig 11.21

Fig 11.22

S
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(ii) PR = base = 8 cm QM = height = ? Area = 10 cm2

Area of triangle =
1

2
× ×b h i.e., 10 = 

1

2
8× × h

h =
10

4
 = 

5

2
= 2.5. So, QM = 2.5 cm

EXERCISE 11.2

1. Find the area of each of the following parallelograms:

2. Find the area of each of the following triangles:

3. Find the missing values:

(a) (b) (c)

(d) (e)

(a) (b) (c) (d)

S.No.       Base Height Area of the Parallelogram

a.         20 cm 246 cm2

b.              15 cm 154.5 cm2

c.              8.4 cm 48.72 cm2

d.         15.6 cm 16.38 cm2
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4. Find the missing values:

5. PQRS is a parallelogram (Fig 11.23). QM is the height from Q
to SR and QN is the height from Q to PS. If SR = 12 cm and
QM = 7.6 cm. Find:
(a) the area of the parallegram PQRS (b) QN, if PS = 8 cm

6. DL and BM are the heights on sides AB and AD respectively of
parallelogram ABCD (Fig 11.24). If the area of the parallelogram
is 1470 cm2, AB = 35 cm and AD = 49 cm, find the length of BM
and DL.

7. ΔABC is right angled at A (Fig 11.25). AD is perpendicular to BC. If AB = 5 cm,
BC = 13 cm and AC = 12 cm, Find the area of ΔABC. Also find the length of
AD.

8. ΔABC is isosceles with AB = AC = 7.5 cm and BC = 9 cm (Fig 11.26). The height
AD from A to BC, is 6 cm. Find the area of ΔABC. What will be the height from C
to AB i.e., CE?

11.5  CIRCLES

A racing track is semi-circular at both ends (Fig 11.27).
Can  you find the distance covered by an athlete if he takes two rounds

of a racing track? We need to find a method to find the distances around
when a shape is circular.

11.5.1  Circumference of a Circle
Tanya cut different cards, in curved shape from a cardboard. She wants to put lace around

Base Height Area of Triangle

15 cm 87 cm2

31.4 mm 1256 mm2

22 cm 170.5 cm2

Fig 11.23

Fig 11.24

Fig 11.25 Fig 11.26

Fig 11.27



MATHEMATICS218

to decorate these cards. What length of the lace does she require for each? (Fig 11.28)

(a) (b) (c)
Fig 11.28

You cannot measure the curves with the help of a ruler, as these figures are not “straight”.
What can you do?

Here is a way to find the length of lace required for shape in Fig 11.28(a). Mark a
point on the edge of the card and place the card on the table. Mark the position of the
point on the table also (Fig 11. 29).

Now roll the circular card on the table along a straight line till
the marked point again touches the table. Measure the distance
along the line. This is the length of the lace required
(Fig 11.30). It is also the distance along the edge of the card
from the marked point back to the marked point.

You can also find the distance by putting a string on the edge
of the circular object and taking all round it.

The distance around a circular region is known as its circumference.

Take a bottle cap, a bangle or any other circular object and find the circumference.
Now, can you find the distance covered by the athlete on the track by this method?

Still, it will be very difficult to find the distance around the track or any other circular
object by measuring through string. Moreover, the measurement will not be accurate.

So, we need some formula for this, as we have for rectilinear figures or shapes.
Let us see if there is any relationship between the diameter and the circumference of

the circles.

Consider the following table: Draw six circles of different radii and find their circumference
by using string. Also find the ratio of the circumference to the diameter.

Circle Radius Diameter Circumference Ratio of Circumference
to Diameter

1. 3.5 cm 7.0 cm 22.0 cm 22

7
=  3.14

Fig 11.29

Fig 11.30

DO THIS
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2. 7.0 cm 14.0 cm 44.0 cm 44

14
= 3.14

3. 10.5 cm 21.0 cm 66.0 cm 66

21
= 3.14

4. 21.0 cm 42.0 cm 132.0 cm
132

42
= 3.14

5. 5.0 cm 10.0 cm 32.0 cm
32

10
= 3.2

6. 15.0 cm 30.0 cm 94.0 cm
94

30
= 3.13

What do you infer from the above table? Is this ratio approximately the same? Yes.
Can you say that the circumference of a circle is always more than three times its

diameter? Yes.

This ratio is a constant and is denoted by π (pi). Its approximate value is 
22
7  or 3.14.

So, we can say that  
C

d
= π , where ‘C’ represents circumference of the circle and ‘d ’

its diameter.
or C = πd
We know that diameter (d) of a circle is twice the radius (r) i.e., d = 2r
So, C = πd = π × 2r or   C = 2πr.

In Fig 11.31,
 (a) Which square has the larger perimeter?
 (b) Which is larger, perimeter of smaller square or the

circumference of the circle?

Take one each of quarter plate and half plate. Roll once each of these on
a table-top. Which plate covers more distance in one complete revolution?
Which plate will take less number of revolutions to cover the length of the
table-top?

DO THIS

TRY THESE

Fig 11.31
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EXAMPLE 12 What is the circumference of a circle of diameter 10 cm (Take π = 3.14)?

SOLUTION Diameter of the circle (d) = 10 cm
Circumference of circle = πd

= 3.14 × 10 cm = 31.4 cm
So, the circumference of the circle of diameter 10 cm is 31.4 cm.

EXAMPLE 13  What is the circumference of a circular disc of radius 14 cm?

Use π =⎛
⎝⎜

⎞
⎠⎟

22

7

SOLUTION Radius of circular disc (r) = 14 cm
Circumference of disc = 2πr

= 2
22

7
14× ×  cm = 88 cm

So, the circumference of the circular disc is 88 cm.

EXAMPLE 14 The radius of a circular pipe is 10 cm. What length of a tape is required
to wrap once around the pipe (π = 3.14)?

SOLUTION Radius of the pipe (r) = 10 cm
Length of tape required is equal to the circumference of the pipe.

Circumference of the pipe = 2πr
= 2 × 3.14 × 10 cm
= 62.8 cm

Therefore, length of the tape needed to wrap once around the pipe is 62.8 cm.

EXAMPLE 15 Find the perimeter of the given shape (Fig 11.32) (Take π = 
22
7 ).

SOLUTION In this shape we need to find the circumference of semicircles on each side
of the square. Do you need to find the perimeter of the square also? No.
The outer boundary, of this figure is made up of semicircles. Diameter of
each semicircle is 14 cm.

We know that:
Circumference of the circle = πd

Circumference of the  semicircle =
1

2
πd

=
1

2

22

7
14cm  = 22 cm

Circumference of each of the semicircles is 22 cm
Therefore, perimeter of the given figure = 4 × 22 cm  = 88 cm

14 cm

14
 cm

Fig 11.32



PERIMETER AND AREA 221

EXAMPLE 16 Sudhanshu divides a circular disc of radius 7 cm in two equal parts.

What is the perimeter of each semicircular shape disc? (Use π = 
22
7 )

SOLUTION To find the perimeter of the semicircular disc (Fig 11.33), we need to find
(i) Circumference of semicircular shape (ii) Diameter

Given that radius (r) = 7 cm. We know that the circumference of circle = 2πr

So, the circumference of the semicircle =
1

2
2 r  = πr

=
22

7
7cm  = 22 cm

So, the diameter of the circle = 2r = 2 × 7 cm = 14 cm
Thus, perimeter of each semicircular disc = 22 cm + 14 cm = 36 cm

11.5.2  Area of Circle
Consider the following:
� A farmer dug a flower bed of radius 7 m at the centre of a field. He needs to

purchase fertiliser. If 1 kg of fertiliser is required for 1 square metre area,
how much  fertiliser should he purchase?

� What will be the cost of polishing a circular table-top of radius 2 m at the rate
of Rs 10 per square metre?

Can you tell what we need to find in such cases, Area or Perimeter? In such
cases we need to find the area of the circular region. Let us find the area of a circle, using
graph paper.

Draw a circle of radius 4 cm on a graph paper (Fig 11.34). Find the area by counting
the number of squares enclosed.
As the edges are not straight, we get a rough estimate of the area of circle by this method.
There is another way of finding the area of a circle.

Draw a circle and shade one half of the circle [Fig 11.35(i)]. Now fold the circle into
eighths and cut along the folds [Fig 11.35(ii)].

Fig 11.33

Fig 11.34

Arrange the separate pieces as shown, in Fig 11.36,  which is roughly a parallelogram.
The more sectors we have, the nearer we reach an appropriate parallelogram

(Fig 11.37).

Fig 11.35
(i) (ii)

Fig 11.36
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As done above if we divide the circle in 64 sectors, and arrange these sectors. It
gives nearly a rectangle (Fig 11.37).

Fig 11.37
What is the breadth of this rectangle? The breadth of this rectangle is the radius of the

circle, i.e., ‘r’.
As the whole circle is divided into 64 sectors and on each side we have 32 sectors, the

length of the rectangle is the length of the 32 sectors, which is half of the circumference.
(Fig 11.37)
 Area of the circle = Area of rectangle thus formed = l × b

= (Half of circumference) × radius  = 
1

2
2pr

⎛
⎝⎜

⎞
⎠⎟ × r = πr2

So, the area of the circle = πr2

Draw circles of different radii on a graph paper. Find the area by counting the
number of squares. Also find the area by using the formula. Compare the two answers.

EXAMPLE 17 Find the area of a circle of radius 30 cm (use π = 3.14).

SOLUTION Radius, r = 30 cm
Area of the circle = πr2 = 3.14 × 302 = 2,826 cm2

EXAMPLE 18 Diameter of a circular garden is 9.8 m. Find its area.

SOLUTION Diameter, d = 9.8 m. Therefore, radius r = 9.8 ÷ 2 = 4.9 m

Area of the circle = πr2 = 
22

7
4 9 2× ( . ) m2 = 

22

7
4 9 4 9× ×. . m2 = 75.46 m2

EXAMPLE 19 The adjoining figure shows two circles with the
same centre. The radius of the larger circle is
10 cm and the radius of the smaller circle is 4 cm.

Find: (a) the area of the larger circle
(b) the area of the smaller circle
(c) the shaded area between the two circles. (π = 3.14)

TRY THESE



PERIMETER AND AREA 223

SOLUTION

(a) Radius of the larger circle = 10 cm
So, area of the larger circle = πr2

= 3.14 × 10 × 10 = 314 cm2

(b) Radius of the smaller circle = 4 cm
Area of the smaller circle = πr2

= 3.14 × 4 × 4 = 50.24 cm2

(c) Area of the shaded region = (314 – 50.24) cm2 = 263.76 cm2

EXERCISE 11.3

1. Find the circumference of the circles with the following radius: (Take π = 
22
7 )

(a) 14 cm (b) 28 mm (c) 21 cm
2. Find the area of the following circles, given that:

(a) radius = 14 mm (Take π = 
22
7 ) (b) diameter = 49 m

(c) radius = 5 cm
3. If the circumference of a circular sheet is 154 m, find its radius. Also find the area of

the sheet. (Take π = 
22
7 )

4. A gardener wants to fence a circular garden of diameter 21m. Find the length of the
rope he needs to purchase, if he makes 2 rounds of fence. Also find the costs of the

rope, if it cost Rs 4 per meter. (Take π = 
22
7 )

5. From a circular sheet of radius 4 cm, a circle of radius 3 cm is removed. Find the area
of the remaining sheet. (Take π = 3.14)

6. Saima wants to put a lace on the edge of a circular table cover of diameter 1.5 m.
Find the length of the lace required and also find its cost if one meter of the lace costs

Rs 15. (Take π = 3.14)
7. Find the perimeter of the adjoining figure, which is a semicircle including

its diameter.
8. Find the cost of polishing a circular table-top of diameter 1.6 m, if

the rate of polishing is Rs 15/m2. (Take π = 3.14)
9. Shazli took a wire of length 44 cm and bent it into the shape of a circle.

Find the radius of that circle. Also find its area. If the same wire is bent into the shape
of a square, what will be the length of each of its sides? Which figure encloses more

area, the circle or the square? (Take π = 
22
7 )

10. From a circular card sheet of radius 14 cm, two circles of radius 3.5 cm and a
rectangle of length 3 cm and breadth 1cm are removed. (as shown in the adjoining

figure). Find the area of the remaining sheet. (Take π = 
22
7 )
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11. A circle of radius 2 cm is cut out from a square piece of an aluminium sheet of side
6 cm. What is the area of the left over aluminium sheet? (Take π = 3.14)

12. The circumference of a circle is 31.4 cm. Find the radius and the area of the circle?
(Take π = 3.14)

13. A circular flower bed is surrounded by a path  4 m wide. The diameter of the flower
bed is 66 m. What is the area of this path? (π = 3.14)

14. A circular flower garden has an area of 314 m2. A sprinkler at the centre of the
garden can cover an area that has a radius of 12 m. Will the sprinkler water the entire
garden? (Take π = 3.14)

15. Find the circumference of the inner and the outer circles, shown in the adjoining figure?
(Take π = 3.14)

16. How many times a wheel of radius 28 cm must rotate to go 352 m? (Take π = 
22
7 )

17. The minute hand of a circular clock is 15 cm long. How far does the tip of the minute
hand move in 1 hour. (Take π = 3.14)

11.6  CONVERSION OF UNITS

We know that 1 cm = 10 mm. Can you tell 1 cm2 is equal to how many mm2? Let us explore
similar questions and find how to convert units while measuring areas to another unit.
Draw a square of side 1cm (Fig 11.38), on a graph sheet.
You find that this square of side 1 cm will be divided into 100 squares, each of side 1 mm.
Area of a square of side 1cm = Area of 100 squares, of each side 1mm.
Therefore, 1 cm2 = 100 × 1 mm2

or 1 cm2 = 100 mm2

Similarly, 1 m2 = 1 m × 1 m
 = 100 cm × 100 cm   (As 1 m = 100 cm)
= 10000 cm2

Now can you convert 1 km2 into m2?
In the metric system, areas of land are also measured in hectares [written “ha” in short].
A square of side 100 m has an area of 1 hectare.
So, 1 hectare = 100 × 100 m2 = 10,000 m2

When we convert a unit of area to a smaller unit, the resulting number of units will
be bigger.
For example, 1000 cm2 = 1000 × 100 mm2

= 100000 mm2

66m

Fig 11.38
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But when we convert a unit of area to a larger unit, the number of larger units will be
smaller.

For example, 1000 cm2 =
1000

10000
m2 = 0.1 m2

Convert the following:
(i) 50 cm2 in mm2 (ii) 2  ha in m2 (iii) 10 m2 in cm2 (iv) 1000 cm2 in m2

11.7  APPLICATIONS

You must have observed that quite often, in gardens or parks, some space is left all around
in the form of path or in between as cross paths. A framed picture has some space left all
around it.

We need to find the areas of such pathways or borders when
we want to find the cost of making them.

EXAMPLE 20 A rectangular park is 45 m long and 30 m wide.
A path 2.5 m wide is constructed outside the
park. Find the area of  the path.

SOLUTION Let ABCD represent the rectangular park and
the shaded region represent the path 2.5 m wide.

To find the area of the path, we need to find (Area of rectangle
PQRS – Area of rectangle ABCD).
We have, PQ = (45 + 2.5 + 2.5) m = 50 m

PS = (30 + 2.5 + 2.5) m = 35 m
Area of the rectangle ABCD = l�× b  = 45 × 30 m2 = 1350 m2

Area of the rectangle PQRS = l�× b = 50 × 35 m2 = 1750 m2

Area of the path = Area of the rectangle PQRS − Area of the rectangle ABCD
= (1750 − 1350) m2 = 400 m2

EXAMPLE 21 A path 5 m wide runs along inside a square park of side
100 m. Find the area of the path. Also find the cost of
cementing it at the rate of  Rs 250 per 10 m2.

SOLUTION Let ABCD be the square park of side 100 m. The
shaded region represents the path 5 m wide.

PQ = 100 – (5 + 5) = 90 m
Area of square ABCD = (side)2  = (100)2 m2  = 10000 m2

Area of square PQRS = (side)2 = (90)2 m2 = 8100 m2

Therefore, area of the path = (10000 − 8100) m2 = 1900 m2

Cost of cementing 10 m2 = Rs 250

TRY THESE

P Q

S R

A B45 m

30 m

D C

2.5 m

2.
5 

m

A B

D C

P Q

S R

100
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Therefore, cost of cementing 1 m2 = Rs 
250

10

So, cost of cementing 1900 m2 = Rs 
250

10
1900× = Rs 47,500

EXAMPLE 22 Two cross roads, each of width 5 m, run at right angles through the centre
of a rectangular park of  length 70 m and breadth 45 m and parallel to its
sides. Find the area of the roads. Also find the cost of constructing the
roads at the rate of  Rs 105 per m2.

SOLUTION Area of the cross roads is the area of shaded portion, i.e., the area of
the rectangle PQRS and the area of the rectangle EFGH. But while

doing this, the area of the square KLMN is taken twice,
which is to be subtracted.
Now, PQ = 5 m and PS = 45 m

EH = 5 m and  EF = 70 m
KL = 5 m and KN = 5 m

Area of the path = Area of the rectangle PQRS area of
the rectangle EFGH – Area of the square KLMN

= PS × PQ + EF × EH – KL × KN
= (45 × 5 + 70 × 5 − 5 × 5) m2

= (225 + 350 − 25) m2  = 550 m2

Cost of constructing the path = Rs 105 × 550 = Rs 57,750

EXERCISE 11.4
1. A garden is 90 m long and 75 m broad. A path 5 m wide is to be built outside and

around it. Find the area of the path. Also find the area of the garden in hectare.
2. A 3 m wide path runs outside and around a rectangular park of length 125 m and

breadth 65 m. Find the area of the path.
3. A picture is painted on a cardboard 8 cm long and 5 cm wide such that there is a

margin of 1.5 cm along each of its sides. Find the total area of the margin.
4. A verandah of width 2.25 m is constructed all along outside a room which is 5.5 m

long and 4 m wide. Find:
(i) the area of the verandah.
(ii) the cost of cementing the floor of the verandah at the rate of  Rs 200 per m2.

5. A path 1 m wide is built along the border and inside a square garden of side 30 m. Find:
(i) the area of the path
(ii) the cost of planting grass in the remaining portion of the garden at the rate of

Rs 40 per m2.
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6. Two cross roads, each of width 10 m, cut at right angles through the centre of a
rectangular park of length 700 m and breadth 300 m and parallel to its sides. Find the
area of the roads. Also find the area of the park excluding cross roads. Give the
answer in hectares.

7. Through a rectangular field of length 90 m and breadth 60 m, two roads are
constructed which are parallel to the sides and cut each other at right angles through
the centre of the fields. If the width of each road is 3 m, find
(i) the area covered by the roads.
(ii) the cost of constructing the roads at the rate of Rs 110 per m2.

