

Leading Innovation

Learning Objectives

- Understand the structure of Minitab
- Understand Tools in Minitab.
- Understand correct data structure for analysis in Minitab.
- Be able to create and interpret basic graphs in Minitab
- Be able to interpret Tools used in Minitab in DMAIC phases

Statistical software

Minitab

Training Outline

Date	Timings	Subject / Topics
Day I	09. 00 to 11.00	Introduction to Statistical Software –Minitab
		Menus in Minitab , Data Menu
	11.00 to 11.15	Tea Break
	11.15 to 12.30	Descriptive Statistics, Graphical Tools – Pareto, Box Plot, Dot Plot, Scatter Plot, Time Series, Run Chart, Histogram
		Tiot, ocatter Flot, Time Genes, Run Ghart, Histogram
	12.30 to 14.00	Lunch Break
	14.00 to 15.00	Normality Test, Individual Distribution Identification, Box Cox
		Tansionnation
	15.00 to 15.15	Tea Break
	15.15 to 18.00	Process Capability, MSA (ANOVA Method)

Training Outline

Date	Timings	Subject / Topics
Day II	09.00 to 10.00	Hypothesis Test – 1T test, 2T Test, Test for Equal Variance (F- Test)
	10.00 to 11.00	Hypothesis Test -ANOVA (1 way, 2way)
	11.00 to 11.15	Tea Break
	11.15 to 12.30	Hypothesis Test – 1P,2P, Chi square
	12.30 to 14.00	Lunch Break
	14.00 to 15.00	Multi vari charts
	15.00 to 15.15	Tea Break
	15.15 to 18.00	Regression -SLR, MLR
		SPC -Control Charts – I &MR, Xbar-R, P,C,U,NP

Minitab - Introduction

Worksheet Format and Structure

Minitab – Introduction

Step 2: Select

Stat → Basic Statistics → Display Descriptive Statistics

Example - Descriptive statistics of Actual Average speed

File Name – Minitab training

Worksheet Name – Descrip Statistics

MINITAB - Untitled - [Worksheet 1 ****]												
] 🏥 !	<u>Eile E</u> dit D _i	<u>a</u> ta <u>⊂</u> alc	<u>S</u> tat	<u>G</u> raph E <u>d</u> i	tor <u>T</u> ools	Wi	indo	w <u>H</u> elp				
6		ኤ 🖻 🖻	Ē	<u>B</u> asic Statistic	s	<u>ک</u>	×s	<u>D</u> isplay Desc	riptive Statis	tics	G 🛈 🕻	8 🗒 🍡 4
	-2 @	20 0	Ē	<u>R</u> egression		• 3	×s	<u>S</u> tore Descri	ptive Statistic	cs		
		<u> </u>	ł	ANOVA		•	出版	<u>G</u> raphical Su	immary		C8	60
-	Date	Caster 1	Ī	<u>D</u> OE		•	1z	1-Sample <u>Z</u> .			Si %	S %
1	1-Sep-07	8	2	<u>C</u> ontrol Charl	ts	•	1t	<u>1</u> -Sample t			0.008	0.006
2	1-Sep-07		2	Quality Tools			2t	<u>2</u> -Sample t			0.006	0.009
3	1-Sep-07			Reliability/Survival				<u>P</u> aired t		0.014	0.004	
4	1-Sep-07		<u> </u>	Multivariate		[].	1P	1 Proportion			0.009	0.010
5	1-Sep-07		_	Tablec			2P	2 Proportion	IS		0.012	0.006
6	1-Sep-07		-	Lables	i		2				0.019	0.006
7	1-Sep-07		<u> </u>	<u>v</u> onparametr	ics		⁷ <u></u>	2 V <u>a</u> riances.			0.018	0.009
8	1-Sep-07		Ĩ				COR	<u>⊂</u> orrelation.			0.021	0.006
9	1-Sep-07		E	ower and Sa	ample Size	<u> </u>	cov	Co <u>v</u> ariance.			0.019	0.004
10	1-Sep-07		1	1270	L+6	_	-				0.018	0.009
11	1-Sep-07		2	1270	L+5	ī	TEST	Normality Te	est		0.017	0.005
12	1-Sep-07		1	1270	L			G4	0.033	0.127	0.025	0.005

