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Example : 1

(i) Find the 7th term in the expansion of 
9

x2
5

5
x4

⎟
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⎜
⎝

⎛ −

(ii) Find the coefficient of x7 in 
11

2
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⎞
⎜
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Solution

(i) In the expansion of 
9

x2
5

5
x4

⎟
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⎞
⎜
⎝
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The general terms is Tr+1 = 9Cr 
r9
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For 7th term (T7), Put r = 6

⇒ T7 = T6+1 = 9C6 
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⇒ T7 = !3
789 ××
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 53 3x
1

⇒ T7 = 3x
10500

(ii) In 
11

2

bx
1ax ⎟
⎠

⎞
⎜
⎝

⎛ +  general term is Tr+1 = 11Cr a
11–r b–r x22–3r

for term involving x7 , 22 – 3r = 7
⇒ r = 5
Hence T5+1 or the 6th term will contain x7.

T6 = 11C5 (ax2)11–5 
5

bx
1
⎟
⎠

⎞
⎜
⎝

⎛
 = !5

7891011 ××××
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6

b
a

 x7 = 5

6

b
a462

x7

Hence the coefficient of x7 is 5

6

b
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Example : 2

Find the term independent of x in 

92

x3
1

2
x3
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⎠

⎞
⎜
⎜
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⎛
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Solution

Tr+1 = 9Cr 

r92
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⎠
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⎠
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x3
1
⎟
⎠

⎞
⎜
⎝

⎛−  x18–3r

for term independent of x, 18 – 3r = 0
⇒ r = 6
Hence T6+1 or 7th term is independent of x.

T7 = 9C6 
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Example : 3
Find the coefficient of x11 in the expansion of (2x2 + x – 3)6.

Solution
(2x2 + x – 3)6 = (x – 1)6 (2x + 3)6

term containing x11 in (2x2 + x – 3)6

(x – 1)6 = 6C0 x
6 – 6C1 x

5 + 6C2 x
4 – 6C3 x

3 + ............
(2x + 3)6 = 6C0 (2x)6 + 6C1 (2x)5 3 + 6C2 (2x)4 32 + .........
term containing x11 in the product (x – 1)6 (2x + 3)6 = [C0 x6] [6C1 (2x)5 3] – [6C1 x5] [6C0 (2x)6 ]
= 32 (18 x11) – 6 (64) x11 = 192 x11

⇒ the coefficient of x11 is 192

Example : 4
 Find the relation between r and n so that coefficient of 3rth and (r + 2)th terms of (1 + x)2n are equal.

Solution
In (1 + x)n , Tr+1 = 2nCr x

r

T3r = 2nC3r–1 x
3r–1

Tr+2 = 2nCr+1 xr+1

If the coefficient are equal then 2nC3r–1 = 2nCr+1
There are two possibilities
Case – 1

3r – 1 = r + 1
⇒ r = 1
⇒ T3r = T3 and Tr+2 = T3

⇒ T3r and Tr+2 are same terms
Case – 2

2nC3r–1 = 2nCr+1

⇒ 2nC3r–1 = 2nC2n–(r+1)
⇒ 3r – 1 = 2n – (r + 1)
⇒ r = n/2

Example : 5
Find the coefficient of x3 in the expansion (1 + x + x2)n .

Solution
(1 + x + x2)n  = [1 + x (1 + x)]n = nC0 + nC1 x (1 + x) + nC2 x

2 (1 + x)2 + ...........
Coefficient of x3 = nC2 [coeff of x in (1 + x)2] + nC3 [coeff of x0 in (1 + x)3]

= nC2 (2) + nC3 (1) = 
2

)1n(n2 −
 + !3

)2n)(1n(n −−
 = 6

)1n(n −
 [6 + n – 2] = 6

)4n)(1n(n +−

Example : 6
If nCr is denoted as Cr, show that

(a) (C0 + C1) (C1 + C2) (C2 + C3) .......... (Cn–1 + Cn) = 
!n

)1n(C.....CC n
n10 +

(b)
0

1

C
C

 + 2 
1

2

C
C

 + 3 
2

3

C
C

+ ....... + n 
1n

n

C
C

−
 = 

2
)1n(n +

Solution
(a) LHS = (C0 + C1) (C1 + C2) (C2 + C3) ........ (Cn–1 + Cn)

Multiply and Divide by C0 C1 C2 ..... Cn = C0 C1 C2 .......Cn ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

0

1

C
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⎠

⎞
⎜⎜
⎝

⎛
+

1

2
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C1  ...... ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

−1n

n

C
C1

using 
1r

r

C
C

−
 = 

r
1rn +−

 = C0 C1 C2 C3 ...... Cn ⎟
⎠

⎞
⎜
⎝

⎛ +−
+

1
11n1  × ⎟

⎠

⎞
⎜
⎝

⎛ +−
+

2
12n1  + ........ + ⎟

⎠

⎞
⎜
⎝

⎛ +−
+

n
1nn1

= C0 C1 C2 ...... Cn   ⎟
⎠

⎞
⎜
⎝

⎛ +
1

1n
 ⎟

⎠

⎞
⎜
⎝

⎛ +
2

1n
 + ....... + ⎟

⎠

⎞
⎜
⎝

⎛ +
n

1n
 = C0C1C2C3  ...... Cn !n

)1n( n+
 = RHS
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(b) LHS = 
0

1

C
C

 + 2 
1

2

C
C

 + 3 
2

3

C
C

 + ......... + n 
1n

n

C
C

−

using 
1r

r

C
C

−
 = 

r
1rn +−

 = ⎟
⎠

⎞
⎜
⎝

⎛ +−
1

11n
 + 2 ⎟

⎠

⎞
⎜
⎝

⎛ +−
2

12n
 + ....... + n 

n
)1nn( +−

= n + (n – 1) + (n – 2) + ......... + 1

= Sum of first n natural numbers = 
2

)1n(n +
 = RHS

Example : 7
Show that

(a) 2
3

2
2

2
1

2
0 CCCC +++  + ......... + 2

nC  = !n!n
)!n2(

(b) C0 C1 + C1C2 + C2C3 + ......Cn–1 Cn = )!1n()!1n(
)!n2(
+−

Solution
Consider the identities (1 + x)n = C0 + C1 x + C2x

2 + ........... + Cnx
n (1 + x)n

= C0x
n + C1 X

n–1 + C2 x
n–2 + .......+ Cn

multiplying these we get another identity
(1 + x)n (x + 1)n = (C0 + C1x = (C0 + C1x + C2x

2 + ........ + Cnx
n) = C0x

n + C1x
n–1 + C2x

n–2 + ....... + Cn)
(a) Compare coefficients of xn on both sides

In LHS, coeff. of xn = coeff of xn in (1 + x)2n = 2nC0

In RHS, terms containing xn are C0
2 xn + C1

2 xn + C2
2 xn + ....... + Cn

2 xn

⇒ Coeff. of xn on RHS = C0
2 + C1

2 + C2
2 + ....... + Cn

2

equating the coefficients C0
2 + C1

2 + C2
2 + ......... Cn

2 = 2nCn

2
n

2
2

2
1

2
0 C.........CCC ++++  = !n!n

)!n2(

(b) Compare the coefficients of xn–1 on both sides
In LHS, coeff. of xn–1 = 2nCn–1
In RHS, term containing xn–1 is C0C1 x

n–1 + C1C2 x
n–1 + ........

Hence coeff. of xn–1 in RHS = C0C1 + C1C2 + C2 C3 + .......
equation of the coefficients,

C0C1 + C1C2 + ....... = Cn–1 Cn = 2nCn–1 = )!1n()!1n(
)!n2(
+−

Example : 8
Let Sn = 1 + q + q2 + q3 + ......... + qn

Sn = 1 + 
2

2
1q
⎟
⎠

⎞
⎜
⎝

⎛ +
 + 

3

2
1q
⎟
⎠

⎞
⎜
⎝

⎛ +
 + ....... + 

n

2
1q
⎟
⎠

⎞
⎜
⎝

⎛ +

prove that n+1C1 + 1S2
2n C+ + 

2S3
1n C+  + ........ + n+1Cn+1 Sn = 2n Sn

Solution

Sn = sum of (n + 1) terms of a G.P. = q1
q1 1n

−
− +

Sn = 
⎟
⎠
⎞

⎜
⎝
⎛ +

−

⎟
⎠
⎞

⎜
⎝
⎛ +

−
+

2
1q1

2
1q1

1n

 = n

1n1n

2)q1(
)1q(2

−

+− ++
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Consider the LHS = n+1C1 + n+1C2 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−

q1
q1 2

 + n+1C3  ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−

q1
q1 3

 + ...... + n+1Cn+1 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
− +

q1
q1 1n

= q1
1
−  [n+1C1 (1 – q) + n+1C2 (1 – q2) + .......... + n+1Cn+1 (1 – qn+1)]

= q1
1
−  [(n+1C1 + n+1C2 + ....... n+1Cn+1) – )]qC.......qCqC( 1n

1n
1n2

2
1n

1
1n +

−
+++ +++

= q1
1
−  [(2n+1 – 1 – ((1 + q)n+1 – 1)] = q1

)q1(2 1n1n

−
+− ++

 = 2n Sn  = RHS

Example : 9
Show that 32n+2 – 8n – 9 is divisible by 64 if n ∈ N.

Solution
32n+2 – 8n – 9 = (1 + 8)n+1 – 8n – 9 = [1 + (n + 1) 8 + (n+1C2 8

2 + ........] – 8n – 9
= n+1C2 8

2 + n+1C3 8
3 + n+1C4 84 + .........

= 64[n+1C2 + n+1C3 8 + n+1C48
2 + .......]

which is clearly divisible by  64

Example : 10
Find numerically greatest term in the expansion of (2 + 3x)9, when x = 3/2

Solution

(2 + 3x)9 = 29 
9

2
x31 ⎟
⎠

⎞
⎜
⎝

⎛ +  = 29 
9

4
91 ⎟
⎠

⎞
⎜
⎝

⎛ +

Let us calculate m = 
1x

)1n(x
+
+

 = 1)4/9(
)19)(4/9(

+
+

 = 13
90

 = 6 13
12

as m is not an integer, the greatest term in the expansion is T[m]+1 = T7

⇒ the greatest term = 20 (T7) = 29 9C6 
6

4
9
⎟
⎠

⎞
⎜
⎝

⎛
= 

2
37 13×

Example : 11
If a1, a2, a3  and a4 are the coefficients of any four consecutive terms in the expansion of (1 + x)n , prove that

21

1

aa
a
+  + 

43

3

aa
a
+  = 

32

2

aa
a2
+

Solution
Let a1 = coefficient of Tr+1 = nCr ⇒ a2 = nCr+1 = nCr
⇒ a2 = nCr+1 , a3 = nCr+2 , a4 = nCr+3

⇒
21

1

aa
a
+  = 

1r
n

r
n

r
n

CC
C

++  = 
1r

1n
r

n

C
C

+
+  = 

1n
1r

+
+

 and 
43

3

aa
a
+  = 

3r
n

2r
n

2r
n

CC
C

++

+

+  = 
3r

1n
2r

n

C
C

+
+

+
 = 

1n
3r

+
+

LHS = 
21

1

aa
a
+  + 

43

3

aa
a
+  + 

1n
1r

+
+

 = 
1n
3r

+
+

 = 
1n

)2r(2
+
+

RHS = 
32

2

aa
a2
+  = 

2r
n

1r
n

1r
n

CC
C2

++

+

+  = 
2r

1n
1r

n

C
C2

+
+

+
 = 

1n
)2r(2

+
+

Hence R.H.S. = L.H.S
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Example : 12
Prove that following (Cr = nCr)
(a) C1 + 2C2 + 3C3 + .......... n Cn = n 2n–1

(b) C1 – 2C2 + 3C3 + – ......... = 0
(c) C0 + 2C1 + 3C2 +........ + (n + 1) Cn = (n + 2) 2n–1

Solution
Consider the identity : (1 + x)n = C0 + C1x + C2x

2 + ........ + Cnx
n

Differentiating w.r.t. x, we get another identity n(1 + x)n–1

= C1 + 2C2 x + 3 C3x
2  + ......... + nCn x

n–1 ................(i)
(a) substituting x = 1 in (i), we get :

C1 + 2 C2 + 3C3 + ........ + nCn = n 2n–1 .............(ii)
(b) Substituting x = –1 in (i), we get

C1 – 2C2 + 3C3 – 4C4 + ......... + nCn (–1)n–1 = 0
(c) LHS = C0 + 2C1  + 3C2 + ..... + (n + 1)Cn = (C0 + C1 + C2 + ......) + (C1 + 2C2 + 3C3 + ...... + nCn)

= 2n + n 2n–1 = (n + 1) 2n–1 [using (ii)]
This can also be proved by multiplying (i) by x and then differentiating w.r.t. x and then substituting x = 1.

Example : 13
Prove that

(a)
1

C0  + 
2

C1  + 3
C2  + 

4
C3  + ........ + 

1n
Cn

+
 = 

1n
12 1n

+
−+

(b) 3C0 + 32 
2

C1  + 33 3
C2  + 34 

4
C3  + ...... + 3n+1 

1n
Cn

+
 = 

1n
14 1n

+
−+

Solution
Consider the identity :

(1 + x)n = C0 + C1x + C2 x
2 + ......... + Cnx

n ............(i)
(a) Integrating both sides of (i) within limits 0 to 1, we get

∫ +
1

0

n)x1(  dx = ∫ ++
1

0

n
n10 dx)xC........xCC(

1

0

1n

1n
)x1(

⎥
⎥
⎦

⎤

+
+ +

 = C0 x + 
2
xC 2

1  + 
3
xC 3

2  + ......... + 

1

0

1n
n

1n
xC

⎥
⎥
⎦

⎤

+

+

1n
12 1n

+
−+

 = C0 + 
2

C1  + 3
C2  + ......... + 

1n
Cn

+

(b) Integrating both sides of (i) within limits – 1 to + 1, we get:

∫
−

+
1

1

n)x1(  dx = ∫
−

+++
1

1

n
n10 dx)xC........xCC(

1

1

1n

1n
)x1(

−

+

⎥
⎥
⎦

⎤

+
+

 = C0 x + 
2
xC 2

1  + 
3
xC 3

2  + .......... + 

1

1

1n
n

1n
xC

+

−

+

⎥
⎥
⎦

⎤

+

1n
02 1n

+
−+

 = ⎟
⎠

⎞
⎜
⎝

⎛
+

++−+
1n

C.....
3

C
2

CC n21
0  – ⎟

⎠

⎞
⎜
⎝

⎛
+−+− .......

3
C

2
CC 21

0

⇒
1n

2 1n

+

+

 = 2C0 + 3
C2 2  + 5

C2 4  + ..........

⇒
1n

2n

+
 = C0 + 3

C2  + 5
C4  + .........

Hence proved
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Note : If the sum contains C0, C1, C2, C3 .......Cn (i.e. all +ve coefficients), then integrate between limits 0
to 1. If the sum contains alternate plus and minus (+ – signs), then integrate between limits – 1 to
0. If the sum contains even coefficients (C0, C2, C4 .....), then integrate between – 1 and +1.

Example : 15
12 C1 + 22 C2 + 32 C3 + ......... + n2 Cn = n(n + 1) 2n–2

Solution
Consider the identity :

(1 + x)n = C0 + C1x + C2 x
2 + ........... + Cn x

n

Differentiating both sides w.r.t. x;
n(1 + x)n–1 = C1 + 2C2 x + ......... + nCn xn–1

multiplying both sides by x.
n x (1 + x)n–1 = C1 x + 2 C2 x

2 + .......... + n Cn x
n

differentiate again w.r.t. x;
nx (n – 1) (1 + x)n–2 + n (1 + x)n–1 = C1 + 22 C2 x + .......... + n2 Cn x

substitute x = 1 in this identity
n(n – 1) 2n–2 + n 2n–1 = C1 + 22 C2  + 32 C3 + ........... + n2 Cn

⇒ n 2n–2 (n + 1) = C1 + 22 C2 + .............. + n2 Cn
Hence proved

Example : 16
If 2nCr  = Cr , prove that : C1

2 – 2C2
2 + 3C3

2 – + ........... – 2n C2n
2 = (–1)n–1 nCn .

Solution
Consider

(1 – x)2n = C0 – C1 x + C2x
2 – + ........... + C2n x

2n ........(i)
and

(x + 1)2n = C0 x
2n + C1 x

2n–1 + C2 x
2n–2 + ......... + C2n–1 x + C2n ........(ii)

We will differentiate (i) w.r.t. x and then multiply with (ii)
Differentiating (i), we get :

– 2n (1 – x)2n–1 = – C1 + 2 C2 x – 3 C3x
2 + ........... + 2n C2n x

2n–1

⇒ 2n (1 – x)2n–1 = C1 – 2 C2 x + 3 C3 x
2 – + ....... – 2n C2n x2n–1

new multiplying with (ii)
2n (1 – x)2n–1 (x + 1)2n = (C0 x

2n + C1 x
2n–1 + ....... + C2n) × (C1 – 2 C2 x + 3 C3 x

2 – + ......... – 2n C2n x
2n–1)

Comparing the coefficients of x2n–1 on both sides; coefficient in RHS
= C1

2 – 2 C2
2 + 3 C3

2 – + ..... – 2n C2n
2

Required coeff. in LHS = coeff. of x2n–1 in 2n (1 – x)2n–1 (1 + x)2n–1 (1 + x)
= coeff. of x2n–1 in 2n (1 – x2)2n–1 + coeff. of x2n–1 in 2nx (1 – x2)2n – 1

= coeff. of x2n–1 in 2n (1 – x2)2n–1  + coeff. of x2n–2 in 2n (1 – x2)2n–1

Now the expansion of (1 – x2)2n–1 contains only even powers of x.
Hence coefficients in LHS :
= 0 + 2n [coeff. of x2n–2 in (1 – x2)2n–1]
= 2n [2n–1Cn–1 (–1)n–1]

= 2n ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
− −1n)1(

!n)!1n(
)!1n2(

= n 2nCn (–1)n–1

Now equating the coefficients in RHS and LHS, we get C1
2 – 2C2

2 + 3C3
2 – + ........ 2n C2n

2 = (–1)n–1 n2nCn

Example : 17
Find the sum of series :

∑
=

−
n

0r

r)1( nCr ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++++ termsm.......

2
15

2
7

2
3

2
1

r4

r

r3

r

r2

r

r

Solution
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∑
=

−
n

0r

r)1(  nCr 
r

2
1
⎟
⎠

⎞
⎜
⎝

⎛
 = ∑

=

n

0r
r

nC  
r

2
1
⎟
⎠

⎞
⎜
⎝

⎛−  = expansion of 
n

2
11 ⎟
⎠

⎞
⎜
⎝

⎛ −

∑
=

−
n

0r

r)1(  nCr ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
r2

r

2
3

 = ∑
=

n

0r
r

nC  
r

4
3
⎟
⎠

⎞
⎜
⎝

⎛−  = expansion of 
n

4
31 ⎟
⎠

⎞
⎜
⎝

⎛ −

∑
=

−
n

0r

r)1(  nCr ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
r3

r

2
7

 = ∑
=

n

0r
r

nC  
r

8
7
⎟
⎠

⎞
⎜
⎝

⎛−  = expansion of 
n

8
71 ⎟
⎠

⎞
⎜
⎝

⎛ −  and so on ............

Now adding all these we get ;

Required Sum = ∑
=

−
n

0r

r)1(  nCr  ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++++ termsm........

2
15

2
7

2
3

2
1

r4

r

r3

r

r2

r

r

= 
n

2
11 ⎟
⎠

⎞
⎜
⎝

⎛ −  + 
n

4
31 ⎟
⎠

⎞
⎜
⎝

⎛ −  + 
n

8
71 ⎟
⎠

⎞
⎜
⎝

⎛ −  + ..... m terms

= n2
1

 + n4
1

 + n8
1

 + ....... m terms of GP

= 
n

mnn

2
11

2
11

2
1

−

⎟
⎠
⎞

⎜
⎝
⎛ −

 = mnn

mn

2)12(
12

−

−

Example : 18
If (1 + x)n = C0 + C1 x + C2x2 + ........... + Cn xn then show that the sum of the products of the Cis taken two

at a time represented by : ∑ ∑
≤ ≤<i0 nj

jiCC  is equal to 22n–1 – !n!n2
)!n2(

Solution
The square  of the sum of n terms is given by :

(C0 + C1 + C2 + ....... Cn)
2 = (C0

2 + C1
2 + C2

2 + .......... + Cn
2) + 2 ∑ ∑

≤ ≤<i0 nj
jiCC

substituting C0 + C1 + C2 + ......... + Cn = 2n

and C0
2 + C1

2 + C2
2 + ........ + Cn

2 = 2nCn

we get (2n)2 = 2nCn + 2 ∑ ∑
≤ ≤<i0 nj

jiCC ⇒ ∑ ∑
≤ ≤<i0 nj

jiCC  = 
2

C2 n
n2n2 −

 = 22n–1 – !n!n2
)!n2(

Example : 19
If (2 + √3)n = Ι + f where Ι and n are positive integers and 0 < f < 1, show that Ι is an odd integer and
(1 – f) (Ι + f) = 1.

Solution
(2 + √3) n = f′ where 0 < f′ < 1 because 2 – √3 is between 0 and 1
Adding the expansions of (2 + √3)n and (2 – √3)n , we get ; 1 + f + f′ = (2 + √3)n  + (2 – √3)n

= 2 [C0 2
n + C2 2

n–2 (√3)2 + .....] = even integer ...........(i)
⇒ f + f′ is also an integer
now 0 < f < 1 and 0 < f′ < 1 ⇒ 0 < f + f′ < 2
The only integer between 0 and 2 is 1
Hence f + f′ = 1 ............(ii)
Consider (i)

1 + f + f′ = even integer
⇒ Ι + 1 = even integer [using (ii)]
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⇒ Ι = odd integer
also (Ι + f) (Ι – f) = (Ι + f) (f′) = (2 + √3)n (2 – √3)n = 1

Example : 20
If (6√6 + 14)2n+1 = P, prove that the integral part of P is an even integer and P f = 202n+1 where f is the
fractional part of P.

Solution
Let Ι be the integral part of P
⇒ P = Ι + f = (6√6 + 14)2n+1

Let f′ = (6√6 – 14) lies between 0 and 1, 0 < f′ < 1
subtracting f′ from Ι + f to eliminate the irrational terms in RHS of (i)
Ι + f – f′ = (6√6 + 14)2n+1 – (6√6 – 14)2n+1 = 2[2n+1C1 (6√6)2n (14) + 2n+1C3  (6√6)2n–2 (14)3 + .........]
= even integer .............(ii)
⇒ f – f′ is an integer
now 0 < f < 1 and 0 < f′ < 1
⇒ 0 < f < 1 and – 1 < – f′ < 0
adding these two, we get; – 1 < f – f′ < 1
⇒ f – f′ = 0 .............(iii)
Consider (ii)

1 + f – f′ = even integer
⇒ Ι + 0 = even integer [using (iii)]
⇒ integral part of P is even
Also P f = (Ι + f) f = (1 + f) f′ = (6√6 + 14)2n+1 (6√6 – 14)2n+1 = 216 – 196)2n+1 = 202n+1

Example : 21

Expand )x3)(x1(
x2
−−

−
 in ascending powers of x and find xr. Also state the range of x for which this e x -

pression is valid.
Solution

Given expression = )x3)(x1(
x2
−−

−

On expressing RHS in the form of partial fractions, we get

Given expression = )x1(2
1
−  + )x3(2

1
−

⇒ Given expression = 
2
1

 (1 – x)–1 + 6
1

 
1

3
x1

−

⎟
⎠

⎞
⎜
⎝

⎛ −

Using the expansions of (1 – x)–1 , we get

Given expression = 
2
1

 (1 + x + x2 + x3 + ...........) + 6
1

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++++ ........

27
x

9
x

3
x1

32

⇒ Given expansion = ⎟
⎠

⎞
⎜
⎝

⎛ +
6
1

2
1

 + ⎟
⎠

⎞
⎜
⎝

⎛ +
18
1

2
1

 x + ⎟
⎠

⎞
⎜
⎝

⎛ +
54
1

2
1

 x2 + ....... + ⎟
⎠

⎞
⎜
⎝

⎛ + r63
1

2
1

 xr + ......

⇒ Given expression = 3
2

 + 9
5

 x + 
27
14

 x2 + ......... + 
2
1

 ⎟
⎠

⎞
⎜
⎝

⎛ +
+1r3

11  xr + .......

Coefficient of xr = 
2
1

 ⎟
⎠

⎞
⎜
⎝

⎛ +
+1r3

11  xr

Since (1 – x)–1 is valid for x ∈ (–1, 1) and (1 – x/3)–1 is valid for x ∈ (–3, 3), the given expression is valid for
x ∈ (–1, 1) (i.e. take intersection of the two sets)
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Hence )x3)(x1(
x2
−−

−
 is valid for – 1 < x < 1

Example : 22

If y = 
4
3

 + 8.4
5.3

 + 812.4
57.3

 + .......... till infinity, show that y2 + 2y – 7 = 0

Solution

It is given that : y = 
4
3

 + 8.4
5.3

 + 812.4
57.3

 + ....... to ∞

On adding 1 to both sides, we get :

1 + y = 1 + 
4
3

 + 8.4
5.3

 + 812.4
57.3

 + ......... to ∞ ..............(i)

Now we will find the sum of series on RHS or (i)
For this consider the expansion of (1 + t)n , where n is negative or fraction :

(1 + t)n = 1 + nt + 
2.1

)1n(n −
 t2 + 3.2.1

)2n)(1n(n −−
 t3 + ........ to ∞ where |t| < 1 ..............(ii)

On comparing (i) and (ii), we get
nt = 3/4 ..............(iii)

2.1
)1n(n −

 t2 = 8.4
5.3

..............(iv)

and (1 + t)n = 1 + y

Consider (iv) :
2.1

)1n(n −
 t2 = 8.4

5.3

⇒
2

t)1n( −
 = 8

5
[using (iii)]

⇒ (n – 1) t = 
4
5

⇒ nt – t = 
4
5

⇒
4
3

 – t = 
4
5

[using (iii)]

⇒ t = – 1/2 and n = – 3/2

⇒ Sum of series on RHS of (i) = 
2/3

2
11

−

⎟
⎠

⎞
⎜
⎝

⎛ −

⇒ 1 + y = (1 – 1/2)–3/2 ⇒ 23/2 = 1 + y
On squaring, we get 8 = (1 + y)2

⇒ y2 + 2y – 7 = 0
Hence proved

Example : 23
Find the coefficient of x1

2 x2 x3 in the expansion of (x1 + x2 + x3)
4 .

Solution
To find the required coefficient, we can use multinomial theorem in the question.
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The coefficient of x1
2 x2 x3 in the expansion of (x1 + x2 + x3)

4 = !1!1!2
!4

 = 12

Hence coefficient of x1
2 x2 x3 = 12

Note : Also try to solve this question without the use of multinomial theorem

Example : 24
Find the coefficient of x7 in the expansion of (1 + 3x – 2x3)10 .

Solution
Using the multinomial theorem, the general term of the expansion is :

Tp,q,r = !r!q!p
!10

 (1)p (3x)q (–2x3)r,

where p + q + r = 10. Find the coefficient of x7 , we must have q + 3r = 7.
Consider q + 3r = 7
From the above relationship, we can find the possible values which p, q and r can take
Take r = 0
⇒ q = 7 and p = 3
⇒ (p, q, r) ≡ (3, 7, 0) ...........(i)
Take r = 1
⇒ q = 4 and p = 5
⇒ (p, q, r) ≡ (5, 4, 1) ...........(ii)
Take r = 2
⇒ q = 1 and p = 7
⇒ (p, q, r) ≡ (7, 1, 2) ...........(iii)
If we take r > 2, we get q < 0, which is not possible.
Hence (i), (ii) and (iii) and the only possible combination of values which p, q and r can take.

Using (i), (ii) and (iii), coefficient of x7 = !7!3!1
!10

 37 + !1!4!5
!10

 34 (–2)1 + !1!2!7
!10

 31 (–2)2 = 62640

Hence coefficient of x7 = 62640

Example : 25
Find the coefficient of x50 in the expansion : (1 + x)1000 + 2x (1 + x)999 + 3x2 (1 + x)998 + ....... + 1001x1000.

Solution
It can be easily observed that series is an Arithmetic-Geometric series with common difference = 1,
common ratio = x/(1+x) and number of terms = 1001
Let S = (1 + x)1000 + 2x (1 + x)999 + 3x2 (1 + x)998 + ....... + 1001x1000 ........(i)
Multiple both sides by x/(1 + x) to get
xS/(1 + x) = x (1 + x)999 + 2x2 (1 + x)998 + 3x3 (1 + x)997 + ....... 1000x1000 + 1001x1001/(1 + x) ........(ii)
Shift (ii) by one term and subtract it from (i) to get :

S/(1 + x) = (1 + x)1000 + x (1 + x)999 + x2 (1 + x)998 + ...... x1000  – 1001x1001 /(1 + x)
⇒ S = (1 + x)1001 + x (1 + x)1000 + x2 (1 + x)999 + ......... x1000 (1 + x) – 1001 x1001

Now the above series, upto the term x1000 (1 + x), is G.P. with first term = (1 + x)1001 , common ratio
= x/(1 + x) and number of terms = 1001

⇒ S = 

x1
x1

x1
x1)x1(

1001
1001

+
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

+
−+

 – 1001 x1001

⇒ S = (1 + x)1002 – x1001 (1 + x) – 1001x1001

Coefficient of x50 in the series S = coeff. of x50 in (1 + x)1002 (Q other terms can not produce x50)
⇒ Coefficient of x50 in the series S = 1002C50
Hence the coefficient of x50 in the given series = 1002C50

Example : 26
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Find the total number of terms in the expansion of (x + y + z + w)n , n ∈ N.
Solution

Consider the expansion :
(x + y + z + w)n = (x + y)n + nC1 (x + y)n–1 (z + w) + nC2 (x + y)n–2 (z + w)2 + .......... + nCn (z + w)n

Number of terms on the RHS = (n + 1) + n.2 + (n – 1) . 3 + ......... + (n + 1)

= ∑
=

+−
n

0r

)1rn( (r + 1) = ∑
=

+
n

0r

)1n(  + ∑
=

n

0r

nr  –  ∑
=

n

0r

2r

= (n + 1) ∑ ∑ ∑
= = =

−+
n

0r

n

0r

n

0r

2rrn1  = (n + 1) (n + 1) + 
2

)1n)(n(n +
 – 6

)1n2)(1n(n ++

= 6
)1n( +

 [6(n + 1) + 3n2 – 2n2 – n] = 6
1n +

 [n2 + 5n + 6] = 6
)3n)(2n)(1n( +++

Using multinomial theorem :

(x + y + z + w)n = ∑
=

n

0r 4321

nnnn

!n!n!n!n
wzyx!n 4321

, where n1, n2, n3 and n4 can have all possible values for

0, 1, 2, ......, n subjected to the condition n1 + n2 + n3 + n4 = n ..........(i)
Therefore, the number of distinct terms in the multinomial expansion is same as the non-negative integral
solutions of (i)
⇒ Number of distinct terms = Number of non-negative integral solutions
⇒ Number of distinct terms = coefficient of xn in the expansion (1 + x + x2 + ........+ xn)4

= coefficient of xn in 

41n

x1
x1

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
− +

= coefficient of xn in (1 – xn+1)4 (1 – x)–4 = n+4–1C4–1 = n+3C3

⇒ Number of distinct terms = 6
)3n)(2n)(1n( +++

Example : 27
 Let n be a positive integer and (1 + x + x2)n = a0 + a1x + a2x2 + ........ + a2n x2n .
Show that a0

2 – a1
2 – + .... + a2n

2 = 2n.
Solution

Consider the given identity : (1 + x + x2)n = a0 + a1x + a2x2 + ........ + a2n x2n .........(i)
Replace x by –1/x in this identity to get :

n

2x
1

x
11 ⎟

⎠

⎞
⎜
⎝

⎛ +−  = a0 – 
x
a1  2

2

x
a

 – + ...... + n2
n2

x
a

⇒ (1 – x + x2)n = a0 x
2n – a1 x

2n–1+ a2 x
2n–2 – + ........... + a2n .........(ii)

Multiply (i) and (ii) and also compare coefficient of x2n on both sides to get :
a0

2 – a1
2 + a2

2 – + ....... + a2n
2 = coefficient of x2n in (1 + x + x2)n (1 – x + x2)n

⇒ LHS = coefficient of x2n in (1 + x2 + x4)n

⇒ LHS = coefficient of x2n in a0 + a1x
2 + a2x

4 + ........ + anx
2n + ........ + a2nx

4n [replace x by x2 in (i)]
⇒ LHS = an

Hence a0
2 – a1

2 + a2
2 – +........ + a2n

2 = an

Example : 28
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If ∑
=

−
n2

0r

r
r )2x(a  = ∑

=

−
n2

0r

r
r )3x(b  and ak = 1 for all k ≥ n, show that bn = 2n+1Cn+1 .

Solution
Let y = x – 3 ⇒ y + 1 = x – 2
So given expression reduces to :

∑
=

+
n2

0r

r
r )1y(a  = ∑

=

n2

0r

r
r )y(b

⇒ a0 + a1 (y + 1) + ......... + a2n (y + 1)2n = b0 + b1y + ......... + b2ny
2n

Using ak = 1 for all k ≥ n, we get
⇒ a0 + a1 (y + 1) + ........... an–1 (y + 1)n–1 + (y + 1)n + ........... + (y + 1)2n

= b0  + b1y + ....... + bny
n + ........+ b2ny

2n

Compare coefficient of yn on both sides, we get :
nCn + n+1Cn + n+2Cn + .......... + 2nCn = bn

Using the formula, nCr = nCn–r, we get :
nC0 + n+1C1 + n+2C2 + ......... + 2nCn = bn

Using, nC0 = n+1C0 for first term, we get :
n+1C0 + n+1C1 + n+2C2 + .......... + 2nCn = bn

On combining the first two terms with use of the formula,
nCr–1 + nCr = n+1Cr, we get :

n+2C1 + n+2C2 + ........ + 2nCn = bn

If we combine terms on LHS like we have done in last step, finally we get :
2nCn = bn ⇒ bn = 2n+1Cn+1 (using nCr = nCn–r)
Hence bn = 2n+1Cn+1

Example : 29

Prove that 0C)3(
k

1r
1r2

n31r =−∑
=

−
−

, where k = 3n/2 and n is an even positive integer.

Solution
Let n = 2m ⇒ k = 3m

LHS = ∑
=

−−
m2

1r

1r)3(  6mC2r–1 = 6mC1 – 3 6mC3 + 9 6mC5 – ....... + (–3)3m–1 6mC6m–1 ...........(i)

Consider (1 + x)6m = 6mC0 + 6mC1x + 6mC2 x
2 + .......... + 6mC6m x6m  and

(1 – x)6m = 6mC0 – 6mC1x + 6mC2 x
2 + ..........+ 6mC6m x6m

On subtracting the above two relationships, we get
(1 + x)6m – (1 – x)6m = 2 (6mC1 x + 6mC3x

3  + 6mC5x
5 + ......... + 6mC6m–1 x

6m–1)
Divide both sides by 2x to get :

x2
)x1()x1( m6m6 −−+

 = 6mC1 + 6mC3 x
2 + ........ + 6mC6m–1 x

6m–2

Put x = √3i in the above identity to get :

i32
)3i1()3i1( m6m6 −−+

 = 6mC1 – 3 6mC3 + .......... + (–3)3m–1 6mC6m–1 ...........(ii)

Comparing (i) and (ii), we get

LHS = 
i32

3
sini

3
cos

3
sini

3
cos2

m6m6
m6

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ π

−
π

−⎟
⎠
⎞

⎜
⎝
⎛ π

+
π
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⇒ LHS = 
i32

)]m2sinim2(cos)m2sinim2[(cos2 m6 π−π−π+π
(using De morvie’s Law)

⇒ LHS = 
i32

m2sini22 m6 π
 = 

3
m2sin2 m6 π

 = 0 (because sin 2 πm = 0)

Example : 30
Show by expanding [(1 + x)n – 1]m where m and n are positive integers, that

mC1 
nCm – mC2 

2nCm + mC3 
3nCm .......... = (–1)m–1 nm.

Solution
Consider : [(1 + x)n – 1]m and expand (1 + x)n binomially
⇒ [(1 + x)n – 1]m = [1 + nC1x

2 + ......... + nCn x
n) – 1]m

⇒ [(1 + x)n – 1]m = [nC1 x + nC2 x2 + ....... + nCn xn]m

⇒ [(1 + x)n – 1]m = xm [nC1 + nC2 x + ........+ nCn x
n–1]m ..........(i)

Now consider : [(1 + x)n – 1]m = (–1)m [1 – (1 + x)n]m

⇒ [(1 + x)n – 1)m = (–1)m [1 – mC1 (1 + x)n + mC2 (1 + x)2n – ..............] ..........(ii)
Comparing (i) and (ii), we get :

xm [nC1 + nC2x + ......... + nCnx
n–1]m [1 – mC1 (1 + x)n + mC2 (1 + x)2n – ........]

Compare coefficient of xm on both sides to get :
nm =  (–1)m [–mC1  

nCm + mC2 
2nCm – mC3 

3nCm + ..........]
⇒ mC1 

nCm – mC2 
2nCm + mC3 

3nCm – + ......... = (–1)m–1 nm

Hence proved

Example : 31

Show that ∑
=

−−
n

1r

r1r

r
C)1(  = ∑

=

n

1r r
1

Solution
Consider : (1 – x)n = C0  – C1x + C2x

2  – ........... + (–1)n Cn x
n

⇒ 1 – (1 – x)n = C1x – C2 x
2 + C3 x

3 + ........ + (–1)n–1 Cnx
n (Q C0 = 1)

Divide both sides by x to get :

x
)x1(1 n−−

 = C1 – C2 x + C3x
2 + ......... + (–1)n–1 Cn x

n–1

Integrate both sides between limits 0 and 1 to get :

∫
−−

1

0

n

x
)x1(1

 = ∫ −−−+++−
1

0

1n
n

1n2
321 dx]xC)1(......xCxCC[

⇒ ∫ −−
−−

1

0

n

)x1(1
)x1(1

 = C1x – C2 2
x2

 = C3 3
x3

 – ......... + (–1)n–1Cn 

1

0

n

n
x

⎥
⎥
⎦

⎤

It can be easily observed that integrand on the LHS is the summation of n terms of G.P. whose first term
is 1 and common ratio is (1 – x).

⇒ ∫ −+−+
1

0

2)x1()x1(1[  + ......... + (1 – x)n–1] dx = C1 – 
2

C2  + 3
C3  – + ........ + 

n
C)1( n

1n−−

⇒ x – 
2

)x1( 2−
 – 

3
)x1( 3−

 – ........... – 

1

0

n

n
)x1(
⎥
⎥
⎦

⎤−
 = C1 – 

2
C2  + 3

C3  – ....... + 
n

C)1( n
1n−−

⇒ 1 + 
2
1

 = 3
1

 + ........... + 
n
1

 = C1 – 
2

C2  + 3
C3  – .......... = 

n
C)1( n

1n−−
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⇒ ∑
=

−−
n

1r

1r)1(
r

Cr  = ∑
=

n

1r r
1

. Hence proved

Example : 32

Show that 
1

C0  – 5
C1  + 9

C2  – 13
C3  + ......... + (–1)n 

1n4
Cn

+
 = )1n4......(9.5.1

!n4n

+

Solution
On observing the LHS of the relationship to be proved, we can conclude that the expansion of (1 – x4)n

must be used to prove LHS equals RHS Hence,
(1 – x4)n = C0 – C1x

4 + C2x
8 – C3x

12 + ......... + (–1) nCn x
4n

Integrating both sides between limits 0 and 1, we get :

∫ −
1

0

n4 )x1(  = 
1

C0  – 5
C1  + 9

C9  – 13
C13  + ......... + (–1)n 

1n4
Cn

+
.........(i)

Let Ιn = ∫ −
1

0

n4 )x1(  dx ......... (ii)

apply by-parts taking (1 – x4)n as the Ι part and dx as the ΙΙ part ,

⇒ Ιn = (1 – x4)n x]1
0 – ∫ −−

1

0

1n4 )x1(n  (–4x3) x dx

⇒ Ιn = 4n ∫ −−
1

0

1n44 dx)x1(x  = 4n ∫ −−−−
1

0

1n44 dx)x1)](x1(1[

⇒ Ιn = 4n ∫ −−
1

0

1n4 )x1(  dx – 4n ∫ −
1

0

n4 )x1(  dx

⇒ Ιn = 4n Ιn–1 – 4n Ιn

⇒ Ιn = 
1n4

n4
+

 Ιn–1

Replace n by 1, 2, 3, 4, ........, n–1 in the above identity and multiply all the obtained relations,

⇒ Ιn = 
1n4

n4
+

 . 3n4
)1n(4

−
−

 . 
7n4

)2n(4
−
−

 .......... 5
4

 Ι0 ..........(iii)

Finding Ι0

Ι0 can be obtained by substituting n = 0 in (ii) i.e.

Ι0 = ∫ −
1

0

04 )x1(  dx = ∫ =
1

0

1dx

Substitute the value of Ι0 in (iii) to get :

Ιn = 
1n4

n4
+

 . 3n4
)1n(4

−
−

 . 
7n4

)2n(4
−
−

 .......... 5
4

⇒ Ιn = )1n4.......(13.9.5.1
!n4n

+

Using (i)



Page # 15.

1
C0  – 5

C1  + 9
C2  – 13

C3  + ........ + (–1)n 
1n4

Cn

+
 = )1n4.....(9.5.1

!n4n

+

Hence proved

Example : 33
Show that xn – yn is divisible by x – y if n is natural number.

Solution
Let P(n) = xn – yn is divisible by x – y
We consider P(1)
P(1) : x1 – y1 is divisible by x – y
⇒ P(1) is true
Now let us assume p(k) to be true
i.e. we are given P(k) : xk – yk is divisible by x – y
Let xk – yk  = (x – y) m, m ∈ Ι
Consider P(k + 1) :
P(k + 1) : xk+1 – yk+1 is divisible by x – y;
Now xk+1 – yk+1 = xk+1 – xky + xky – yk+1

= xk (x – y) + y (xk – yk)
= xk (x – y) + y (x – y)m
= (x – y) (xk + my)

Hence P(k + 1) is true whenever P(k) is true.
Hence according to the principle of Mathematical Induction, P(n) is true for all natural numbers.

Example : 34
Show that 52n+2 – 24n – 25 is divisible by 576.

Solution
Let P(n) : 52n+2 – 24 – 25 is divisible by 576
P(1) : 52(1)+2 – 24 (1) – 25 is divisible by 576
P(1) : 576 is divisible by 576
⇒ P(1) is true
P(k) : 52k+2 – 24k – 25 = 576m, m ∈ N
P(k + 1) : 52k+4 – 24 (k + 1) – 25 is divisible by 576
Consider 52k+4 – 24 (k + 1) – 25

= 52k+4 – 24 (k + 1) – 25
= 52k+2 . 52 – 24k – 49
= 25 (24k + 25 + 576m) – 24k – 49 [using P(k)]
= (576) 25m – 576k + 576
= 576 (25m – k + 1)

⇒ 52k+4 – 24 (k + 1) – 25 is divisible by 576
Hence P(k + 1) is true whenever p(k) is true
Hence according to the principle of Mathematical Induction P(n) is true for all natural numbers.

Example : 35
Show that 2n > n for all natural numbers

Solution
Let P(n) : 2n > n
P(1) : 21 > 1
⇒ P(1) is true
P(k) : 2k > k
Assume that p(k) is true
P(k + 1) : 2k+1 > k + 1
consider P(k) : 2k > k
⇒ 2k+1 > 2k
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⇒ 2k+1 > k + k
But we have k ≥ 1
Adding 2k+1 + k > k + k + 1

2k+1 > k + 1
Hence P(k + 1) is true whenever P(k) is true
Hence according to the principle of Mathematical Induction, P(n) is true for all natural numbers.

Example : 36

Prove by the method of Induction that : 7.3
1

 + 
11.7
1

 + 15.11
1

 + ...... + )3n4)(1n4(
1

+−  = )3n4(3
n
+

Solution

Let P(n) : 7.3
1

 + 
11.7
1

 + 15.11
1

 + ...... + )3n4)(1n4(
1

+−  = )3n4(3
n
+

P(1) : 7.3
1

 = )34(3
1
+

P(1) : 
21
1

 = 
21
1

⇒ P(1) is true

P(k) 7.3
1

 + 
11.7
1

 + .......... + )3k4)(1k4(
1

+−  = )3k4(3
k
+

Assume that P(k) is true

P(k + 1) : 7.3
1

 + 
11.7
1

 + ....... + )3k4)(1k4(
1

+−  + )7k4)(3k4(
1

++  = )7k4(3
1k
+
+

LHS = ⎟
⎠

⎞
⎜
⎝

⎛ +++ termsk......
11.7
1

7.3
1

 + )7k4)(3k4(
1

++

= )3k4(3
k
+  + )7k4)(3k4(

1
++ [using P(k)]

= )7k4)(3k4(3
3)7k4(k
++

++

= )7k4)(3k4(3
)1k)(3k4(

++
++

= )7k4(3
)1k(

+
+

 = RHS of P(k + 1)

Hence P(k + 1) is true whenever P(k) is true
Hence according to the principle of Mathematical Induction, P(n) is true for all natural numbers.

Example : 37
Using Mathematical Induction, show that n(n2 – 1) is divisible by 24 if n is an odd positive integer.

Solution
To prove a statement for odd numbers only, it is required to show that
(a) P(1) is true
(b) P(k + 2) is true whenever p(k) is true
P(1) : 1 (12 – 1) is divisible by 24
⇒ P(1) is true
P(k) : k(k2 – 1) is divisible by 24 if k is odd
Assume that P(k) is true
Let k (k2 – 1) = 24m where m ∈ N
P(k + 2) : (k + 2) [(k + 2)2 – 1] is divisible by 24, if k is odd
Consider (k + 2) [(k + 2)2 – 1]

= (k + 2) (k2 + 4k + 3)
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= k3 + 6k2 + 11k + 6
= (24m + k) + 6k2 + 11k + 6
= (24m + 6k2 + 12k + 6 [using P(k)]
= 24m + 6 (k + 1)2

= 24m + 6 (2p)2 [Q k is odd]
= 24m + 24p2

= 24 (m + p2)
Hence P(k + 2) is true whenever P(k) is true
Hence according to the principle of Mathematical Induction, P(n) is true for all natural numbers.

Example : 38

Prove that cos x cos 2x cos 4x ....... cos2n–1 x = 
xsin2
x2sin

n

n

Solution

P(1) : cos x = xsin2
x2sin

P(1) : cos x = cos x (using sin 2x = 2 sin x cos x)
⇒ P(1) is true

P(k) : cos x cos 2x cos 4x ....... cos 2k–1 x = 
xsin2
x2sin

k

k

Let P(k) be true. Consider P(k + 1)

P(k = 1) : cos x cos 2x cos 4x .... cos 2k–1 x cos 2kx = 
xsin2
x2sin

1k

1k

+

+

LHS = ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

xsin2
x2sin

k

k

 cos 2kx = 
xsin2

x2cosx2sin2
1k

kk

+  = 
xsin2
x2sin

1k

1k

+

+

 = RHS

Hence P(k + 1) is true whenever P(k) is true
∴ by mathematical induction P(n) is true ∀ n ∈ N

Example : 39
By the method of induction, show that (1 + x)n ≥ 1 + nx for n N, x > – 1, x ≠ 0

Solution
Let P(n) : (1 + x)n ≥ 1 + nx
⇒ P(1) : (1 + x)1 ≥ 1 + x which is true
Let P(k) be true ⇒ (1 + x)k ≥ 1 + kx .......(i)
Consider P(k + 1) : (1 + x)k+1 ≥ 1 + (k + 1)x
From (i) : (1 + x)k ≥ 1 + kx

⇒ (1 + x)k+1 ≥ (1 + kx) (1 + x) (as (1 + x) > 0)
⇒ (1 + x)k+1 ≥ 1 + (k + 1)x + kx2

as kx2 is positive, it can be removed form the smaller side.
⇒ (1 + x)k+1 ≥ 1 + (k + 1)x
⇒ P(k + 1) is true

Hence P(1) is true and P(k + 1) is true whenever P(k) is true
⇒ By induction, P(n) is true for all n ∈ N

Example : 40
Prove that x(xn–1 – nan–1)  + an (n – 1) is divisible by (x – a)2 for n > 1 and n ∈ N

Solution
Let P(n) : x(xn–1 – nan–1) + an (n – 1) is divisible by (x – a)2

As n > 1, we will start from P(2)
For n = 2, the expression becomes
= x(x – 2a) + a2 (2 – 1) = (x – a)2 which is divisible by (x – a)2

⇒ P(2) is true
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Let P(k) be true
⇒ x (xk–1 – kak–1) + ak (k – 1) is divisible by (x – a)2

For n = k + 1, the expression becomes = x[xk – (k + 1) ak] + ak+1k  = xk+1 – kxak – xak + kak+1

= [xk + 1 – kx2ak–1 + xak (k – 1)] + kx2 ak–1 – xak(k –1) – kxak – xak + kak+1

= x[x(xk–1 – kak–1) + ak (k – 1)] + kak–1 (x2 – 2ax + a2)
= divisible by (x – a)2 from P(k) + kak–1 (x – a)2

Hence the complete expression is divisible by (x – a)2

⇒ P(K + 1) is true
Hence P(2) is true and P(k + 1) is true whenever P(k) is true
⇒ By induction, P(n) is true for all n > 1, n ∈ N
Alternate Method : Let f(x) = x(xn–1 – nan–1) + an (n – 1)
It can be show that f(a) = f′(a) = 0
⇒ f(x) is divisible by (x – a)2

Example : 41

For any natural number n > 1, prove that 
1n

1
+

 + 
2n

1
+

 + ......... + 
n2
1

 > 
24
13

Solution

Let P(n) : 
1n

1
+

 + 
2n

1
+

 + ......... + 
n2
1

 > 
24
13

for n = 2, 
12

1
+

 + 
22

1
+

 > 
24
13

 ⇒ 
12
7

 > 
24
13

 which is true

⇒ P(2) is true
Let P(k) be true

⇒
1k

1
+

 + 
2k

1
+

 + .......... + 
k2
1

 > 
24
13

Consider P(k + 1) :

⇒
2k

1
+

 + 3k
1
+

 + ......... + )1k()1k(
1

+++  > 
24
13

Using P(k) we have :

⇒
1k

1
+

 + 
2k

1
+

 + ......... + 
k2
1

 > 
24
13

adding 
1k2

1
+

 + 
2k2

1
+

 – 
1k

1
+

 on both sides, we get

⇒
2k

1
+

 + 3k
1
+

 + ....... + 
1k2

1
+

 + 
2k2

1
+

 > 
24
13

 + 
1k2

1
+

 + 
2k2

1
+

 – 
1k

1
+

⇒
2k

1
+

 + ........ + 
1k2

1
+

 = 
2k2

1
+

 > 
24
13

 + )1k2)(1k(2
)1k2(2)1k2()2k2(

++
+−+++

⇒
2k

1
+

 + .......... + 
1k2

1
+

 + 
2k2

1
+

 > 
24
13

  + )1k2)(1k(2
1

++

as )1k2)(1k(2
1

++  is positive, it can be removed the smaller side

⇒
2k

1
+

 + ........ + 
1k2

1
+

 + 
2k2

1
+

 > 
24
13

⇒ P(k + 1) is true
Hence P(2) is true and P(k + 1) is true whenever P(k) is true
⇒ By induction, P(n) is true for all n > 1, n ∈ N
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Example : 42

If n > 1, prove that n! < 
n

2
1n
⎟
⎠

⎞
⎜
⎝

⎛ +

Solution

Let P(n) : n! < 
n

2
1n
⎟
⎠

⎞
⎜
⎝

⎛ +

for n = 2, 2! < 
2

2
3
⎟
⎠

⎞
⎜
⎝

⎛
 which is true

⇒ P(2) is true
Let P(k) be true

⇒ k! < 
k

2
1k
⎟
⎠

⎞
⎜
⎝

⎛ +

P(k + 1) : (k + 1) ! < 
1k

2
2k +

⎟
⎠

⎞
⎜
⎝

⎛ +
.......(i)

using P(k), we have

k! < 
k

2
1k
⎟
⎠

⎞
⎜
⎝

⎛ +

⇒ (k + 1)! < k

1k

2
)1k( ++

.......(ii)

Let us try to compare the RHS of (i) and (ii).

Let us assume that k

1k

2
)1k( ++

 < 
1k

2
2k +

⎟
⎠

⎞
⎜
⎝

⎛ +
.......(iii)

⇒
1k

1k
2k +

⎟
⎠

⎞
⎜
⎝

⎛
+
+

 > 2 ⇒
1k

1k
11

+

⎟
⎠

⎞
⎜
⎝

⎛
+

+  > 2

Using Binomial Expansion :

⇒ 1 + (k + 1) 
1k

1
+

 + k+1C2 
2

1k
1

⎟
⎠

⎞
⎜
⎝

⎛
+  + .........> 2

⇒ 1 + 1 + k+1C2 
2

1k
1

⎟
⎠

⎞
⎜
⎝

⎛
+  + .........> 2 which is true

Hence (iii) is true
From (ii) and (iii), we have

(k + 1)! < k

1k

2
)1k( ++

 < 
1k

2
2k +

⎟
⎠

⎞
⎜
⎝

⎛ +

⇒ (k + 1)! < 
1k

2
2k +

⎟
⎠

⎞
⎜
⎝

⎛ +

P(K + 1) is true
Hence P(2) is true and P(k + 1) is true whenever P(k) is true
⇒ By induction, P(n) is true for all n > 1, n ∈ N

Example : 43
Prove that An = cos nθ if it is given that A1 = cos θ , A2 = cos 2θ and for every natural number m > 2, the



Page # 20.

relation Am = 2 Am–1 cos θ – Am – 2 .
Solution

 The principle of induction can be extended to the following form :
P(n) is true for all n ∈ N, if
(i) P(1) is true and P(2) is true and
(ii) P(k + 2) is true whenever P(k) and P(k + 1) are true
Let P(n) : An = cos nθ
Hence A1 = cos θ , A2 = cos 2θ ⇒ P(1) and P(2) are true
Now let us assume that P(k) and P(k + 1) are true
⇒ Ak = cos kθ and Ak+1 = cos (k + 1) θ
We will now try to show that P(k + 2) is true
Using Am = 2 Am–1 cos θ – Am–2 , (for m > 2)
We have Ak+2 = 2Ak+1 cos θ – Ak (for k > 0)
⇒ Ak+2 = 2 cos (k + 1) θ cos θ = cos kθ

= cos (k + 2)θ + cos kθ – cos kθ
= cos (k + 2) θ

⇒ P(k + 2) is true
Hence P(1), P(2) are true and P(k + 2) is true whenever P(k), P(k + 1 are true
⇒ By induction, P(n) is true for all n ∈ N

Example : 44

Let u1 = 1, u2 = 1 and un+2 = un + un+1 for n ≥ 1. Use induction to show that un = 5
1

 ⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
nn

2
51

2
51

for all n ≥ 1.
Solution

Let P(n) : un = 5
1

 ⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
nn

2
51

2
51

P(1) : u1 = 5
1

 ⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
11

2
51

2
51

 = 1 which is true

P(2) : u2 = 5
1

 ⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
22

2
51

2
51

 = 1 which is true

Hence P(1), P(2) are true
Let P(k), P(k + 1) be true

⇒ We have : uk = 5
1

 ⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
kk

2
51

2
51

And uk–1 = 5
1

 ⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
++ 1k1k

2
51

2
51

Let us try to prove that P(k + 2) is true
From the given relation : uk+2 = uk + uk+1

⇒ uk+2 = 5
1

 ⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
kk

2
51

2
51

 – 5
1

 ⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
++ 1k1k

2
51

2
51
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⇒ uk+2 = 5
1

 ⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
2

511
2

51
k

 – 5
1

 ⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
2

511
2

51
k

⇒ uk+2 = 5
1

 ⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
2k

2
51

2
51

 – ⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
2k

2
51

2
51

⇒ uk+2 = 5
1

 ⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
++ 2k2k

2
51

2
51

⇒ P(k + 2) is true
Hence P(1), P(2) are true and P(k + 2) is true whenever P(k), P(k + 1) are true
⇒ By induction, P(n) is true for all n ∈ N

Example : 45

Use mathematical induction to prove that ∑
=

n

0k
k

n2 Ck  = n(n + 1) 2n–2 for n ≥ 1

Solution

Let P(n) : ∑
=

n

0k
k

n2 Ck  = n (n + 1) 2n–2

for n = 1 : ∑
=

n

0k
k

12 Ck  = 1 (1 + 1) 21–2

i.e. 1 = 1 which is true ⇒ P(1) is true
Let P(m) be true

⇒ ∑
=

m

0k
k

m2 Ck  = m (m + 1) 2m–2

consider P(m + 1) : ∑
+

=

+
1m

0k
k

1m2 Ck  = (m + 1) (m + 2) 2m–1

LHS of P(m + 1) : = ∑
+

=

+
1m

0k
k

1m2 Ck  = ∑
+

=

1m

0k

2k  (mCk + mCk–1) = ∑
=

m

0k

2k  mCk  + ∑
+

=

1m

1k

2k  mCk–1

= m(m + 1) 2m–2 + ∑
=

+
m

0t
t

m2 C)1t( substituting k = t + 1

= m (m + 1) 2m–2 + ∑
+

=

1m

0t

2t  mCt + 2 ∑
=

m

0t
t

mCt  + ∑
=

m

0t
t

mC

using P(k) and C1 + 2C2 + 3C3 + ............nCn = n2n–1

⇒ LHS = m (m + 1) 2m–2 + m (m + 1) 2m–2 + 2 (m2m–1) + 2m   =  2m–1 [m(m + 1) + 2m + 2]
= 2m–1 (m + 1) (m + 2) =  RHS

⇒ P(m + 1) is true
Hence P(1) is true and P(m + 1) is true whenever P(m) is true
⇒ By induction, P(n) is true for all n ∈ N

Example : 46
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Using mathematical induction, prove 
5
n5

 + 
3
n3

 + 15
n7

 is an integer for all n ∈ N

Solution

Let P(n) : 
5
n5

 + 
3
n3

 + 15
n7

  is an integer

P(1) : 5
1

 + 3
1

 = 15
7

 = 1 is an integer ⇒ P(1) is true

Let us assume that P(k) is true i.e. P(k) : 
5
k5

 + 
3
k3

 + 15
k7

 is an integer ..........(i)

Consider LHS of P(k + 1)

LHS of P(k + 1) = 
5

)1k( 5+
 + 

3
)1k( 3+

 + 15
)1k(7 +

= 
5

1k5k10k10k5k 2345 +++++
 + 

3
1k3k3k 23 +++

 + 15
)1k(7 +

= 
5
k5

 + 
3
k3

 + 15
k7

 + k4 + 2k3 + 3k2 + 2k + 5
1

 = 3
1

 + 15
7

= P(k) + k4 + 2k3 + 3k2 + 2k + 1 [using (i)]
As P(k) and k both are positive integers, we can conclude that P(k + 1) is also an integer
⇒ P(k + 1) is true
Hence by principle of mathematical induction, P(n) si true for all n ∈ N

Example : 47
Using mathematical induction, prove that for any non-negative integers n, m, r and k,

∑
=

−
k

0m

)mn(  
!m

)!mr( +
 = 

!k
)!1kr( ++

 ⎥⎦

⎤
⎢⎣

⎡
+

−
+ 2r

k
1r

n

Solution
In this problem, we will apply mathematical induction on k.

