

$$
\begin{aligned}
& 10 \text { in No. }=\text { Ten } \\
& 12 \text { in NO. = dozen } \\
& 100 \text { " " Hundred } \\
& 144 \text { " } "=\text { Gross } \\
& 100000 "=10^{5}=1 \text { Lakh } \\
& 10^{7} \mathrm{\prime}=1 \mathrm{cr} . \\
& 6.022 \times 10^{23} \text { in NO. }=1 \text { mole } \\
& 1 \text { dozen pen }=12 \text { pens } \\
& 4 \text { dozen pen }=48{ }^{\prime \prime} \\
& 1 \text { mole book }=6.022 \times 10^{23} \text { books } \\
& 1 \text { mole atom }=6.022 \times 10^{23} \text { atoms } \\
& 1 \text { mole molecule }=,, \text { molecules } \\
& 1 \text { mole ron }=\text { ions }
\end{aligned}
$$

mole:- It is basically a number. equals to 6.022×10^{23}
\rightarrow AbS called Avogadro No.
\rightarrow denoted by 'NA
Avogadro NO. $=N_{A}=6.022 \times 10^{23}$
$\star \rightarrow$ Counting unit

$* \rightarrow$ mole is SI unit for Unitary amount of substance. | method |
| :--- |

Ques:- How many atoms are there in 5 moles of atoms?

$$
\begin{aligned}
& 1 \text { mole } \longrightarrow 6.022 \times 10^{23} \\
& \begin{aligned}
5 \text { moles } & \longrightarrow 5 \times 6.022 \times 10^{23} \\
& =31.01 \times 10^{23} \\
& =3.101 \times 10^{24}
\end{aligned}
\end{aligned}
$$

aus:- How many moles of H_{2} molecules are there in $\frac{12.044 \times 10^{23}}{023} \mathrm{H}_{2}$ molecules?
6.022×10^{23} \qquad 1 mole

12.044×10^{23} \qquad

$$
=2 \text { moles } \mathrm{H}_{2}
$$

molecules

$$
\begin{aligned}
& \text { No. of moles } \\
& \text { of entity }
\end{aligned}=\frac{\begin{array}{c}
\text { No. of that } \\
\text { entity }
\end{array}}{N_{A}}
$$

Ques:- No. of Na atoms in
0.01 mole Na atom.

$$
\begin{aligned}
\text { moles } & =\frac{\text { Number(entity) }}{\text { NA }} \\
10^{-2}=0.01 & =\frac{\text { No. of Na atoms }}{6.022 \times 10^{23}} \\
\text { No. of Na atoms } & =6.022 \times 10^{23} \times 10^{-2} \\
& =6.022 \times 10^{21} \text { Ans }
\end{aligned}
$$

Ques:- How many moles of the atoms in 18.066×10^{24} He atom

$$
\begin{aligned}
\text { moles } & =\frac{\text { Number }}{N / \mathrm{A}} \\
& =\frac{35.066 \times 10^{24}}{6.0 \% 2 \times 1023} \\
& =3 \times 10^{\prime} \\
& =30 \text { moles of He atom }
\end{aligned}
$$

Atom
:- It is smallest particle of an $\frac{\text { element. }}{\text { (further) }}$

* Carbon $\rightarrow C$
one atom of Carbon $(C) \rightarrow C_{6}^{12}$
(Atomic No.) \downarrow (z)
No. of proton
er et er ep (A) mass No. - No. of $(p+n)$

Nucleus \downarrow
(proton neutron)

$$
(p+n)
$$

$$
\begin{aligned}
& X_{\text {to }}^{A} \rightarrow \text { mass No. (No. of } p+n \text {) } \\
& \downarrow_{p} \rightarrow \text { No. (No. of protons) }
\end{aligned}
$$

element

* one atom of carbon - C_{6}^{12}

$$
\begin{aligned}
& \left\{\begin{array}{l}
\rightarrow 6 \text { protory } \checkmark \\
\rightarrow 6 \text { neutrons } \\
\rightarrow 6 \text { electrory }
\end{array}\left\{\begin{array}{l}
\text { neutral } \\
e=p
\end{array}\right\}\right. \\
& M_{e}=g .1 \times 10^{-28} \mathrm{~g} \\
& M_{p}=1.67 \times 10^{-24} g \rightarrow a m u \\
& \left.M_{n}=1.67 \times 10^{-24} \mathrm{~g}\right\}\binom{\text { Atomic mass }}{\text { Unit }} \\
& q_{n}=0 \\
& q_{p}=+1.6 \times 10^{-19} \mathrm{C} \\
& M_{e}=\frac{1}{1837} \mathrm{M}_{\mathrm{p}}
\end{aligned}
$$