8. Pragya wrapped a cord around a circular pipe of radius 4 cm (adjoining figure) and
cut off the length required of the cord. Then she wrapped it around a square box of
side 4 cm (also shown). Did she have any cord left? (π = 3.14)

9. The adjoining figure represents a rectangular lawn with a circular flower bed in the
middle. Find:
(i) the area of  the whole land (ii) the area of the flower bed

(iii) the area of the lawn excluding  the area of the flower bed
(iv) the circumference of the flower bed.

10. In the following figures, find the area of the shaded portions:

11. Find the area of the quadrilateral ABCD.
Here, AC = 22 cm, BM = 3 cm,
DN = 3 cm, and
BM ⊥ AC, DN ⊥ AC

(i) (ii)
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WHAT HAVE WE DISCUSSED?
1. Perimeter is the distance around a closed figure whereas area is the part of plane

occupied by the closed figure.
2. We have learnt how to find perimeter and area of a square and rectangle in the earlier

class. They are:
(a) Perimeter of a square = 4 × side
(b) Perimeter of a rectangle = 2 × (length + breadth)
(c) Area of a square = side × side
(d) Area of a rectangle = length × breadth

3. Area of a parallelogram = base × height

4. Area of a triangle = 
1
2

 (area of the parallelogram generated from it)

= 
1
2

 × base × height

5. The distance around a circular region is known as its circumference.

Circumference of a circle = πd, where d is the diameter of a circle and 
22�
7

 

or 3.14 (approximately).
6. Area of a circle = πr2, where r is the radius of the circle.
7. Based on the conversion of units for lengths, studied earlier, the units of areas can

also be converted:
1 cm2 = 100 mm2, 1 m2 = 10000 cm2 , 1 hectare = 10000 m2.



 

12.1  INTRODUCTION

We have already come across simple algebraic expressions like x + 3,  y – 5, 4x + 5,
10y – 5 and so on. In Class VI, we have seen how these expressions are useful in formulating
puzzles and problems. We have also seen examples of several expressions in the chapter on
simple equations.

Expressions are a central concept in algebra. This Chapter is devoted to algebraic
expressions. When you have studied this Chapter, you will know how algebraic
expressions are formed, how they can be combined, how we can find their values and
how they can be used.

12.2  HOW ARE EXPRESSIONS FORMED?
We now know very well what a variable is. We use letters x, y, l, m, ... etc. to denote
variables. A variable can take various values. Its value is not fixed. On the other hand, a
constant has a fixed value. Examples of constants are: 4, 100, –17, etc.

We combine variables and constants to make algebraic expressions. For this, we use the
operations of addition, subtraction, multiplication and division. We have already come across
expressions like 4x + 5, 10y – 20. The expression 4x + 5 is obtained from the variable x, first
by multiplying x by the constant 4 and then adding the constant 5 to the product. Similarly,
10y – 20 is obtained by first multiplying y by 10 and then subtracting 20 from the product.

The above expressions were obtained by combining variables with constants. We can
also obtain expressions by combining variables with themselves or with other variables.
Look at how the following expressions are obtained:

x2, 2y2, 3x2 – 5, xy, 4xy + 7
(i) The expression x2 is obtained by multiplying the variable x by itself;

x × x = x2

Just as 4 × 4 is written as 42, we write x × x = x2. It is commonly read as x squared.

C
ha

pt
er

  
1
2

Algebraic
Expressions
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(Later, when you study the chapter ‘Exponents and Powers’ you will realise that x2

may also be read as x raised to the power 2).
In the same manner, we can write x × x × x = x3

Commonly, x3 is read as ‘x cubed’. Later, you will realise that x3 may also be read
as x raised to the power 3.
x, x2, x3, ... are all algebraic expressions obtained from x.

(ii) The expression 2y2 is obtained from y: 2y2 = 2 × y × y
Here by multiplying y with y we obtain y2 and then we multiply y2 by the constant 2.

(iii) In (3x2 – 5) we first obtain x2, and multiply it by 3 to get 3x2.
From 3x2, we subtract 5 to finally arrive at 3x2 – 5.

(iv) In xy, we multiply the variable x with another variable y. Thus,
x × y = xy.

 (v) In 4xy + 7, we first obtain xy, multiply it by 4 to get 4xy and add
7 to 4xy to get the expression.

12.3  TERMS OF AN EXPRESSION

We shall now put in a systematic form what we have learnt above about how expressions
are formed. For this purpose, we need to understand what terms of an expression and
their factors are.

Consider the expression (4x + 5). In forming this expression, we first formed 4x
separately as a product of 4 and x and then added 5 to it. Similarly consider the expression
(3x2 + 7y). Here we first formed 3x2 separately as a product of 3, x and x. We then
formed 7y separately as a product of 7 and y. Having formed 3x2 and 7y separately, we
added them to get the expression.

You will find that the expressions we deal with can always be seen this way. They
have parts which are formed separately and then added. Such parts of an expression
which are formed separately first and then added are known as terms. Look at the
expression (4x2 – 3xy). We say that it has two terms, 4x2 and –3xy. The term 4x2 is a
product of 4, x and x, and the term (–3xy) is a product of (–3), x and y.

Terms are added to form expressions. Just as the terms 4x and 5 are added to
form the expression (4x + 5), the terms 4x2 and (–3xy) are added to give the expression
(4x2 – 3xy). This is because 4x2 + (–3xy) = 4x2 – 3xy.

Note, the minus sign (–)  is included in the term. In the expression 4x2 –3xy, we
took the term as (–3xy) and not as (3xy). That is why we do not need to say that
terms are ‘added or subtracted’ to form an expression; just ‘added’ is enough.

Factors of a term
We saw above that the expression (4x2 – 3xy) consists of two terms 4x2 and –3xy. The
term 4x2 is a product of 4, x and x; we say that 4, x and x are the factors of the term 4x2.
A term is a product of its factors. The term –3xy is a product of the factors –3, x and y.

Describe how the
following expressions
are obtained:
7xy + 5, x2y, 4x2 – 5x

TRY THESE
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We can represent the terms and factors of
the terms of an expression conveniently and
elegantly by a tree diagram. The tree for the
expression (4x2 – 3xy) is as shown in the
adjacent figure.

Note, in the tree diagram, we have used
dotted lines for factors and continuous lines for
terms. This is to avoid mixing them.

Let us draw a tree diagram for the expression
5xy + 10.

The factors are such that they cannot be
further factorised. Thus we do not write 5xy as
5 × xy, because xy can be further factorised.
Similarly, if x3 were a term, it would be written as
x × x × x and not x2 × x. Also, remember that
1 is not taken as a separate factor.

Coefficients
We have learnt how to write a term as a product of factors.
One of these factors may be numerical and the others algebraic
(i.e., they contain variables). The numerical factor is said to be
the numerical coefficient or simply the coefficientof the term.
It is also said to be the coefficient of the rest of the term (which
is obviously the product of algebraic factors of the term). Thus
in 5xy, 5 is the coefficient of the term. It is also the coefficient
of xy. In the term 10xyz, 10 is the coefficient of xyz, in the
term –7x2y2, –7 is the coefficient of x2y2.

When the coefficient of a term is +1, it is usually omitted.
For example, 1x is written as x; 1 x2y2 is written as x2y2 and
so on. Also, the coefficient (–1) is indicated only by the
minus sign. Thus (–1) x is written as – x; (–1) x 2 y 2 is
written as – x2 y2 and so on.

Sometimes, the word ‘coefficient’ is used in a more general way. Thus
we say that in the term 5xy, 5 is the coefficient of xy,x is the coefficient of 5y
and y is the coefficient of 5x. In 10xy2, 10 is the coefficient of xy2, x is the
coefficient of 10y2 and y2 is the coefficient of 10x. Thus, in this more general
way, a coefficient may be either a numerical factor or an algebraic factor or
a product of two or more factors. It is said to be the coefficient of the
product of the remaining factors.

EXAMPLE 1 Identify, in the following expressions, terms which are not
constants. Give their numerical coefficients:

xy + 4, 13 – y2, 13 – y + 5y2, 4p2q – 3pq2 + 5

TRY THESE

1. What are the terms in the
following expressions?
Show how the terms are
formed. Draw a tree diagram
for each expression:
8y + 3x2, 7mn – 4, 2x2y.

2. Write three expression each
having 4 terms.

Identify the coefficients
of the terms of following
expressions:
4x – 3y, a + b + 5, 2y + 5, 2xy

TRY THESE
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SOLUTION

S. No. Expression Term (which is not Numerical
a Constant) Coefficient

(i) xy + 4 xy 1
(ii) 13 – y2 – y2 –1
(iii) 13 – y + 5y2 –y –1

5y2 5
(iv) 4p2q – 3pq2 + 5 4p2q 4

– 3pq2 –3

EXAMPLE 2
 (a) What are the coefficients of x in the following expressions?

4x – 3y, 8 – x + y, y2x – y, 2z – 5xz
(b) What are the coefficients of  y in the following expressions?

4x – 3y, 8 + yz, yz2 + 5, my + m

SOLUTION

 (a) In each expression we look for a term with x as a factor. The remaining part of that
term is the coefficient of x.

S. No. Expression Term with Factor x Coefficient of x
(i) 4x – 3y 4x 4
(ii) 8 – x + y –x –1
(iii) y2x – y y2x y2

(iv) 2z – 5xz – 5xz – 5z

(b) The method is similar to that in (a) above.

S. No. Expression Term with factor y Coefficient of y
(i) 4x – 3y – 3y –3
(ii) 8 + yz yz z
(iii) yz2 + 5 yz2 z2

(iv) my + m my m

12.4  LIKE AND UNLIKE TERMS

When terms have the same algebraic factors, they are like terms. When terms have different
algebraic factors, they are unlike terms. For example, in the expression 2xy – 3x + 5xy – 4,
look at the terms 2xy and 5xy. The factors of 2xy are 2, x and y. The factors of 5xy are 5,
x and y. Thus their algebraic (i.e., those which contain variables) factors are the same and
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hence they are like terms. On the other hand the
terms 2xy and –3x, have different algebraic factors.
They are unlike terms. Similarly, the terms, 2xy
and 4, are unlike terms. Also, the terms –3x and 4
are unlike terms.

12.5 MONOMIALS, BINOMIALS, TRINOMIALS AND

POLYNOMIALS

An expression with only one term is called a monomial; for example, 7xy, – 5m,
3z2, 4 etc.

An expression which contains two unlike terms is called a
binomial; for example, x + y, m – 5, mn + 4m, a2 – b2 are
binomials. The expression 10pq is not a binomial; it is a
monomial. The expression (a + b + 5) is not a binomial.
It contains three terms.

An expression which contains three terms is called a
trinomial; for example, the expressions x + y + 7, ab + a +b,
3x2 – 5x + 2, m + n + 10 are trinomials. The expression
ab + a + b + 5 is, however not a trinomial; it contains four
terms and not three. The expression x +  y + 5x is not a trinomial as the terms x and 5x are
like terms.

In general, an expression with one or more terms is called a polynomial. Thus a
monomial, a binomial and a trinomial are all polynomials.

EXAMPLE 3 State with reasons, which of the following pairs of terms are of like
terms and which are of unlike terms:

(i) 7x, 12y (ii) 15x, –21x (iii) – 4ab, 7ba (iv) 3xy, 3x
(v) 6xy2, 9x2y (vi) pq2, – 4pq2 (vii) mn2, 10mn

SOLUTION

S. Pair Factors Algebraic Like/ Remarks
No. factors same Unlike

or different terms
(i) 7x 7, x Different Unlike The variables in the

12y 12, y  terms are different.

(ii) 15x 15, x Same Like
–21x –21, x

(iii) – 4ab – 4, a, b Same Like Remember
7 ba 7, a, b ab = ba

TRY THESE

Group the like terms together from the
following:
12x, 12, – 25x, – 25, – 25y, 1, x, 12y, y

TRY THESE

Classify the following
expressions as a monomial,
a binomial or a trinomial: a,
a + b, ab + a + b, ab + a
+ b – 5, xy, xy + 5,
5x2 – x + 2, 4pq – 3q + 5p,
7, 4m – 7n + 10, 4mn + 7.
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(iv) 3xy 3, x, y Different Unlike The variable y is only
3x 3, x in one term.

(v) 6xy2 6, x, y, y Different Unlike The variables in the two
9x2y 9, x, x, y terms match, but their

powers do not match.

(vi) pq2 1, p, q, q Same Like Note, numerical
– 4pq2 – 4, p, q, q factor 1 is not shown

Following simple steps will help you to decide whether the given terms are like
or unlike terms:

(i) Ignore the numerical coefficients. Concentrate on the algebraic part of the
terms.

(ii) Check the variables in the terms. They must be the same.
(iii) Next, check the powers of each variable in the terms. They must be the same.

Note that in deciding like terms, two things do not matter (1) the numerical
coefficients of the terms and (2) the order in which the variables are multiplied in the
terms.

EXERCISE 12.1

1. Get the algebraic expressions in the following cases using variables, constants and
arithmetic operations.
(i) Subtraction of z from y.
(ii) One-half of the sum of numbers x and y.
(iii) The number z multiplied by itself.
(iv) One-fourth of the product of numbers p and q.
(v) Numbers x and y both squared and added.
(vi) Number 5 added to three times the product of numbers m and n.
(vii) Product of numbers y and z subtracted from 10.
(viii) Sum of numbers a and b subtracted from their product.

2.  (i) Identify the terms and their factors in the following expressions
Show the terms and factors by tree diagrams.
(a) x – 3 (b) 1 + x + x2 (c) y – y3

(d) 5xy2 + 7x2y (e) – ab + 2b2 – 3a2

(ii) Identify terms and factors in the expressions given below:
(a) – 4x + 5 (b) – 4x + 5y (c) 5y + 3y2

(d) xy + 2x2y2 (e) pq + q (f) 1.2 ab – 2.4 b + 3.6 a
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(g)
3

4
x + 

1

4
(h) 0.1 p2 + 0.2 q2

3. Identify the numerical coefficients of terms (other than constants) in the following
expressions:

(i) 5 – 3t2 (ii) 1 + t + t2 + t3 (iii) x + 2xy + 3y
(iv) 100m + 1000n (v) – p2q2 + 7pq (vi) 1.2 a + 0.8 b
(vii) 3.14 r2 (viii) 2 (l + b) (ix) 0.1 y + 0.01 y2

4. (a) Identify terms which contain x and give the coefficient of x.
(i) y2x + y (ii) 13y2 – 8yx (iii) x + y + 2

(iv) 5 + z + zx (v) 1 + x + xy (vi) 12xy2 + 25
(vii) 7x + xy2

(b) Identify terms which contain y2 and give the coefficient of y2.
(i) 8 – xy2 (ii) 5y2 + 7x (iii) 2x2y – 15xy2 + 7y2

5. Classify into monomials, binomials and trinomials.
(i) 4y – 7z (ii) y2 (iii) x + y – xy (iv) 100
(v) ab – a – b (vi) 5 – 3t (vii) 4p2q – 4pq2 (viii) 7mn
(ix) z2 – 3z + 8 (x) a2 + b2 (xi) z2 + z
(xii) 1 + x + x2

6. State whether a given pair of terms is of like or unlike terms.

(i) 1, 100 (ii) –7x,
5

2
x (iii) – 29x, – 29y

(iv) 14xy, 42yx (v) 4m2p, 4mp2 (vi) 12xz, 12x2z2

7. Identify like terms in the following:
(a) – xy2, – 4yx2, 8x2, 2xy2, 7y, – 11x2, – 100x, – 11yx, 20x2y,

– 6x2, y, 2xy, 3x

(b) 10pq, 7p, 8q, – p2q2, – 7qp, – 100q, – 23, 12q2p2, – 5p2, 41, 2405p, 78qp,
13p2q, qp2, 701p2

12.6 ADDITION AND SUBTRACTION OF ALGEBRAIC

EXPRESSIONS

Consider the following problems:
1. Sarita has some marbles. Ameena has 10 more. Appu says that he has 3 more

marbles than the number of marbles Sarita and Ameena together have. How do you
get the number of marbles that Appu has?
Since it is not given how many marbles Sarita has, we shall take it to be x. Ameena
then has 10 more, i.e., x + 10. Appu says that he has 3 more marbles than what
Sarita and Ameena have together. So we take the sum of the numbers of Sarita’s
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marbles and Ameena’s marbles, and to this sum add 3, that is, we take the sum of
x, x + 10 and 3.

2. Ramu’s father’s present age is 3 times Ramu’s age. Ramu’s grandfather’s age is 13
years more than the sum of Ramu’s age and Ramu’s father’s age. How do you find
Ramu’s grandfather’s age?
Since Ramu’s age is not given, let us take it to be y years. Then his father’s age is
3y years. To find Ramu’s grandfather’s age we have to take the sum of Ramu’s age (y)
and his father’s age (3y) and to the sum add 13, that is, we have to take the sum of
y, 3y and 13.

3. In a garden, roses and marigolds are planted in square plots. The length of the
square plot in which marigolds are planted is 3 metres greater than the length of the
square plot in which roses are planted. How much bigger in area is the marigold plot
than the rose plot?
Let us take l metres to be length of the side of the rose plot. The length of the side of
the marigold plot will be (l�+ 3) metres. Their respective areas will be l2 and (l�+ 3)2.
The difference between (l2 + 3)2  and l2 will decide how much bigger in area the
marigold plot is.
In all the three situations, we had to carry out addition or subtraction of algebraic
expressions. There are a number of real life problems in which we need to use
expressions and do arithmetic operations on them. In this section, we shall see how
algebraic expressions are added and subtracted.

Think of atleast two situations in each of which you need to form two algebraic
expressions and add or subtract them

Adding and subtracting like terms

The simplest expressions are monomials. They consist of only one term. To begin with we
shall learn how to add or subtract like terms.
� Let us add 3x and 4x. We know x is a number and so also are 3x and 4x.

Now, 3x + 4x = (3 × x) + (4 × x)
=  (3 + 4) × x    (using distributive law)
= 7 × x = 7x

or 3x + 4x = 7x
����� Let us next add 8xy, 4xy and 2xy

     8xy + 4xy + 2xy = (8 × xy) + (4 × xy) + (2 × xy)
= (8 + 4 + 2) × xy
= 14 × xy = 14xy

or 8xy + 4xy + 2xy = 14 xy

TRY THESE

Since variables are numbers, we can
use distributive law for them.
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����� Let us subtract 4n from 7n.

7n – 4n = (7 × n) – (4 × n)

= (7 – 4) × n = 3 × n = 3n

or       7n – 4n = 3n

����� In the same way, subtract 5ab from 11ab.

11ab – 5ab = (11 – 5) ab = 6ab

Thus, the sum of two or more like terms is a like term with a numerical coefficient
equal to the sum of the numerical coefficients of all the like terms.

Similarly, the difference between two like terms is a like term with a numerical
coefficient equal to the difference between the numerical coefficients of the two
like terms.

Note, unlike terms cannot be added or subtracted the way like terms are added
or subtracted. We have already seen examples of this, when 5 is added to x, we write the
result as (x + 5). Observe that in (x + 5) both the terms 5 and x are retained.

Similarly, if we add the unlike terms 3xy and 7, the sum is 3xy + 7.

