INTEGERS

Definition:

Integers are numbers that can be positive, negative or zero, but cannot be a fraction.
$1,2,5,8,-9,-12,0,123$ etc. The symbol of integers is "I" or " Z ".

Common Number Sets

$\mathbb{N}=$ Natural Numbers $=\{1,2,3, \ldots\}$
W or $\mathbb{N}_{0}=$ Whole Numbers $=\{0,1,2,3, \ldots\}$
$\mathbb{Z}=$ Integers $=\{\ldots,-1,-2,-3,0,1,2,3, \ldots\}$
$\mathbb{Q}=$ Rational Numbers $=\{p / q ; p$ and q are integers $\}$
$I=$ Irrational Numbers $=$ \{non-rational number $\}$
$\mathbb{R}=$ Real Numbers $=\{$ All of the above number sets $\}$
Imaginary Numbers $=\{$ Numbers containing $i=\sqrt{-1}\}$
$\mathbb{C}=$ Complex Numbers $=\{a+b i ; a$ and b are real, $i=\sqrt{-1}\}$

Representation of Integers on a Number Line

Value of Integers: Increases to the right and decreases to the left.

1. Arrange in ascending order:
a) $-4,12,32,-59,0,18,-1$
b) $456,-125,124,-525,399,-400$

NOTE: For Ascending order arrange numbers from \qquad to \qquad on the Number Line.
2. Arrange in Descending order
a) $+124,-1,-14,0,123,-123$

Absolute Value of Integers: It is the numerical value of the Integer.
Only consider the number, neglect its sign (+ or -)
symbol:| |
Example: The absolute value of -125 is 125 and this is expressed as:

$$
|-125|=
$$

\qquad

Absolute value refers to the distance of the integer from zero. Distance is a positive quantity.

Evaluate:
a) $|16-5|=|11|=11$
b) $|5-16|=|-11|=11$
e) $|6+4|-|-5|$

On a number line when we:

$$
\begin{aligned}
& +2+2=4 \\
& -2+2=0 \\
& +1+(-3)= \\
& -1+(-3)=
\end{aligned}
$$

$$
\text { (i) Add a positive integer, we move to the right. }-2+2=0
$$

(ii) Add a negative integer, we move to the left.
(iii) Subtract a positive integer, we move to the left.
(iv) Subtract a negative integer, we move to the right.

Integers on a Number Line

Addition \& Subtraction of Integers

Math operator (+ or -)

Sign of the Number
Step 1: Open the brackets and follow the rule given.
Step 2: Add the + numbers \& the - numbers seperately
Step 3 : Find the difference and apply sign of larger number.

Rules:

$$
\begin{aligned}
& +x+=+ \\
& +x-=- \\
& -x+=- \\
& -x-=+
\end{aligned}
$$

3. a) Add 25 to 13
b) Add -13 to 25
c) Add 22 to -3
d) Subtract 3 from 5
e) Subtract -3 from 5
f) Subtract 12 from 9
g) Subtract -8 from -9
4. Simplify the following:
a) $(-10)+(-12)+8+4$
b) $45+(-28)+(-10)+(20)$
c) $15+(-15)-(-20)+(+17)-(-1)$
d) $90-(-100)-(42)$

Multiplication of Integers
Positive Integer \times Positive Integer $=$ Positive Integer

$$
(6) \times(8)=+48
$$

Positive Integer x Negative Integer = Negative Integer

$$
(6) \times(-8)=-48
$$

Negative Integer \times Positive Integer $=$ Negative Integer

$$
(-6) \times(8)=-48
$$

Negative Integer x Negative Integer = Positive Integer

$$
(-6) \times(-8)=+48
$$

5. Simplify:
a) $(-9) \times 8=$
b) $-5 x-7=$
c) Find the product of 81 by (-2)
d) Find the product of $(-2) \times(-4) \times(-6) \times(+10)=$

NOTE:
If the number of negative integers multiplied is odd, then the product will be a negative integer.
Example: $(-1) \times(-1) \times(-1) \times(-1) \times(-1)=$
If the number of negative integers multiplied is even, then the product will be a positive integer.
Example: $(-1) \times(-1) \times(-1) \times(-1)=$

Multiplication by zero

In general, for any integer $a_{1}: a \times 0=0 \times a=0$

Multiplicative Identity

In general, for any integer $a, a \times 1=1 \times a=a$
Therefore 1 is called the Multiplicative Identity for Integers (also for whole numbers and Natural Numbers)

Division of Integers
Division of a Positive \& a Negative Integer results in a Negative Integer.

$$
\begin{aligned}
& (14) \div(-2)=-7 \\
& (-14) \div(2)=-7
\end{aligned}
$$

Division of two Negative Integers, results in a Positive Integer

$$
(-14) \div(-2)=7
$$

6. Divide the following:
a) 424 by 8
b) (-192) by 6
c) (-891) by (-11)

Rules of Signs in Division $+\div-=-$

$$
+\div+=+
$$

$-\div+=$
$-\div-+$

Properties of Integers:

1. Closure Property
2. commutative Property
3. Associative Property
4. Distributive property of Multiplication over addition and subtraction