Stat \rightarrow Basic Statistics \rightarrow Display Descriptive Statistics

М	NITAB - Untitled - [Works	heet 1 ***]									_ 0	X
E 1	ile <u>E</u> dit D <u>a</u> ta <u>C</u> alc <u>S</u> tat <u>G</u> r	aph E <u>d</u> itor <u>T</u> ools <u>W</u> indow <u>H</u> elp										8×
🖻	🖬 🎒 🐰 🛍 💼 🗠	🗠 📴 T I 🗛 👫 🚫 🎖 🖬	I [×C 🖷	h 🕞 🛈 🖻) 🗒 🍖 (i (
] =#												
Ŧ	Display Descriptive Statis	tics		C7	C8	C9	C10	C11	C12	C13		^
		Variablec:	M	Descr	iptive Stati	istics - Sta	atistics					
1		Valiables.		М	lean		Г	Trimmed mea	an F	🗸 N nonmissi	na	
2		Actual Average Speed		⊮ s	E of mean		Г	Sum	F	N missing	5	
3				💌 S	tandard de	eviation	\checkmark	Minimum	Γ	N total		
5			7	V 🗹	ariance		V	Maximum	Γ	Cumulative	N	
6		By variables (optional):		□ C	oefficient	of variation	on 🔽	Range	ſ	Percent	<u>.</u>	
7			<u> </u>	E E	irct quartil	0	Г	Sum of cause	1	Cumulative	percent	
8			-	N N	nsuquarur Iedian	C		Skewness	65			
9				T N	hird quarti	le	Γ	Kurtosis				
10				🗆 In	terquartile	e range		MSSD				
11			_					<u>.</u>				
12			-		Heln	1			0K		ancel	
13	1		-			_						
14	Select	Statistics Grap	าร	0.120	0.016	0.007	0.040	1575	1500		5.96	-
16				0.105	0.012	0.007	0.040	1573	1550		5.69	-
17	Help	OK Can	cel	0.325	0.012	0.007	0.040	1572	1551		5.00	-
18	т-зер-ол 2	1203 LT12 03	0.030	0.118	0.012	0.009	0.037	1578	1551		5.49	-

Stat → Basic Statistics → Display Descriptive Statistics - Output

Example - Descriptive statistics of Actual Average speed

Descriptive Statistics: Actual Average Speed											
Variable	Ν	N*	Mean	SE Mean	StDev	Variance	Minimum	Q1			
Actual Average S 2	123	0	5.3896	0.0321	0.3565	0.1271	4.4500	5.1400			
Veriable	R /		00	Maxi		Dense					
variable	IV	legian	Q3	Maxi	num	Range					
Actual Average S	5.	4500	5.6500	5.96	600	1.5100					

Interpreting the results

The session window displays the statistics selected. The Q1 and Q3 are the First and third Quartile. The Minimum and Maximum and the Range shows the Range of the Actual Average Speed with the Median greater than Mean showing the Negative skew ness of the actual average speed.

Stat \rightarrow Basic Statistics \rightarrow Graphical Summary

Example – Graphical summary of Actual Average speed

MINITAB - Untitled - [Sheet1[W27] ***]	Graphical Summary
Eile Edit Data Calc Stat Graph Editor Iools Window Help	
Image: Sector	C1 Actual Aver Actual Average Speed' By variables (optional): Confidence level: 95.0
19	Select Help OK Cancel

Stat \rightarrow Basic Statistics \rightarrow Graphical Summary - Output

Example - Descriptive statistics of Actual Average speed

Kurtoisis: Negative values indicate a distribution that is flatter than normal. Positive values indicate a distribution with a sharper than normal peak.

Stat \rightarrow Basic Statistics \rightarrow Graphical Summary - Output

Interpreting the results

The P-Value is less than 0.05 indicates that data do not follow a Normal distribution.

Mean is less than Median showing that data is Negatively skewed

Kurtosis of a curve is a measure of how different is a distribution from the Normal Distribution.

95% Confidence Interval of Mean indicates that the true mean can vary from 5.3260 and 5.4532.

Stat → Basic Statistics - Class Exercise

Class Exercise –

Conduct a) Descriptive statistics of "Lifting Temp" and b) Graphical Summary of Lifting Temp with the help of the data from the below file using Minitab

File Name – Minitab training Worksheet Name – Descrip statistics

Stat → Basic Statistics - Class Exercise - Output

Descriptive	Descriptive Statistics: Lifting temp										
Variable Lifting temp	N 123	N* 8 0	Mean 1578.8	SE Mean 0.512	StDev 5.68	Variance 32.3	Minimum 1569.0	Q1 1575.0			
Variable Lifting temp	Med 157	ian 7.0	Q3 1583.0	Maximum 1595.0	Range 26.0						

Stat → Basic Statistics - Class Exercise - Output

Box Plot

- Useful for comparing the distribution of values in several group
- Make it easy to see the different properties of the distribution
 - + Location
 - + Variability
 - + Shapes