Let P(k) : ∑
=

−
k

0m

)mn(  
!m

)!mr( +
 = 

!k
)!1kr( ++

 ⎥⎦

⎤
⎢⎣

⎡
+

−
+ 2r

k
1r

n

Consider P(0)

LHS of P(0) = ∑
=

+
−

0

0m !m
)!mr()mn(  = n !0

!r
 = nr!

RHS of P(0) = !0
)!1r( +

 ⎥⎦

⎤
⎢⎣

⎡
+

−
+ 2r

0
1r

n
 = 

1r
)!1r(n

+
+

 = nr!

⇒ P(0) is true
Let us assume that P(k) is true for k = p

⇒ ∑
=

−
p

0m

)mn(  
!m

)!mr( +
 = !p

)!1pr( ++
 ⎥⎦

⎤
⎢⎣

⎡
+

−
+ 2r

p
1r

n
..........(i)

Consider LHS of P(p + 1)

LHS of P(p + 1) = ∑
+

=

−
1p

0m

)mn(  
!m

)!mr( +
 = ∑

=

−
p

0m

)mn(  
!m

)!mr( +
 + (n – p – 1) )!1p(

)!1pr(
+
++

using (i), we get :
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LHS of P(p + 1) = !p
)!1pr( ++

 ⎥⎦

⎤
⎢⎣

⎡
+

−
+ 2r

p
1r

n
 + (n – p – 1) )!1p(

)!1pr(
+
++

= )!1p(
)!1pr(

+
++

 ⎥⎦

⎤
⎢⎣

⎡ +−+
+
+

−
+
+ )1p(n

2r
)1p(

1r
)1p(n

= )!1p(
)!1pr(

+
++

 ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛ ++
+
+

−⎟
⎠

⎞
⎜
⎝

⎛ +
+
+ )1p(

2r
)1p(n

1r
)1p(n

= )!1p(
)!1pr(

+
++

 ⎥⎦

⎤
⎢⎣

⎡
+

+++
−

+
++

2r
)2rp)(1p(

1r
n)2rp(

= )!1p(
)!2pr(

+
++

 ⎥⎦

⎤
⎢⎣

⎡
+
+

−
+ 2r

)1p(
1r

n
 = RHS of P(p + 1)

⇒ P(p + 1) is true
Hence, by principle of mathematical induction, P(n) is true for all n = 0, 1, 2, 3, ........

Example : 48
If x is not an integral multiple of 2π , use mathematical induction to prove that :

cos x + cos 2x + ......... + cos nx = cos 
2

1n +
 x sin 

2
nx

 cosec 
2
x

Solution

Let P(n) : cos x + cos 2x + ......... + cos nx = cos 
2

1n +
 x sin 

2
nx

 cosec 
2
x

LHS of P(1) = cos x

RHS of P(1) = cos 
2

11+
 x sin 

2
x.1

 cosec 
2
x

 = cos x

Let us assume that P(k) is true

i.e. P(k) : cos x + cos 2x + ........... + cos kx = cos 
2

1k +
 x sin 

2
kx

 cosec 
2
x

Consider LHS of P(k + 1)
LHS of P(k + 1) = cos x + cos 2x + ............ + cos kx + cos (k + 1) x
Using P(k), we get :

LHS of P(k + 1) = cos 
2

1k +
 x sin 

2
kx

 cosec 
2
x

 + cos (k + 1) x

= 

2
xsin

2
xsinx)1kcos(

2
kxsinx

2
1kcos +−

+

 = 

2
xsin2

2
xsinx)1kcos(2

2
kxsinx

2
1kcos2 +−

+

= 

2
xsin2

x
2

1k2sinx
2

3k2sin
2
kxsinx

2
1k2sin ⎟

⎠
⎞

⎜
⎝
⎛ +

−⎟
⎠
⎞

⎜
⎝
⎛ +

+−⎟
⎠
⎞

⎜
⎝
⎛ +

 = 

2
xsin2

2
kxsinx

2
3k2sin −⎟
⎠
⎞

⎜
⎝
⎛ +

= 
2
xsin2

x
2

1ksinx
2

2kcos2 ⎟
⎠
⎞

⎜
⎝
⎛ +

⎟
⎠
⎞

⎜
⎝
⎛ +

 = cos ⎟
⎠

⎞
⎜
⎝

⎛ +
2

2k
 x sin ⎟

⎠

⎞
⎜
⎝

⎛ +
2

1k
 x cosec 

2
x

 = RHS of P(k + 1)

⇒ P(k + 1) is true
Hence by principle of mathematical induction, P(n) is true for all n ∈ N
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Example : 49

Using mathematical induction, prove that for every integer n ≥ 1, 13
n2 −  is divisible by 2n+2 but not divisible

by 2n+3 .
Solution

Let P(n) : 13
n2 −  is divisible by 2n+2 , but not divisible by 2n+3.

P(1) : 8 is divisible by 23 , but not divisible by 24 .
⇒ P(1) : 8 is divisible by 8, but not divisible by 16
⇒ P(1) is true
Let P(k) is true

i.e. 13
k2 −  is divisible by 2k+2 , but not divisible by 2k+3

⇒ 13
k2 −  = m 2k+2 , where m is odd number so that P(k) is not divisible by 2k+3 ..........(i)

Consider P(k + 1)

LHS of P (k + 1) = 13
1k2 −

+
 = 

2
2k

3 ⎟
⎠
⎞⎜

⎝
⎛  – 1

Using (i), we get :
LHS of P(k + 1) = (m2k+2 + 1)2 – 1

= m2 22k+4 + 2m.2k+2

= 2k+3 (m2 2k+1 + m)
= p 2k+3 where p is an odd number because m2 2k+1 is even and m is odd.

⇒ P(k + 1) is divisible by 2k+3 , but not divisible by 2k+4 as p is odd
⇒ P(k + 1) is true
Hence, by mathematical induction, P(n) is true for all n ∈ N

Example : 50
Using mathematical induction, prove that : mC0 

nCk + mC1 
nCk–1 + mC2 

nCk–2 + ...... + mCk 
nC0 = m+nCk for p < q,

where m, n and k are possible integers and pCq = 0 for p < q.
Solution

First apply mathematical induction on n
Let P(n) : mC0 

nCk + mC1 
nCk–1 + mC2 

nCk–2 + ........ + mCk 
nC0 = m+nCk

Consider P(1)
LHS of P(1) = mCk–1 

1C1 + mCk 
1C0 = m+1Ck = RHS of P(1)

⇒ P(1) is true
Assume that P(n) is true for n = s
i.e. P(s) : mC0 

sCk + mC1 
sCk–1 + mC2 

sCk–2 + ....... + mCk 
sC0 = m+sCk

Consider LHS of P(s + 1)
LHS of P(s + 1) = mC0 

s+1Ck + mC1 
s+1Ck–1 + mC2 

s+1Ck–2 + ....... + mCk 
s+1C0

⇒ LHS of P(s + 1) = mC0 (
sCk + sCk–1) + mC1 (

sCk–1 + sCk–2) + ........ + mCk 
s+1C0

= [mC0 
sCk + mC1 

sCk–1 + ....... + mCk 
sC0] – [mC0 

sCk–1 + mC1 
sCk–2 + ........ + mCk–1 

sC0]
= P(s) + P(s)]where k is replaced by k – 1 in the P(s)

⇒ LHS of P(s + 1) = m+sCk + m+sCk–1 = m+s+1Ck = RHS of P(s + 1)
⇒ P(n + 1) is true for all n ∈ N
Similarly we can show that the given statement is true for all m ∈ N.

Example : 51

Let p ≥ 3 be an integer and α, β be the roots of x2 – (p + 1) x + 1 = 0. Using mathematical induction, show
that αn + βn

(i) is an integer and
(ii) is not divisible by p

Solution
It is given that α and β are roots of x2 – (p + 1) x + 1 = 0
⇒ α + β = p + 1 and αβ = 1 .............(i)
(i) Let P(n) : αn + βn is an integer
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P(1) : α + β = p + 1 is an integer
As it is given that p is an integer, P(1) is true.
P(2) : α2  + β2 = (α + β)2 – 2αβ = (p + 1)2 – 2 is an integer.
As p is an integer, (p + 1)2 – 2 is also an integer ⇒ P(2) is true
Assume that both P(k) and P(k – 1) are true
i.e. αk + βk  and αk–1 + βk–1 both are integers
Consider LHS of P(k + 1) i.e.
LHS of P(k + 1) = αk+1 + βk–1 = (α – β) (αk + bk) – αβ (αk–1 + bk–1)
⇒ LHS of P(k + 1) = p P(k) – P(k –1) [using (i)]
⇒ LHS of P(k + 1) = integer because p, P(k – 1) and P(k) all are integer
⇒ P(k + 1) is true. Hence P(n) is true for n ∈ N.

(ii) Let P(n) = αn + βn  is not divisible by p
P(1) : α + β = p + 1 = a number which is not divisible by p ⇒ P(1) is true
P(2) : α2 + β2 = (α + β)2 – 2αβ

= (p + 1)2 – 2 = p (p + 2) – 1
= a number which is divisible by p – a number which is not divisible by p
= a number which is not divisible by p ⇒ P(2) is true

P(3) : α3 + b3 = (α + β) (α2 + β2 – αβ) = (p + 1) [(p + 1)2 – 3] = p[(p + 1)2 – 3] + p(p + 2) – 2
         = p [(p + 1)2 + p – 1] – 2

= a number which is divisible by p – a number which is not divisible by p
= a number which is not divisible p ⇒ P(3) is true

Assume that P(k), P(k – 1) and P(k – 2) all are true
i.e. αk + βk , αk–1  and αk+2  + βk–2 all are non-divisible by p.
Consider LHS of P(k + 1) i.e.
LHS of P(k + 1) = αk+1 + βk+1 = (α + β) (αk + bk) – αβ (αk–1 + bk–1)

= p(αk – bk) + (αk + bk) – (αk–1 + bk–1)
= p P(k) + [(p + 1) (αk–1 – bk–1) – (αk+2 + bk–2)] – (αk–1 + bk–1)
= p P(k) + p P(k – 1) – P(k – 2)
= p[P(k) + P(k – 1)] – P(k – 2)
= a number which is divisible by p – a number which is not divisible by p
= a number which is not divisible by p

⇒ P(k + 1) is true
Hence, by principle of mathematical induction P(n) is true for all n ∈ N

Example : 52

Use mathematical induction to prove that n

n

dx
d

 ⎟
⎠

⎞
⎜
⎝

⎛
x

xlog
 = 1n

n

x
)1(
+

−
 ⎟

⎠

⎞
⎜
⎝

⎛ −−−−
n
1......

2
11xlog  for all n ∈ N and

x > 0.
Solution

Let P(n) : n

n

dx
d

 ⎟
⎠

⎞
⎜
⎝

⎛
x

xlog
 = 1n

n

x
)1(
+

−
 ⎟

⎠

⎞
⎜
⎝

⎛ −−−−
n
1......

2
11xlog

LHS of P(1) : dx
d

 ⎟
⎠

⎞
⎜
⎝

⎛
x

xlog
 = 

2x

xlogx.
x
1

−
 = 2x

xlog1−

RHS of P(1) = 2x
)!1(−

 (log x – 1) = 2x
xlog1−

⇒ P(1) is true
Let us assume that P(k) is true i.e.

P(k) : k

k

dx
d

 ⎟
⎠

⎞
⎜
⎝

⎛
x

xlog
 = 1k

k

x
!k)1(

−

−
 ⎟

⎠

⎞
⎜
⎝

⎛ −−−−
k
1......

2
11xlog ..........(i)

Consider LHS of P(k + 1) i.e.
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LHS of P(k + 1) = 1k

1k

dx
d

+

+

 ⎟
⎠

⎞
⎜
⎝

⎛
x

xlog
 = dx

d
 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛
x

xlog
dx
d

k

k

= dx
d

 [LHS of P(k)] = dx
d

 [RHS of P(k)] [using (1)]

= dx
d

 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛ −−−−
−

+ k
1.........

2
11xlog

x
!k)1(

1k

k

= 2k

k

x
)1k)(1(!k)1(

+

+−−
 ⎟

⎠

⎞
⎜
⎝

⎛ −−−−
k
1.........

2
11xlog  + 1k

k

x
!k)1(

+

−
 

x
1

= 2K

1K

X
)!1K()1(

+

+ +−
 ⎟

⎠

⎞
⎜
⎝

⎛
+

−−−−
1k

1......
2
11xlog

⇒ P(k + 1) is true
Hence by principle of mathematical induction, P(n) is true for all n ∈ N

Example : 53

Use mathematical induction to prove that n

n

dx
d

 (xn log x) = n! ⎟
⎠

⎞
⎜
⎝

⎛ ++++
n
1.....

2
11xlog  for all n ∈ N and

x > 0.
Solution

Let P(n) : n

n

dx
d

 (xn log x) = n! ⎟
⎠

⎞
⎜
⎝

⎛ ++++
n
1.....

2
11xlog

LHS of P(1) = ⎟
⎠

⎞
⎜
⎝

⎛
dx
d

 (x log x) = log x + 
x
x

 = log x + 1

RHS of P(1) = 1! (log x + 1) = log x + 1
⇒ P(1) is true
Let us assume that P(k) is true i.e.

P(k) : k

k

dx
d

 (xk log x) = k! ⎟
⎠

⎞
⎜
⎝

⎛ ++++
k
1........

2
11xlog .........(i)

Consider LHS of P(k + 1) i.e.

LHS of P(k + 1) = 1k

1k

dx
d

+

+

 (xk+1 logx)

= k

k

dx
d

 ⎥⎦

⎤
⎢⎣

⎡ + )xlogx(
dx
d 1k

= k

k

dx
d

 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++

+

x
xxlogx)1k(

1k
k

= (k + 1) k

k

dx
d

 [xk log x] + k

k

dx
d

 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ +

x
x 1k

= (k + 1) ⎥⎦

⎤
⎢⎣

⎡ ++++
k
1.....

2
11x(log!k  + k! [using (i)]

= (k + 1)! ⎥⎦

⎤
⎢⎣

⎡
+

++++
1k

1......
2
11x(log!k
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⇒ P(k + 1) is true
Hence by principle of mathematical induction, P(n) is true for all n ∈ N

Example : 54

Use mathematical induction to prove ∫
π 2/

0

2

xsin
nxsin

 dx = 1 + 3
1

 + 5
1

 + ......... + 
1n2

1
−

 for all n ∈ N.

Solution

Consider Ιn = ∫
π 2/

0

2

xsin
nxsin

 dx = 1 + 3
1

 + 5
1

 + ......... + 
1n2

1
−

from left hand side, Ι1 = ∫
π 2/

0

2

xsin
nxsin

 dx = ∫
π

=
2/

0

1dxxsin

from right hand side, Ι1 = 1
⇒ Ι1 is true
Assume that Ιk is true i.e.

Ιk = ∫
π 2/

0

2

xsin
kxsin

 dx = 1 + 3
1

 + 5
1

 + ....... + 
1k2

1
−

..........(i)

Consider Ιk–1 – Ιk = ∫
π

+
2/

0

2

xsin
x)1k(sin

 dx – ∫
π 2/

0

2

xsin
kxsin

 dx

⇒ Ιk+1 – Ιk = ∫
π

−+
2/

0

22

xsin
kxsinx)1k(sin

 dx = ∫
π

+
2/

0
xsin

xsinx)1k2sin(
 dx

= 

2/

0

2/

0
1k2

x)1k2cos(dxx)1k2sin(

ππ

⎥
⎥
⎦

⎤

+
+

−=+∫  = 
1k2

1
+

⇒ Ιk+1 = Ιk + 
1k2

1
+

⇒ Ιk+1 = Ιk + 
1k2

1
+

⇒ Ιk+1 = 1 + 3
1

 + 5
1

 + ........ + 
1k2

1
−

 + 
1k2

1
+

[using (i)]

⇒ Ιk+1 is true.
Hence by principle of mathematical induction Ιn is true for all values of n ∈ N

Example : 55

Let Ιn = ∫
π

−
−

0
xcos1

nxcos1
 dx. Use mathematical induction to prove that Ιn = nπ for all n = 0, 1, 2, 3, ....

Solution

We have to prove Ιn = ∫
π

−
−

0
xcos1

nxcos1
 dx = nπ

For n = 0

Ι0 = ∫
π

−
θ−

0
xcos1

cos1
 dx = ∫

π

=
0

0dx0 .

The value of the integral from the RHS = 0 × π = 0
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⇒ The given integral is true for n = 0
From n = 1

Ι1 = ∫
π

−
−

0
xcos1
xcos1

 dx = ∫
π

π=
0

dx

The value of the integral from the RHS = 1 × π = π
⇒ The given integral is true for n = 1
Assume that the given integral is true for n = k – 1 and n = k i.e.

Ιk–1 = ∫
π

−
−−

0
xcos1

x)1kcos(1
 dx = (k – 1) π .........(i)

Ιk = ∫
π

−
−

0
xcos1

kxcos1
 dx = kπ .........(ii)

Consider Ιk+1 – Ιk = ∫
π

−
+−

0
xcos1

x)1kcos(kxcos
 dx

⇒ Ιk+1 – Ιk = ∫
π

+

0
2

2
xsin2

x
2

1k2sin
2
xsin2

 dx =  ∫
π

+

0
2
xsin

x
2

1k2sin
 dx ..........(iii)

Consider Ιk – Ιk–1 = ∫
π

−
−−

0
xcos1

kxcosx)1kcos(
 dx

⇒ Ιk – Ιk–1 = ∫
π

−

0
2

2
xsin2

x
2

1k2sin
2
xsin2

 dx = ∫
π

−

0
2
xsin

x
2

1k2sin
 dx ..........(iv)

Subtracting (iv) from (iii), we get :

Ιk+1 – 2 Ιk + Ιk–1 = ∫
π

−
−

+

0
2
xsin

x
2

1k2sinx
2

1k2sin
 dx

⇒ Ιk–1 – 2 Ιk + Ιk–1 = ∫
π

0
2
xsin

2
xsinkxcos2

 dx = 2 0
k
kxsin2dxkxcos

0

x

0

=
⎥
⎥
⎦

⎤
=

π

∫

⇒ Ιk+1 = 2Ιk – Ιk–1 = 2kπ – (k – 1)π [using (i) and (ii)]
⇒ Ιk+1 = (k + 1) π
⇒ The given integral is true for n = k + 1
Hence, by principle of mathematical induction, the given integral is true for all n = 0, 1, 2, 3, .......
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Example : 1
Find the value of t so that the points (1, 1), (2, –1), (3, –2) and (12, t) are concyclic.

Solution
Let A ≡ (1, 1) B ≡ (2, –1) C ≡ (3, –2) D ≡ (12, t)
We will find the equation of the circle passing through A, B and C and then find t so that D lies on that
circle. Any circle passing through A, B can be taken as :

(x – 1) (x – 2) + (y – 1) (y + 1) + k 
112
111
1yx

−
 = 0

⇒ x2 + y2 – 3x + 1 + (2x + y – 3) = 0
C ≡ (3, –2) lies on this circle.

⇒ 9 + 4 – 9 + 1 + k (6 – 2 – 3) = 0
⇒ k = – 5
⇒ circle through A, B and C is :

x2 + y2 – 3x + 1– 5 (2x + y – 3) = 0
x2 + y2 – 12x – 5y + 16 = 0
D ≡ (12, t) will lie on this circle if :

⇒ 144 + t2 – 156 – 5t + 16 = 0
⇒ t2 – 5t + 4 = 0
⇒ y = 1, 4
⇒ for t = 1, 4 the points are concyclic

Example : 2
Find the equation of a circle touching the line x + 2y = 1 at the point (3, –1) and passing through the point
(2, 1).

Solution
The equation of any circle touching x + 2y – 1 = 0 at the point (3, –1) can be taken as :
(x – 3)2 + (y – 1)2 + k (x – 2y – 1) = 0 (using result 5 from family of circles)
As the circle passes through (2, –1) :
(2 – 3)2 + (1 + 1)2 + k (2 + 2 – 1) = 0
⇒ k = – 5/3
⇒ the required circle is : 3 (x2 + y2) – 23x – 4y + 35 = 0
Notes :
1. Let A ≡ (3, –1) and B ≡ (2, 1)

Let L1 be the line through A perpendicular to x + 2y = 1. Let L2 be the right bisector of AB. The
centre of circle is the point of intersection of L1 and L2 . The equation of the circle can be found by this
method also.
2. Let (h, k) be the centre of the circle.

The centre (h, k) can be found from these equations.

⇒ 5
|1k2h| −+
 = 22 )1k()3h( ++−  = 22 )1k()2h( −+−

The centre (h, k) can be found from these equations

Example : 3
Find the equation of a circle which touches the Y-axis at (0, 4) and cuts an intercept of length 6 units on
X-axis.

Solution
The equation of circle touching x = 0 at (0, 4) can be taken as :

(x – 0)2 + (y – 4)2 + k (x) = 0
x2 + y2 + kx – 8y + 16 = 0

The circle cuts X-axis at points (x1, 0) and (x2, 0) given by :
x2 + kx + 16 = 0

X-intercept = difference of roots of this quadratic :
6 = |x2 – x1|

⇒ 36 = (x2 + x1)
2 – 4x2 x1

Coordinate Geometry
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⇒ 36 = k2 – 4 (16)
⇒ k = ± 10
Hence the required circle is : x2 + y2 ± 10x – 8y + 16 = 0
Note :
1. If a circle of radius r touches the X-axis at (1, 0), the centre of the circle is (a, ± r)
2. If a circle of radius r touches the Y-axis at (0, b), the centre of the circle is (± r, b).

Example : 4
Find the equation of the circle passing through the points (4, 3) and (3, 2) and touching the line
3x – y – 17 = 0

Solution
Using result 4 from the family of circles, any circle passing through
A ≡ (4, 3) and B ≡ (3, 2) can be taken as :

(x – 4) (x – 3) + (y – 3) (y – 2) + k 
123
134
1yx

 = 0

x2 + y2 – 7x – 5y + 18 + k (x – y – 1) = 0
This circle touches 3x – y – 17 = 0

centre ≡ ⎟
⎠

⎞
⎜
⎝

⎛ +−
2

5k,
2

k7
 and radius = )k18(

4
)5k(

4
)k7( 22

−−
+

+
−

For tangency, distance of centre from line 3x – y – 17 = 0 is radius

⇒
19

|17
2

5k
2

k73|

+

−⎟
⎠
⎞

⎜
⎝
⎛ +

−⎟
⎠
⎞

⎜
⎝
⎛ −

 = k18
4

)5k(
4

)k7( 22
+−

+
+

−

⇒
2

10
18k4

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
 = (7 – k)2 + (k + 5)2 – 72 + 4k

⇒ 4(4k2 + 81 + 36k) = 10 (2k2 + 2)
⇒ k2 – 36k – 76 = 0 ⇒ k = –2, 38
⇒ there are two circles through A and B and touching 3x – y – 17 = 0. The equation are :

x2 + y2 – 7x – 5y + 18 – 2 (x – y – 1) = 0 and
x2 + y2 – 7x – 5y + 18 + 38 (x – y – 1) = 0

⇒ x2 + y2 – 9x – 3y + 20 = 0 and
x2 + y2 + 31x – 43y – 20 = 0

Notes :
1. Let C ≡ (h, k) be the centre of required circle and M ≡ (7/2, 5/2) be the mid point of AB.

C lies on right bisector of AB
⇒ slope (CM) = slope (AB) = – 1

⇒ ⎟
⎠

⎞
⎜
⎝

⎛
−
−

2/7h
2/5k

 × (1) = – 1

Also CA = distance of centre from (3x – y – 17 = 0)

⇒ 22 )3k()4h( −−  = 10
|17kh3| −−

We can get h, k from these two equations.
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Example : 5
Find the points on the circle x2 + y2 = 4 whose distance from the line 4x + 3y = 12 is 4/5 units

Solution
Let A, B be the points on x2 + y2 = 4 lying at a distance 4/5 from 4x + 3y = 12
⇒ AB will be parallel to 4x + 3y = 12
Let the equation of AB be : 4x + 3y = c

distance between the two lines is : 169
|12c|

+

−
 = 5

4

⇒ c = 16, 8
⇒ the equation of AB is : 5x + 3y = 8 and 4x + 3y = 16
The points A, B can be found by solving for points of intersection of x2 + y2 = 4 with AB.
AB ≡ (4x + 3y – 8 = 0)

⇒ x2 + 
2

3
x48
⎟
⎠

⎞
⎜
⎝

⎛ −
 = 4

⇒ 25x2 – 64x + 28 = 0
⇒ x = 2, 14/25
⇒ y = 0, 448/25
AB ≡ (4x + 3y – 16 = 0)

⇒ x2 + 
2

3
x416
⎟
⎠

⎞
⎜
⎝

⎛ −
 = 4

⇒ 25x2 – 128x + 220 = 0
⇒ D < 0 ⇒ no real roots
Hence there are two points on circle at distance 4/5 from line.
A ≡ (2, 0) and B ≡ (14/25, 48/25)
Alternate Method :
Let P ≡ (2 cos,2 sin) be the point on the circle x2 + y2 = 4 distant 4/5 from given line.
The distance from line = 4/5.

⇒ 5
|12)sin2(3)cos2(4| −θ+θ

 = 5
4

Solve for θ to get the point P.

Example : 6
Find the equation of circle passing through (–2, 3) and touching both the axes.

Solution
As the circle touches both the axes and lies in the IInd quadrant, its centre is :
C ≡ (–r, r), where r is the radius
Distance of centre from (–2, 3) = radius

⇒ 22 )r3()2r( −+−  = r

⇒ r = 5 ± 2 3
⇒ the circles are : (x + r)2 + (y – r)2 = r2

⇒ x2 + y2 + 2(5 ± 2 3 ) x – 2 (5 ± 2 3 ) y + (5 ± 2 3 )2 = 0

Example : 7
Tangents PA and PB are drawn from the point P(h, k) to the circle x2 + y2 = a2. Find the equation of
circumcircle of ∆PAB and the area of ∆PAB

Solution
AB is the chord of contact for point P.
Equation of AB is : hx + ky = a2

The circumcircle of ∆PAB passes through the intersection of circle
x2 + y2 – a2 = 0 and the line hx + ky – a2 = 0
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Using S + k L = 0, we can write the equation of the circle as :
(x2 + y2  – a2) + k (hx + ky – a2) = 0 where k is parameter
As this circle passes through P(h, k) ;
⇒ h2 + k2 – a2 + k (h2 + k2 – a2) = 0
⇒ k = – 1
The circle is x2 + y2 – hx – ky = 0
Area of ∆PAB = 1/2 (PM) × (AB) (PM is perpendicular to AB)

PM = distance of P from AB = 
22

222

kh

|akh|

+

−+

PA = length of tangent from P = 222 akh −+

Area = 
2
1

 PM ⎥⎦
⎤

⎢⎣
⎡ − 22 PMPA2  = PM 22 PMPA −

Area = 22

222

kh

|akh|

+

−+
 

22

222

kh

akha

+

⎟
⎠
⎞⎜

⎝
⎛ −+

Area = ( )
22

2/3222

kh
akha

+

−+

Note that h2 + k2 – a2 > 0 Q (h, k) lies outside the circle

Example : 8
Examine if the two circles x2 + y2 – 8y – 4 = 0 and x2 + y2 – 2x – 4y = 0 touch each other. Find the point of
contact if they touch.

Solution
For x2 + y2 – 2x – 4y = 0 centre C1 ≡ (1, 2)
and x2 + y2 – 8y – 4 = 0 centre C2 ≡ (0, 4)

using r = :cfg 22 −+ r1 = 5 and r2 = 2 5

Now C1 C2 = 22 )24()10( −+−  = 5

⇒ r2 – r1 = 2 5  – 5  = 5
⇒ C1 C2 = r2 – r1
⇒ the circle touch internally
For point of contact :

Let P(x, y) be the point of contact. P divides C1 C2 externally in the ratio of 5  : 2 5  ≡ 1 : 2
using section formula, we get :

x = 
21

)1(2)0(1
−
−

 = 2

y = 
21

)2(2)4(1
−
−

 = 0

⇒ P(x, y) ≡ (2, 0) is the point of contact

Example : 9
Find the equation of two tangents drawn to the circle x2 + y2 – 2x + 4y = 0 from the point (0, 1)

Solution
Let m be the slope of the tangent. For two tangents there will be two values of m which are required
As the tangent passes though (0, 1), its equation will be :
y – 1 = m(x – 0) ⇒ mx – y + 1 = 0

Now the centre of circle (x2 + y2 – 2x + 4y = 0) ≡ (1, –2) and r = 5
So using the condition of tangency : distance of centre (1, –2) from line = radius (r)
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1m

|1)2()1(m|
2 +

+−−
 = 5

⇒ (3 + m)2 = 5(1 + m2) ⇒ m = 2, –1/2
⇒ equations of tangents are :

2x – y + 1 = 0 (slope = 2) and x + 2y – 2 = 0 (slope = –1/2)

Example : 10
Find the equations of circles with radius 15 and touching the circle x2 + y2 = 100 at the point (6, –8).

Solution
Case – 1 :
If the require circle touches x2 + y2 = 100 at (6, –8) externally, then P(6, –8) divides OA in the ratio 2 : 3
internally.
Let centre of the circle be (h, k). Now using section formula :

⇒ 32
)0(3k2

+
+

 = 6

⇒ 32
)0(3k2

+
+

 = – 8

⇒ k = 15 and k = – 20
⇒ (x – 15)2 + (y + 20)2  = 225 is the required circle.
Case – 2 :
If the required circle touches x2 + y2 = 100 at (6, –8) internally, then P(6, –8) divides OA in the ratio 2 : 3
externally. Let centre of the circle be (h, k). Now using section formula :

⇒ 32
)0(3h2

−
−

 = 6

⇒ 32
)0(3k2

−
−

 = – 8

⇒ h = – 3 and k = 4
⇒ (x + 3)2 + (y – 4)2 = 225 is the required circle.

Example : 11
For what values of m, will the line y = mx does not intersect the circle x2 + y2 + 20x + 20y + 20 = 0?

Solution
If the line y = mx does not intersect the circle, the perpendicular distance of the line from the centre of the
circle must be greater than its radius.

Centre of circle ≡ (–10, –10) ; radius r = 6 5

distance of line mx – y = 0 from (–10, –10) = 
1m

|)10()10(m|
2 +

−−−

⇒
1m

|m1010|
2 +

−
 > 56

⇒ (2m + 1) (m + 2) < 0
⇒ – 2 < m < –1/2

Example : 12
Find the equation of circle passing through (–4, 3) and touching the lines x + y = 2 and x – y = 2.

Solution
Let (h, k) be the centre of the circle. The distance of the centre from the given line and the given point must
be equal to radius

⇒ 2
|2kh| −+
 = 2

|2kh| −−
 = 22 )3k()4h( −++
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Consider 2
|2kh| −+
 = 2

|2kh| −−

⇒ h + k – 2 = ± (h – k – 2)
Case 1 : (k = 0)

2
|2h| −
 = 9)4h( 2 ++

(h – 2)2 = 2 (h + 4)2 + 18 ⇒ h2 + 20h + 46 = 0

⇒ h = – 10 ± 63

radius = 2
|2kh| −+
 = 2

6312 ±−

⇒ circle is : (x + 10 m 3 6 )2 + (y – 0)2 = 
2

)6312( 2±−

⇒ x2 + y2 + 2 (10 ± 3 6 ) x + (10 ± 3 6 )2 – 
2

)6312( 2±−
 = 0

⇒ x2 + y2 + 2 (10 ± 3 6 ) x + 55 ± 24 6  = 0
Case – 2 : (h = 2)

2
|k|
 = 2)3k(36 −+

⇒ k2 = 72 + 2 (k – 3)2 ⇒ k2 – 12k + 90 = 0
The equation has no real roots. Hence no circle is possible for h = 2
Hence only two circles are possible (k = 0)

x2 + y2 + 2 (10 ± 3 6 )  x + 55 ± 24 6  = 0

Example : 13
The centre of circle S lies on the line 2x – 2y + 9 = 0 and S cuts at right angles the circle x2 + y2 = 4. Show
that S passes through two fixed points and find their coordinates.

Solution
Let the circle S be : x2 + y2 + 2gx + 2fy + c = 0
centre lies on 2x – 2y + 9 = 0
⇒ –2g + 2f + 9 = 0 .......(i)
S cuts x2 + y2 – 4 = 0 orthogonally,
⇒ 2g(0) + 2f(0) = c – 4
⇒ c = 4 .......(ii)
Using (i) and (ii) the equation of S becomes :

x2 + y2 + (2f + 9) x + 2fy + 4 = 0
⇒ (x2 + y2 + 9x + 4) + f (2x + 2y) = 0
We can compare this equation with the equation of the family of circle though the point of intersection of
a circle and a line (S + fL = 0, where f is a parameter).
Hence the circle S always passes through two fixed points A and B which are the points of intersection of
x2 + y2 + 9x + 4 = 0 and 2x + 2y = 0
Solving these equations, we get :

x2 + x2 + 9x + 4 = 0
⇒ x = –4, –1/2 ⇒ y = 4, 1/2
⇒ A ≡ (–4, 4) and B ≡ (–1/2, 1/2)
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Example : 14
A tangent is drawn to each of the circle x2 + y2 = a2, x2 + y2 = b2 . Show that if the two tangents are
perpendicular to each other, the locus of their point of intersection is a circle concentric with the given
circles.

Solution
Let P ≡ (x1, y1) be the point of intersection of the tangents PA and PB where A, B are points of contact with
the two circles respectively.
As PA perpendicular to PB, the corresponding radii OA and OB are also perpendicular.
Let ∠AOX = θ
⇒ ∠BOX = θ + 90º
Using the parametric form of the circles we can take :
A ≡ (a cos θ , a sin θ)
B ≡ [b cos (θ + 90º), b sin (θ + 90º)]
B ≡ (–b sin θ, b cos θ)
The equation of PA is : x (a cos θ) + y (a sin θ) = a2

⇒ x cos θ + y sin θ = a
The equation of PB is :

x(–b sin θ) + y (b cos θ) = b2

⇒ y cos θ – x sin θ = b
⇒ P ≡ (x1, y1) lies on PA and PB both
⇒ x1 cos θ + y1 sin θ = a and y1 cos θ – x1 sin θ = b
As θ is changing quantity (different for different positions of P), we will eliminate.
Squaring and adding, we get :

x1
2 + y1

2 = a2 + b2

⇒ the locus of P is x2 + y2 = a2 + b2 which is concentric with the given circles.

Example : 15
Secants are drawn from origin to the circle (x – h)2 + (y – k)2 = r2 . Find the locus of the mid-point of the
portion of the secants intercepted inside the circle.

Solution
Let C ≡ (h, k) be the centre of the given circle and P ≡ (x1 , y1) be the mid-point of the portion AB of the
secant OAB.
⇒ CP ⊥ AB
⇒ slope (OP) × slope (CP) = – 1

⇒ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

0x
0y

1

1
 × ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
−

hx
ky

1

1
 = – 1

⇒ x1
2 + y1

2 – hx1 – ky1 = 0
⇒ the locus of the point P is : x2 + y2 – hx – ky = 0

Example : 16
The circle x2 + y2 – 4x – 4y + 4 = 0 is inscribed in a triangle which has two of its sides along the coordinate
axes. The locus of the circumcentre of the triangle is x + y – xy + k (x2 + y2)1/2 = 0. Find value of k.

Solution
The given circle is (x – 2)2 + (y – 2)2 = 4
⇒ centre = (2, 2) and radius = 2
Let OAB be the triangle in which the circle is inscribed. As ∆OAB is right angled, the circumcentre is mid-
point of AB.
Let P ≡ (x1, y1) be the circumcentre.
⇒ A ≡ (2x1, 0) and B ≡ (0, 2y1)

⇒ the equation of AB is : 
1x2

x
 + 

1y2
y

 = 1

As ∆AOB touches the circle, distance of C from AB = radius
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⇒

2
1

2
1

11

y4
1

x4
1

1
y2
2

x2
2

+

−+

 = 2 ............(i)

As the centre (2, 2) lies on the origin side of the line 
1x2

x
 + 

1y2
y

 – 1 = 0

the expression 
1x2

2
 + 

1y2
2

 – 1 has the same sign as the constant term (–1) in the equation

⇒
1x2

2
 + 

1y2
2

 – 1 is negative

⇒ equation (i) is : – ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+ 1

y2
2

x2
2

11
 = 2 2

1
2
1 y4

1
x4
1

+

⇒ – (x1 + y1 – x1y1) = 2
1

2
1 yx +

⇒ the locus is : x + y – xy + 22 yx +  = 0

⇒ k = 1
Alternate Solution
We know, r = ∆/S where r is inradius, ∆ is the area triangle and S is the semi-perimeter

⇒ 2 = 

2
y4x4y2x2

)y2)(x2(
2
1

2
1

2
111

11

+++

⇒ 2 = 

2
y4x4y2x2

)y2)(x2(
2
1

2
1

2
111

11

+++

⇒ 2 = 2
1

2
111

11

yxyx

yx2

+++

⇒ x1 + y1 – x1y1 + 2
1

2
1 yx +  = 0

⇒ the locus is : x + y – xy = 22 yx +  = 0 ⇒ k = 1

Example : 17
A and B are the points of intersection of the circles x2 + y2 + 2ax – c2 = 0 and x2 + y2 + 2bx – c2 = 0. A line
through A meets one circle at P. Another line parallel to AP but passing through B cuts the other circle at Q.
Find the locus of the mid-point of PQ.

Solution
Let us solve for the point of intersection A and B
x2 + y2 + 2ax – c2 = 0 and x2 + y2 + 2bx – c2 = 0
⇒ x = 0 and y = ±c
⇒ A ≡ (0, c) and B ≡ (0, –c)
Let the equation of AP be : y = mx + c, where m is changing quantity and c is fixed quantity (Y-intercept)
⇒ the equation BQ is : y = mx – c (AP || BQ)
Coordinates of P, Q :
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Solve y = mx + c and x2 + y2 + 2ax – c2 = 0
⇒ x2 (mx + c)2 + 2ax + c2 = 0

⇒ x = – 2m1
)mca(2

+
+

and x = 0

⇒ y = – 2m1
)mca(m2

+
+

+ c and y = c

⇒ P = ⎥⎦

⎤
⎢⎣

⎡ +
+

+
−

+

+ c
m1

)mca(m2,
m1

)mca(2
22

Similarly the coordinates Q are :

⇒ Q ≡ ⎥⎦

⎤
⎢⎣

⎡ −
+

−
−

+

−
− c

m1
)mcb(m2,

m1
)mcb(2

22

mid-point of PQ is :

⎥⎦

⎤
⎢⎣

⎡
+

+
−

+

+
− 22 m1

)ba(m,
m1

)ba(
 ≡ (x1, y1)

⇒ x1 = – 2m1
)ba(

+
+

 ; y1 = – 2m1
)ba(m

+
+

Elimiate m to get the locus of the midpoint
x1

2 + y1
2 = – (a + b) x1

⇒ x2 + y2 + (a + b) x = 0 is the locus

Example : 18
Find the equation of the circumcircle of the triangle having x + y = 6, 2x + y = 4 and x + 2y = 5 as its sides.

Solution
Consider the following equation :

(x + y – 6) (2x + y – 4) + λ (2x + y – 4) (x + 2y – 5) + µ (x + 2y – 5) (x + y – 6) = 0 .......(i)
Equation (i) represents equation of curve passing through the intersection of the three lines taken two at
a time (i.e. passes through the vertices of the triangle). For this curve to represent a circle,
Coefficient of x2 = Coefficient of y2 and Coefficient of xy = 0
⇒ 2 + 2λ + µ = 1 + 2λ + 2µ ..........(ii)
and 3 + 5λ + 3µ = 0 ..........(iii)
Solving (ii) and (iii), we get λ = –6/5 and µ = 1
Putting values of λ and µ in (i), we get :

(x + y – 6) (2x + y – 4) – 6/5 (2x + y – 4) (x + 2y – 5) + 1 (x + 2y – 5) (x + y – 6) = 0
⇒ x2 + y2 – 17x – 19y + 50 = 0
Hence equation of circumcircle of the triangle is : x2 + y2 – 17x – 19y + 50 = 0

Example : 19
Find the equation of the circle passing through the origin and through the points of contact of tangents
from the origin to the circle x2 + y2 – 11x + 13y + 17 = 0

Solution
Let S = x2 + y2 – 11x + 13y + 17 = 0
Equation of the chord of contact of circle S with respect to the point (0, 0) is

L ≡ – 11x + 13y + 34 = 0
Equation of family of circles passing through the intersection of circle S and chord of contact L is

S + kL = 0
⇒ x2 + y2 – 11x + 13y + 17 + k (–11x + 13y + 34) = 0 .........(i)
Since required circle passes through the origin, find the member of this family that passes through the
origin
i.e. Put (0, 0) and find corresponding value of k.
⇒ 02 + 02 – 11 × 0 + 13 × 0 + 17 + k (–11 × 0 + 13 × 0 + 34) = 0
⇒ k = –1/2
Put k = –1/2 in (i) to get equation of the required circle
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i.e. 2x2 + 2y2 – 11x + 13y = 0
Alternate Solution
Let centre of the circle S be C. As points of contact, origin and C form a cyclic quadrilateral, OC must be
the diameter of the required circle.
C ≡ (11/2, –13/2) and O ≡ (0, 0)
Apply diametric form to get the equation of the required circle,

i.e. (x – 11/2) (x – 0) + (y + 13/2) (y – 0) = 0
⇒ 2x2 + 2y2 – 11x + 13y = 0
Hence required circle is : 2x2 + 2y2 – 11x + 13y = 0

Example : 20

If ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

i
i m

1,m , mi > 0 for i = 1, 2, 3, 4 are four distinct points on a circle. Show that m1m2m3m4 = 1.

Solution
Let equation of circle be x2 + y2 + 2gx + 2fy + c = 0

As ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

i
i m

1,m  lies on the circle, it should satisfy the equation of the circle

i.e. m1
2 + 2

im
1

 + 2gm1 + 2f 
im

1
 + c = 0

⇒ mi
4 + 2gmi

3 + cmi
2 + 2fmi + 1 = 0

This is equation of degree four in m whose roots are m1, m2, m3, and m4.

Product of the roots = m1m2m3m4 = 4

0

xoftcoefficien
xoftcoefficien

 = 
1
1

 = 1

Hence m1m2m3m4 = 1

Example : 21
y = mx is a chord of the circle of radius a and whose diameter is along the axis of x. Find the equation of
the circle whose diameter is this chord and hence find the locus of its centre for all values of m.

Solution
The circle whose chord is y = mx and centre lies on x -axis will touch y axis at origin
The equation of such circle is given by :

(x – a)2 + y2 = a2 ⇒ x2 + y2 – 2ax = 0 ..........(i)
Further, family of circles passing through the intersection of circle (i) and the line y = mx is :

x2 + y2 – 2ax + k (y – mx) = 0 ⇒ x2 + y2 – x (2a + km) + ky = 0 .........(i)
centre of the circle is ≡ (a + km/2, –k/2)

We require that member of this family whose diameter is y = mx
⇒ centre of the required circle lies on y = mx.
⇒ –k/2 = am + km2/2 ⇒ k = –2ma/(1 + m2)
Put the value of k in (i) to get the equation of the required circle,

x2 + y2 – x ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
− 2

2

m1
am2a2  – 2m1

am2
+

 y = 0

⇒ (1 + m2) – (x2 + y2) – 2a (x + my) = 0
(ii) Let the coordinates of the point whose locus is required be (x1, y1)
⇒ (x1, y1) is the centre of the circle (ii)

⇒ (x1, y1) ≡ 

⎟
⎠

⎞
⎜
⎝

⎛
++ 22 m1
ma,

m1
a

⇒ x1 = 2m1
a
+

.......(iii) and y1 = 

2m1
ma
+

...........(iv)

On squaring and adding (iii) and (iv), we get :
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x1
2 + y1

2 = 

2

2

m1
a
+

⇒ 1 + m2 = 

2
1

2
1

2

yx
a
+

Substitute the value of (1 + m2) in (iii) to get : x1
2 + y1

2 = ax1
⇒ required locus is : x2 + y2 = ax.

Example : 22
Find the equation of a circle having the lines x2 + 2xy + 3x + 6y = 0 as its normals and having size just
sufficient to contain the circle x (x – 4) + y (y – 3) = 0

Solution
On factorising the equation of the pair of straight lines x2 + 2xy + 3x + 6y = 0, we get :

(x + 2y) (x + 3) = 0
⇒ Two normals are x = –2y ...........(i) and x = – 3 .........(ii)
The point of intersection of normals (i) and (ii) is centre of the required circle as centre lies on all normal
lines.
Solving (i) and (ii), we get :

centre ≡ C1 ≡ (–3, 3/2)
Given circle is C2 ≡` x (x – 4) + y(y – 3) = 0 ⇒ x2 + y2 – 4x – 3y = 0
⇒ centre ≡ C2 ≡ (2, 3/2) and radius = r = 5/2
If the required circle just contains the given circle, the given circle should touch the required circle inter-
nally from inside.
⇒ radius of the required circle = |C1 – C2| + r
⇒ radius of the required circle = 5 + 5/2 = 15/2
Hence, equation of required circle is (x + 3)2 + (y – 3/2)2 = 225/4

Example : 23
A variable circle passes through the point (a, b) and touches the x-axis. Show that the locus of the other
end of the diameter through A is (x – a)2 = 4by

Solution
Let the equation of the variable circle be x2 + y2 + 2gx + 2fy + c = 0
Let B ≡ (x1, y1) be the other end of the diameter whose locus is required

centre of the circle ≡ (–g, –f) ≡ mid point of the diameter AB ≡ ⎟
⎠

⎞
⎜
⎝

⎛ ++
2

by,
2

ax 11

⇒ –2g = x1 + a ..........(i) and –2f = y1 + b .........(ii)
As circle touches x axis, we can write : | f | = radius of the circle
⇒ | f |2 = g2 + f2 – c ⇒ g2 = c
Substituting the value of g from (i), we get : c = (x1 + a2)/4 ........(iii)
Since point B ≡ (x1, y1) lies on circle, we can have :

x1
2 + y1

2 + 2gx1 + 2fy1 + c = 0
On substituting the values of g, f and c from (i), (ii) and (iii), we get :

x1
2 + y1

2 – (x1 + a) x1 – (y1 + b) y1 + (x1 + a)2 /4 = 0
⇒ (x1 – a)2 = 4by1
Hence, required locus is (x – a)2 = 4by
Alternate Solution
Let B ≡ (x1, y1) be the other end of the diameter whose locus is required

centre of the circle ≡ (–g, –f) ≡ mid point of the diameter AB ≡ ⎟
⎠

⎞
⎜
⎝

⎛ ++
2

by,
2

ax 11

length of the diameter of the circle = [(x1 – a)2  + (y1 – b)2 ]1/2

⇒ radius = r = 1/2 [(x1 – a)2 + (y1 – b)2 ]1/2

As circle touches x-axis, | f | = r ⇒ | f |2 = r2

⇒ (y1 + b)2 = (x1 – a)2 + (y1 – b)2

⇒ (x1 – a)2 = 2by1
Hence, required locus is (x – a)2 = 4by
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Example : 24
A circle is drawn so that it touches the y-axis cuts off a constant length 2a, on the axis of x. Show that the
equation of the locus of its centre is x2 – y2 = a2.

Solution
Let (x1, y1) be the centre of the circle.
As circle touches y-axis, radius of the circle = x1.
So equation of circle is : (x – x1)

2 + (y – y1)
2 = x1

2

⇒ x2 + y2 – 2x1x – 2y1y + y1
2 = 0

Intercept made by the circle on x-axis = 2 (g2 – c)1/2 = 2a (given)
⇒ g2 – c = a2 ⇒ x1

2 – y1
2 = a2

Hence required locus is x2 – y2 = a2

Example : 25
A circle is cut by a family of circles all of which pass through two given points A ≡ (x1, y1) and B(x2, y2). prove
that the chords of intersection of the fixed circle with any circle of the family passes through a fixed point.

Solution
Let S0 ≡ 0 be the equation of the fixed circle.
Equation of family of circles passing through two given points A and B is :

S2 ≡ (x – x1) (x – x2) + (y – y1) (y – y2) + kL1 = 0
where L1 is equation of line passing through A and B
⇒ S2 ≡ S1 + kL1 ..........(i)
where S1 ≡ (x – x1) (x – x2) + (y – y1) (y – y2)
The common chord of intersecting of circles S0 = 0 and S2 = 0 is given by :

L ≡ S2 – S0 = 0
Using (i), we get

L ≡ S2 – S1 – kL1 = 0
⇒ L ≡ L2 – kL1 where L2 ≡ S2 – S1 is the equation fo common chord of S1 and S2 .
On observation we can see that L represents a family of straight lines passing the intersection of L2 and L1.
Hence all common chords (represented by L) pass through a fixed point

Example : 26
The circle x2 + y2 = 1 cuts the x-axis at P and Q. Another circle with centre at Q and variable radius
intercepts the first circle at R above x-axis and the line segment PQ at S. Find the maximum area of the
triangle QSR

Solution
Equation of circle Ι is x2 + y2 = 1. It cuts x-axis at point P (1, 0) and Q(–1, 0).
Let the radius of the variable circle be r. Centre of the variable circle is Q(–1, 0)
⇒ Equation of variable circle is (x + 1)2 + y2 = r2 ..........(ii)

Solving circle Ι and variable circle we get coordinates of R as ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

− 2
2

r4
2
r,

2
2r

Area of the triangle QSR = 1/2 × QS × RL = 
2
1

 r 
2
r

 2r4 −

To maximise the area of the triangle, maximise its square i.e.

Let A(r) = 16
1

 r4 (4 – r2) = 
16

rr4 64 −

⇒ A′(r) = 
16

r6r16 53 −

For A(r) to be maximum or minimum, equate A′(r) = 0

⇒ r = 3
8

See yourself that A′′ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

3
8

 < 0
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⇒ Area is maximum for r = 3
8

Maximum Area of the triangle QRS = 
2
1

 . 
2
1

 3
8

 . 3
4

 = 33
4

 sq. units.

Example : 27
Two circles each of radius 5 units touch each other at (1, 2). If the equation of their common tangent is
4x + 3y = 10, find the equation of the circles.

Solution
Equation of common tangent is 4x + 3y = 10. The two circles touch each other at (1, 2).
Equation of family of circles touching a given line 4x + 3y = 10 at a given point (1, 2) is :

(x – 1)2 + (y – 2)2 + k (4x + 3y – 10) = 0
⇒ x2 + y2 + (4k – 2) x + (3k – 4) y + 5  10k = 0 ......(i)

⇒ centre ≡ ⎟
⎠

⎞
⎜
⎝

⎛ −
−

2
k34,k21  and radius = g2 + f2 – c = (2k – 1)2 + 

2

2
4k3
⎟
⎠

⎞
⎜
⎝

⎛ −
 – (5 – 10k)

As the radius of the required circle is 5, we get : (2k – 1)2 + 
2

2
4k3
⎟
⎠

⎞
⎜
⎝

⎛ −
 – (5 – 10k) = 5

⇒ k2 = 20/25 ⇒ k = ± 5
2

Put the values of k in (i) to get the equations of required circles.

The required circles are : 5  (x2 + y2) + (8 – 2 5 ) x + (6 – 4 5 ) y + 5 5  – 20 = 0

and 5  (x2 + y2) + (8 + 2 5 ) x – (6 + 4 5 ) y + 5 5  + 20 = 0

Example : 28
The line Ax + By + C = 0 cuts the circle x2 + y2 + ax + by + c = 0 in P and Q. The line A′x + B′y + c′ = 0 cuts
the circle x2 + y2 + a′x + b′y + c′ = 0 in R and S. If P, Q, R and S are concyclic then show that

CBA
CBA

ccbbaa

′′′

′−′−′−

 = 0

Solution
Let the given circles be S1 ≡ x2 + y2 + ax + by + c = 0 and S2 ≡ x2 + y2 + a′x + b′y + c′ = 0. Assume that the
points P, Q, R and S lie on circle S3 = 0
The line PQ ≡ Ax + By + C = 0 intersects both S1 and S3.
⇒ Line PQ is radical axis of S1 and S3
The line RS ≡ A′x + B′y + c′ = 0 intersects both S2 and S3
⇒ Line RS is radical axis of S2 and S3 .
Also radical axis of S1 = 0 and S2 = 0 is given by : S1 – S2 = 0
or (a – a′)x + (b – b′)y + c – c′ = 0 .........(i)
The lines PQ, RS and line (i) are concurrent lines because radical axis of three circles taken in pair are
concurrent. Using the result of three concurrent lines, we get :

CBA
CBA

ccbbaa

′′′

′−′−′−

 = 0
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Example : 29
If two curves whose equations are : ax2 + 2hxy + by2 + 2gx + 2fy + c = 0 and

a′x2 + 2h′xy + b′y2 + 2g′x + 2f′y + c′ = 0 intersect in four concyclic points, prove that 
h

ba −
 = 

h
ba
′
′−′

.

Solution
The equation of family of curves passing through the points of intersection of two curves is :

ax2 + 2hxy + by2 + 2gx + 2fy + c + k (a′x2 + 2h′xy + b′y2 + 2g′x + 2f′y + c′) = 0
It above equation represents a circle, then coefficient of x2 = coefficient of y2 and coefficient of xy = 0
⇒ a + ka′ = b + kb′ .........(i)
and 2(h + kh′) = 0 ⇒ k = –h/h′
On substituting the value of k in (i), we get :

h
ba −

 = 
h

ba
′
′−′

Example : 30
Find all the common tangents to the circles x2 + y2 – 2x – 6y + 9 = 0 and x2 + y2 + 6x – 2y + 1 = 0.