Mass of one atom of Carbon $=$

$$
\begin{aligned}
\left\{\begin{array}{c}
\text { example-wt } \\
\text { of plastic } \\
\text { bag }
\end{array}\right. & \text { Mass of }(6 p+6 n+6 p) \\
= & \text { Mass of }(6 p+6 n) \\
= & \text { mass of } 12 p \quad\{p=n) \\
= & 12 \times 1 \cdot 67 \times 10^{-24} g \\
= & \underset{\text { (Atomic Mass) }}{12 \text { amu }}
\end{aligned}
$$

Atomic Mass:- mass of one atom of an element.
\rightarrow expressed in amu.
eg- Atomic Mass of Carbon $=12 \mathrm{amy}$

$$
" \text { " oxygen = 16am4 }
$$

$\frac{\text { Mass of } 1 \text { atom of } C^{12}}{12}=\frac{12 \mathrm{amu}}{12}$
(divide 12 both side)

$$
1 \text { amu }=\frac{1}{12}\left\{\begin{array}{c}
\text { mass of } 1 \text { atom } \\
\text { of } \mathbb{C}^{12}
\end{array}\right\}
$$

mass of 1 atom of $C^{12}=12$ amu

$$
\begin{aligned}
& \text { ". } 2 \text { atoms of } c^{12}=24 a \mathrm{my} \\
& ": 10^{5} \text { atoms of } C^{12}=12 \times 10^{5} \text { amy } \\
& " \quad 6.022 \times 10^{23} \text { atoms } \\
& \text { of } c^{12}=12 \times 6.022 \times 10^{23} \mathrm{amu} \\
& \begin{array}{l}
\begin{array}{l}
\text { Molarmass } \\
\text { or } \\
\text { GAM }
\end{array} \\
=12 \times 6.022 \times 10^{23} \times 1.67 \times 10^{-24} \mathrm{~g} \\
=12 \times 10.06 \times 10^{-1} \mathrm{~g}
\end{array}
\end{aligned}
$$

Mass of 1 mole atoms of $c^{12}=12 g$

Gram Atomic Mass (GAM):when atomic mass of an atom is expressed in gram then it is called Gram Atom mass.

GAM :- Mass of 1 mole atoms or Mass of N_{A} atoms

$$
e g-C^{12}\left(G_{A M}\right)=12 g \quad\left(O^{16} \rightarrow 16 g\right)
$$

Mole :- One mole is that quantity which contains as many entities as there are atoms in exactly
12 gm of c^{12} atoms. 12 gm of C^{12} atoms.

$$
\operatorname{tamy}=\frac{1}{12}\left\{\begin{array}{cc}
\text { mass of } 1 \text { atom } \tag{1}\\
\text { of } c^{12}
\end{array}\right\}
$$

mass of N_{A} atoms of $c^{12}=12 \mathrm{~g}$

$$
\begin{align*}
& \quad 1 \text { atom of } c^{\prime 2}=\frac{12}{N_{A}} g \\
& =\left(\frac{12}{N_{A}}\right) g \tag{1}\\
& \text { from eq } 0 \text { and } 117 \\
& 1 \text { amu }=\frac{1}{12}\left\{\frac{12}{N_{A}} g\right\} \\
& 1 \text { amu }=\frac{1}{N_{A}} g \underbrace{*}_{*} \\
& 1 \text { amu } \times 1 N_{A}=1 g{ }^{*}
\end{align*}
$$

$$
\begin{aligned}
1 \mathrm{amu} & =\frac{1}{N_{A}} g \\
& =\frac{1}{6.022 \times 10^{23}} g \\
& =\frac{10}{60022 \times 10^{24}} g \\
19 \mathrm{mu} & =1.67 \times 10^{-24} \mathrm{~g}
\end{aligned}
$$