Graph \rightarrow Boxplot - Example

Example – Input the data from the following worksheet

File Name – Minitab training

Worksheet Name – Box Plot

D Mi	nitab - CA	STER1_BOX PL	OT.MPJ - [Worksheet 1 ***]				Boxplots		
	<u>File E</u> dit D	D <u>a</u> ta <u>C</u> alc <u>S</u> tat	<u>Graph</u> Editor <u>T</u> ools <u>W</u> indow <u>H</u> elp	I					
🖻 🗃		🔏 🖻 💼 🔛	<u>S</u> catterplot	🖅 🛛 +C 🍕	🗟 🗟 🚺	🖻 🗐 🐮			
			Matrix Plot	-	XQ		One Y		
	C1.T	C2	🔀 Margi <u>n</u> al Plot	C6.T	C7.T	68.	Cimala	With Crowne	
-	Month	Caster Type	dl Histogram	Group	Shift	Actual c	Simple	with Groups	
1	1.Dec'07	1	<u>.i.i</u> Dotplot	G1 .	A	CG04AC			
2	1.Dec'07	1	बेश्रिव Stem-and-Lea <u>f</u>	G1	A	CG04AC			
3	1.Dec'07	1	Probability Plot	G1	A	CG04AC		白口 白日	
4	1.Dec'07	1	Empirical CDF	G1	Α	CR04AK		+++++++++++++++++++++++++++++++++++++	
5	1.Dec'07	1	∧ Probability Distribution Plot	G2	С	ST46CM		4 3 4 3	
6	1.Dec'07	1	010 Boxplot	G2	С	ST46CM		Å 11 2	
7	1.Dec'07	1	Interval Plot	G2	С	CG04AC	1		
8	1.Dec'07	1	Individual Value Plot	G1	A	CG04AC			
9	1.Dec'07	1		G1	A	CG04AC	Multiple Y's		
10	1.Dec'07	1		G1	A	CG04AC			
11	1.Dec'07	1	III Bar Chart	G4	В	WT41M1	Simple	With Groups	
12	1.Dec'07	1	ne Chart	G2	С	ST46CM			
13	1.Dec'07	1	✓ Time Series Plot	G2	C	CG04AC			
14	1.Dec'07	1	Area Graph	G1	A	CG04AC		▋Ⅰ⊥⊥战战	
15	1.Dec'07	1		G1	A	CG04AC	비 년 부	유 단 부 부	
16	1.Dec 07	1	Contour Plot	G4	B	VV141IVI1			
1/	1.Dec 07	1	₩ <u>3</u> D Scatterplot	64	D	0740014		AIŻIŻ	
18	1.Dec 07	1	3D Surface Plot	G4	B	ST46CIVI	Y1 Y2	Y1 Y2	
19	1.Dec 07	1	1500 7303614 L±6	G4	B	ST46CM	·	,	
20	1.Dec'07	1	1240 7303617 L+2	G4 G2	C	CG04AC			
21	1 Dec'07	1	1500 7403574 1+5	G4	B	ST46CM			1
22	1 Dec'07	1	1240 7403577 1+1	G2	C	CG04AC	Help		Cancel
25					-				

Graph \rightarrow Boxplot - Example

Ni 🔁	Minitab - CASTER1_BOX PLOT.MPJ - [Worksheet 1 ***]													
	Eile Edit Data Calc Stat Graph Editor Tools Window Help													
☞ 🖬 番 🐒 🗠 ♀ ♀ 📴 ↑ ↓ 🛤 券 ◇ 🤋 🗊 ◀ 📾 🗟 ① 🗵 ඕ ☜ 책 ፪ 🎬 國 🕺 🗡 📲 릅 📠 ᡝ 🊿 🎣 🖉														
		-	R .	+ 🖂 🖬] X Q			1				
+	C1-T	C2	C3	C4-T	C5-T	C6-T	C7-T	C8-T	C9-T	C10-T	C11		C12	C13
	Month	Caster Type	Width	Heat No	Heat Position	Group	Shift	Actual grade	Grade Family	Grade Type	Actual Average	Speed		
1	1.Dec'07	1	1235	7103192	L+2	G1	A	CG04AC	CG Grade	Other Than VAG		5.63		
2	1.Dec'07	1	1235	7103193	L+4	G1	A	CG04AC	CG Grade	Other Than VAG		5.75		
3	1.Dec'07	1	1235	7103195	L+7	G1	A	CG04AC	CG Grade	Other Than VAG		5.65		
4	1.Dec'07	1	1265	7103197	L+10	oxplot - C)ne Y Simi	ale				4.18		
5	1.Dec'07	1	1500	7103201	L+7	oxproc c	, no 1, onig	=				5.02		
6	1.Dec'07	1	1500	7103202	L+9	C2 Caste	r Type	<u>G</u> raph varial	oles:			5.10		
7	1.Dec'07	1	1235	7203309	L+1	C11 Actua	al Average Sp	er Actual Aver	age Speed		<u> </u>	5.83		
8	1.Dec'07	1	1235	7203310	L+3							5.65		
9	1.Dec'07	1	1235	7203312	L+6						~	5.52		
10	1.Dec'07	1	1235	7203314	L+9			<u> </u>				5.54		
11	1.Dec'07	1	1550	7203315	L							4.41		
12	1.Dec'07	1	1520	7203319	L+8			Scale	1	bals I I	Data View	5.10		
13	1.Dec'07	1	1250	7203320	L			<u></u>	<u>_</u>			5.02		
14	1.Dec'07	1	1235	7303606	L+5			Multiple Grap	hs Data	Options		5.74		
15	1.Dec'07	1	1235	7303608	L+8							5.64		
16	1.Dec'07	1	1550	7303610	L+1		1					5.50		
17	1.Dec'07	1	1550	7303611	L+2	S	elect					5.62		
18	1.Dec'07	1	1500	7303612	L+3							5.50		
19	1.Dec'07	1	1500	7303613	L+4 _	Help			(<u>¤)</u>	Cancel	5.39		
20	1.Dec'07	1	1500	7303614	L+6	G4	В	ST46CM	ST Grade	VAG .		5.50		
21	1.Dec'07	1	1240	7303617	L+2	G2	С	CG04AC	CG Grade	Other Than VAG		5.70		
22	1.Dec'07	1	1500	7403574	L+5	G4	В	ST46CM	ST Grade	VAG		5.50		
23	1.Dec'07	1	1240	7403577	L+1	G2	С	CG04AC	CG Grade	Other Than VAG		5.86		