If we subtract 7 from 3xy, the result is 3xy – 7

Adding and subtracting general algebraic expressions

Let us take some examples:

����� Add 3x + 11 and 7x – 5

The sum = 3x + 11 + 7x – 5

Now, we know that the terms 3x and 7x are like terms and so also are 11 and – 5.

Further 3x + 7x = 10 x and 11 + (– 5) = 6. We can, therefore, simplify the sum as:

The sum = 3x + 11 + 7x – 5

= 3x + 7x + 11 – 5 (rearranging terms)

= 10x + 6

Hence, 3x + 11 + 7x – 5 = 10x + 6

����� Add 3x + 11 + 8z and 7x – 5.

The sum = 3x + 11 + 8z + 7x – 5

= 3x + 7x + 11 – 5 + 8z (rearranging terms)

Note we have put like terms together; the single unlike term 8z will remain as it is.

Therefore, the sum = 10x + 6 + 8z
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����� Subtract a – b from 3a – b + 4

The difference = 3a – b + 4 – (a – b)

= 3a – b + 4 – a + b
Observe how we took (a – b) in brackets and took
care of signs in opening the bracket. Rearranging the
terms to put like terms together,

The difference = 3a – a + b – b + 4

= (3 – 1) a + (1 – 1) b + 4

The difference = 2a + (0) b + 4 = 2a + 4

or 3a – b + 4 – (a – b) = 2a + 4

We shall now solve some more examples on addition and subtraction of expression
for practice.

EXAMPLE 4 Collect like terms and simplify the expression:

12m2 – 9m + 5m – 4m2 – 7m + 10

SOLUTION Rearranging terms, we have

12m2 – 4m2 + 5m – 9m – 7m + 10

= (12 – 4) m2 + (5 – 9 – 7) m + 10

= 8m2 + (– 4 – 7) m + 10

= 8m2 + (–11) m + 10

= 8m2 – 11m + 10

EXAMPLE 5 Subtract 24ab – 10b – 18a from 30ab + 12b + 14a.

SOLUTION 30ab + 12b + 14a – (24ab – 10b – 18a)

= 30ab + 12b + 14a – 24ab + 10b + 18a
= 30ab – 24ab + 12b + 10b + 14a + 18a
= 6ab + 22b + 32a

Alternatively, we write the expressions one below the other with the like
terms appearing exactly below like terms as:

30ab + 12b + 14a
24ab  – 10b – 18a

– +        +

    6ab + 22b + 32a

TRY THESE

 Add and subtract
(i) m – n, m + n
(ii) mn + 5 – 2, mn + 3

Note, subtracting a term
is the same as adding its
inverse. Subtracting –10b
is the same as adding
+10b ;  Subtrac t ing
–18a is the same as
adding 18a and subtrac-
ting 24ab is the same as
adding – 24ab .  The
signs shown below the
expression to be subtrac-
ted are a help in carrying
out the subtraction
properly.

Note, just as
– (5 – 3)  = – 5 + 3,
– (a – b) = – a + b.
The signs of algebraic
terms are handled in the
same way as signs of
numbers.
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EXAMPLE 6From the sum of 2y2 + 3yz, – y2 – yz – z2 and yz + 2z2, subtract the
sum of 3y2 – z2 and –y2 + yz + z2.

SOLUTION We first add 2y2 + 3yz, – y2 – yz – z2 and yz + 2z2.
2y2 + 3yz

– y2 – yz – z2

+ yz + 2z2

y2 + 3yz + z2 (1)

We then add 3y2 – z2 and –y2 + yz + z2

3y2 – z2

– y2 + yz + z2

2y2 + yz (2)

Now we subtract sum (2) from the sum (1):
y2 + 3yz + z2

2y2 + yz
– –

– y2 + 2yz + z2

EXERCISE 12.2

1. Simplify combining like terms:
(i) 21b – 32 + 7b – 20b
(ii) – z2 + 13z2 – 5z + 7z3  – 15z
(iii) p – (p – q) – q – (q – p)
(iv) 3a – 2b – ab – (a – b + ab) + 3ab + b – a
(v) 5x2y – 5x2 + 3yx2 – 3y2 + x2 – y2 + 8xy2 – 3y2

(vi) (3y2 + 5y – 4) – (8y – y2 – 4)

2. Add:
(i) 3mn, – 5mn, 8mn, – 4mn
(ii) t – 8tz, 3tz – z, z – t
(iii) – 7mn + 5, 12mn + 2, 9mn – 8, – 2mn – 3
(iv) a + b – 3, b – a + 3, a – b + 3
(v) 14x + 10y – 12xy – 13, 18 – 7x – 10y + 8xy, 4xy
(vi) 5m – 7n, 3n – 4m + 2, 2m – 3mn – 5
(vii) 4x2y, – 3xy2, –5xy2, 5x2y
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(viii) 3p2q2 – 4pq + 5, – 10 p2q2, 15 + 9pq + 7p2q2

(ix) ab – 4a, 4b – ab, 4a – 4b
(x) x2 – y2 – 1, y2 – 1 – x2, 1 – x2 – y2

3. Subtract:
(i) –5y2 from y2

(ii) 6xy from –12xy
(iii) (a – b) from (a + b)
(iv) a (b – 5) from b (5 – a)
(v) –m2 + 5mn from 4m2 – 3mn + 8
(vi) – x2 + 10x – 5 from 5x – 10
(vii) 5a2 – 7ab + 5b2 from 3ab – 2a2 – 2b2

(viii) 4pq – 5q2 – 3p2 from 5p2 + 3q2 – pq
4. (a) What should be added to x2 + xy + y2 to obtain 2x2 + 3xy?

(b) What should be subtracted from 2a + 8b + 10 to get – 3a + 7b + 16?
5. What should be taken away from 3x2 – 4y2 + 5xy + 20 to obtain

– x2 – y2 + 6xy + 20?
6. (a) From the sum of 3x – y + 11 and – y – 11, subtract 3x – y – 11.

(b) From the sum of 4 + 3x and 5 – 4x + 2x2, subtract the sum of 3x2 – 5x and
–x2 + 2x + 5.

12.7  FINDING THE VALUE OF AN EXPRESSION

We know that the value of an algebraic expression depends on the values of the variables
forming the expression. There are a number of situations in which we need to find the value
of an expression, such as when we wish to check whether a particular value of a variable
satisfies a given equation or not.

We find values of expressions, also, when we use formulas from geometry and from
everyday mathematics. For example, the area of a square is l2, where l is the length of a
side of the square. If l =  5 cm., the area is 52cm2 or 25 cm2; if the side is 10 cm, the area
is 102cm2 or 100 cm2 and so on. We shall see more such examples in the next section.

EXAMPLE 7 Find the values of the following expressions for x = 2.
(i) x + 4 (ii) 4x – 3 (iii) 19 – 5x2

(iv) 100 – 10x3

SOLUTION Putting x = 2
(i) In x + 4, we get the value of x + 4, i.e.,

x + 4 = 2 + 4 = 6
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(ii) In 4x – 3, we get
4x – 3 = (4 × 2) – 3 = 8 – 3 = 5

(iii) In 19 – 5x2, we get
19 – 5x2 = 19 – (5 × 22) = 19 – (5 × 4) = 19 – 20 = – 1

(iv) In 100 – 10x3, we get
100 – 10x3 = 100 – (10 × 23) = 100 – (10 × 8) (Note 23 = 8)
= 100 – 80 = 20

EXAMPLE 8 Find the value of the following expressions when n =  – 2.
(i) 5n – 2 (ii) 5n2 + 5n – 2 (iii) n3 + 5n2 + 5n – 2

SOLUTION

(i) Putting the value of n = – 2, in 5n – 2, we get,
5(– 2) – 2 = – 10 – 2 = – 12

(ii) In 5n2 + 5n – 2, we have,
for n = –2, 5n – 2 = –12
and 5n2 = 5 × (– 2)2 = 5 × 4 = 20 [as (– 2)2 = 4]
Combining,
5n2 + 5n – 2 = 20 – 12 = 8

(iii) Now, for n = – 2,
5n2 + 5n – 2 = 8 and
n3 = (–2)3 = (–2) × (–2) × (–2) = – 8
Combining,
n3 + 5n2 + 5n – 2 = – 8 + 8 = 0

We shall now consider expressions of two variables, for example, x + y, xy. To work
out the numerical value of an expression of two variables, we need to give the values of
both variables. For example, the value of (x + y), for x = 3 and y = 5, is 3 + 5 = 8.

EXAMPLE 9 Find the value of the following expressions for a = 3, b = 2.
(i) a + b (ii) 7a – 4b (iii) a2 + 2ab + b2

(iv) a3 – b3

SOLUTION Substituting a = 3 and b = 2 in
(i) a + b, we get

a + b = 3 + 2 = 5
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(ii) 7a – 4b, we get
7a – 4b = 7 × 3 – 4 × 2 = 21 – 8 = 13.

(iii) a2 + 2ab + b2,  we get
a2 + 2ab + b2 = 32 + 2 × 3 × 2 + 22 = 9 + 2 × 6 + 4 = 9 + 12 + 4 = 25

(iv) a3 – b3, we get
a3 – b3 = 33 – 23 = 3 × 3 × 3 – 2 × 2 × 2 = 9 × 3 – 4 × 2 = 27 – 8 = 19

EXERCISE 12.3

1. If m = 2, find the value of:
(i) m – 2 (ii) 3m – 5 (iii) 9 – 5m

(iv) 3m2 – 2m – 7 (v) 5

2
4

m

2. If p = – 2, find the value of:
(i) 4p + 7 (ii) – 3p2 + 4p + 7 (iii) – 2p3 – 3p2 + 4p + 7

3. Find the value of the following expressions, when x = –1:
(i) 2x – 7 (ii) – x + 2 (iii) x2 + 2x + 1

(iv) 2x2 – x – 2
4. If a = 2, b = – 2, find the value of:

(i) a2 + b2 (ii) a2 + ab + b2 (iii) a2 – b2

5. When a = 0, b = – 1, find the value of the given expressions:
(i) 2a + 2b (ii) 2a2 + b2 + 1 (iii) 2a2b + 2ab2 + ab

(iv) a2 + ab + 2
6. Simplify the expressions and find the value if x is equal to 2

(i)  x + 7 + 4 (x – 5) (ii) 3 (x + 2) + 5x – 7
(iii) 6x + 5 (x – 2) (iv) 4(2x – 1) + 3x + 11

7. Simplify these expressions and find their values if x = 3, a = – 1, b = – 2.
(i) 3x – 5 – x + 9 (ii) 2 – 8x + 4x + 4

(iii) 3a + 5 – 8a + 1 (iv) 10 – 3b – 4 – 5b
(v) 2a – 2b – 4 – 5 + a

8.  (i) If z = 10, find the value of z3 – 3(z – 10).
(ii) If p = – 10, find the value of p2 – 2p – 100

9. What should be the value of a if the value of 2x2 + x – a equals to 5, when x = 0?
10. Simplify the expression and find its value when a = 5 and b = – 3.

2(a2 + ab) + 3 – ab
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12.8 USING ALGEBRAIC EXPRESSIONS – FORMULAS AND

RULES

We have seen earlier also that formulas and rules in mathematics can be written in a concise
and general form using algebraic expressions. We see below several examples.

����� Perimeter formulas
1. The perimeter of an equilateral triangle = 3 × the length of its side. If we denote the

length of the side of the equilateral triangle by l, then the perimeter of the equilateral
triangle = 3l

2. Similarly, the perimeter of a square = 4l
where l = the length of the side of the square.

3. Perimeter of a regular pentagon = 5l
where l = the length of the side of the pentagon and so on.

����� Area formulas
1. If we denote the length of a square by l, then the area of the square = l2

2. If we denote the length of a rectangle by l and its breadth by b, then the area of the
rectangle = l × b = lb.

3. Similarly, if b stands for the base and h for the height of a triangle, then the area of the

triangle = 
b h bh× =

2 2
.

Once a formula, that is, the algebraic expression for a given quantity is known, the
value of the quantity can be computed as required.

For example, for a square of length 3 cm, the perimeter is obtained by putting the value
l = 3 cm in the expression of the perimeter of a square, i.e., 4l.
The perimeter of the given square = (4 × 3) cm = 12 cm.

Similarly, the area of the square is obtained by putting in the value of
l (= 3 cm) in the expression for the area of a square, that is, l2;
Area of the given square = (3)2 cm2 = 9 cm2.

����� Rules for number patterns
Study the following statements:

1. If a natural number is denoted by n, its successor is (n + 1). We can check this for
any natural number. For example, if n = 10, its successor is n + 1=11, which is
known.
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2. If a natural number is denoted by n, 2n is an even number and (2n + 1) an odd
number. Let us check it for any number, say, 15; 2n = 2 × n = 2 × 15 = 30 is indeed
an even number and 2n + 1 = 2 × 15 + 1 = 30 + 1 = 31 is indeed an odd number.

Take (small) line segments of equal length such as matchsticks, tooth pricks or
pieces of straws cut into smaller pieces of equal length. Join them in patterns as
shown in the figures given:

1. Observe the pattern in Fig 12.1.
It consists of repetitions of the shape 
made from 4 line segments. As you see for
one shape you need 4 segments, for two
shapes 7, for three 10 and so on. If n is the
number of shapes, then the number of
segments required to form n shapes is given
by (3n + 1).
You may verify this by taking n = 1, 2,
3, 4, ..., 10, ... etc. For example, if the
number of letters formed is 3, then
the number of line segments required
is 3 × 3 + 1 = 9 + 1 = 10, as seen from
the figure.

2. Now, consider the pattern in Fig 12.2. Here
the shape  is repeated. The number of
segments required to form 1, 2, 3, 4, ...
shapes are 3, 5, 7, 9, ... respectively. If n
stands for the shapes formed, the number of
segments required is given by the expression
(2n+ 1). You may check if the expression is
correct by taking any value of n, say n = 4.
Then (2n + 1) = (2 × 4) + 1 = 9, which is
indeed the number of line segments
required to make 4  s.

DO THIS

Fig 12.1

Fig 12.2
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Make similar pattern with basic figures as shown

(The number of segments required to make the figure is given to the right. Also,
the expression for the number of segments required to make n shapes is also given).

Go ahead and discover more such patterns.

Make the following pattern of dots. If you take a graph paper or a dot paper, it will
be easier to make the patterns.

Observe how the dots are arranged in a square shape. If the number of dots in a
row or a column in a particular figure is taken to be the variable n, then the number of
dots in the figure is given by the expression n × n = n2. For example, take n = 4. The
number of dots for the figure with 4 dots in a row (or a column) is 4 × 4 = 16, as is
indeed seen from the figure. You may check this for other values of n. The ancient
Greek mathematicians called the number 1, 4, 9, 16, 25, ... square numbers.

����� Some more number patterns
Let us now look at another pattern of numbers, this time without any drawing to help us

3, 6, 9, 12, ..., 3n, ...
The numbers are such that they are multiples of 3 arranged in an increasing order,

beginning with 3. The term which occurs at the nth position is given by the expression 3n.
You can easily find the term which occurs in the 10th position (which is 3 × 10 = 30);
100th position (which is 3 × 100 = 300) and so on.

����� Pattern in geometry
What is the number of diagonals we can draw from one vertex of a quadrilateral?
Check it, it is one.

TRY THESE

DO THIS 1

4

9

16

25

36

�
�
�
n2

�
�
�
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From one vertex of a pentagon? Check it, it is 2.

From one vertex of a hexagon? It is 3.
The number of diagonals we can draw from one vertex of a polygon of n sides is

(n – 3). Check it for a heptagon (7 sides) and octagon (8 sides) by drawing figures.
What is the number for a triangle (3 sides)? Observe that the diagonals drawn from any
one vertex divide the polygon in as many non-overlapping triangles as the number of
diagonals that can be drawn from the vertex plus one.

EXERCISE 12.4

1. Observe the patterns of digits made from line segments of equal length. You will find
such segmented digits on the display of electronic watches or calculators.

(a) ... ...

6 11 16 21 ... (5n + 1) ...

(b) ... ...

4 7 10 13 ... (3n + 1) ...

(c) ... ...

7 12 17 22 ... (5n + 2) ...

If the number of digits formed is taken to be n, the number of segments required to
form n digits is given by the algebraic expression appearing on the right of each pattern.

How many segments are required to form 5, 10, 100 digits of the kind , , .

A B

C
D

A

B

C

DE

A

B C

D

EF



ALGEBRAIC EXPRESSIONS 247

2. Use the given algebraic expression to complete the table of number patterns.

S. Expression Terms
No. 1st 2nd 3rd 4th 5th ... 10th … 100th …
(i) 2n – 1 1 3 5 7 9 - 19 - - -

(ii) 3n + 2 2 5 8 11 - - - - - -

(iii) 4n + 1 5 9 13 17 - - - - - -

(iv) 7n + 20 27 34 41 48 - - - - - -
(v) n2 + 1 2 5 10 17 - - - - 10,001 -

WHAT HAVE WE DISCUSSED?
1. Algebraic expressions are formed from variables and constants. We use the

operations of addition, subtraction, multiplication and division on the variables
and constants to form expressions. For example, the expression 4xy + 7 is formed
from the variables x and y and constants 4 and 7. The constant 4 and the variables
x and y are multiplied to give the product 4xy and the constant 7 is added to this
product to give the expression.

2. Expressions are made up of terms. Terms are added to make an expression. For
example, the addition of the terms 4xy and 7 gives the expression 4xy + 7.

3. A term is a product of factors. The term 4xy in the expression 4xy + 7 is a product
of factors x,  y and 4. Factors containing variables are said to be algebraic factors.

4. The coefficient is the numerical factor in the term. Sometimes anyone factor in a
term is called the coefficient of the remaining part of the term.

5. Any expression with one or more terms is called a polynomial. Specifically a one
term expression is called a monomial; a two-term expression is called a binomial;
and a three-term expression is called a trinomial.

6. Terms which have the same algebraic factors are like terms. Terms which have different
algebraic factors are unlike terms. Thus, terms 4xy and – 3xy are like terms; but
terms 4xy and – 3x are not like terms.

7. The sum (or difference) of two like terms is a like term with coefficient equal to
the sum (or difference) of the coefficients of the two like terms. Thus,
8xy – 3xy = (8 – 3 )xy, i.e., 5xy.

8. When we add two algebraic expressions, the like terms are added as given
above; the unlike terms are left as they are. Thus, the sum of 4x2 + 5x
and 2x + 3 is 4x2 + 7x + 3; the like terms 5x and 2x add to 7x; the unlike
terms 4x2 and 3 are left as they are.
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9. In situations such as solving an equation and using a formula, we have to find the
value of an expression. The value of the expression depends on the value of the
variable from which the expression is formed. Thus, the value of 7x – 3 for x = 5 is
32, since 7(5) – 3 = 35 – 3 = 32.

10. Rules and formulas in mathematics are written in a concise and general form using
algebraic expressions:

Thus, the area of rectangle = lb, where l is the length and b is the breadth of the
rectangle.