aus:- calculate $A \cdot m$ \& GAM of oxygen-afom

$$
A f \cdot \text { mass }=16 \mathrm{amu}
$$

$$
G A M=16 \mathrm{~g}
$$

$$
A=16
$$

$$
z_{0}=8
$$

Ques:- find the mass of 5 mole
atoms of N-atom? $\left(N_{7}^{14}\right)$
mass of 1 atom of N-atom $=14 \mathrm{amy}$
". N_{A} atoms $=14 \times N_{A}$ amu
" " 2 mole atoms $=14 \mathrm{~g}$
" " 5 mole atoms $=14 \times 5=70 \mathrm{~g}$

$$
N-G A m=14 g
$$

Ques:- find the moles of 0 -atom 16 in 64 gm of 0 -atoms?
08 mass of 1 mole of 0 -atom $=16 \mathrm{~g}$

$$
\begin{aligned}
1 \mathrm{~g} \text { o-atoms } & =\frac{1}{16} \text { mole } \\
64 \mathrm{~g} & =\frac{1}{16} \times 64 \text { moles } \\
64 \mathrm{~g} \text { 0-atoms } & =4 \text { moles of 0-atoms }
\end{aligned}
$$

Ques: - find the No. of moles?
(1) in $28 . \mathrm{g}$ of N -atom $\left(\mathrm{N}_{7}^{14)}\right.$

$$
\text { moles }=\frac{28 \mathrm{~g}}{14 \mathrm{~g}}=\frac{2 \text { moles of }}{\mathrm{N} \text {-atom }}
$$

(11) 32 g of S -atom $\left(\mathrm{S}_{16}^{32}\right)$ moles $=1$ moles of s-atom
(111) 14 g of H -atom $\left(\mathrm{H}_{1}^{\prime}\right)$ moles $=\frac{14}{1}=14$ moles of H -atom

* Gram Atom:- (mole)

$$
\begin{aligned}
& 1 \text { gram Atom }=G A m \\
& 1 \text { gam atom }=1 \text { mole }
\end{aligned}
$$

Ques:- 1 g atom of carbon $=$

$$
\begin{aligned}
& =1 \mathrm{~mole} \text { of carbonatom } \\
& =G \mathrm{Am} \\
& =12 \mathrm{~g}
\end{aligned}
$$

Rus:- mass of 8 g atom of H-atom.

$$
\text { mass }=8 g
$$

Ques: - How many gram atom present in 36 g of C -atom. 12 g - 1 g atom $/ 36 \mathrm{~g}-3 \mathrm{~g}$ atom

Ques:- How many atoms are there in 46 g of Na -atoms?

$$
\begin{aligned}
\text { moles } & =\frac{w_{t}(g)}{G A M} \\
& =\frac{46(g)}{23(g)} \\
& =2 \text { moles of Na-atom } \\
1 \text { mole of Na-atom } & =N_{A}{ }^{23} \text { atoms } \\
2 " n & =2 \times N_{A} \text { atoms } \\
2 & =2 \times 6.022 \times 10^{23} \text { atoms } \\
\text { mole } & =\frac{\text { Number }}{N_{A}} \\
2 & =\frac{N_{\text {Number }}}{N_{A}}
\end{aligned}
$$

Numbs of Na-atoms $=2 N_{A}$

Ques:- How many gram atom present in 3.011×10^{22} atoms of H -atom also calculate Mass of H -atom.

$$
\begin{aligned}
\text { gram Atom } & =\text { moles }=\frac{\text { Number }}{M_{A}} \\
& =\frac{\frac{3.04 \times 10^{2 F}}{6022 \times 10^{23}} 1}{2} \\
& =\frac{1}{2 \times 10} \\
& =\frac{1}{20} \\
& =0.05 \text { gram atom } / \mathrm{moles} \\
\text { moles } & =\frac{\omega t(g)}{G A m} \\
0.05 & =\frac{\omega t}{1} \Rightarrow \omega t=0.05 \mathrm{~g}
\end{aligned}
$$

Element:- made up of same type of atoms as well as monoatomic substance.
eg- Na , He, $\mathrm{C}, \mathrm{S}_{8}$, diamond

Molecule:- molecule is formed when more than one atoms are chemically combined either same or different and exist in discrete form.