Solution
The centre and radius of first circle are : C1 ≡ (1, 3) and r1 = 1
The centre and radius of second circle are : C1 ≡ (–3, 1) and r2 = 3
Direct common tangents
Let P be the point of intersection of two direct common tangents.
Using the result that  divides C1C2 externally in the ratio of radii i.e. 1 : 3

the coordinates of point P are P ≡ ⎟
⎠

⎞
⎜
⎝

⎛
−
−

−
−−

31
)3(31.1,

31
1.3)3(1

 ≡ (3, 4)

Let m be the slope of direct common tangent.
So equation of direct common tangent is : y – 4 = m (x – 3) ..........(i)
Since direct common tangent touches circles, apply condition of tangency with first circle

i.e. 2m1

|m21|

+

+−
 = 1 ⇒ 1 = 4m2 – 4m = 1 + m2

⇒ 3m2 + 4m = 0 ⇒ m (3m + 4) = 0
⇒ m = 0 and m = 4/3
On substituting the values of m in (i), we get the equations of two direct common tangents
i.e. y = 4 and 4x – 3y = 0
Hence equations of direct common tangents are : y = 4 and 4x – 3y = 0
Transverse common tangents
Let Q be the point of intersection fo two transverse (indirect) common tangents.
Using the result that P divides C1C2 internally in the ratio radii i.e. 1 : 3

the coordinates of point P are P ≡ ⎟
⎠

⎞
⎜
⎝

⎛
+
+

+
+−

31
)3(31.1,

31
1.3)3(1

 ≡ ⎟
⎠

⎞
⎜
⎝

⎛
2
5,0

Let m be the slope of direct common tangent.
So equation of direct common tangent is : y – 5/2 = mx ...........(i)
Since direct common tangent touches circles, apply condition of tangency with first circle

i.e. 2m1

|2/1m|

+

−
 = 1 ⇒ 1 + 4m2 – 4m = 4 + 4m2

⇒ 0m2 + 4m + 3 = 0
As coefficient of m2 is 0, one root must be ∞ and other is m = – 3/4
⇒ m = ∞ and m = – 3/4
On substituting the values of m in (i), we get the equations of two direct common tangents
i.e. x = 0 and 3x + 4y = 10
Hence equations of direct common tangents are : x = 0 and 3x + 4y = 10.
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Example : 31
Find the intervals of values of a for which the line y + x = 0 bisects two chords drawn from a point

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −+
2

a21,
2

a21
 to the circle 2x2 + 2y2 – (1 + √2a) x – (1 – √2a) y = 0.

Solution

Let (m, n) ≡ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −+
2

a21,
2

a21

⇒ Equation fo circle reduces to x2 + y2 – mx – ny = 0.
Let P (t, –t) be a point on the line y + x = 0.
Equation fo chord passing through (t, –t) as mid-point is :

xt – yt + 
2
m−

 (x + t) + 
2
n−

 (y – t) = t2 + t2 – mt + nt ...........(i)

Since chord (i) also passes through (m, n), it should satisfy the equation of chord

i.e. mt – nt + 
2
m−

 (m + t) + 
2
n−

 (n – t) = t2 + t2 – mt + nt

⇒ 4t2 + m2 + n2 = 3t (m – n)
On substituting the values of m and n, we get ⇒ 4t2 – 3√2at + (1 + 2a2)/2 = 0 .........(ii)
Now if there exists two chords passing through (m, n) and are bisected by the line y + x = 0, then equation
of (ii) should have two real and distinct roots.
⇒ D > 0 ⇒ 18a2 – 16 (1 + 2a2)/2 > 0
⇒ a2 – 4 > 0 ⇒ (a + 2) (a – 2) > 0
⇒ a ∈ (–∞, –2) ∪ (2, ∞)
Hence values of a are a ∈ (–∞, –2) ∪ (2, ∞).
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Example : 1
Express the following complex numbers in the trigonometric forms and hence calculate their principal
arguments. Show the complex numbers on the Argand plane
(i) z1 = – √3 + i (ii) z2 = – 1 –  √3 (iii) z3 = 1 – i

Solution
(i) z1 = – √3 + i (|z| = 2)

⇒ z1 = 2 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+− i

2
1

3
2

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=θ−=θ

2
1sin,

2
3cosas

⇒ z1 = 2 ⎟
⎠

⎞
⎜
⎝

⎛ π
+

π
6

5sini
6

5cos ⇒ the argument = 6
5π

(ii) z3 = – 1 – √3 i (|z| = 2)

⇒ z2 = 2 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−

2
i3

2
1

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=θ−=θ

2
3sin,

2
1cos

⇒ z2 = 2 ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛ π−
+⎟

⎠

⎞
⎜
⎝

⎛ π−
3
2sini

3
2cos

⇒ argument = 3
2π−

(iii) z3 = 1 – i (| z | = √2)

⇒ z3 = √2 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− i

2
1

2
1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=θ−=θ

2
1sin,

2
1cos

⇒ z3 = 2  ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛ π−
+⎟

⎠

⎞
⎜
⎝

⎛ π−
4

sini
4

cos

⇒ argument = 
4
π−

Example : 2
If z1 = r1 (cos α + i sin α) and z2 = r2 (cos β + i sin β), show that :
(i) |z1 z2| = r1 r2 (ii) arg (z1 z2) = α + β

(iii)
2

1

z
z

 = 
2

1

r
r

(iv) arg ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

2

1

z
z

 = α – β

Solution
For (i) and (ii) :
z1 z2 = r1 r2 (cos α + i sin α) (cos β + i sin β)

= r1 r2 (cos α cos β – sin α sin β + i sin α cos β + i cos α sin β)
= r1 r2 [cos (α + β) + i sin (α + β)]

comparing with z = | z | (cos θ + i sin θ), we get :
|z1 z2| = r1 r2 and arg (z1 z2) = α + β

For (iii) and (iv) :

2

1

z
z

 = )sini(cosr
)sini(cosr

2

1

β+β
α+α

= 
2

1

r
r

 (cos α + i sin α) (cos β – i sin β)

Complex Numbers
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= 
2

1

r
r

 [cos α cos β + sin α sin β + i sin α cos β – i cos α sin β]

= 
2

1

r
r

 [cos (α – β) + i sin (α + β)]

⇒
2

1

z
z

 = 
2

1

r
r

and arg ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

2

1

z
z

 = α – β

Example : 3

Show that |z – 2i| = 2 √2, if arg ⎟
⎠

⎞
⎜
⎝

⎛
+
−

2z
2z

 = 
4
π

Solution
Let z = x + yi x, y ∈ R

⇒ arg ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++
+−

yi2x
yi2x

 = 
4
π

⇒ arg 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

++

−++−
22 y)2x(

)yi2x)(yi2x(
 = 

4
π

⇒ arg 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

++

++−
22

22

y)2x(
yi4)y4x(

 = 
4
π

⇒ 22 y4x
y4
+−  = tan 

4
π

⇒ x2 + y2 – 4y – 4 = 0
⇒ x2 + (y – 2)2 = 8
⇒ |x + (y – 2) i| = 2√2
⇒ |z – 2i| = 2√2

Example : 4
If cos α + cos β + cos γ = sin α + sin β + sin γ = 0, then show that :
(i) cos 3α + cos 3β + cos 3γ = 3 cos (α + β + γ)
(ii) sin 3α + sin 3β + sin 3γ = 3 sin (α + β + γ)
(iii) cos 2α + cos 2β + cos 2γ = sin 2α + sin 2β + sin 3γ = 0

Solution
For (i) and (ii) :
Let z1 = cos α + i sin α ;

z2 = cos β + i sin β ;
z3 = cos γ + i sin γ
z1 + z2 + z3 = ∑ cos α + i ∑ sin α = 0

for 3α, 3β, 3γ we have to consider z1
3 , z2

3 , z3
3

z1
3 + z2

3 + z3
3 = (cos α + i sin α)3 + (cos β + i sin β)2 + (cos γ + i sin γ)3

= (cos 3α + i sin 3α) + (cos 3β + i sin 3β) + (cos 3γ + i sin 3γ)
= (cos 3α + cos 3β + cos 3γ) + i (sin 3α + sin 3β + sin 3γ) ...........(i)
Now z1

3 + z2
3 + z3

3 = 3z1 z2 z3 because z1 + z2 + z3 = 0
⇒ z1

3 + z2
3 + z3

3 = 3 (cos α + i sin α) (cos β + i sin β) (cos γ + i sin γ)
z1

3 + z2
3 + z3

3 = 3 [cos (α + β + γ) + i sin (a + b + g)] ...........(ii)
Equating the RHS of (i) and (ii), we get :

∑ cos 3α + i ∑ sin 3α = 3 cos (α + β + γ) + 3 i sin (α + β + γ)
Equating real and imaginary parts,
∑ cos 3α = 3 cos (α + β + γ) and ∑ sin 3α = 3 sin (α + β + γ)
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For (iii) :
Consider z1

2 + z2
2 + z3

3

z1
2 + z2

2 + z3
2 = (z1 + z2 + z3)

2 – 2 (z1 z2 + z2 z3 + z3 z1)

= 0 – 2z1 z2 z3 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

321 z
1

z
1

z
1

= 2z1 z2 z3  ⎥
⎦

⎤
⎢
⎣

⎡
γ+γ

+
β+β

+
α+α sinicos

1
sinicos

1
sinicos

1

= –2z1 z2 z3 [cos α – i sin α + cos β – i sin β + cos γ – i sin γ]
= –2z1 z2 z3 [∑ cos α – i ∑ sin α]
= – 21 z2 z3 [0 – i (0)] = 0
⇒ (cos α + i sin α)2 + (cos β + i sin β)2 + (cos γ + i sin)2 = 0
⇒ (cos α + i sin 2α) + (cos 2β + i sin β)2  + (cos 2γ + i sin 2γ) = 0
⇒ ∑ cos 2α = 0 and ∑ sin 2α = 0

Example : 5
Express sin 5θ in terms of sin θ and hence show that sin 36º is a root of the equation 16x4 + 20x2 + 5 = 0.

Solution
Expand (cos θ + i sin θ)5 using binomial theorem.
(cos θ + i sin θ)5 = 5C0  cos5θ + 5C1 cos4θ (i sin θ) + ......... + 5C5 Ι 5sin5θ
using DeMoiver’s theorem on L.H.S. :
(cos 5θ + i sin 5θ) = (cos5θ – 10 cos3θ sin2θ + 5 cos θ sin4θ) + i 5 [cos4θ sin θ – 10 cos2θ sin3θ + sin5θ]
Equating imaginary parts :
sin 5θ = sin θ [5cos4θ – 10 cos2θ sin2θ sin2θ + sin4θ]
sin 5θ = sin θ [5(1 + sin4θ – 2 sin2θ) – 10 (1 – sin2θ) sin2θ ] + sin4θ
sin 5θ = 16 sin5θ – 20 sin3θ + 5 sin θ

for θ = 36º , sin 5θ = sin 180º = 0
⇒ 16 sin536º – 20 sin336º + 5 sin 36º = 0
⇒ sin 36º is a root of 16x5 – 20x3 + 5x = 0
i.e. 16x4 – 20x2 + 5 = 0

Example : 6
If (1 + x)n = P0 + P1x + P2x

2 + ........ + Pnx
n , the show that

(a) P0 – P2 + P4 + ........ = 2n/2 cos (n π)/4
(b) P1 – P3 + P5 + ........ = 2n/2 sin (n π)/4

Solution
Consider the identity

(1 + x)n = P0 + P1x + P2x
2 + P3x

3 + ......... + Pnx
n .

Put x = i on both the sides
(1 + i)n = P0 + P1i + P2 i

2 + P3i
3 + ...... + Pn i

n

n

4
sini

4
cos2 ⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛ π
+

π
 = (P0 – P2 + P4 +.....) + i (P1 – P3 + P5 + ......)

2n/2 ⎟
⎠

⎞
⎜
⎝

⎛ π
+

π
4

nsini
4

ncos  = (P0 – P2 + P4 + ......) + i (P1 – P3 + P5 + .....)

equate the real and imaginary parts.

P0 – P2 + P4 – P0 + ....... = 2n/2 cos 
4

nπ

P1 – P3 + P5 – ........ = 2n/2 sin 
4

nπ
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Example : 7
If a, b, c and d are the roots of the equation x4 + P1x3 + P2 x2 + P3x + P4 = 0, then show that :
(1 + a2) (1 + b2) (1 + c2) (1 + d2) = (1 – P2 + P4)

2 + (P3 – P1)
2

Solution
As a, b, c and d are the roots of the given equation :
⇒ (x – a), (x – b), (x – c) and (x – d) are the factors of LHS
⇒ x4 + P1 x

3 + P2 x
2 + P3x + P4 = (x – a) (x – b) (x – c) (x – d) is an identity ...........(i)

Put x = i on both sides :
i4 + P1i

3 + P2 i
2 + P3 i + P4 = (i – a) (i – b) (i – c) (i – d)

(1 – P2 + P4) + i (P3 – P1) = (i – a) (i – b) (i – c) (i – d) ..........(ii)
Put x = – i in (i) :
i4 – P1i

3 + P2i
2 – P3 i + P4 = (–i – a) (i – b) (–i – c) (–i – d)

(1 – P2 + P4) – i (P3 – P1) = (–i – a) (–i – b) (–i – c) (–i – d) ..........(iii)
multiply (ii) and (iii) to get

(1 – P2 + P4)
2 + (P3 – P1)

2 = (1 + a2) (1 + b2) (1 + c2) (1 + d2)

Example : 8
Show that |z1 ± z2|

2 = |z1|
2 + |z2|

2 ± 2 Re (z1 2z ).
Solution

|z1 ± z2|
2 = (z1 ± z2) )zz( 21 ±

 = z1 2z  + z2 2z  ± (z1 2z  + 1z  z2)

= |z|2 + |z2|
2 ± (z1 2z  + 1z  2z )

= |z1|
2 + |z2|

2 ± 2 Re (z1 2z ) because z + z = 2 Re (z)

Example : 9
If 1, ω, ω2 are cube roots of unity. Show that :

(1 – ω + ω2) (1 – ω2 + ω4) (1 – ω4 + ω8) ........ 2n factors = 22n

Solution
LHS = (1 – ω + ω2) (1 – ω2 + ω4) (1 – ω4 + ω8) ....... 2n factors
using ω4 = ω16 = ...... = ω and ω8 = ω32 = ....... = ω2

L.H.S. = (1 – ω + ω2) (1 – ω2 + ω) (1 – ω + ω2) (1 – ω2 + ω) ........ 2n factors.
L.H.S. = [(1 – ω + ω2) (1 – ω2 + ω)]n = [(–2ω) (–2ω2)]n

L.H.S. = 22n = R.H.S.

Example : 10
Prove that the area of the triangle whose vertices are the points z1, z2 , z3 on the argand diagram is :

∑
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −

1

2
132

iz4
|z|)zz(

Solution
Let the vertices of the triangle be
A (x1, y1) : z1 = x1 + iy1
B (x2, y2) : z2 = x2i + iy2

C (x3, y3) : z3 = x3 + iy3
Area of triangle ABC is :

∆ = 
2
1

 
1yx
1yx
1yx

33

22

11

We have to express the area in terms of z1, z2 and z3.
Operating C1 → C1 + iC2 (properties of Determinants)
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∆ = 
2
1

 
1yiyx
1yiyx
1yiyx

333

222

111

+
+
+

∆ = 
2
1

 
1yz
1yz
1yz

33

22

11

∆ = 
i4

1
 

1zzz
1zzz
1zzz

333

222

111

−
−
−

Operating C2 → C2 – C1 (properties of Determinants)

∆ = 
i4

1
 

1zz
1zz
1zz

33

22

11

⇒
i4

1
 [ 1z  (z2 – z3) + 2z  (z1 – z3) – 3z  (z1 – z2)]

⇒ ∆ = 
i4

1
 [ 1z  (z2 – z3) + 2z  (z3 – z1) – 3z  (z1 – z2)]

⇒ ∆ = 
i4

1
 ∑ − )zz(z 321

⇒ ∆ = 
i4

1
 ∑

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −

1

32
2

1

z
)zz(|z|

Example : 11
Show that the sum of nth roots of unity is zero.

Solution
Let S = 1 + ei2π/n + ei4π/n + ..... + ei2π(n–1)/n

the series on the RHS is a GP

⇒ S = 
n
2i

n
n

2i

e1

e11

π

π

−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

⇒ S = 
n

2i

2i

e1

e1
π

π

−

−

⇒ S = 
n
2i

e1

11
π

−

−
  = 0

Example : 12

Find the value of : ∑
=

=
⎥⎦

⎤
⎢⎣

⎡ π
−

π6r

1r 7
r2cosi

7
r2sin

Solution

Let S = ∑
=

=
⎥⎦

⎤
⎢⎣

⎡ π
−

π6r

1r 7
r2cosi

7
r2sin  = – i ∑

=

=
⎥⎦

⎤
⎢⎣

⎡ π
+

π6r

1r 7
r2sini

7
r2cos
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= ∑
=

=

π

−
6r

1r

7
r2i

ei = – i ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−∑

=

=

π6r

0r

7
r2i

1e

= – i (sum of 7th roots of unity – 1)
= – i(0 – 1) = i

Example : 13
Find the sixth roots of z = i

Solution

z = 1 ⎟
⎠

⎞
⎜
⎝

⎛ π
+

π
2

sini
2

cos

z1/6 = 11/6  ⎟
⎠

⎞
⎜
⎝

⎛ π+π
+

π+π
6

k22/sini
6

k22/cos where k = 0, 1, 2, 3, 4, 5

⇒ The sixth roots are :

k = 0 ⇒ zn = ⎟
⎠

⎞
⎜
⎝

⎛ π
+

π
12

sini
12

k = 1 ⇒ z1 = cos 
12
5π

 + i sin 
12
5π

k = 2 ⇒ z2 = cos 
12
9π

 + i sin 
12
9π

k = 3 ⇒ z3 = cos 
12

13π
 + i sin 

12
13π

 = cos 
12
11π

 – i sin 
12
11π

k = 4 ⇒ z4 = cos 
12

17π
 + i sin 

12
17π

 = – cos 
12
5π

 + i sin 
12
5π

k = 5 ⇒ z5 = cos 
12
21π

 + i sin 
12
21π

 =  cos 
12
3π

 – i sin 
12
3π

Example : 14
Prove that (x + y)n – xn – yn is divisible by xy (x + y) (x2 + y2 + xy) if n is odd but no a multiple of 3.

Solution
Let f(x) = (x + y)n – xn – yn

f(0) = (0 + y)n – (0)n – yn = 0
⇒ (x – 0) is a factor of f(x)
⇒ x is a factor of f(x)
By symmetry y is also a factor f(x)
f(–y) = (–y + y)n – (–y)n – yn = 0 (because n is odd)
⇒ (x + y) is also factor of f(x).
Now consider f (ωy)
f(ωy) = (ωy + y)n – (w y)n – yn

= yn (–ω2)n – ωn yn – yn

= yn [–ω2n – ωn – 1] (because n is odd)
= – yn [ω2n + ωn + 1]
n is not a multiple of 3.
⇒ n = 3k + 1 or n = 3k + 2 where k is an integer
⇒ [ω2n + wn + 1] = 0 (for both cases)
⇒ f(ω y) = 0
⇒ (x – ωy) is also a factor of f(x)
Similarly we can show that f(ω2y) = 0
⇒ (x – w2y) is also a factor of f(x)
Combining all the factors :
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we get :  xy (x + y) (x – ω2y) (x – ω2y) is a factor of f(x)
now (x – ωy) (x – ω2y) = x2 + xy + y2

⇒ f(x) is divisible by x y (x + y) (x – ω y) (x – ω2y)

Example : 15
Interpret the following equations geometrically on the Argand plane :
(i) |z – 2 – 3i| = 4 (ii) |z – 1| + |z + 1| = 4

(ii) arg ⎟
⎠

⎞
⎜
⎝

⎛
+
−

1z
1z

 = 
4
π

(iv) 6
π

 < arg (z) < 3
π

Solution
To interpret the equations geometrically, we will convert them to Cartesian form in terms of x and y coor-
dinates by substituting z = x + iy
(i) |x + iy – 2 – 3i| = 4

⇒ (x – 2)2 + (y – 3)2 = 42

⇒ the equation represents a circle centred at (2, 3) of radius 4 units
(ii) `|x + iy – 1| = |x + iy + 1| = 4

⇒ 22 y)1x( +−  + 22 y)1x( ++  = 4

simplify to get : 
4
x2

 + 
3
y2

 = 1

⇒ the equation represents an ellipse centred at (0, 0)

(iii) Arg ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++
−+

1iyx
1iyx

 = 
4
π

⇒ Arg (x + iy – 1) – Arg (x + iy + 1) = 
4
π

⇒

1x
y1

1x
y

1x
y

2

2

−
+

+
−

−  = tan 
4
π

⇒ 1yx
y2

22 −+  = 1

⇒ x2 + y2 – 2y – 1 = 0
⇒ the equation represents a circle centred at z = 0 + i and of radius = √2.

(iv) 6
π

 < tan–1 ⎟
⎠

⎞
⎜
⎝

⎛
x
y

 < 3
π

⇒ 3
1

 x < y < 3  x

⇒ this inequation represents the region between the lines :
y = √3 x and y = (1/√3) x in Q1

Example : 16
Find the complex number having least positive argument and satisfying |z – 5i| ≤ 3

Solution
We will analyses the problem geometrically.
All complex numbers (z) satisfying |z – 5i| ≤ 3 lies on or inside the circle of radius 3 centred at z0 = 5i.
The complex number having least positive argument in this region is at the point of contact of a tangent
drawn from origin to the circle.
From triangle OAC

OA = 22 35 −  = 4
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and 0min = sin–1 ⎟
⎠

⎞
⎜
⎝

⎛
OC
OA

 = sin–1 ⎟
⎠

⎞
⎜
⎝

⎛
5
4

the complex number at A has modulus 4 and argument sin–1 4/5

⇒ zA = 4 (cos θ + i sin θ) = 4 ⎟
⎠

⎞
⎜
⎝

⎛ +
5
4i

5
3

⇒ zA = 5
12

 + i 5
16

Example : 17
Show that the area of the triangle on the Argand plane formed by the complex numbers z, i z and (z + i z)
is (1/2) z2.

Solution
iz = zeiπ/2

⇒ iz is the vector obtained by rotating z in anti-clockwise direction through 90
As | iz | = | i | | z |, the triangle is an isosceles right angled triangle.
Area = 1/2 = base × height = 1/2 | z | | iz |

Example : 18
If | z |2 = 5, find the area of the triangle formed by the complex numbers z, ω z and z = ω z as its sides.

Solution
ωz = ze i2π/3 and |ωz| = | z |
⇒ ωz is the vector obtained by rotating vector z anti-clockwise through an angle of 120
As seen from the figure, the triangle formed is equilateral because angle between equal sides is 60º
⇒ Area = √3/4 (side)2 = √3/4 | z |2 = √3 sq. units.
Note that the third side is
z + ω z = (1 + ω) z = –ω2z = eiπ e–12π/3 z = z eiπ/3

⇒ this vector is obtained by rotating the vector z anticlockwise through 60º. This can be verified from
the figure

Example : 19
Show that z1, z2, z3 represent the vertices of an equilateral triangle if and only if :
z1

2 + z2
2 + z3

2 – z1z2 – z2z3 – z3z1 = 0
Solution

The problem has two parts :
(i) If the triangle is equilateral then prove the condition
(ii) If the condition is given then prove the triangle is equilateral.

Part (i)
If the triangle ABC is equilateral, the vector BC
can be obtained by rotating AB anti-clockwise through 120º
⇒ (z3 – z2) = (z2 – z1) e

i2π/3

⇒ z3 – z2 = (z2 – z1) ω
⇒ z1ω – z2 ω – z2 + z3 = 0
⇒ z1 – z2 ω

3 – z2 ω
2 + z3 ω

2 = 0
⇒ z1 – (1 + ω2) z2 + ω2 z3 = 0
⇒ z1 + ωz2 + ω2 z3 = 0
Taking LHS :
z1

2 + z2
2 + z3

2 – z1z2 – z2z3 – z3z1 = (z1 + ω z2 + ω2z3) (z1 + ω3z2 + ωz3) = 0 (using the above proved result)
Part (ii)

Give that :
z1

2 + z2
2 + z3

2 – z1z2 – z2z3 – z3z1 = 0
⇒ (z1 + ωz2 + ω2z3) (z1 + w2z2 + ωz3) = 0
⇒ (z1 + ωz2 + ω2z3 = 0 OR (z1 + ω2 z2 + ωz3) = 0

Case (1) :
(z1 + w z2 + ω2z3) = 0
⇒ z1 + ω z2 + (–1 – ω) z3 = 0
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⇒ (z1 – z3) = ω (z3 – z2)
⇒ (z1 – z2)  is obtained by rotating the vector (z3 – z2) anti-clockwise through 120º
⇒ |z1 – z3| = |z3 – z2| and the angle inside the triangle is 60º
⇒ triangle ABC is equilateral

Case (2) :
(z1 + ω2z2 + ωz3) = 0
⇒ z1 + ω z3 + (–1 – ω) z2 = 0
⇒ (z1 – z2)  =  ω (z2 – z3)
⇒ |z1 – z2| is obtained by rotating the vector (z3 – z3) anti-clockwise through 120º
⇒ |z1 – z2| = |z2 – z3| and the angle inside the triangle is 60º
⇒ triangle ABC is equilateral

Example : 20
Let the complex numbers z1, z2 and z3 be the vertices of an equilateral triangle. Let z0 be the circumcentre
of the triangle. Prove that : z1

2 + z2
2 + z3

2 = 3z0
2 .

Solution
For an equilateral triangle with vertices z1, z2 and z3 :
z1

2 + z2
2 + z3

2 – z1z2 – z2z3 – z3z1 = 0 ...........(i)
As circumcentre coincides with centroid, z0 is centroid also.
⇒ z0 = (z1 + z2 + z3)/3
⇒ 9z0

2 = z1
2 + z2

2 + z3
2 + 2 (z1z2 + z2z3 + z3z1)

using (i), we have
⇒ 9 z0

2 = z1
2 + z2

2 + 2 (z1
2 + z2

2 + z3
2)

⇒ 9z0
2 = 3 (z1

2 + z2
2 + z3

2)
⇒ 3 z0

2 = z1
2 + z2

2 + z3
2

Example : 21
If z1

2 + z2
2 – 2z1z2 cos θ = 0, then the origin, z1, z2 from vertices of an isosceles triangle with vertical angle

θ .
Solution

z1
2 + z2

2 – 2z1z2 cos θ = 0
⇒ z1

2 – (2 z2 cos θ) z1 + z2
2 = 0

Solving as a quadratic in z1, we get :

z1 = 
2

4cos4zcosz2 2
22 ⎟

⎠
⎞⎜

⎝
⎛ −θ±θ

⇒ z1 = z2 (cos θ ± i sin θ)
⇒ z1 = z2 e±iθ

⇒ z1 = z2 e
iθ or z2 = z1 e

iθ

⇒ z1 is obtained by rotating z2 anticlockwise through θ or z2 is obtained by rotating z1 anti-clockwise
through θ.

In both the cases, |z1| = |z2| and the angle between z1 and z2 is θ
Hence origin, z1 and z2 from an isosceles triangle with vertex at origin and vertical angle as θ

Example : 22
Find the locus of the point z which satisfies :
(i) 2 < | z | ≤ 3 (ii) | z | = |z – i| = |z – 1|

(iii) |z – 2| < |z – 6| (iv) Arg ⎟
⎠

⎞
⎜
⎝

⎛
−
−−
2z

i1z
 = 

2
π

Solution
Important Note : (z – z0) represents an arrow going from a fixed point z0 to a moving point z.
(i) 2 < | z | ≤ 3

| z | is the length of vector from origin to the moving point z.
| z | > 2 ⇒ z is outside the circle x2 + y2 = 4
| z | ≤ 3 ⇒ z is on or inside the circle x2 + y2 = 9

⇒ locus is the region between two circles as shown
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(ii) |z – 0| = |z – i| = |z – 1|
distance of moving point from origin

= distance from i
= distance from 1 + 0i

⇒ the moving point is equidistant from vertices
z1 = 0, z2 = i and z3 = 1 + 0i of a triangle.
Hence it is at the circumcentre of this triangle

(iii) |z – 2| < |z – 6|
⇒ distance of z from z1 = 2 is less than its distance from z2 = 6
⇒ z lies to the left of the right bisector of segment joining z1 and z2

Alternatively : |z + iy – 2| < |x + iy – 6|

⇒ 22 y)2x( +−  < 22 y)6x( +−

⇒ (x – 2)2 – (x – 6)2 < 0
⇒ 2x – 8 < 0 ⇒ x < 4
⇒ Re (z) < 4

Hence z lies in the region to the left of the line x = 4

(iv) Arg ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

2

1

zz
zz

 is the angle between vectors joining the fixed points z1 and z2 to the moving point z.

Arg ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

2

1

zz
zz

 = π/3 z1 = 1 + i, z2 = 2

⇒ the point z moves such that the angle subtended at z by segment joining z1 and z3 is π/3
⇒ the locus is an arc of a circle. The equation of the locus can be found by taking z = x + iy.

Arg ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+
−−+
2iyx

i1iyx
 3
π

⇒ tan–1 ⎟
⎠

⎞
⎜
⎝

⎛
−
−

1x
1y

 – tan–1 ⎟
⎠

⎞
⎜
⎝

⎛
− 2x
y

 = 3
π

⇒

)2x()1x(
y)1y(1

2x
y

1x
1y

−−
−

+

−
−

−
−

 = 3

⇒ 2yyx3x
2yx

22 +−+−

+−−
 = 3

⇒ √3 (x2 + y2) – 3√3 – 1) x – (√3 – 1) y + 2√3 – 2 = 0
Locus of z is the arc of this circle lying to the non-origin side of line joining z1 = 1 + i and z2 = 2.

Example : 23
If |z| ≤ , |w| ≤ 1, show that : |z – w|2 ≤ (|z| – |w|)2 + (Arg z – arg w)2

Solution
Let O be the origin and points W and Z are represented by complex numbers z and w on the Argand
plane.
Apply cosine rule in ∆OWZ i.e.
|w – z|2 = |z|2 + |w|2 – 2 |z| |w| cos θ

= |z|2 + |w|2 – 2 |z| |w| ⎟
⎠

⎞
⎜
⎝

⎛ θ
−

2
sin21 2

= (|z| – |w|)2 + 4 |z| |w| sin2θ/2.
As |z| ≤ and |w| ≤ 1, make RHS greater than LHS by replacing |z| = 1, |w| = 1
|w – z|2 ≤ (|z| – |w|)2 + 4 sin2θ/2
On RHS, replace sin θ/2 (Q θ > sin θ for θ > 0)
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⇒ |w – z|2 ≤ (|z| – |w|)2 + 4 θ/2 × θ/2
⇒ |w – z|2 ≤ (|z| – |w|)2 + θ2

⇒ |w – z|2 ≤ (|z| – |w|)2 + (Arg (z) – Arg (w))2

hence proved

Example : 24
If iz3 + z2 – z + i = 0, then show that |z| = 1.

Solution
Consider : iz3 + z2 – z + i = 0
By inspection, we can see that z = i satisfies the above equation.
⇒ z – i is a factor of the LHS
Factoring LHS, we get : (z – i) (iz2 – 1) = 0
⇒ z = i and z2 = 1/i = – i
Case – 1

z = i ⇒ |z| = 1
Case – II

z2 = – i
Take modulus of both sides,

|z|2 = |–i| = 1 ⇒ |z| = 1
Hence, in both cases |z| = 1

Example : 25

If z1 and z2 are two complex numbers such that 
21

21

zz
zz

+
−

 = 1, Prove that 
2

1

z
iz

 = k, where k is a real

number. Find the angle between the lines from the origin to the points z1 + z2 and z1 – z2 in terms of k.
Solution

Consider 
21

21

zz
zz

+
−

 = 1

Divide N and D on LHS by z2 to get :

⇒
1

z
z

1
z
z

2

1

2

1

+

−

 = 1 ⇒ 1
z
z

2

1 −  = 1
z
z

2

1 +

On squaring, 
2

2

1

z
z

 + 1 – 2 Re ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

2

1

z
z

 = 
2

2

1

z
z

 + 1 + 2 Re ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

2

1

z
z

⇒ 4 Re ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

2

1

z
z

 = 0 ⇒
2

1

z
z

 is purely imaginary number.

⇒
2

1

z
z

 can be written as :  i 
2

1

z
z

 = k where k is real number ...........(i)

(ii) If θ is the angle between z1 – z2 and z1 + z2 , then θ = Arg 
21

21

zz
zz

−
+

⇒ θ = Arg 
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

+

1
z
z

1
z
z

2

1

2

1
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Using (i), we get

θ = Arg ⎥⎦

⎤
⎢⎣

⎡
−−
+−

1ik
1ik

  = Arg ⎥⎦

⎤
⎢⎣

⎡
+
+−
ik1
ik1

 = Arg 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+

+−
2

2

k1
ik21k

⇒ θ = tan–1 
1k

k2
2 −

Example : 26
For any z1 z2 ∈ C, show that |z1 + z2|2 + |z1 + z2|2 = 2 |z1|2 + 2|z2|2

Solution
Consider LHS = |z1 + z2|

2 + |z1 – z2|
2

⇒ LHS = (z1 + z2) 

)zz( 21 +

 + (z1 – z2) )zz( 21 −

= (z1 + z2) )zz( 21 +  + (z1 – z2) )zz( 21 −

= (|z1|
2  + |z2|

2  + z1 2z  + z2 1z ) + (|z1|
2 + |z2|

2 – z1 2z  – z2 1z )
= 2|z1|2 + 2 |z2|2

Example : 27
If S1 = nC0 + nC3 + nC6 + ............

S2 = nC1 + nC2 + nC7 + ............
S3 = nC2 + nC5 + nC8 + ............

each series being continued as far as possible, show that the values of S1 , S2 and S3 are 1/3
(2n + 2 cos rπ/3) where r = n1 n – 2, n + 2 respectively and n ∈ N.

Solution
Consider the identity :
(1 + x)n = C0 + C1 x + C2x

2 + C3 x
3 + ......... + Cnx

n

Put x = 1, x = ω and x = ω2 in above identity to get :
2n = C0 + C1 + C2 + C3 + ........ Cn .........(i)
(1 + ω)n = C0 + C1ω + C2 ω

2 + C3 ω
3 + ......... + Cn ω

n .........(ii)
(1 + ω2)n = C0 + C1ω

2 + C2 ω + C3 + ........... + Cn ω
2n .........(iii)

Find S1

Add (i), (ii) and (iii) to get :
3C0 + C1 (1 + ω + ω2) + C2 (1 + ω2 + ω) + 3C3 + ...... = 2n + (1 + ω)n + (1 + w2)n

⇒ 3C0 + 3C3 + 3C6 + ............ = 2n + 

n

i
2
3

2
1

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+  + 

n

i
2
3

2
1

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

⇒ 3S1 = 2n + 
n

i
3

sini
3

cos ⎟
⎠

⎞
⎜
⎝

⎛ π
+

π
 + 

n

i
3

sini
3

cos ⎟
⎠

⎞
⎜
⎝

⎛ π
−

π

⇒ S1 = 
3

3
ncos22n π

+
(using demoivre’s Law)

Find S2

Multiply (ii) with ω2, (iii) with ω and add to (i) to get :
C0 (1 + ω2 + ω) + 3C1 + C2 (1 + ω + ω2) + C3 (1 + ω2 + ω) + ........= 2n + w2 (1 + ω)n + ω (1 + ω2)n

3C1 + 3C4 + 3C7 + ......... = 2n + ⎟
⎠

⎞
⎜
⎝

⎛ π
+

π
3
2sini

3
2cos  ⎟

⎠

⎞
⎜
⎝

⎛ π
−

π
3

nsini
3

ncos  + ⎟
⎠

⎞
⎜
⎝

⎛ π
+

π
3

sini
3

cos  ⎟
⎠

⎞
⎜
⎝

⎛ π
−

π
3

nsini
3

ncos

⇒ 3S2 = 2n + cos 3
)2n( π−

 + i sin 3
)2n( π−

 + cos 3
)2n( π−

 – i sin 3
)2n( π−

 = 2n + 2 cos 3
)2n( π−
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⇒ S2 = 
3

3
)2n(cos22n π−

+

Find S3
Multiply (ii) be ω , (iii) with ω2 and add to (i) to get

3(C2 + C5 + C8 + ...........) = 2n + 2 cos 3
)2n( π+

⇒ S3 = 
3

3
)2n(cos22n π+

+

Example : 28
Prove that the complex number z1, z2 and the origin form an isosceles triangle with vertical angle 2π/3. If
x2

1 + z2
2 + z1 z2 = 0

Solution
Let A and B are the points represented by z1 and z2 respectively on the Argand plane
Consider z2

1 + z2
2 + z1z2 = 0

On factoring LHS, we get :
(z2 – ωz1) (z2 – ω2z1) = 0
⇒ z2 = ω1 z1 or z2 = ω2 z1
consider z2 = ωz1 ..........(i)
Take modulus of both sides

|z2| = |ωz1|
⇒ |z2| = |ω| |z1| = |z1| (Q |ω| = 1)
⇒ OA = OB ⇒ ∆OAB is isosceles.
Take argument on both sides,
Arg (z2) = Arg (ωz1) = Arg (ω) + Arg (z1)
⇒ Arg (z2) – Arg (z1) = 2π/3 (Q Arg (ω) = 2π/3)
⇒ ∠AOB = 2π/3. Hence vertical angle = ∠AOB = 2π/3.
Note : As z2 = ωz1 ⇒ z2 = z1 e

i2π/3 ,we can directly conclude that z2 is obtained by rotating z1
through 2π/3 in anti-clockwise direction
⇒ ∠AOB = 2π/3 and OA = OB
Consider z2 = ω2 z1
Similarly show that ∆AOB is isosceles with vertical angle 2π/3

Example : 29
For every real number c ≥ 0, find all complex numbers z which satisfy the equation :
|z|2 – 2iz + 2c (1 + i) = 0.

Solution
Let z = x = iy
⇒ (x2 + y2 + 2y + 2c) – i (2x – 2c) = 0
Comparing the real and imaginary parts, we get :
⇒ x2 + y2 + 2y + 2c = 0 ..........(i)
and x = c ..........(ii)
Solving (i) and (ii), we get
⇒ y2 + 2y + c2 + 2c = 0

⇒ y = 
2

)c2c(442 2 +−±−  = – 1 ± c2c1 2 −−

as y is real, 1 – c2 – 2c ≥ 0
⇒ –√2 – 1 ≤ c ≤ √2 – 1
⇒ c ≤ √2 – 1 (Q c ≥ 0)
⇒ the solution is
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z = x + iy = c + i ⎟
⎠
⎞⎜

⎝
⎛ −−±− c2c11 2 for 0 ≤ c ≤ √2 – 1

z = x + iy ≡ no solution for c > √2 – 1

Example : 30
Let zb  + zb  = c, b ≠ 0, be a line in the complex plane, where b  si the complex conjugate of b. Ig a point

z1 is the reflection of a point z2 through the line, then show that c = bzbz 21 + .

Solution
Since z1 is image of z2 in line bz + zb  = c.
therefore mid-point of z1 and z2 should lie on the line i.e.

2
zz 21 +  lies on czbzb =+

⇒ b  ⎟
⎠

⎞
⎜
⎝

⎛ +
2

zz 21  + b 
2

zz 21 +  = c

⇒
2

zbzb 21 +  + 
2

zbzb 12 +  = c

Let zb and zc be two points on the given line.

As z1 – z2 is perpendicular to zb – zc, we can take : |zz|
zz

bc

bc

−
−

 eiπ/2 = |zz|
zz

21

21

−
−

...........(ii)

⇒
bc

21

zz
zz

−
−

 = – 
bc

21

zz
zz

−
−

⇒  
21

21

zz
zz

−
−

 = – 
bc

bc

zz
zz

−
−

As zb and zc also lie on line, we get :

czbzb bb =+ and czbzb cc =+

On subtracting, )zz(b bc −  + b )zz( bc −  = 0

⇒
bc

bc

zz
zz

−
−

 = – 
b
b

...........(iii)

combining (ii) and (iii),
(z1 – z2) b  = b )zz( 21 −

⇒ 2121 zbzbzbzb +=+ ...........(iv)

combining (i) and (iv) we get :

2
zbzb 12 +  + 

2
zbzb 12 +  = c

⇒ czbzb 12 =+

Hence proved
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Example : 1
What does the equation x2 – 5xy + 4y2 = 0 represent?

Solution
x2 – 5xy + 4y2 = 0

⇒ x2 – 4xy – xy + 4y2 = 0
⇒ (x – 4y) (x – y) = 0
⇒ the equation represent two straight lines through origin whose equation

are x – 4y = 0 and x – y = 0

Example : 2
Find the area formed by the triangle whose sides are y2 – 9xy + 18x2 = 0 and y = 9

Solution
y2 – 9xy + 18x2 = 0

⇒ (y – 3x) (y – 6x) = 0
⇒ the sides of the triangle are y – 3x = 0 and y – 6x = 0 and y – 9 = 0
⇒ By solving these simultaneously, we get the vertices as

A ≡ (0, 0) B ≡ (3/2, 9) C ≡ (3, 9)

Area = 
2
1

 
193

19
2
3

100

 = 
4

27
 sq. units.

Example : 3
Find the angle between the lines x2 + 4y2 – 7xy = 0

Solution
Using the result given in section 1.3, we get :

Angle between the lines = θ = tan–1 
ba
abh2 2

+
−

 = tan–1 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

−⎟
⎠
⎞

⎜
⎝
⎛ −

41

)4(1
2
72

2

  tan–1 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

5
33

Example : 4
Find the equation of pair of lines through origin which form an equilateral triangle with the lines
Ax + By + C = 0. Also find the area of this equilateral triangle.

Solution
Let PQ be the side of the equilateral triangle lying on the line Ax + By + C = 0
Let m be the slope of line through origin and making an angle of 60º with Ax + By + C = 0
⇒ m is the slopes of OP or OQ
⇒ As the triangle is equilateral, Ax + By + C = 0 line makes an angle of 60º with OP and OQ

i.e. tan 60º = 
⎟
⎠
⎞

⎜
⎝
⎛ −+

−

B
Am1

)B/A(m
⇒ 3 = 

2

mAB
AmB
⎟
⎠

⎞
⎜
⎝

⎛
−
+

..........(i)

This quadratic will give two values of m which are slopes of OP and OQ.
As OP and OQ pass through origin, their equations can be taken as : y = mx ..........(ii)
Since we have to find the equation of OP and OQ, we will not find values of m but we will eliminate m
between (i) and (ii) to directly get the equation of the pair of lines : OP and OQ

⇒ 3 = 
2

x/yAB
Ax/By
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+
⇒ 3 = 

2

yABx
AxBy

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
+

⇒ 3(B2x2 + y2A2 – 2ABxy) = (B2y2 + A2x2 + 2ABxy)

Coordinate Geometry (Conic Section)
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⇒ (A2 – 3B2) x2 + 8ABxy + (B2 – 3A2) y2 = 0 is the pair of lines through origin makes an equilateral
triangle (OPQ) with Ax + By + C = 0

Area of equilateral ∆OPQ = 
4
3

 (side)2 = 
4
3

 
2

60sin
P

⎟
⎠

⎞
⎜
⎝

⎛
 where P = altitude.

⇒ area = 
4
3

 × 3
4

 P2 = 3
1

P2 = 3
1

 

2

22 BA

|C|
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
 = )BA(3

C
22

2

+

Example : 5
If a pair of lines x2 – 2pxy – y2 = 0 and x2 – 2qxy – y2 = 0 is such that each pair bisects the angle between
the other pair, prove that pq = – 1

Solution

The pair of bisectors for x2 – 2pxy – y2 = 0 is : )1(1
yx 22

−−
−

 = p
xy
−

⇒ x2 – y2 = p
xy2
−

⇒ x2 + p
2

 xy – y2 = 0

As x2 + p
2

 xy – y2 = 0 and x2 – 2qxy – y2 = 0 coincide, we have

1
1

 = q2
p/2

−  = 
1
1

−
−

⇒ p
2

 = – 2q ⇒ pq = – 1

Example : 6
Prove that the angle between one of the lines given by ax2 + 2hxy + by2 = 0 and one of the lines
ax2 + 2hxy + by2 + λ (x2 + y2) = 0 is equal to the angle between the other two lines of the system.

Solution
Let L1 L2 be one pair and P1P2 be the other pair.
If the angle between L1P1 is equal to the angle between L2P2 ,
the pair of bisectors of L1L2 is same as that of P1P2

⇒ Pair of bisectors of P1P2 is )b()a(
yx 22

λ+−λ+
−

 = 
h
xy

⇒
bx
yx 22

−
−

 = 
h
xy

Which is same as the bisector pair of L1L2
Hence the statement is proved.

Example : 7
Show that the orthocentre of the triangle formed by the lines ax2 + 2hxy + by2 = 0 and lx + my = 1 is given

by 
l

x
 = 

m
y

 = 22 bmh2am
ba

ll +−

+
.

Solution
Let the triangle be OBC where O is origin and BC is the line lx + my = 1.
⇒ The equation of pair of lines OB and OC is ax2 + 2hxy + by2 = 0.
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The equation of the altitude from O to BC is :
y – 0 = m/l (x – 0)

⇒ mx – ly = 0 ...............(i)
Let equation of OB be y – m1x = 0 and that of OC be y – m2x = 0

⇒ B ≡ ⎥
⎦

⎤
⎢
⎣

⎡
++ 1

1

1 mm
m,

mm
1

ll

Slope of altitude from B to OC is –1/m2
⇒ equation of altitude from B is :

y – 
1

1

mm
m
+l  = 

2m
1−

 ⎥
⎦

⎤
⎢
⎣

⎡
+

−
1mm

1x
l

⇒ (l + mm1) x + m2 (l + mm1) y – (1 + m1m2) = 0 ...........(ii)
Solving (i) and (ii), we get orthocentre

)mm1(
x

21+− l  = )mm1(m
y

21+−  = 
211 m)mm(m)mm(

1
+−+− lll

using values of m1m2 and m1 + m2 , we get :

⇒
l

x
 = 

m
y

 = )mm(mmmm
)b/a1(

2121
22 +−−−

+−
ll

 = 
mh2amb

ba
22 ll −+

+

Example : 8
Prove that the equation 6x2 – xy – 12y2 – 8x + 29y – 14 = 0 represent a pair of lines. Find the equations of
each line.

Solution
Using the result given in section 2.1, we get

cfg
fbh
gha

 = 
14

2
294

2
2962/1

42/16

−−

−−

−−

 = 0

Hence the given equation represents a pair of lines.
To find the equation of each line, we have to factories the LHS. We first factories the second degree term.
The second degree terms in the expression are :

6x2 – xy – 12y2 = 6x2 – 9xy + 8xy – 12y2 = (3x + 4y) (2x – 3y).
Let the two factors be 3x + 4y + C1 and 2x – 3y + C2.
⇒ 6x2 – xy – 12y2 – 8x+ 29y – 14 = (3x + 4y + C1) (2x – 3y + C2)
Comparing the coefficients of x and y, we get :

– 8 = 3C2 + 2C1 and 29 = 4C2 – 3C1

Solving for C1 and C2 , we get :
C2 = 2 and C1 = – 7

⇒ the lines are 3x + 4y – 7 = 0 and 2x – 3y + 2 = 0

Example : 9
Find the equation of the lines joining the origin to the points of intersection of the line 4x – 3y = 10 with the
circle x2 + y2 + 3x – 6y – 20 = 0 and show that they are perpendicular.

Solution
To find equation of pair of lines joining origin to the points of intersection of given circle and line, we will

make the equation of circle homogeneous by using : 1 = 10
y3x4 −
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⇒ the pair of lines is : x2 + y2 + (3x – 6y) ⎟
⎠

⎞
⎜
⎝

⎛ −
10

y3x4
 – 20 

2

10
y3x4
⎟
⎠

⎞
⎜
⎝

⎛ −
 = 0

⇒ 10x2 + 15xy – 10y2 = 0
Coefficient x2 + coefficient of y2 = 10 – 10 = 0
⇒ The lines of the pair are perpendicular.
This question can also be asked as :
[“Show that the chord 4x – 3y = 10 of the circle x2 + y2 3x – 6y – 20 = 0 subtends a right angle at origin.”]

Example : 10
A variable chord of the circle x2 + y2 + 2gx + 2fy + c = 0 always subtends a right angle at origin. Find the
locus of the foot of the perpendicular drawn from origin to this chord.

Solution
Let the variable chord be lx + my = 1 where l, m are changing quantities  (i.e. parameters that change
with the moving chord)
Let P(x1, y1) be the foot of the perpendicular from origin to the chord.
If AB is the chord, then the equation of pair OA and OB is :

x2 + y2 + (2gx + 2fy) (lx + my) + c (lx + my)2 = 0
⇒ x2 (1 + 2gl + cl2) + y2  (1 + 2fm + cm2) + (2gm + 2fl) + 2clm) xy = 0
As OA is perpendicular OB,

coefficient of x2 + coefficient of y2 = 0
⇒ (1 + 2gl + cl2) + (1 + 2fm + cm2) = 0
As P lies on AB, lx1 + my1 = 1

As OP ⊥ AB ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

1

1

x
y

 ⎟
⎠

⎞
⎜
⎝

⎛ −
m
l

 = – 1

We have to eliminate l, m using (i), (ii) and (iii)

From (ii) and (iii), we get m = 2
1

2
1

1

yx
y
+ and l = 2

1
2

1

1

yx
x
+

Now from (i), we get :

1 + 2
1

2
1

1

yx
gx2
+  + 22

1
2

1

2
1

)yx(
cx
+

 + 2
1

2
1

1

yx
fy2
+  + 1 + 22

1
2

1

2
1

)yx(
cy
+

 = 0

⇒ 2(x1
2 + y1

2) + 2gx1 + 2fy1 + c = 0
⇒ the locus of P is : 2 (x2 + y2) + 2gx + 2fy + c = 0

Example : 11
Show that the locus of a point, such that two of the three normals drawn from it to the parabola y2 = 4ax are
perpendicular is y2 = a(x – 3a).

Solution
Let P ≡ (x1, y1) be the point from where normals AP, BP, CP are drawn to y2 = 4ax.
Let y = mx – 2am – 2m3 be one of these normals
P lies on it ⇒ y1 = mx1 – am – am3 .
Slopes m1, m2, m3 of AP, BP, CP are roots of the cubic
y1 = mx1 – 2am – am2

⇒ am3 + (2a – x1) m + y1 = 0
⇒ m1 + m2 + m3 = 0

⇒ m1m2 + m2m3 + m3m1 = a
xa2 1−

⇒ m1m2m3 = – a
y1

As two of the three normals are perpendicular, we take m1m2 = – 1 (i.e. we assume AP perpendicular BP)
To get the locus, we have to eliminate m1, m2, m3 .
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m1m2 + m2m3 + m3m1 = a
xa2 1−

⇒ – 1 + m3 (–m3) = a
xa2 1−

⇒ – 1 – 
2

1

a
y

⎟
⎠

⎞
⎜
⎝

⎛ +
 = a

xa2 1−
[using m1m2m3 = –y1/a and m1m2 = – 1]

⇒ a2 + y1
2 = – 2a2 + ax1

⇒ y1
2 = a (x1 – 3a)

⇒ y2 = a(x – 3a) is the required locus.

Example : 12
Suppose that the normals drawn at three different points on the parabola y2 = 4x pass through the point
(h, k). Show that h > 2

Solution
Let the normal(s) be y = mx – 2am – 2m3 . they pass through (h, k).
⇒ k = mh – 2am – am3 .
The three roots m1, m2, m3 of this cubic are the slope of the three normals. Taking a = 1, we get :

m3 + (2 – h) m + k = 0
⇒ m1 + m2 + m3 = 0
⇒ m1m2 + m2m3  m3m1 = 2 – h
⇒ m1m2m3 = – k
As m1, m2, m3 are real, m1

2 + m2
2 + m3

2 > 0 (and not all are zero)
⇒ (m1 + m2 + m3)

2 – 2(m1m2 + m2m3 + m3m1) > 0
⇒ 0 – 2 (2 – h) > 0
⇒ h > 2.

Example : 13
If the normals to the parabola y2 = 4ax at three points P, Q and R meet at A and S be the focus, prove that
SP . SQ . SR = a(SA)2 .

Solution
Since the slopes of normals are not involved but the coordinates of P, Q, R are important, we take the
normal as :

tx + y = 2at = at3

Let A ≡ (h, k)
⇒ t1, t2, t3  are roots of the th + k = 2at3 i.e. at3 + (2a – h) t – k = 0
⇒ t1 + t2 + t3 = 0

⇒ t1t2 + t2t3 + t3t1 = a
ha2 −

⇒ t1t2t3 = k/a
Remainder that distance of point P(t) from focus and from directrix is SP = a(1 + t2)
⇒ SP = a(1 + t1

2), SQ = a (1 + t2), SR = a(1 + t3)
2

SP, SQ, SR = a3 (t1
2 + t2

2 + t3
2) + (t1

2 t2
2 + t2

2 t3
2 + t3

2 t1
2 ) + (t12 + t2

2 + t32) + 1

we can see that : t1
2 + t2

2 + t3
2 = (t1 + t2 + t3)

2 – 2∑ t1t2 = 0 – 2 a
)ha2( −

and also ∑t1
2 t2

2 = (∑t1t2)
2 – 2∑ (t1t2) (t2t3) [using : ∑a2 = (∑a)2 – 2∑ab]

= 2

2

a
)ha2( −

 – 2t1t2t3 (0) = 2

2

a
)ha2( −

⇒ SP, SQ, SR = a3 ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+
−

+
−

+ 1
a

a4h2
a

)ha2(
a
k

2

2

2

2

 = a {(h – a)2 + k2} = aSA2
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Example : 14
Show that the tangent and the normal at a point P on the parabola y2 = 4ax are the bisectors of the angle
between the focal radius SP and the perpendicular from P on the directrix.

Solution
Let  P ≡ (at2, 2at), S ≡ (a, 0)

Equation of SP is : y – 0 = 
aat
0at2

2 −

−
 (x – a)

⇒ 2tx + (1 – t2) y + (–2at) = 0 ..........(i)
Equation of PM is : y – 2sat = 0 ..........(ii)
Angle bisectors of (i) and (ii) are :

10
at2y
+

−
 = ± 222

2

)t1(t4

at2y)t1(tx2

−+

−−+

⇒ y – 2at = ± 2

2

t1
at2y)t1(tx2

+

−−+

⇒ ty = x + at2 and tx + y = 2at + at3

⇒ tangent and normal at P are bisectors of SP and PM.
Alternate Method :
Let the tangent at P meet X-axis in Q.
As MP is parallel to X-axis, ∠MPQ = ∠PQS
Now we can find SP and SQ.

SP = 222 )at20()at1( −+−  = a (1 + t2)

Equation of PQ is ty = x + at2

⇒ Q ≡ (–at2, 0)

⇒ SQ = 0)ata( 2 ++  = a (1 + t2)

⇒ SP = SQ
⇒ ∠SPQ = ∠SQP = ∠MPQ
Hence PQ bisects ∠SPM
It obviously follows that normal bisects exterior angle.

Example : 15
In the parabola y2 = 4ax, the tangent at the point P, whose abscissa is equal to the latus rectum meets the
axis in T and the normal at P cuts the parabola again in Q. Prove that PT : PQ = 4 : 5

Solution
Latus rectum = xp = 4a
Let P ≡ (at2 , 2at)
⇒ at2 = 4a ⇒ t = ± 2
We can do the problem by taking only one of the values.
Let t = 2
⇒ P ≡ (4a, 4a)
⇒ tangent at P is 2y = x + 4a
T lies on X-axis, ⇒ T ≡ (–4a, 0)

⇒ PT = 22 )a4()a8( +  = 4a 5

Let us nor find PQ.
If normal at P(t) cuts parabola again at Q(t1), then t1 = – t – 2/t
⇒ t1 = – 2 – 2/2 = – 3
⇒ Q ≡ (9a, – 6a)

⇒ PQ = 22 a100a25 +  = 5a 5

⇒ PT : PQ = 4 : 5
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Example : 16
A variable chord PQ of y2 = 4ax subtends a right angle at vertex. Prove that the locus of the point of
intersection of normals at P, Q is y2 = 16a (x – 6x).

Solution
Let the coordinates of P and Q be (at1

2 , 2at1) and (at2
2 , 2at2) respectively.

As OP and OQ are perpendicular, we can have :

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−

0at
0at2

2
1

1
 ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−

0at
0at2

2
2

2
 = – 1

⇒ t1t2 = – 4 .............(i)
Let the point of intersection of normals drawn at P and Q be ≡ (x1, y1)
Using the result given in section 1.4, we get :
x1 = 2a + a(t1

2 + t2
2 + t1t2 ) and ...........(i)

y1 = –a t1t2 (t1 + t2)
Eliminating t1 and t2 from (i), (ii) and (iii), we get :

y1
2 = 16a (x1 – 6a)

The required locus is y2 = 16a (x – 6a)

Example : 17
The normal at a point P to the parabola y2 = 4ax meets the X-axis in G. Show that P and G are equidistant
from focus.