The general (nth) term of a number pattern (or a sequence) is an expression in n.
Thus, the nth term of the number pattern 11, 21, 31, 41, . . . is (10n + 1).



  

13.1  INTRODUCTION

Do you know what the mass of earth is? It  is
5,970,000,000,000,000,000,000,000 kg!
Can you read this number?
Mass of Uranus is 86,800,000,000,000,000,000,000,000 kg.
Which has greater mass, Earth or Uranus?

Distance between Sun and Saturn is 1,433,500,000,000 m and distance between Saturn
and Uranus is 1,439,000,000,000 m. Can you read these numbers? Which distance is less?

These very large numbers are difficult to read, understand and compare. To make these
numbers easy to read, understand and compare, we use exponents. In this Chapter, we shall
learn about exponents and also learn how to use them.

13.2  EXPONENTS

We can write large numbers in a shorter form using exponents.
Observe 10, 000 = 10 × 10 × 10 × 10 = 104

The short notation 104 stands for the product 10×10×10×10. Here ‘10’ is called the
base and ‘4’ the exponent. The number 104 is read as 10 raised to the power of 4 or
simply as fourth power of 10. 104 is called the exponential form of 10,000.
We can similarly express 1,000 as a power of 10. Since 1,000 is 10
multiplied by itself three  times,

1000 = 10 × 10 × 10 = 103

Here again, 103 is the exponential form of 1,000.
Similarly, 1,00,000 = 10 × 10 × 10 × 10 × 10 = 105

105is the exponential form of 1,00,000
In both these examples, the base is 10; in case of 103, the exponent

is 3 and in case of 105 the exponent is 5.

C
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1
3

Exponents and
Powers
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We have used numbers like 10, 100, 1000 etc., while writing numbers in an expanded
form. For example, 47561 = 4 × 10000 + 7 × 1000 + 5 × 100 + 6 × 10 + 1
This can be written as 4 × 104 + 7 ×103 + 5 × 102 + 6 × 10 + 1.
Try writing these numbers in the same way 172, 5642, 6374.

In all the above given examples, we have seen numbers whose base is 10. However
the base can be any other number also. For example:

81 = 3 × 3 × 3 × 3 can be written as 81 = 34, here 3 is the base and 4 is the exponent.
Some powers have special names. For example,
102, which is 10 raised to the power 2, also read as ‘10 squared’ and
103, which is 10 raised to the power 3, also read as ‘10 cubed’.
Can you tell what 53 (5 cubed) means?

53 means 5 is to be multiplied by itself three times, i.e., 53= 5 × 5 × 5 = 125
So, we can say 125 is the third power of 5.
What is the exponent and the base in 53?
Similarly, 25  = 2 × 2 × 2 × 2 × 2 =  32, which is the fifth power of 2.

In 25, 2 is the base and 5 is the exponent.
In the same way, 243 = 3 × 3 × 3 × 3 × 3 = 35

64 = 2 × 2 × 2 × 2 × 2 × 2 = 26

625 = 5 × 5 × 5 × 5 = 54

Find five more such examples, where a number is expressed in exponential form.
Also identify the base and the exponent in each case.

You can also extend this way of writing when the base is a negative integer.
What does (–2)3 mean?
It is (–2)3 = (–2) ×  (–2) ×  (–2) = – 8
Is (–2)4 = 16? Check it.
Instead of taking a fixed number let us take any integer a as the base, and write the
numbers as,

a × a = a2  (read as ‘a squared’ or ‘a raised to the power 2’)
a × a × a = a3  (read as ‘a cubed’ or ‘a raised to the power 3’)

a × a × a × a = a4 (read as a raised to the power 4 or the 4th power of a)
..............................
a × a × a × a × a × a × a = a7  (read as a raised to the power 7 or the 7th power of a)
and so on.
a × a × a × b × b  can be expressed as a3b2 (read as a cubed b squared)

TRY THESE



EXPONENTS AND POWERS 251

a × a × b × b × b × b can be expressed as a2b4 (read as a
squared into b raised to the power of 4).

EXAMPLE 1 Express 256 as a power 2.

SOLUTION We have 256 = 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2.
So we can say  that 256  = 28

EXAMPLE 2 Which one is greater 23 or 32?

SOLUTION We have, 23 = 2 × 2 × 2 = 8    and  32  = 3 × 3 = 9.
Since 9 > 8, so, 32 is greater than 23

EXAMPLE 3 Which one is greater 82 or 28?

SOLUTION 82 = 8 × 8 = 64
28  = 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2  =  256

Clearly, 28 > 82

EXAMPLE 4 Expand a3 b2, a2 b3, b2 a3, b3 a2. Are they all same?

SOLUTION a3 b2  = a3 × b2

= (a × a × a) × (b × b)
= a × a × a × b × b

a2 b3 = a2 × b3

= a × a × b × b × b
b2 a3 = b2 × a3

= b × b × a × a × a
b3 a2 = b3 × a2

= b × b × b × a × a
Note that in the case of terms a3 b2 and a2 b3 the powers of a and b are different. Thus

a3 b2 and a2 b3 are different.
On the other hand, a3 b2 and b2 a3 are the same, since the powers of a and b in these

two terms are the same. The order of factors does not matter.
Thus, a3 b2 = a3 × b2 = b2 × a3 = b2 a3. Similarly, a2 b3 and b3 a2 are the same.

EXAMPLE 5 Express the following numbers as a product of powers of prime factors:
(i) 72 (ii) 432 (iii) 1000 (iv) 16000

SOLUTION

   (i) 72 = 2 × 36 = 2 × 2 × 18
= 2 × 2 × 2 × 9
= 2 × 2 × 2 × 3 × 3 = 23 × 32

Thus, 72 = 23 × 32  (required prime factor product form)

TRY THESE

Express:
(i) 729 as a power of 3
(ii) 128 as a power of 2
(iii) 343 as a power of 7

2 72
2 36
2 18
3 9

3
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(ii) 432 = 2 × 216 = 2 × 2 × 108 = 2 × 2 × 2 × 54
= 2 × 2 × 2 × 2 × 27 = 2 × 2 × 2 × 2 × 3 × 9
= 2 × 2 × 2 × 2 × 3 × 3 × 3

  or 432 = 24 × 33 (required form)
(iii) 1000 = 2 × 500 = 2 × 2 × 250 = 2 × 2 × 2 × 125

= 2 × 2 × 2 × 5 × 25 = 2 × 2 × 2 × 5 × 5 × 5
  or 1000 = 23 × 53

Atul wants to solve this example in another way:
1000 = 10 × 100 = 10 × 10 × 10

=  (2 × 5) × (2 × 5) × (2 × 5) (Since10 = 2 × 5)
= 2 × 5 × 2 × 5 × 2 × 5 = 2 × 2 × 2 × 5 × 5 × 5

  or 1000 =  23 × 53

Is Atul’s method correct?

(iv) 16,000 =  16 × 1000  =  (2 × 2 × 2 × 2) ×1000 = 24 ×103 (as 16 = 2 × 2 × 2 × 2)
= (2 × 2 × 2 × 2) × (2 × 2 × 2 × 5 × 5 × 5) = 24 × 23 × 53

(Since�1000 = 2 × 2 × 2 × 5 × 5 × 5)
= (2 × 2 × 2 × 2 × 2 × 2 × 2 ) × (5 × 5 × 5)

  or, 16,000 = 27 × 53

EXAMPLE 6 Work out (1)5, (–1)3, (–1)4, (–10)3, (–5)4.

SOLUTION

(i) We have (1)5 = 1 × 1 × 1 × 1 × 1 = 1
In fact, you will realise that 1 raised to any power is 1.

(ii) (–1)3 = (–1) × (–1) × (–1) = 1 × (–1) = –1
(iii) (–1)4 = (–1) × (–1) × (–1) × (–1) = 1 ×1 = 1

You may check that (–1) raised to any odd power is (–1),
and (–1) raised to any even power is (+1).

(iv) (–10)3 = (–10) × (–10) × (–10) = 100 × (–10) = – 1000
(v) (–5)4 = (–5) × (–5) × (–5) × (–5) = 25 × 25 = 625

EXERCISE 13.1

1. Find the value of:
(i)  26 (ii) 93 (iii) 112 (iv) 54

2. Express the following in exponential form:
(i) 6 × 6 × 6 × 6 (ii) t × t (iii) b × b × b × b

(iv) 5 × 5× 7 × 7 × 7 (v) 2 × 2 × a × a (vi) a × a × a × c × c × c × c × d

odd number(–1) = –1
even number(–1) = + 1
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3. Express each of the following numbers using exponential notation:
(i) 512 (ii) 343 (iii) 729 (iv) 3125

4. Identify the greater number, wherever possible, in each of the following?
(i) 43 or 34 (ii) 53  or 35 (iii) 28 or 82

(iv) 1002 or 2100 (v) 210 or 102

5. Express each of the following as product of powers of their prime factors:
(i) 648 (ii) 405 (iii) 540 (iv) 3,600

6. Simplify:
(i) 2 × 103 (ii) 72 × 22 (iii) 23 × 5 (iv) 3 × 44

(v) 0 × 102 (vi) 52 × 33 (vii) 24 × 32 (viii) 32 × 104

7. Simplify:
(i) (– 4)3 (ii) (–3) × (–2)3 (iii) (–3)2 × (–5)2

(iv) (–2)3 × (–10)3

8. Compare the following numbers:
(i) 2.7 × 1012 ; 1.5 × 108 (ii) 4 × 1014 ; 3 × 1017

13.3  LAWS OF EXPONENTS

13.3.1  Multiplying Powers with the Same Base
(i) Let us calculate 22 × 23

22 × 23 = (2 × 2) × (2 × 2 × 2)
= 2 × 2 × 2 × 2 × 2 = 25 = 22+3

Note that the base in 22 and 23 is same and the sum of the exponents, i.e., 2 and 3 is 5
(ii) (–3)4 × (–3)3 = [(–3) × (–3) × (–3)× (–3)]  × [(–3) × (–3) × (–3)]

= (–3) × (–3) × (–3) × (–3) × (–3) × (–3) × (–3)
= (–3)7

= (–3)4+3

Again, note that the base is same and the sum of exponents, i.e., 4 and 3, is 7
(iii) a2 × a4 = (a × a) × (a × a × a × a)

= a × a × a × a × a × a = a6

(Note: the base is the same and the sum of the exponents is 2 + 4 = 6)
Similarly, verify:

42 × 42 = 42+2

32 × 33 = 32+3
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Can you write the appropriate number in the box.

(–11)2 × (–11)6 = (–11)

b2 × b3 = b  (Remember, base is same; b is any integer).

c3 × c4 = c   (c is any integer)

d10 × d20 = d

From this we can generalise that for any non-zero integer a, where m
and n are whole numbers,

am × an = am + n

Caution!
Consider 23 × 32

Can you add the exponents? No! Do you see ‘why’? The base of 23 is 2 and base
of 32 is 3. The bases are not same.

13.3.2  Dividing Powers with the Same Base
Let us simplify 37 ÷ 34?

37 ÷ 34  =
7

4

3
3

 = 
3 3 3 3 3 3 3

3 3 3 3

= 3 × 3 × 3 = 33 = 37 – 4

Thus 37 ÷ 34 = 37 – 4

(Note, in 37 and 34 the base is same and 37 ÷ 34 becomes 37–4)
Similarly,

56 ÷ 52 =
5

5

5 5 5 5 5 5

5 5

6

2 = × × × × ×
×

= 5 × 5 × 5 × 5 = 54 = 56 – 2

or 56 ÷ 52 = 56 – 2

Let a be a non-zero integer, then,

a4 ÷ a2 =
a

a

a a a a

a a
a a a a

4

2
2 4 2= = = =

or a4 ÷ a2 = a4 – 2

Now can you answer quickly?
108 ÷ 103 = 108 – 3 = 105

79 ÷ 76 = 7
a8 ÷ a5 = a

Simplify and write in
exponential form:

(i) 25 × 23

(ii) p3 × p2

(iii) 43 ×42

(iv) a3 × a2 × a7

(v) 53 × 57 × 512

(vi) (– 4)100 × (–4)20

TRY THESE
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For non-zero integers b and c,
b10 ÷ b5 = b

c100 ÷ c90 = c
In general, for any non-zero integer a,

am ÷ an = am – n

where m and n are whole numbers and m > n.

13.3.3  Taking Power of a Power
Consider the following

Simplify � �232 � �42; 3

Now, 

� �232

 means  23  is  multiplied two times with itself.

� �232 = 23 × 23

= 23 + 3 (Since am × an = am + n)
= 26 = 23 × 2

Thus � �232 = 23×2

Similarly � �423 = 32 × 32 × 32 × 32

= 32 + 2 + 2 + 2

= 38 (Observe 8 is the product of 2 and 4).
= 32 × 4

Can you tell what would � �1027 would be equal to?

So � �232  = 23 × 2 = 26

� �423  = 32 × 4 = 38

� �1027 = 72 × 10 = 720

  32a  = a 2 × 3 = a6

(am)3 = am × 3 = a3m

From this we can generalise for any non-zero integer ‘a’, where ‘m’
and ‘n’ are whole numbers,

  nma = amn

TRY THESE

Simplify and write in exponential
form: (eg., 116 ÷ 112 = 114)

(i) 29 ÷ 23 (ii) 108 ÷ 104

(iii) 911 ÷ 97 (iv) 2015 ÷ 2013

(v) 713 ÷ 710

Simplify and write the answer in
exponential form:

(i)   426 (ii) � �10022

(iii) � �2507 (iv) � �735

TRY THESE
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EXAMPLE 7Can you tell which one is greater (52) × 3 or � �325 ?

SOLUTION (52) × 3 means 52 is multiplied by 3 i.e., 5 × 5 × 3 = 75

but � �325 means 52 is multiplied by itself three times i.e. ,

52 × 52 × 52 = 56 = 15,625
Therefore (52)3 > (52) × 3

13.3.4  Multiplying Powers with the Same Exponents
Can you simplify 23 × 33? Notice that here the two terms 23 and 33 have different bases,
but the same exponents.
Now, 23 ×  33 = (2 × 2 × 2) × (3 × 3 × 3)

= (2 × 3) × (2 × 3) × (2 × 3)
= 6 × 6 × 6
= 63    (Observe 6 is the product of bases 2 and 3)

Consider 44 × 34 = (4 × 4 × 4 × 4) × (3 × 3 × 3 × 3)
= (4 × 3) × (4 × 3) × (4 × 3) × (4 × 3)
= 12 ×  12 ×  12  × 12
= 124

Consider, also, 32 × a2 = (3 × 3) × (a × a)
= (3 × a) × (3 × a)
= (3 × a)2

= (3a)2 (Note: 3×a = 3a )
Similarly,  a4× b4 = (a × a × a × a) ×  (b × b × b × b)

= (a × b) × (a × b) × (a × b) × (a × b)
= (a × b)4

= (ab)4 (Note a × b = ab)
In general, for any non-zero integer a

am × bm = (ab)m (where m is any whole number)

EXAMPLE 8 Express the following terms in the exponential form:
(i) (2 × 3)5 (ii) (2a)4 (iii) (– 4m)3

SOLUTION

(i) (2 × 3)5 = (2 × 3) × (2 × 3) × (2 × 3) × (2 × 3) × (2 × 3)
= (2 × 2 × 2 × 2 × 2) × (3 × 3× 3 × 3 × 3)
= 25 × 35

TRY THESE
Put into another form using
am × bm = (ab)m:

(i) 43 × 23 (ii) 25 × b5

(iii) a2 × t2 (iv) 56 × (–2)6

(v) (–2)4 × (–3)4
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(ii) (2a)4 = 2a × 2a × 2a × 2a
= (2 × 2 × 2 × 2) × (a × a × a × a)
= 24 × a4

(iii) (– 4m)3 = (– 4 × m)3

= (– 4 × m) × (– 4 × m) × (– 4 × m)
= (– 4) × (– 4) × (– 4) × (m × m × m) = (– 4)3 × (m)3

13.3.5   Dividing Powers with the Same Exponents
Observe the following simplifications:

(i)
4

4

2 2×2×2×2 2 2 2 2= = × × ×
3 3×3×3×3 3 3 3 3

= ⎛
⎝⎜

⎞
⎠⎟

2

3

4

(ii)
3

3

× × × ×
× ×

a a a a a a a
b b b b b b b

  = ⎛
⎝⎜

⎞
⎠⎟

a

b

3

From these examples we may generalise

a b
a

b

a

b
m m

m

m

m

÷ = = ⎛
⎝⎜

⎞
⎠⎟  where a and b are any non-zero integers and

m is a whole number.

EXAMPLE 9 Expand: (i) 3

5

4
⎛
⎝⎜

⎞
⎠⎟

(ii) 4

7

5
⎛
⎝⎜

⎞
⎠⎟

SOLUTION

(i) 3

5

4
⎛
⎝⎜

⎞
⎠⎟

 = 
4

4
3
5  = 

3 3 3 3

5 5 5 5

× × ×
× × ×

(ii)
4

7

5
⎛
⎝⎜

⎞
⎠⎟  = 

5

5
( 4)

7
 

 = 
4 4 4 4 4

7 7 7 7 7
( ) ( ) ( ) ( ) ( )

����� Numbers with exponent zero

Can you tell what 
5

5

3
3

 equals to?

5

5

3
3

 =
3 3 3 3 3 1
3 3 3 3 3
� � � � �
� � � �

by using laws of exponents

TRY THESE

Put into another form

using
m

m m aa b
b

        
:

(i) 45 ÷ 35

(ii) 25 ÷ b5

(iii) (– 2)3 ÷ b3

(iv) p4 ÷ q4

(v) 56 ÷ (–2)6

What is a0?
Obeserve the following pattern:

26 = 64
25 = 32
24 = 16

23  = 8
22  = ?
21  = ?
20  = ?

You can guess the value of 20 by just studying the
pattern!
You find that 20 = 1
If you start from 36 = 729, and proceed as shown
above finding 35, 34, 33,... etc, what will be 30 = ?
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35 ÷ 35 = 35 – 5 = 30

So 30 = 1
Can you tell what 70 is equal to?

73 ÷73 = 73 –  3  = 70

And
3

3

7
7

 =
7 × 7 × 7 1
7 × 7 × 7

 

Therefore 70 = 1
Similarly a3 ÷ a3 = a3–3 = a0

And a3 ÷ a3 =
3

3

× × 1
× ×

a a a a
a a a a

  

Thus a0 = 1 (for any non-zero integer a)
So, we can say that any number (except 0) raised to the power (or exponent) 0 is 1.

13.4 MISCELLANEOUS EXAMPLES USING THE LAWS OF

EXPONENTS

Let us solve some examples using rules of exponents developed.

EXAMPLE 10 Write exponential form for 8 × 8 × 8 × 8 taking base as 2.

SOLUTION We have, 8 × 8 × 8 × 8 = 84

But we know that 8 = 2 × 2 × 2 = 23

Therefore 84 = (23)4 = 23 × 23 × 23 × 23

= 23 × 4 [You may also use (am)n = amn]
= 212

EXAMPLE 11 Simplify and write the answer in the exponential form.

