Olympiad - Level 2 training

1) The line segment joining the midpoint M and N of opposite sides $A B$ and $D C$ of quadrilateral ABCD is perpendicular to both these sides. Prove that the other sides of the quadrilateral are equal.

2) In triangle $A B C, A B=B C$. Bisectors of angles B and C intersect at point O. Prove that $\mathrm{BO}=\mathrm{CO}$ and the ray AO is bisector of angle BAC .

3) The altitudes of triangle $\mathrm{ABC}, \mathrm{AD}, \mathrm{BE}$ and CF are equal. Prove that triangle ABIS is an equilateral triangle.

4) Triangle ABC is an isosceles triangle with $\mathrm{AB}=\mathrm{AC}$. BD and CE are two medians of triangle. Prove that $\mathrm{BD}=\mathrm{CE}$.

5) In figure $P Q>P R$. $Q S$ and $R S$ are the bisectors of angle Q and angle R respectively. Prove that $S Q>S R$.

6) For each container below, what percentage is filled with water? Place the containers in descending order of proportion filled.

Water Height is 11 cm

C
7)

Simplify the expression

$$
\sqrt{\sin ^{4} x+4 \cos ^{2} x}-\sqrt{\cos ^{4} x+4 \sin ^{2} x}
$$

8)

Let a, b, c be real numbers, all different from -1 and 1 , such that $a+b+c=$ $a b c$. Prove that

$$
\frac{a}{1-a^{2}}+\frac{b}{1-b^{2}}+\frac{c}{1-c^{2}}=\frac{4 a b c}{\left(1-a^{2}\right)\left(1-b^{2}\right)\left(1-c^{2}\right)}
$$

9)

In triangle $A B C$, show that

$$
\sin \frac{A}{2} \leq \frac{a}{b+c} .
$$

10) A vertical flag pole OP stands in the centre of a horizontal field QRST. Using the information given in the diagram, calculate the height of the flag pole.

S
11) Q is a point on side RS of Triangle $P S R$ such that $P Q=P R$, Show that $P S>P Q$.

12) In the figure AP is perpendicular to L i.e. AP is the shortest line segment that can be drawn from A to the line L . If $\mathrm{PR}>\mathrm{PQ}$. Show that $A R>A Q$.

13) Show that the sum of the three altitudes of a triangle is less than the sum of the three sides of a triangle

14) PQRS is a quadrilateral. PQ is the longest side. RS is the shortest side, prove that angle $\mathrm{R}>$ Angle P and angle $\mathrm{S}>$ angle Q .

15) $\mathrm{AB}\|\mathrm{PQ}, \mathrm{AB}=\mathrm{PQ}, \mathrm{AC}\| \mathrm{PR}, \mathrm{AC}=\mathrm{PR}$. Prove that $\mathrm{BC} \| \mathrm{QR}$ and $\mathrm{BC}=\mathrm{QR}$.

16) Prove that the angle bisector of a parallelogram forms a rectangle.

17) The diagonals of a quadrilateral ABCD are perpendicular. Show that the quadrilateral formed by joining the mid points of its sides, is a rectangle.

18) $A B C D$ is a rhombus. P, Q, R, S are midpoints of $A B, B C, C D, D A$ respectively. Prove that PQRS is a rectangle.

19) If A, B, C and $A^{\prime}, B^{\prime}, C^{\prime}$ are points on two parallel lines such that $A B / A^{\prime} B^{\prime}=B C$ $\mathrm{B}^{\prime} \mathrm{C}^{\prime}$, Then $\mathrm{AA}^{\prime}, \mathrm{BB}^{\prime}, \mathrm{CC}^{\prime}$ are concurrent, if they are not parallel.

20) From a point $\mathrm{O} ; \mathrm{OD}, \mathrm{OE}, \mathrm{OF}$ are drawn perpendicular to the sides BC, CA and AB respectively of a triangle ABC , then

$$
\mathrm{BD}^{2-} \mathrm{DC}^{2}+\mathrm{CE}^{2}-\mathrm{EA}^{2}+\mathrm{AF}^{2}-\mathrm{FB}^{2}=0
$$

21) If D, E, F be points on sides $B C, C A, A B$ of a triangle $A B C$ such that $\mathrm{BD}^{2-} \mathrm{DC}^{2}+\mathrm{CE}^{2}-\mathrm{EA}^{2}+\mathrm{AF}^{2}-\mathrm{FB}^{2}=0$ then perpendiculars at $\mathrm{D}, \mathrm{E}, \mathrm{F}$ to the respective sides are concurrent.

22) Cevas's Theorem - A line segment joining a vertex of a triangle to any point on the opposite side (the point may be on the extension of the opposite side also) is called a Cevian.
ABC is a triangle and AX, BY and CZ are three concurrent cevians. Then,
BX CY AZ
----. ----. ---- = 1
XC YA ZB

23) SIMPSON'S LINE - Prove that the feet of perpendiculars drawn from a point on the circumcircle of a triangle on the sides are collinear.

24) A line drawn from vertex A of an equilateral triangle $A B C$ meets $B C$ and D and the circumcircle at P . Prove that
(a) $\mathrm{PA}=\mathrm{PB}+\mathrm{PC}$
(b) $1=1 \quad 1$
$\begin{array}{ll}--- & --- \\ \text { PD } & \text { PB } \\ \text { PC }\end{array}$

25) Let the incircle of triangle $A B C$ touch $A B$ at D and let E be a point on the side $A C$.

Prove that the incircles of triangle ADE, triangle BCE and triangle BDE have common tangents.

26) Show that the diagonals of a parallelogram divide it into four triangles of equal area.

27) $A B C D$ is a parallelogram, O is any point in its interior. Prove that
(a) Area (triangle AOB) + Area (triangle COD) $=$ Area $($ triangle BOC $)+$ Area (triangle AOD)
(b) Area (triangle AOB) + Area (triangle COD) $=1 / 2$ Area $(|\mid g m$ ABCD $)$

28) If the medians of a triangle $A B C$ intersect at G. Show that

Area $($ triangle AGB$)=$ Area $($ triangle AGC$)=$ Area $($ triangle BGC $)=1 / 3^{*}$ Area (triangle ABC)

29) In a $\| g m A B C D, E$ and F are any two points on side $A B$ and $B C$ respectively. Show that arear $($ Triangle ADF $)=$ area $($ Triangle DCE $)$

30) Let A, B and C be non-collinear points, prove that there is a unique point X in the plane of ABC such that

$$
\mathrm{XA}^{2+} \mathrm{XB}^{2}+\mathrm{AB}^{2}=\mathrm{XB}^{2}+\mathrm{XC}^{2}+\mathrm{BC}^{2}=\mathrm{XC}^{2}+\mathrm{XA}^{2}+\mathrm{CA}^{2}
$$

31) A hexagon is inscribed in a circle with radius r. Two of its sides have length 1 , two have length 2 and the last two have length 3, prove that r is a root of the equation.

$$
2 r^{3}-7 r-3=0
$$

32) Let ABC be equilateral. On side AB produced, we choose a point P such that A lies between P and B. We now denote a as the length of sides of triangle $A B C ; r 1$ as the radius of incircle of triangle PAC; and r 2 as the exradius of triangle PBC with respect to side BC . Determine the sum $\mathrm{r} 1+\mathrm{r} 2$ as a function of a alone.

33) Let T be an acute triangle. Inscribe a pair R, S of rectangles in T as shown: Let $A(X)$ denote the area of polygon X . Find the maximum value, or show that no maximum exists, of $(A(R)+A(S)) / A(T)$ where Tranges over all triangles and R, S over all rectangles as below.