Solution
Let the coordinates of the point P be (at2, 2at)
⇒ The equation of normal at P is : tx + y = 2at + at3

The point of intersection of the normal with X-axis is G ≡ (2a + at2, 0).

SP = a(1 + t2) and SG = 222 O)ata( ++  = a(1 + t2).

⇒ SP = SG
Hence P and G are equidistant from focus.

Example : 18
Tangents to the parabola y2 = 4ax drawn at points whose abscise are in the ratio µ2 : 1. Prove that the
locus of their point of intersection is y2 = [µ1/2 + µ–1/2] ax.

Solution
Let the coordinates of the two points on which the tangents are drawn at (at1

2, 2at1) and (at2
2, 2at2).

As the abscissas are in the ratio µ2 : 1, we get :

2
2

2
1

at
at

 = µ2

⇒ t1 = µt2 .............(i)
Let the point of intersecting of two tangents be M ≡ (x1, y1).
Using the result given in section 1.2, we get :

M ≡ (x1, y1) ≡ [at1 t2, a(t1 + t2)]
⇒ x1 = at1 t2 .............(ii)
and y1 = a(t1 + t2) .............(iii)
Eliminate t1 and t2 from equations (i), (ii) and (iii) to get :

y1
2 = [µ1/2 + µ–1/2]2 ax1

⇒ The required locus of M is : y2 = [µ1/2 + µ–1/2]2 ax.

Example : 19
Find the equation of common tangent to the circle x2 + y2 = 8 and parabola y2 = 16x.

Solution
Let ty = x + at2 (where a = 4) be a tangent to parabola which also touches circle.
⇒ ty = x + 4t2 and x2 + y2 = 8 have only one common solution.
⇒ (ty – 4t2)2 + y2 = 8 has equal roots as a quadratic in y.
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⇒ (1 + t2) y2 – 8t3y + 16t4 – 8 = 0 has equal roots.
⇒ 64t6 = 64t6 + 64t4 – 32 – 32t2
⇒ t2 + 1 – 2t4 = 0 ⇒ t2 = 1, –1/2
⇒ t = ± 1
⇒ the common tangents are y = x + 4 and y = – x – 4.

Example : 20
Through the vertex O of the parabola y2 = 4ax, a perpendicular is drawn to any tangent meeting it at P and
the parabola at Q. Show that OP. OQ = constant.

Solution
Let ty = x + at2 be the equation of the tangent

OP = perpendicular distance of tangent from origin

⇒ OP = – 2

2

r1

at

+

Equation of OP is y – 0 = – t(x – 0) ⇒ y = – tx
Solving y = – tx and y2 = 4ax, we get

Q ≡ ⎟
⎠

⎞
⎜
⎝

⎛ −
t
a4,

t
a4
2

⇒ OQ2 = 4

2

t
a16

 + 2

2

t
a16

⇒ OP . OQ = 4a2

Example : 21
Prove that the circle drawn on any focal chord as diameter touches the directrix.

Solution
Let P(t1) and Q(t2) be the ends of a focal chord.
Using the result given in section 1.3, we get : t1t2 = – 1
Equation of circle with PQ as diameter is :

(x – at1
2) (x – at2

2) + (y – 2at1) (y – 2at2) = 0 (using diametric form of equation of circle)
For the directrix to touch the above circle, equation of circle and directrix must have a unique solution i.e.
Solving x = – a and circle simultaneously, we get

a2 (1 + t2) (1 + t2
2) + y2 – 2ay (t1 + t2) + 4a2 t1t2 = 0

This quadratic in y has discriminant = D = B2 – 4AC
⇒ D = 4a2 (t + t2)

2 – 4a2 [(1 + t1
2) (1 + t1

2) + 4t1t2] = 0 (using t1t2 = – 1)
⇒ circle touches x = – a
⇒ circle touches the directrix.

Example : 22
Find the eccentricity, foci, latus rectum and directories of the ellipse 2x2 + 3y2 = 6

Solution

The equation of the ellipse can be written as : 
3
x2

 + 
2
y2

 = 1

On comparing the above equation of ellipse with the standard equation of ellipse, we get

a = 3 and b = 2
We known that : b2 = a2 (1 – e2)
⇒ 2 = 3 (1 – e2) ⇒ e = 1/√3
Using the standard results, foci are (ae, 0) and (–ae, 0)
⇒ foci are (1, 0) and (–1, 0)
Latus rectum = 2b2/a = 4√3
Directrices are x = ± a/e ⇒ x = ± 3
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Example : 23

If the normal at a point P(θ) to the ellipse 
14
x2

 + 
5
y2

 = 1 intersect it again at Q(2θ), show that

cos θ = –2/3.
Solution

The equation of normal at P(θ) : 
θcos

ax
 – 

θsin
by

 = a2 – b2

As Q ≡ (a cos 2θ, b sin 2θ) lies on it, we can have :

θcos
a

 (a cos 2θ) – 
θsin

b
 (b sin 2θ) = a2 – b2

⇒ a2 
θ
−θ

cos
)1cos2( 2

 – 2b2 cos θ = a2 – b2

Put a2 = 14, b2 = 5 in the above equation to get :
14 (2 cos2θ – 1) – 10 cos2θ = 9 cos θ

⇒ 18 cos2θ – 9 cos θ – 14 = 0
⇒ (6 cos θ – 7) (3 cos θ + 2) = 0
⇒ cos θ = 7/6 (reject) or cos θ = – 2/3
Hence cosθ = – 2/3

Example : 24
 If the normal at end of latus rectum passes through the opposite end of minor axis, find eccentricity.

Solution
The equation of the normal at L ≡ (ae, b2/a) is given by :

ae
xa2

 – 
a/b

yb
2

2

 = a2 – b2

⇒ e
x

 – y = 
a

ba 22 −

According to the question, B′ (0, –b) lies on the above normal.
⇒ 0/e + b = (a2 – b2)/a
⇒ a2 – b2 – ab = 0
Using b2 = a2 (1 – e2), we get :

a2 e2 – ab = 0
⇒ b = ae2

⇒ a2 e4 = a2 (1 – e2) [using : b2 = a2 (1 – e2)]
⇒ e4 = 1 – e2

⇒ e2 – 
2

15 −

Example : 25

Show that the locus of the foot of the perpendicular drawn from the centre of the ellipse 2

2

a
x

 + 2

2

b
y

 = 1 on

any tangent is (x2 + y2) = a2 x2 + b2y2 .
Solution

Let the tangent be y = mx + 222 bma +

Drawn CM is perpendicular to tangent and let M ≡ (x1, y1)

M lies on tangent, ⇒ y1 = mx1 + 222 bma + ...........(i)

Slope (CM) = – 1/m
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⇒
1

1

x
y

 = – 
m
1

⇒ m = m = – 
1

1

y
x

............(ii)

Replace the value of m from (ii) into (i) to get :
(x1

2 + y1
2)2 = a2 x1

2 + b2y1
2

Hence the required locus is : (x2 + y2)2 = a2 x2 + b2y2

Example : 26

The tangent at a point P on ellipse 2

2

a
x

 + 2

2

b
y

 = 1 cuts the directrix in F. Show that PF subtends a right

angle at the corresponding focus.
Solution

Let P ≡ (x1, y1) and S ≡ (ae, 0)

The equation of tangent at P is : 2
1

a
xx

 + 2
1

b
yy

 = 1

To find F, we put x = a/e in the equation of the tangent

⇒
ea

ax
2

1  + 2
1

b
yy

 = 1

⇒ y = 
1

2
1

aey
b)xae( −

⇒ F ≡  
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −

1

2
1

aey
b)xae(,

e
a

⇒ slope (SF) = 
1

2
1

aey
b)xae( −

 
ae

e
a

1

−
...........(i)

slope (SP) = aex
0y

1

1

−
−

..........(ii)

From (i) and (ii),
slope of (SF) × slope (SP) = – 1
SF and SP are perpendicular
Hence PF subtends a right angle at the focus.

Example : 27

Show that the normal of ellipse 2

2

a
x

 + 2

2

b
y

 = 1 at any point P bisects the angle between focal radii SP and

S′P.
Solution

Let PM be the normal and P ≡ (x1, y1)

⇒ equation of normal PM is 
1

2

x
xa

 – 
1

2

y
yb

 = a2 – b2

We will try to show that : SP
PS′

 = MS
SM ′

M is the point of intersection of normal PM with X-axis
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⇒ Put y = 0 is normal PM to get M ≡ 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ − 0,
a

x)ba(
2

1
22

 = [e2x1, 0]

⇒ MS = ae – e2x1 and MS′ = ae = e2x1

⇒ MS
SM ′

 = )exa(e
)exa(e

1

1

−
+

 = 
1

1

exa
exa

−
+

 = SP
PS ′

(using result given in section 1.1)

Example : 28

A tangent to 2

2

a
x

 + 2

2

b
y

 = 1 touches at the point P on it in the first quadrant and meets the axes in A and B

respectively. If P divides AB is 3 : 1, find the equation of tangent.
Solution

Let the coordinates of the point P ≡ (a cos θ , b sin θ)

⇒ the equation of the tangent at P is : a
cosx θ

 + b
siny θ

 = 1 ..........(i)

⇒ The coordinates of the points A and B are :

A ≡ ⎟
⎠

⎞
⎜
⎝

⎛
θ

0,
cos

a
 and B ≡ ⎟

⎠

⎞
⎜
⎝

⎛
θsin

b,0

By section formula, the coordinates of P are ⎟
⎠

⎞
⎜
⎝

⎛
θθ sin3

b3,
cos4
a

 ≡ (a cos θ , b sin θ)

⇒
θcos4

a
 = a cos θ and

θsin4
b3

 = b sin θ

⇒ cos θ = ± 
2
1

and sin θ = ± 
2
3

⇒ θ = 60º
For equation of tangent, replace the value of θ in (i)

⇒ The equation of tangent is : a
x

 + 
b

y3
 = 2

Example : 29

If the normal at point P of ellipse 2

2

a
x

 + 2

2

b
y

 = 1 with centre C meets major and minor axes at G and g

respectively, and if CF be perpendicular to normal, prove that PF . PG = b2 and PF . Pg = a2.
Solution

If Pm is tangent to the ellipse at point P, then CMPF is a rectangle.
⇒ CM = PF .............(i)
Let the coordinates of point P be (a cos θ, b sin θ)

The equation of normal at P is : 
θcos

ax
 – 

θsin
by

 = a2 – b2

The point of intersection of the normal at P with X-axis is G ≡ 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ θ− 0,
a

cos)ba( 22

The point of intersection of the normal at P with Y-axis is g ≡ 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ θ−
b

sin)ab(,0
22
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⇒ PG2 = 2

2

a
b

 [b2 cos2θ + a2 sin2θ] ...........(ii)

and Pg2 = 2

2

b
a

 [b2 cos2θ + a2 sin2θ] ...........(iii)

From (i),
⇒ PF = MC = distance of centre of the ellipse from the tangent at P

= 

2

2

2

2

b
sin

a
cos

1

θ
+

θ
 = 

θ+ 2222 sinacosb

ab
...........(iv)

Multiplying (iii) and (iv), we get :
PF2 . PG2 = b4

Multiplying (iii) and (iv), we get :
PF2 . Pg2 = a4

Hence proved

Example : 30
Any tangent to an ellipse is cut by the tangents at the ends of the major axis in T and T′. Prove that circle
on TT′ as diameter passes through foci.

Solution
Consider a point P on the ellipse whose coordinates are (a cos θ , b sin θ)

The equation of tangent drawn at P is : a
cosx θ

 + b
siny θ

 = 1 ...........(i)

The two tangents drawn at the ends of the major axis are x = a and x = – a.

Solving tangent (i) and x = a we get T = ⎥⎦

⎤
⎢⎣

⎡
θ
θ−

sin
)cos1(b,a  ≡ ⎥⎦

⎤
⎢⎣

⎡ θ
2

tanb,a

Solving tangent (i) and x = – a, we get T′ ≡ ⎥⎦

⎤
⎢⎣

⎡
θ
θ+

−
sin

)cos1(b,a  = ⎥⎦

⎤
⎢⎣

⎡ θ
−

2
cot,a

Circle on TT′ as diameter is x2 – a2 + (y – b tan θ/2) (y – b cot θ/2) = 0
(using diametric form of equation of circle)

Put x = ± ae, y = 0 in LHS to get :
a2e2 – a2 + b2 = 0 = RHS

Hence foci lie on this circle.

Example : 31

A normal inclined at 45º to the X-axis is drawn to the ellipse 2

2

a
x

 + 2

2

b
y

 = 1. It cuts major and minor axes

in P and Q. If C is centre of ellipse, show that are (∆CPQ) = 
)ba(a

)ba(
22

222

+

−
.

Solution
Consider a point M on the ellipse whose coordinates are (a cos θ, b sin θ)

The equation of normal drawn at M is : 
θcos

ax
 – 

θsin
by

 = a2 – b2

As the normal makes an angle 45º with X-axis, slope of normal = tan 45º

⇒ tan 45º = 
θ
θ

cosb
sina

⇒ tan θ = a
b
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⇒ sin θ = 22 ba

b

+
and cos θ = 22 ba

a

+
..........(i)

The point of intersecting of the normal with X-axis is P ≡ 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
θ

− 0,cos
a

ba 22

⇒ CP = θ
− cos
a

ba 22

.........(ii)

The point of intersection of the normal with Y-axis is Q ≡ 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
θ

− sin
b

ab,0
22

⇒ CQ = b
ab 22 −

.........(iii)

Ar (∆CPQ) = 
2
1

 PC × CQ

Using (ii) and (iii), Ar (∆CPQ) = 
2
1

 θθ
− cossin
ab

)ba( 222

Using (i), Ar (∆CPQ) = 
2
1

 22

222

ba
)ba(

+

−

Example : 32

If P, Q are points on 2

2

a
x

 – 2

2

b
y

 = 1, whose centre is C such that CP is perpendicular to CQ, show that

2CP
1

 + 2CQ
1

 = 2a
1

 – 2b
1

 given that (a < b)

Solution

Let y = mx be the equation of CP. Solving y = mx and 2

2

a
x

 – 2

2

b
y

 = 1, we get coordinates of P.

⇒ 2

2

a
x

 – 2

22

b
xm

 = 1 ⇒ x2 = 222

22

mab
ba

−
, y2 = 222

222

mab
mba

−

⇒ CP2 = x2 + y2 = 222

222

mab
)m1(ba

−

+

Similarly, be replacing m by – 1/m, we get coordinates of Q because equation of CQ is y = 
m
1−

 x.

⇒ CQ2 = 
2

2
2

2
22

m
ab

m
11ba

−

⎟
⎠
⎞

⎜
⎝
⎛ +

 = 222

222

amb
)1m(ba

−

+

⇒ 2CP
1

 + 2CQ
1

 = 
)m1(ba

ambmab
222

222222

+

−+−
 = 22

22

ba
ab −

 = 2a
1

 – 2b
1
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Example : 33

Find the locus of the foot of the perpendicular drawn from focus S of hyperbola 2

2

a
x

 + 2

2

b
y

 = 1 to any

tangent.
Solution

Let the tangent be y = mx + 222 bma −

Let m (x1, y1) be the foot of perpendicular SM drawn to the tangent from focus S (ae, 0).
Slope (SM) × slope (PM) = – 1

⇒ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−
aex
0y

1

1
 m = – 1

x1 + my1= ae .............(i)

As M lies on tangent, we also have y1 = m1x + 222 bma −

⇒ –mx1 + y1 = 222 bma − .............(ii)

We can now eliminate m from (i) and (ii).
Substituting value of m from (i) in (ii) leads to a lot of simplification and hence we avoid this step.
By squaring and adding (i) and (ii), we get

x1
2 (1 + m2) + y1

2 (1 + m2) = a2e2 + a2m2 – b2

⇒ (x1
2 + y1

2) (1 + m2) = a2 (1 + m2)
⇒ x1

2 + y1
2 = a2

⇒ Required locus is : x2 + y2 = a2 (Note that M lies on the auxiliary circle)

Example : 34
Prove that the portion of the tangent to the hyperbola intercepted between the asymptotes is bisected at
the point of contact and the area of the triangle formed by the tangent and asymptotes is constant.

Solution

Let 2

2

a
x

 – 2

2

b
y

 = 1 be the hyperbola and let the point of contact be P (a sec θ, b tan θ)

Let the tangent meets the asymptotes y = a
bx

and y = – b
bx

 in points M, N respectively.

Solving the equation of tangent and asymptotes, we can find M and N

Solve : a
cosx θ

 – b
tany θ

 = 1 and y = a
bx

 to get :

x = 
θ−θ tansec

a
, y = 

θ−θ tansec
b

⇒ M ≡ ⎥⎦

⎤
⎢⎣

⎡
θ−θθ−θ tansec

b,
tansec

a
,

Similarly solving y = – a
bx

 and a
x

 secθ – a
y

 tan θ = 1, we get :

N ≡ ⎥⎦

⎤
⎢⎣

⎡
θ+θ

−
θ+θ tansec

b,
tansec

a

Mid point of MN ≡ ⎥⎦

⎤
⎢⎣

⎡
θ−θ

θ

θ−θ

θ
2222 tansec

tanb,
tansec

seca
 ≡ (a sec θ, b tan θ)

Hence P bisects MN.
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Area of ∆CNM = 
2
1

 
1yx
1yx
100

MM

NN  = 
2
1

 {xNyM – xMyN} = 
2
1

 (ab + ab) = ab

hence area does not depend on ‘θ’ or we can say that area is constant.

Example : 35
Show that the locus of the mid-point of normal chords of the rectangular hyperbola
x2 – y2 = a2 is (y2 – x2)3 = 4a2x2y2 .

Solution
Let the mid point of a chord be P(x1, y1)

⇒ Equation of chord of the hyperbola 2

2

a
x

 – 2

2

b
y

 = 1 whose mid-point is (x1, y1) is :

2
1

a
xx

 – 2
1

b
yy

 = 2

2
1

2
1

a
yx −

As the hyperbola is rectangular hyperbola, a = b
⇒ Equation of the chord is : xx1 – yy1 = x1

2 – y1
2 .............(i)

Normal chord is a chord which is normal to hyperbola at one of its ends.

⇒ Equation of normal chord at (a sec θ, b tan θ) is : 
θsec

ax
 – 

θtan
by1  = a2 + b2

but here a2 = b2 ,
⇒ normal chord is : x cos θ – y cot θ = 2a  .............(ii)
We now compare the two equations of same chord i.e. compare (i) and (ii) to get :

⇒
θcos

x1  = 
θcot

y1  = 
a2
yx 2

1
2
1 −

⇒ sec θ = 
1

2
1

2
1

ax2
yx −

and cot θ = 2
1

2
1

1

yx
ay2
−

Eliminating θ using sec2θ – tan2θ = 1, we get :

2

1

2
1

2
1

ax2
yx

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
 – 

2

1

2
1

2
1

ay2
yx

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
 = 1

⇒ (y1
2 – x1

2)3 = 4a2 x1
2 y1

2

⇒ (y2 – x2)3  = 4a2x2y2 is the locus.
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Example : 1

Evaluate (i) ∫
3

1

2 dxx (ii) ∫
π 2/

0

dxxsin

Solution

(i) ∫
3

1

2 dxx  = 

3

1

3

3
x

 = 3
1

 (33 – 13) = 3
26

(ii) ∫
π 2/

0

dxxsin  = 
2/

0
xcos

π
−  = (cos π/2 – cos 0) = 1

Example : 2

∫
π 2/

0

3 dxxcosxsin

Solution

Let Ι = ∫
π 2/

0

3 dxxcosxsin

Let sin x = t ⇒ cos x dx = dt

For x = 
2
π

, t = 1 and for x = 0, t = 0

⇒ Ι = ∫
1

0

3 dtt  = 

1

0

4

4
t

 = 
4
1

Note : Whenever we use substitution in a definite integral, we have to change the limits corresponding
to the change in the variable of the integration
In the example we have applied New-ton-Leibnitz formula to calculate the definite integral.
New-Leibnitz formula is applicable here since sin3x cos x (integrate) is a continuous function in
the interval [0, π/2]

Example : 3

Evaluate : ∫
−

2

1

dx|x|

Solution

∫
−

2

1

dx|x| = ∫
−

0

1

dx|x|  + ∫
2

0

dx|x| (using property – 1)

= ∫
−

−
0

1

dxx  + ∫
2

0

dxx (Q | x | = – x for x < 0 and | x | = x for x ≥ 0)

= – 

0

1

2

2
x

−
 + 

2

0

2

2
x

 = – ⎟
⎠

⎞
⎜
⎝

⎛ −
2
10  + ⎟

⎠

⎞
⎜
⎝

⎛ − 0
2
4

 = 
2
5

Calculus
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Example : 4

Evaluate : dx|4x|
3

4

2∫
−

−

Solution

dx|4x|
3

4

2∫
−

− = ∫
−

−

−
2

4

2 dx|4x|  + ∫
+

−

−
2

2

2 dx|4x|  + ∫
−

−
3

2

2 dx|4x|

= dx)4x(
2

4

2∫
−

−

−  + dx)x4(
2

2

2∫
−

−  + dx)4x(
3

2

2∫ −

(Q |x2 – 4| = 4 – x2 in [–2, 2] and |x2 – 4| = x2 – 4 in other intervals]

= 

2

4

3
x4

3
x

−

−

−  + 

2

2

3

3
xx4

−

−  + 

3

2

3
x4

3
x

−

= ⎟
⎠

⎞
⎜
⎝

⎛ +− 8
3
8

 – ⎟
⎠

⎞
⎜
⎝

⎛ +16
3

64
 + ⎟

⎠

⎞
⎜
⎝

⎛ −
3
88  + ⎟

⎠

⎞
⎜
⎝

⎛ −12
3

27
 – ⎟

⎠

⎞
⎜
⎝

⎛ − 8
3
8

 = 3
71

Example : 5

Evaluate : ∫
π

+

2/

0 xcosxsin
xsin

 dx

Solution

Let Ι = ∫
π

+

2/

0 xcosxsin
xsin

 dx ...........(i)

Using property – 4, we have :

Ι = ∫
π

−π+−π

−π
2/

0 )x2/cos()x2/sin(
)x2/sin(

Ι = dx
xsinxcos

xcos
2/

0
∫
π

+ ...........(ii)

Adding (i) and (ii), we get

2Ι = ∫
π

+

2/

0 xcosxsin
xsin

 dx + ∫
π

+

2/

0 xcosxsin
xcos

 dx

⇒ 2Ι = ∫
π

+

+
2/

0 xcosxsin
xcosxsin

 dx

⇒ 2Ι = ∫
π

π
=

2/

0
2

dx

⇒ Ι = 
4
π
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Example : 6

If f(a – x) = f(x), then show that ∫ ∫=
a

0

a

0

dx)x(f
2
adx)x(fx

Solution

Let Ι = ∫
a

0

dx)x(fx

⇒ Ι = ∫ −−
a

0

dx)xa(f)xa( (using property – 4)

⇒ Ι = ∫ −
a

0

dx)x(f)xa( [using f(x) = f(a – x)]

⇒ Ι = dx)x(fxdx)x(fa
a

0

a

0
∫∫ −

⇒ Ι = a ∫ Ι−
a

0

dx)x(f

⇒ 2Ι = a ∫
a

0

dx)x(f

⇒ Ι = 
2
a

 ∫ =
a

0

RHSdx)x(f

Example : 7

Evaluate : ∫
π

+0
2 xcos1

x
 dx

Solution

Let Ι = ∫
π

+0
2 xcos1

x
 dx .............(i)

⇒ Ι = ∫
π

−π+

−π

0
2 )x(cos1

)x(
 dx (using property – 4) .............(ii)

Adding (i) and (ii), we get :

⇒ 2Ι = ∫
π

+

π

0
2 xcos1  dx

⇒ Ι = 
2
π

 ∫
π

+0
2 xcos1

dx
 = 

2
2π

 ∫
π

+

2/

0
2 xcos1

dx
(using property – 6)

Divide N and D by cos2x to get :
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Ι = ∫
π

+

2/

0
2

2

1xsec
xsec

 dx

Put tan x = t ⇒ sec2x dx = dt
For x = π/2, t → ∞ and for x = 0, t = 0

⇒ Ι = π ∫
∞

+0
2t2

dt

⇒ Ι = 
∞

−

0

1

2
ttan

2
1

 = 2
π

 × 
2
π

 = 
22

2π

Example : 8

Evaluate : ∫
π 2/

0

dxxsinogl

Solution

Let Ι = ∫
π 2/

0

dxxsinogl .........(i)

⇒ Ι = ∫
π

⎟
⎠

⎞
⎜
⎝

⎛ −
π

2/

0

x
2

sinogl  dx (using property – 4)

⇒ Ι = ∫
π 2/

0

dxxcosogl .........(ii)

Adding (i) and (ii) we get :

2Ι = ∫ ∫
π π

⎟
⎠

⎞
⎜
⎝

⎛=
2/

0

2/

0
2

x2sinogdx)xcosx(sinog ll  dx

⇒ 2Ι = ∫ ∫
π π

−
2/

0

2/

0

dx2logdxx2sinogl

⇒ 2Ι = ∫
π

π
−

2/

0

2og
2

dxx2sinog ll ...........(iii)

Let Ι1 = ∫
π 2/

0

dxx2sinogl

Put t = 2x ⇒ dt = 2dx

For x = 
2
π

, t = π and for x = 0, t = 0

⇒ Ι1 = 
2
1

 ∫ ∫
π π

=
0

2/

0

dttsinlog
2
2dttsinlog (using property – 6)

⇒ Ι1 = ∫
π 2/

0

dxxsinlog (using property – 3)
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⇒ Ι1 = Ι
Substituting in (iii), we get : 2Ι = Ι – π/2 log 2
⇒ Ι = – π/2 log 2 (learn this result so that you can directly apply it in other difficult problems)

Example : 9

Show that : ∫ ∫∫
π ππ

==
2/

0

4/

0

2/

0

dxxcos)x2(cosf2dxx(cosfdxxsin)x2(sinf

Solution

Let Ι = ∫
π 2/

0

dxxsin)x2(sinf ...........(i)

⇒ Ι = ∫
π

−π−π
2/

0

dx)x2/sin()]x2/(2[sinf (using property – 4)

⇒ Ι = dxxcos)]x2[sin(f
2/

0
∫
π

−π

⇒ Ι =  ∫
π 2/

0

dxxcos)x2(sinf ...........(ii)

Hence the first part is proved

Ι  = ∫
π 2/

0

)x2(sinf  sin x dx

  = ∫
π 4/

0

dxxsin)x2(sinf  + ∫
π

−π
4/

0

)]x2/(2[sinf  sin (π/2 – x) dx (using property – 5)

  = ∫
π 4/

0

dxxsin)x2(sinf  + ∫
π 4/

0

dxxcos)x2(sinf

  = ∫
π

+
4/

0

dx)xcosx(sin)x2(sinf

  = ∫
π

+
4/

0

dx)xcosx(sin)x2(sinf

 = ∫
π

−π+−π−π
4/

0

dx]x)x4/cos()x4/[sin()]x4/(2[sinf (using property – 4)

  = ∫
π

⎥
⎦

⎤
⎢
⎣

⎡
++−

4/

0

xsin
2
1xcos

2
1xsin

2
1xcos

2
1)x2(cosf  dx

  = 2  ∫
π 4/

0

dxxcos)x2(cosf

Hence the second part is also proved
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Example : 10

Evaluate : ∫ −
3

2

dxx5x

Solution

Let Ι = ∫ −
3

2

dxx5x

⇒ Ι = dx)x32(5)x32(
3

2
∫ −+−−+ (using property – 7)

⇒ Ι = dxx)x5(
3

2
∫ −

⇒ Ι = ∫ ∫−
3

2

3

2

dxxxdxx5

⇒ Ι = 5 
3

2
xx

3
2

 – 5
2

 
3

2
2 xx

⇒ Ι = 3
10

 ( )2233 −  – 5
2

 ( )2439 −

Example : 11

Evaluate : ∫ +++

b

a
)xba(f)x(f

)x(f
 dx

Solution

Let Ι = ∫ −++

b

a
)xba(f)x(f

)x(f
 dx ............(i)

⇒ Ι = ∫ −+−++−+
−+

b

a
dx)]xba(ba[f)xba(f

)xba(f

⇒ Ι = ∫ +−+
−+

b

a
)x(f)xba(f

)xba(f
 dx ............(ii)

Adding (i) and (ii), we get

⇒ 2Ι = ∫ −++
−++

b

a
)xba(f)x(f
)xba(f)x(f

 dx

⇒ 2Ι = ∫ −=
b

a

abdx

⇒ Ι = 
2

ab −
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Example : 12

 Evaluate : ∫
+

−

⎟
⎠

⎞
⎜
⎝

⎛
+
−

1

1

2 dxxsin
x2
x2log

Solution

Let f(x) = log ⎟
⎠

⎞
⎜
⎝

⎛
+
−

x2
x2

 sin2x dx

⇒ f(–x) = log ⎟
⎠

⎞
⎜
⎝

⎛
−
+

x2
x2

 sin2 (–x)

⇒ f(–x) = log 
1

x2
x2 −

⎟
⎠

⎞
⎜
⎝

⎛
+
−

 sin2x = – log ⎟
⎠

⎞
⎜
⎝

⎛
+
−

x2
x2

 sin2x = – f(x)

⇒ f(x) is an odd function

Hence ∫
+

−

=
1

1

0dx)x(f (using property – 8)

Example : 13

Evaluate : ∫
π

−
2/

0

x2sin1  dx

Solution

Let Ι = ∫
π

−
2/

0

x2sin1  dx

⇒ Ι = ∫
π

2−
2/

0

)xcosx(sin dx

⇒ Ι = dxxcosxsin
2/

0
∫
π

−

⇒ Ι = ∫ ∫
π π

π

−+−
4/

0

2/

4/

dx|xcosxsin|dx|xcosxsin|

⇒ Ι = ∫ ∫
π π

π

−+−
4/

0

2/

4/

dx)xcosx(sindx)xsinx(cos

⇒ Ι = 
4/

0
cosxsin

π
+  + 

2/

4/
xsinxcos

π

π
−−

⇒ Ι = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+ 1

2
1

2
1

 + (–1) – ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

2
1

2
1

⇒ Ι = 2√2 – 2
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Example : 14
Given a function such that :
(i) it is integrable over every interval on the real line.

(ii) f(t + x) = f(x) for every x and a real t, then show that the integral ∫
+ta

a

dx)x(f  is independent of a.

Solution

Let Ι = ∫
+ta

a

dx)x(f

⇒ ∫ ∫
+

+
t

a

ta

t

dx)x(fdx)x(f .............(i)

Consider Ι1 = ∫
+ta

t

dx)x(f

Put x = y + t ⇒ dx = dy
For x = a + t, y = a and For x = t, y = 0

⇒ Ι1 = ∫ +
a

0

dy)ty(f

⇒ Ι1 = ∫
a

0

dy)y(f (using property 3)

⇒ Ι1 = ∫
a

0

dx)x(f [using f(x + T) = f(x)]

On substituting the value of Ι1 in (i), we get :

⇒ Ι = ∫ Ι+
t

a
1dx)x(f

⇒ Ι = ∫ ∫+
t

a

a

0

dx)x(fdx)x(f

⇒ Ι = ∫ ∫+
a

0

t

a

dx)x(fdx)x(f

⇒ Ι = ∫
t

0

dx)x(f (using property – 1)

⇒ Ι is independent of a.
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Example : 18

Determine a positive integer n ≤ 5 such that : e616dx)1x(e
1

0

nx −=−∫
Solution

Let Ιn = ∫ −
1

0

nx dx)1x(e

using integration by parts

Ιn = [ ] ∫∫ −−−−
1

0

1nx1

0

xn dx)1x(nedxe)1x(

Ιn = 0 – (–1)n – n ∫ −−
1

0

1nx dx)1x(e

Ιn = –(–1)n – nΙn–1 ...............(i)

Also Ι0 = ∫ −
t

0

0x )1x(e  dx = e – 1

⇒ Ι1 = 1 – Ι0 = 1 – (e – 1) = 2 – e
⇒ Ι2 = –1 – 2Ι1 = –1 – 2 (2 – e) = –5 + 2e
⇒ Ι3 = 1 – 3Ι2 = 1 – 3 (–5 + 2e) = 16 – 6e

⇒ Hence for n = 3, ∫ −=−
1

0

nx e616dx)1x(e

Example : 16

If f(x) = ∫
3

2

x

x

dt
tlog

1
t > 0, then find f′(x)

Solution
Using the property – 12,

f′(x) = dx
d

)xlog(
1

3  (x3) + )x(
dx
d

xlog
1 2

2

⇒ f′(x) = xlog3
x3 2

 – xlog2
x2

 = xlog
xx2 −

Example : 17

Find the points of local minimum and local minimum of the function dt
e2

4t5t
2x

0
t

2

∫ +
+−

Solution

Let y = dt
e2

4t5t
2x

0
t

2

∫ +
+−

For the points of Extremes, dx
dy

 = 0
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Using property – 12

2x

24

e2

5x5x

+

+−
 2x = 0

⇒ x = 0 or x4 – 5x2 + 4 = 0
⇒ x = 0 or (x – 1) (x + 1) (x – 2) (x+ 2) = 0
⇒ x = 0, x = ± 1 and x = ±2
With the help of first derivative test, check yourself x = – 2, 0, 2 are points of local minimum and x = – 1, 1
are points of local maximum.

Example : 18

Evaluate : ∫
b

a

2dxx  using limit of a sum formula

Solution

Let Ι = ∫
b

a

2dxx  = 
0h

n
lim
→
∞→

 h [1 + h)2 + (1 + 2h)2 + ........ + (a + nh)2 ]

⇒ Ι = 
0h

n
lim
→
∞→

 h[na2 + 2ah (1 + 2 + 3 + ....... + n) + h2 (12 + 22 + 32 +.......+n2)]

⇒ Ι = 
0h

n
lim
→
∞→

 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ ++
+

+
+

6
)1n2)(1n(nh

2
)1n(nah2nha

22
2

Using nh = b – a, we get

⇒ Ι = ∞→n
lim  ⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛ +⎟
⎠

⎞
⎜
⎝

⎛ +−+⎟
⎠

⎞
⎜
⎝

⎛ +−+−
n
12

n
11

6
1)ab(

n
11)ab(a)ab(a 322

⇒ Ι = a2 (b – a) + a (b – a)2 + 
6

)ab( 2−
 2

⇒ Ι = (b – a) 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −+
+−+

3
ab2abaaba

22
22

⇒ Ι = 3
)ab( −

 [a2 + b2 + ab] = 
3

ab 33 −

Example : 19

Evaluate the following sum. S = ∞→n
lim  ⎥⎦

⎤
⎢⎣

⎡ ++
+

+
+

+
+ n2

1.....
3n

1
2n

1
1n

1

Solution

S = ∞→n
lim  ⎥⎦

⎤
⎢⎣

⎡ ++
+

+
+

+
+ n2

1.....
3n

1
2n

1
1n

1

⇒ S = ∞→n
lim  

n
1

 ⎥⎦

⎤
⎢⎣

⎡ ++
+

+
+ n2

n....
2n

n
1n

n

⇒ S = ∞→n
lim  

n
1

 ⎥⎦

⎤
⎢⎣

⎡
+

++
+

+
+ n/n1

1.......
n/21

1
n/11

1

⇒ S = ∞→n
lim  

n
1

 ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+∑
=

n

1r n/r1
1
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⇒ ∫ +

1

0
x1

1
 dx

⇒ S = 
1

0
)x1log( +  = log 2

Example : 20

Find the sum of the series : ∞→n
lim  

n
1

 + 
1n

1
+

 + 
2n

1
+

 + ......... + n6
1

Solution

Let S = ∞→n
lim  

n
1

 + 
1n

1
+

 + 
2n

1
+

 + ......... + n6
1

Take 1/n common from the series i.e.

S = ∞→n
lim  

n
1

 ⎥⎦

⎤
⎢⎣

⎡
+

++
+

+
+ n/n51

1.........
n/21

1
n/11

1
 = ∞→n

lim  
n
1

 ∑
= +

n2

0r n/r1
1

For the definite integral,

Lower limit = a = ∞→n
lim  ⎟

⎠

⎞
⎜
⎝

⎛
n
r

 = ∞→n
lim  

n
1

 = 0

Upper limit = b = ∞→n
lim  ⎟

⎠

⎞
⎜
⎝

⎛
n
r

 = ∞→n
lim  

n
n5

 = 5

Therefore, S = ∞→n
lim  ∑

= +

n5

0r )n/r(1
1

 = ∫ +

5

0
x1

dx
 = ln 5

0x1+  = ln = 6 – ln 1 = ln 6

Example : 21

Show that : 1 ≤ ∫ ≤
1

0

x edxe
2

Solution
Using the result given in section 3.3,

m (1 – 0) ≤ ∫ −≤
1

0

x )01(Mdxe
2

..........(i)

let f(x) = 
2xe

⇒ f′(x) = 2x 
2xe  = 0 ⇒ x = 0

Apply first derivative test to check that there exists a local minimum at x = 0
⇒ f(x) is an increasing function in the interval [0, 1]
⇒ m = f(0) = 1 and M = f(1) = e1 = e
Substituting the value of m and M in (i), we get

(1 – 0) ≤ ∫ −≤
1

0

x )01(edxe
2

⇒ 1 ≤ ∫ ≤
1

0

x edxe
2

Hence proved.
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Example : 22

Consider the integral : Ι = ∫
π

−

2

0
xcos25

dx

Making the substitution tan x/2 = t, we have :

∫
π

−

2

0
xcos25

dx
 = ∫

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
−

−+

0

0
2

2
2

t1
t125)t1(

dt2
 = 0

This result is obviously wrong since the integrand is positive and consequently the integral of this function
can not be equal to zero. Find the mistake in this evaluation.

Solution

The mistake lies in the substitution tan 
2
x

 = t. Since the function tan 
2
x

 is discontinuous at x = π , a point

in the interval (0, 2π), we can not use this substitution for the changing the variable of integration.

Example : 23
Find the mistake in the following evaluation of the integral

( )[ ] 0xtan3tan
3
1

xsin31
dxxsec

xsin3xcos
dx

xsin21
dx

0
1

0
2

2

0
22

0
2 ==

+
=

+
=

+

π−
πππ

∫∫∫
Solution

The Newton-Leibnitz formula for evaluating the definite integrals is not applicable here since the anti-
derivative.

F(x) = 3
1

 tan–1 ( )xtan3  has a discontinuity at the point x = π/2 which lies in the interval [0, π].

2/xat
LHL

π= = 0h
lim
→  3

1
 tan–1 ⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛ −
π h
2

tan

= 0h
lim
→  3

1
 tan–1 ( )hcot3

= 0h
lim
→  3

1
 tan–1 (→ ∞) = 32

π
.............(i)

2/xat
RHL

π= = 0h
lim
→  3

1
 tan–1 3  ⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛ +
π h
2

tan

= 0h
lim
→  3

1
 tan–1 ( )hcot3−

= 0h
lim
→  3

1
 tan–1 (→ −∞) = – 32

π
 .............(ii)

From (i) and (ii), LHL ≠ RHL at x = π/2
⇒ Anti-derivative, F(x) is discontinuous at x = π/2
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PART - B    AREA UNDER CURVE

Example : 24
Find the area bounded by the curve y = x2 – 5x + 6, X-axis and the lines x = 1 and x = 4.

Solution
For y = 0, we get x2 + 5x + 6 = 0
⇒ x = 2, 3

Hence Area = ∫
2

1

dxy  + ∫
3

2

dxy  + ∫
4

3

dxy

⇒ A = ∫ +−
2

1

2 dx)6x5x(  + ∫ +−
3

2

2 dx)6x5x(  + ∫ +−
4

5

2 dx)6x5x(

∫ +−
2

1

2 dx)6x5x(  = 
3

12 32 −
 – 5 ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
2

12 22

 + 6 (2 – 1) = 6
5

∫ +−
3

2

2 dx)6x5x(  = 
3

23 33 −
 – 5 ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
2

23 22

 + 6 (3 – 2) = 6
1

−

∫ +−
4

3

2 dx)6x5x(  = 
3

34 33 −
 – 5 ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
2

34 22

 + 6 (4 – 3) = 6
5

⇒ A = 6
5

 + 6
1

−  + 6
5

 = 6
11

 sq. units.

Example : 25
Find the area bounded by the curve : y = x4 − , X-axis and Y-axis

Solution
Trace the curve y = x4 −
1. Put y = 0 in the given curve to get x = 4 as the point of intersection with X-axis.

Put x = 0 in the given curve to get y = 2 as the point of intersection with Y-axis.

2. For the curve, y = x4 − , 4 – x ≥ 0
⇒ x ≤ 4
⇒ curve lies only to the left of x = 4 line.

3. As y is positive, curve is above X-axis.

Using steps 1 to 3, we can draw the rough sketch of y = x4 − .
In figure

Bounded area = ∫ −
4

0

x4  dx  = 
4

0
x4)x4(

3
2

−−
−

 = 3
16

 sq. units.

Example : 26
Find the area bounded by the curves y = x2 and x2 + y2 = 2 above X-axis.

Solution
Let us first find the points of intersection of curves.
Solving y = x2 and x2 + y2 = 2 simultaneously, we get :

x2 + x4 = 2
⇒ (x2 – 1) (x2 + 2) = 0
⇒ x2 = 1 and x2 = – 2 (reject)
⇒ x = ± 1
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⇒ A ≡ (–1, 0) and B ≡ (1, 0)

Shaded Area = ∫
+

−

⎟
⎠
⎞⎜

⎝
⎛ −−

1

1

22 xx2  dx

= ∫∫
+

−

+

−

−⎟
⎠
⎞⎜

⎝
⎛ −

1

1

2
1

1

2 dxxdxx2

= 2 ∫∫ −−
1

0

2
1

0

2 dxx2dxx2

= 2 ⎟
⎠

⎞
⎜
⎝

⎛−+− −

3
12

2
xsin

2
2x2

2
x

1

0

12

= 2 ⎟
⎠

⎞
⎜
⎝

⎛ π
+

42
1

 – 3
2

= 3
1

 + 3
π

 sq. units.

Example : 27
Find the area bounded by y = x2 – 4 and x + y = 2

Solution
After drawing the figure, let us find the points of intersection of

y = x2 – 4 and x + y = 2
⇒ x + x2 – 4 = 2 ⇒ x2 + x – 6 = 0 ⇒ (x + 3) (x – 2) = 0
⇒ x = –3, 2
⇒ A ≡ (–3, 0) and B ≡ (2, 0)

Shaded area = [ ]∫
−

−−−
2

3

2 dx)4x()x2(

= ∫ ∫
− −

−−−
2

3

2

3

2 dx)4x(dx)x2(

= 

2

3

2

2
xx2

−

−  – 

2

3

3
x4

2
x

−

−

= 2 × 5 – 
2
1

 (4 – 9) – 3
1

 (8 + 27) + 4(5) = 6
125

Example : 28
Find the area bounded by the circle x2 + y2 = a2 .

Solution

x2 + y2 = a2 ⇒ y = ± 22 xa −

Equation of semicircle above X-axis is y = + 22 xa −

Area of circle = 4 (shaded area)

= 4 ∫ −
a

0

22 xa  dx
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= 4 

a

0

1
2

22

a
xsin

2
axa

2
x −+−  = 4 ⎟

⎠

⎞
⎜
⎝

⎛ π
32

a2

 = πa2

Example : 29

Find the area bounded by the curves x2 + y2 = 4a2 and y2 = 3ax.
Solution

The points of intersection A and B can be calculated
by solving x2 + y2 = 4a2 and y2 = 3ax

⇒

22

a3
y

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
 = y2 = 4a2

⇒ y4 + 9a2 y2 – 36a4 = 0
⇒ (y2 – 3a2) (y2 + 12a2) = 0
⇒ y2 = 3a2

⇒ y2 = – 12a2 (reject)
⇒ y2 = 3a2 ⇒ y = ± √3a
⇒ yA = √3a2 and yB =  –√3a

The equation of right half of x2 + y2 = 4a2 is x = 22 ya4 −

Shaded area = dy
a3

yya4
a3

a3

2
22∫

−
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−

= 2 ∫ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−

a3

0

2
22

a3
yya4  dy (using property – 8)

= 2 

a3

0

1
2

22

a2
ysin

2
a4ya4

2
y −+−  – a3

2
 

a3

0

3

3
y

= 2a3  + 4a2 3
π

 – a9
2

 33 a3

= ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ π
+

3
4

3
1

 a2

Alternative Method :
shaded area = 2 × (area above X-axis)

x-coordinate of A = 
a3

y2

 = 
a3
a3 2

 = a

The given curves are y = ± ax3  and y = ± 22 xa4 −

But above the X-axis, the equations of the parabola and the circle are ax3  and  y = 22 xa4 −  respec-

tively.

⇒ shaded area = 2 ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+ ∫∫ dxxa4dxax3

a2

a

22
a

0

Solve it yourself to get the answer.
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Example : 30
Find the area bounded by the curves : y2 = 4a (x + a) and y2 = 4b (b – x).

Solution
The two curves are :

y2 = 4a(x + a) .........(i)
and y2 = 4b (b – x) .........(ii)
Solving y2 = 4a (x + a) and y2 = 4b (b – x) simultaneously,
we get the coordinates of A and B.
Replacing values of x from (ii) into (i), we get :

y2 = 4a ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+− a

b4
yb

2

⇒ y = ± ab4 and x = b – a

⇒ A ≡ – (b – a, ab4 ) and B ≡ (b – a, – ab4 )

shaded area = ∫
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

ab4

ab4

22
a

b4
y

b4
yb  dy

⇒ A = 2 (a + b) ab4  – ∫ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

ab4

0

22

a2
y

b2
y

 dy (using property – 8)

⇒ A = 2 (a + b) ab4  – 
2
1

 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

a3
ab4ab4

b3
ab4ab4

⇒ A = 2 (a + b) ab4  – 3
2

 (a + b) ab4

⇒ A = 3
8

 (a + b) ab

Example : 31
Find the area bounded by the hyperbola : x2 – y2 = a2 and the line x = 2a.

Solution
Shaded area = 2 × (Area of the portion above X-axis)

The equation of the curve above x-axis is : y = 22 ax −

⇒ required area (A) = 2 ∫ −
a2

a

22 dxax

⇒ A = 2 

a2

a

22
2

22 axxlog
2

aax
2
x

−+−−

⇒ A = 32 a2 – a2 log |a3a2(| +  + a2 log a
⇒ A = 2√3 a2 – a2 log (2 + √3)
Alternative Method :

Area (A) = ∫ ⎟
⎠
⎞⎜

⎝
⎛ +−

yA

yB

22 yaa2  dy
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⇒ A = ∫
−

⎟
⎠
⎞⎜

⎝
⎛ +−

a3

a3

22 yaa2  dy

Example : 32
Find the area bounded by the curves : x2 + y2 = 25, 4y = |4 – x2| and x = 0 in the first quadrant.

Solution
First of all find the coordinates of point of intersection. A by solving the equations of two gives curves :
⇒ x2 + y2 = 25 and 4y = |4 – x2|

⇒ x2 + 
16

)x4( 22−
 = 25

⇒ (x2 – 4)2 + 16x2 = 400
⇒ (x2 + 4)2 = 400
⇒ x2 = 16
⇒ x = ± 4

⇒ y = 
4

|x4| 2−
 = 3

⇒ Coordinates of point are A ≡ (4, 3)

Shaded are = dx
4

|x4|x25
4

0

2
2∫ ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
−−

⇒ A = ∫∫ −−−
4

0

2
4

0

2 dx|x4|
4
1dxx25 ..........(i)

Let Ι = 
4
1

 ∫ −
4

0

2 dx|x4|

⇒ A = 
4
1

 ∫ ∫ −+−
2

0

4

2

22 dx)4x(
4
1dx)x4(

⇒ A = 
4
1

 ⎟
⎠

⎞
⎜
⎝

⎛ −16
3

64
 – 

4
1

 ⎟
⎠

⎞
⎜
⎝

⎛ − 8
3
8

 = 4

On substituting the value of Ι in  (i), we get :

A = ∫ −
4

0

2x25  dx – 4

⇒ A = 4
5
xsin

2
25x25

2
x 4

0

12 −+− −

⇒ A = 6 + 
2

25
 sin–1 5

4
 – 4 = 2 + 

2
25

 sin–1 5
4
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Example : 33
Find the area enclosed by the loop in the curve : 4y2 = 4ax2 – x3 .

Solution
The given curve is : 4y2 = 4ax2 – x3

To draw the rough sketch of the given curve, consider the following steps :
(1) On replacing y by –y, there is no change in function. It means the graph is symmetric about
Y-axis
(2) For x = 4, y = 0 and for x = 0, y = 0
(3) In the given curve, LHS is positive for all values of y.

⇒ RHS ≥ 0 ⇒ x2 (1 – x/4) ≥ 0 ⇒ x ≤ 4
Hence the curve lines to the left of x = 4

(4) As x → –∞ , y → ± ∞
(5) Points of maximum/minimum :

8y dx
dy

 = 8x – 3x2

dx
dy

 = 0 ⇒ x = 0, 3
8

At x = 0, derivative is not defined

By checking for 2

2

dx
yd

, x = 3
8

 is a point of local maximum (above X-axis)

From graph
Shaded area (A) = 2 × (area of portion above X-axis)

⇒ A = 2 ∫∫ −=−
4

0

4

0

x4xdxx4
2
x

 dx

⇒ A = ∫ −−−
4

0

dx)x4(4)x4( (using property – 4)

⇒ A = ∫ −
4

0

dxx)x4(

⇒ A = 4 
4

0
xx

3
2

 – 
4

0

2 xx
5
2

⇒ A = 15
128

 sq. units.

Example : 34
Find the area bounded by the parabola y = x2, X-axis and the tangent to the parabola at (1, 1)

Solution
The given curve is y = a2

Equation of tangent at A ≡ (1, 1) is :

y – 1 y – 1 = 
1xdx

dy

=
⎥⎦

⎤
 (x – 1) [using : y – y1 = m(x – x1)]

⇒ y – 1 = 2 (x – 1)
⇒ y = 2x – 1 ...........(i)
The point of intersection of (i) with X-axis is B = (1/2, 0)
Shaded area = area (OACO) – area (ABC)
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⇒ area = ∫ ∫ −−
1

0

1

2/1

2 dx)1x2(dxx

⇒ area = 3
1

 – ⎥⎦

⎤
⎢⎣

⎡ −−− )2/11(
4
11

⇒ area = 
12
1

Example : 35

Evaluate : ∫
π

π−

⎟
⎠
⎞

⎜
⎝
⎛ π

0
x2

dxxcos
2

sin)x2sin(x

Solution

Let Ι = ∫
π

π−

⎟
⎠
⎞

⎜
⎝
⎛ π

0
x2

dxxcos
2

sin)x2sin(x
............(i)

Apply property – 4 to get

⇒ Ι = ∫
π

π−−π

⎟
⎠
⎞

⎜
⎝
⎛ −π
π

−π−π

0
)x(2

dx)xcos(
2

sin)x22sin()x(

= ∫
π

π−

⎟
⎠
⎞

⎜
⎝
⎛ π−π

0
x2

dxxcos
2

sinx2sin)x(
............(ii)

Add (i) and (ii) to get

2Ι = dxxcos
2

sinx2sin
0
∫
π

⎥⎦

⎤
⎢⎣

⎡π

Let
2
π

 cos x = t ⇒ – 
2
π

 sin x dx = dt

⇒ Ι = – 2
4
π

 ∫∫
ππ

π−
π

=
2/

0
2

2/

2/

dttsint8tdtsint

⇒ Ι = 2
8
π

 ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+ ∫∫

ππ 2/

0

2/

0

dttcosdttsint

⇒ Ι = 2
8
π

 ⎥⎦
⎤

⎢⎣
⎡ +− ππ 2/

0
2/

0 )t(sintcost  = 2
8
π

 [0 + 1] = 2
8
π
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Example : 36

Prove that : ( )∫ ∫
π π

θθθ
π

=θθθ
0 0

23 dsin2log
2

3dsinlog

Solution

Let Ι = ∫
π

θθθ
0

3 dsinlog

Using property – 4, we get :

Ι = ∫ ∫
π π

θθπθ+θπ−θ−π=θθ−πθ−π
0 0

22333 dsinlog]33[d)log()(

⇒ Ι = π3 ∫∫∫∫
ππππ

θθθπ+θθθπ−θθθ−θ
0

2

00

3

0

dsinlog3dsinlog3dsinlogsinlog

⇒ 2Ι = π3 ∫ ∫
π π

θθθπ+Ιπ=θθ
0 0

2
1

2 dsinlog33dsinlog ............(i)

Consider Ι1 Ι1 = ∫
π

θθθ
0

dsinlog

Using property – 4,

we get Ι1 = ∫ ∫∫
π ππ

θ−θπ=θθθ−π
0 00

sinlogsinlogdsinlog)(

⇒ 2Ι1 = π ∫ ∫
π π

θθπ=θθ
0

2/

0

dsinlog2dsinlog [using property – 6]

⇒ Ι1 = – 
2

2π
 log 2 using : ∫

π
π−

=θθ
2/

0

2log
2

dsinlog

On Replacing value of Ι1 in (i) we get,

2Ι = – π4 log 2 – 3π2 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ π 2log
2

2

 + 3π ∫
π

θ
0

2
 log sin θ dθ

= 
2

4π
 log 2 + 2 3π ∫

π

θθ
0

2 sinlog  = 3π ( ) ∫∫
ππ

θθθπ+θθ
0

2

0

2 dsinlog3d2log

= 3π ( )∫
π

θθθ
0

2 dsin2log

⇒ Ι = 
2
3

 π ∫
π

θθθ
0

2 dsin2log
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Example : 37

Determine the value of ∫
π

π−
+

+

xcos1
)xsin1(x2

2

Solution

Ι = ∫
π

π−
+

+

xcos1
)xsin1(x2

2  dx = 2 ∫
π

π−
+ xcos1

xsinx2
2 ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+=∫ ∫

−

a

a

a

0

dx)x(f)x(fdx)x(f:gsinu

⇒ Ι = 4 ∫
π

+0
2 xcos1
xsinx

 dx

⇒ 2Ι = 4 ∫
π

+

π

0
2 xcos1
xsin

 dx ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−= ∫∫

a

0

a

0

dx)xa(fdx)x(fgsinu

⇒ Ι = 4π ∫
π

+

2/

0
2 xcos1

dxxsin
 dx ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
−+=∫ ∫ ∫

a2

0

a

0

a

0

dx)xa2(fdx)x(fdx)x(fgsinu

Put cos x = t ⇒ – sin x dx = dt
For x = 0, t = 1 and for x = π/2, t = 0

⇒ Ι = 4π 

1

0

1
1

0
2 ttan4

t1
dt −π=
+∫  = 4π 

4
π

 = π2

Example : 38
Let An be the area bounded by the curve y = (tan x)n and the lines x = 0, y = 0 and x = π/4. Prove that for

n > 2, An + An–2 = 
1n

1
−

 and deduce 
2n2

1
+

 < An < 
2n2

1
−

Solution
According to the function, An is the area bounded by the curve y = (tan x)n , x = 0, y = 0 and x = π/4.

So An = Shaded Area = ∫∫
π

−
π

=
4/

0

2n2
4/

0

xtanxtandx)x(tan

⇒ An = ∫ ∫∫
π π

−−
π

− −=−
4/

0

n/

0

2n2n2
4/

0

2n2 dxxsecxtanxsecxtan)1x(sec

⇒ An = 

4/

0

1n

1n
xtan

π−

−  – An–2

⇒ An + An–2 = 
1n

1
−

...........(i)

Hence proved.

Replace n by n + 2 to get : An+2 + An = 
1n

1
+

.............(ii)

Observe that if n increases, (tan x)n decreases because 0 ≤ tan x ≤ 1 [0, π/4]
⇒ As n is increased, An decreases.
⇒ An+2 < An < An–2
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Using (i) and (ii), replace values of An–2 and An+2 in terms of An to get,

1n
1
+

 – An < An < 
1n

1
−

 – An

⇒
1n

1
+

 < 2An < 
1n

1
−

 – An

⇒
1n2

1
+

 < An < 
2n2

1
−

Hence Proved.