(i)
7

5
2

3 3
3
� �

�� �
� 	

(ii) 23 × 22 × 55 (iii) (62 × 64) ÷ 63

(iv) [(22)3 × 36] × 56 (v) 82 ÷ 23

SOLUTION

(i)
7

5
2

3 3
3
� �

�� �
� 	

 = � �7 2 53 3
 �

= 35×35 = 35+5 = 310
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(ii) 23 × 22 × 55 =  23+2 × 55

= 25 × 55 = (2 × 5)5 = 105

(iii) � �2 4 36 6 6� � = 2 4 36 6� �

                            = 
6

6 3 3
3

6 6 6
6


� �

(iv) � �32 6 62 3 5
 �� �� �� �  = [26 × 36] × 56

= � �6 62 3 5� �

= � �62 3 5� � = 630

(v) 8 = 2 × 2 × 2 = 23

Therefore 82 ÷ 23 = (23)2 ÷ 23

= 26 ÷ 23 = 26– 3 = 32

EXAMPLE 12 Simplify:

 (i)
4 3

3 2

12 9 4
6 8 27

� �
� �

(ii) 23 × a3 × 5a4 (iii)
2 3 2

9 4

4 5

2

SOLUTION

(i) We have

4 3

3 2

12 9 4
6 8 27

� �
� �

 =
2 4 2 3 2

3 3 2 3
(2 ×3) ×(3 ) ×2
(2×3) ×(2 ) ×3

=
2 3 3 2

2 3 2 3

2 2 3 3

2 2 3 3

2 4 4 2 3 2

3 3 2 3 3

8 2 4 6

3 6 3 3

( ) ( )
=

×

×

=
8 2 4 6

3 6 3 3

2 ×3
2 ×3

  

   = 
10 10

9 6
2 ×3
2 ×3

= 210 – 9 × 310 – 6 = 21 × 34

= 2 × 81 = 162
(ii) 23 × a3 × 5a4 = 23 × a3 × 5 × a4

= 23 × 5 × a3 × a4 = 8 × 5 × a3 + 4

= 40 a7
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(ii)
2 3 2

9 4

4 5

2  =   
4 5

22 2

2×3 ×2

3 × 2
 = 

5 4

2 2 2

2×2 ×3
3 ×2  

=
1 5 4

4 2
2 ×3
2 ×3

 

 = 
6 4

4 2
2 ×3
2 ×3 = 6 4 4 22 ×3  

= 22 × 32 = 4 × 9 = 36
Note: In most of the examples that we have taken in this Chapter, the base of a power

was taken an integer. But all the results of the chapter apply equally well to a base
which is a rational number.

EXERCISE 13.2

1. Using laws of exponents, simplify and write the answer in exponential form:
(i) 32 × 34 × 38 (ii) 615 ÷ 610 (iii) a3 × a2

(iv) 7x ×72 (v)   32 35 5 (vi) 25 × 55

(vii) a4 × b4 (viii) � �343 (ix) � �20 15 32 2 2� �

(x) 8t ÷ 82

2. Simplify and express each of the following in exponential form:

(i) 2 3 4

3 32

3 4

(ii)   32 4 75 × 5 5     (iii) 4 325 5�

(iv)
2 8

3

3 7 11
21 11
� �
�

(v)
7

4 3

3
3 3�

(vi) 20 + 30 + 40

(vii)  20 × 30 × 40 (viii) (30 + 20) × 50 (ix)
8 5

3 3

2
4

a
a

�
�

(x)
5

8
3 ×a a

a
  
    

(xi) 4

4

5 8 3

5 5 2

a b

a b
(xii) � �232 2�

3. Say true or false and justify your answer:
(i) 10 × 1011 = 10011 (ii) 23  > 52 (iii) 23 × 32 = 65

(iv) 30 = (1000)0
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4. Express each of the following as a product of prime factors only in exponential form:
(i) 108 × 192 (ii) 270 (iii) 729 × 64

(iv) 768

5. Simplify:

(i) � �25 3

3

2 7
8 7

�
�

(ii)
25 5

10

2 8

3 4

× ×
×

t

t
(iii)

5 5

7 5

3 10 25
5 6
  

 

13.5  DECIMAL NUMBER SYSTEM

Let us look at the expansion of 47561, which we already know:
47561 = 4 × 10000 + 7 × 1000 + 5 × 100 + 6 × 10 + 1

We can express it using powers of 10 in the exponent form:
Therefore, 47561 = 4 × 104 + 7 × 103 + 5 × 102 + 6 × 101 + 1 × 100

(Note 10,000 = 104, 1000 = 103, 100 = 102, 10 = 101 and 1 = 100)
Let us expand another number:

104278 = 1 × 100,000 + 0 × 10,000 + 4 × 1000 + 2 × 100 + 7 × 10 + 8 × 1
 = 1 × 105 + 0 × 104 + 4 × 103 + 2 × 102 + 7 × 101 + 8 × 100

= 1 × 105 + 4 × 103 + 2 × 102 + 7 × 101 + 8 × 100

Notice how the exponents of 10 start from a maximum value of 5 and go  on decreasing
by 1 at a step from the left to the right upto 0.

13.6  EXPRESSING LARGE NUMBERS IN THE STANDARD FORM

Let us now go back to the beginning of the chapter. We said that large numbers can be
conveniently expressed using exponents. We have not as yet shown this. We shall do so now.

1. Sun is located 300,000,000,000,000,000,000 m from the centre of our Milky Way
Galaxy.

2. Number of stars in our Galaxy is 100,000,000,000.
3. Mass of the Earth is 5,976,000,000,000,000,000,000,000 kg.

These numbers are not convenient to write and read. To make it convenient
we use powers.
Observe the following:

59 = 5.9 × 10 = 5.9 × 101

590 = 5.9 × 100 = 5.9 × 102

5900 = 5.9 × 1000 = 5.9 × 103

5900 = 5.9 × 10000 = 5.9 × 104  and so on.

TRY THESE

Expand by expressing
powers of 10 in the
exponential form:

(i) 172
(ii) 5,643
(iii) 56,439
(iv) 1,76,428
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We have expressed all these numbers in the standard form. Any number can be
expressed as a decimal number between 1.0 and 10.0 including 1.0 multiplied by a power
of 10. Such a form of a number is called its standard form. Thus,

5,985 = 5.985 × 1,000 = 5.985 × 103 is the standard form of 5,985.
Note, 5,985 can also be expressed as 59.85 × 100 or 59.85 × 102. But these are  not

the standard forms, of 5,985. Similarly, 5,985 = 0.5985 × 10,000 = 0.5985 × 104 is also
not the standard form of 5,985.

We are now ready to express the large numbers we came across at the beginning of
the chapter in this form.
The, distance of Sun from the centre of our Galaxy  i.e.,

300,000,000,000,000,000,000 m  can be written as
3.0 × 100,000,000,000,000,000,000 = 3.0 × 1020 m

Now, can you express 40,000,000,000 in the similar way?
Count the number of zeros in it. It is 10.
So, 40,000,000,000 = 4.0 × 1010

Mass of the Earth = 5,976,000,000,000,000,000,000,000 kg
= 5.976 × 1024 kg

Do you agree with the fact, that the number when written in the standard form is much
easier to read, understand and compare than when the number is written with 25 digits?
Now,

Mass of Uranus = 86,800,000,000,000,000,000,000,000 kg
     = 8.68 × 1025 kg

Simply by comparing the powers of 10 in the above two, you can tell that the mass of
Uranus is greater than that of the Earth.

The distance between Sun and Saturn is 1,433,500,000,000 m or 1.4335 × 1012 m.
The distance betwen Saturn and Uranus is 1,439,000,000,000 m  or 1.439 × 1012m.  The
distance between Sun and Earth is 149, 600,000,000 m or 1.496 × 1011m.
Can you tell which of the three distances is smallest?

EXAMPLE 13 Express the following numbers in the standard form:
(i) 5985.3 (ii) 65,950

(iii) 3,430,000 (iv) 70,040,000,000

SOLUTION

(i) 5985.3 = 5.9853 × 1000 = 5.9853 × 103

(ii) 65,950 = 6.595 × 10,000 = 6.595 × 104

(iii) 3,430,000 = 3.43 × 1,000,000 = 3.43 × 106

(iv) 70,040,000,000 = 7.004 × 10,000,000,000 = 7.004 × 1010
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A point to remember is that one less than the digit count (number of digits) to the left
of the decimal point in a given number is the exponent of 10 in the standard form. Thus, in
70,040,000,000 there is no decimal point shown; we assume it to be at the (right) end.
From there, the count of the places (digits) to the left is 11. The exponent of 10 in the
standard form is 11 – 1 = 10. In 5985.3 there are 4 digits to the left of the decimal point
and hence the exponent of 10 in the standard form is 4 – 1 = 3.

EXERCISE 13.3

1. Write the following numbers in the expanded forms:

279404, 3006194, 2806196, 120719, 20068

2. Find the number from each of the following expanded forms:

(a) 8 ×104 + 6 ×103 + 0×102 + 4×101 + 5×100

(b) 4 ×105 + 5×103 + 3×102 + 2×100

(c) 3 ×104 + 7×102 + 5×100

(d) 9 ×105 + 2×102 + 3×101

3. Express the following numbers in standard form:

(i) 5,00,00,000 (ii) 70,00,000     (iii) 3,18,65,00,000

       (iv)   3,90,878 (v) 39087.8     (vi) 3908.78

4. Express the number appearing in the following statements in standard form.

(a) The distance between Earth and Moon is 384,000,000 m.

(b) Speed of light in vacuum is 300,000,000 m/s.

(c) Diameter of the Earth is 1,27,56,000 m.

(d) Diameter of the Sun is 1,400,000,000 m.

(e) In a galaxy there are on an average 100,000,000,000 stars.

(f) The universe is estimated to be about 12,000,000,000 years old.

(g) The distance of the Sun from the centre of the Milky Way Galaxy is estimated to
be 300,000,000,000,000,000,000 m.

(h) 60,230,000,000,000,000,000,000 molecules are contained in a drop of water
weighing 1.8 gm.

(i) The earth has 1,353,000,000 cubic km of sea water.

(j) The population of India was about 1,027,000,000 in March, 2001.
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WHAT HAVE WE DISCUSSED?
1. Very large numbers are difficult to read, understand, compare and operate upon. To

make all these easier, we use exponents, converting many of the large numbers in a
shorter form.

2. The following are exponential forms of some numbers?
10,000 = 104 (read as 10 raised to 4)

243 = 35, 128 = 27.
Here, 10, 3 and 2 are the bases, whereas 4, 5 and 7 are their respective exponents.
We also say, 10,000 is the 4th power of 10, 243 is the 5th power of 3, etc.

3. Numbers in exponential form obey certain laws, which are:
For any non-zero integers a and b and whole numbers m and n,
(a) am × an = am + n

(b) am ÷ an = am – n, m > n
(c) (am)n = amn

(d) am × bm = (ab)m

(e) am ÷ bn =
ma

b
  
    

(f) a0 = 1
(g) (–1)even number = 1

(–1)odd number = – 1



14.1  INTRODUCTION

Symmetry is an important geometrical concept, commonly exhibited in nature and is used
almost in every field of activity.  Artists, professionals, designers of clothing or jewellery, car
manufacturers, architects and many others make use of the idea of symmetry.  The beehives,
the flowers, the tree-leaves, religious symbols, rugs, and handkerchiefs — everywhere you
find symmetrical designs.

You have already had a ‘feel’ of line symmetry in your previous class.
A figure has a line symmetry, if there is a line about which the figure may be folded so that

the two parts of the figure will coincide.
You might like to recall these ideas.  Here are some activities to help you.

C
ha

pt
er

  
1
4

Symmetry

Nature
Architecture Engineering

Compose a picture-album
 showing symmetry.

Create some colourful
Ink-dot devils

Make some symmetrical
paper-cut designs.
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Enjoy identifying lines (also called axes) of symmetry in the designs you collect.
Let us now strengthen our ideas on symmetry further.  Study the following figures in

which the lines of symmetry are marked with dotted lines. [Fig 14.1 (i) to (iv)]

14.2  LINES OF SYMMETRY FOR REGULAR POLYGONS

You know that a polygon is a closed figure made of several line segments.  The polygon
made up of the least number of line segments is the triangle. (Can there be a polygon that
you can draw with still fewer line segments? Think about it).

A polygon is said to be regular if all its sides are of equal length and all its angles are of
equal measure. Thus, an equilateral triangle is a regular polygon of three sides. Can you
name the regular polygon of four sides?

An equilateral triangle is regular because each of its sides has same length and each of
its angles measures 60° (Fig 14.2).

A square is also regular because all its sides are of equal length and each of its angles
is a right angle (i.e., 90°).  Its diagonals are seen to be perpendicular bisectors of one
another (Fig 14.3).

Fig 14.1
(i) (ii) (iii) (iv)

60°

60°

60°

a a

a

Fig 14.2

Fig 14.3
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If a pentagon is regular, naturally, its sides should have equal length. You will, later on,
learn that the measure of each of its  angles is 108° (Fig 14.4).

A regular hexagon has all its sides equal and each of its angles measures
120°. You will learn more of these figures later (Fig 14.5).

The regular polygons are symmetrical figures and hence their lines of
symmetry are quite interesting,

Each regular polygon has as many lines of symmetry as it has sides [Fig 14.6 (i) - (iv)].
We say, they have multiple lines of symmetry.

Perhaps, you might like to investigate this by paper folding. Go ahead!
The concept of line symmetry is closely related to mirror reflection.  A shape has line

symmetry when one half of it is the mirror image of the other half (Fig 14.7). A mirror line,
thus, helps to visualise a line of symmetry (Fig 14.8).

Is the dotted line a mirror line? No. Is the dotted line a mirror line? Yes.
Fig 14.8

Fig 14.4

Fig 14.5

Fig 14.7

Fig 14.6
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While dealing with mirror reflection, care is needed to note down the left-right changes
in the orientation, as seen in the figure here (Fig 14.9).

The shape is same, but the other way round!

Play this punching game!

Fold a sheet into two halves Punch a hole two holes about the
symmetric fold.

Fig 14.10
The fold is a line (or axis) of symmetry.  Study about punches at different locations on

the folded paper and the corresponding lines of symmetry (Fig 14.10).

EXERCISE 14.1

1. Copy the figures with punched holes and find the axes of symmetry for the following:

(i) (ii)
Fig 14.9

R R



SYMMETRY 269

2. Given the line(s) of symmetry, find the other hole(s):

3. In the following figures, the mirror line (i.e., the line of symmetry) is given as a dotted
line. Complete each figure performing reflection in the dotted (mirror) line. (You might
perhaps place a mirror along the dotted line and look into the mirror for the image).
Are you able to recall the name of the figure you complete?

4. The following figures have more than one line of symmetry.  Such figures are said to
have multiple lines of symmetry.

Identify multiple lines of symmetry, if any, in each of the following figures:
(a) (b) (c)

(a) (b) (c) (d) (e) (f)
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5. Copy the figure given here.
Take any one diagonal as a line of symmetry and shade a few more squares to make
the figure symmetric about a diagonal. Is there more than one way to do that? Will
the figure be symmetric about both the diagonals?

6. Copy the diagram and complete each shape to be symmetric about the mirror line(s):

7. State the number of lines of symmetry for the following figures:
(a) An equilateral triangle (b) An isosceles triangle (c) A scalene triangle
(d) A square (e) A rectangle (f) A rhombus
(g) A parallelogram (h) A quadrilateral (i) A regular hexagon
(j) A circle

8. What letters of the English alphabet have reflectional symmetry (i.e., symmetry related
to mirror reflection) about.
(a) a vertical mirror (b) a horizontal mirror
(c) both horizontal and vertical mirrors

9. Give three examples of shapes with no line of symmetry.
10. What other name can you give to the line of symmetry of

(a) an isosceles triangle? (b) a circle?

14.3  ROTATIONAL SYMMETRY

What do you say when the hands of a clock go round?
You say that they rotate. The hands of a clock rotate in only

one direction, about a fixed point, the centre of the clock-face.
Rotation, like movement of the hands of a clock, is called

a clockwise rotation; otherwise it is said to be anticlockwise.

(a) (b) (c) (d)
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What can you say about the rotation of the blades of a ceiling fan?  Do they rotate
clockwise or anticlockwise? Or do they rotate both ways?

If you spin the wheel of a bicycle, it rotates.  It can rotate in either way: both clockwise
and anticlockwise. Give three examples each for (i) a clockwise rotation and (ii) anticlockwise
rotation.

When an object rotates, its shape and size do not change.  The rotation turns an object
about a fixed point.  This fixed point is the centre of rotation. What is the centre of
rotation of the hands of a clock?  Think about it.

The angle of turning during rotation is called the angle of rotation. A full
turn, you know, means a rotation of 360°.  What is the degree measure of
the angle of rotation for (i) a half-turn? (ii) a quarter-turn?
A half-turn means rotation by 180°; a quarter-turn is rotation by 90°.

When it is 12 O’clock, the hands of a clock are together. By 3 O’clock,
the minute hand would have made three complete turns; but the hour hand
wouldhave made only a quarter-turn.  What can you say about their positions
at 6 O’clock?

Have you ever made a paper windmill? The Paper windmill in the picture
looks symmetrical (Fig 14.11); but you do not find any line of symmetry. No
folding can help you to have coincident halves. However if you rotate it by
90° about the fixed point, the windmill will look exactly the same. We say the
windmill has a rotational symmetry.

Fig 14.12
In a full turn, there are precisely four positions (on rotation through the angles 90°,

180°, 270° and 360°) when the windmill looks exactly the same. Because of this, we say
it has a rotational symmetry of order 4.
Here is one more example for rotational symmetry.
Consider a square with P as one of its corners (Fig 14.13).
Let us perform quarter-turns about the centre of the square marked .

Fig 14.13

Fig 14.11

A

B

C

D

D

A

B

C

C

D

A

B

B A

C B

D C

A D

90° 90° 90° 90°

P

90°
P

P

P
90°

P
90°90°

(i) (ii) (iii) (iv) (v)
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Fig 14.13 (i) is the initial position. Rotation by 90° about the centre leads
to Fig 14.13 (ii). Note the position of P now. Rotate again through 90° and you get
Fig 14.13 (iii). In this way, when you complete four quarter-turns, the square reaches its
original position. It now looks the same as Fig14.13 (i). This can be seen with the help of
the positions taken by P.

Thus a square has a rotational symmetry of order 4 about its centre. Observe that
in this case,

(i) The centre of rotation is the centre of the square.
(ii) The angle of rotation is 90°.
(iii) The direction of rotation is clockwise.
(iv) The order of rotational symmetry is 4.

1. (a) Can you now tell the order of the rotational symmetry for an equilateral triangle?
(Fig 14.14)

Fig 14.14
(b) How many positions are there at which the triangle looks exactly the same,

when rotated about its centre by 120°?
2. Which of the following shapes (Fig 14.15) have rotational symmetry about the marked

point.