Graph \rightarrow Boxplot - Output

Without Outlier Symbol

With Outlier Symbol

Box Plot – Interpretation of Result

- the Central tendency, location of distribution
 - + From the median
 - the spread, variability of distribution
 - + From the length of the Box
 - Skew ness
 - + If the median is not in the centre
- Positive Skew ness
 - + If median is closer to the bottom of the Box
- Negative Skew ness
 - + If the median is closer to top of the box

- the length of the tail
 - + From the whiskers

Graph \rightarrow Boxplot \rightarrow With Group

Class Exercise

Draw the box plot for Casting speed Group wise and find which group is performing better.

File Name – Minitab training

Worksheet Name – Boxplot

Graph \rightarrow Boxplot \rightarrow With Group

Class Exercise

Boxplots 🛛 🔀	Boxplot - One Y , With Groups
One Y Simple With Groups	C2 Actual Average Spee Graph variables: Actual Average Speed Categorical variables for grouping (1-4, outermost first): Group
Multiple Y's Simple With Groups $\downarrow \downarrow $	Select Multiple Graphs Data Options
Help OK Cancel	Help OK Cancel

Graph \rightarrow Boxplot – Output

Interpreting the results

Box Plot output indicates that Group G3 is having a higher Mean and Median than the other groups

The outliers are far spread in Group G1,G2 and G4 as compared to G3

Pareto Chart

Example

The following table consist of the delay reasons which causing delay at Caster2 in the month of July'08 and the corresponding sum of delays in minute. The management wants to take decision based upon the following data to reduce the delay.

File Name – Minitab training Worksheet Name – Pareto-s

Delay Reasons	Sum of Delays in min	Count of Delays	Agency
Lead Heat	351	29	Caster
Slab Bulging	54	25	Caster
High Sulphur	28	7	LF
Furnace lagging	752	120	EAF
Width Transition	125	52	Marketing
Coiler Down	67	11	Mill
High Temp	58	32	LF
Mould level fluctuatuon	68	26	Caster
LCR Operation	79	11	Mill
Stopper Rise	43	9	LF
Roll Change	49	16	Mill
BOPS Slow Down	194	25	Caster

Stat \rightarrow Quality tools \rightarrow Pareto chart

М	NITAB - Untitled - [[Worksheet 1 ***]								
	<u>File E</u> dit D <u>a</u> ta <u>C</u> alc	<u>Stat</u> <u>Graph</u> Editor <u>T</u> ools	s <u>V</u>	<u>V</u> indow <u>H</u> elj	5					
	-3 46 66 1 ≫ ≪	<u>B</u> asic Statistics <u>R</u> egression ANOVA))	≜ & ⊘	? 🗊]*[-) 🖻 🗐 •	e 41 E	
÷	C1-T Delay Reasons	DOE		C3	C4	C5	C6	C7	C8	C9
1	Lead Heat	<u>C</u> ontrol Charts Quality Tools		Run Ch	art					
2	Slab Bulging High Sulphur	Reļiability/Survival	Þ	Pareto	Chart					
4	Furnace lagging Width Transition	<u>M</u> ultivariate Time <u>S</u> eries	+	→ Cause- ◇ Individe	and-Effect ual Distribution	Identificatio	n			
6	Coiler Down High Temn	<u>T</u> ables <u>N</u> onparametrics	+ +	2 Johnso	n Transformat	ion	-			
8	Mould level fluctuat	EDA Power and Sample Size	+	Capabi	ity <u>A</u> naiysis ity <u>S</u> ixpack					
9 10	Stopper Rise		4	<u>G</u> age S	tudy		•			
11	Roll Change		4	🖌 Attrib <u>u</u>	te Agreement	Analysis				
12	BOPS Slow Down		17:	🔶 <u>M</u> ulti-V	ari Chart					
13			_	🔀 Symme	try Plot					
15			-							
16										
17										