1a. Closure Property under Addition
$17+23=$
$(-10)+3=$
$(-35)+(-10)=$
Since addition of Integers gives Integers, we say:
INTEGERS ARE CLOSED UNDER ADDITION.
In general, for any two integers, a and $b,(a+b)$ is an Integer

1b. Closure Property under Subtraction

$$
\begin{aligned}
& (-10)-3= \\
& (-35)-(-10)=
\end{aligned}
$$

Since Subtraction of Integers gives Integers, we say:
INTEGERS ARE CLOSED UNDER SUBTRACTION In general, for any two integers, a and $b,(a-b)$ is an Integer
10. Closure Property under Multiplication

$$
\begin{aligned}
& 17 \times 20= \\
& (-35) \times(-10)=
\end{aligned}
$$

Since Multiplication of Integers gives Integers, we say:
INTEGERS ARE CLOSED UNDER MULTIPLICATION
In general, for any two integers, a and $b,(a \times b)$ is an Integer

1d. Closure Property under Division
$(-10) \div 2=$
$(-35) \div(-6)=$
Since Division of Integers DOES NOT ALWAYS give Integers INTEGERS ARE NOT CLOSED UNDER DIVISION
In general, for any two integers, a and $b,(a \div b)$ Need not be an Integer

La Commutative Property under Addition

$$
\begin{aligned}
& +5+(-8)=[(-8)+5= \\
& -5+(-8)=\square(-8)+(-5)=
\end{aligned}
$$

Addition is commutative for Integers
In general, for any two integers $a \& b,(a+b)=(b+a)$
$2 b$ commutative Property under Subtraction

$$
\begin{aligned}
& +5-(-8)=\quad ;(-8)-5= \\
& -5-(-8)=
\end{aligned}
$$

Subtraction is NOT Commutative for Integers In general, for any two integers a \& $b,(a-b) \neq(b-a)$

2c commutative Property under Multiplication

$$
\begin{aligned}
& +5 \times(-8)=[(-8) \times 5= \\
& -5 \times(-8)=\square
\end{aligned}
$$

Multiplication is commutative for Integers In general, for any two integers a \& $b,(a \times b)=(b \times a)$

2d Commutative Property under Division

$$
\begin{aligned}
& +5 \div(-8)=\quad ;(-8) \div 5= \\
& -5 \div(-8)=
\end{aligned}
$$

Division is NOT Commutative for Integers
In general, for any two integers $a \& b,(a \div b) \neq(b \div a)$

3a. Associative property under Addition

$$
\begin{aligned}
& (-3)+[(-2)+(-5)]= \\
& {[(-3)+(-2)]+(-5)=}
\end{aligned}
$$

Addition of Integers is Associative
In general, for any integers $a, b \& c$, we can say $a+[b+c]=[a+b]+c$

3b. Associative property under Subtraction

$$
\begin{aligned}
& (-3)-[(-2)-(-5)]= \\
& {[(-3)-(-2)]-(-5)=}
\end{aligned}
$$

Subtraction of Integers is NOT Associative In general, for any integers $a, b \& c$, we can say $a-[b-c] \neq[a-b]-c$

3c. Associative \div roperty under Multiplication

$$
\begin{aligned}
& 7 \times[(-10) \times(-6)]= \\
& {[7 \times(-10)] \times(-6)=}
\end{aligned}
$$

Multiplication of Integers is Associative
In general, for any three integers, $a, b \& c ; a \times[b \times c]=[a \times b] \times c$

3d. Associative Property under Division

$$
\begin{aligned}
& 18 \div[9 \div 3]= \\
& {[18 \div 9] \div 3=}
\end{aligned}
$$

Division of Integers is NOT Associative
In general, for any three integers, $a, b \& c ; a \div[b \div c] \neq[a \div b] \div c$

	Closure	Commutative	Associative
Addition	\checkmark	\checkmark	\checkmark
Subtraction	\checkmark	X	X
Multiplication	\checkmark	\nearrow	\nearrow
Division	X	X	X

Special Properties of Zero and 1
I) Under Addition

1. Addition of 1 to any integer gives its successor

Example: $5+1=6 ;-7+1=-6$
2. Additive Identity (Zero)

It is that number, which when added to any integer, gives the same integer. 0 is the Additive Identity.
$5+$ \qquad $=5$
3. Additive Inverse

It is that number, which when added to an integer, gives the result as Zero

$$
\begin{aligned}
& 17+\ldots=0 \\
& -17+\ldots=0
\end{aligned}
$$

II) Under Subtraction

1. Subtraction of 1 from any integer gives its Predecessor

Example: $5-1=4 ;-7-1=-8$
2. Property of Zero

It is that number, which when subtracted from any integer, gives the same integer.
5 . \qquad $=5$
III) Under Multiplication

1. Property of Zero

The product of any integer with zero is zero
In general, for any integer $a ; a \times 0=0 \times a=0$
2. Multiplicative Identity (1)

The product of any integer with 1, equals the integer.
Therefore, the Multiplicative Identity for integers is 1
In general, for any integer a; $a \times 1=1 \times a=a$
III) Under Division

1. Property of 1

When any integer is divided by 1 , the quotient is the same integer In general, for any integer $a ; a \div 1=a$
2. Property of Zero

When zero is divided by any non-zero integer, the result is zero In general, for any integer $a ; 0 \div a=0$

NOTE: Any integer divided by zero is UNDEFINED