(i) (ii) (iii) (iv)
Fig 14.15

Draw two identical parallelograms, one-ABCD on a piece of paper and the other
A' B' C' D' on a transparent sheet. Mark the points of intersection of their diagonals,
O and O' respectively (Fig 14.16).

Place the parallelograms such that A' lies on A, B' lies on B and so on.  O' then falls
on O.

TRY THESE

120°

120°

12
0°

R

R R

R

(i) (ii) (iii) (iv)

DO THIS
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Stick a pin into the shapes at the point O.
Now turn the transparent shape in the clockwise direction.
How many times do the shapes coincide in one full round?
What is the order of rotational symmetry?

The point where we have the pin is the centre of rotation.  It is the
intersecting point of the diagonals in this case.

Every object has a rotational symmetry of order 1, as it occupies
same position after a rotation of 360° (i.e., one complete revolution).
Such cases have no interest for us.

You have around you many shapes, which possess rotational symmetry
(Fig 14.17).

Fruit Road sign Wheel
(i) (ii) (iii)

Fig 14.17
For example, when you slice certain fruits, the cross-sections are shapes with rotational

symmetry. This might surprise you when you notice them [Fig 14.17(i)].
Then there are many road signs that exhibit rotational symmetry. Next time when you

walk along a busy road, try to identify such road signs and find about the order of rotational
symmetry [Fig 14.17(ii)].
Think of some more examples for rotational symmetry. Discuss in each case:

(i) the centre of rotation (ii) the angle of rotation
(iii) the direction in which the rotation is affected and
(iv) the order of the rotational symmetry.

Give the order of the rotational symmetry of the given figures about the point
marked  (Fig 14.17).

(i) (ii) (iii)

Fig 14.16

TRY THESE

Fig 14.18
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EXERCISE14.2

1. Which of the following figures have rotational symmetry of order more than 1:

(a) (b) (c) (d) (e) (f)
2. Give the order of rotational symmetry for each figure:

(a) (b) (c) (d)

(e) (f) (g) (h)

14.4  LINE SYMMETRY AND ROTATIONAL SYMMETRY

You have been observing many shapes and their symmetries so far.  By now you
would have understood that some shapes have only line symmetry, some have only
rotational symmetry and some have both line symmetry and rotational symmetry.
For example, consider the square shape (Fig 14.19).
How many lines of symmetry does it have?
Does it have any rotational symmetry?
If ‘yes’, what is the order of the rotational symmetry?
Think about it.

The circle is the most perfect symmetrical figure, because it can be rotated around
its centre through any angle and at the same time it has unlimited number of lines

of symmetry. Observe any circle pattern. Every line
through the centre (that is every diameter) forms a
line of (reflectional) symmetry and it has rotational
symmetry around the centre for every angle.

Fig 14.19
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Some of the English alphabets have  fascinating symmetrical structures.Which capital
letters have just one line of symmetry (like E)? Which capital letters have a rotational
symmetry of order 2 (like I)?

By attempting to think on such lines, you will be able to fill in the following table:

Alphabet Line Number of Lines of Rotational Order of Rotational
Letters Symmetry Symmetry Symmetry Symmetry
Z No 0 Yes          2
S
H Yes Yes
O Yes Yes
E Yes
N Yes
C

EXERCISE 14.3
1. Name any two figures that have both line symmetry and rotational symmetry.
2. Draw, wherever possible, a rough sketch of

(i) a triangle with both line and rotational symmetries of order more than 1.
(ii) a triangle with only line symmetry and no rotational symmetry of order more

than 1.
(iii) a quadrilateral with a rotational symmetry of order more than 1 but not a line

symmetry.
(iv) a quadrilateral with line symmetry but not a rotational symmetry of order more than 1.

3. If a figure has two or more lines of symmetry, should it have rotational symmetry of
order more than 1?

4. Fill in the blanks:
 Shape Centre of Rotation Order of Rotation Angle of Rotation

Square

Rectangle
Rhombus
Equilateral
Triangle
Regular
Hexagon
Circle
Semi-circle

DO THIS
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5. Name the quadrilaterals which have both line and rotational symmetry of order more
than 1.

6. After rotating by 60° about a centre, a figure looks exactly the same as its original
position. At what other angles will this happen for the figure?

7. Can we have a rotational symmetry of order more than 1 whose angle of rotation is
(i) 45°? (ii) 17°?

WHAT HAVE WE DISCUSSED?
1. A figure has line symmetry, if there is a line about which the figure may be folded so

that the two parts of the figure will coincide.
2. Regular polygons have equal sides and equal angles. They have multiple (i.e., more

than one) lines of symmetry.
3. Each regular polygon has as many lines of symmetry as it has sides.

Regular Regular Regular Square Equilateral
Polygon hexagon pentagon triangle

Number of lines 6 5 4 3
of symmetry

4. Mirror reflection leads to symmetry, under which the left-right orientation have to be
taken care of.

5. Rotation turns an object about a fixed point.
This fixed point is the centre of rotation.
The angle by which the object rotates is the angle of rotation.
A half-turn means rotation by 180o; a quarter-turn means rotation by 90o.  Rotation
may be clockwise or anticlockwise.

6. If, after a rotation, an object looks exactly the same, we say that it has a rotational
symmetry.

7. In a complete turn (of 360o), the number of times an object looks exactly the same is
called the order of rotational symmetry. The order of symmetry of a square, for
example, is 4 while, for an equilateral triangle, it is 3.

8. Some shapes have only one line of symmetry, like the letter E; some have only rotational
symmetry, like the letter S; and some have both symmetries like the letter H.
The study of symmetry is important because of its frequent use in day-to-day life and
more because of the beautiful designs it can provide us.



  

15.1  INTRODUCTION: PLANE FIGURES AND SOLID SHAPES

In this chapter, you will classify figures you have seen in terms of what is known as dimension.
In our day to day life, we see several objects like books, balls, ice-cream cones etc.,

around us which have different shapes. One thing common about most of these objects is that
they all have some length, breadth and height or depth.
That is, they all occupy space and have three dimensions.
Hence, they are called three dimensional shapes.

Do you remember some of the three dimensional shapes (i.e., solid shapes) we have seen
in earlier classes?

Match the shape with the name:
C

ha
pt

er
  

1
5

Visualising Solid
Shapes

TRY THESE

Fig 15.1

(i) (a) Cuboid (iv) (d) Sphere

(ii) (b) Cylinder (v) (e) Pyramid

(iii) (c) Cube (vi) (f) Cone
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Try to identify some objects shaped like each of these.
By a similar argument, we can say figures drawn on paper which have only length and

breadth are called two dimensional (i.e., plane) figures. We have also seen some two
dimensional figures in the earlier classes.
Match the 2 dimensional figures with the names (Fig 15.2):

(i) (a) Circle

(ii) (b) Rectangle

(iii) (c) Square

(iv) (d) Quadrilateral

(v) (e) Triangle

Fig 15.2

Note: We can write 2-D in short for 2-dimension and 3-D in short for
3-dimension.

15.2  FACES, EDGES AND VERTICES

Do you remember the Faces, Vertices and Edges of solid shapes, which you studied
earlier?  Here you see them for a cube:

(i) (ii) (iii)

Fig 15.3
The 8 corners of the cube are its vertices. The 12 line segments that form the

skeleton of the cube are its edges. The 6 flat square surfaces that are the skin of the
cube are its faces.
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Complete the following table:
Table 15.1

Can you see that, the two dimensional figures can be identified as the faces of the
three dimensional shapes?  For example a cylinder  has two faces which are circles,

and a pyramid, shaped like this  has triangles as its faces.

We will now try to see how some of these 3-D shapes can be visualised on a 2-D
surface, that is, on paper.

In order to do this, we would like to get familiar with three dimensional objects closely.
Let us try forming these objects by making what are called nets.

15.3  NETS FOR BUILDING 3-D SHAPES

Take a cardboard box.  Cut the edges to lay the box flat.  You have now a net for that box.
A net is a sort of skeleton-outline in 2-D [Fig154 (i)], which, when folded [Fig154 (ii)],
results in a 3-D shape [Fig154 (iii)].

(i) (ii) (iii)

Fig 15.4

DO THIS

Vertex

Face

Edge

Face
Vertex

Edge

Faces (F) 6 4

Edges (E) 12

Vertices (V) 8 4
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Here you got a net by suitably separating the edges. Is the
reverse process possible?

Here is a net pattern for a box (Fig 15.5). Copy an enlarged
version of the net and try to make the box by suitably folding
and gluing together. (You may use suitable units). The box is a
solid. It is a 3-D object with the shape of a cuboid.

Similarly, you can get a net for a cone by cutting a slit along
its slant surface (Fig 15.6).

You have different nets for different
shapes.  Copy enlarged versions of the nets
given (Fig 15.7) and try to make the 3-D shapes
indicated. (You may also like to prepare
skeleton models using strips of cardboard
fastened with paper clips).

Fig 15.7
We could also try to make a net for making a pyramid like the Great Pyramid in Giza

(Egypt) (Fig 15.8). That pyramid has a square base and triangles on the four sides.

See if you can make it with the given net (Fig 15.9).

Fig 15.5

Fig 15.6

Cube
(i)

Cone
(iii)

Cylinder
(ii)

Fig 15.9Fig 15.8
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Here you find four nets (Fig 15.10). There are two correct nets among them to make
a tetrahedron.  See if you can work out which nets will make a tetrahedron.

Fig 15.10

EXERCISE 15.1

1. Identify the nets which can be used to make cubes (cut out copies of the nets and try it):

(i) (ii) (iii)

(iv) (v) (vi)
2. Dice are cubes with dots on each face.  Opposite faces of a die always have a total

of seven dots on them.
Here are two nets to make dice (cubes); the numbers inserted in each square indicate
the number of dots in that box.

Insert suitable numbers in the blanks, remembering that the number on the
opposite faces should total to 7.

3. Can this be a net for a die?
Explain your answer.

TRY THESE

1    2

3     4
5    6
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4. Here is an incomplete net for making a cube. Complete it in at least two different
ways. Remember that a cube has six faces. How many are there in the net here?
(Give two separate diagrams.  If you like, you may use a squared sheet for easy
manipulation.)

5. Match the nets with appropriate solids:

(a) (i)

(b) (ii)

(c) (iii)

(d) (iv)

Play this game

You and your friend sit back-to-back. One of you reads out a net to make a 3-D shape,
while the other attempts to copy it and sketch or build the described 3-D object.

15.4  DRAWING SOLIDS ON A FLAT SURFACE

Your drawing surface is paper, which is flat. When you draw a solid shape, the images are
somewhat distorted to make them appear three-dimensional. It is a visual illusion. You will
find here two techniques to help you.

15.4.1  Oblique Sketches
Here is a picture of a cube (Fig 15.11). It gives a clear idea of how the cube looks like,
when seen from the front. You do not see certain faces. In the drawn picture, the lengthsFig 15.11
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are not equal, as they should be in a cube. Still, you are able to recognise it as a cube. Such
a sketch of a solid is called an oblique sketch.
How can you draw such sketches? Let us attempt to learn the technique.

You need a squared (lines or dots) paper.  Initially practising to draw on these sheets will
later make it easy to sketch them on a plain sheet (without the aid of squared lines or dots!)
Let us attempt to draw an oblique sketch of a 3 × 3 × 3 (each edge is 3 units) cube (Fig 15.12).

Step 1 Step 2
Draw the front face. Draw the opposite face. Sizes of the

faces have to be same, but the sketch
is somewhat off-set from step 1.

Step 3 Step 4
Join the corresponding corners Redraw using dotted lines for

hidden edges. (It is a convention)
The sketch is ready now.

Fig 15.12
In the oblique sketch above, did you note the following?

(i) The sizes of the front faces and its opposite are same; and
(ii) The edges, which are all equal in a cube, appear so in the sketch, though the actual

measures of edges are not taken so.
You could now try to make an oblique sketch of a cuboid (remember the faces in this

case are rectangles)
Note: You can draw sketches in which measurements also agree with those of a given

solid. To do this we need what is known as an isometric sheet. Let us try to
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make a cuboid with dimensions 4 cm length, 3 cm breadth and 3 cm height on
given isometric sheet.

15.4.2  Isometric Sketches
Have you seen an isometric dot sheet? (A sample is given at the end of the book). Such a
sheet divides the paper into small equilateral triangles made up of dots or lines. To draw
sketches in which measurements also agree with those of the solid, we can use isometric
dot sheets.

Let us attempt to draw an isometric sketch of a cuboid of dimensions 4 × 3 × 3 (which
means the edges forming length, breadth and height are 4, 3, 3 units respectively) (Fig 15.13).

Step 1 Step 2
Draw a rectangle to show the Draw four parallel line segments of

front face. length 3 starting from the four corners
of the rectangle.

Step 3 Step 4
Connect the matching corners This is an isometric sketch
with appropriate line segments. of the cuboid.

Fig 15.13
Note that the measurements are of exact size in an isometric

sketch; this is not so in the case of an oblique sketch.
EXAMPLE 1 Here is an oblique sketch of a cuboid [Fig 15.14(i)].

Draw an isometric sketch that matches this
drawing.

SOLUTION Here is the solution [Fig 15.14(ii)]. Note how the
measurements are taken care of.Fig 15.14 (i) Fig 15.14 (ii)
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How many units have you taken along (i) ‘length’? (ii) ‘breadth’? (iii) ‘height’? Do
they match with the units mentioned in the oblique sketch?

EXERCISE 15.2

1. Use isometric dot paper and make an isometric sketch for each one of the
given shapes:

Fig 15.15
2. The dimensions of a cuboid are 5 cm, 3 cm and 2 cm.  Draw three different isometric

sketches of this cuboid.
3. Three cubes each with 2 cm edge are placed side by side to form a cuboid. Sketch

an oblique or isometric sketch of this cuboid.
4. Make an oblique sketch for each one of the given isometric shapes:

(i) (ii)

(iii) (iv)
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5. Give (i) an oblique sketch and (ii) an isometric sketch for each of the following:
(a) A cuboid of dimensions 5 cm, 3 cm and 2 cm.  (Is your sketch unique?)
(b) A cube with an edge 4 cm long.

An isometric sheet is attached at the end of the book. You could try to make on it some
cubes or cuboids of dimensions specified by your friend.

15.4.3  Visualising Solid Objects

Sometimes when you look at combined shapes, some of them may be hidden from
your view.

Here are some activities you could try in your free time to help you visualise some solid
objects and how they look. Take some cubes and arrange them as shown in
Fig 15.16.

Fig 15.16
Now ask your friend to guess how many cubes there are when observed from the

view shown by the arrow mark.

Try to guess the number of cubes in the following arrangements (Fig 15.17).

DO THIS

How
many

cubes?

(i) (ii) (iii)

TRY THESE

(i) (iii)(ii)Fig 15.17
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Such visualisation is very helpful. Suppose you form a cuboid by joining such cubes.
You will be able to guess what the length, breadth and height of the cuboid would be.

EXAMPLE 2 If two cubes of dimensions 2 cm by 2cm by 2cm are
placed side by side, what would the dimensions of the
resulting cuboid be?

SOLUTION As you can see (Fig 15.18) when kept side by side, the
length is the only measurement which increases, it becomes
2 + 2 = 4 cm.
The breadth = 2 cm and the height = 2 cm.

 1. Two dice are placed side by side as shown: Can you say what the total
would be on the face opposite to
(a) 5 + 6 (b) 4 + 3
(Remember that in a die sum of numbers on opposite faces is 7)

2. Three cubes each with 2 cm edge are placed side by side to form a cuboid. Try to
make an oblique sketch and say what could be its length, breadth and height.

15.5  VIEWING DIFFERENT SECTIONS OF A SOLID

Now let us see how an object which is in 3-D can be viewed in different ways.

15.5.1 One Way to View an Object is by Cutting or Slicing

Slicing game

Here is a loaf of bread (Fig 15.20).  It is like a cuboid with a square face. You  ‘slice’ it with
a knife.

When you give a ‘vertical’ cut, you get several pieces, as shown in the
Figure 15.20.   Each face of the piece is a square!  We call this face a
‘cross-section’ of the whole bread.  The cross section is nearly a square
in this case.

Beware! If your cut is not ‘vertical’ you may get a different cross
section! Think about it. The boundary of the cross-section you obtain is a
plane curve.  Do you notice it?

A kitchen play

Have you noticed cross-sections of some vegetables when they are cut for the purposes
of cooking in the kitchen?  Observe the various slices and get aware of the shapes that
result as cross-sections.

Fig 15.18

TRY THESE

Fig 15.19

Fig 15.20
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Play this

Make clay (or plasticine) models of the following solids and make vertical or horizontal cuts.
Draw rough sketches of the cross-sections you obtain.  Name them wherever you can.

Fig 15.21

EXERCISE 15.3

1. What cross-sections do you get when you give a
(i) vertical cut (ii) horizontal cut

to the following solids?
(a) A brick (b) A round apple (c) A die
(d) A circular pipe (e) An ice cream cone

15.5.2  Another Way is by Shadow Play

A shadow play

Shadows are a good way to illustrate how three-dimensional objects can be viewed in two
dimensions. Have you seen a shadow play? It is a form of   entertainment using solid
articulated figures in front of an illuminated back-drop to create the illusion of moving

images.  It makes some indirect use of ideas in Mathematics.
You will need a source of light and a few solid shapes for this activity. (If

you have an overhead projector, place the solid under the lamp and do these
investigations.)

Keep a torchlight, right in front of a Cone. What type of
shadow does it cast on the screen? (Fig 15.23)

The solid is three-dimensional; what is the dimension of the shadow?
If, instead of a cone, you place a cube in the above game, what type of

shadow will you get?
Experiment with different positions of the source of light and with different

positions of the solid object. Study their effects on the shapes and sizes of the
shadows you get.

Here is another funny experiment that you might have tried already:
Place a circular plate in the open when the Sun at the noon time is just right
above it as shown in Fig 15.24 (i). What is the shadow that you obtain?

Fig 15.22

Fig 15.23

(i)
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Will it be same during
(a)   forenoons? (b)   evenings?

Fig 15.24 (i) - (iii)

Study the shadows in relation to the position of the Sun and the time of observation.

EXERCISE 15.4

1. A bulb is kept burning just right above the following solids.  Name the shape of the
shadows obtained in each case.  Attempt to give a rough sketch of the shadow.
(You may try to experiment first and then answer these questions).

A ball A cylindrical pipe A book
(i) (ii) (iii)

2. Here are the shadows of some 3-D objects, when seen under the lamp of an overhead
projector.  Identify the solid(s) that match each shadow. (There may be multiple
answers for these!)

A circle A square A triangle A rectangle

   (i) (ii) (iii) (iv)

(ii) (iii)
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3. Examine if the following are true statements:
(i) The cube can cast a shadow in the shape of a rectangle.
(ii) The cube can cast a shadow in the shape of a hexagon.