Example : 39

Show that ∫
+π vn

0

dx|xsin|  = 2n + 1 – cos v, where n is a +ve integer and 0 ≤ v ≤ π

Solution

Let Ι = ∫∫∫
+π

π

π+π

+=
vn

n

n

0

vn

0

|xsin||xsin||xsin| (using property – 1)

⇒ Ι = Ι1 + Ι2 ............(i)
Consider Ι1

Ι1 = ∫ ∫
π π

=
n

0 0

|xsin|n|xsin| (using property – 9 and period of |sin x| is π)

⇒ Ι1 = n ∫
π

0

dxxsin (As sin x ≥ 0 in [0, π], |sin x| = sin x)

⇒ Ι1 = – n 
π

0
xcos  = – n [–1 –1] = 2n

Consider Ι2

Ι2 = ∫
+π

π

vn

n

dx|xsin|

Put x = nπ + θ ⇒ dx = dθ
when x is nπ , θ = 0 and when x = nπ + v, θ = v

⇒ Ι2 = ∫∫ θθ=θθ+π
v

0

v

0

d|sin|d|)xsin(| (Q period of |sin x| = π)

⇒ Ι2 = ∫∫ θθ=θθ
v

0

v

0

dsind|sin| (Q for 0 ≤ θ ≤ π, sin θ is positive)

= – 
v

0
cosθ  = 1 – cos v

On substituting the values of Ι1 and Ι2 in (i), we get
Ι = 2n + 1 (1 – cos v) = 2n + 1 – cos v
Hence proved.
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Example : 40

It is known that f(x) is an odd function in the interval ⎥⎦

⎤
⎢⎣

⎡−
2
T,

2
T

 and has a period equal to T. Prove that

dt)t(f
x

a
∫  is also periodic function with the same period.

Solution
It is given that : f(x) = – f(x) ..............(i)

and f(x + t) = f(x) ..............(ii)

Let g(x) = ∫
x

a

dt)t(f

⇒ g(x + T) = ∫∫∫∫
++

++=
Tx

2/T

2/T

x

x

a

Tx

a

dt)t(fdt)t(fdt)t(fdt)t(f (using property – 1)

Put t y = y + T in the third integral on RHS.
⇒ dt = dy
when t = T/2, y = –T/2 and hwn t = x + T, y = x

⇒ g(x + T) = ∫∫∫
−

+++
x

2/T

2/T

x

x

a

dy)Ty(fdt)t(fdt)t(f

Using (i), we get g(x + T) = ∫∫∫
−

++
x

2/T

2/T

x

x

a

dy)y(fdt)t(fdt)t(f

g(x + T) = ∫∫
−

+
2/T

2/T

x

a

dt)t(fdt)t(f (using property – 1)

⇒ g(x + T) = ∫
x

a

dt)t(f (using property – 8)

⇒ g(x + T) = g(x)
⇒ g(x) is also periodic function when period T.

Example : 41

Evaluate the integral ∫
−

−

+−

3/1

31
2

1
4

4
dx

x1
x2cos

x1
x

Solution

Ι = dx
x1
x2sin

2x1
xdx

x1
x2cos

x1
x

2
1

3/1

31
4

4

2
1

3/1

31
4

4

⎥⎦

⎤
⎢⎣

⎡
+

−
π

−
=

+−
−

−

−

−
∫∫ (using : sin–1x + cos–1x = π/2)

⇒ Ι = 
2
π

 dx
x1
x2sin

x1
xdx

x1
x

3/1

31
2

1
4

43/1

31
4

4

∫∫
−

−

−
+−

−
−

As integrand of second integral is an odd function, integral will be zero i.e.

⇒ Ι = 
2
π

 ∫
−

−
−

3/1

31
4

4
0dx

x1
x

[using property – 8]
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= – 
2

2π
 ∫ −

+−
3/1

0
4

4

1x
11x

 = – π ∫ ⎟
⎠

⎞
⎜
⎝

⎛
−

+
3/1

0
4 1x
11  dx

⇒ Ι = 3
π−

 + 
2

)( π−
 ∫ −+

−−+
3/1

0
22

22

)1x()1x(
)1x(1x

 dx

= – 3
π−

 – 
2
π

 ⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

+
−

−∫ ∫
3/1

0

3/1

0
22 dx

1x
1

1x
1

= – 3
π−

 – 
2
π

 ⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
−

+
− − 3/1

0
1

3/1

0
xtan

1x
1xlog

2
1

= – 3
π

 + 
12

2π
 – 

4
π

 log 
13
13

+

−

Example : 42

If f is a continuous function ∫ ∞→
x

0

dt)t(f , then show that every line y = mx intersect the curve

y2 + ∫ =
x

0

2dt)t(f

Solution

If y = mx and y2 + ∫ =
X

0

2dt)t(f  have to intersect for all value of m, then

m2 x2 + ∫ =
X

0

2dt)t(f  must posses atleast one solution (root) for all m. .........(i)

Let g(x) = m2x2 + ∫ −
x

0

2dt)t(f

For (i) to e true, g(x) should be zero for atleast one value of x.
As f(x) is a given continuous function and m2x2 is a continuous function,

g(x) = m2x2 + ∫
x

0

dt)t(f  is also a continuous function .............(iii)

(Q because sum of two continuous functions is also continuous)

g(0) = – 2 and ∞→x
lim  g(x) = ∞ .............(iii)

Combining (ii) and (iii), we can say that :
for all values of m, the curve g(x), intersect the y = 0 line (i.e. X-axis) for atleast one value of x.
⇒ g(x) = 0 has atleast one solution for all values of m.
Hence proved
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Example : 43

Let a + b = 4, where a < 2, and let g(x) be a differentiable function. If dx
dg

 > 0 for all x, prove that

∫∫ +
b

0

a

0

dx)x(gdx)x(g  increases as (b – a) increases

Solution
Let b – a = t ..........(i)
It si given that a + b = 4 ..........(ii)

Solving (i) and (ii), we get b = 
2

4t +
 and a = 

2
t4 −

As a < 2, 
2

t4 −
 < 2

⇒ 4 – t < 4 ⇒ t > 0

Let f(t) = ∫∫ +
b

0

a

0

dx)x(gdx)x(g

⇒ f(t) = ∫
−
2

t4

0

dx)x(g  + ∫
+
2
4t

0

dx)x(g

f′(t) = g ⎟
⎠

⎞
⎜
⎝

⎛ −
2

t4
 ⎟

⎠

⎞
⎜
⎝

⎛−
2
1

 + g ⎟
⎠

⎞
⎜
⎝

⎛ +
2

t4
 ⎟

⎠

⎞
⎜
⎝

⎛
2
1

 = 
2
1

 ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛ −
−⎟

⎠

⎞
⎜
⎝

⎛ +
2

t4g
2

t4g ..........(i)

As dx
dg

 . 0, g(x) is an increasing function.

For t > 0, 
2

t4 +
 > 

2
t4 −

⇒ g ⎟
⎠

⎞
⎜
⎝

⎛ +
2

t4
 > g ⎟

⎠

⎞
⎜
⎝

⎛ −
2

t4
[Q g(x) is an increasing function]

⇒ f′(t) > 0 ∀ t > 0 [using (i)]
⇒ f(t) is an increasing function as t increases.
Hence Proved.

Example : 44
Find the area between the curve y = 2x4 – x2 , the x-axis and the ordinates of two minima of the curve.

Solution
Using the curve tracing steps, draw the rough sketch of the function y = 2x4 – x2 .
Following are the properties of the curve which can be used to draw its rough sketch
(i) The curve is symmetrical about y-axis
(ii) Point of intersection with x-axis are x = 0, x = ±1/√2. Only point of intersection with y-axis is y = 0.

(iii) For x ∈ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−∞−

2
1

 ∪ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∞

2
1

, y > 0 i.e. curve lies above x-axis and in the other intervals it lies

below x-axis.

(iv) Put dx
dy

 = 0 to get x = ±1/2 as the points of local minimum. On plotting the above information on

graph, we get the rough sketch of the graph. The shaded area in the graph is the required area
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Required Area = 2 

2/1

0

352/1

0

24

3
x

5
x22dx)xx2(

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−=−∫  = 120

7

Example : 45
Consider a square with vertices at (1, 1), (–1, –1), (–1, 1) and (1, –1). Let S be the region consisting of all
points inside the square which are nearer to the origin than to the edge. Sketch the region S and find its
area.

Solution
Let ABCD be the square with vertices A(1, 1), B(–1, 1), C(1, –1) and D(1, –1). The origin O is the centre of
this square. Let (x, y) be a moving point in the required region. Then :

22 yx +  < |1 – x|, 22 yx +  < |1 + x|, 22 yx +  < |1 – y|, 22 yx +  < |1 + y|

i.e. x2 + y2 < (1 – x)2 , x2 + y2 < (1 + x)2 , x2 + y2 < (1 – y)2 , x2 + y2 < (1 + y)2

⇒ y2 = 1 – 2x ............(i)
y2 = 1 + 2x ............(ii)
x2 = 1 – 2y ............(iii)
x2 = 1 + 2y ............(iv)

Plotting the curves (i) to (iv), we can identify that the area bounded by the curves is the shaded area (i.e.
region lying inside the four curves).
Required Area = 4 × Area (OPQR) = 4 [Area (OSQRO) + Area (SPQS)]

= 4 [Area (OSQRO) + Area (SPQS)]

= 4 ⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
−+−∫ ∫

s

s

x

0

2/1

x

2 dxx21dx)x1(
2
1

(xs is the x-coordinate of point S) ...........(v)

To find xs, solve curves (i) and (iii)
⇒ x2 – y2 = – 2(y – x)
⇒ (x – y) [x + y – 2] = 0 ⇒ x = y
Replace x = y in (i) to get x2 + 2x – 1 = 0 ⇒ x = √2  ± 1
(Check yourself that for x + y = 2, these is no point of intersection between the lines)
As x < 1, S is (√2 – 1, √2 – 1)
replacing the value of xs in (i), we get

Required Area = 4 ⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
−+−∫ ∫

−

−

12

0

2/1

12

2 dxx21)x1(
2
1

= 4 

12

0

3

3
xx

2
1

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−  

2/1

12

2/3)x21(
2
1

3
2

−
⎥⎦

⎤−×−  = 3
2

 ( )1028 −  sq. units

Example : 46
Let O(0, 0), A(2, 0) and B (1, 1/√3) be the vertices of a triangle. Let R be the region consisting of all those
points P inside ∆OAB which satisfy d(P, OA) ≤ min {d (P, AB)}, where d denotes the distance from the point
to the corresponding line. Sketch the region R and find its area.

Solution
Let the coordinates of moving point P be (x, y)
Equation of line OA ≡ y = 0
Equation of line OB ≡ √3 = x
Equation of line AB ≡ √3y = 2 – x.
d(P, OA) = distance of moving point P from line OA = y

d(P, OB) = distance of moving point P from line OB = 
2

|xy3| −
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d(p, AB) = distance of moving point P from line AB = 
2

|2xy3| −+

It is given in the question that P moves inside the triangle OAB according to the following equation.
d (P, OA) ≤ min {d(P, OB), d (P, AB)}

⇒ y ≤ min 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ −+−

2

2xy3
,

2

xy3

⇒ y ≤ 
2

xy3 −
.........(i) and y ≤ 

2

2xy3 −+
.........(ii)

Consider (i) y ≤ 
2

xy3 −

y ≤ 
2

y3x −
i.e. x > √3y because P(x, y) moves inside the triangle, below the lines OB

⇒ (2 + √3) y ≤ x
⇒ y ≤ (2 – √3) x
⇒ y ≤ tan 15º x. (Note : y = tan 15ºx is an acute ∠ bisector of ∠ O] ...........(iii)

Consider (ii) y ≤ 
2

2xy3 −+

⇒ 2y ≤ 2 – x – √3y
i.e. √3y + x – 2 < 0 because P(x, y) moves inside the triangle, below the line AB.
⇒ (2 + √3) y ≤ –(x – 2)
⇒ y ≤ – (2 – √3) (x – 2)
⇒ y ≤ – tan 15º (x – 2) [Note : y = – tan 15º (x – 2) is an acute ∠ bisector of ∠A]
From (iii) and (iv), P moves inside the triangle as shown in figure. (shaded area).
Let D be the foot of the perpendicular from C to OA
As ∠COA = ∠OAC = 15º, ∆OCA is an isosceles ∆ .
⇒ OD = AD = 1 unit.

Area of shaded region = Area of ∆OCA = 1/2 base × height = 
2
1

 (2) [1 tan 15º] = tan 15º = 2 – √3

Alternate Method
Let acute angle bisector fo angles O and A meet at point C inside the triangle ABC.
Consider OC

On Line OC, d(P, OA) = d(p, OB) [note if P moves on OC d(P, OB) < d (P, AB)]
⇒ Below the line OC, d(P, OA) < d(p, OB) < d (P, AB) ...........(i)

On Line AC, d(P, OA) = d(P, AB) [note if P moves on AC d(P, AB) < d (P, OB)]
⇒ Below the line OC, d(P, OA) > d (P, AB) < d (P, OB) ...........(ii)
On combining (i) and (ii), P moves inside the triangle OAC
Now the required area is the area of the triangle OAC = 2 – √3 (refer previous method)

Example : 47
Sketch the smaller of the regions bonded by the curves x2 + 4y2 – 2x – 8y + 1 = 0 and
4y2 – 3x – 8y + 7 = 0. Also find its area.

Solution
Express the two curves in perfect square form to get :

4
)1x( 2−

 + (y – 1)2 = 1 ..........(i)

[i.e.  ellipse centred at (1, 1)]
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and (y – 1)2 = 
4
3

 (x – 1) ..........(ii)

[i.e. parabola whose vertex is at (1, 1)]
To calculate the area bounded between curves (i) and (ii), it is convenient to shift the origin at (1, 1).
Replace x – 1 = X and y – 1 = Y in (i) and (ii).
The new equations of parabola and ellipse with shifted origin are :

4
X2

 + Y2 = 1 .........(iii)

Y2 = 
4
3

X .........(iv)

It can be easily observed that the area of the smaller region bounded by (i) and (ii) is the same as the area
of the smaller region bounded by (iii) and (iv) on the X-Y plane i.e.  Area bounded remains same in the two
cases.
So area of region bounded by (iii) and (iv)

= shaded area shown in the figure
= 2 × shaded area lying in Ist quadrant

= 2 ⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
−+∫ ∫

A

A

x

0

2

x

2 dXx4
2
1dXX

2
3

...........(v)

Solve curves (iii) and (iv) to get point of intersection A = ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

2
3,1

⇒ xA = 1
Replace xA in (v) to get :

Required Area = 2 ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+ ∫∫ dxX4

2
1dXX

2
3

2

1

2
1

0

= 
2

1

12
1

0

2/3

2
Xsin2X4

2
XX

3
2

⎥⎦

⎤
⎢⎣

⎡ +−+ −
 = 

6
3

 + 3
2π
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Example : 1

Solve the differential equation : dx
dy

 = x.

Solution
The given differential equation is : dy – xdx

⇒ ∫∫ = xdxdy

⇒ y = 
2
x2

 + C ........(i)

where C is an arbitrary constant.
Note that (i) is the general solution of the given differential equation.

Example : 2

Solve the differential equation : dx
dy

 = x – 1 if y = 0 for x = 1.

Solution
The given differential equation is : dy = (x – 1) dx

∫∫ −= dx)1x(dy ⇒ y = 
2
x2

 – x + C (general solution)

This is the general solution. We can find value of C using y = 0 for x = 1.

0 = 
2
1

 – 1 + C ⇒ C = 
2
1

y = 
2
x2

 – x + 
2
1

 is the particular solution.

Example : 3
Solve the differential equation : (1 + x) y dx + (1 – y) x dy = 0

Solution
Separate the term of x and y to get : (1 + x) y dx = – (1 – y) x dy

⇒
x

x1+
 dx = y

1y −
 dy

⇒ ∫ ⎟
⎠

⎞
⎜
⎝

⎛ +
x

x1
 dx = ∫ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
y

1y
 dy

⇒ log x + x = y – log y + C
⇒ log xy + x – y = C is the general solution.

Example : 4

Solve the differential equation : xy2 dx
dy

 = 1 – x2 + y2 – x2y2

Solution

The given differential equation : xy2 dx
dy

 = 1 – x2 + y2 – x2y2

⇒ xy2 dx
dy

 = (1 – x2) (1 + y2)

⇒ 2

2

y1
dyy

+  = 
x

dx)x1( 2−

Differential Equations
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⇒ ∫ + 2

2

y1
y

 dy = ∫ ⎟
⎠

⎞
⎜
⎝

⎛ − x
x
1

 dx

⇒ y – tan–1 y = log x – 
2
x2

 + C is the general solution of the given differential equation.

Example : 5

Solve 2

2

dx
yd

 = x + sin x if y = 0 and dx
dy

 = – 1 for x = 0

Solution

The given differential equation is : 2

2

dx
yd

 = x + sin x ...........(i)

It is an order 2 differential equation. But it can be easily reduced to order 1 differential equation by integrat-
ing both sides. On Integrating both sides of equation (i), we get

dx
dy

 = ∫ + dx)xsinx(

⇒ dx
dy

 = 
2
x2

 – cos x + C1 , where C1 is an arbitrary constant ...........(ii)

⇒ dy = (x2/2 – cos x + C1) dx

⇒ ∫∫ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−= 1

2
Cxcos

2
xdy  dx

⇒ y = 
6
x3

 – sin x + C1x + C2

This is the genral solution. For particular solution, we have to find C1 and C2

for x = 0, y = 0 ⇒ 0 = 
6

03

 – sin 0 + 0 C1 + C2 ⇒ C2 = 0

for x = 0, dx
dy

 = – 1 ⇒ – 1 = 
2

02
 – cos 0 + C1 ⇒ C1 = 0 [put x = 0 and dy/dx = – 1 in (2)]

⇒ y = 
6
x3

 – sin x is the particular solution of the given differential equation.

Example : 6

Solve the differential equation : dx
dy

 – x tan (y – x) = 1

Solution

The given differential equation is : dx
dy

 – x tan (y – x) = 1

Put z = y – x

⇒ dx
dz

 = dx
dy

 – 1 ⇒ dx
dy

 = dx
dz

 + 1

⇒ the given equation becomes : ⎟
⎠

⎞
⎜
⎝

⎛ +1
dx
dz

 – x tan z = 1
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⇒ dx
dz

 = x tan z

⇒ ∫ dzzcot  = ∫ dxx

⇒ log sin z = 
2
x2

 + C

⇒ sin (y – x) = 2/x2
e  . eC

⇒ sin (y – x) = 2/x2
ke where k is an arbitrary constant.

Example : 7

Solve the differential equation : dx
dy

 = yx
yx2

+
−

Solution

The given differential equation is : dx
dy

 = yx
yx2

+
−

⇒ dx
dy

 = x/y1
x/y2

+
−

Let y = mx ⇒ dx
dy

 = m + x dx
dm

⇒ m + x dx
dm

 = 
m1
m2

+
−

⇒ x dx
dm

 = 
m1

mm22 2

+
−−

⇒ 2mm22
dm)m1(
−−

+
 = 

x
dx

Integrate both sides :

⇒
2
1−

 ∫ −−
−−

2mm22
m22

 dm = ∫ x
dx

⇒
2
1−

 log (2 – 2m – m2) = log x + log C, where C is an arbitrary constant

⇒ (2 – 2m – m2) = 22xC
1

⇒ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−− 2

2

x
y

x
y22  x2 = K, where K is an arbitrary constant.

⇒ 2x2 – 2xy – y2 = K is the required general solution.
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Example : 8

Solve the differential equation : xdy – ydx = 22 yx +  dx

Solution

The given differential equation is : xdy – ydx = 22 yx +  dx

⇒ dx
dy

 = 
x

yxy 22 ++

Let y = mx ⇒ dx
dy

 = m + x dx
dm

⇒ 2m1

dm

+
 = 

x
dx

⇒ ∫
+ 2m1

dm
 = ∫ x

dx

⇒ log 2m1m ++  = log x + log C, where C is an arbitrary constant.

⇒
x
y

 + 2

2

x
y1+  = Cx

Example : 9

Solve the differential equation : (2x + y – 3) dy = (x + 2y – 3) dx
Solution

The given differential equation is  : dx
dy

 = 3yx2
3y2x

−+
−−

Solving 
⎭
⎬
⎫

⎩
⎨
⎧

=−+
=−+

03yx2
03y2x

, we get : x = 1, y = 1

Put x = u + 1 and y = v + 1

⇒ dx
dy

 = du
dv

⇒ du
dv

 = 3)v1()u1(2
3)v1(2)u1(

−+++
−+++

 = vu2
v2u

+
+

Now put v = mu ⇒ du
dv

 = m + u du
dm

⇒ m + u du
dm

 = 
m2
m21

+
+

⇒ 2m1
m2

−
+

 dm = u
du

⇒ ∫ −
+

2m1
m2

 dm = ∫ u
du

⇒ ∫ ⎭
⎬
⎫

⎩
⎨
⎧

−
+

+ m1
2/3

m1
2/1

 dm = ∫ u
du

(Resolving into partial fractions)
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⇒
2
1

 log |1 + m| – 
2
3

 log |1 – m| = log u + log C

⇒ (1 + m) (1 – m)–3 = u2 C2 where m = u
v

 = 
1x
1y

−
−

and u = x – 1

⇒ ⎥⎦

⎤
⎢⎣

⎡
−
−

+
1x
1y1  

3

1x
1y1

−

⎥⎦

⎤
⎢⎣

⎡
−
−

−  = (x – 1)2 C2

⇒ (x + y – 2) = (x – y)3 C2 where c2 is a constant

Example : 10

Solve the differential equation : x dx
dy

 + y = x3 .

Solution

The given equation is : x dx
dy

 + y = x3 .

Convert to standard from by dividing by x.

⇒ dx
dy

 + 
x
1

 y = x2

⇒ P = 
x
1

and Q = x2

If = ∫ dxP
e  = ∫ x

dx

e  = elnx = x

⇒ Solution is : yx = ∫ +Cdx)x(x2 (using the formula)

⇒ xy = 
4
x4

 = C is the genral solution

Example : 11

Solve sin x dx
dy

 + y cos x = 2 sin2x cos x

Solution
The given differential equation is :

dx
dy

 + cot x y = 2 sin x cos x

⇒ P = cot x and Q = 2 sin x cos x

xsinlogdxxcotdxP == ∫∫
⇒ I.F. = elog sin x = sin x

Using the standard result, the solution is : y (I.F.) = ∫ +Cdx.)F.I(Q

⇒ y sin x = ∫ +Cdxxsinxcosxsin2

⇒ y sin x = 3
2

 sin3x + C is the general solution.
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Example : 12

Solve the differential equation : x2 dx
dy

 + xy = y2.

Solution

The differential equation is : dx
dy

 + 
x
y

 = 2

2

x
y

(Bernoulli’s Differential Equation)

⇒ 2y
1

 dx
dy

+ xy
1

 = 2x
1

.........(i)

Let y
1

 = t ⇒ 2y
1−

 dx
dy

 = dx
dt

On substituting in (i), we get

dx
dy

 – 
x
t

 = 2x
1−

i.e. linear differential equation.

I.F. = ∫ − dx
x
1

e  = e–lux = 
x
1

Using the standard result, the solution of the differential equation is :

x
t

 = – ∫ ⎟
⎠

⎞
⎜
⎝

⎛
x
1

 2x
1

 dx + C

⇒ xy
1

 = + 2x2
1

 + C is the general solution.

Example : 13

Solve the differential equation : y2 dx
dy

 = x + y3 .

Solution

The given differential equation is : y2 dx
dy

 = x + y3

⇒ dx
dy

 = 2y
x

 + y

⇒ dx
dy

 – y = xy–2 (Bernoulli’s Differential Equation)

⇒ y2 dx
dy

 – y3 = x

Let y3 = t ⇒ 3y2 dx
dy

 = dx
dt

On substituting in the differential equation, it reduces to linear differential equation : i.e.

dx
dt

 – dt = 3x

I.F. = ∫ − dx3
e  = e–3x

Using the standard result, the solution of the differential equation is :

e–3x t = 3 ∫ − x3xe  dx + C
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⇒ y3 e–3x = 3 ⎥⎦

⎤
⎢⎣

⎡ +∫ ∫ −− dxe
3
1dxex x3x3

 + C

⇒ y3 = – x – 1/3 + Ce3x

⇒ 3 (y3 + x) + 1 = ke3x is the general solution

Example : 14

Solve the differential equation : xyp2 – (x2 – y2) p – xy = 0, where dx
dy

 = p.

Solution
The given differential equation is : xyp2 – x2 p + y2 p – xy = 0
⇒ (xyp2 + y2p) – (x2p + xy) = 0
⇒ yp (xp + y) – x (xp + y) = 0
⇒ (xp + y) (yp – x) = 0

Case – I x dx
dy

 + y = 0

⇒ xdy + ydx = 0 ⇒ d(xy) = 0
On integrating, we get : xy = k
Case – II xp – x = 0

y dx
dy

 – x = 0

integrating, we get 
2
y2

 – 
2
x2

 = k

or y2 – x2 – 2k = 0
Hence the solution is (xy – k) (y2 – x2 – 2k) = 0

Example : 15

Solve the differential equation : p(p + x) = y (x + y), where p = dx
dy

Solution
The given differential equation is : p2 + px – xy – y2 = 0
⇒ (p2 – y2) + (px – xy) = 0
⇒ (p – y) ( p + y) + x(p – y) = 0
⇒ (p – y) (p + x + y) = 0
Case – I

⇒ dx
dy

 – y = 0 ⇒ y
dy

 – dx = 0

Integrating, we get : log y = x + log A = log (Aex)
or y = Aex , where A is an arbitrary constant ..........(i)
Case – II p + x + y = 0

⇒ dx
dy

 + x + y = 0

⇒ dx
dy

 + y – x which is a linear equation.

I.F. = ∫dx
e  = ex

Using the standard result, the solution of the differential equation is :

y ex = – Adxxex +∫
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⇒ y.ex = ex (1 – x) + A
⇒ y = 1 – x + Ae–x ............(ii)
From (i) and (ii), we get the combined solution of the given equation as (y – Aex) (y + x – 1 – Ae–x) = 0

Example : 16

Solve the differential equation : y = (1 + p) x + ap2 , where p = dx
dy

Solution
The given differential equation is : y = (1 + p) x + ap2 [solvable for y, refer section 3.3] .........(i)
Differentiating the given equation w.r.t. x, we get

dx
dy

 = p = 1 + p + x dx
dp

 + 2ap dx
dp

⇒ 0 = 1 + dx
dp

 (x + 2ap)

⇒ dp
dx

 + x + 2ap = 0, which is a linear equation.

I.F. = ∫dp
e  = ep

Using the standard result, the solution of the differential equation is :

x ep = – 2a ∫ +−−=+ Ce)1p(a2Cdppe pp

⇒ x = 2a (1 – p) + Ce–p ............(ii)
The p-eliminant of (i) and (ii) is the required solution.

Example : 17
Solve the differential equation : p2y + 2px = y

Solution

The given differential is : x = p2
y

 – 
2
yp

[solvable for x, refer section 3.4] ........(i)

Differentiating with respect to y, we get

dy
dx

 = p
1

 = p2
1

 – 2p2
y

 dy
dp

 – 
2
p

 – 
2
y

 dy
dp

⇒ p2
1

 + 
2
p

 = – 
2
y

 dy
dp

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+1

p
1
2

⇒ p2
p1 2+

 = – 
2
y

 dy
dp

 2

2

p
p1+

⇒ 1 = – p
y

 dy
dp

as 1 + p2 ≠ 0

⇒ d py + ydp = 0
⇒ d(py) = 0

Integrating, we get py = k ⇒ p = y
C

Putting the value of p in (i), we get

y . 2

2

y
C

 + 2x . y
C

 = y



Page # 9.

C2 + 2Cx = y2

which si the required solution.

Example : 18

Solve the differential equation : x = yp + ap2 .
Solution

The given differential is : x = yp + ap2

Differentiating with respect to y, we get

dy
dx

 = p
1

 = p + y dy
dp

 + 2ap dy
dp

i.e. p
1

 – p = dy
dp

 (y + 2ap)

i.e. dp
dy

 = 2p1
py
−  + 2

2

p1
ap2
−

i.e. dp
dy

 – 2p1
p
−  y = 2

2

p1
ap2
−

which is linear equation

I.F. =
∫ −

− 2p1
p

e  = 
)p1log(

2
1 2

e
−

Using the standard result, the solution of the differential equation is :

y 2p1− = 2a ∫ − 2

2

p1
p

 . 2p1−  dp

= 2a ∫ − 2

2

p1
dpp

 = – 2a ∫
−

−−
2

2

p1

1)p1(
 dp

= – 2a ∫ ∫
−

+−
2

2

p1

dpa2dpp1

= – 2a ⎥⎦

⎤
⎢⎣

⎡ +− − psin
2
1p1p

2
1 12

 + 2a sin–1 p + k

= y 2p1−  = – ap 2p1−  + a sin–1 p + k. .........(ii)

The p-eliminant of (i) and (ii) is the required solution.

Example : 19
Solve the differential equation : p3x – p2y – 1 = 0

Solution
The given differential equation is : y = px – 1/p2

Differentiating with respect to x, we get

dx
dy

 = p = p + x dx
dp

 + 3p
2

 dx
dp

⇒ dx
dp

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+ 3p

2x  = 0
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⇒ dx
dp

 = 0 .........(ii)

or p3 = 
x
2−

.........(iii)

Consider (2)
Integrate both sides to get : p = c where c is an arbitrary constant
put p = c in (i) to get the general solution of the differential equation i.e.
y = cx – 1/c2 is the general solution
Consider (3)
Eliminate p between (iii) and (i) to get the singular solution i.e.

y = 3/2

x
2

1x
x
2

⎟
⎠
⎞

⎜
⎝
⎛ −

−⎟
⎠
⎞

⎜
⎝
⎛ −

 = 3/2

x
2

3

⎟
⎠
⎞

⎜
⎝
⎛ −

−

Take cube of both sides to get : y3 = 2x/4
27−

⇒ 4y3 = – 2yx2 is the singular solution.

Example : 20
Form the differential equation satisfied by the general circle x2 + y2 + 2gx + 2fy + c = 0

Solution
In forming differential equations for curve, we have to eliminate the arbitrary constants (g, f, v) for n
arbitrary constant, we get will finally get an nth order differential equation. Here we will get a third order
differential equation in this example.
Differentiating once, 2x + 2yy′ + 2g + 2fy′ = 0 ..........(i)
Differentiating again 1 + y′2 + yy′′ + fy′′ = 0 ..........(ii)
Differentiating again 2y′y′′ + yy′′′ + y′y′′ + fy′′′ = 0
We can now eliminate from (i) and (ii)
⇒ y′′′ (1 + yy′′ + y′2) – y′′ (yy′′′ + 3y′ y′′) = 0
⇒ y′′′ (1 + y′2) – 3y′ y′′2 = 0 is the required differential equation

Example : 21
Find the differential equation satisfied by : ax2 + by2 = 1

Solution
The given solution is : ax2 + by2 = 1
Differentiate the above solution to get :

2ax + 2byy′ = 0 ..........(i)
Differentiating again, we get

2a + 2b(y′2 + y′′) = 0 ..........(ii)
Eliminating a and b from (i) and (ii), we will get the required differential equation

from (i), we have b
a

 = – 
x
yy ′

and

from (ii), we have b
a

 = – (y′2 + yy′′)

⇒ – 
x
yy ′

 = – (y′2 + yy′′)

⇒ yy′ = xy′2 + xyy′′
⇒ xyy′′ + xy′2 – yy′ = 0 is the required differential equation.



Page # 11.

Example : 22
The slope of curve passing through (4, 3) at any point is reciprocal of twice the ordinate at that point. Show
that the curve is a parabola.

Solution
The slope of the curve is the reciprocal of twice the ordinate at each point of the curve. Using this property,
we can define the differential equation of the curve i.e.

slope = dx
dy

 = y2
1

Integrate both sides to get :

∫∫ = dxdyy2

⇒ y2 = x + C
As the required curve passes through (4, 3), it lies on it.
⇒ 9 = 4 + C ⇒ C = 5
So the required curve is : y2 = x + 5 which is a parabola

Example : 23
Find the equation of the curve passing through (2, 1) which has constant subtangent.

Solution
The length of subtangent is constant. Using this property, we can define the differential equation of the
curve i.e.

subtangent = y
y
′  = k where k is a constant

⇒ k dx
dy

 = y

Integrate both sides to get :

∫ y
dyk

 = ∫dx

⇒ k log y = x + C where C is an arbitrary constant.
As the required curve passes through (2, 1), it lies on it.
⇒ 0 = 2 + k ⇒ C = – 2
⇒ the equation of the curve is : k log y = x – 2.
Note that above equation can also be put in the form y = AeBx .

Example : 24
Find the curve through (2, 0) so that the segment of tangent between point of tangency and y-axis has a
constant length equal to 2

Solution
The segment of the tangent between the point of tangency and y-axis has a constant length = PT = 2.
Using this property, we can define the differential equation of the curve i.e.

PT = x sec θ = θ+ 2tan1x  = x 2y1 ′+

⇒
2

dx
dy1x ⎟

⎠

⎞
⎜
⎝

⎛+  = 2

⇒ 1 = 
2

dx
dy

⎟
⎠

⎞
⎜
⎝

⎛
 = 2x

4

⇒ dx
dy

 = ± 2

2

x
x4 −
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Integrate both sides to get :

⇒ y = ± ∫
−

2

2

x
x4

 dx + C1

Put x = 2 sin θ ⇒ dx = 2 cos θ dθ

⇒ y = 2 ± ∫ θ
θ

sin
cos2

 dθ + C1 =

± 2 ∫ θθ−θ d)sinec(cos  + C1 = ± (2 log |cosec θ – cot θ| + 2 cos θ) + C

⇒ y = ± 2 log 
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−+

−− 2
2

x4
x

x42  + C

As (2, 0) lies on the curve, it should satisfy its equation, i.e. C = 0

⇒ the equation of the curve is : y = ± 2 log ⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−+

−− 2
2

x4
x

x42

Example : 25
Find the equation of the curve passing through the origin if the mid-point of the segment of the normal
drawn at any point of the curve and the X-axis lies on the parabola 2y2 = x.

Solution
OB = OM + MB = x + y tan θ = x + yy′
⇒ B ≡ (x + yy′, 0)

⇒ N (mid point of PB) ≡ ⎟
⎠

⎞
⎜
⎝

⎛ ′
+

2
y,

2
yyx

N lies on 2y2 = x

⇒ 2 
2

2
y
⎟
⎠

⎞
⎜
⎝

⎛
 = x + 

2
yy ′

⇒ yy′ – y2 = – 2x (Divide both sides by y and check that it is a Bernoulli’s differential equation)

Put y2 = t ⇒ 2yy′ = dx
dt

⇒
2
1

 dx
dt

 – t = – 2x

⇒ dx
dt

 – 2t = – 4x which is a linear differential equation.

I.F. = Integrating factor = ∫ − dx2
e  = e–2x

Using the standard result, the solution of the differential equation is ;

te–2x = ∫ −− dxx4 x2

⇒ te–2x  = – ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

− ∫
−−

dx
2

e
2

xe x2x2

⇒ te–2x = – 4 ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−−
−−

4
e

2
xe x2x2

 + C

⇒ t = 2x + 1 + Ce2x
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⇒ y2 = 2x + 1 + Ce2x

As it passes through (0, 0), C = – 1
⇒ y2 = 2x + 1 – e2x is the required curve.

Example : 26
Find equation of curves which intersect the hyperbola xy = 4 at an angle π/2.

Solution

Let m1 = dx
dy

 for the required family of curves at (x, y)

Let m2 = value of dx
dy

 for xy = 4 curve.

⇒ m2 = dx
dy

 = – 2x
4

As the requied family is perpendicular to the given curve, we can have :
m1 × m2 =  –1

⇒ dx
dy

 × ⎟
⎠

⎞
⎜
⎝

⎛− 2x
4

 = – 1

⇒ for required family of curves : dx
dy

 = 
4
x2

⇒ dy = 
4
dxx2

⇒ y = 
12
x3

 + C is the requied family which intersects xy = 4 curve at an angle π/2

Example : 27

Solve the differential equation : (1 + ex/y) dx = ex/y ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

y
x1  dy = 0

Solution

The given differential equation is : (1 + ex/y) dx = ex/y ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

y
x1  dy = 0 which is a homogenous differential

equation.

Put x = my ⇒ dy
dx

 = m + y dy
dm

The given equation reduces to (1 + em) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

dy
dmym  + em (1 – m) = 0

(m + mem + em – mem) = – (1 + em) y dy
dm

⇒ y
dy

 = – m

m

em
e1
+

+
 dm

Integrating both sides, we get :
log y + log (m + em) = C1

⇒ log y ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+ y/xe

y
x

 = C1 ⇒ x + yex/y = C is the requied general solution.
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Example : 28

Solve the equation : ⎟
⎠
⎞⎜

⎝
⎛ ++ 22 yxx1  dx + ⎟

⎠
⎞⎜

⎝
⎛ ++− 22 yx1  y dy = 0

Solution
The given differential equation can be written as :

dx – ydy + x 22 yx +  dx + 22 yx +  ydy = 0

⇒ dx – ydy + 22 yx +  (xdx + ydy) = 0

⇒ dx – ydy + 
2
1

 22 yx +  d (x2 + y2) = 0

Integrating both the sides, we get :

x – 
2
y2

 + 
2
1

 ∫ dtt  + C = 0 where t = x2 + y2

⇒ x – 
2
y2

 + 3
1

 (x2 + y2)3/2 = C

Example : 29
Determine the equation of the curve passing through the origin in the form y = f(x), which satisfies the
differential equation dy/dx = sin (10 + 6y)

Solution

Let 10x + 6y = m ⇒ dx
dy

 = 6
1

 ⎟
⎠

⎞
⎜
⎝

⎛ −10
dx
dm

So, we get, dx
dm

 = 2 (3 sin m = 5)

⇒ ∫ + )5msin3(2
dm

 = ∫ dx

Put tan m/2 = t and solve integral on LHS to get :

4
1

 tan–1 ⎟
⎠

⎞
⎜
⎝

⎛ +
4

3t5
 = x + C

As curve passes through (0, 0) C = 
4
1

 tan–1 
4
3

⇒ tan (4x + tan–13/4) = 
4

3)y3x5tan(5 ++

Simplify to get :

y = 3
1

 tan–1 ⎟
⎠

⎞
⎜
⎝

⎛
− x4tan34

x4tan5
 – 3

x5
⎥⎦

⎤
⎢⎣

⎡
−

+
=+

BtanAtan1
BtanAtan)BAtan(use

Example : 30
Solve the differential equation : (xy4 + y) dx – x dy = 0

Solution
The given differential equation is : (xy4 + y) dx – x dy = 0

⇒ x dx
dy

 = xy4 + y

⇒ dx
dy

 – 
x
y

 = y4 (Bernoulli’s differential equation)

Divide both sides by y4 to get :
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4y
1

 dx
dy

 – xy
1
3  = 1 .........(i)

Let 3y
1

 = t ⇒ dx
dt

dx
dy

y
3
4 =

−

After substitution, (i) reduces to :

dx
dt

 + 
x
t3

 = – 3 (linear differential equation)

I.F. ∫ dxP
e  = ∫ dx

x
3

e  = e3lnx = x3

Using the standard result, the solution of differential equation is :

tx3 = ∫ +− 1
3 Cdxx3

⇒ tx3 = 
4
x3 4−

 + C

⇒ 3

3

y
x

 = – 
4
3

 x4 + C

⇒ 3

3

y3
x

 + 
4
1

 x4 = C is the required general solution.

Alternate Method
Consider the given differential equation, (xy4 + y) dx – x dy = 0
⇒ dy4dx + ydx – xdy = 0
Divide both sides by y4 to get

xdx + 4y
xdyydx −

 = 0

Multiply both sides by x2 to get :

x2 dx + ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
2

2

y
x

 2y
xdyydx −

 = 0

⇒ x3 dx + 2

2

y
x

 d ⎥
⎦

⎤
⎢
⎣

⎡
y
x

 = 0

Integrate both sides

∫ ∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

y
xd

y
xdxx 2

2
3

 = 0

⇒
4
x4

 + 3

3

y3
x

 = C is the requied general solution

Example : 31

Solve the following differential equation : ydxxdy
ydyxdx

−
+

 = 22

22

yx

)yx(1

+

+−

Solution
The given differential equation can be written as

)yx(1

ydyxdx
22 +−

+
 = 22 yx

ydxxdy

+

−
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Divide both sides by 22 yx +  to get

)yx(1yx

ydyxdx
2222 +−+

+
 = 22 yx

ydxxdy
+
−

Using the fact that d [x2 + y2] = 2 (xdx + ydy) and d ⎥⎦

⎤
⎢⎣

⎡ −

x
ytan 1

 = 22 yx
ydxxdy

+
−

, we get

)yx(1yx

)yx(d
2
1

2222

22

+−+

+
 = d ⎥⎦

⎤
⎢⎣

⎡ −

x
ytan 1

Put x2 + y2 = t2 in the LHS to get :

2t1t

tdt

−
 = d ⎟

⎠

⎞
⎜
⎝

⎛ −

x
ytan 1

Integrate both sides

∫
− 2t1t

tdt
 = tan–1 

x
y

 + C1

⇒ sin–1 t = tan–1 (y/x) + C

so the general solution is : sin–1 22 yx +  = tan–1 
x
y

 + C

Example : 32

 Solve the differential equation : dx
dy

 + x sin 2y = x3 cos2y.

Solution

The given differential equation is : dx
dy

 + x sin 2y = x3 cos2y

Dividing both sides by cos2y, we get

sec2y dx
dy

 + 2x tan y = x3

Let tan y = t ⇒  sec2y dx
dy

 = dx
dt

On substitution, differential equation reduces to :

dx
dt

 + 2xt = x3 (linear differential equation)

I.F. = ∫ dxx2
e = 

2xe
Using the standard result, the general solution is :

2xte  = ∫ + 1
x3 Cdxex

2

Integrate RHS yourself to get the general solution :

2xte  = 
2
1

 (x2 – 1) 
2xe  + C

Replace t by tan y, we get :

tan y = 
2
1

 (x2 – 1) C
2xe−  which is the requied solution
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Example : 33
A normal is drawn at a point P(x, y) of a curve. It meets the x-axis at Q. If PQ is of constant length k, then

show that the differential equation describing such curves is y dx
dy

 = ± 22 yk − . Also find the equation of

the curve if it passes through (0, k) point
Solution

Let M be the foot of the perpendicular drawn from P to the x-axis
In triangle PMQ,
PQ = k (given), QM = subnormal = y (dy/dx) and PM = y
Apply pythagoras theorem in triangle PMQ to get :

PQ2 = PM2 + MQ2

⇒ k2 = y2 + y3 
2

dx
dy

⎟
⎠

⎞
⎜
⎝

⎛

⇒ y dx
dy

 = ± 22 yk − which is requied to be shown

Solving the above differential equation, we get :

∫
− 22 yk

ydy
 = ± ∫ dx

⇒ – 22 yk −  = ± x + C

As (0, k) lies on it, 0 = 0 + C ⇒ C = 0

⇒ equation of curve is : – 22 yk −  = ± x

⇒ x2 + y2 = k2 is the required equation of the curve.

Example : 34
A curve y = f(x) passes through the point P(1, 1). The normal to the curve at P is : a(y – 1) + (x – 1) = 0. If
the slope of the tangent at any point on the curve is proportional to the ordinate of that point, determine the
equation of the curve. Also obtain the area bounded by the y-axis, the curve and the normal to the curve
at P.

Solution
It is given that equation of the normal at point P(1, 1) is ≡ ay + x = a + 1
⇒ slope of tangent at P = –1/(slope of normal at P)

⇒ a
dx
dy

Pat
=⎥⎦

⎤
...........(i)

It is also given that slope of the tangent at any point of the curve is proportional to the ordinate i.e.

⇒ tan θ = dx
dy

 = dy

⇒ dx
dy

 = ay [Q from (i0, at P(1, 1), dy/dx = a]

On solving, we get : lnx = ax + C
As curve passes through (1, 1), 0 = a + C ⇒ C = – a
⇒ equation of the curve is : y = ex(x–1)

requied Area = ∫ ⎥⎦

⎤
⎢⎣

⎡ −+
− −

1

0

)1x(xe1
a

x1
 dx = 

1

0

)1x(x2

a
ex

a2
x

a
x −

−+−

= ⎟
⎠

⎞
⎜
⎝

⎛ −+−
a
11

a2
1

a
1

 + 
a

e a−

 = 
a2

a21e2 a +−−
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Example : 35
Find the equation to the curve such that the distance between the origin and the tangent at an arbitrary
point is equal to the distance between the origin and the normal at the same point.

Solution
Equation of tangent to the curve y = f(x) and any point (x, y) is :

Y – y = f′(x) (X – x) .............(i)

The distance of the tangent from origin = 2))x(f(1

|x)x(fy|

′+

′−
..........(i)

Equation of norma to the curve y = f(x) and any point (x, y) is :

Y – y = – )x(f
1
′  (X – x)

The distance of the normal from origin = 
2

)x(f
11

x
)x(f

1y

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′

+

′
+

..........(ii)

From (i) and (ii) and using the fact that the distance of the tangent and normal from origin is equal, we get:

y – f′(x) x = f′(x) x
)x(f

1y
′

+  = ± [f′(x) y + x]

⇒ y – x = (x + y) dx
dy

or x + y = (x – y) dx
dy

⇒ dx
dy

 = xy
xy

+
−

or dx
dy

 = yx
yx

−
+

Consider case – I

dx
dy

 = xy
xy

+
−

 = 1x/y
1x/y

+
−

which is a homogeneous equation.

Put y = mx ⇒ dy/dx = m + x (dm/dx)
On substituting in the differential equation, we get :

m + x dx
dm

 = 
1m
1m

+
−

⇒
x

dx
 = – ⎟

⎠

⎞
⎜
⎝

⎛
+

+
2m1

m1
 dm

Integrate both sides, to get :

∫ x
dx

 = ∫ ⎟
⎠

⎞
⎜
⎝

⎛
+

−
+

− 22 m1
m2.

2
1

m1
1

 dm

⇒ log x = – tan–1 m – 1/2 log (1 + m2) + C
⇒ log x (1 + m2)1/2 = – tan–1 m + C

⇒ x 

2/1

2

2

x
y1 ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+  = x/ytan 1

Ce
−−

⇒ 22 yx +  = x/ytan 1
Ce

−−  is the general solution

Consider case – II

dx
dy

 = yx
yx

−
+

 = x/y1
x/y1

−
+

which is a homogeneous equation.
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On solving the above homogenous differential equation, we can get :

22 yx +  = x/ytan 1
Ce

−  as the general solution

Example : 36
Show that curve such that the ratio of the distance between the normal at any of its points and the origin
to the distance between the same normal and the point (a, b) si equal to the constant k(k > 0) is a circle if
k ≠ 1.

Solution
Equation of the normal at any point (x, y) to curve y = f(x) is

Y – y = – )x(f
1
′  (X – x)

its distance from origin = 
2

)x(f
11

)x(f
xy

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′

+

′
+

The distance of the normal from (a, b) = 
2

)x(f
11

)ax(
)x(f

1by

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′

+

−
′

−

As the ratio of these distances is k, we get :

)x(f
xy
′

+  = k )ax(
)x(f

1by −
′

+−

y + )x(f
x
′  = ± k  ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

′
+− )ax(

)x(f
1by

(1 – k) y + bk = (kx – x – ak) dy
dx

and (1 + k) y – bk = (–kx – x + ak) dy
dx

⇒ (1 – k) ydy + bkdy = kxdx – xdx – akdx and (1 + k) ydy – bkdy = – kxdx – xdx + akdx
Integrating both the sides

(1 – k) 
2
y2

 = bky = ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−− akx

2
x

2
xk

22

 + C1 and (1 + k) 
2
y2

 – bky = ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−− akx

2
x

2
xk

22

 + C2

2
)k1( −

 x2 + (1 – k) 
2
y2

+ bky + akx + C1 = 0 and
2

)k1( −
 x2 + (1 + k) 

2
y2

 – bky – akx + C2 = 0

If k ≠ 1, then both the above equations represent circle.

Example : 37
Let y = f(x) be a curve passing through (1, 1) such that the triangle formed by the coordinate axes and the
tangent at any point of the curve lies in the first quadrant and has area 2. From the differential equation
and determine all such possible curves.

Solution

Equation of tangent at (x, y) = Y′ – y = dx
dy

 (X – x)

Xintercept = x – dx/dy
y

and Yintercept = y – x dx
dy
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Area of the triangle = erceptinterceptint YX
2
1

×  = 2

Both X-intercept and Y-intercept are positive as the triangle lies in the first quadrant. So we can remove
mod sign.

⇒ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′

−
y
yx  (y – xy′) = 4

⇒ (xy′ – y)2 = – 4y′

⇒ xy′ – y = – 2 y′− ⎟
⎠

⎞
⎜
⎝

⎛ <−′⇒>−= 0yyx0
dx
xdyyyintQ

⇒ y = xy′ + 2 y′− (Clairaut’s differential equation) ...........(i)

Differentiate both sides w.r.t. to x, to get :

⇒ y′ = xy′′ + y′ + y2
2

′−  (–y′′)

⇒ y′′ = 0 or x = y
1
′−

consider y′′ = 0 integrate both sides to get : y′ = c
Put y′ = c in (i) to get the general solution of the equation i.e.

y = cx + 2 c2 −
As the curve passes through (1, 1), c = – 1 (check yourself)
⇒ the equation of the curve is : x + y = 2

Consider : x = y
1
′−

⇒ y′ = 2x
1−

............(ii)

To find singular solution of the Clairaut’s equation, eliminate y′ in (i) and (ii)
Replace y′ from (ii) into (i) to get :

y = 2x
x−

 + 2 2x
1

 = 
x
1−

 + 
x
2

 = 
x
1

⇒ the requied curves are y = 1/x and x + y = 2.

Example : 38

 Let u(x) and v(x) satisfy the differential equations dx
du

 + P(x) u = f(x) and dx
dv

 + P(x) v = g(x) where P(x),

f(x) and g(x) are continuous function. If u(x1) > v(x1) for some x1 and f(x) > g(x) for all x > x1 , prove that any
point (x, y) where x > x1

Solution
The given differential equation are :

dx
du

 = P(x) = u = f(x) ...........(i)

dx
dv

 = P(x) v = g(x) ...........(ii)

On subtracting the two differential equations, we get

dx
d

 (u – v) + P(x) (u – v) = f(x) – g(x)
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For x > x1 , f(x) > g(x) ⇒ dx
d

 (u – v) + P(x) (u – v) > 0

⇒ vu
)vu(d

−
−

 > –P(x) dx

Integrate both sides to get :

ln (u – v) + C > ∫− dx)x(P

⇒ u – v > ∫ −Cdx)x(P
e

As RHS > 0 for all x, u > v for all x > x1
⇒ y = u(x) and y = v(x) have no solution (i.e. no point of intersection as one curve lies above the
other)

Example : 39
A and B are two separate reservoirs of water. Capacity of reservoir A is double the capacity of reservoir B.
Both the reservoirs are filled completely with water, their inlets are closed and then the water is released
simultaneously from both the reservoirs. The rate of flow of water out of each reservoir at any instant of
time is proportional to the quantity of water in the reservoir at that time. One hour after the water is

released, the quantity of water in reservoir  is 1
2
1

 times the quantity of water in reservoir B. After how

many hours do both the reservoir have the same quantity of water?
Solution

Let VAi and VBi be the initial amounts of water in reservoirs A and B respectively
As capacity of reservoir A si double that of B and both are completely filled initially, we can have:

VAi = 2VBi

Let VA and Vn be the amount of water in reservoirs A and B respectively at any instant fo time t.
As the rate of flow of water out of each reservoir at any instant of time is proportional to the quantity of
water in the reservoir at that time, we can have :

dt
dVA  = –k1 VA ............(i)

and dt
dVB  = – k2 VB ............(ii)

where k1 and k2 are proportionality constants.
Let VAf and VBf be the amounts of water in reservoirs A and B respectively after 1 hour.
To find VAr and Abf integrate (i) and (ii)

⇒ ∫
Af

Ai

V

V A

A

V
dV

 = – ∫
1

0
1dtk ⇒ ln ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

Ai

Af

V
V

 = – k1

Similarity we can get : ln ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

Bi

Bf

V
V

 = – k2 ⇒ VAi 1ke−  = 
2
3

 VBi 2ke−

⇒ k1 – k2 = ln ⎟
⎠

⎞
⎜
⎝

⎛
3
4

............(iii)

After time t VA = VB

⇒ tk
Bi

tk
Ai

21 eVeV −− =

⇒ tktk 21 ee2 −− =
⇒ (k1 – k2) t = ln 2 ............(iv)

Solving (iii) and (iv), we get : t = 
⎟
⎠
⎞

⎜
⎝
⎛

3
4n

2n

l

l
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Example : 1

Discuss the differentiability of f(x) at x = – 1, if f (x) = ⎪⎩

⎪
⎨
⎧

−>+
−≤−
1x;2x2
1x;x1 2

Solution
f(–1) = 1 – (1)2 = 0
Right hand derivative at x = – 1 is

Rf′ (–1) = 0h
lim
→  

h
)1(f)h1(f −−+−

= 0h
lim
→  

h
02)h1(2 −++−

 = 0h
lim
→  

h
h2

 = 2

Left hand derivative at x = – 1 is

Lf′(–1) = 0h
lim
→  

h
)1(f)h1(f

−
−−−−

 = 0h
lim
→  

h
0)h1(1 2

−
−−−−

 = 0h
lim
→  

h
h2h2

−
−−

  = 0h
lim
→  (h + 2) = 2

Hence Lf′ (–1) = Rf′ (–1) = 2
⇒ the function is differentiable at x = – 1

Example : 2
Show that the function : f(x) = |x2 – 4| is not differentiable at x = 2

Solution

f(x) = 
⎪
⎩

⎪
⎨

⎧

≥−
<<−−

−≤−

2x;4x
2x2;x4

2x;4x

2

2

2

⇒ f(2) = 22 – 4 = 0

Lf′ (2) = 0h
lim
→  

h
)2(f)h2(f

−
−−

 = 0h
lim
→  

h
0)h2(4 2

−
−−−

 = 0h
lim
→  

h
hh4 2

−
−

 = 0h
lim
→  (h – 4) = – 4

Rf′(2) = 0h
lim
→  

h
)2(f)h2(f −+

 = 0h
lim
→  

h
0]4)h2[( 2 −−+

 = 0h
lim
→  

h
h4h2 +

 = 0h
lim
→  (h + 4) = 4

⇒ Lf′(2) ≠ Rf′(2)
Hence f(x) is not differentiable at x = 2

Example : 3
Show that f(x) = x |x| is differentiable at x = 0

Solution

f(x) = ⎪⎩

⎪
⎨
⎧

>
≤−

0x;x
0x;x

2

2

Lf′(0) = 0h
lim
→  

h
)0(f)h0(f

−
−−

 = 0h
lim
→  

h
0)h( 2

−
−−−

 0h
lim
→  h = 0

Rf′(0) = 0h
lim
→  

h
)0(f)h0(f 2 −+

 0h
lim
→  

h
0h2 −

 = 0

⇒ Lf′(0) = Rf′(0)
Hence f(x) is differentiable at x = 0

Example : 4
Prove that following theorem :
“If a function y = f(x) is differentiable at a point, then it must be continuous at that point.”

Solution
Let the function be differentiable at x = a.

⇒ 0h
lim
→  

h
)a(f)ha(f −+

 and 0h
lim
→  

h
)a(f)ha(f

−
−−

 are finite numbers which are equal

Differentiability
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L.H.L. = 0h
lim
→  f (a – h)

= 0h
lim
→  [f(a – h) – f(a)] + f(a)

= 0h
lim
→  (–h) ⎥⎦

⎤
⎢⎣

⎡
−

−−
→ h

)a()ha(flim
0h  + f(a)

= 0 × [Lf′(a)]  + f(a) = f(a)

R.H.L. = 0h
lim
→  f(a + h)

= 0h
lim
→  [f(a + h) – f(a)] + f(a)

= 0h
lim
→  h ⎥⎦

⎤
⎢⎣

⎡ −+
→ h

)a()ha(flim
0h  + f(a) = 0 × [Rf′(a)] + f (a) = f(a)

Hence the function is continuous at x = a
Note : that the converse of this theorem is not always true. If a function is continuous at a point, if may or
may not be differentiable at that point.

Example : 5

Discuss the continuity and differentiability of f(x) at x = 0 if f(x) = 
⎪⎩

⎪
⎨
⎧

=

≠

0x;0

0x;
x
1sinx2

Let us check the differentiability first. Lf′(0) = 0h
lim
→  

h
)0(f)h0(f

−
−−

 = 0h
lim
→  

h

0
h

1sin)h( 2

−

−⎟
⎠
⎞

⎜
⎝
⎛
−

−

= 0h
lim
→  h sin 

h
1

 = 0h
lim
→  h  × 0h

lim
→  sin 

h
1

= 0 × (number between – 1 and + 1) = 0

Rf′(0) = 0h
lim
→  

h
)0(f)h0(f −+

 = 0h
lim
→  

h

0
h
1sinh2 −

 = 0h
lim
→  h sin 

h
1

 = 0h
lim
→  h × 0h

lim
→  sin 

h
1

= 0 × (number between – 1 and + 1) = 0
Hence Lf′(0) = Rf′(0) = 0
⇒ function is differentiable at x = 0
⇒ if must be continuous also at the same point.

