ultimate tutorial

Subject: MATHEMATICS

SECTION - A

1 Find the co-factors of the elements of the following matrices :
$\left[\begin{array}{ll}-1 & 2 \\ -3 & 4\end{array}\right]$

2 Write the nagations of following statements.
All students of this collage live in the hostel.

3 Write the nagations of following statements.
01
Some continuous functions are differentiable.

4 Write negations of the following statements:
01
It is false that the sky is not blue.

SECTION - B

1 If G_{1} and G_{2} are the centroids of the triangles $A B C$ and $P Q R$ respectively, then prove that $\overline{A P}+\overline{B Q}+\overline{C R}=3 \overline{G_{1}} \overline{G_{2}}$

2 Find k,
If one of the lines given by $3 x^{2}-\mathrm{k} x \mathrm{y}+5 \mathrm{y}^{2}=0$ is perpendicular to the line $5 x+3 \mathrm{y}=0$

3 Find the value of k, if the following equations represent a pair of lines :
$3 x^{2}+10 x y+3 y^{2}-16 y+k=0$

4 If $\bar{u}=\bar{i}-2 \bar{j}+\bar{k}, \bar{v}=3 \bar{i}+\bar{k}$ and $\bar{w}=\bar{j}-\bar{k}$ are given vectors. then find.
$\overline{\mathrm{u}}=\overline{\mathrm{i}}-2 \overline{\mathrm{j}}+\overline{\mathrm{k}}, \overline{\mathrm{v}}=3 \overline{\mathrm{i}}+\overline{\mathrm{k}}$ and $\overline{\mathrm{w}}=\overline{\mathrm{j}}-\overline{\mathrm{k}}$ are given vectors. then find.
$[\bar{u} \times \bar{v} \bar{u} \times \bar{w} \bar{v} \times \bar{w}]$

5 Without using truth tables, show that
$\sim p \wedge q \equiv(p \vee q) \wedge \sim p$

6 If P orthocenter, Q is circumcenter and G is centroid of a triangle $A B C$, then prove that $\overline{Q P}=3 \overline{Q G}$.

SECTION-C

3 Show that following equations represent a pair of lines, find the acute angle between each pair :
$9 x^{2}-6 x y+y^{2}+18 x-6 y+8=0$

SECTION - D

1 Find the inverse of the following method by using transformation method.
$\left[\begin{array}{lll}2 & 0 & -1\end{array}\right]$
510
$\left[\begin{array}{lll}0 & 1 & 3\end{array}\right]$

2 In a city three are two factories A and b. EAch factory produces sports clothes for boys and girls. Three are three types of clothes produced in, both the factories, type I, II and III. For boys the number of units of types I, II and III are 80, 70 and 65 in factory A and 85,65 and 72 in factory B. For girls the number of units of II II and III are $80,75,90$ in factory A and $50,55,80$ in factory B. Express this information in terms of matrices and using matrix Algebra, answer the following questions. (i) how many total units of type I produced for boys?
(i) what is that total production of each type for boys and girls?

3 Find the inverse of the following method by using transformation method.