15.5.3 A Third Way is by Looking at it from Certain Angles
to Get Different Views

One can look at an object standing in front of it or by the side of it or from above. Each
time one will get a different view (Fig 15.25).

Fig 15.25
Here is an example of how one gets different views of a given building. (Fig 15.26)

Building Front view Side view Top view
Fig 15.26

You could do this for figures made by joining cubes.

Fig 15.27

Try putting cubes together and then making such sketches from different sides.

Front view Side view Top view
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1. For each solid, the three views (1), (2), (3) are given. Identify for each solid the
corresponding top, front and side views.

Solid Its views

(1) (2) (3)

2. Draw a view of each solid as seen from the direction indicated by the arrow.

TRY THESE

(i) (ii) (iii)
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WHAT HAVE WE DISCUSSED?
1. The circle, the square, the rectangle, the quadrilateral and the triangle are examples

of plane figures; the cube, the cuboid, the sphere, the cylinder, the cone and the
pyramid are examples of solid shapes.

2. Plane figures are of two-dimensions (2-D) and the solid shapes are of
three-dimensions (3-D).

3. The corners of a solid shape are called its vertices; the line segments of its skeleton
are its edges; and its flat surfaces are its faces.

4. A net is a skeleton-outline of a solid that can be folded to make it.  The same solid
can have several types of nets.

5. Solid shapes can be drawn on a flat surface (like paper) realistically. We call this
2-D representation of a 3-D solid.

6. Two types of sketches of a solid are possible:
(a) An oblique sketchdoes not have proportional lengths. Still it conveys all important

aspects of the appearance of the solid.
(b) An isometric sketch is drawn on an isometric dot paper, a sample of which is

given at the end of this book.  In an isometric sketch of the solid the measurements
kept proportional.

7. Visualising solid shapes is a very useful skill.  You should be able to see ‘hidden’
parts of the solid shape.

8. Different sections of a solid can be viewed in many ways:
(a) One way is to view by cutting or slicing the shape, which would result in the

cross-section of the solid.
(b) Another way is by observing a 2-D shadow of a 3-D shape.
(c) A third way is to look at the shape from different angles; the front-view, the

side-view and the top-view can provide a lot of information about the shape
observed.



EXERCISE 1.1
1. (a) Lahulspiti: –8°C, Srinagar: –2°C, Shimla: 5°C, Ooty: 14°C, Bangalore: 22°C

(b) 30°C (c) 6°C (d) Yes; No 2. 35

3. –7°C; –3°C 4. 6200 m 5. By a positive integer; Rs 358

6. By a negative integer; – 10. 7. (ii) is the magic square
9. (a) < (b) < (c) > (d) s<

(e) >
10. (i) 11 jumps (ii) 5 jumps (iii) (a) –3 + 2 –3 + 2 – 3 + 2 – 3 + 2 –3 + 2 –3 = – 8

(b) 4 – 2 + 4 – 2 + 4 = 8
8 in (b) represents going up 8 steps.

EXERCISE 1.2
1. One such pair could be:

(a) –10, 3 (b) – 6, 4; (– 6 – 4 = –10) (c) –3, 3

2. One such pair could be:
(a) –2, –10; [–2 – (–10) = 8] (b) – 6, 1

(c) –1, 2; (–1 – 2 = –3)
3. Scores of both the teams are same, i.e., –30; Yes
4. (i) –5 (ii) 0 (iii) –17 (iv) –7

(v) –3

EXERCISE 1.3
1. (a) –3 (b) –225 (c) 630 (d) 316 (e) 0

(f) 1320 (g) 162 (h) –360 (i) –24 (j) 36
3. (i)  – a (ii) (a) 22    (b) –37    (c) 0
4. –1 × 5 = –5, –1 × 4 = – 4 = – 5 + 1, – 1 × 3  = – 3 = – 4 + 1,

–1 × 2 = – 2 = – 3 + 1, – 1 × 1 = – 1 = – 2 + 1, – 1 × 0 = 0 = – 1 + 1 so, – 1 × (–1) = 0 + 1 = 1.
5. (a) 480 (b) – 53000 (c) – 15000 (d) – 4182

(e) – 62500 (f) 336 (g) 493 (h) 1140
6. – 10°C 7. (i) 8    (ii) 15    (iii) 0
8. (a) Loss of Rs 1000 (b) 4000 bags
9. (a) – 9 (b) – 7 (c) 7 (d) – 11

ANSWERS
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EXERCISE 1.4
1. (a)   –3 (b) –10 (c) 4 (d) –1

(e) –13 (f) 0 (g) 1 (h) –1 (i) 1
3. (a) 1 (b) 75 (c) – 206 (d) –1

(e) – 87 (f) – 48 (g) –10 (h) –12
4. (–6, 2), (–12, 4), (12, – 4), (9, –3), (–9, 3)    (There could be many such pairs)
5. 9 p.m.; – 14°C 6. (i) 8     (ii) 13 7. 1 hour

EXERCISE 2.1

1.  (i)
7
5

(ii)
39 74
8 8

       (iii)
31
35

(iv)
91

165

(v)
13 32
5 5

       (vi)
37 16
6 6

       
(vii)

39 74
8 8

       

2. (i)
2 8 2, ,
3 21 9

(ii)
7 3 1, ,

10 7 5
3. Yes 4.

139 146 cm
3 3

       

5. (i)
178 cm
20

(ii)
57 cm
6

;  Perimeter of ΔABE is greater.

6.
3 cm

10
7.

2
5

;   Ritu; 
1
5

8. Vaibhav; by 
1
6

 of an hour.

EXERCISE 2.2
1. (i) (d) (ii) (b) (iii) (a) (iv) (c)
2. (i) (c) (ii) (a) (iii) (b)

3. (i)
14
5

(ii)
11
3

(iii)
51
7

(iv)
11
9

(v)
22
3

(vi) 15 (vii)
26
7

(viii) 16 (ix)
14
3

(x) 9

4. One way of doing this is:

5. (a) (i) 12   (ii) 23 (b) (i) 12   (ii) 18 (c) (i) 12   (ii) 27 (d)(i) 16   (ii) 28

(i) (ii) (iii)
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6. (a)
315
5

(b)
333
4

(c)
315
4

(d)
125
3

(e)
119
2

(f)
127
5

7. (a) (i) 
31
8

  (ii) 
12
9

(b) (i) 
192
48

  (ii) 
16
24

8. (i) 2 litres  (ii) 
3
5

EXERCISE 2.3

1. (i) (a) 
1

16
  (b) 

3
20

 (c) 
1
3

(ii) (a)
2
63

 (b) 
6
35

 (c) 
3
70

2. (i)
71
9 (ii)

2
9

(iii)
9

16
(iv)

21
25

(v)
5
8

(vi)
131
20

(vii)
131
48

3. (i)
12

10
(ii)

444
45

(iii) 8 (iv)
12
42

(v)
331
35

(vi)
47
5

(vii)
12
7

4. (i)
3 5of
5 8

(ii)  
1 6of
2 7

5.
12 m
4 6.

110 hours
2

7. 44 km

8. (a) (i) 
5

10
  (ii) 

1
2

(b) (i) 
8

15
  (ii) 

8
15

EXERCISE 2.4

1. (i) 16 (ii)
84
5

(iii)
24
7

(iv)
3
2

(v)
9
7

(vi)
7
5

2. (i)
7
3

 (improper fraction) (ii)
8
5

 (improper fraction) (iii)
7
9

(proper fraction)

(iv)
5
6

(proper fraction) (v)
7

12
(proper fraction) (vi) 8(whole number)

(vii) 11 (whole number)

3. (i)
7
6

(ii)
4
45

(iii)
6
91

(iv)
13
9

(v)
7
8

(vi)
31
49

4. (i)
4
5

(ii)
2
3

(iii)
3
8

(iv)
35
9

(v)
21
16

(vi)
4

15

(vii)
48
25

(viii)
11
6
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|
||

EXERCISE 2.5
1. (i)  0.5 (ii) 0.7 (iii) 7 (iv) 1.49 (v) 2.30 (vi) 0.88
2. (i) Rs 0.07 (ii) Rs 7.07 (iii) Rs 77.77 (iv) Rs 0.50 (v) Rs 2.35
3. (i) 0.05m, 0.00005 km (ii) 3.5 cm, 0.035m, 0.000035 km
4. (i) 0.2 kg (ii) 3.470 kg (iii) 4.008 kg

5. (i) 2 × 10 + 0 × 1 + 0 × 
1

10
+ 3 × 

1
100

(ii) 2 × 1 + 0 × 
1

10
+ 3 × 

1
100

(iii)  2 × 100 + 0 × 10 + 0 × 1 + 0 × 
1

10
+ 3 × 

1
100

(iv) 2 × 1 + 0 × 
1

10
+ 3 × 

1
100

+ 4 × 
1

1000
6. (i) Ones (ii) Hundredths (iii) Tenths (iv) Hundredths (v) Thousandths
7. Ayub travelled more by 0.9 km or 900 m 8. Sarala bought more fruits 9.  14.6 km

EXERCISE 2.6
1. (i) 1.2 (ii) 36.8 (iii) 13.55 (iv) 80.4 (v) 0.35 (vi) 844.08

(vii) 1.72
2. 17.1 cm2

3. (i) 13 (ii) 368 (iii) 1537 (iv) 1680.7 (v) 3110 (vi) 15610
(vii) 362 (viii) 4307 (ix) 5 (x) 0.8 (xi) 90 (xii) 30

4. 553 km 5. (i)   0.75 (ii) 5.17 (iii) 63.36 (iv) 4.03 (v) 0.025
(vi) 1.68 (vii) 0.0214 (viii) 10.5525 (ix) 1.0101 (x) 110.011

EXERCISE 2.7
1. (i) 0.2 (ii) 0.07 (iii) 0.62 (iv) 10.9 (v) 162.8 (vi) 2.07

(vii)  0.99 (viii) 0.16
2. (i) 0.48 (ii) 5.25 (iii) 0.07 (iv) 3.31 (v) 27.223 (vi) 0.056

(vii) 0.397
3. (i) 0.027 (ii) 0.003 (iii) 0.0078 (iv) 4.326 (v) 0.236 (vi) 0.9853
4. (i) 0.0079 (ii) 0.0263 (iii) 0.03853 (iv) 0.1289 (v) 0.0005
5. (i) 2 (ii) 180 (iii) 6.5 (iv) 44.2 (v) 2 (vi) 31

(vii) 510 (viii) 27 (ix) 2.1 6. 18 km

EXERCISE 3.1
2. Marks Tally Marks Frequency

1 1
2 2
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3 1

4 3

5 5

6 4

7 2

8 1

9 1

(i) 9 (ii) 1 (iii) 8 (iv) 5

3. 2 4. 50 5. (i)  12.5   (ii)  3   (iii)  
0 8 6 4

4

+ + +
 = 

18 9or
4 2    (iv)  A

6. (i) Highest marks = 95, Lowest marks = 39 (ii)  56    (iii)  73 7. 2058
8. (i) 20.5  (ii) 5.9  (iii) 5 9. (i) 151 cm    (ii) 128 cm    (iii) 23 cm    (iv) 141.4 cm    (v) 5

EXERCISE 3.2
1. Mode = 20, Median = 20, Yes. 2. Mean = 39, Mode = 15, Median = 15, No.
3. (i)  Mode = 38, 43; Median = 40 (ii) Yes, there are 2 modes.
4. Mode = 14, Median = 14
5. (i) T (ii) F (iii) T (iv) F

EXERCISE 3.3
1. (a) Cat (b) 8
4. (i) Maths (ii) S. Science (iii) Hindi
5. (ii) Cricket (iii) Watching sports
6. (i) Jammu (ii) Jammu, Bangalore

(iii) Bangalore and Jaipur  or  Bangalore and Ahmedabad (iv) Mumbai

EXERCISE 3.4
1. (i) Certain to happen (ii) Can happen but not certain (iii) Imposible

(iv) Can happen but not certain (v) Can happen but not certain

2. (i)
1
6 (ii)

1
6 3.

1
2

EXERCISE 4.1
1. (i) No. (ii) No (iii) Yes (iv) No (v) Yes (vi) No

(vii) Yes (viii) No (ix) No (x) No (xi) Yes

|

|||

||||

||||

||

|

|
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2. (a) No (b) No (c) Yes (d) No (e) No (f) No
3. (i) p = 3 (ii) m = 6

4. (i) x + 4 = 9 (ii) y – 2 = 8 (iii) 10a = 70 (iv)
b

5
= 6

(v)
3

4

t
= 15 (vi) 7m + 7 = 77 (vii)

x

4
 – 4 = 4 (viii) 6y – 6 = 60

(ix) 3 30
3
z   

5. (i) The sum of p and 4 is 15 (ii) 7 subtracted from m is 3
(iii) Twice a number m is 7 (iv) One-fifth of a number m is 3
(v) Three-fifth of a number m is 6 (vi) Three times a number p when added to 4 gives 25

(vii) 2 subtracted from four times a number p is 18
(viii) Add 2 to half of a number p to get 8

6. (i) 5m + 7 = 37 (ii) 3y + 4 = 49 (iii) 2l + 7 = 87 (iv) 4b = 180°

EXERCISE 4.2
1. (a) Add 1 to both sides; x = 1 (b) Subtract 1 from both sides; x = –1

(c) Add 1 to both sides; x = 6 (d) Subtract 6 from both sides; x = – 4

(e) Add 4 to both sides; y = –3 (f) Add 4 to both sides; y = 8

(g) Subtract 4 from both sides; y = 0 (h) Subtract 4 from both sides; y = – 8

2. (a) Divide both sides by 3; l = 14 (b) Multiply both sides by 2; b = 12

(c) Multiply both sides by 7; p = 28 (d) Divide both sides by 4; x = 
25

4

(e) Divide both sides by 8; y = 
36
8 (f) Multiply both sides by 3; z = 

15

4

(g) Multiply both sides by 5; a =  
7

3
(h) Divide both sides by 20; t = 

1

2

3. (a) Step 1: Add 2 to both sides (b) Step 1: Subtract 7 from both sides

Step 2: Divide both sides by 3; n = 16 Step 2: Divide both sides by 5; m = 2

(c) Step 1: Multiply both sides by 3 (d) Step 1: Multiply both sides 10

Step 2: Divide both sides by 20; p = 6 Step 2: Divide both sides by 3; p = 20

4. (a) p = 10 (b) p = 9 (c) p = 20 (d) p = –15 (e) p = 8 (f) s = –3

(g) s = – 4 (h) s = 0 (i) q = 3 (j) q = 3 (k) q = –3 (l) q = 3
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EXERCISE 4.3

1. (a) y = 8 (b) t = 
18

5
(c) a = –5 (d) q = – 8 (e) x = – 4 (f) x = 

5

2

(g) m = 
1

2
(h) z = –2 (i) l = 

4

9
(j) b = 12

2. (a) x = 2 (b) n = 12 (c) n = –2 (d) y = 4 (e) x = 
17

4

(f) x = – 1

4
(g) p = 7 (h) p = 7

3. (a) p =
14

5
(b) p = 

6

5
(c) p = – 

6

5
(d) t = 0 (e) t = 3 (f) m = 2

4. (a) Equations are: 10x + 2 = 22; 
x

5

2

5
= ; 5x – 3 = 7

(b) Equations are: 3x = – 6;  3x + 7 = 1; 3x + 10 = 4

EXERCISE 4.4

1. (a) 8x + 4 = 60; x = 7 (b)
x

5
 – 4 = 3; x = 35 (c) 3

4
 y + 3 = 21 ; y = 24

(d) 2m – 11 = 15 ; m = 13 (e) 50 – 3x = 8 ; x = 14 (f)
x +19

5
= 8 ; x = 21

(g)
5

2

n
–7 = 

11
2

 ; n = 5

2. (a) Lowest score = 40 (b) 70° each (c) Sachin: 132 runs, Rahul: 66 runs
3.  (i) 6 (ii) 15 years (iii) 25 4. 30

EXERCISE 5.1
1.  (i) 70° (ii) 27° (iii) 33°
2.  (i) 75° (ii) 93° (iii) 26°
3.  (i) supplementary (ii) complementary (iii) supplementary

(iv) supplementary (v) complementary (vi) complementary
4. 45° 5. 90° 6. ∠2 will increase with the same measure as the decrease in  ∠1.
7.  (i) No (ii) No (iii) Yes 8. Less than 45°
9.  (i) Yes (ii) No (iii) Yes (iv) Yes (v) Yes (vi) ∠COB

10.  (i) ∠1, ∠4; ∠5, ∠2 + ∠3 (ii) ∠1, ∠5; ∠4, ∠5
11. ∠1 and ∠2 are not adjacent angles because their vertex is not common.
12.  (i) x = 55°, y = 125°, z = 125° (ii) x = 115°, y = 140°, z = 40°
13.  (i) 90° (ii) 180° (iii) supplementary (iv) linear pair (v) equal

(vi) obtuse angles
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14.  (i) ∠AOD, ∠BOC (ii) ∠EOA, ∠AOB (iii) ∠EOB, ∠EOD
(iv) ∠EOA, ∠EOC (v) ∠AOB, ∠AOE; ∠AOE, ∠EOD; ∠EOD, ∠COD

EXERCISE 5.2
1. (i) Corresponding angle property (ii) Alternate interior angle property

(iii) Interior angles on the same side of the transversal are supplementary
2. (i) ∠1, ∠5; ∠2, ∠6; ∠3, ∠7; ∠4, ∠8 (ii) ∠2, ∠8; ∠3, ∠5

(iii) ∠2, ∠5; ∠3, ∠8 (iv) ∠1, ∠3; ∠2, ∠4; ∠5, ∠7; ∠6, ∠8
3. a = 55°; b = 125°; c = 55°; d = 125°; e = 55°; f = 55°
4. (i) x = 70° (ii) x = 60° (iii) x = 100°
5. (i) ∠DGC = 70° (ii) ∠DEF = 70°
6. (i) l is not parallel to m (ii) l is not parallel to m

(iii) l is parallel to m (iv) l is not parallel to m

EXERCISE 6.1
1. Altitude, Median, No.