Example : 6
Show that the function f(x) is continuous at x = 0 but its derivative does not exists at x = 0 if

f(x) = 
( )

⎪⎩

⎪
⎨
⎧

=
≠

0x;0
0x;xlogsinx 2

Solution
Test for continuity :

LHL = 0h
lim
→  f(0 – h) = 0h

lim
→  (–h) sin log (–h)2 = – 0h

lim
→  h sin log h2

as h → 0, log h2 → – ∞
Hence sin log h2 oscillates between – 1 and + 1

⇒ LHL = – 0h
lim
→  (h) × 0h

lim
→ (sin log h2) = – 0 × (number between – 1 and + 1) = 0

R.H.L. = 0h
lim
→  f(0 + h) = 0h

lim
→  = 0h

lim
→  h sin logh2
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= 0h
lim
→  h . 0h

lim
→  sin log h2 = 0 × (oscillating between – 1 and + 1) = 0

f(0) = 0 (Given)
⇒ LHL = RHL = f(0)
Hence f(x) is continuous at x = 0
Test for differentiability :

Lf′(0) = 0h
lim
→  

h
)0(f)h0(f

−
−−

 = 0h
lim
→  

h
0)hlog(sinh 2

−
−−−

 = 0h
lim
→  sin (log h2)

As the expression oscillates between – 1 and + 1, the limit does not exists.
⇒ Left hand derivative is not defined.
Hence the function is not differentiable at x = 0
Note : As LHD is undefined there is no need to check RHD for differentiability as for differentiability both
LHD and RHD should be defined and equal

Example : 7

Discuss the continuity of f, f′ and f′′ on [0, 2] if f(x) = 

⎪
⎪
⎩

⎪⎪
⎨

⎧

≤≤+−

<≤

2x1;
2
3x3x2

1x0;
2
x

2

2

Solution
Continuity of f(x)
For x ≠ 1, f(x) is a polynomial and hence is continuous

At x = 1, LHL = −→1x
lim  f(x) = −→1x

lim  
2
x2

 = 
2
1

RHL = +→1x
lim  f(x) = +→1x

lim  ⎟
⎠

⎞
⎜
⎝

⎛ +−
2
3x3x2 2

 = 2 – 3 + 
2
3

 = 
2
1

f(1) = 2 (1)2 – 3(1) + 
2
3

 = 
2
1

⇒ LHL = RHL = f(1)
Therefore, f(x) is continuous at x = 1
Continuity of f′(x)
Let g(x) = f′(x)

⇒ g(x) = 
⎩
⎨
⎧

≤≤−
<≤

2x1;3x4
1x0;x

For x ≠ 1, g(x) is linear polynomial and hence continuous.

At x = 1, LHL = −→1x
lim  g(x) = −→1x

lim  x = 1

RHL = −→1x
lim  g(x) = −→1x

lim  (4x – 3) = 1

g(1) = 4 – 3 = 1
⇒ LHL = RHL = g(1)
∴ g(x) = f′(x) is continuous at x = 1
Continuity of f′′(x)

Let h(x) = f′′(x) = 
⎩
⎨
⎧

≤≤
<≤

2x1;4
1x0;1

For x ≠ 1, h(x) is continuous because it is a constant function.

At x = 1, LHL = −→1x
lim  h(x) = 1

RHL = +→1x
lim  h(x) = 4
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Thus LHL ≠ RHL
∴ h(x) is discontinuous at x = 1
Hence f(x) and f′(x) are continuous on [0, 2] but f′′(x) is discontinuous at x = 1.
Note : Continuity of f′(x) is same as differentiability of f(x)

Example : 8

Show that ax
lim
→  ax

)a(f)x(g)a(g)x(f
−
−

 = f′(a) g(a) – g′(a) f(a) if f(x) and g(x) are differentiable at x = a.

Solution

ax
lim
→  ax

)a(f)x(g)a(g)x(f
−
−

  = ax
lim
→  ax

)a(f)x(g)a(g)a(f)a(g)a(f)x(g)x(f
−

−+−

= ax
lim
→  ⎥⎦

⎤
⎢⎣

⎡
−
−

ax
)a(f)x(f

 g(a) – ax
lim
→  ⎥⎦

⎤
⎢⎣

⎡
−
−

ax
)a(g)x(g

 f(a)

= f′(a) g(a) – g′ (a) f(a)

Example : 9

Let f(x) be defined in the interval [–2, 2] such that f(x) = 
⎩
⎨
⎧

≤<−
≤≤−−
2x0;1x
0x2;1

 and g(x) = f(|x|) + |f(x)|. Test

the differentiability of g(x) in (–2, 2).
Solution

Consider f(|x|)
The given interval is – 2 ≤ x ≤ 2
Replace x by |x| to get :
– 2 ≤ |x| ≤ 2 ⇒ 0 ≤ |x| ≤ 2
Hence f(|x|) can be obtained by substituting |x| in place of x in x – 1 [see definition of f(x)].
⇒ f(|x|) = |x| – 1 ; – 2 ≤ x ≤ 2 ............(i)
Consider |f(x)|

Now |f(x)| = 
⎩
⎨
⎧

≤<−
≤≤−−
2x0;|1x|
0x2;|1|

⇒ |f(x)| = 
⎩
⎨
⎧

≤<−
≤≤−
2x0;|1x|
0x2;1

adding (i) and (ii)

f(|x|) + |f(x)| = 
⎩
⎨
⎧

≤<−+−
≤≤−+−
2x0;|1x|1|x|
0x2;11|x|

⇒ g(x) = 
⎩
⎨
⎧

≤<−+−
≤≤−
2x0;|1x|1|x|
0x2;|x|

on further simplification,

g(x) = ⎪
⎩

⎪
⎨

⎧

≤≤−+−
<<−+−
≤≤−−

2x1;1x1x
1x0;x11x
0x2;x

g(x) = ⎪
⎩

⎪
⎨

⎧

≤≤−
<<
≤≤−−

2x1;2x2
1x0;0
0x2;x

For x ≠ 0 and x ≠ 1, g(x) is a differentiable function because it is a linear polynomial
At x = 0

Lg′(0) = 0h
lim
→  

h
)0(g)h0(g

−
−−

 = 0h
lim
→  

h
0)h(

−
−−−

 = – 1

Rg′(0) = 0h
lim
→  

h
)0(g)h0(g −+

 =  0h
lim
→  

h
00 −

 = 0

⇒ Lg′ (0) ≠ Rg′ (0). Therefore g(x) is not differentiable at x = 0
At x = 1

Lg′(1) = 0h
lim
→  

h
)1(g)h1(g

−
−−

 = 0h
lim
→  

h
00

−
−

 = 0
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Rg′ (1) = 0h
lim
→   

h
)1(g)h1(g −+

 = 0h
lim
→  

h
02)h1(2 −−+

 = 2

⇒ Lg′(1) ≠ Rg′(1). Therefore g(x) in not differential at x = 1
Hence g(x) is not differentiable at x = 0, 1 in (–2, 2)

Example : 10
Find the derivative of y = log x wrt x from first principles.

Solution
Let f(x) = log x
Using definition of derivative

f′(x) = 0h
lim
→  

h
)x(f)hx(f −+

⇒ f′(x) = 0h
lim
→  

h
xlog)hxlog( −+

 = 0h
lim
→  

h
x
h1log ⎟
⎠
⎞

⎜
⎝
⎛ +

   =  0h
lim
→  

x/h
x
h1log ⎟
⎠
⎞

⎜
⎝
⎛ +

 
x
1

 = 
x
1

⎥⎦

⎤
⎢⎣

⎡ =
+

→
1

1
)t1log(limgsinu

0t

Example : 11

Evaluate the derivative f (x) = xn wrt x from definition of derivative. Hence find the derivative of x , 1/x,

1/ x , 1/xp wrt x.
Solution

Using definition of derivative

f′(x) = 0h
lim
→   

h
)x(f)hx(f −+

f′(x) = 0h
lim
→  

h
x)hx( nn −+

 = 0h
lim
→  x)hx(

x)hx( nn

−+
−+

 = xt
lim
→  

xt
xt nn

−
−

(putting t = x + h)

= nxn–1 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

−
− −

→

1n
nn

ax
na

ax
axlimgsinu

Taking n = 
2
1

, x
dx
d

 = x2
1

taking n = – 1, dx
d

 ⎟
⎠

⎞
⎜
⎝

⎛
x
1

 = 2x
1−

taking n = 
2
1−

, dx
d

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

x
1

 = xx2
1−

taking n = –p, dx
d

 ⎟
⎠

⎞
⎜
⎝

⎛
px

1
 = 1px

p
+

−



Page # 6.

Example : 12
Find the derivative of sin x wrt x from first principles.

Solution
Let f(x) = sin x
Using the definition of derivative,

f′(x) = 0h
lim
→  

h
xsin)hxsin( −+

 = 0h
lim
→  

2
h2

2
hsin

2
hxcos2 ⎟
⎠
⎞

⎜
⎝
⎛ +

 = cos x . 0h
lim
→  

2
h

2
hsin

 = cos x

⎟
⎠

⎞
⎜
⎝

⎛ =
θ
θ

→θ
1sinlimgsinu

0

Hence f′(x) = cos x

Example : 13
Differentiate ax wrt x from first principles

Solution
Let f(x) = ax

Using the definition of derivatives f′(x) = 0h
lim
→  

h
)x(f)hx(f −+

⇒ f′(x) = 0h
lim
→  

h
aa xhx −+

 = ax . 0h
lim
→  

h
1ah −

 = ax log a ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

−

→
alog

t
1alimgsinu

t

0t

Hence f′(x) = ax log a

Example : 14
Differentiate sin (log x) wrt x from first principles

Solution
Let f(x) = sin (log x)
Using the definition of derivatives

f′(x) = 0h
lim
→  

h
)x(f)hx(f −+

f′(x) = 0h
lim
→  

h
xlogsin)hxlog(sin −+

 = 0h
lim
→  

h
2

xlog)hxlog(sin
2

xlog)hxlog(cos2 ⎟
⎠
⎞

⎜
⎝
⎛ −+

⎟
⎠
⎞

⎜
⎝
⎛ ++

= 0h
lim
→  2 cos ⎟

⎠

⎞
⎜
⎝

⎛ ++
2

xlog)hxlog(
 ×  0h

lim
→  

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −+

h
2

xlog)hxlog(sin

= 2 cos log x 0h
lim
→  

2
xlog)hxlog(

2
xlog)hxlog(sin

−+

⎟
⎠
⎞

⎜
⎝
⎛ −+

 × 0h
lim
→ h2

xlog)hxlog( −+

= 2 cos log x . 1 . 0h
lim
→  

h2
)x/h1log( +

⎥⎦

⎤
⎢⎣

⎡ =
θ
θ

→θ
1sinlim

0
Q

= cos log x . 0h
lim
→  

x/h
)x/h1log( +

 . 
x
1

 = 
x

xlogcos
⎥⎦

⎤
⎢⎣

⎡ =
+

→
1

t
)t1log(lim

0t
Q
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Example : 15
Differentiate x2 tan x wrt x from first principles

Solution
Let f(x) = x2 tan x
Using the definition of derivative,

f′(x) = 0h
lim
→  

h
)x(f)hx(f −+

f′(x) = 0h
lim
→  

h
xtanx)hxtan()hx( 22 −++

 = 0h
lim
→  

h
)hxtan()hx2h(xtanx)hxtan(x 222 +++−+

= x2 0h
lim
→  

h
xtan)hxtan( −+

 + 0h
lim
→  

h
)hxtan()2h(h ++

= x2 0h
lim
→  )hxcos(xcosh

)xhxsin(
+

−+
 + 0h

lim
→  (h + 2x) tan (x + h)

= 
xcos

x
2

2

 + 2x  tan x ⎥⎦

⎤
⎢⎣

⎡ =
θ
θ

→θ
1sinlimgsinu

0

Example : 16
Differentiate sin–1x from first principles

Solution
Let y = sin–1x ⇒ x = sin y
From first principles

dy
dx

 = 0h
lim
→  

h
)y(f)hy(f −+

⇒ dy
dx

 = 0h
lim
→  

h
ysin)hysin( −+

= 0h
lim
→  h

2
hsin

2
hy2cos2 ⎟
⎠
⎞

⎜
⎝
⎛ +

 = dy
dx

 = cos y 0h
lim
→  

2/h
2
hsin

 = cos y

As (dy/dx) × (dx/dy) = 1, we get

dx
dy

 = ycos
1

 = ysin1

1
2−±  = 2x1

1

−±
(Q x = sin y)

But the principal value of y sin–1x lies between –π/2 and π/2 and for these values of y, cos y is positive.
(Q cosine of an angle in the first or fourth quadrant is positive)

Therefore rejecting the negative sign, we have dx
dy

 = 2x1

1

−

Example : 17

Differentiate xtan  from first principles.

Solution

Let f(x) = xtan
From first principles,

f′(x) = 0h
lim
→  

h
xtanhxtan −+

Rationalise to get,

f′(x) = 0h
lim
→  ⎟

⎠
⎞

⎜
⎝
⎛ ++

−+

xtanhxtanh

xtanhxtan
⇒ f′(x) = 

xtan2

1
 0h
lim
→  

( )
xcoshxcosh

xhxsin
+

−+
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⇒ f′(x) = 
xcosxtan2

1
2  × 0h

lim
→  

( )( )
( )hxhx

xhxxhxsin
−+

−+−+

⇒ f′(x) = 
xcosxtan2

1
2  × 0h

lim
→  ( )xhxh

xhx
++

−+
⎟
⎠

⎞
⎜
⎝

⎛ =
→

1
t

tsinlimgsinu
0t

⇒ f′(x) = 
xcosxtan2

1
2  x2

1

Example : 18

If y = f (sin2x) and f′(x) = 
x1
x1

−
+

, then show that dx
dy

 = 2 tan x (1 + sin2x)

Solution
Let u sin2x

Using chain rule : dx
dy

 = f′(u) dx
du

⇒ dx
dy

 = u1
u1

−
+

 dx
d

 (sin2x) = 
xsin1
xsin1

2

2

−

+
 (2 sin x cos x) = 2 tan x (1 + sin2x)

Example : 19
A function f : R → R satisfy the equation f(x + y) = f(x) f(y) for all x, y in R and f(x) ≠ 0 for any x in R. Let the
function be differentiable at x = 0 and f′(0) = 2. Show that f′(x) = 2f(x) for all x in R. Hence determine f(x).

Solution
In f(x + y) = f(x) f(y) substitute y = 0
⇒ f(x + 0) = f(x) f(0)
⇒ f(x) = f(x) f(0)
⇒ f(0) = 1 (Q f(x) ≠ 0) ............(i)

Consider f′(0) = 0h
lim
→  

h
)0(f)h0(f −+

⇒ 2 = 0h
lim
→  

h
1)h(f −

............(ii)

Consider f′(x) = 0h
lim
→  

h
)x(f)hx(f −+

 = 0h
lim
→  

h
)x(f)h(f)x(f −

 = f(x) 0h
lim
→  

h
1)h(f −

= f(x) (2) [using (2)]
⇒ f′(x) = 2f(x)

⇒ )x(f
)x(f ′

 = 2

⇒ dx
d

[log f(x)] = dx
d

 (2x)

⇒ log f(x) = 2x ⇒ f(x) = e2x
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Example : 20
(Logarithmic differentiation) Find dy/dx for the functions.

(i) y = 
x

x
11 ⎟
⎠

⎞
⎜
⎝

⎛ +  + x
11

x
+

(ii) y = x2

23

2)2x3(
x1)1x2(

−

−+
(iii) y = logx (log x)

Solution

(i) Let u = 
x

x
11 ⎟
⎠

⎞
⎜
⎝

⎛ + and v = x
11

x
+

⇒ y = u + v

⇒ dx
dy

 = dx
du

 + dx
dv

.............(i)

(ii) y = x2

23

2)2x3(
x1)1x2(

−

−+

Now u = 
x

x
11 ⎟
⎠

⎞
⎜
⎝

⎛ +

⇒ log u = x log ⎟
⎠

⎞
⎜
⎝

⎛ +
x
11  = x log (x + 1) – x log x

⇒ u
1

 dx
du

 = 
1x

x
+

 + log (x + 1) – ⎟
⎠

⎞
⎜
⎝

⎛ + xlog
x
x

⇒ dx
du

 = u ⎟
⎠

⎞
⎜
⎝

⎛
+

−
+

1x
1

x
1xlog ............(ii)

consider v = x
11

x
+

⇒ log v = ⎟
⎠

⎞
⎜
⎝

⎛ +
x
11  log x

⇒
v
1

 dx
dv

 = ⎟
⎠

⎞
⎜
⎝

⎛ +
x
11  

x
1

 + log x ⎟
⎠

⎞
⎜
⎝

⎛− 2x
1

⇒ dx
dv

 = 2x
v

 (x + 1 – log x) ............(iii)

Substituting from (ii) and (iii) into (i)

dx
dy

 = 
x

x
11 ⎟
⎠

⎞
⎜
⎝

⎛ +  ⎟
⎠

⎞
⎜
⎝

⎛
+

−
+

1x
1

x
1xlog  + 

2

x
11

x
x

+

 × (x + 1 – log x)

(ii) Taking log on both sides :
log y = 3 log (2x + 1) + 1/2 log (1 – x2) – 2 log (3x – 2) – x log 2

Differentiating with respect to x, y
1

 dx
dy

 = 
1x2
)2(3
+

 + )x1(2
x2

2−
−

 = 2x3
)3(2

−
 – log 2

dx
dy

 = x2

23

2)2x3(
x1)1x2(

−

−+
 × ⎥⎦

⎤
⎢⎣

⎡ −
−

−
−

−
+

2log
2x3

6
x1

x
1x2

6
2
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(iii) y = logx (log x)

y = xlog
xloglog

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

alog
blogbloggsinu

m

m
a

⇒ dx
dy

 = 2)x(log
x
1)xlog(log

x
1

xlog
1xlog −⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

⇒ dx
dy

 = 2)x(logx
1

 (1 – log log x)

Example : 21

(Implicit function) Find the expression for dx
dy

 for the following implicit function.

(a) xsin y = ysinx (b) x3 + y3 – 3xy = 1
Solution

(a) xsin y = ysinx

⇒ sin y log x = sin x log y
Differentiating with respect to x :

sin y 
x
1

 + log x cos y dx
dy

 = sin x y
1

 dx
dy

 + log y cos x

⇒ dx
dy

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

y
xsinycosxlog  = cos x log y – 

x
ysin

⇒ dx
dy

 = xsinxycosxlogxy
ysinyylogxcosxy

−
−

(b) x3 + y3 – 3xy = 1
Differentiating with respect to x;

3x2 + 3y2 dx
dy

 – 3 ⎥⎦

⎤
⎢⎣

⎡ + 1,y
dx
dyx  = 0

⇒ dx
dy

 = xy
xy

2

2

−

−

Example : 22

(Inverse circular functions) Find dx
dy

 if

(1) y = tan–1 ⎟
⎠

⎞
⎜
⎝

⎛
+
−

xsinaxcosb
xsinbcosa

(2) y = tan–1 ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−+ 2x11

x

(2) y = tan–1 2x51
x4

+
 + tan–1 x23

x32
−
+

(4) y = sin–1 2x1
x2

+
 + sec–1 

2

2

x1
x1

−

+

Solution

(1) y = tan–1 ⎟
⎠

⎞
⎜
⎝

⎛
+
−

xsinaxcosb
xsinbxcosa

⇒ y = tan–1 ⎟
⎠

⎞
⎜
⎝

⎛
+

−
xtanb/a1
xtanb/a

= tan–1 (a/b) – tan–1 tan x = tan–1 (a/b) – x

⇒ dx
dy

 = dx
d

 ⎟
⎠

⎞
⎜
⎝

⎛ −− x
b
atan 1

 = 0 – 1 = – 1
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(2) y = tan–1 ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−+ 2x11

x

Substitute x = sin θ .............(i)

y = tan–1 ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

θ−+

θ
2sin11

sin

y = tan–1 ⎟
⎠

⎞
⎜
⎝

⎛
θ+

θ
cos1

sin

y = tan–1 ⎟
⎠

⎞
⎜
⎝

⎛
θ

θθ

2/cos2
2/cos2/sin2

2

y = tan–1 tan θ/2 = 
2
θ

using (i), y = 
2
1

 sin–1 x

⇒ dx
dy

 = 2x12

1

−

(3) y = tan–1 2x51
x4

+
 + tan–1 x23

x32
−
+

y = tan–1 xx51
xx5

+
−

 + tan–1 
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−

+

x
3
21

x
3
2

y = tan–1 5x – tan–1 x + tan–1 2/3 + tan–1x
y = tan–1 5x + tan–1 2/3

⇒ dx
dy

 = 2x251
5

+

(4) y = sin–1 2x1
x2

+
 + sec–1 

2

2

x1
x1

−

+

Substitute x = tan θ ................(i)

y = sin–1 ⎟
⎠

⎞
⎜
⎝

⎛
θ+

θ
2tan1

tan2
 + sec–1 ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

θ−

θ+
2

2

tan1
tan1

y = sin–1 sin 2θ + cos–1 cos 2θ
y = 2θ + 2θ
y = 4θ = 4 tan–1x (using (i))

⇒ dx
dy

 = 2x1
4
+
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Example : 23

Show that 

dx
dy

 = 1 if y = cos–1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +

17
xsin4xcos

Solution
We can write

cos x + 4 sin x = 17  ⎥
⎦

⎤
⎢
⎣

⎡
+ xsin

17
4xcos

17
1

 = 17  cos (x – tan–14)

Hence y = cos–1 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ − −

17
)4tanxcos(17 1

⇒  y = x – tan–1 4

⇒ dx
dy

 = 1

Example : 24

If 2x1−  + 2y1− = a(x – y), Show that dx
dy

 = 2

2

x1
y1

−

−

Solution
Substitute x = sin α and y = sin β ..........(i)

⇒ α− 2sin1  + β− 2sin1  = a (sin α – sin β)

⇒ cos α + cos β = a (sin α – sin β)

⇒
⎟
⎠
⎞

⎜
⎝
⎛ β−α

⎟
⎠
⎞

⎜
⎝
⎛ β+α

β−α
⎟
⎠
⎞

⎜
⎝
⎛ β+α

2
sin

2
cos2

2
cos

2
cos2

 = a

⇒ cot ⎟
⎠

⎞
⎜
⎝

⎛ β−α
2  = a

⇒ α – β = 2 cot–1 a
⇒ sin–1 x – sin–1 y = 2 cot–1 a, [using (i)]
differentiating with respect to x.

2x1

1

−
 – 

2y1

1

−
 dx

dy
 = 0

⇒ dx
dy

 = 2

2

x1
y1

−

−

Example : 25
If x = a (cos t + log tan t/2), y = a sin t find d2y/dx2 at t = π/4

Solution

dt
dy

 = a cos t

dt
dx

 = a ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−

2
2/tsec

2/ttan
1tsin

2

 = a ⎟
⎠

⎞
⎜
⎝

⎛ +−
tsin

1tsin

⇒ dt
dx

 = 
tsin

tcosa 2
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∴ dx
dy

 = dt/dx
dt/dy

 = 
tsin/tcosa

tcosa
2 ⇒ dx

dy
 = tan t

Now 2

2

dx
yd

 = dx
d

 ⎟
⎠

⎞
⎜
⎝

⎛
dx
dy

 = 
dt
dx

)dx/dy(
dt
d

2

2

dx
yd

 = 
tsin/tcosa

tsec
2

2

 = 
tcosa

tsin
4

4/t
2

2

dx
yd

π=⎥
⎥
⎦

⎤
 = 

4/cosa
4/sin

4 π

π
 = 

a
22

Example : 25
If x = a (cos t + log tan t/2), y = a sin t find d2y/dx2 at t = π/4.

Solution

dt
dy

 = a cos t

dt
dx

 = a ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−

2
2/tsec

2/ttan
1tsin

2

 = a ⎟
⎠

⎞
⎜
⎝

⎛ +−
tsin

1tsin

⇒ dt
dx

 = 
tsin

tcosa 2

∴ dx
dy

 = dt/dx
dt/dy

 = 
tsin/tcosa

tcosa
2 ⇒ dx

dy
 = tan t

Now 2

2

dx
yd

 = dx
d

 ⎟
⎠

⎞
⎜
⎝

⎛
dx
dy

 = 
dt
dx

)dx/dy(
dt
d

2

2

dx
yd

 = 
tsin/tcosa

tsec
2

2

 = 
tcosa

tsin
4

4/t
2

2

dx
yd

π=⎥
⎥
⎦

⎤
 = 

4/cosa
4/sin

4 π

π
 = 

a
22

Example : 26

If x y1+  + y x1+  = 0, then shown that dx
dy

 = 2)x1(
1

+
−

Solution

x y1+  = – y x1+

Squaring, we get :
x2 (1 + y) = y2 (1 + x)

⇒ x2 + x2y – y2 – xy2 = 0
⇒ (x2 – y2) + xy (x – y) = 0
⇒ (x – y) (x + y + xy) = 0
⇒ y = x or x + y + xy = 0
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Since y = x does not satisfy the give function, we reject it.
∴ x + y + xy = 0

⇒ y = 
x1

x
+
−

⇒ dx
dy

 = – 2)x1(
1,x)x1(

+
−+

 = 2)x1(
1

+
−

Example : 27

If y = 2222

2222

xaxa

xaxa

−−+

−++
, then show that dx

dy
 = – 3

2

x
a2

 ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−
+

44

2

xa

a1

Solution
On rationalising the denominator, we get :

y  =  
2

2
2222

x2

xaxa ⎟
⎠
⎞⎜

⎝
⎛ −++

y = 2

442

x2
xa2a2 −+

y = 2

2

x
a

 + 2

44

x
xa −

⇒ dx
dy

 = 3

2

x
a2−

 + 
4

44
44

3
2

x

)x2(xa
xa2

x4x −−
−

−

⇒ dx
dy

 = 3

2

x
a2−

 + 443

444

xax

)xa(2x2

−

−−−

⇒ dx
dy

 = 3

2

x
a2−

 ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
+

44

2

xa

a1

Example : 28

If y = 
∞........xaxa , then find dx

dy

Solution

y = 
∞........xaxa  can be written as y = 

yxa
⇒ log y = xy log a
⇒ log log y = y log x + log log a
differentiating with respect to x;

ylog
1

 y
1

 dx
dy

 = y . 
x
1

 + log x dx
dy

⇒ dx
dy

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− xlog

ylogy
1

 = 
x
y

⇒ dx
dy

 = )ylogxlogy1(x
ylogy2

−
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Example : 29

If y = cos–1 xcosab
xcosba

+
+

, b > a, then show that dx
dy

 = 
xcosab

ab 22

+
−

Solution
Differentiating y with respect to x

dx
dy

 = 
2

xcosab
xcosba1

1

⎟
⎠
⎞

⎜
⎝
⎛

+
+

−

−
 × 2)xcosab(

)xsina)(xcosba()xsinb)(xcosab(
+

−+−−+

= 
xcos)ab()ab(

)xcosab(
22222 −−−

+−
 2

22

)xcosab(
xsinaxsinb

+

+−
 = 

)xcosab(xcos1ab

xsin)ab(
222

22

+−−

−

⇒ dx
dy

 = 
xcosab

ab 22

+
−

Example : 30
If sin y = x sin (a + y), then show that :

(i) dx
dy

 = asin
)ya(sin2 +

(ii) dx
dy

 = 
xcosx2x1

asin
2 −+

Solution

(i) As dx
dy

 should not contain x, we write )yasin(
ysin
+  = x and differentiating with respect to x;

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+

+−+

)ya(sin
)yacos(ysinycos)yasin(

2  dx
dy

 = 1

⇒ )ya(sin
)yyasin(

2 +
−+

 dx
dy

 = 1 ⇒ dx
dy

 = 
asin

)ya(sin2 +

(ii) As dx
dy

 should not contain y, we try to express y explicitly in terms of x.

sin y = x (sin a cos y + cos a sin y)

⇒ tan y = acosx1
asinx

−
⇒ y = tan–1 ⎟

⎠

⎞
⎜
⎝

⎛
− acosx1

asinx

Now differentiate with respect x;

dx
dy

 = 

2

22

)acosx1(
asinx1

1

−
+

 2)acosx1(
)acos(asinxasin)acosx1(

−
−−−

 = asinx)acosx1(
asin

222 +−

⇒ dx
dy

 = 
acosx2x1

asin
2 −+
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Example : 31

If y = emx (ax + b), where a, b, m are constants, show that : 2

2

dx
yd

 – 2m dx
dy

 + m2y = 0

Solution
y = emx (ax + b) ..............(i)

dx
dy

 = (a) emx + m (ax + b) emx

using (i), dx
dy

 = a emx + my ..............(ii)

Again differentiating with respect to x;

2

2

dx
yd

 = amemx + m dx
dy

Substituting for a emx from (ii), we get

2

2

dx
yd

 = m ⎟
⎠

⎞
⎜
⎝

⎛ −my
dx
dy

 + m dx
dy

⇒ 2

2

dx
yd

 – 2m dx
dy

 + m2 y = 0

Example : 32

If y = x log bxa
x
+

, the show that : x3 2

2

ax
yd

 = 
2

y
dx
dyx ⎟

⎠

⎞
⎜
⎝

⎛ −

Solution
y = x log x – x log (a + bx) ..............(i)

⇒ dx
dy

 = x  
x
1

 + log x – bxa
xb
+

 – log (a + bx)

⇒ dx
dy

 = [log x – log (a + bx)] + bxa
a
+

⇒ dx
dy

 = 
x
y

 + bxa
a
+

[using (i)]

x dx
dy

 – y = bxa
ax
+

..............(ii)

Again differentiating with respect to x, we get ;

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

dx
dy

dx
ydx 2

2

 – dx
dy

 = 2)bxa(
b.axa)bxa(

+
−+

⇒ x 2

2

dx
yd

 = 2

2

)bxa(
a
+

⇒ x3 2

2

dx
yd

 = 2

22

)bxa(
xa

+

⇒ x3 2

2

dx
yd

 = 
2

y
dx
dyx ⎟

⎠

⎞
⎜
⎝

⎛ − [using (ii) in R,H.S)
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Example : 33

If x = sin t and y = cos pt, show that : (1 – x2) 2

2

dx
yd

 – x dx
dy

 + p2y = 0

Solution

dx
dy

 = dt/dx
dt/dy

 = tcos
ptsinp−

As the equation to be derived does no contain t, we eliminate t using expressions for x and y.

dx
dy

 = 2

2

x1

y1p

−

−−

⇒ 2x1−  dx
dy

 = – p 2y1−

As the equation to be derived does not contain any square root, we square and then differentiate.

(1 – x2) 
2

dx
dy

⎟
⎠

⎞
⎜
⎝

⎛
 = p2 (1 – y2)

(1 – x2) 2 dx
dy

 2

2

dx
yd

 + (–2x) 
2

dx
dy

⎟
⎠

⎞
⎜
⎝

⎛
 = p2  ⎟

⎠

⎞
⎜
⎝

⎛−
dx
dyy2

⇒ (1 – x2) 2

2

dx
yd

 – x dx
dy

 = –p2y

⇒ (1 – x2) 2

2

dx
yd

 – x dx
dy

 + p2 y = 0

Example : 34
If x = at3 , y = bt2 (t a parameter), find

(i) 3

3

dx
yd

(ii) 3

3

dy
xd

Solution

(i) x = at3 ⇒ dt
dx

 = 3at2

y = bt2 ⇒ dt
dy

 = 2bt

⇒ dx
dy

 = dt/dx
dt/dy

 = 2at3
bt2

 = at3
b2

⇒ 2

2

dx
yd

 = a3
b2

 dx
d

 ⎟
⎠

⎞
⎜
⎝

⎛
t
1

 = a3
b2

, 2t
1−

 . dx
dt

 = 2at3
b2−

 . 2at3
1

 = 42ta9
b2−

Again differentiating both sides w.r.t. x,

3

3

dx
yd

 = dt
d

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
2

2

dx
yd

 dx
dt

 = – 2a9
b2

 dt
d

 ⎟
⎠

⎞
⎜
⎝

⎛
4t
1

 dx
dt

 = 2a9
b2−

 . 5t
4−

 . 2at3
1

 = 73ta27
b8

(ii) x = at3 , y = bt2

dt
dx

 = 3a2 ; dt
dy

 = 2bt

⇒ dt
dx

 = dt/dy
dt/dx

 = 
bt2
at3 2

 = b2
at3
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⇒ 2

2

dy
xd

 = dt/dy
b2/a3

 = b2
a3

 . bt2
1

 = 
tb4

a3
2

⇒ 3

3

dy
xd

 = dy
d

 ⎟
⎠

⎞
⎜
⎝

⎛
tb4

a3
2  = 2b4

a3
 . dt

d
 ⎟

⎠

⎞
⎜
⎝

⎛
t
1

 . dt/dy
1

 = 2b4
a3

 ⎟
⎠

⎞
⎜
⎝

⎛− 2t
1

 ⎟
⎠

⎞
⎜
⎝

⎛
bt2
1

 = 33tb8
a3−

Example : 35

If y = f(x), express 2

2

dy
xd

 in terms of dx
dy

 and 2

2

dx
yd

.

Solution

dy
dx

 = 

dx
dy
1

⎟
⎠

⎞
⎜
⎝

⎛ ≠ 0
dx
dy

⇒ 2

2

dy
xd

 = dy
d

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
dx/dy

1
 = dx

d
 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
dx/dy

1
 . dy

dx
 = – 2

dx
dy

1

⎟
⎠
⎞

⎜
⎝
⎛

 dx
d

 ⎟
⎠

⎞
⎜
⎝

⎛
dx
dy

 . dy
dx

= – 3

2

2

dx
dy
dx

yd

⎟
⎠
⎞

⎜
⎝
⎛

Q dy
dx

 = 

dx
dy
1

Example : 36

Change the independent variable x to θ in the equation 2

2

dx
yd

 + 2x1
x2

+
 . 

dx
dy

 + 22 )x1(
y

+  = 0, by means of

the transformation x = tan θ
Solution

x = tan θ ⇒
θd

dx
 = sec2θ

dx
dy

 = 
θ
θ

d/dx
d/dy

 = cos2θ . 
θd

dy
⇒ 2

2

dx
yd

 = – 2 cos θ . sin θ . dx
dθ

 . 
θd

dy
 + cos2θ . 2

2

d
yd
θ

 . dx
dθ

= – 2 cos θ . sin θ . cos2θ . 
θd

dy
 + cos2θ  . 2

2

d
yd
θ

 . cos2θ

= – 2 sin θ . cos3θ . 
θd

dy
 + cos4θ . 2

2

d
yd
θ

Putting the values of x, dx
dy

 and 2

2

dx
yd

 in the given equation, 2

2

dx
yd

 + 2x1
x2

+
 

dx
dy

 + 22 )x1(
y

+  = 0

we get – 2 sin θ cos3θ 
θd

dy
 + cos4θ 2

2

d
yd
θ

 + 
θ+

θ
2tan1

tan2
 cos2θ 

θd
dy

 + 22 )tan1(
y

θ+  = 0

– 2 sin θ cos3θ 
θd

dy
 + cos4θ 2

2

d
yd
θ

 + 2 sin θ cos3θ  
θd

dy
 + y cos4θ = 0

i.e. 2

2

d
yd
θ

 + y = 0
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Example : 37
Differentiate xx (x > 0) from first principles.

Solution
Let f(x) = xx = ex lnx

From first principles,

f′(x) = 0h
lim
→  

h
)x(f)hx(f −+

f′(x) = 0h
lim
→  

h
ee nxx)hx(n)hx( ll −++

 = 0h
lim
→  

[ ]
h

1ee nxx)hx(n)hx(nxx −−++ lll

= 0h
lim
→  

[ ]
nxx)hx(n)hx(

1ee nxx)hx(n)hx(xnx

ll

lll

−++
−−++

 . 0h
lim
→  

h
nxx)hx(n)hx( ll −++

= exln x . 0h
lim
→  

h
nxx)hx(nx)hx(nx)hx(n)hx( llll −+++−++

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

−
→

1
h

1elim:gsinu
h

0h

= exln x . ⎥⎦

⎤
⎢⎣

⎡ −+
+

−++
→→ h

nx)hx(nxlim
h

]xhx)[hx(nlim
0h0h

lll

= exln x .  
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +

++
→→ h

x
hxnx

lim)hx(nlim
0h0h

l

l
 = exln x .  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛ ++
→

h
x

0h x
h1nlimxn ll

= ex ln x . (ln x + 1) ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
==+

→
1en)t1(nlim:gsinu t

1

0t
ll

⇒ f′(x) = xx (1 + ln x)

Example : 38
If y = logu |cos 4x| + |sin x|, where u = sec 2x, find dy/dx at x = –π/6

Solution
In the sufficiently closed neighbourhood of –π/6 both cos 4x and sin x are negative. So for differentiating
y, we can take |cos 4x| = – cos 4x and |sin x| = – sin x.
Thus
y = logu (–cos 4x) + (–sin x) = logsec2x (–cos 4x) + (– sin x)

= x2seclog
)x4coslog(−

 – sin x

On differentiating wit respect to x, we get

dx
dy

 = 2)x2sec(log

2
x2sec

x2tanx2sec)x4coslog(
x4cos

x2seclogx)x4sin4(
×

×
−−

−  – cos x

= 2)x2sec(log
(x4coslog(x2tan2x2seclogx4tan4 −×−×−

 – cos x

Taking derivative at x = – π/6, we get

6/xdx
dy

π−=
⎥⎦

⎤
⎢⎣

⎡
 =  2)2(log

))3/2cos(log()3/tan(23/seclog)3/2tan(4 π−−×π−−π×π−−
 – 

2
3

 = 
2
3

 – 2log
36
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Example : 39
Test the differentiability of the following function at x = 0.

f(x) = 
⎪⎩

⎪
⎨
⎧

=

≠⎟
⎠

⎞
⎜
⎝

⎛−

0x;0

0x;
x
1sine

2x/1

Solution
Checking differentiability at x = 0

Right hand derivative = 0h
lim
→  

h
)0(f)h0(f −+

 = 0h
lim
→  

h

0
h0

1sine
2)h0(

1

−⎟
⎠
⎞

⎜
⎝
⎛

+
+
−

= 0h
lim
→  

2h
1

he

h
1sin ⎟
⎠
⎞

⎜
⎝
⎛

 = 0h
lim
→  

⎟
⎠
⎞

⎜
⎝
⎛ +++

⎟
⎠
⎞

⎜
⎝
⎛

....
!2h

1
h
11h

h
1sin

42

= 0h
lim
→  

⎟
⎠
⎞

⎜
⎝
⎛ +++

⎟
⎠
⎞

⎜
⎝
⎛

....
!2h

1
h
1h

h
1sin

3

 = 
∞+0

quantityfinitea
 = 0

(because sin (1/h) is finite and oscillates between – 1 to + 1).

Left Hand Derivative = 0h
lim
→  

h
)0(f)h0(f

−
−−

 = 0h
lim
→  h

0
h

1sine
2)h(

1

−

−⎟
⎠
⎞

⎜
⎝
⎛

−θ
−θ
−

= 0h
lim
→  

2h
1

he

h
1sin ⎟
⎠
⎞

⎜
⎝
⎛

 = 0h
lim
→  

⎟
⎠
⎞

⎜
⎝
⎛ +++

⎟
⎠
⎞

⎜
⎝
⎛

....
!2h

1
h
11h

h
1sin

42

 = 
∞+0

quantityfinitea
 = 0

(because sin (1/h) is finite and oscillates between – 1 to + 1)
As Left Hand Derivative = Right Hand Derivative, the function f(x) is differentiable at x = 0.

Example : 40
The function f is defined by y = f(x) where x = 2t – |t|, y = t2 + t|t|, t ∈ R. Draw the graph of f(x) for the interval
– 1 ≤ x ≤ 1. Also discuss the continuity and differentiability at x = 0.

Solution
It is given that : x = x = 2t – |t| and y = t2 + t|t|.
Consider t ≥ 0 x = 2t – t = t ............(i)

and y = t2 + t × t = 2t2 ............(ii)
Eliminating t from (i) and (ii), we get y = 2x2

So y = 2x2 for x > 0 (because t ≥ 0 ⇒   x ≥ 0)
Consider t < 0 x = 2t + t = 3t ............(iii)
and y = t2 + t × (–t) = 0 ............(iv)
Eliminating t from (iii) and (iv), we get y = 0
So y = 0 for x < 0 (because t < 0 ⇒   x < 0)
In the closed interval – 1 ≤ x ≤ 1, the function f(x) is :

f(x) = 
⎪⎩

⎪
⎨
⎧

<
≥

0x;0
0x;x2 2

Checking differentiability at x = 0
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LHD = 0h
lim
→  

h
)0(f)h0(f

−
−−

 = 0h
lim
→  

h
00

−
−

 = 0

RHD = 0h
lim
→  

h
)0(f)h0(f −+

 = 0h
lim
→  

h
0)h0(2 2 −+

 = 0h
lim
→  2h = 0

As LHD = RHD, f(x) is continuous and differentiable at x = 0 (because if function is differential, it must be
continuous)

Example : 41

If x < 1, prove that : 2xx1
x21

+−

−
 + 42

3

xx1
x4x2
+−

−
 + 84

73

xx1
x8x4

+−

−
 + ...... ∞ = 2xx1

x21
++

+

Solution
(1 + x + x2) (1 – x + x2) = (1 + x2)2 – x2 = 1 + x2 + x4

(1 + x + x2) (1 – x + x2) (1 – x2 + x4) = (1 + x2 + x4) (1 – x2 + x4) = (1 + x4)2 – x4 = 1 + x4 + x8

Continuing the same way, we can obtain :

(1 + x + x2) (1 – x + x2) (1 – x2 + x4) .......... ⎟
⎠
⎞⎜

⎝
⎛ +−

− n1n 22 xx1  = 
n2x1+  + 

1n2x
+

Taking limit n → ∞ , we get
(1 + x + x2) (1 – x + x2) (1 – x2 + x4) .......... = 1 (Q x < 1)

Take log of both sides to get
log (1 + x + x2) + log (1 – x + x2) + log (1 – x2 + x4) + .......... = 0

Differentiate both sides with respect to x :

2xx1
x21

++
+

 + 2xx1
x21

+−
+−

 + 42

3

xx1
x4x2

+−

+−
 + ...... = 0

⇒ 2xx1
x21

+−
−

 + 42

3

xx1
x4x2
+−

−
 + ......= ∞ 2xx1

x21
++

+

Hence proved

Example : 42
Find the derivative with respect to x of the function:

(logcos x sin x) (logsin x cos x)–1 + sin–1 ⎟
⎠

⎞
⎜
⎝

⎛
+ 2x1

x2
 at x = π/4.

Solution

Let y = (logcosx sin x) (logsin x cos x)–1 + sin–1 ⎟
⎠

⎞
⎜
⎝

⎛
+ 2x1

x2
, u = (logcosx sin x) (logsinx cos x)–1 and v = sin–1 ⎟

⎠

⎞
⎜
⎝

⎛
+ 2x1

x2

⇒ y = u + v ............(i)
consider u
u = (logcosx sin x) (logsin x cos x)–1 = (logcosx sin x) (logcos x sin x) = (logcos x sin x)2

dx
du

 = dx
d

 (logcosx sin x)2 = dx
d

 
2

e

e

xcoslog
xsinlog
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 = 2 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
xcoslog
xsinlog

e

e
 dx

d
 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
xcoslog
xsinlog

e

e

= 2 (logcos x sin x) × 
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛ −
−

2
e

ee

)xcos(log
xcos
xsinxsinlog

xsin
xcosxcoslog

= 2 (logcos x sin x) × ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
2

e

ee

)xcos(log
xsinlogxtanxcoslogxcot
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consider y

v = sin–1 ⎟
⎠

⎞
⎜
⎝

⎛
+ 2x1

x2

put x = tan θ ⇒ v = sin–1 ( sin 2θ) = 2θ = 2 tan–1x
[for –π/2 ≤ 2θ ≤ π/2 ⇒ –π/4 ≤ θ ≤ π/4 ≤ θ ≤ π/4 ⇒ – 1 ≤ x ≤ 1

⇒ we can use this definition for x = π/4]

⇒ dx
dv

 = 2 dx
d

 tan–1 x = 2x1
2
+

Differentiating (i) with respect to x at x = π/4, we get

4/xdx
dy

π=
⎥⎦

⎤
⎢⎣

⎡

 = 
4/xdx

du

π=
⎥⎦

⎤
⎢⎣

⎡
 + 

4/xdx
dv

π=
⎥⎦

⎤
⎢⎣

⎡

On substituting the values of dx
du

 and dx
dv

, we get

4/xdx
dy

π=
⎥⎦

⎤
⎢⎣

⎡
 = 2 2/1log  ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

2
1

 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

×+×

2
1log

2
1log1

2
1log1

 + 4

4
1

2

⎟
⎠
⎞

⎜
⎝
⎛ π+

 = 2log
8−

 + 216
32
π+

Example : 43

If y = e–xz (x z ) and z4 + x2z = x5 , find dy/dx in terms of x and z.
Solution

Consider z4 + x2z – x5

Differentiating with respect to x, we get :

4z3 dx
dz

 + x2 dx
dz

 + 2xz = 5x4

⇒ dx
dz

 = 23

4

xz4
xz2x5

+

−
..........(i)

Consider y = e–xz sec–1 (x z )
Differentiating with respect to x, we get :

dx
dy

 = e–xz 
⎟
⎠
⎞⎜

⎝
⎛ −1zxz|x|

1
2

 dx
d

 )zx(  + sec–1 zx  × e–xz dx
d

 (–xz)

= e–xz 
⎟
⎠
⎞⎜

⎝
⎛ −1zxz|x|

1
2

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

dx
dz

z2
1xz  + e–xz sec–1 zx  ⎟

⎠

⎞
⎜
⎝

⎛ −−
dx
dzxz

On substituting the value of dz/dx from (i), we get

= e–xz ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+

−
−−

+

−

−
+

−

−−
23

32
11

23

3

22 xz4
z2x5(xzxseczxsecz

xz4
)z2x5(x

1zxz|x|2

x

1zx|x|

1
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Example : 44

Find f′(x) if f(x) = 
x620
x3x21
xxx

2

32

Solution

f′(x) = 
x620
x3x21

)x(
dx
d)x(

dx
d)x(

dx
d

2

32

 + 
x620

)x3(
dx
d)x2(

dx
d)1(

dx
d

xxx
2

32

 + 
)x6(

dx
d)2(

dx
d)0(

dx
d

x3x21
xxx

2

32

= 
x620

x3x21
x3x21

2

2

 + 
x620
x620

xxx 32

 + 
600
x3x21
xxx

2

32

= 0 + 0 + 
600
x3x21
xxx

2

32

 = 6 (2x2 – x2) = 6x2

Example : 45

Differentiate y = cos–1 2

2

x1
x1

+

−
 with respect to z = tan–1x. Also discuss the differentiability of this function.

Solution

The given function is y = cos–1 2

2

x1
x1

+

−

Substitute x = tan θ

⇒ y = cos–1 
θ+

θ−
2

2

tan1
tan1

 = cos–1 (cos 2θ)

⇒ y = 2θ = 2tan–1 x for 0 ≤ 2θ ≤ π
⇒ 0 ≤ θ ≤ π/2
⇒ 0 ≤ x < ∞

and y = – 2θ = – 2 tan–1x for –π < 2θ < 0
⇒ –π/2 < θ < 0
⇒ –∞ < x < 0

So the given function reduces to :

y = 
⎪⎩

⎪
⎨
⎧

<−
≥

−

−

0x,xtan2
0x,xtan2

1

1

Differentiating with respect to tan–1x, we get

)x(tand
dy

1−  = 
⎩
⎨
⎧

<−
≥

0x2
0x2

Alternate Method

y = cos–1 2

2

x1
x1

+

−

Differentiating with respect to x, we get
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dx
dy

 = 
2

2

2

x1
x11

1

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
−

−

−
 22

22

)x1(
)x1(x2)x2)(x1(

+
−−−+

 = 2x4

x4
 2x1

1
+

In the question, z = tan–1 x. On differentiating with respect to x, we get

dx
dz

 = 2x1
1
+

On applying chain rule,

dz
dy

 = dx/dz
dx/dy

 = 2x4

x4
 = |x2|

x4
 = 

⎩
⎨
⎧

<−
≥

0x2
0x2

Differentiability x = 0
LHD = –2 and RHD = 2
As LHD ≠ RHD, f(x) is not differentiable at x = 0

Example : 46

Find dy/dx at x= – 1 when sin y(sin(πx/2) + 
2
3

 sec–1 (2x) + 2x tan [ln (x + 2)] = 0

Solution

The given curve is : sin ysin(πx/2) + 
2
3

 sec–1 (2x) + 2x tan [ln (x + 2)] = 0

Let A = sin ysin(px/2) ; B = 
2
3

 sec–1 (2x) and C = 2x tan [ln (x + 2)]

⇒ A + B + C = 0 ..............(i)
Consider A
Taking log and then differentiating A w.r.t. x, we get

A
1

 dx
dA

 = ⎥⎦

⎤
⎢⎣

⎡ π
+

ππ
dx
dyycot

2
xsin)y(sinn

2
xcos

2
l

At x = –1

1xdx
dA

−=
⎥⎦

⎤
⎢⎣

⎡
 = (sin y)–1 ⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛−+
−= 1xdx

dy
ysin
ycos)1(0  = – ysin

ycos
2  

1xdx
dy

−=
⎟
⎠

⎞
⎜
⎝

⎛

Consider B

B = 
2
3

 sec–1 2x

Differentiating with respect to x, we get dx
dB

 = 
1x4|x|2

3
2 −

At x = – 1
1xdx

dB

−=
⎥⎦

⎤
⎢⎣

⎡
 = 

2
1

Consider C
C = 2x tan [ln (x + 2)]

Differentiating with respect to x, we get

dx
dC

 = 2x 
2x

)]2x(n[sec2

+
+l

 + 2x ln 2 tan [ln (x + 2)]

At x = – 1
1xdx

dC

−=
⎥⎦

⎤
⎢⎣

⎡
 = 

2
1
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Differentiate (i) to get :

dx
dA

 + dx
dB

 + dx
dC

 = 0

On substituting the values of dA/dx, dB/dx and dC/dx at x = – 1, we get

1xdx
dy

−=
⎥⎦

⎤
⎢⎣

⎡
 = ycos

ysin2

 = ysin1

ysin
2

2

−±
...........(ii)

Finding the value of sin y
Consider the given curve and put x = –1 in it to get

(sin y)–1 + 
2
3

 sec–1 (–2) = 0

⇒ sin y = – )2(sec3
2

1 −−  = – 
π
3

[using sec–1 (–2) = cos–1 (–1/2) = p – cos–1 (1/2) = 2π/3]

Substituting the value of sin y in (2), we get :

1xdx
dy

−=
⎥⎦

⎤
⎢⎣

⎡
 = ± 

2

2

31

3

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

π
−

−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

π
−

 = ± 
3

3
2 −ππ

Example : 47

If g is the inverse function of f and f′(x) = nx1
1
+

, prove that g′(x) = 1 + [g(x)]n.

Solution
As g is inverse function of f(x), we can take : g(x) = f–1(x)
⇒ f[g(x)] = x
Differentiating with respect to x, we get : f′[g(x)] g′(x) = 1

⇒ g′(x) = 

)]x(g[(f
1

′

 = 
n)]x(g[1

1
1

+

⇒ g′(x) = 1 + [g(x)]n

Example : 48

If y = 1 + 
1

1

cx
z
−  + )cx)(cx(

xc

21

2

−−  + )cx)(cx)(cx(
xc

321

2
3

−−− , then

Show that dx
dy

 = 
x
y

 ⎥
⎦

⎤
⎢
⎣

⎡
−

+
−

+
− xc

c
xc

c
xc

c

3

3

2

2

1

1

Solution

y = 
1cx

x
−  + )cx)(cx(

xc

21

2

−−  + )cx)(cx)(cx(
xc

321

2
3

−−−

⇒ y = )cx)(cx(
xc)cx(x

21

22

−−
+−

 + )cx)(cx)(cx(
xc

321

2
3

−−−

⇒ y = )cx)(cx(
x

21

2

−−  + )cx)(cx)(cx(
xc

321

2
3

−−−
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⇒ y = )cx)(cx)(cx(
x

321

3

−−−

Take log on both sides and then differentiate to get
log y = 3 log x – log (x – c1) – log (x – c2) – log (x – c3)

⇒ dx
dy

 = y ⎥
⎦

⎤
⎢
⎣

⎡
−

−
−

−
−

−
321 cx

1
cx

1
cx

1
x
3

 = 
x
y

 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
321 cx

x1
cx

x1
cx

x1

= 
x
y

 ⎥
⎦

⎤
⎢
⎣

⎡
−

+
−

+
− xc

c
xc

c
xc

c

3

3

2

2

1

1

Example : 49

If p2 = a2 cos2θ + b2 sin2θ , the prove that p + 2

2

d
pd
θ

 = 3

22

p
ba

Solution
p2 = a2 cos2θ + b2 sin2θ
⇒ 2p2 = a2 + b2 + (a2 – b2) cos 2θ
⇒ 2p2 – a2 – b2 = (a2 – b2) cos 2θ ...........(ii)
Also 2pp1 = a2 (–sin 2θ) + b2 (sin 2θ) (by taking p1 = dp/dθ)
⇒ 2pp1 = (b2 – a2) sin 2θ ...........(ii)
Square (i) and (ii) and add,
⇒ [2p2 – (a2 + b2)]2 + 4p2 p1

2 (a2 – b2)2

⇒ 4p4 + (a2 + b2)2 – (a2 – b2) + 4p2 p1
2 = 4p2 (a2 + b2)

⇒ p4 + a2b2 + p2  p1
2 = p2 (a2 + b2)

⇒ p2 + 2

22

p
ba

 + p1
2 = a2 + b2

On differentiating w.r.t. θ, we get

pp1 – 3

22

p
ba2

 p1 + 2p1 p2 = 0 (by taking p2 = d2p/dθ2)

⇒ p + p2 = 3

22

p
ba

Example : 50

If y1/m + y–1/m = 2x, then prove that (x2 – 1) 2

2

dx
yd

 + x dx
dy

 – m2y = 0

Solution

m
1

y  + m
1

y
−

 = 2x ............(i)

Using 
2

m
1

m
1

yy ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+

−
 – 

2

m
1

m
1

yy ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+

−
 = 4

we get   m
1

y  + m
1

y
−

  = 2 1x2 − .............(ii)

Adding (i) and (ii), we get m
1

y  = x + 1x2 − ⇒ y = 
m

2 1xx ⎟
⎠
⎞⎜

⎝
⎛ −+  ..........(iii)

Differentiating wrt, we get
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y′ = m 
1m

2 1xx
−

⎟
⎠
⎞⎜

⎝
⎛ −+  ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

−
+

1x

x1
2

⇒ y′ 1x2 −  = m 
m

2 1xx ⎟
⎠
⎞⎜

⎝
⎛ −+

On squaring above and using (iii), we get (x2 – 1) y′2 = m2y2

Differentiate again to get
2xy′2 + (x2 – 1) 2y′y′′ = 2m2 y y′

⇒ (x2 – 1) y′′ + xy′ = m2 y
Hence proved

Example : 51

Evaluate ax
lim
→  ax

xn

ax
ax

−

−
 using LH rule ⎟

⎠

⎞
⎜
⎝

⎛ formateminerdetinoftype
0
0

Solution

Let L = ax
lim
→  ax

xa

ax
ax

−

−
............(i)

Note that the expression assumes 0
0

 type of indeterminate form at x = a.