Stat \rightarrow Quality tools \rightarrow Pareto chart

М	NITAB - Untitled -	[Worksheet 1 ***]									
	<u>Eile E</u> dit D <u>a</u> ta <u>C</u> alc	<u>S</u> tat <u>G</u> raph E <u>d</u> itor <u>T</u> o	ols <u>W</u> ine	dow <u>H</u> elp							
2	🖆 🖬 🎒 👗 🖻 🖻 🖙 🗠 💷 🕇 🗍 🛤 🔏 🚫 🎖 🗊 👘 🚽 🕄 🖬 🔂 🖸 🔁 🗒 🛨 🖼 🕮 🖽										图
	-2 🍋 💓 🍕	0									
Ŧ	C1-T	C2		C3	C4	C5	C6	C7	C8	C9	C1
	Delay Reason	s Sum of Delays i	n min								
1	Lead Heat		221								
2	Slab Bulging		54								
3	High Sulphur		28								
4	Furnace lagging		688								
5	Width Transiti	eto Chart	170			· · · · ·			· · · · ·	6) _
6	Coiler Down	sto chart									4_
7	High Temp		ି ୦ ୦	hart defe	cts data i	n:					
8	Mould level fl		В	Y variab	de in:				(optional	j	
9	LCR Operatic		0	Default	t (all on o	ne graph, :	same ord	lering of b	ars]		
10	Stopper Rise	C One group per graph, same ordering of bars									
11	Roll Change		C	One an	oup per a	raph, inde	pendent	orderina (of bars		
12	BOPS Slow [J.			f				
13			• C	hart defe	cts table						
14				ahels in'		Delar	Peacon	<u></u>			
15						Deray		<u> </u>			
16			F	requenci	es m.	Delay	's in Mi	n			
17			Com	hine def	ecto after	the firct	DE		% into one		
18						are mat	123				
19											
20		Select							Ωn	tions	1
21		001000								aonom	1
22		Help					$(\square$	ОК) c	ancel	1
23											1
24									•		

Stat \rightarrow Quality tools \rightarrow Pareto chart - Output

Interpreting the results

The first three reasons of delay contributes to 69.4% of the total delay.

You can suggest management to eliminate/reduce the causes of the delay of first four to reduce the overall delay by 76%

Class Exercise

Draw the Pareto Chart for the following data in the worksheet . The Pareto chart to be drawn between 'Agency' and 'delays in min' data

File Name – Minitab training Worksheet Name – Pareto-C

Interpreting the results

The first four parameters contributes to 70.6% of the total delay.

As a second step of data analysis, we can further identify the factors affecting the above parameters.

Class Exercise

Draw the Pareto Chart for the following data in the worksheet . The Pareto chart to be drawn between 'Agency1' and 'delays' data

File Name – Minitab training Worksheet Name – Pareto-C

Class Exercise –

Class Exercise –

Scatter Plot

The scatter diagram graphs pairs of numerical data, with one variable on each axis, to look for a relationship between them.

If the variables are correlated, the points will fall along a line or curve.

The better the correlation, the tighter the points will hug the line.
When to Use a Scatter Plot

- When you have paired numerical data.
- When your dependent variable may have multiple values for each value of your independent variable.
- When trying to determine whether the two variables are related, such as...
 - + When trying to identify potential root causes of problems.
 - After brainstorming causes and effects using a fishbone diagram, to determine objectively whether a particular cause and effect are related.
 - When determining whether two effects that appear to be related both occur with the same cause.
 - + When testing for autocorrelation before constructing a control chart.

Generating Scatter Plots in Minitab - Example

- For generating scatter plots, we must have both X & Y as continuous
- Data points for both should be entered in Minitab
- Let's say we have following data points on 'X' & its corresponding 'Y'

Employee	Experience (X)	Call Length (Y)
1	6	58
2	9	56
3	9	52
4	13	48
5	15	53
6	18	48
7	19	43
8	26	45
9	26	38
10	26	38
11	26	38
12	27	33
13	28	32
14	29	41
15	30	22

File Name – Minitab training Worksheet Name – Scatter plot-S

Interpreting the results

The higher the experience the lower the call length time tends to be.

Class Exercise

- Create a scatter plot to investigate the possible relationship between the variables Speed vs Superheat
- Include a reference line at the critical Average speed of 4.5 m/min

File Name – Minitab training Worksheet Name – Scatter plot-C

Class Exercise - Output

Scatter plot : Inferences & Precautions

- Even if the scatter diagram shows a relationship, do not assume that one variable caused the other. Both may be influenced by a third variable.
- When the data are plotted, the more the diagram resembles a straight line, the stronger the relationship.
- If the diagram shows no relationship, consider whether the independent (x-axis) variable has been varied widely. Sometimes a relationship is not apparent because the data don't cover a wide enough range.
- If the scatter diagram shows no relationship between the variables, consider whether the data might be stratified.
- If a line is not clear, statistics (N and Q) determine whether there is reasonable certainty that a relationship exists. If the statistics say that no relationship exists, the pattern could have occurred by random chance.