EXERCISE 6.2
1. (i) 120° (ii) 110° (iii) 70° (iv) 120° (v) 100° (vi) 90°
2. (i) 65° (ii) 30° (iii) 35° (iv) 60° (v) 50° (vi) 40°

EXERCISE 6.3
1. (i) 70° (ii) 60° (iii) 40° (iv) 65° (v) 60° (vi) 30°
2. (i) x = 70°, y = 60° (ii) x = 50°, y = 80° (iii) x = 110°, y = 70°

(iv) x = 60°, y = 90° (v) x = 45°, y = 90° (vi) x = 60°, y = 60°

EXERCISE 6.4
1. (i) Not possible (ii) Possible (iii) Not possible
2. (i) Yes (ii) Yes (iii) Yes 3. Yes 4. Yes 5. No
6. Between 3 and 27

EXERCISE 6.5
1. 26 cm 2. 24 cm 3. 9 m 4. (i) and (iii) 5. 18m 6. (ii)
7. 98 cm 8. 68 cm

EXERCISE 7.1
1. (a) they have the same length (b) 70° (c) m∠A = m∠ B

3. ∠A ↔ ∠F, ∠B ↔ ∠E, ∠C ↔ ∠D, AB FE BC ED AC FD↔ ↔ ↔, ,

4. (i) ∠C (ii) CA (iii) ∠A (iv) BA
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EXERCISE 7.2
1. (a) SSS Congruence criterion (b) SAS Congruence criterion

(c) ASA Congruence criterion (d) RHS Congruence criterion
2. (a) (i)  PE    (ii)  EN    (iii)  PN (b) (i)  EN    (ii)  AT

(c) (i)  ∠RAT = ∠EPN    (ii)∠ATR = ∠PNE
3. (i) Given (ii) Given (iii) Common (iv) SAS Congruence criterion 4. No
5. ΔWON 6. ΔBTA, ΔTPQ 9. BC = QR, ASA Congruence criterion

EXERCISE 8.1
1. (a) 10:1 (b) 500:7 (c) 100:3 (d) 20:1 2. 12 computers
3. (i) Rajasthan : 190 people ; UP : 830 people (ii) Rajasthan

EXERCISE 8.2

1. (a) 12.5% (b) 125% (c) 7.5% (d)
428 %
7

2. (a) 65% (b) 210% (c) 2% (d) 1235%

3. (i)
1 ,25%
4

(ii)
3
5

; 60% (iii)
3;37.5%
8

4. (a) 37.5 (b)
3
5

 minute or 36 seconds (c) Rs 500

(d) 0.75 kg or 750g
5. (a) 12000 (b) Rs 9,000 (c) 1250 km (d) 20 minutes (e) 500 litres

6. (a) 0.25; 
1
4

(b) 1.5; 
3
2

(c) 0.2; 
1
5

(d) 0.05;
1
20

7. 30%

8. 40%; 6000 9. Rs 4,000 10. 5 matches

EXERCISE 8.3
1. (a) Profit = Rs 75; Profit % = 30 (b) Profit = Rs 1500; Profit % = 12.5

(c) Profit = Rs 500; Profit % = 20 (d) Loss = Rs 100; Loss % = 40

2. (a) 75%; 25% (b) 20%, 30%, 50% (c) 20%; 80% (d) 12.5%; 25%; 62.5%

3. 2% 4.
55 %
7

5. Rs 12,000 6. Rs 16,875

7. (i) 12%  (ii) 25 g 8. Rs 233.75 9. (a) Rs 1,632   (b) Rs 8,625

10. 0.25% 11. Rs 500
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EXERCISE 9.1

1. (i)
2 1 2 1 2, , , ,

3 2 5 3 7
     

(ii)
3 5 8 10 9, , , ,

2 3 5 7 5
     

(iii)
35 7 34 33 11 32 31, , , ,

45 9 45 45 15 45 45
                     (iv)

1 1 1 1, ,0, ,
3 4 3 2
  

2. (i)
15 18 21 24, , ,

25 30 35 40
    

(ii)
4 5 6 7, , ,

16 20 24 28
    

(iii)
5 6 7 8, , ,
30 36 42 48    (iv)

8 10 12 14, , ,
12 15 18 21    

3. (i)
4 6 8 10, , ,

14 21 28 35
    

(ii)
10 15 20 25, , ,

6 9 12 15    (iii)
8 12 16 28, , ,

18 27 36 63

4. (i)

(ii)

(iii)

(iv)

5. P represents 
7
3

Q represents 
8
3

R represents 
4

3
 

S represents 
5

3
 

6. (ii), (iii), (iv), (v)

7. (i)
4

3
 

(ii)
5
9

(iii)
11

18
 

(iv)
4

5
 

8. (i) < (ii) < (iii) = (iv) > (v) < (vi) = (vii) >

9. (i)
5
2

(ii)
5

6
 

(iii)
2
3 

(iv)
1
4

(v)
23
7

 

10. (i)
3 2 1, ,

5 5 5
   

(ii)
4 1 2, ,

3 3 9
   

(iii)
3 3 3, ,

2 4 7
   

–2 0 2–1 1

3
4

–1 0 1
–5
8

–2 0 2–1 1

–7
4

–1 0 1

7
8
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EXERCISE 9.2

1. (i)
3

2
 

(ii)
34
15 (iii)

17
30

(iv)
82
99

(v)
26

57
 

(vi)
2

3
 

(vii)
34
15

2. (i)
13

72
 

(ii)
23
63

(iii)
1

195
(iv)

89
88

 
(v)

73
9

 

3. (i)
63
8

 
(ii)

27
10
 

(iii)
54

55
 

(iv)
6

35
 

(v)
6
55

(vi) 1

4. (i) – 6 (ii)
3

10
 

(iii)
4

15
(iv)

1
6
 

(v)
14

13
 

(vi)
91
24 (vii)

15
4

 

EXERCISE 11.1
1. (i) 150000 m2 (ii) Rs 1,500,000,000
2. 6400 m2 3. 20 m 4. 15 cm; 525 cm2 5. 40 m
6. 31cm; Square 7. 35cm; 1050 cm2 8. Rs 284

EXERCISE 11.2
1. (a) 28 cm2 (b) 15 cm2 (c) 8.75 cm2 (d) 24 cm2 (e) 8.8 cm2

2. (a) 6 cm2 (b) 8 cm2 (c) 6 cm2 (d) 3 cm2

3. (a) 12.3 cm (b) 10.3 cm (c) 5.8 cm (d) 1.05 cm
4. (a) 11.6 cm (b) 80 cm (c) 15.5 cm
5. (a 91.2 cm2 (b) 11.4 cm
6. length of BM = 30cm; length of DL = 42 cm

7. Area of ΔABC = 30 cm2; length of AD = 
60
13  cm

8. Area of ΔABC = 27 cm2; length of CE = 7.2 cm

EXERCISE 11.3
1. (a) 88 cm (b) 176 mm (c) 132 cm

2. (a) 616 mm2 (b) 1886.5 m2 (c)
550
7  cm2
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3. 24.5 m; 1886.5 m2 4. 132 m; Rs 528 5. 21.98 cm2

6. 4.71 m; Rs 70.65 7. 25.7 cm 8. Rs 30.14 (approx.) 9. 7 cm; 154 cm2; 11cm; circle.
10. 536 cm2 11. 23.44 cm2 12. 5 cm; 78.5 cm2 13. 879.20 m2

14. Yes 15. 119.32 m; 56.52m 16. 200 Times 17. 94.2 cm

EXERCISE 11.4
1. 1750 m2 ; 0.675 ha 2. 1176 m2 3. 30 cm2

4. (i) 63 m2 (ii) Rs 12,600 5. (i) 116 m2 (ii) Rs 31,360
6. 0.99 ha; 1.2 ha 7. (i) 441 m2 (ii) Rs 48,510 8. Yes, 9.12 m cord is left
9. (i) 50m2 (ii) 12.56 m2 (iii) 37.44m2 (iv) 12.56m

10. (i) 110 cm2 (ii) 150 cm2; 11.66 cm2

EXERCISE 12.1

1. (i) y – z (ii)
1
2

(x + y) (iii) z2 (iv)
1
4

pq (v) x2 + y2 (vi) 5 + 3mn

(vii) 10 – yz (viii) ab – (a + b)

2. (i) (a) (b) (c)

(d) (e)

(ii) Expression Terms Factors

(a) – 4x + 5 – 4x – 4, x
5 5

(b) – 4x + 5y – 4x – 4,x
5y 5,y

(c) 5y + 3y2 5y 5,y
3y2 3,y,y

(d) xy+2x2y2 xy x, y
2x2y2 2, x, x, y, y

(e) pq + q pq p, q
q q
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(f) 1.2ab–2.4b+3.6a 1.2ab 1.2,a,b
–2.4b – 2.4, b
3.6a 3.6, a

(g)
3 1
4 4

x  3
4

x 3 ,
4

x

1
4

1
4

(h) 0.1p2 + 0.2q2 0.1p2 0.1, p, p

0.2q2 0.2, q, q

3. Expression Terms Coefficients

(i) 5 – 3t2 – 3 t2 –3

(ii) 1 + t + t2 + t3 t 1

t2 1
t3 1

(iii) x + 2xy + 3y x 1
2xy 2
3y 3

(iv) 100m +1000n 100m 100
1000n 1000

(v) – p2q2 + 7pq – p2q2 –1
7pq 7

(vi) 1.2a + 0.8b 1.2 a 1.2
0.8 b 0.8

(vii) 3.14r2 3.14r2 3.14
(viii) 2(l + b) 2l 2

2b 2
(ix) 0.1y + 0.01y2 0.1y 0.1

0.01y2 0.01

4. (a) Expression Terms with x Coefficient of x

(i) y2x + y y2x y 2

(ii) 13y2–8yx – 8yx – 8y

(iii) x + y + 2 x 1

(iv) 5 + z + zx zx z
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(v) 1 + x + xy x 1
xy y

(vi) 12xy2 + 25 12xy2 12y2

(vii) 7 + xy2 xy2 y2

 (b) Expression Terms with y2 Coefficient of y2

(i) 8 – xy2 – xy2 – x

(ii) 5y2 + 7x 5y2 5

(iii) 2x2y – 15xy2 + 7y2 –15xy2 –15x
7y2 7

5. (i) binomial (ii) monomial (iii) trinomial    (iv) monomial

(v) trinomial (vi) binomial (vii) binomial (viii) monomial

(ix) trinomial (x) binomial (xi) binomial (xii) trinomial

6. (i) like (ii) like (iii) unlike (iv) like

(v) unlike (vi) unlike

7. (a) – xy2, 2xy2; – 4yx2, 20x2y; 8x2, –11x2, – 6x2; 7y, y; – 100x, 3x; – 11yx, 2xy.

(b) 10pq, –7qp, 78qp; 7p, 2405p; 8q, – 100q; –p2q2, 12q2p2; –23, 41; –5p2, 701p2;  13p2q, qp2

EXERCISE 12.2

1. (i) 8b – 32 (ii) 7z3 + 12z2 – 20z (iii) p – q (iv) a + ab
       (v) 8x2y + 8xy2 – 4x2 – 7y2 (vi) 4y2 – 3y

2. (i) 2mn (ii) – 5tz (iii) 12mn – 4 (iv) a + b + 3
(v) 7x + 5 (vi) 3m – 4n – 3mn – 3 (vii) 9x2y – 8xy2

(viii) 5pq + 20 (ix) 0 (x) – x2 – y2 – 1
3. (i) 6y2 (ii) – 18xy (iii) 2b (iv) 5a + 5b – 2ab

(v) 5m2 – 8mn + 8 (vi) x2 – 5x – 5
(vii) 10ab – 7a2 – 7b2 (viii) 8p2 + 8q2 – 5pq

4. (a) x2 + 2xy – y2 (b) 5a + b – 6
5. 4x2 – 3y2 – xy
6. (a) – y + 11 (b) 2x + 4

EXERCISE 12.3
1. (i) 0 (ii) 1 (iii) –1 (iv) 1 (v) 1
2. (i) –1 (ii) –13 (iii) 3 3. (i) –9    (ii) 3    (iii) 0    (iv) 1
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4. (i) 8 (ii) 4 (iii) 0 5. (i) –2      (ii) 2    (iii) 0    (iv) 2
6. (i) 5x – 13; –3 (ii) 8x – 1; 15 (iii) 11x – 10; 12 (iv)   11x + 7; 29
7. (i) 2x+4; 10 (ii) – 4x + 6; –6 (iii) –5a + 6;11 (iv) – 8b + 6; 22 (v) 3a – 2b – 9; – 8
8. (i) 1000 (ii) 20 9. –5 10. 2a2  + ab + 3; 38

EXERCISE 12.4

1. Symbol Number of Digits Number of Segments

5 26

10 51
100 501

5 16

10 31
100 301

5 27

10 52
100 502

EXERCISE 13.1
1. (i) 64 (ii) 729 (iii) 121 (iv) 625
2. (i) 64 (ii) t2 (iii) b4 (iv) 52 × 73 (v) 22 × a2 (vi) a3 × c4 × d
3. (i) 29 (ii) 73 (iii) 36 (iv) 55

4. (i) 34 (ii) 35 (iii) 28 (iv) 2100 (v) 210

5. (i) 23 × 34 (ii) 5 × 34 (iii) 22 × 33 × 5 (iv) 24 × 32 × 52

6. (i) 2000 (ii) 196 (iii) 40 (iv) 768 (v) 0
(vi) 675 (vii) 144 (viii) 90000

7. (i) – 64 (ii) 24 (iii) 225 (iv) 8000
8. (i) 2.7 × 1012 > 1.5 × 108 (ii) 4 × 1014 < 3 × 1017

EXERCISE 13.2
1. (i) 314 (ii) 65 (iii) a 5 (iv) 7x + 2 (v) 53 (vi) (10)5

(vii) (ab)4 (viii) 312 (ix) 28 (x) 8t – 2

2. (i) 33 (ii) 53 (iii) 55 (iv) 7 × 115 (v) 30 or 1 (vi) 3
(vii) 1 (viii) 2 (ix) (2a)2 (x) a 10 (xi) a 3b (xii) 28

2. (i) 2n – 1 → 100th : 199
(ii) 3n + 2 → 5th : 17;

10th : 32;
100th : 302

(iii) 4n + 1 → 5th : 21;
10th : 41;
100th : 401

(iv) 7n + 20 → 5th : 55;
10th : 90;
100th : 720

(v) n2 + 1 → 5th : 26;
10th : 101
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3. (i) False; 10 × 1011 = 1012 and (100)11 = 1022 (ii) False; 23 = 8, 52 = 25
(iii) False; 65 = 25 × 35 (iv) True; 30 = 1, (1000)0 = 1

4. (i) 28 × 34 (ii) 2 × 33 × 5 (iii) 36 × 26 (iv) 28 × 3 5. (i) 98    (ii) 
45t

8
    (iii) 1

EXERCISE 13.3

1. 279404 = 2 × 105 + 7 × 104 + 9 × 103 + 4 × 102 + 0 × 101 + 4 × 100

3006194 = 3 × 106 + 0 × 105 + 0 × 104 + 6 × 103 + 1 × 102 + 9 × 101 + 4 × 100

2806196 = 2 × 106 + 8 × 105 + 0 × 104 + 6 × 103 + 1 × 102 + 9 × 101+ 6 × 100

120719 = 1 × 105 + 2 × 104 + 0 × 103 + 7 × 102 + 1 × 101 + 9 × 100

20068 = 2 × 104 + 0 × 103 + 0 × 102 + 6 × 101 + 8 × 100

2. (a) 86045 (b) 405302 (c)  30705 (d) 900230
3. (i) 5 × 107 (ii) 7 × 106 (iii) 3.1865 × 109 (iv)  3.90878 × 105

(v) 3.90878 × 104 (vi) 3.90878 × 103

4. (a) 3.84 × 108m (b) 3 × 108 m/s (c) 1.2756 × 107m (d) 1.4 × 109 m
(e) 1 × 1011 (f) 1.2 × 1010 years (g) 3 × 1020 m (h) 6.023 × 1022

(i) 1.353 × 109 km3 (j) 1.027 × 109

EXERCISE 14.1
1.

(a) (b) (c)

(d) (e) (f)
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(g) (h) (i)

(j) (k) (l)

2.

(a) (b) (c)

(d) (e)

3.

 (a) Square (b)  Triangle (c)   Rhombus
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(d) Circle (e)  Pentagon (f)  Octagon

4.

7. (a) 3 (b) 1 (c) 0 (d) 4 (e) 2 (f) 4
(g) 0 (h) 0 (i) 6 (j) Infinitely many

8. (a) A, H, I, M, O, T, U, V, W, X, Y (b) B, C, D, E, H, I, O, X
(c) O, X, I, H

10. (a) Median (b) Diameter

EXERCISE 14.2
1. (a),  (b),  (d),  (e),  (f)
2. (a) 2 (b) 2 (c) 3 (d) 4 (e) 4 (f) 5

(g) 6 (h) 3

EXERCISE 14.3
3. Yes 5. Square 6. 120°, 180°, 240°, 300°, 360°
7. (i)  Yes      (ii)  No

EXERCISE 15.1
1. Nets in (ii), (iii), (iv), (vi) form cubes.

(a) (b) (c) (d)

(e) (f) (g) (h)
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2. 1 1 2

3 2 4 5 5 3

6 4 6

3. No, because one pair of opposite faces will have 1 and 4 on them whose total is not 7, and another pair
of opposite faces will have 3 and 6 on them whose total is also not 7.

4. Three faces

5. (a) (ii) (b) (iii) (c) (iv) (d) (i)

BRAIN-TEASERS

1. Solve the number riddles:
(i) Tell me who I am! Who I am!

Take away from me the number eight,
Divide further by a dozen to come up with

A full team for a game of cricket!
(ii) Add four to six times a number,

To get exactly sixty four!
Perfect credit is yours to ask for

If you instantly tell the score!
2. Solve the teasers:

(i) There was in the forest an old Peepal tree
The grand tree had branches ten and three

On each branch there lived birds fourteen
Sparrows brown, crows black and parrots green!

Twice as many as the parrots were the crows
And twice as many as the crows were the sparrows!

We wonder how many birds of each kind
Aren’t you going to help us find?
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(ii) I have some five-rupee coins and some two-rupee coins. The number of
two-rupee coins is twice the number of five-rupee coins. The total money I have
is 108 rupees. So how many five-rupee coins do I have? And how many
two-rupee coins?

3. I have 2 vats each containing 2 mats. 2 cats sat on each of the mats. Each cat wore 2
funny old hats. On each hat lay 2 thin rats. On each rat perched 2 black bats. How
many things are in my vats?

4. Twenty-seven small cubes are glued together to make a big cube.  The exterior of the
big cube is painted yellow in colour. How many among each of the 27 small cubes
would have been painted  yellow on
(i) only one of its faces?
(ii) two of its faces?
(iii) three of its faces?

5. Rahul wanted to find the height of a tree in his garden. He checked the ratio of his
height to his shadow’s length. It was 4:1. He then measured the shadow of the tree. It
was 15 feet. So what was the height of the tree?

6. A woodcutter took 12 minutes to make 3 pieces of a block of wood. How much time
would be needed to make 5 such pieces?

7. A cloth shrinks 0.5% when washed. What fraction is this?
8. Smita’s mother is 34 years old. Two years from now mother’s age will be 4 times

Smita’s present age. What is Smita’s present age?
9. Maya, Madhura and Mohsina are friends studying in the same class. In a class test in

geography, Maya got 16 out of 25. Madhura got 20. Their average score was 19. How
much did Mohsina score?

Answers
1. (i) 140 (ii) 10

2. (i) Sparrows: 104, crows: 52, Parrots: 26
(ii) Number of 5 Rupee coins = 12, Number of 2 Rupee coins = 24

3. 124 4. (i)  6    (ii) 10    (iii)  8 5. 60 feet

6. 24 minutes 7.
1

200 8. 7 years 9. 21