As the expression satisfies all the conditions of LH rule, we can evaluate this limit by using LH rule.
Apply LH rule on (i) to get :

L = ax
lim
→  0)xlog1(x

alog.aax
x

x1n

−+

−−

⇒ L = )alog1(a
alogaa

a

aa

+

−
 = alog1

alog1
+
−

 = 
)aelog(

a
clog ⎟
⎠
⎞

⎜
⎝
⎛

Example : 52

Evaluate ax
lim
→  

a2
xtan

x
a2

π

⎟
⎠

⎞
⎜
⎝

⎛ −  using LH rule (1∞ type of indeterminate form)

Solution

Let y = ax
lim
→  

a2
xtan

x
a2

π

⎟
⎠

⎞
⎜
⎝

⎛ − (1∞ form)

Taking log of both sides, we get :

log y = ax
lim
→  tan ⎟

⎠

⎞
⎜
⎝

⎛ π
a2
x

 log ⎟
⎠

⎞
⎜
⎝

⎛ −
x
a2 (∞ × 0 form)

= ax
lim
→  

⎟
⎠
⎞

⎜
⎝
⎛ π

⎟
⎠
⎞

⎜
⎝
⎛ −

a2
xcot

x
a2log

⎟
⎠

⎞
⎜
⎝

⎛ form
0
0
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Applying LH rule, we get

L = ax
lim
→

⎟
⎠
⎞

⎜
⎝
⎛ π
⎟
⎠
⎞

⎜
⎝
⎛ π

⎟
⎠
⎞

⎜
⎝
⎛ −

⎟
⎠
⎞

⎜
⎝
⎛

a2a2
xeccos

x
a2

x
a

2

2

 = 
⎟
⎠
⎞

⎜
⎝
⎛ π
⎟
⎠
⎞

⎜
⎝
⎛ π−

a22
eccos)1(

a
1

2
 = – 

π
2

∴ y = e–2/π

Example : 54

Evaluate 0x
lim
→ )1x2cos(n

x3sin
2

2

−l
 using LH rule ⎟

⎠

⎞
⎜
⎝

⎛ formateminerdetinoftype
0
0

Solution

Let L = 0x
lim
→  

)xx2cos(n
x3sin

2

2

−l
(0/0 form)

Apply LH rule to get :

L = 0x
lim
→  )xx2sin()1x4(

)xx2cos(x3cosx6
2

22

−−

−−
 = – 6 0x

lim
→  

1x4
)xx2cos(x3 22

−
−

 0x
lim
→  )xx2(

x
2 −

The limit of the first factor is computed directly, the limit of the second one, which represents an

indeterminate form of the type 0
0

 is found with the aid of the L′Hospital’s rule. Again consider,

L = – 6 0x
lim
→  

1x4
)xx2cos(x3cos 22

−
−

 0x
lim
→  )xx2sin(

x
2 −

⇒ L = – 6 . 
1
1.1

−
 0x
lim
→  )xx2cos()1x4(

1
2 −−

⇒ L = – 6 
1.1

1
−

 = – 6

Example : 55

Evaluate ∞→x
lim  k

a

x
xlog

 (k > 0) using LH rule ⎟
⎠

⎞
⎜
⎝

⎛
∞
∞ formateminerdetinoftype

Solution

Let L = ∞→x
lim  k

a

x
xlog

(∞/∞ form)

Apply LH rule to get :

L = +∞→x
lim  

1k

a

kx

elog
x
1

−

⇒ L = logae  +∞→x
lim  kkx

1
 = 0
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Example : 56

Evaluate 1x
lim
→  ⎟

⎠

⎞
⎜
⎝

⎛
−

−
1x

1
nx
1
l

 using LH rule ⎟
⎠

⎞
⎜
⎝

⎛
∞
∞ formateminerdetinoftype

Solution

Let L = 1x
lim
→  ⎟

⎠

⎞
⎜
⎝

⎛
−

−
1x

1
nx
1
l

(∞ – ∞ form)

Let us reduce it to an indeterminate form of the type 0
0

L = 1x
lim
→  nx)1x(

nx1x
l

l

−
−−

(0/0 form)

Apply LH rule to get :

L = 1x
lim
→  x/11nx

x/11
−+

−
l

⇒ L = 1x
lim
→  1xnxx

1x
−+

−
l

Apply LH rule again

⇒ L = 1x
lim
→  2xn

1
+l  = 

2
1

Example : 57 (∞º type of indeterminate form)

Evaluate 0x
lim
→  ( )[ ])x1(ncotxsin1n 22 ++ ll  using LH ule.

Solution

Let L = 0x
lim
→  ( )[ ])x1(ncotxsin1n 22 ++ ll

We have an indeterminate form of the type 0 . ∞. Let us reduce it to an indeterminate form of the type 0
0

.

⇒ L = 0x
lim
→  )x1(ntan

)xsin1(n
2

2

+
+
l

l
(0/0 form)

Apply LH rule to get :

L = 0x
lim
→  

x1
1.)x1(n)]x1(n[sec2

x2sin
xsin1

1

22

2

+
++

+

ll

Simplify to get :

L = 0x
lim
→  )x1(n

xsin
+l

Apply LH rule again to get :

L = 0x
lim
→  )x1(n

xsin
+l

 = 0x
lim
→  

x1
1

xcos

+

 = 1
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Example : 58

Evaluate : 0x
lim
→  (1/x)sin x using LH rule. (∞º type of indeterminate form)

Solution
We have an indeterminate form of the type ∞º
Let y = (1x)sin x;
Taking log on both sides, we get :

ln y = sin x ln (1/x)

⇒ 0x
lim

+→  ln y = 0x
lim

+→  sin x ln (1/x) (0, ∞ form)

Let us transform it to 
∞
∞

 to apply LH rule.

0x
lim

+→  ln y = 0x
lim

+→  xsin/1
nxl−

Apply LH rule to get :

0x
lim

+→  ln y = 0x
lim
→  xsin/)x(cos

x/1
2−

−
 = 0x

lim
→  

xcosx
xsin2

 = 0

⇒ 0x
lim

+→  y = e0 = 1

Example : 59

Find the values of a, b, c so that 0x
lim
→  

xsinx
cexcosbae xx −+−

 = 2

Solution

Let L = 0x
lim
→  

xsinx
cexcosbae xx −+−

...........(i)

Here as x → 0, denominator approaches 0. So for L to be finite, the numerator must tend to 0.
a – b + c = 0 ...........(ii)

Apply LH rule on (i) to get :

L = 0x
lim
→  

xcosxxsin
cexsinbae xx

+
−+ −

Here as x → 0, the denominator tends to 0 and numerator tends to a – c. For L to be finite,
a – c = 0 ...........(iii)

Apply LH rule again on L to get :

L = 0x
lim
→  

xsinxxcos2
cexcosbae xx

−
++ −

⇒
2

cba ++
 = 2 ⇒ a + b + c = 4 ...........(iv)

Solving equations (ii), (iii) and (iv), we get a = 1, b = 2, c = 1
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Example : 60

Evaluate : 0x
lim
→  )x1log(x

xcos1
+

−

Solution

Let L = 0x
lim
→  )x1log(x

xcos1
+

−
(0/0 form)

Using the expansions of cos x and log (1 + x), we get :

L = 0x
lim
→  

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+−−

..........
3
x

2
xxx

.........
!4

x
!2

x11

32

42

 = 0x
lim
→  

........
3
x

2
xx

..........
!4

x
!2

x

43
2

42

−+−

+−

Dividing both numerator and denominator by x2 , we get :

L = 0x
lim
→  

........
3
x

2
x1

.......
!4

x
!2

1

2

2

−+−

+−
 = 

.......001

........00
2
1

+−+

+−+
 = 

2
1

Example : 61

Evaluate : 0x
lim
→  2

2x

x
xxxsine −−

Solution

Let L = 0x
lim
→  2

2x

x
xxxsine −−

(0/0 form)

Using the expansions of sin x and ex , we get :

L = 0x
lim
→  3

2
53432

x

xx.......
!5

x
!3

xx.....
!4

x
!3

x
!2

xx1 −−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+++++

= 0x
lim
→  

3

25432

x

xx.....x
!5

1
!3.!2

1
!4

1x
!3

1
!3

1x
!3

1
!2

1xx −−+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−+⎟

⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛ −++

= 0x
lim
→  

3

53

x

..........x
30
1x

3
1

+−
 = 0x

lim
→  ⎟

⎠

⎞
⎜
⎝

⎛ +− .......x
30
1

3
1 2

 = 
2
1
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Example : 1
Find all the tangents to the curve y = cos (x + y), – 2π ≤ x ≤ 2π that are parallel to the line x + 2y = 0.

Solution
Slope of tangent (x) = slope of line = – 1/2

⇒ dx
dy

 = 
2
1−

Differentiating the given equation with respect to x,

⇒ dx
dy

 = – sin (x + y) ⎟
⎠

⎞
⎜
⎝

⎛ +
dx
dy1  = )yxsin(1

)yxsin(
++
+−

 = 
2
1−

⇒ 2 sin (x + y) = 1 + sin (x + y)
⇒ sin (x + y) = 1

⇒ x + y = nπ + (–1)n π/2, n ∈ Ι in the given interval, we have x + y = 
2
3π−

, 
2
π

(because –(2π + 1) ≤ x + y ≤ 2π + 1)
Substituting the value of (x + y) in the given curve i.e. y = cos (x + y), we get

y = 0 and x = 
2
3π−

, 
2
π

Hence the points of contact are ⎟
⎠

⎞
⎜
⎝

⎛ π− 0,
2
3

 and ⎟
⎠

⎞
⎜
⎝

⎛ π 0,
2  and the slope is ⎟

⎠

⎞
⎜
⎝

⎛ −
2
1

⇒ Equations of tangents are y – 0 = 
2
1−

 ⎟
⎠

⎞
⎜
⎝

⎛ π
+

2
3x  and y – 0 = 

2
1−

  ⎟
⎠

⎞
⎜
⎝

⎛ π
−

2
x

⇒ 2x + 4y + 3π = 0 and 2x + 4y – π = 0

Example : 2

Find the equation of the tangent to m

m

a
x

 + m

m

b
y

 = 1 at the point (x0, y0)

Solution
Differentiating wrt x,

⇒ m

1m

a
mx −

 + m

1m

b
my −

 dx
dy

 = 0

⇒ dx
dy

 = – m

m

a
b

 
1m

y
x

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⇒ at the given point (x0, y0), slope of tangent is 
)y,x( 00

dx
dy

⎥⎦

⎤
 = – 

m

a
b
⎟
⎠

⎞
⎜
⎝

⎛
 

1m

0

0

y
x

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⇒ the equation of tangent is  y – y0 = – 
m

a
b
⎟
⎠

⎞
⎜
⎝

⎛
 

1m

0

0

y
x

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 (x – x0)

am yy0
m–1 – am y0

m = – bm xx0
m–1 + bm x0

m

am yy0
m–1 + bm x x0

m–1 = am y0
m + bm x0

m

using the equation of given curve, the right side can be replaced by ambm

∴ am yy0
m–1 + bm x x0

m–1 = am bm

⇒ the equation of tangent is

a
x

 
1m

0

a
x −

⎟
⎠

⎞
⎜
⎝

⎛
 = b

y
 

1m
0

b
y −

⎟
⎠

⎞
⎜
⎝

⎛
 = 1

Note : The result of this example can be very useful and you must try remember it
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Example : 3
Find the equation of tangent to the curve x2/3 + y2/3 = a2/3 at (x0 – y0). Hence prove that the length of the
portion of tangent intercepted between the axes is constant.

Solution
Method 1 :

3
2

 3
1

x
−

+ 3
2

 3
1

y
−

 dx
dy

 = 0

⇒
)y,x( 00

dx
dy

⎥⎦

⎤
 = – 

3
1

0

0

x
y

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⇒ equation is y – y0 = – 
3
1

0

0

x
y

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 (x – x0)

⇒ x0
1/3 y – y0 x0

1/3 = – xy0
1/3 + x0 y0

1/3

⇒ x y0
1/3 + yx0

1/3 = x0 y0
1/3 + y0 x0

1/3

⇒ 3/1
0

3/1
0

3/1
0

yx
xy

 + 3/1
0

3/1
0

3/1
0

yx
yx

 = x0
2/3 + y0

2/3

⇒ equation of tangent is : 3/1
0x
x

 + 3/1
0y
y

 = a2/3

Length intercepted between the axes :

length = 22 )erceptinty()erceptintx( +

= ( ) ( )23/23/1
0

23/23/1
0 ayax +

= 3/43/2
0

3/43/2
0 ayax +

= a2/3 3/2
0

3/2
0 yx +

= a i.e. constant
Method 2
Express the equation in parametric form

x = a sin2t, y = a cos3t
Equation of tangent is :

y – a cos3t = 
tcostsina3
tsintcosa3

2

2−
 (x – a sin3t)

⇒ y sin – a sin t cos3t = – x cos t – a sin3t cos t
⇒ x cos t + y sin t = a sin t cos t

⇒ tsin
x

 + tcos
y

 = a

in terms of (x0, y0) equation is :

3/1
0 )a/x(

x
 + 3/1

0 )a/y(
y

 = a

Length of tangent intercepted between axes = 2
int

2
int )y()x( +  = tcosatsina 2222 +  = a

Note :
1. The parametric form is very useful in these type of problems
2. Equation of tangent can also be obtained by substituting b = a and m = 2/3 in the result of

example 2
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Example : 4
For the curve xy = c2 , prove that
(i) the intercept between the axes on the tangent at any point is bisected at the point of contact.
(ii) the tangent at any point makes with the co-ordinate axes a triangle of constant area.

Solution
Let the equation of the curve in parametric form by x = ct, y = c/t
Let the point of contact be (ct, c/t)
Equation of tangent is :

y – c/t = 
c

t/c 2−
 (x – ct)

⇒ t2y – ct = – x + ct
⇒ x + t2y = 2 ct ............(i)
(i) Let the tangent cut the x and y axes at A and B respectively

Writing the equations as : ct2
x

 + t/ct2
y

 = 1

⇒ xintercept = 2 ct, yintercept= 2c/t

⇒ A ≡ (2ct = 0, and B ≡ ⎟
⎠

⎞
⎜
⎝

⎛
1
c2,0

mid point of AB ≡ ⎟
⎠

⎞
⎜
⎝

⎛ ++
2

t/c20,
2

0ct2
 ≡ (ct, c/t)

Hence, the point of contact bisects AB

(ii) If O is the origin, Area of triangle ∆OAB = 1/2 (OA) (OB) = 
2
1

 (2ct) 
1

)c2(
 = 2c2

i.e. constant for all tangents because it is independent of t.

Example : 5
Find the abscissa of the point on the curve ay2 = x3 , the normal at which cuts of equal intercept from the
axes.

Solution
The given curve is ay2 = x3 ..............(i)
Differentiate to get :

2ay dx
dy

 = 3x2

⇒ dx
dy

 = ay2
x3 2

The slope of normal = 

dx
dy
1

−
 = – 2x3

ay2

since the normal makes equal intercepts on the axes, its inclination to axis of x is either 45º or 135º.
So two normal are possible with slopes 1 and – 1

⇒ – 2x3
ay2

 =  ± 1

On squaring 4a2y2  = 9x4

Using (i), we get :  4a x3 = 9x4

⇒ x = 4a/9
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Example : 6
Show that two tangents can be drawn from the point A(2a, 3a) to the parabola y2 = 4ax. Find the equations
of these tangents.

Solution
The parametric form for y2 = 4ax is x = at2 , y = 2at
Let the point P(at2, 2at) on the parabola be the point of contact for the tangents drawn form A

i.e. y – 2at = at2
a2

 (x – at2)

⇒ ty – 2 at2 = x – at2

⇒ x – ty + at2 = 0 ...............(i)
it passes through A(2a, 3a)
⇒ 2a – 3at + at2 = 0
⇒ t2 – 3t + 2 = 0
⇒ t = 1, 2
Hence there are two points of contact P1 and P2 corresponding to t1 = 1 and t2 = 2 on the parabola. This
means that two tangents can be drawn.
Using (i), the equations of tangents are :
x – y + a = 0 and x – 2y + 4a = 0

Example : 7
Find the equation of the tangents drawn to the curve y2 – 2x3 – 4y + 8 = 0 from the point (1, 2)

Solution
Let tangent drawn from (1, 2) to the curve
y2 – 2x3 – 4y + 8 = 0 meets the curve in point (h, k)
Equation of tangents at (h, k)
Slope of tangent at (h, k)

= 
)k,h(dx

dy
⎥⎦

⎤
 = 

)k,h(

2

2y
x3

⎥
⎥
⎦

⎤

−  = 
2k

h3 2

−

Equation of tangent is y – k = 
2k

h3 2

−
 (x – h)

As tangent passes through (1, 2), we can obtain 2 – k = 
2k

h3 2

−
 (1 – h)

⇒ 3h3 – 3h2 – k2 + 4k – 4 = 0 ...........(i)
As (h, k) lies on the given curve, we can make
k2 – 2h3 – 4k + 8 = 0 ...........(ii)
Adding (i) and (ii), we get  h3 – 3h2 + 4 = 0
⇒ (h + 1) (h – 2)2 = 0
⇒ h = – 1 and h = 2
For h = – 1, k is imaginary
So consider only h = 2.

Using (ii) and h = 2, we get k = 2 ± 2 3 .

(2, 2 + 2 3 ) = and (2, 2) – 2 3 )
Equation of tangents at these points are :

y – (2 + 2 3 ) = 2 3  (x – 2)

and y – (2 – 3 ) = – 2 3  (x – 2)
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Example : 8
Find the equation of the tangent to x3 = ay3 at the point A (at2, at3). Find also the point where this tangent
meets the curve again.

Solution
Equation of tangent to : x = at2 , y = at3 is

y – at3 = 
at2
at3 3

 (x – at2)

⇒ 2y – 2at3 = 3tx – 3at3

i.e. 3tx – 2y – at3 = 0
Let B (at1

2 , at1
3) be the point where it again meets the curve.

⇒ slope of tangent at A = slope of AB 
at2
at3 2

 = )tt(a
)tt(a

2
1

3

3
1

3

−

−

⇒
2
t3

 = 
1

1
2
1

2

tt
tttt

+
++

⇒ 3t2 + 3tt1 = 2t2 + 2t1
2 + 2t t1

⇒ 2t1
2 – t t1 – t2 = 0

⇒ (t1 – t) (2t1 + t) = 0
⇒ t1 = t or t1 = –1/2
The relevant value is t1 = –t/2

Hence the meeting point B is = ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛ −
⎟
⎠

⎞
⎜
⎝

⎛ −
32

2
ta,

2
ta  = 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
8
at,

4
at 32

Example : 9

Find the condition that the line x cos α + y sin α = P may touch the curve 2

2

a
x

 + 2

2

b
y

 = 1

Solution
Let (x1, y1) be the point of contact

⇒ the equation of tangent is y – y1 )y,x( 11
dx
dy

⎟
⎠

⎞
⎜
⎝

⎛
 (x – x1)

⇒ y – y1 = 
1

2
1

2

ya
xb−

 (x – x1)

⇒ a2 yy1 – a2 y1
2 = – b2 x x1 + b2 x1

2

⇒ b2 x x1 + a2 y y1 = b2 x1
2 + a2 y1

2

Using the equation of the curve : 2
1

a
xx

 + 2
1

b
yy

 = 1 is the tangent

If this tangent and the given line coincide, then the ratio of the coefficients of x and y and the constant
terms must be same

Comparing x cos α + y sin α = P and 2
1

a
xx

 + 2
1

b
yy

 = 1

we get 2
1 a/x

cosα
 = 2

1 b/y
sinα

 = 
1
P

⇒ Px1  = a2 cos α , Py1 = b2 sin α and also we have 2

2
1

a
x

 + 2

2
1

b
y

 = 1
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From these three equations, we eliminate x1, y1 to get the required condition.

2a
1

 

22

P
cosa

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ α
 + 2b

1
 

22

P
sinb

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ α
 = 1

⇒ a2 cos2α + b2 sin2α = P2

Example : 10
Find the condition that the curves ; ax2 + by2 = 1 a′x2 + b′y2 = 1 may cut each other orthogonally (at right
angles)

Solution
Condition for orthogonality implies that the tangents to the curves at the point of intersection are perpen-
dicular. If (x0, y0) is the point of intersection, and m1, m2 are slopes of the tangents to the two curves at this
point, the m1 m2 = – 1.
Let us find the point of intersection. Solving the equations simultaneously,
ax2 + by2 – 1 = 0
a′ x2 + b′ y2 – 1 = 0

⇒
bb

x2

′+−
 = 

aa
y2

′+−
 = baba

1
′−′

⇒ the point of intersection (x0 – y0) is given by

x0
2 = baba

bb
′−′

−′
 and y0

2 = baba
aa
′−′
′−

The slope of tangent to the curve ax2 + by2 = 1 is

m1 = dx
dy

 = 
0

0

by
ax−

 and the slope of tangent to the curve a′ x2 + b′ y2 = 1 is m2 = 
0

0

yb
xa
′
′−

for orthogonality, m1m2 = bb
aa
′
′
 2

0

2
0

y
x

 = – 1

Using the values of x0 and y0, we get

⇒ bb
aa
′
′
 aa

bb
′−

−′
 = – 1

⇒ bb
bb
′

−′
 = aa

aa
′

−′

⇒ b
1

 – b
1
′  = a

1
 – a

1
′  is the required condition

Example : 11
The equation of two curves are y2 = 2x and x2 = 16y
(a) Find the angle of intersection of two curves
(b) Find the equation of common tangents to these curves.

Solution
(a) First of all solve the equation of two curves to get their points of intersection.

The two curves are y2 = 2x ..........(i)
and x2 = 16y ..........(ii)
On solving (i) and (ii) two points of intersection are (0, 0) and (8, 4)
At (0, 0)
The two tangents to curve y2 = 2x and x2 = 16y are x = 0 and y = 0 respectively.
So angle between curve = angle between tangents = π/2
At (8, 4)

Slope of tangent to y2 = 2x is m1 = 
)4,8(atdx

dy
⎥⎦

⎤
 = y

1
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⇒ m1 = 1/4
Similarly slope of tangent to x2 = 16y is m2 = 1
Acute angle between the two curve at (8, 4)

= ⎥
⎦

⎤
⎢
⎣

⎡
+
−−

21

211

mm1
mmtan  = 

4
21

2
4
1

tan 1

+

−
−

 = tan–1 5
4

(b) Let common tangent meets y2 = 2x in point P whose coordinates are (2t2, 2t)

Equation of tangent at P is y – 2t = t2
1

 (x – 2t2)

⇒ 2ty – x = 2t2

On solving equation of second curve and tangent (i), we get :
2t (x2/16) – x = 2t2

⇒ tx2 – 8x = 16t2

This quadratic equation in x should have equal roots because tangent (i)
is also tangent to second curve and hence only one point of intersection.
⇒ D = 0 ⇒ 64 + 64t3 = 0
⇒ t = – 1
So equation of common tangent can be obtained by substituting t = –1 in (i) i.e.
– 2y – x = 2 ⇒ 2y + x + 2 = 0

Example : 12

Find the intervals where y = 
2
3

x4 – 3x2 + 1 is increasing or decreasing

Solution
dy/dx = 6x3 – 6x = 6x (x – 1) (x + 1)
This sign of dy/dx is positive in the interval :
(–1, 0) ∪ (1, ∞) and negative in the interval : (–∞, –1) ∪ (0, 1)
Hence the function is increasing in [–1, 0] ∪ [1, ∞) and decreasing (–∞, –1] ∪ [0, 1]

Example : 13
Find the intervals where y = cos x is increasing or decreasing

Solution

dx
dy

 = – sin x

Hence function is increasing in the intervals where sin x is negative and decreasing where sin x is positive

dx
dy

 < 0 if 2nπ < x < (2n + 1)π

and dx
dy

 > 0 if (2n + 1) π < x < (2n + 2) π

where n is an integer
Hence the function is increasing in [(2n + 1) π , (2n + 2)π]
and decreasing in [2nπ , (2n + 1) π]

Example : 14
 Show that sin x < x < tan x for 0 < x < π/2.

Solution
We have to prove two inequalities; x > sin x and tan x > x.
Let f(x) = x – sin x
f′(x) = 1 – cos x = 2 sin2 x/2
⇒ f′(x) is positive
⇒ f(x) is increasing
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By definition, x > 0
⇒ f(x) > f(0)
⇒ x – sin x > 0 – sin 0
⇒ x – sin x > 0
⇒ x > sin x .............(i)
Now, let g(x) = tan x – x
g′(x) = sec2 x – 1 = tan2x which is positive
⇒ g(x) is increasing
By definition, x > 0 ⇒ g(x) > g(0)
⇒ tan x – x > tan 0 – 0
⇒ tan x – x > 0
⇒ tan x > x .............(ii)
Combining (i) and (ii), we get  sin x < x < tan x

Example : 15
Show that x / (1 + x) < log (1 + x) < x for x > 0.

Solution

Let f(x) = log (1 + x) – 
x1

x
+

f′(x) = 
x1

1
+

 – 2)x1(
x)x1(

+
−+

f′(x) = 2)x1(
x
+  . 0 for x > 0

⇒ f(x) is increasing
Hence x > 0 ⇒ f(x) > f(0) by the definition of the increasing function.

⇒ log (1 + x) – 
x1

x
+

 > log (1 + 0) – 01
0
+

⇒ log (1 + x) – 
x1

x
+

 > 0

⇒ log (1 + x) > 
x1

x
+

............(i)

Now let g(x) = x – log (1 + x)

g′(x) = 1 – 
x1

1
+

 = 
x1

x
+

 > 0 for x > 0

⇒ g(x) is increasing
Hence x > 0 ⇒ g(x) > g(0)
⇒ x – log (1 + x) > 0 – log (1 + 0)
⇒ x – log (1 + x) > 0
⇒ x > log (1 + x) ............(ii)
Combining (i) and (ii), we get

x1
x
+

 < log (1 + x) < x
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Example : 16

Show that : x – 
6
x3

 < sin x for 0 < x < 
2
π

Solution

Let f(x) = sin x – x + 
6
x3

f′(x) = cos x – 1 + 
2
x2

f′′(x) = – sin x + x

f′′′(x) = – cos x + 1 = 2 sin2 
2
x

 > 0

⇒ f′′(x) is increasing
Hence x > 0 ⇒ f′′(x) > f′′(0)
⇒ – sin x + x > – sin 0 + 0
⇒ – sin x + x > 0
⇒ f′′(x) > 0
⇒ f′(x) is increasing
Hence x > 0 ⇒ f′(x) > f′(0)
⇒ cos x – 1 + x2/2 > cos 0 – 1 + 0/2
⇒ cos x – 1 + x2/2 > 2
⇒ f′(x) > 0
⇒ f(x) is increasing
Hence x > 0 ⇒ f(x) > f(0)
⇒ sin x – x + x3/6 > sin 0 – 0 + 0/6
⇒ sin x – x + x3/6 > 0
⇒ sin x > x – x3/6

Example ; 17
Show that x ≥ log (1 + x) for all x ∈ (–1, ∞)

Solution
Let f(x) = x – log (1 + x)
Differentiate f(x) w.r.t. x to get,

f′(x) = 1 – 
x1

1
+

 = 
x1

x
+

Note that x = 0 is a critical point of f′(x) in (–1, ∞).
So divide the interval about x = 0 and make two cases
Case – I x ∈ (–1, 0)
In this interval, f′(x) < 0
⇒ f(x) is a decreasing function
Therefore, –1 < x < 0 ⇒ f(x) ≥ f(0) = 0
Hence x – log (1 + x) ≥ 0 for all x ∈ (–1, 0) ............(i)
Case – II x ∈ [0, ∞)
In this interval, f′ (x) > 0
⇒ f(x) is an increasing function.
Therefore, 0 ≤ x < ∞ ⇒ f(x) ≥ f(0) = 0
Hence x – log (1 + x) ≥ 0 for all x ∈ [0, ∞) ............(ii)
Combining (i) and (ii), x ≥ log (1 + x) for all x ∈ (–1, ∞)
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Example : 18

Find the intervals of monotonicity of the function f(x) = 2x
|1x| −

Solution
The given function f(x) can be written as :

f(x) = 2x
|1x| −

 =

⎪
⎪
⎩

⎪⎪
⎨

⎧

≥
−

≠<
−

1x;
x

1x

0x,1x;
x

x1

2

2

Consider x < 1 f′(x) = 3x
2−

 + 2x
1

 = 3x
2x −

For increasing, f′(x) > 0 ⇒ 3x
2x −

 > 0

⇒ x(x – 2) > 0 (Q x4 is always positive)
⇒ x ∈ (–∞, 0) ∪ (2, ∞)
Combining with x < 1, we get f(x) is increasing in x < 0 and decreasing in x ∈ (0, 1) ..........(i)
Consider x ≥ 1

f′(x) = 2x
1−

 + 3x
2

 = 3x
x2 −

For increasing f′(x) > 0
⇒ (2 – x) > 0 (Q x3 is positive)
⇒ (x – 2) < 0
⇒ x < 2
combining with x > 1, f(x) is increasing in x ∈ (1, 2) and decreasing in x ∈ (2, ∞) ..........(ii)
Combining (i) and (ii), we get
f(x) is strictly increasing on x ∈ (–∞, 0) ∪ (1, 2) and strictly decreasing on x ∈ (0, 1) ∪ (2, ∞)

Example : 19
Prove that (a + b)n ≤ an + bn , a > 0, b > 0 and 0 ≤ n ≤ 1

Solution

We want to prove that (a + b)n ≤ an + bn i.e.
n

1
b
a

⎟
⎠

⎞
⎜
⎝

⎛ +  ≤ 
n

b
a
⎟
⎠

⎞
⎜
⎝

⎛
 + 1

i.e. (x + 1)n ≤ 1 + xn where x = a/b and x > 0,
since a and b both are positive.
To prove above inequality, consider
f(x) = (x + 1)n – xn – 1
Differentiate to get,

f′(x) = n(x = 1)n–1 – nxn–1  = 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

+ −− n1n1 x
1

)1x(
1

.........(i)

consider x + 1 > x
⇒ (x + 1)1–n > x1–n (Q 1 – n > 0)

⇒ n1)1x(
1

−+  , n1x
1
−

Combining (i) and (ii), we can say f′(x) < 0
⇒ f(x) is a decreasing function ∀ x > 0
Consider x ≥ 0
f(x) ≤ f(0) Q f(x) is a decreasing function
⇒ f(x) ≤ 0
⇒ (x + 1)n – xn – 1 ≤ 0
⇒ (x + 1)n ≤ xn + 1 Hence proved
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Example : 20
Find the local maximum and local minimum values of the function y = xx.

Solution
Let f(x) = y = xx

⇒ log y = x log x

⇒ y
1

 dx
dy

 = x 
x
1

 + log x

⇒ dx
dy

 = xx (1 + log x)

f′(x) = 0 ⇒ xx (1 + log x) = 0
⇒ log x = – 1 ⇒ x = e–1 = 1/e
Method – I
f′(x) = xx (1 + logx)
f′(x) = xx log ex
x < 1/e ex < 1 ⇒ f′(x) < 0
x > 1/e ex > 1 ⇒ f′(x) > 0
The sign of f′(x) changes from –ve to +ve around x = 1/e. In other words f(x) changes from decreasing to
increasing at x = 1/e
Hence x = 1/e is a point of local maximum
Local minimum value = (1/e)1/e = e–1/e .
Method – II

f′′(x) = (1 + log x) dx
d

 xx + xx ⎟
⎠

⎞
⎜
⎝

⎛
x
1

 = xx (1 + log x)2 + xx–1

f′′ (1/e) = 0 + (e)(e–1)/e > 0.
Hence x = 1/e is a point of local minimum
Local minimum value is (1/e)1/e = e–1/e .
Note ; We will apply the second derivative test in most of the problems.

Example : 21
Let f(x) = sin3x + λ sin2x where – π/2 < x < π/2. Find the interval in which λ should lie in order that f(x) has
exactly one minimum and exactly one maximum.

Solution
f(x) = sin3x + λ sin2x.
f′(x) = 3 sin2x cos x + 2 sin x cos x × λ

f′(x) = 0 ⇒ 3 sin x cos x ⎟
⎠

⎞
⎜
⎝

⎛ λ
+

3
2xsin  = 0

⇒ sin x = 0 or cos x = 0 or sin x = 3
2λ−

cos x = 0 is not possible in the given interval.
⇒ x = 0 and x = sin–1 (–2λ/3) are two possible values of x.
These represent two distinct values of x if :
(i) λ ≠ 0 because otherwise x = 0 will be the only value
(ii) – 1 < – 2 λ/3 < 1 ⇒ 3/2 > λ > –3/2
for exactly one maximum and only one minimum these conditions must be satisfied by λ

i.e. λ ∈ ⎟
⎠

⎞
⎜
⎝

⎛− 0,
2
3

 ∪ ⎟
⎠

⎞
⎜
⎝

⎛
2
3,0

Since f(x) is continuous and differentiable function, these can not be two consecutive points of local
maximum or local minimum. These should be alternate.
Hence f′(x) = 0 at two distinct points will mean that one is local maximum and the other is local minimum.
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Example : 23
A windows is in the form of a rectangle surmounted by a semi-circle. The total area of window is fixed.
What should be the ratio of the areas of the semi-circular part and the rectangular part so that the total
perimeter is minimum?

Solution
Let A be the total area of the window. If 2x be the width of the rectangle and y be the height.
Let 2x be the width of the rectangle and y be the height. Let the radius of circle be x.
⇒ A = 2xy + π/2 x2

Perimeter (P) = 2x + 2y + π x
A is fixed and P is to be minimised
Eliminating y,

P(x) = 2x + πx + 
x
1

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ π
−

2
xA

2

P′(x) = 2 + π – A/x2 – π/2

P′(x) = 0 ⇒ x = 4
A2
+π

P′′(x) = 2A/x3 > 0

⇒ Perimeter is minimum for x = 4
A2
+π

for minimum perimeter,

area of semicircle = 2)4(
)A2(

+π
π

 = 4
A
+π
π

area of rectangle = A – 4
A
+π
π

 = 4
A4
+π

⇒ ratio of the areas of two parts = 
4
π

Example : 23
A box of constant volume C is to be twice as long as it is wide. The cost per unit area of the material on the
top and four sides faces is three times the cost for bottom. What are the most economical dimensions of
the box?

Solution
Let 2x be the length, x be the width and y be the height of the box.
Volume = C = 2x2y.
Let then cost of bottom = Rs. k per sqm.
Total cost = cost of bottom + cost of other faces

= k(2x2) + 3x (4xy + 2xy + 2x2) = 2k
= 2k (4x2 + 9xy)

Eliminating y using C = 2x2y,
Total cost = 2k (4x2 + 9C/2x)
Total cost is to be minimised.

Let total cost = f(x) = 2k ⎟
⎠

⎞
⎜
⎝

⎛ +
x2
C9x4 2

f′(x) = 2k ⎟
⎠

⎞
⎜
⎝

⎛ − 2x2
c9x8

f′(x) = 0 ⇒ 8x – 2x2
c9

 = 0

⇒ x = 
3/1

16
C9
⎟
⎠

⎞
⎜
⎝

⎛
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f′′(x) = 2k ⎟
⎠

⎞
⎜
⎝

⎛ + 3x
C98  > 0

hence the cost is minimum for x = 
3/1

16
C9
⎟
⎠

⎞
⎜
⎝

⎛
 and y = 2x2

C
 = 

2
C

 
3/2

C9
16

⎟
⎠

⎞
⎜
⎝

⎛
 = 

3/1

81
C32
⎟
⎠

⎞
⎜
⎝

⎛

The dimensions are : 2 
3/1

16
C9
⎟
⎠

⎞
⎜
⎝

⎛
 , 

3/1

16
C9
⎟
⎠

⎞
⎜
⎝

⎛
 , 

3/1

81
C32
⎟
⎠

⎞
⎜
⎝

⎛

Example : 34
Show that the semi-vertical angle of a cone of given total surface and maximum volume is sin–1 1/3.

Solution
Let r and h be the radius and height of the cone and  l be the slant height of the cone.
Total surface area = S = πrl + πr2 .............(i)
Volume = V = π/3r2 h is to be maximised
Using, l2 = r2 + h2 and S = π rl + πr2

V = 3
π

 r2 23 r−l

⇒ V = 3
π

 r2 
2

22
r

r
rS

−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

π
π−

⇒ V = 3
π

 r2 
π

−
π

S2
r

S
22

2

We will maximise V2

Let V2 = f(r) = 
9

2π
 r4 ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

π
−

π

S2
r

S
22

2

 = f(r) = 9
S

 (Sr2 – 2πr4)

⇒ f′(r) = 0 ⇒ 2Sr – π r3 = 0

⇒ r = 
π4

S
.............(ii)

f′′(r) = 9
S

 (2S – 24π r2)

f′′ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

π4
S

 = 9
S

 (2S – 6S) < 0

Hence the volume is maximum for r = 
π4

S

To find the semi-vertical angle, eliminate S between (i) and (ii), to get :
4πr2 = πrl + πr2

⇒ l = 3r
sin θ = r/l = 1/3

⇒ θ = sin–1 (1/3) for maximum volume.
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Example : 25
Find the maximum surface area of a cylinder that can be inscribed in a given sphere of radius R.

Solution
Let r be the radius and h be the height of cylinder. Consider the right triangle shown in the figure.
2r = 2R cos θ and h = 2R sin θ
Surface area of the cylinder = 2π rh + 2pr2

⇒ S(θ) = 4π R2 sin θ cos θ + 2π R2 cos2θ
⇒ S(θ) = 2π R2 sin 2θ + 2π R2 cos2θ
⇒ S′(θ) = 4π R2 cos 2θ – 2π R2 sin 2θ
S′(θ) = 0 ⇒ 2 cos 2θ – sin 2θ = 0
⇒ tan 2θ = 2 ⇒ θ = θ0 = 1/2 tan–12
S′′(θ) = – 8π R2 sin 2θ – 4π R2 cos 2θ

S′′ (θ0) = - 8 πR2 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

5
2

 – 4π R2 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

5
1

 < 0

Hence surface area is maximum for θ = θ0 = 1/2 tan–12

⇒ Smax = 2π R2 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

5
2

 + 2π R2 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
2

5/11

⇒ Smax = πR2 ( )51+

Example : 26
Find the semi-vertical angle of the cone of maximum curved surface area that can be inscribed in a given
sphere of radius R.

Solution
Let h be the height of come and r be the radius of the cone. Consider the right ∆OMC where O is the
centre of sphere and AM is perpendicular to the base BC of cone.
OM = h – R, OC = R, MC = r
R2 = (h – R)2 + r2 .........(i)
and r2 + h2 = l2 .........(ii)
where l is the slant height of cone.
Curved surface area = C = π r l
Using (i) and (ii), express C in terms of h only.

C = π r 22 hr +

⇒ C = π 2hhR2 −  hR2
We will maximise C2.
Let C2 = f(h) = 2π2 hR (2hR - h2)
⇒ f′(h) = 2π2R (4hR – 3h2)
f′(h) = 0 ⇒ 4hR - 3h2 = 0
⇒ h = 4R/3.
f′′(h) = 2π3R (4R – 6h)

f′′ ⎟
⎠

⎞
⎜
⎝

⎛
3
R4

 = 2π R2 (4R – 8R) < 0

Hence curved surface area is maximum for h = 3
R4

Using (i), we get r2 = 2h R – h2 = 
9
R8 2

⇒ r = 
3

22
 R

Semi-vertical angle = θ tan–1 r/h = tan–1 1/ 2
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Example : 27
A cone is circumscribed about a sphere of radius R. Show that the volume of the cone is minimum if its
height is 4R.

Solution
Let r be the radius, h be the height, and be the slant height of cone.
If O be the centre of sphere,
∆AON – ∆ACM

⇒
R

Rh −
 = 

r
l

..............(i)

⇒
R

Rh −
 = 

r
hr 22 +

Squaring and simplifying we get ;

r2 = 
R2h

hR2

−
..............(ii)

Now volume of cone = 1/3 πr2 h

⇒ V = 3
1

 π h
R2h

hR2

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

⇒ V = 3
1

 
⎟
⎠
⎞

⎜
⎝
⎛ −

π

2

2

h
R2

h
1

R

For volume to be minimum, the denominator should be maximum. Hence we will maximise :

f(h) = 
h
1

 – 2h
R2

f′(h)= – 2h
1

 + 3h
R4

f′(h) = 0 ⇒ h = 4R

f′′(h) = 3h
2

 – 4h
R12

 = 4h
R12h2 −

f′′(4R) = 4R256
R12R8 −

 < 0

Hence f(h) is maximum and volume is minimum for h = 4R.

Example : 28
The lower corner of a page in a book is folded over so as to reach the inner edge of the page. Show that
the fraction of the width folded over when the area of the folded part is minimum is 2/3.

Solution
The corner A is folded to reach A1.
The length of the folded part = AB = A1B = x
Let total width = 1 unit
⇒ Length of the unfolded part = OB = 1 – x.
If CM || OA, ∆A1 CM ~ ∆BA1O

⇒ CM
CA1  = OA

BA

1

1

⇒ A1 C = y = CM ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
OA

BA

1

1
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⇒ y = 1 ⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

−− 22 )x1(x

x
............(i)

Area of folded part = Area (∆A1BC)

A = 
2
1

 xy = 
2
1

 × 1x2
x
−

⇒ A2 = )1x2(4
x4

−
 = 

⎟
⎠
⎞

⎜
⎝
⎛ − 43 x

1
x
24

1

For area to be minimum, denominator in R.H.S. must be maximum.

Let f(x) = 3x
2

 – 4x
1

f′(x) = 4x
6−

 + 5x
4

f′(x) = 0 ⇒ – 6x + 4 = 0 ⇒ x = 2/3

f′′(x) = 5x
24

 – 6x
20

 = 6x
20x24 −

f′′ (2/3) = 6)3/2(
2016 −

 < 0

Hence f(x) is maximum and area is minimum if x = 2/3
i.e. 2/3 rd of the width

Example : 29

Prove that the minimum intercept made by axes on the tangent to the ellipse 2

2

a
x

 + 2

2

b
y

 = 1 is a + b. Also

find the ratio in which the point of contact divides this intercept.
Solution

Intercept made by the axes on the tangent is the length of the portion of the tangent intercepted between
the axes. Consider a point P on the ellipse whose coordinates are x = a cost, y = b sin t
(where t is the parameter)
The equation of the tangent is :

y – b sin t = tsina
tcosb

−
 (x – a cos t)

⇒ a
x

 cos t  + b
y

 sin t = 1

⇒ OA = tcos
a

, OB = tsin
b

Length of intercept = l = AB = 
tsin

b
tcos

a
2

2

2

2
+

We will minimise l2 .
Let l2 = f(t) = a2 sec2t + cosec2t
⇒ f(t) - 2a2 sec2t tan t – 2b2 cosec2t cos t
f′(t) = 0 ⇒ a2 sin4t = b2 cos4t

⇒ t = tan–1 a
b
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f′′(t) = 2a2 (sec4t + 2 tan2t sec2t) + 2b2 (cosec4t + 2 cosec2t cot2t)
which is positive

Hence f(t) is minimum for tan t = a/b

⇒ lmin = )b/a1(b)a/b1(a 22 +++

⇒ lmin = a + b ...........(i)

PA2 = 
2

tcos
atcosa ⎟

⎠

⎞
⎜
⎝

⎛ −  + b2 sin2t = 
tcos
tsina

2

42

 + b2 sin2t = (a2 tan2t  b2) sin2t = (ab + b2) ba
b
+

 = b2

⇒ PA = b
Using (i), PB = a

Hence 
PB
PA

 = a
b

⇒ P divides AB in the ratio b : a

Example : 30
Find the area of the greatest isosceles triangle that can be inscribed in a given ellipse having its vertex
coincident with one end of the major axis.

Solution
Let the coordinates of B be (a cos t, b sin t)
⇒ The coordinates of C are : (a cos t, – b sin t)
because BC is a vertical line and BM = MC
Area of triangle = 1/2 (BC) (AM)
⇒ A = 1/2 (2b sin t) (a – a cos t)
⇒ A (t) = ab (sin t – sin t cos t)
A′(t) = ab (cos t – cos 2t)
A′(t) = ab (cos t – cos 2t)
A′(t) = 0 ⇒ cos t – cos 2t = 0
⇒ cos t + 1 – 2 cos2t = 0
⇒ cos t = 1, –1/2
A′′(t) = ab (– sin t + 2 sin 2t) = ab sin t(4 cos t – 1)

A′′(2π/3) = ab 2/3  (–2 – 1) < 0

Hence area is maximum for t = 3
2π

Maximum area = A ⎟
⎠

⎞
⎜
⎝

⎛ π
3
2

= ab (sin 2π/3 – sin 2π/3 cos 2π/3)

= ab ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

2
1

2
3

2
3

 = 
4
33

 ab

Example : 31
Find the point on the curve y = x2 which is closest to the point A (0, a)

Solution
Using the parametric representation, consider an arbitrary point P (t, t2) on the curve.
Distance of P from A = PA

PA = 222 )at(t −+

We have to find t so that this distance is minimum.
We will minimise PA2

Let PA2 = f(t) = t2 + (t2 – a)2

f′(t) = 2t + 4t (t2 – a)
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f′(t) = 2t [2t2 – 2a + 1]

f′(t) = 0 ⇒ t = 0, ± 
2
1a −

f′′(t) = 2 – 4a + 12 t2
we have to consider two possibilities.
Case – I : a < 1/2
In this case, t = 0 is the only value.
f′′ (0) = 2 – 4a = 4 (1/2 – a) > 0
Hence the closest point corresponds to t = 0
⇒ (0, 0) is the closest point
Case – II : a > 1/2

In this case t = 0, ± 
2
1a −

f′′(0) = 2 – 4a = 4 ⎟
⎠

⎞
⎜
⎝

⎛ − a
2
1

 < 0

⇒ local maximum at t = 0

f′′ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−±

2
1a  = 2 – 4a + 12 a – 6 = 8 ⎟

⎠

⎞
⎜
⎝

⎛ −
2
1a  > 0

Hence the distance is minimum for t = ± 
2
1a −

So the closest points are ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−

2
1a2,

2
1a  and ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−−

2
1a2,

2
1a

Example : 32
Find the shortest distance between the line y – x = 1 and the curve x = y2

Solution

Let P (t2, t) be any point on the curve x = y2. The distance of P from the given line is = 22

2

1t

|1tt|

+

−+−

= 
2

1tt2 +−
 because t2 – t + 1 is a positive expression. We have to find minimum value of this expression.

Let f(t) = t2 – t + 1
f′(t) = 2t – 1
f′(t) = 0 ⇒ t = 1/2
f′′(t) = 2 > 0
⇒ distance is minimum for t = +1/2

Shortest distance = 
2/1t

2

2
1tt

=⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ +−
 = 

2

1
2
1

4
1 +−

 = 
8

23
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Example : 33
Find the point on the curve 4x2 + a2y2 = 4a2 ; 4 < a2 < 8 that is farthest from the point (0, –2).

Solution

The given curve is an ellipse 2

2

a
x

 
4
y2

 = 1

Consider a point (a cost, 2 sin t) lying on this ellipse.

The distance of P from (0, –2) = 222 )tsin22(tcosa ++

This distance is to be maximised.
Let f(t) = a2 cos2t + 4(1 + sin t)2

f′(t) = – 2a2 sin t cos t + 8 (1 + sin t)  (cos t)
f′(t) = (8 – 2a2) sin t cos t + 8 cos t

f′(t) = 0 ⇒ cos t = 0 or sin t = 
4a

4
2 −

⇒ t = π/2 or t = sin–1 ⎟
⎠

⎞
⎜
⎝

⎛
− 4a
4

2

(t = 3π/2 is rejected because it makes the distance zero)

Let us first discuss the possibility of t = sin–1 ⎟
⎠

⎞
⎜
⎝

⎛
− 4a
4

2

We are give that 4 < a2 < 8
⇒ 0 < a2 – 4 < 4

⇒ 0 < 1 < 
4a

4
2 −

as 
4a

4
2 −

 is greatest than 1,

t = sin–1 
4a

4
2 −

 is not possible.

Hence t = π/2 is the only value.
Now, f′′(t) = (8 – 2a2) cos 2t - 8 sin t
f′′(π/2) = 2a2 – 8 – 8 = 2 (a2 – 8) < 0
⇒ The farthest point corresponds to t = π/2 and its
Coordinates are ≡ (a cos π/2, 2 sin π/2) ≡ (0, 2)

Example : 34
If a + b + c = 0, then show that the quadratic equation 3ax2 + 2bx + c = 0, has at least one root in 0 and 1.

Solution
Consider the polynomial f(x) = ax3 + bx2 + cx. We have f(0) = 0 and f(1) = a + b + c = 0 (Given)
⇒ f(0) = f(1)
Also f(x) is continuous and differentiable in [0, 1], it means Rolle's theorem is applicable.
Using the Rolle's Theorem there exists a root of f′(x) = 0
i.e. 3ax2 + 2bx + c = 0  between 0 and 1
Hence proved.
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Example : 35
Let A (x1, y1) and B(x2, y2) be any two points on the parabola y = ax2 + bx + c and let C (x3, y3) be the point
on the arc AB where the tangent is parallel to the chord AB. Show that x3 = (x1 + x2)/2.

Solution
Clearly f(x) = ax2 + bx + c is a continuous and differentiable function for all values of x ∈ [x1, x2].
On applying Langurange's Mean value theorem on f(x) in (x1, x2) we get

f′(x3) = 
12

12

xx
)x(f)x(f

−
−

[Q x3 ∈ (x1, x2)]

On differentiating f(x), we get :
f′(x) = 2ax + b ⇒ f′(x3) = 2ax3 + b
On substituting x1 and x2 in the quadratic polynomial, we get
f(x1) = ax1

2 + bx1 + c and f(x2) = ax2
2 + bx2 + c

On substituting the values of f(x1), f(x2) and f′(x3) in (i), we get :

2ax3 + b = 
12

1
2

12
2

2

xx
)cbxax(cbxax

−
++−++

⇒ ax3 = a(x1 + x3)

⇒ x3 = 
2

xx 21 + . Hence Proved

Example : 36
Find the condition so that the line ax + by = 1 may be a normal to the curve an–1 y = xn.

Solution
Let (x1, y1) be the point of intersection of line ax + by = 1 and curve an–1 y = xn.
⇒ ax1 + by1 = 1 ..............(i)
and an–1 y1 = x1

n ..............(ii)
The given curve is : an–1y = xn

⇒
)y,x(at 11

dx
dy

⎥⎦

⎤
 = n 1n

1n
1

a
x

−

−

 = n n
1

1n
1

x
x −

 y1 = 
1

1

x
ny

[using (ii)]

Equation of normal to (x1, y1) is :

normal is y – y1 = 
1

1

ny
x−

 (x – x1)

⇒ xx1 + ny y1 = ny1
2 + x1

2 .............. (iii)
But the normal is the line xa + yb = 1 .............. (iv)
Comparing (iii) and (iv), we get

a
x1  = b

ny1  = 
1

xny 2
1

2
1 +

Let each of these quantities by K, i.e. a
x1  = b

ny1  = 
1

xny 2
1

2
1 +

 = K

⇒ x1 = aK, ny1 = bK, ny1
2 + x1

2 = K
On substituting the values of x1 and y1 from first two equations into third equation, we get

n 2

22

n
Kb

 + a2 K2 = K

⇒ K = 22 nab
n
+

, x1 = 22 nab
an
+

 and y1 = 22 nab
b
+

Replacing the values of x1 and y1 in (ii), we get :

an–1 22 nab
b
+

 = 
n

2 2
nab

an
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
 as the required condition.
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Example : 37
Find the vertical angle of right circular cone of minimum curved surface that circumscribes in a given
sphere.

Solution
When cone is circumscribed over a sphere
we have : ∆AMC ~ ∆APO

⇒ MC
AC

 = OP
AO

 ⇒ 
r
l

 = 
R

Rr −
...........(i)

In cone, we can define r2 + h2 = l2 ...........(ii)
Eliminating l in (i) and (ii), we get

r2 = 
R2h

hR2

−
...........(iii)

Let curved surface area of cone = C – πrl

⇒ C = πr 
R

)Rh(r −
[using (i)]

⇒ C = )R2h(
)Rh(hR

−
−π

[using (iii)]

As C is expressed in terms on one variable only i.e. h, we can maximise C by use of derivatives

dh
dC

 = 2)R2h(
R

−
π

 [(h – 2R) (2h – R) – (h2 – hR)] = 0

⇒ h2 – 4 Rh + 2R2 = 0

⇒ h = (2 + 2 ) R .............(iv)

It can be shown that 2

2

dh
Cd

 > 0 for this value of h.

Substituting h = (2 + 2 ) R in (iii), we get

r2 = ( 2  + 1) R2

Let semi-vartical angle = θ

⇒ sin2θ = r2/l2 = 22

2

hr
r
+

Using (iv) and (v), we get :

sin2θ = 

222

2

R)12(2R)12(
R)12(

+++

+

 = 223
1

+

⇒ sin2θ = 3 – 2 2  = ( 2  – 1)2

⇒ sin θ = 2  – 1

Example : 38

Let f(x) = x3 – x2 + x + 1 and g(x) = 
⎩
⎨
⎧

≤<−
≤≤≤≤

2x1;x3
1x0xt0)]t(fmax[

Discuss the continuity and differentiability of f(x) in (0, 2)
Solution

It is given that f(x) = x3 – x2 + x + 1
f′(x) = 3x2 – 2x + 1
f′(x) > 0 for all x
(Q coeff. of x2 > 0 and Discriminant < 0)
Hence f(x) is always increasing function.
Consider 0 ≤ t ≤ x
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⇒ f(0) ≤ f(t) ≤ f(x) (Q f(t) is an in creasing function)
⇒ 1 ≤ f(t) ≤ f(x)
⇒ Maximum [f(t)] = f(x) = x3 – x2 + x + 1

⇒ g(x) = ⎪⎩

⎪
⎨
⎧

≤<−
≤≤+++−

2x1,x3
1x0,1xxxx 23

As g(x) is polynomial in [0, 1] and (1, 2], it is continuous and differentiable in these intervals.
At x = 1
LHL = 2, RHL = 2 and f(1) = 2
⇒ g(x) is continuous at x = 1
LHD = 2 and RHD = – 1
⇒ g(x) is non-differentiable at x = 1

Example : 39
Two considers of width a and b meet at right angles show that the length of the longest pipe that can be
passes round the corner horizontally is (a2/3 + b2/3)3/2

Solution
Consider a segment AB touching the corner at P. AB = a cosec θ + b sec θ
Let f(θ) = a cosec θ + b sec θ .........(i)
f′(θ) = – a cosec θ cot θ + b sec θ tan θ

⇒ f′(θ) = 
θ

θ−
2sin

cosa
 + 

θ

θ
2cos

sinb
 = 

θθ

θ+θ−
22

33

cossin
sinbcosa

f′(θ) = 0 ⇒ tan3θ = a/b
⇒ tan θ = (a/b)1/3

Using first derivative test, see yourself that f(θ) possesses local minimum at θ = tan–1 (a/b)1/3 .
Using (i), the minimum length of segment AB is :

fmin = (a2/3 + b2/3)3/2 for θ = tan–1 3
a
b

This is the minimum length of all the line segments that can be drawn through corner P. If the pipe passes
through this segment, it will not get blocked in any other position. Hence the minimum length of segment
APB gives the maximum length of pipe that can be passed.

Example : 40
Find the equation of the normal to the curve y = (1 + x)y + sin–1 (sin2x) at x = 0.

Solution
We have
y = (1 + x)y + sin–1 (sin2x)
Let A = (1 + x)y and B= sin–1 sin2x
⇒ y = A + B .............(i)
Consider A
Taking log and differentiating, we get
ln A = y ln (1 + x)

A
1

 dx
dA

 = dx
dy

 ln (1 + x) + ⎟
⎠

⎞
⎜
⎝

⎛
+ x1
y

or dx
dA

 = A ⎥⎦

⎤
⎢⎣

⎡
+

++
x1

y)x1(n
dx
dy

l  = (1 + x)y ⎥⎦

⎤
⎢⎣

⎡
+

++
x1

y)x1(n
dx
dy

l ........(ii)

Consider B
B = sin–1 (sin2 x) ⇒ sin B = sin2x
Differentiating wrt x, we get

cos B dx
dB

 = 2 sin x cos x
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dx
dB

 = Bcos
1

 (2 sin x cos x) = 2/12 )Bsin1(
xcosxsin2

−  = 2/14 )xsin1(
xcosxsin2

−

Now since y = A + B

we have dx
dy

 = dx
dA

 + dx
dB

 = (1 + x)y ⎥⎦

⎤
⎢⎣

⎡
+

++
x1

y)x1(n
dx
dy

l  + 2/12 )xsin1(
xcosxsin2

−

or dx
dy

 = 
)x1(n)x1(1
)xsin1(

xcosxsin2)x1(y

y

2/14
1y

+−−
−

++ −

l

Using the equation of given curve, we can find f(0).
Put x = 0 in the given curve.
y = (1 + 0)y + sin–1 (sin20) = 1

dx
dy

 = 
)01(n)01(1
)0sin1(

0cos0sin2)01(1

1

2/14
11

+−−
−

++ −

l
⇒ dx

dy
 = 1

The slope of the normal is m = – )dx/dy(
1

 = – 1

Thus, the required equation of the normal is y – 1 = (–1) (x – 0)
i.e. y + x – 1 = 0

Example : 41
Tangent at a point P1(other than (0, 0) on the curve y = x3 meets the curve again at P2. The tangent at P2
meets the curve at P3, and so on. Show that the abscissa of P1, P2, P3 ......Pn , from a GP. Also find the ratio
[area (∆P1 P2 P3)] / [area (∆P2 P3 P4)].