Individual distribution Identification-Step1

Example-

Suppose you work for a company that manufactures floor tiles, and are concerned about warping in the tiles. To ensure production quality, you measured warping in 10 tiles each working day for 10 days. The distribution of the data is unknown. Conduct the Individual Distribution Identification to identify the best fit.

Individual distribution Identification-Step2

Individual Distribution Ide	ntification		X
C1 Warping	Data are arranged as ○ Single column: ○ Subgroups across ○ Use all distribution ○ Specify ☑ Distribution 1: ☑ Distribution 2: ☑ Distribution 3: ☑ Distribution 4:	rows of: s Normal Exponential Weibull Gamma	Box-Cox Options Results
Select Help			OK Cancel

Individual distribution Identification-Graph Output

Leading Innovation

Individual distribution Identification-Output

Distribution ID Plot for Warping

Descriptive Statistics

N N* Mean StDev Median Minimum Maximum Skewness Kurtosis 100 0 2.92307 1.78597 2.60726 0.28186 8.09064 0.707725 0.135236

Goodness of Fit Test

Distribution	AD	Р	LRT P
Normal	1.028	0.010	
Lognormal	1.477	<0.005	
3-Parameter Lognormal	0.523	*	0.007
Exponential	5.982	<0.003	
2-Parameter Exponential	3.684	<0.010	0.000
Weibull	0.248	>0.250	
3-Parameter Weibull	0.359	0.467	0.225
Smallest Extreme Value	3.410	<0.010	
Largest Extreme Value	0.504	0.213	
Gamma	0.489	0.238	
3-Parameter Gamma	0.547	*	0.763
Logistic	0.879	0.013	
Loglogistic	1.239	<0.005	
3-Parameter Loglogistic	0.692	*	0.085

Non Normal Data- Box Cox Transformation

Purpose

Use a Box-Cox transformation to transform the data to follow a normal distribution and store the transformed data for further.

Example – Transform the below data using Box-Cox transformation

File Name – Minitab training Worksheet Name – IDE_S

Non Normal Data- Box Cox Transformation

Class Exercise – Conduct a Box-Cox Transformation of the Following data and check the transformed data for Normality

File Name – Minitab training Worksheet Name – IDE_E

Measurement System Analysis

Measurement Analysis

An evaluation of the measurement system MUST be undertaken to ensure effective analysis of any subsequent data generated for a given process/product characteristic

Observed Value = True Value +/- Measurement Error

Measurement error is a statistical term meaning the net effect of all sources of measurement variability that cause an observed value to deviate from the true value

True Variability = Process Variability + Measurement Variability

- Both process and measurement variability must be evaluated and improved together
- If we work on process variability first and our measurement variability is large, we can never conclude that the improvement made was significant, or correct

MSA – Continuous Data

Methods of Performing GRR Studies

X-R (Xbar R) Method

- + Typically used in automobile industry
- + Extreme values affect the method
- + Short method & Long method
 - * Short method does not measure operator & equipment variability separately
 - Long method measures operator & equipment variability separately, but does not measure combined effect

ANOVA Method

- Measures operator & equipment variability separately with combined effect as well that better defines causality
- + More effective when extreme values are present

Data Collection

Number of Trials

- + General <u>sampling techniques</u> should be used to represent the population
- + Each unit is to be measured 2-3 times by each operator (Number of trials)
- + When 10 parts are used in the study even 2 trials are sufficient
- + When 5 parts are used in the study we should take three trials
- + All operators should measure all units in <u>random order</u>

Conducting the Study

- Select part, operator and trials
- Calibrate the gauge
- Mark all the part with serial numbers (1-10, 1-5)
- Ask the first operator to check all the parts and record the readings
- Change the number of parts & randomize (alphabets may be used)
- Ask the second operator to check all the parts second time and record the readings
- Repeat the above steps(3 through 5) with other two operators
- Compile the data in the template
- Use consistent units of measure. Avoid conversions (i.e. Inches to millimeters)

Gage RR – ANOVA Method

Example – Conduct a Gage RR study through ANOVA method for the following data

File Name – Minitab training Worksheet Name – MSA S

Note-

Structure your data so that each row contains the part name or number, operator (optional), and the observed measurement. Parts and operators can be text or numbers.

The ANOVA method is more accurate than the X and R method, in part, because it considers the operator by part interaction

Gage R&R Study - ANOVA Method

Two-Way ANOVA Table With Interaction

Source	DF	SS	MS	F	P
Part	4	39647.9	9911.97	18.7691	0.000
Operator	2	70.5	35.27	0.0668	0.936
Part * Operator	8	4224.8	528.10	0.3478	0.939
Repeatability	30	45548.0	1518.27		
Total	44	89491.2			

Two-Way ANOVA Table Without Interaction

Source	DF	SS	MS	F	P
Part	4	39647.9	9911.97	7.56748	0.000
Operator	2	70.5	35.27	0.02693	0.973
Repeatability	38	49772.8	1309.81		
Total	44	89491.2			

Gage R&R Study - ANOVA Method

Gage R&R

	%Cc	ontribution	
Source	VarComp (c	of VarComp)	
Total Gage R&R	1309.81	57.81	
Repeatability	1309.81	57.81	
Reproducibility	0.00	0.00	
Operator	0.00	0.00	
Part-To-Part	955.80	42.19	
Total Variation	2265.61	100.00	
		Study Var	%Study Var
Source	StdDev (SD)	(6 * SD)	(%SV)
Total Gage R&R	36.1913	217.148	76.03
Repeatability	36.1913	217.148	76.03
Reproducibility	0.0000	0.000	0.00
Operator	0.0000	0.000	0.00
Part-To-Part	30.9159	185.496	64.95
Total Variation	47.5984	285.590	100.00

Number of Distinct Categories = 1

This is a graphical representation of the Gage R&R section of the Session Window output.

The sources of variation that are represented in the graph are:

·Total Gage R&R, is the variation due to the measuring system including multiple operators using the same gage.

•Repeatability, is the variability in measurements obtained when the same part is measured multiple times by the same operator. •Reproducibility, is the variability in measurements obtained when the same part is measured by different operators.

·Part-to-Part, which is the variability in measurements across different parts.

In a good measurement system, the largest component of variation is Part-to-Part variation. If instead you have large amounts of variation attributed to Gage R&R (Repeatability and/or Reproducibility), corrective action is needed.

Plotted points represent, for each operator, the difference between the largest and smallest measurements on each part. Because the points are arranged by operator, you can see how consistent each operator is.

·Green center line, is the grand average for the process (average of all the subgroup ranges).

•Red control limits, which represent the amount of variation expected for the subgroup ranges. These limits are calculated using the variation within subgroups.

If any of the points on the graph go above the upper control limit (UCL), then that operator is having problems consistently measuring parts. The UCL value takes in account the number of measurements by an operator on a part and the variability between parts. If the operators are measuring consistently, then these ranges should be small relative to the data and the points should stay in control. All of the parts data are "in control" indicating that all operators are measuring consistently.

Plotted points, which represent, for each operator, the average measurement on each part.

Green center line, which is the overall average for all part measurements by all operators.

Red control limits (UCL and LCL), which are based on how much variability there is between parts and the number of measurements in each average.

Because the parts chosen for a Gage R&R study should represent the entire range of possible parts, this graph should ideally show lack-of-control. Lack-of-control exists when many points are above the upper control limit and/or below the lower control limit.

For the parts data, there are many points within the control limits, which indicates that the measurement system is inadequate.

Shows all of the measurements taken in the study, arranged by part. The measurements are represented by dots; the means are represented by the circle-cross symbol. The black line connects the average measurements for each part. Ideally,

•the multiple measurements for each individual part will vary as little as possible (the dots for one part will be close together) •the averages will vary enough that differences between parts are clear

For the parts data, the measurements for all part vary quite a bit. This variation may be due to the system's (operator and/or gage) inability to consistently measure that part. The variation in averages is not significant. This could be because of the parts chosen for the study are not representing the entire range of possible parts.

Shows all of the measurements taken in the study, arranged by operator. The measurements are represented by dots; the means by the circle-cross symbol. The line connects the average measurements for each operator. Ideally,

·the measurements for each operator will vary an equal amount

•the part averages will vary as little as possible & the connecting line will be almost horizontal.

For the parts data, this seems to be the case. There will always be some variation, but it appears the operators are measuring consistently.

Shows the average measurements taken by each operator on each part in the study, arranged by part. Each line connects the averages for a single operator.

Ideally,

·the lines will follow the same pattern

·the part averages will vary enough that differences between parts are clear

For the parts data, the lines follow each other fairly well. The operators may have a problem consistently measuring part s

Interpretation of GRR Results

- GRR as a % of Contribution to Variation.
 - If GRR as % of contribution is less than 1% of total variation <u>excellent</u>
 If GRR as % of contribution is > 1% & < 10% of the total variation <u>acceptable</u>
 If GRR as % of contribution is > 10% of the total variation unacceptable
 - Number of Distinct Categories
 - If number of distinct categories is >= 4
 - If number of distinct categories is < 4</p>
- If measurement system is found to be unacceptable as per the above criteria, do not proceed to the next step
- If tolerance was known, GRR as a % of Tolerance should be used for decision as explained in the next slide

- acceptable

- unacceptable

Interpretation of GRR Results

- GRR as a % of Tolerance
 - If GRR as % of tolerance is less than 10% system

- excellent measurement

+ If GRR as % of tolerance is between 10% to 30% - acceptable measurement system

However, discretion may be needed depending upon application of the process / equipment

+ If GRR as % of tolerance is above 30%

- unacceptable measurement system

You should not proceed to next DMAIC step. Simplify process / explore root cause

Gage RR – ANOVA Method-Class Exercise

Conduct Gage RR study for the following data and interpret the output

File Name – Minitab training Worksheet Name – MSA_E

Process capability

Let's understand the concept of short & long term variations. Below is the data given on the % Metallic Iron content in DRI spread over 5 days. Each day's data can form a sub-group.

% Fe (M) in DRI										
Day 1	Day 2	Day 3	Day 4	Day 5						
85.00	84.50	86.30	86.00	86.50						
84.40	85.40	86.10	85.70	85.40						
84.70	84.50	86.90	86.70	85.70						
84.60	84.60	86.60	86.60	86.40						
84.60	84.00	85.20	86.10	86.10						
85.20	84.30	85.60	86.50	85.10						
85.10	83.00	86.10	85.00	85.00						
84.20	84.60	85.10	85.60	85.10						
84.00	84.50	85.30	86.20	85.00						
84.50	84.60	85.80	86.00	86.00						
85.00	84.00	85.50	85.70	86.20						

Calculating Process Variations

Process Capability

Stat > Quality tools > capability Analysis> Normal

File Name – Minitab training Worksheet Name-Capability-S

≥ мі	MINITAB - Untitled - [Worksheet 1 ****]													
	<u>i</u> le <u>E</u> dit D	<u>a</u> ta <u>C</u> alc	Stat Graph Editor To	ols <u>v</u>	<u>V</u> indow	Help								
	▋▕▟▏	¥∎∎ ∿∕ √	<u>B</u> asic Statistics <u>R</u> egression	• •	N & O ? Ø J +€ 🖬 🗟 O D 2 2 1 1 1 1 E 📰 🗷									
+	C1	C2	<u>A</u> NOVA <u>D</u> OE	+	C5	C6	C7	C8		C9	C10	C11	C12	C13
1	Day 85.0		<u>C</u> ontrol Charts	•		_				1				
2	84.4		<u>Q</u> uality Tools Reļiability/Survival	•	😹 B	un Chart areto Chart								
4	84.6		<u>M</u> ultivariate Time Series	•	»⊆	ause-and-Eff	ect							
5	84.6 85.2		<u>T</u> ables	•	עַּיָּ עַרָּאַ	ndividual Distr ohnson Trans	ribution Iden formation	tification						
7	85.1 84.2		<u>N</u> onparametrics <u>E</u> DA	+	C	apability <u>A</u> na	lysis		•		ormal			
9	84.0		Power and Sample S	ize 🕨	- C	apability <u>S</u> ixp	ack		_`	IM B IN N	etween/With onnormal	in		
10	84.5 85.0				<u>е</u> ~ А	ttribute Agre	ement Analy	sis	_		ultiple Variab	les (Normal).		
12	85.2				Â ∧ M	Multiple Multiple						iles (Nonnorm	nal)	
13	84.5 85.4				🛃	ymmetry Plot				ไณ้่ยั เ∧้เย	nomial piss <u>o</u> n			
15	84.5 84.6									- <u>RTR</u> .				
10	04.0													

Process Capability Stat > Quality tools > capability Analysis> Normal>single column "Day">Subgroup size "5">Lower spec "86">OK

File Name – Minitab training Worksheet Name-Capability-C

22 MI	MINITAB - Untitled - [Worksheet 1 ***]													
] 🏢 E	Elle Edit Data Calc Stat Graph Editor Iools Window Help													
☞ 묘 香 ℁ № ६ ∽ ∼ ፲፱ ↑ ↓ ₩ ☆ ╲ १ ๗														
│ 룹 륨 ⊷ í l 🎾 ≪ │ //														
Ŧ	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C
	Day													
1	85.0													
2	84.4													
3	3 84.7 Capability Analysis (Normal Distribution)											X		
4	84.6		[C1	Dav		Data ar	e arrande	das				Bo	v-Cov	
5	84.6			20.,		• Sina	le column	: Day		_			x-cux	
6	85.2					Cub		· E		_		Est	imate	
7	85.1					SUD	Jrouh 2126	가 [5] 				On	tions	
8	84.2					luse	a constai	nt or an ID	columnj					
9	84.0					O Sub	jroups ac	ross rows	of:			Ste	orage	
10	84.5									1	1			
11	85.0													
12	85.2									<u> </u>				
13	84.5								_					
14	85.4					Lowers	spec:		86			oundary		
15	84.5					Upper s	spec:				E Bo	oundary		
16	84.6					Historia	al mean:				(optio	inal)		
17	84.0					Historia	al standa:	rd deviati	on: · 🔽		(optio	nal)		
18	84.3			Sele	ct				Ć			,	ок	
19	83.0				1									
20	84.6			Help								C	ancel	
21	84.5													

Process Capability Minitab output

Leading Innovation

Key Concepts

- Capability is an internal measurement of the process behavior measured on a short term view
- Performance is an external view of the process behavior measured on a long term view

Due to limitations of multiple shift factors & C_P, process sigma multiple calculations for continuous data start from P_{PK}

Z Calculation Worksheet – Discrete Data

Yield = (1 - DPO)

Process Capability

File Name – Minitab training Worksheet Name-Capability-C

Find the process capability of the thickness of the HRC.

Thank you