Solution
Let the chosen point on the curve y = x3 be P1 (t, t

3). The slope of the tangent to the curve at (t, t3) is

given as dx
dy

 = 3x2 = 3t2 ...........(i)

The equation of the tangent at (t, t3) is
y – t3 = 3t2 (x – t)
y – 3t2 x + 2t3 = 0 ...........(ii)

Now to get the points where the tangent meets the curve again, solve their equations
i.e. x3 – 3t2 x + 2t3 = 0 ...........(iii)
One of the roots of this equation must be the sbscissa of P1 i.e. t. Hence, equation (iii) can be factorised as

(x – t) (x2 + tx – 2t2) = 0
or (x – t) (x – t) (x + 2t) = 0
or (x – t) (x – t) (x + 2t) = 0
Hence, the abscissa of P2 = – 2t ...........(iv)
Let coordinates of point P2 are (t1, t1

3)
Equation of tangent at P2  is : y – 3t1

2 x + 2t1
3 = 0

[this is written by replacing t by t1 in (ii)]
On solving tangent at P2 and the given curve we get the coordinates of the point where tangent at P2

meets the curve again i.e.
coordinates of P3 are (–2t1, –t1)
Using (iv), abscissa of P3 = – 2 (–2) t
⇒ abscissa of P3 = 4t
So the abscissa of P1, P2  and P3 are t, (–2) t, (–2) (–2) t respectively, that is, each differing from the
preceding one by a factor of (–2).
Hence, we conclude that the abscissae of P1, P2, P3 , ......., Pn from a GP with common ratio of – 2.
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Now area (∆P1 P2 P3) = 
2
1

 
1t64t4
1t8t2
1tt

3

3

3

−−  = 
2
t4

 
1644
182
111

−−

area (∆P2 P3 P4) = 
2
1

 
1t)2(t8
1t64t4
1t8t2

39

3

3

−−

−−

 = 
2
t16 4

1644
182
111

−−

Hence )PPP(area
)PPP(area

432

321

∆
∆

 =  4

4

t16
t

 = 16
1

Example : 42

Let f(x) = 
⎪⎩

⎪
⎨

⎧

≤≤−

<≤
++
−+−

+−

3x1,3x2

1x0,
)2b3b(

)1bbb(x 2

23
3

Find all possible real values of b such that f(x) has the smallest value at x = 1
Solution

The value of function f(x) at x = 1 is f(x) = 2x – 3 = 2 (1) – 3 = – 1
The function f(x) = 2x – 3 is an increasing function on [1, 3]. hence, f(1)= – 1 is the smallest value of f(x) at
x = 1.

Now f(x) = – x3 + 
)2b3b(

)1bbb(
2

23

++

−+−

is a decreasing function on [0, 1] for fixed values of b. So its smallest value will occur at the right end of the
interval.
⇒ Minimum [(f(x) in [0, 1]) ≥ – 1
⇒ f(1) ≥ – 1

– 1 + )2b3b(
)1bbb(

2

23

++

−+−
 ≥ –1

In order that this value is not less than – 1, we must have 
2b3b

1bbb
2

23

++

−+−
 ≥ 0

⇒ )1b)(2b(
)1b)(1b( 2

++
−+

 ≥ 0 ⇒ )1b)(2b(
)1b(
++

−
 ≥ 0

The sign of b is positive for b ∈ (–2, –1) ∪ [1, ∞)
Hence, the possible real values of b such that f(x) has the smallest value at x = 1 are (–2, –1) ∪ [1, ∞)

Example : 43
Find the locus of a point that divides a chord of slope 2 of the parabola y2 = 4x internally in the ratio 1 : 2.

Solution
Let P ≡ (t1

2 , 2t1), Q ≡ (t2
2, 2t2) be the end points of chord AB. Also let M ≡ (x1, y1) be a point which divides

AB internally in ratio 1 : 2.
It is given that slope of PQ = 2,

⇒ slope (PQ) = 2
1

2
2

12

tt
t2t2

−

−
 = 2

⇒ t1 + t2 = 1 .............(i)
As M divides PQ in 1 : 2 ratio, we get

⇒ x1 = 
3

tt2 2
2

2
1 +

.............(ii)
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and y1 = 3
t4t2 12 + .............(iii)

We have to eliminate two variables t1 and t2 between (i), (ii) and (iii).
From (i), put t1 = 1 – t2 in (iii) to get :
3y1 = 2 (t – t2) + 4t2 = 2 (1 + t2)
⇒ t2 = (3y – 2)/2 and t1 = –3y1/2
On substituting the values of t1 and t2 in (ii), we get : 4x1 = 9y1

2 – 16y1 + 8
Replacing x1 by x and y1 by y, we get the required locus as : 4x = 9y2 – 16y + 8

Example : 44
Determine the points of maxima and minima of the function f(x) = 1/8 ln x – bx + x2 + x2 , x > 0, where
b ≥ 0 is a constant.

Solution
Consider  f(x) = 1/8 ln x  – bx + x2

⇒ f′(x) = 1/8 x – b + 2x = 0
⇒ 16x2 – 8bx + 1 = 0

⇒ x = 
4

1bb 2 −±

For 0 ≤ b < 1 f′(x) > 0 for all x
⇒ f(x) is an increasing function
⇒ No local maximum or local minimum

For b > 1 f′(x) = 0 at x1 = 
4

1bb 2 −− and x2 = 
4

1bb 2 −+

Check yourself that x1 is a point of local maximum and x2 is a point of local minimum.
For b = 1
f′(x) = 16x2 – 8x2 + 1 = (4x – 1)2 = 0
⇒ x = 1/4
f′′(x) = 2 (4x – 1) (4)
⇒ f′′(1/4) = 0
f′′′(x) = 32 ⇒ f′′′(1/4) ≠ 0
⇒ 1/4 is a point of inflexion
i.e. no local maxima or minima
So points of local maximum and minimum are :
0 ≤ b ≤ 1  : No local maximum or minimum

b > 1    : Local maximum at x = 
4

1bb 2 −−

Local minimum at x – 
4

1bb 2 −+

Example : 45

Let f(x) = ⎪⎩

⎪
⎨
⎧

>−+
≤

0x,xaxx
0x,xe

32

ax

Where a is a positive constant. Find the interval in which f′(x) is increasing
Solution

Consider x ≤ 0
f′(x) = eax (1 + xa)
f′′(x) = a eax  (1 + xa) + eax a
⇒ f′′(x) = eax (2a + xa2) > 0
⇒ x > – 2/a (Q eax is always + ve)
So f′(x) in increasing in –2/a < x < 0 ..............(i)
Consider x > 0
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f′(x) = 1 + 2 ax – 3x2

f′′(x) = 2a – 6x > 0 ⇒ x < a/3
⇒ f′(x) is increasing  in 0 < x < a/3 ..............(ii)
From (i) and (ii), we can conclude that :
f′(x) is increasing in x ∈ (–2/a, 0) ∪ (0, a/3)

Example : 46
What normal to the curve y = x2 forms the shortest chord?

Solution
Let (t, t2) be any point P on the parabola y = x2

Equation of normal at P to y = x2 is :
y – t2 = – 1/2t (x – t)
Now assume that normal at P meets the curve again at Q whose coordinates are (t1, t1

2).
⇒ The point Q(t1, t1

2) should satisfy equation of the normal
⇒ t1

2 – t2 – 1/2t (t1 – t)
⇒ t1 + t = –1/2t ⇒ t1 = – t – 1/2t ............(i)
PQ2 = (t – t1)2 + (t2 – t1

2)2  = (t – r1)2  [1 + (t1 + t)2]
On substituting the value of t1 from (i), we get ;

⇒ PQ2 = 
2

t2
1t2 ⎟
⎠

⎞
⎜
⎝

⎛ +  ⎟
⎠

⎞
⎜
⎝

⎛ + 2t4
11  = 4t2 

3

2t4
11 ⎟

⎠

⎞
⎜
⎝

⎛ +

Let PQ2 = f(t)

⇒ f′(f) = 8t 
3

2t4
11 ⎟

⎠

⎞
⎜
⎝

⎛ +  + 12t2 
2

2t4
11 ⎟

⎠

⎞
⎜
⎝

⎛ +  ⎟
⎠

⎞
⎜
⎝

⎛ −
3t4
2

⇒ f′(t) = 2 
2

2t4
11 ⎟

⎠

⎞
⎜
⎝

⎛ +  ⎥
⎦

⎤
⎢
⎣

⎡
−⎟

⎠

⎞
⎜
⎝

⎛ +
t
3

t4
11t4 2

f′(t) = 0 ⇒ 2t – 1/t = 0

⇒ t2 = 1/2 ⇒ t = ±1/ 2

It is easy to see f′′(t) > 0 for t = ± 1/ 2
equation of PQ :

for t = 1 2  ≡ 2 x  +  2y – 2 = 0 and

for t = –1 2  ≡ 2 x – 2y + 2 = 0
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Example : 1
Let A {1, 2, 3} and B = {4, 5}. Check whether the following subsets of A × B are functions from A to B or not.
(i) f1 = {(1, 4), (1, 5), (2, 4), (3, 5)} (ii) f2 = {(1, 4), (2, 4), (3, 4)}
(iii) f3 = {1, 4), (2, 5), (3, 5)} (iv) f4 = {(1, 4), (2, 5)}

Solution
(i) f1 = {(1, 4), (1, 5), (2, 4), (3, 5)}

It is not a function since an element of domain
(i.e. 1) has two image in co-domain (i.e. 4, 5)

(ii) f2 = {(1, 4), (2, 4), (3, 4)}
It is function as every element of domain has exactly
one image f(A) = Range = {4}

(iii) f3 = {1, 4), (2, 5), (3, 5)}
It is a function. f(A) = Range = {4, 5} = co-domain

(iv) f4 = {(1, 4), (2, 5)}
It is not a function because one element (i.e. 3)
in domain does no have an image

Example : 2
Which of the following is a function from A to B?
(i) A = {x | x > 0 and x ∈ R}, B = {y/y ∈ R}

(A is the set of positive reals numbers and B is the set of all real numbers)
f = {(x, y) / y = √x}

(ii) A = {x/x ∈ R} B{y/y ∈ R}
f = {(x, y) / y = √x}

Solution
(i) F is a function from A to B because every element of domain (+ve reals) has a unique image
(square root) in codomain
(ii) f is not a function from A to B because – ve real nos. are present in domain and they do not have
any image in codomain

(Q y = √x is meaningless for –ve reals of x}

Example : 3
Check the following functions for injective and surjective
(i) f : R → R and f(x) = x2

(ii) f : R → R+ and f(x) = x2

(iii) f : R+ → R+  and f(x) = x2

Solution
(i) Injective

Let f(x1) = f(x2) ⇒ x1
2 = x2

2 ⇒ x1 = ± x2
⇒ it is not necessary that x1 = x2
⇒ It is not injective
Surjective
y = x2

⇒ x = ± √y for – ve values of y in codomain, there does not exist any value of x in domain
⇒ It is not surjecitve

(ii) Injective
Let f(x1) = f(x2) ⇒ x1

2 = x2
2 ⇒ x1 = ± x2 ⇒ not injective

Surjective
y = x2 ⇒ x = ± √y
As the codomain contains only positive real numbers, there exists some x for every values of y
⇒ it is surjecitve

(iii) Injective
f(x1) = f(x2) ⇒ x1

2 = x2
2 ⇒ x1 = x2 because domain contains only +ve reals

⇒ it is injective
Surjective
y = x2 ⇒ x = ± √y
for +ve values of y, there exists some x, As codomains is R+ , it is surjecitve

Sets, Relations & Functions
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Example : 4
Let A = R – {3} and B = R – {1}

Let f : A → B be defined by f(x) = 3x
2x

−
−

Is f bijective ?
Solution

Injective
Let f(x1) = f(x2) where x1, x2 ∈ A

⇒ 3x
2x

1

1

−
−

 = 3x
2x

2

2

−
−

⇒ (x1 – 2) (x2 – 3) = (x2 – 2) (x1 – 3) (because x1 , x2 ≠ 3)

⇒ x1 = x2 (on simplification)
Hence f(x) is injective

Surjective

y = 3x
2x

−
−

⇒ y(x – 3) = x + 2

⇒ x = 1y
2y3

−
−

For y ≠ 1, there exists some value of x, As the codomain does not contain 1, we have some value of x in
domain for every value of y in codomain
⇒ it is surjecitve
Hence f(x) is bijective
Inverse of f(x)

Interchanging x and y in y = f(x) we have x = 3y
2y

−
−

⇒ y = 
1x
2x3

−
−

⇒ f–1 (x) = 
1x
2x3

−
−

 is the inverse of f(x)

Example : 5
Is f : R → R, f(x) = cos (5x + 2) invertible ?

Solution
Injecitve

Let f(x1) = f(x2) where x1, x2 ∈ R
⇒ cos (5x1 + 2) = cos (5x2 + 2)
⇒ 5x1 + 2 = 2nπ ± (5x2 + 2)
⇒ it is not necessary that x1 = x2
hence if it not injective
Surjecitve
y = cos (5x + 2)

⇒ x = 
5

2ycos 1 −−

⇒ there is no value of x for y ∈ (–∞ , –1) ∪ (1, +∞)
As this interval is included in codomain, there are some values of y in codomain for which there

does no exist any value of x. Hence it is not surjecitve.
As f is neither injective nor surjective, it is not invertible.
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Example : 6
 (i) Let f(x) = x – 1 and g(x) = x2 + 1.

What is fog and gof?
(ii) f = {(1, 2), (3, 5), (4, 1)} and g = {(2, 3), (5, 1), (1, 3)}

write down the pairs in the mappings fog.
Solution

(i) fog = f[g(x)] = f(x2 + 1) = x2 + 1 – 1 = x2

gof = g[f(x)] = g[x – 1] = (x – 1)2 + 1
(ii) domain of fog is the domain of g(x) i.e. {2, 5, 1}

fog (2) = f[g(2)] = f(3) = 5
fog (5) = f[g(5)] = f(1) = 2
fog (1) = f[g(1)] = f(3) = 5

⇒ fog = {2, 5), (5, 2), (1, 5)}

Example : 7

If A = 
⎭
⎬
⎫

⎩
⎨
⎧ π

≤≤
π

3
x

6
:x  and f(x) = cos x – x (1 + x). Find f(A).

Solution
We have to find the range with A as domain.
As f(x) is decreasing in the given domain

6
π

 ≤ x ≤ 3
π

⇒ f ⎟
⎠

⎞
⎜
⎝

⎛ π
6  ≥ f(x) ≥ f ⎟

⎠

⎞
⎜
⎝

⎛ π
3

⇒ f(x) ∈ 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ π
−

π
−

π
−

362
3,

932
1 22

⇒ the range is the interval : 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ π
−

π
−

π
−

π
−

3666
3,

932
1 22
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Example : 1
Evaluate the following integrals

Hint : Express Integrals in terms of standard results :

(1) ∫ − )x32(sec2  dx = 3
1−

 tan (2 – 3x) + C

(2) ∫ −
−

)x32(cos
)x32sin(

2  dx = ∫ −
=−−

3
1dx)x32(tan)x32sec(  sec (2 – 3x) + C

(3) ∫ − dxe 3x2  = 
2
1

 e2x–3  + C

(4) ∫ − dx)x32sec(  = 3
1
−

 log |sec(2 – 3x) + tan (2 - 3x)| + C

(5) ∫ +
dx

1x4
1

 = 4
1

 ( )1x42 +  + C

(6) ∫ − 3)x21(
dx

 = 
2

1
−

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−

−
2)x21(2

1
 + C

Example : 2
Evaluate the following integrals

Hint : Express numerator in terms of denominator

(1) ∫ +
−

1x
1x

 dx = ∫ +
−+
1x

21x
 dx = ∫ ⎟

⎠

⎞
⎜
⎝

⎛
+

−
1x

21  dx = ∫ − 2dx  ∫ +1x
dx

 = x – 2 log |x + 1| + C

(2) ∫ +

−

1x
1x

2

2

 dx = ∫ +

+

1x
1x

2

2

 dx – ∫ +1x
dx2

2  = x – 2 tan–1 x + C

(3) ∫ + 2)1x2(
x

 dx = 
2
1

 ∫ +
−+

2)1x2(
11x2

 dx = 
2
1

 ∫ + )1x2(
dx

 – 
2
1

 ∫ + 2)1x2(
dx

= 
2
1

 ⎟
⎠

⎞
⎜
⎝

⎛ + |1x2|log
2
1

 – 
2
1

 ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛
+

−
1x2

1
2
1

 + C

(4) ∫ +

+

1x
1x

2

4

 dx = ∫ +

−

1x
1x

2

4

 dx + ∫ +1x
2

2  dx ∫ ∫ +
+−

1x
dx2dx)1x( 2

2  = x3/3 – x + 2 tan–1 x + C

(5) ∫ +1x
x7

 dx = ∫ +
+
1x
1x7

 dx – ∫ +1x
dx

 = ∫ +
+−+−+−+

1x
1xxxxxx)(1x( 23456

 dx – log |x + 1|

= 
7
x7

 – 
6
x6

 + 
5
x5

 – 
4
x4

 + 
3
x3

 – 
2
x2

 + x – log |x + 1| + C

Integration
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(6) ∫ + 2

3

)1x(
x

 dx = ∫ +

+
2

3

)1x(
1x

 dx – ∫ + 2)1x(
dx

 = ∫ +
+−
)1x(

1xx2

 dx – ∫ + 2)1x(
dx

= ∫ +
+
1x
xx2

 dx + ∫ +
−

1x
x21

 dx – ∫ + 2)1x(
dx

 = |x dx – 2| ∫ +
+

1x
1x

 dx + ∫ +1x
dx3

 – ∫ + 2)1x(
dx

= 
2
x2

 – 2x + 3 log |x + 1| + 
1x

1
+

 + C

(7) ∫ +
+

dcx
bax

 dx = c
a

 ∫ +

⎟
⎠
⎞

⎜
⎝
⎛ −−+

dcd
a
bcd)dcx(

 dx

= c
a

 ∫dx  – c
a

 
dcx
a
bcd

+

⎟
⎠
⎞

⎜
⎝
⎛ −

 dx = c
ax

 – ⎟
⎠

⎞
⎜
⎝

⎛ −
2c
bcad

 log |cx  + d| + C

Example : 3
Evaluate the following integrals

Hint : Use ∫ n)]x(f[  f′(x) dx = 
1n

)]x(f[ 1n

+

+

 + C

(1) ∫
−

−

2

31

x1

)x(sin
 dx = 

4
1

 (sin–1x)4 + C

(2) ∫ dxxtanxsec4  = ∫ dx)xtanx(secxsec3  = 
4

xsec4
 + C

(3) ∫ x
xlogn

 dx = 
1n

xlog 1n

+

+

 + C

(4) ∫ + 32 )1x(
x

 dx = 
2
1

 ∫ + 32 )1x(
1

 2x dx = 
2
1

 
2

)1x( 22

−
+ −

 + C

(5) ∫ dxxcosxsin5  = 
6

xsin6

 + C

Example : 4
Evaluate the following integrals

Hint : Use ∫
′

)x(f
)x(f

 dx = log |f(x)| + C

(1) ∫ + 4

3

x1
x

 dx = 
4
1

 ∫ + 4

3

x1
x4

 dx = 
4
1

 log |1 + x4| + C
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(2) ∫ −

−

+

−
xx

xx

ee
ee

 dx = log |ex + e–x| + C

(3) ∫ −

+

1e
1e

x

x

 dx  = ∫ −

−

−

+
2/x2/x

2/x2/x

ee
ee

 = 2 ∫ −

−

−

+

2/x2/x

2/x2/x

ee

e
2
1e

2
1

 = 2 log |ex/2 – e–x/2| + C

(4) ∫ + )1x(
x
2

3

 dx = ∫ +

+
22

3

)1x(
xx

dx – ∫ + 22 )1x(
dxx

 = ∫ +1x
x

2  dx – ∫ + 22 )1x(
x

 dx

= 
2
1

 ∫ −1x
x2

2  dx – 
2
1

 ∫ + 22 )1x(
x2

 dx = 
2
1

 log |x2 + 1| – 
2
1

 ⎟
⎠

⎞
⎜
⎝

⎛
+

−

1x
1

2  + C

(5) ∫ + xbea
dx

 = ∫ +−

−

bae
e

x

x

 dx – a
1
∫ +

−
−

−

bae
ae

x

x

 dx = – a
1

 log |ae–x + b| + C

(6) ∫ −
+

1xtan
1xtan

 dx = ∫ −
+

xcosxsin
xcosxsin

 dx = log |sin x – cos x| + C

(7) ∫ + )xtanxlog(sec
xsec

 dx = log | log (sec x + tan x) | + C

Note that dx
d

 log (sec x + tan x) = sec x

(8) ∫ +

−

)1x(x
1x

2

2

 dx ∫
+

−

x
1x

x
11 2

 dx  = log x
1x +  + C

(9) ∫ + xx
dx

 = ( )∫ +1xx
dx

 = 2  ( )∫ +1x
x2

1

 dx  = 2 log | x  + 1| + C

(10) ∫ −+ 214 xtan)1x(
x

 dx = 
2
1

 ∫ −
+

xtan
x1
x2

1

4
 dx  = 

2
1

 log |tan–1 x2| + C

(11) ∫ xloglogxlogx
dx

 = ∫ xloglog
xlogx

1

 dx = log |log log x| + C

(12) ∫ + xsin1
x2sin
2  dx = log |1 + sin2x| + C

(13) ∫ +

+ −−

ex

1e1x

xe
xe

 dx = e
1

 ∫ +

+ −

ex

1ex

xe
exe

 dx = e
1

 log |ex + xe| + C
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Example : 5
Evaluate

(1) ∫ dxxsin2 (2) ∫ dxxsin3 (3) ∫ dxxsin4 (4) ∫ dxxcosxsin 44

Hint : Reduce the degree of integral and to one by transforming it into multiple angles of sine and cosine.
Solution

(1) ∫ dxxsin2  = ∫
−

2
x2cos1

 dx = 
2
1

 ⎥⎦

⎤
⎢⎣

⎡ −
2

x2sinx  + C

(2) ∫ dxxsin3  = ∫
−
4

x3sinxsin3
 dx = 

4
1

 [ ]dxdxx2sindxxsin3∫ ∫−  = 
4
1

 ⎥⎦

⎤
⎢⎣

⎡ +−
3

x3cosxcos3  + C

= 
4
3−

 cos x + 
12
1

 cos 3x + C

(3) ∫ dxxsin4  = ∫ ⎟
⎠

⎞
⎜
⎝

⎛ − 2

2
x2cos1

 dx = 
4
1

 ∫ − )x2cos21(  dx + 
4
1

 ∫ )dxx2(cos2

= 
4
x

 – 
4
1

 sin 2x + 8
1

 ∫ + dx)x4cos1(

= 
4
x

 – 
4
1

 sin 2x + 8
x

 + 32
x4sin

 + C

(4) ∫ dxxcosxsin 44  = 16
1

 ∫ x2sin4 . Now proceed on the pattern of ∫ dxxsin4

Example : 6
Evaluate :

(1) ∫ + xsin1
dx

(2) ∫ + xcos1
dx

Solution

(1) ∫ + xsin1
dx

 =  ∫
−

xcos
xsin1

2  dx = ∫ dxxsec2  – ∫ dxxtanxsec  = tan x – sec x + C

Alternative Method

∫ + xsin1
dx

 = ∫
⎟
⎠
⎞

⎜
⎝
⎛ −
π

+ x
2

cos1

dx
 = ∫

⎟
⎠
⎞

⎜
⎝
⎛ −
π

2
x

4
cos2

dx
2

 = 
2
1 ∫ ⎟

⎠

⎞
⎜
⎝

⎛ π
−

π
24

sec2
 dx = 

2
1

 2/1
2
x

4
tan

−

⎟
⎠
⎞

⎜
⎝
⎛ −
π

 + C

= – tan ⎟
⎠

⎞
⎜
⎝

⎛ −
2
x

4
x

 + C

(2) ∫ + xcos1
dx

 = ∫
−

xsin
xcos1

2  = ∫ dxxeccos 2  – ∫ dxxcotxeccos  = – cot x + cosec x + C

Alternative Method

∫ + xcos1
dx

 = ∫ 2/xcos2
dx

2  = 
2
1

 ∫ 2
xsec2  dx =

2
1

 
2/1

2/xtan
 + C = tan

2
x

 + C
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Example : 7
Evaluate :

(1) ∫ dxx3sinx2sin (2) ∫ dxx5cosx4sinx2sin (3) ∫ dxxcosxsin 22

Hint : Apply trigonometric formulas to convert product form of the integrand into sum of sines and cosines of
multiple angle

Solution

(1) ∫ dxx3sinx2sin  = 
2
1 ∫ dxx3sinx2sin2  =  

2
1

 ∫ − )x5cosx(cos  dx = 
2
1

 sin x – 10
1

 sin 5x + C

(2) ∫ dxx5cosx4cosx2sin  = 
2
1 ∫ )x4cosx2sin2(  cos 5x dx

= 
2
1

 ∫ − )x2sinx6(sin  cos 5x dx = 
4
1

 ∫ dxx5cosx6sin2  – 
4
1

 ∫ dxx5cosx2sin2

= 
4
1

 ∫ + dx)xsinx11(sin  – 
4
1

 ∫ − dx)x3sinx7(sin

= – 
4
1

 
11

x11cos
 – 

4
1

 cos x + 
4
1

 
7

x7cos
 – 

4
1

 3
x3cos

(3) ∫ dxxcosxsin 22  = 
4
1

 dxx2sin2∫  = 
4
1

 ∫
−

2
x4cos1

 dx = 8
1

 ⎟
⎠

⎞
⎜
⎝

⎛ −
4

x4sinx  + C

Example : 8

Evaluate : ∫ + xcosbxsina
dx

Solution

∫ + xcosbxsina
dx

 = 22 ba

1

+
 ∫

+
+

+
xcos

ba

bxsin
ba

a
dx

2222

= 22 ba

1

+
 ∫ α+α sinxcoscosxsin

dx
where α = tan–1 (b/x)

= 22 ba

1

+
 ∫ α+ dx)x(eccos

= 22 ba

1

+
 log | cosec (x + α) – cot (x + α)| + C where α = tan–1 (b/a)

Example : 9

Evaluate ∫ + dx)xecos()1x(e xx

Solution
The given integral is in terms of the variable x, we can simplify the integral by connecting it in the terms of
another variable t using substitution
Here let us put x ex = t
and hence xex dx + ex dx = dt

⇒ ex (x + 1) dx = dt
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The given integral = ∫ + ]dx)1x(e)[xecos( xx  = ∫ dttcos  = sin t + C = sin (x ex) + C

Note that the final result of the problem must be in terms of x.

Example : 10
Evaluate :

(1) ∫ + 6

2

x1
x

 dx (2) 3 xx
dx
+

(3) ∫ + x1
x2

 dx

Solution
(1) Let x3 = t ⇒ 3x2 dx = dt

⇒ ∫ + 6

2

x1
dxx

 = 3
1
∫ + 6

2

x1
dxx3

 = 3
1 ∫ + 2t1

dt
 = 3

1
 tan–1 t + C = 3

1
tan–1 x3 + C

(2) 3 x  indicates that we should try x = t3

⇒ dx = 3t2 dt

⇒ ∫ + 3 xx
dx

 = ∫ + tt
dtt3

3

2

 = 3 ∫ +1t
dtt

2  = 
2
3

 ∫ +1t
dtt2

2  = 
2
3

 log |t2 + 1| + C = 
2
3

 log |x2/3 + 1| + C

(3) Let 1 + x = t2 ⇒ dx = 2t dt

⇒ ∫ + x1
x2

 dx = ∫
−

2

22

t

)1t(
 2t dt = ∫

−+
t

t21t 24

 2t dt

= 2 
5
t5

 + 2t – 
3
t4 3

 + C = 5
2

 (1 + x)5/2 + 2 x1+  – 3
4

 (1 + x)3/2 + C

Example : 11

(1) ∫ +

−+

1a
a

x2

atanx x1

 dx (2) ∫ θθθ dcossin 3 (3) ∫ − 3x1
x

 dx

Solution

(1) The given integral can be written as  : ∫ +

−+

1a
a

x2

atanx x1

 dx

Let tan–1 ax = t

⇒ x2a1
1

+
 ax log a dx = dt

⇒ Ι = ∫ +

−

)a1(alog
dxalogaa

x2

xatan x1

 = ∫ alog
dtat

⇒ Ι = alog
1

 alog
at

 + C

⇒ Ι = 2

atan

)a(log
a

x1−

 + C

(2) Let sin θ = t2 ⇒ cos θ dθ = 2t dt

⇒ ∫ θθθ dcossin 3  = ∫ θsin  (1 – sin2θ) cos θ dθ
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= ∫ 2t  (1 – t4) 2t dt = 2 ∫ − )tt( 62  dt

= 
3
t2 3

 – 
7
t2 7

 + C = 3
2

 (sin θ)3/2 – 
7
2

 (sin q)7/2 + C

(3) The given integral is Ι = ∫
− 3x1

dxx

x  appears in the derivative of x3/2

hence, let x3/2 = t ⇒ 3/2 x  dx = dt

⇒ Ι = 3
2

 ∫
− 3x1

dxx
2
3

 = 3
2

 ∫
− 2t1

dt
 = 3

2
 sin–1 t + C = 3

2
 sin–1 x3/2 + C

Example : 12
Evaluate the following integrals

(1) ∫ dxxtan2  = ∫ − dx)1x(sec2  = tan x – x + C

(2) ∫ dxxtan3  = ∫ − )1x(secxtan 2  dx = ∫ dxxsecxtan 2  – ∫ dxxtan  = 
2

xtan2
 – log |sec x| + C

(3) ∫ dxxtan4  = ∫ − )1x(secxtan 22  dx = ∫ )dxx(secxtan 22  – ∫ dxxtan2

= 
3

xtan3

 – ∫ dxxsec2  + ∫ =
3

xtandx
3

 – tan x + x + C

(4) ∫ dxxsec4  = ∫ dxxsecxsec 22  = ∫ + )xtan1( 2  sec2x dx

= ∫ + )t1( 2  dt = t + t3/3 + C = tan x = 
3

xtan3

 + C

Example : 13
Evaluate  :

(1) ∫ dxxcosxsin 43 (2) ∫ dxxsin5

Solution

(1) ∫ dxxcosxsin 43  = )dxx(sinxcosxsin 42∫
= – ∫ − dtt)t1( 42 where t = cos x

= 
7
t7

 – 
5
t5

 + C = 
7

x7cos
 – 

5
xcos5

 + C
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(2) ∫ dxxsin5  = sin4 x sin x dx = – ∫ − 22 )xcos1(  (–sin x dx)

= – ∫ − dt)t1( 22 where t = cos x

= – ∫ −+ dt)t2t1( 24  – t – 
5
t5

 + 
3
t2 3

 + C

= – cos x – 
5

xcos5

 + 3
2

 cos3 x + C

Example : 14

Type : ∫ ++ cbxax
dx

2

(1) ∫ ++ 1xx
dx

2  = ∫
+++

4
1

4
3x

2
12x

dx
2

 = ∫
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛ +

22

2
3

2
1x

dx

= 2/3
1

 tan–1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +

2/3
2/1x

 + = 3
2

 tan–1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +

3
1x2

 + C

(2) ∫ −− 2x2x41
dx

 = 
2
1

 ∫ +− )x2x(2/1
dx

2  = 
2
1

 ( )∫
+− 22

)1x(2/3

dx

= 
2
1

 2/32
1

 log  )1x(2/3
1x2/3

+−

++
 + C

= 62
1

 log 2x23
2x23

−−

++
 + C

(3) ∫ ++ 1x6x
dx

2  = ∫ −++ 89x6x
dx

2  = ( )∫
−+

22 22)3x(

dx
 = ( )222

1
 log 223x

223x
++

−+
 + C

Example : 15

Type : ∫
++ cbxax

dx
2

(1) Let Ι = ∫
++ cbxax

dx
2

Treat 1 – x – x2 as 1 – (x + x2) = 1 – (x2 + x + 1/4) + 1/4 = 5/4 – (x + 1/2)2

⇒ Ι = ∫
⎟
⎠
⎞

⎜
⎝
⎛ +−

2

2
1x

4
5

dx
 = sin–1 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +

2/5
2/1x

 = sin–1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +

5
1x2

 + C
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Let Ι = ∫
++ 2x6x2

dx
2

Now 2x2 + 6x + 2 = 2 (x2 + 3x + 1) = 2 ⎟
⎠

⎞
⎜
⎝

⎛ +−++ 1
4
9

4
9

2
x6x2  = 2 ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟

⎠

⎞
⎜
⎝

⎛ +
4
5

2
3x

2

This is in the form x2 – a2.

⇒ Ι = 2
1

 ∫ −+ 4/5)2/3x(

dx
2  = 2

1
 log 4/5)2/3x(

2
3x 2 −+++  + C

Example : 16

Type : ∫ ++ cbxax2  dx

Let Ι = ∫ ++ 1x5ax2  dx = ∫ −+ 4/21)2/5x( 2  dx

= 
2

2/5x +
 1x5x2 ++  – 8

21
 log 4/21)2/5x(2/5x 2 −+++  + C

= 
4

5x2 +
 1x5x2 ++  – 8

21
 log 1x5x2/5x 2 ++++  + C

Example : 17

Evaluate ∫
++

+

1x4x

1x3
2  dx

Solution
The linear expression in the numerator can be expressed as 3x + 1 = l d/dx (x2 + 4x + 1) + m
⇒ 3x + 1 = l (2x + 4) + m
comparing the coefficients of x and x0,

3 = 2l and 1 = 4 l + m
⇒ l = 3/2 and m = – 5

⇒ Ι = ∫
++

+

1x4x

1x3
2  = ∫

++

−+

1x4x

5)4x2(2/3
2

 dx  = 
2
3

 ∫
++

+

1x4x

4x2
2  – 5 ∫

++ 1x4x

dx
2

Let Ι1 = 
2
3

 ∫
++

+

1x4x

4x2
2  = 

2
3

 ∫ t
dt

(where t = x2 + 4x + 1)

= t3  + C = 3 1x4x2 ++  + C

Let Ι2 = 5 
1x4x

dx
2 ++

 = 5 ∫
−+ 3)2x(

dx
2

 =  5 log 3)2x(2x 2 −+++  + C

⇒ Ι = Ι1 – Ι2 = 3 1x4x2 ++  – 5 log 1x4x2x 2 ++++  + C
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Example : 18

Evaluate : ∫ ++

+−

2xx2
1xx

2

2

 dx

Solution
Express numerator in terms of denominator and its derivative
Let x2 – x + 1 = l (2x2 + x + 2) + m (4x + 1) + n
⇒ 1 = 2l – 1 = l + 4m 1 = 2l + m + n

⇒ 1 = ∫ ++

+−

2xx2
1xx

2

2

 dx  = ∫ ++

++−++

2xx2
8/3)1x4(8/3)2xx2(2/1

2

2

 dx

= 
2
1

 ∫  dx – 8
3

 ∫ ++

+

2xx2
1x4

2  dx + 8
3

 ∫ ++ 2xx2
dx

2

= 
2
x

 – 8
3

 log |2x2 + x + 2| + 8
3

 Ι1 where Ι1 = ∫ ++ 2xx2
dx

2

= 
2
1

 ∫ +−++ 116/116/1x2/1x
dx

2  + 
2
1

 ∫ ++ 16/15)4/1x(
dx
2

= 
2
1

 4/15
1

 tan–1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +

4/15
4/1x

 + C = 15
2

 tan–1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +

15
1x4

 + C

= 
2
x

 – 8
3

 log |2x2 + x + 2| + 154
3

 tan–1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +

15
1x4

 + C

Example : 20

∫ + xcos4xsin3
dx

22

Solution

∫ + xcos4xsin3
dx

22  = ∫ + 4xtan3
xsec

2

2

 dx = ∫ + 4t3
dt
2 where t = tan x

= 3
1

 ∫ + 22 )3/2(t
dt

 = 3
1

 3/2
1

 tan–1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

3/2
t

 + C

= 32
2

 tan–1 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
xtan

2
3

 + C

Example : 21
Evaluate :

(1) ∫ + xsin54
dx

(2) ∫ + xcosba
dx

where a, b > 0

Solution

(1) Ι = ∫ + xsin54
dx

Put tan 
2
x

 = t ⇒ x = 2 tan–1t

⇒ cos x = 2

2

t1
t1

+

−
; sin x = 2t1

t2
+

; dx 2t1
dt2
+



Page # 11.

⇒ Ι = ∫
⎟
⎠
⎞

⎜
⎝
⎛

+
+

+

2

2

t1
t254

t1
dt2

 = ∫ ++ 4t10t4
dt2

2  = 
2
1

 ∫ ++ 1t2/5t
dt

2

= 
2
1

 ∫ −+ 16/9)4/5t(
dt

2  = 
2
1

 4/32
1

×
 log 4/34/5t

4/34/5t
++
−+

 + C

= 3
1

 log 8t4
2t4

+
+

 + C = 3
1

 log 
4

2
xtan2

1
2
xtan2

+

+
 + C

(2) ∫ + xcosba
dx

 where a, b > 0

Let tan x/2 = t

⇒ Ι = ∫ + xcosba
dx

 = ∫
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
−+

+

2

2

2

t1
t1ba

t1
dt2

⇒ ∫ −++ 2t)ba()ba(
dt2

Case – 1 Let a = b

⇒ Ι = ∫ + ba
dt2

 = ba
t2
+

 = ba
2
+

 tan 
2
x

 + C

Case – 2 Let a > b

⇒ Ι = ba
1
−

 ∫
+

−
+ 2t

ba
ba
dt2

= ba
2
−

 ba
ba

+
−

 tan–1 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
−

ba
bat  + C

= 22 ba

2

−
 tan–1 ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
−

ba
ba

2
xtan  + C

Case – 3 Let a < b

⇒ Ι = ∫ −−+ 2t)ab()ba(
dt2

 = ab
2
−

 ∫
−

−
+ 2t

ab
ab
dt

= ab
2
−

 
ab
ab

+

−
 log 

t
ab
ab

t
ab
ab

−
−
+

+
−
+

 + C

= 22 ab

1

−
 log 

2
xtanabab

2
xtanabab

−−+

−++
 + C
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Example : 22

Evaluate : ∫ +
+

xcos4xsin
xcos3xsin2

 dx

Solution
Express numerator as the sum of denominator and its derivative
Let 2 sin x + 3 cos x = l (sin x + 4 cos x) + m (cos x – 4 sin x)
comparing coefficients of sin x and cos x

2 = l – 4m, 3 = 4 l + m
⇒ l = 14/17 m = –5/17

⇒ Ι = ∫ +
+

xcos4xsin
xcos3xsin2

 dx

⇒ I = 
17
14

 ∫ +
+

xcos4xsin
xcos4xsin

 dx – 
17
5

 ∫ +
−

xcos4xsin
xsin4xcos

 dx

⇒ Ι = 
17
14

 x – 
17
5

 log  |sin x + 4 cos x) + C

Example : 23
Evaluate

(1) ∫ +

+

1x
1x

4

2

 dx (2) ∫ +

−

1x
1x

4

2

 dx

Solution

(1) Let Ι1 = ∫ +

+

1x
1x

4

2

 dx = ∫
+

+

2
2

2

x
1x

x
11

 dx  = ∫
+⎟

⎠
⎞

⎜
⎝
⎛ −

+

2
x
1x

x
11

2

2
 dx = ∫ + 2t

dt
2

where t = x – 
x
1

 = 2
1

 tan–1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

2
t

 + C = 2
1

 tan–1 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −

2x
1x2

 + C

(2) Let Ι2 = ∫ +

−

1x
1x

4

2

 dx = ∫
+

−

2
2

2

x
1x

x
11

 dx  = ∫
−⎟

⎠
⎞

⎜
⎝
⎛ +

−

2
x
1x

x
11

2

2
 dx

Let Ι2 = ∫ − 2t
dt

2 where t = x + 
x
1

 = 22
2

 log 2t
2t

+

−
 + C

= 22
1

 log 12xx
12xx

2

2

++

+−
 + C
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Example : 24

Evaluate : ∫
++

−

1x)1x(

1x
42

2

 dx

Solution
The given integral is

Ι = ∫
++

−

2

42

2

x
1x

x
1x

x
11

 dx = ∫
+⎟

⎠
⎞

⎜
⎝
⎛ +

−

2
2

2

x
1x

x
1x

x
11

 dx = ∫
− 2tt

dt
2 where x + 

x
1

 = t

⇒ Ι = 2
1

 sec–1 2
t

 + C = 2
1

 sec–1 2x
1x2 +

 + C

Example : 25

Evaluate : ∫ dxxcosx

Solution

Ι = ∫ 1part
x

 2part
dxcos

 = x ∫ dxxcos  – [ ]∫ ∫ dxxcos  dx

⇒ Ι = x sin x – ∫ dxxsin  = x sin x + cos x + C

Example : 26
Study the following examples carefully

(1) ∫ dxxsecx 2 = x ∫ dxxsec2  – ∫ dxxtan = x tan x – log |sec x| + C

(2) ∫ − dxsin 1 = sin–1 dx∫  – dx
x1

1x
2∫

−
 = x sin–1x – 

2
1

 ∫
− 2x1

x2
 dx

= x sin–1x + 
2
1

 ∫ t
dt

where Ι – x2 = t

= x sin–1 x + 
2
1

 2 t  + C = x sin–1 x + 2x1−  + C

(3) ∫ − dxxtan 1 = tan–1 dx∫  – ∫ + 2x1
x

 dx

= x tan–1 x – 
2
1

 log |1 + x2| + C

(4) ∫ dxex x = x ∫ dxex  – ∫ dxex  = x ex – ex + C

(5) ∫ dxxlog = log x ∫ dx  – ∫ x  
x
1

 dx = x log x – x + C
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(6) ∫ dxxsinx2 = x2 ∫ dxxsin  – ∫ − dxx2)xcos(

= – x2 cos x + 2 ∫  x cos x dx

= – x2 cos x + 2 [ ]∫ ∫− dxxsindxxcosx

= – x2 cos x + 2 x sin x + 2 cos x + C

Example : 27

Evaluate :  ∫ − dxsinx 1

Solution

∫ − dxsinx 1 = sin–1 x ∫ dxx  – ∫
− 2

2

x12

dxx
 = 

2
x2

 sin–1 x + 
2
1

 ∫
−

−−
2

2

x1

1x1
 dx

= 
2
x2

 sin–1 x + 
2
1

 ∫ − dxx1 2  – 
2
1

 ∫
− 2x1

dx

= 
2
x2

 sin–1 x + 
2
1

 ⎥⎦

⎤
⎢⎣

⎡ +− − xsin
2
1x1

2
x 12

 – 
2
1

 sin–1 x + C

Example : 28
Evaluate : ex sin x dx

Solution

Let Ι = ∫ dxxsinex

⇒ Ι = ∫ dxexsin x  = sin x ∫ dxex  – ∫ ]dxx[cosex

⇒ Ι = ex sin x – ∫ dxexcos x

⇒ Ι = ex sin x – [cos x ∫  ex dx – ∫  ex  (– sin x dx]

⇒ Ι = ex (sin x – cos x) – ∫  ex sin x dx
⇒ Ι = ex (sin x – cos x) – Ι
⇒ Ι + Ι = ex (sin x – cos x)
⇒ Ι = ex/2 (sin x – cos x) + C

Example : 29

Evaluate : ∫ dxxsec3

Solution

Let Ι = ∫ dxxsec3  = ∫ dxxsecxsec 2  = sec x ∫ ∫− dx)xtanx(secxtanxsec2

⇒ Ι = sec x tan x – ∫ − )1x(secxsec 2  dx = sec x tan x – ∫ ∫+ dxxsecdxxsec3

⇒ Ι = sec x tan x – Ι + log |sec x + tan x|
⇒ Ι = 1/2 [sec x tan x + log| sec x + tan x| + C
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Example : 30

Evaluate : (1) ∫ ⎥⎦

⎤
⎢⎣

⎡
+
+

x2cos1
x2sin2ex

 dx (2) ∫ + 2

x

)x1(
xe

 dx

(3) ∫ +

+
2

2x

)1x(
)1x(e

 dx (4) dx
xlog

1)x(loglog∫ ⎥
⎦

⎤
⎢
⎣

⎡
+

Solution

(1) Ι = ∫ ⎥⎦

⎤
⎢⎣

⎡
+
+

x2cos1
x2sin2ex

 dx

⇒ Ι = ∫ ⎥⎦

⎤
⎢⎣

⎡
+

+
+

dx
x2cos1

x2sin
x2cos1

2ex

⇒ Ι = ex ⎥⎦

⎤
⎢⎣

⎡ +
xcos2

xcosxsin2
xcos2

2
22  dx = ∫ xe  [sec2 + tan x] dx

⇒ Ι = ∫ +=+ Cxtanedx]xsecx[tane x2x

(2) Ι = ∫ + 2

x

)x1(
xe

 dx = 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+

−+
2)x1(
1x1

 dx

⇒ Ι = ∫ ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
−

+ 2
x

)x1(
1

x1
1e  dx = ex ⎟

⎠

⎞
⎜
⎝

⎛
+ x1
1

 + C

(3) Ι = ∫ +

+
2

2x

)1x(
)1x(e

 dx = ∫ ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
+

+

−
22

2

)1x(
2

)1x(
1x

 dx

⇒ Ι = ∫ ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
+

+
−

2
x

)1x(
2

1x
1xe  dx

We now se that dx
d

 ⎟
⎠

⎞
⎜
⎝

⎛
+
−

1x
1x

 = 2)1x(
)1x()1x(

+
−−+

 = 2)1x(
2
+

⇒ I = ex ⎥⎦

⎤
⎢⎣

⎡
+
−

1x
1x

 + C

(4) Ι = ∫ ⎥
⎦

⎤
⎢
⎣

⎡
+ dx

xlog
1)x(loglog

Substitute log x = 1 ⇒ x = et and dx = et dt

⇒ = ∫ ⎟
⎠

⎞
⎜
⎝

⎛ +
t
1tlog  et dt = et log t + C

⇒ = elogx log log x + C = x log log x + C
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Example : 31

Evaluate : ∫ +− )3x2()1x(
dxx2

Solution

Let Ι = ∫ +− )3x2)(1x(
dxx2

The degree of numerator is not less than the degree of denominator. Hence we divide N by D.

)3x2)(1x(
x2

+−
 = quotient + )3x2)(1x(

remainder
+−  = 

2
1

 + 
)3x2)(1x(

2
3x

2
1

+−

+−
 = 

2
1

 + 
2
1

 )3x2)(1x(
x3
+−

−

We now split )3x2)(1x(
x3
+−

−
 in two partial fractions.

Let f(x) = )3x2)(1x(
x3
+−

−
 = 

1x
A
−

 + 3x2
B
+

where A and B are constants.

Equating the numerators on both sides :
3 – x = A (2x + 3) + B (x – 1)

Now there are two ways to calculate A and B.
1. Comparing the coefficients of like terms
2. Substituting the appropriate values of x.
Method 1 :
Comparing the coefficients of x and x0, we get :

– 1 = 2A + B and 3 = 3A – B
On solving we have a = 2/5 B = –9/5
Method 2 :
In 3 – x = A(2x + 3) + B (x – 1), pur x = 1, – 3/2
x = 1 ⇒ 3 – 1 = 5A ⇒ A = 2/5
x = –3/2 ⇒ 3 + 3/2 = B (–3/2 – 1) ⇒ B = –9/5
Hence finally we have :

f(x) = 1x
5
2

−
 + 

3x2
5
9

+

−

⇒ Ι = ∫ ⎥⎦

⎤
⎢⎣

⎡ + dx)x(f
2
1

2
1

⇒ Ι = 
2
x

 + 
2
1

 ∫ −1x
5
2

 dx + 
2
1

 ∫ +

−

3x2
5
9

 dx

⇒
2
x

 + 5
1

 log |x – 1| – 20
9

 log |2x + 3| + C
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Example : 32

Evaluate : ∫ −−+
−

)3x)(2x)(1x2(
dx)1x(

Solution

Let f(x) = )3x)(2x)(1x2(
1x

−−+
−

 = 
1x2

A
+

 + 
2x

B
−

 + 3x
C
−

⇒ A = 
2
1x)3x)(2x(

1x

−=
⎥
⎦

⎤
−−

−
 = – 35

6

⇒ B = 
2x)3x)(1x2(

1x

=
⎥
⎦

⎤
−+

−
 = – 5

1

⇒ C = 
3x)2x)(1x2(

1x

=
⎥
⎦

⎤
−+

−
 = 

7
2

⇒ ∫ )x(f  dx = 35
6−

 ∫ +1x2
dx

 – 5
1

 ∫ − 2x
dx

 + 
7
2

 ∫ − 3x
dx

= – 35
3

 log |2x + 1| – 5
1

 log |x – 2| + 
7
2

 log |x – 3| + C

Example : 33

Evaluate : 
( )

( )∫ −θ−θ

θ+θ

)3(cos1cos
sin1cos

2

Solution
Let cos θ = x ⇒ – sin θ dθ = dx

⇒ Ι = – ∫ −−
+

)3x()1x(
1x

2  dx

Let f(x) = ∫ −−
+

)3x()1x(
1x

2  = 
1x

A
−

 + 2)1x(
B
−  + 3x

C
−

Equating numerator on both sides,
⇒ x + 1 = A (x – 1) (x – 3) + B (x – 3) + C(x – 1)2

By taking x = 1, we get B = – 1
By taking x = 3, we get C = 1
Comparing the coefficient of x2 , we get,

0 = A + C ⇒ 0 = A + 1 ⇒ A = – 1

⇒ Ι = – ∫ dx)x(f = – 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−
+

−

−
+

−
−

∫ ∫ ∫ dx
3x

1dx
)1x(

1dx
1x

1
2

⇒ Ι = log |x – 1| – 
1x

1
−

 – log |x – 3| + C

⇒ Ι = log 3x
1x

−
−

 – 
1x

1
−

 + C

⇒ Ι = log 3cos
1cos

−θ
−θ

 – 1cos
1
−θ

 + C
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Example : 34

Evaluate : ∫ +1x
dx
3

Solution

Let f(x) = 
1x

1
3 +

 = 

)1xx)(1x(
1
2 +−+

⇒ f(x) = )1xx)(1x(
1
2 +−+  = 

1x
A
+

 + 
1xx

CBx
2 +−

+

⇒ 1 = a (x2 – x + 1) + (Bx + C) (x + 1)
Comparing the coefficients of x2 , x, x0 :

0 = A + B, 0 = – A + B + C 1 = A + C
⇒ A = 1/3C = 2/3 B = –1/3

⇒ f(x) = 1x
3
1

+  + 
1xx

3
2

3
x

2 +−

+−

Let Ι1 = 3
1

 ∫ +1x
dx

 = 3
1

 log |x + 1| + C1

Let Ι2 = ∫ +−

+−

1xx
3
2x

3
1

2  dx = 3
1

 ∫ +−
−

1xx
x2

2  dx

Express the numerator in terms of derivative of denominator.

⇒ Ι2  = – 6
1

 ∫ +−
−

1xx
4x2

2  dx

⇒ Ι2  = – 6
1

 ∫ +−

−

1xx
1x2

2  dx  + 
2
1

 ∫ +− 1xx
dx

2

⇒ Ι2 = – 6
1

 log |x2 – x + 1| + 
2
1

 ∫
+⎟

⎠
⎞

⎜
⎝
⎛ −

4
3

2
1x

dx
2

⇒ Ι2 = – 6
1

 log |x2 – x + 1| + 32
2

 tan–1 
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛
−

2
3
2
1x

 + C2

⇒ Ι2 = – 6
1

 log |x2 – x + 1| + 3
1

 tan–1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

3
1x2

 + C2

⇒ ∫ +1x
dx
3  = ∫ Ι+Ι= 21dx)x(f  = 3

1
 log |x + 1| – 6

1
 log |x2 – x + 1| + 3

1
 tan–1 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −

3
1x2

 + C

3
1

 log 
1xx

1x
2 +−

+
 + 3

1
 tan–1 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −

3
1x2

 + C
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Example : 35

Evaluate : ∫ −1x
dxx

4

2

Solution

∫ −1x
dxx

4

2

 = ∫ +− )1x)(1x(
dxx

22

2

)1x)(1x)(1x(
x

2

2

++−
 = 

1x
A
−

 + 
1x

B
+

 + 
1x
DCx

2 +
+

As the function contains terms of x2 only, substitute x2 = t and then make partial fractions

)1t)(1t(
t
+−  = 1t

A
−

 + 1t
B
+

⇒ t = A (t + 1) + B (t – 1)

Put t = ± 1 to get A = 1/2, B = 1/2

⇒ )1t)(1t(
t
+−  = 

1t
2
1

−
 + 

1t
2
1

+

Convert t = x2 again before integrating

⇒ Ι = ∫ +− )1x)(1x(
dxx

22

2

 = ∫ − )1x(
2/1

2  dx + ∫ +1x
2/1

2  dx

= 
2
1

2
1

 log 1x
1x

+
−

 + 
2
1

 tan–1 x + C

Example : 36

Evaluate ∫ ++ 2x)1x(
dx

Solution

Let Ι = ∫ ++ 2x)1x(
dx

Substitute : x + 2 = t2 ⇒ dx = 2t dt

⇒ ( )∫ ++ 2x1x
dx

 = ∫
− 22 t)1t(

dtt2
 = 2 ∫ −1t

dt
2  = 

2
2

 log 1t
1t

+
−

 + C = log 12x
12x

++

−+
 + C

Example : 37

Evaluate : ∫ −+− 1x)2x3x(
x

2  dx

Solution
Let x – 1 = t2 ⇒ dx = 2t dt

⇒ Ι = ∫ ++−+

+

2)1t(3)1t(
)1t(
222

2

 2t

dtt2
 = 2 ∫ −

+
44

2

tt
dt)1t(
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⇒ Ι = 2 ∫ −

+

)1t(t
1t

22

2

 dt = ∫ ⎟
⎠

⎞
⎜
⎝

⎛ −
− 22 t

1
1t

2
 dt = 4 ∫ −1t

dt
2  – 2 ∫ 2t

dt

⇒ Ι = 
2
4

 log 1t
1t

+
−

 + t
2

 + C

⇒ Ι = 2 log 11x
11x

+−

−−
 + 1x

2
−

 + C

Example : 38

Evaluate : ∫
++ 2x)1x(

dx
22

Solution

Let I = ∫
++ 2x)1x(

dx
22

Substitute : x = t
1

⇒ dx = 2t
1

 dt

⇒ Ι = ∫
+⎟

⎠
⎞

⎜
⎝
⎛ +

−

2
t
11

t
1

dt
t
1

22

2

 = ∫
++

−
22 t21)t1(

dtt

Let 1 + 2 t2 = z2 ⇒ 4t dt = 2z dz

⇒ Ι = 
2
1−

 ∫
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −+ 2
2

z
2

1z1

dzz
 = ∫ +1z

dz
2  = – tan–1 z + C

⇒ Ι = – tan–1 2t21+  + C = – tan–1 2x
21+  + C

Example : 39

Evaluate : ∫
+++ 7x6x)2x(

dx
2

Solution

Let Ι = ∫
+++ 7x6x)2x(

dx
2

Substitute : x + 2 = t
1

⇒ dx = – 2t
1

⇒ x2 + 6x + 7 = 
2

2
t
1

⎟
⎠

⎞
⎜
⎝

⎛ −  + 6 ⎟
⎠

⎞
⎜
⎝

⎛ − 2
t
1

 + 7 = 2

2

t
tt21 −+
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⇒ Ι = ∫ −− 2)1t(2

dt
 = – sin–1 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −

2
1t

 + C

⇒ Ι = sin–1 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+

+

2)2x(
1x

 + C

Example : 40

Evaluate : ∫ +++ 1x1x
dx

3

Solution

Let Ι = ∫ +++ 1x1x
dx

3 ⇒ Ι = ∫ +++ 2/13/1 )1x()1x(
dx

The least common multiple of 2 and 3 is 6
So substitute x + 1 = t6 ⇒ dx = 6t5 dt

⇒ Ι = ∫ + 32

5

tt
dtt6

 = 6 ∫ + t1
dtt3

⇒ Ι = 6 ∫ ⎟
⎠

⎞
⎜
⎝

⎛
+

−+−
t1

11tt2
 dt

⇒ Ι = 6 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−+− )1tlog(t

2
t

3
t 23

 + C

On substituting t = (1 + x)1/6 , we get

Ι = 6 ( )⎟⎟
⎠

⎞
⎜
⎜
⎝

⎛
++−++

+
−

+ 1)1x(log)x1(
2

)x1(
3

)x1( 6/16/1
3/12/1

 + C

Example : 41

Evaluate : ∫ + 2/12/52/13 )x1(x  dx

Solution

Let Ι = ∫ + 2/12/52/13 )x1(x  dx

Comparing with integral of type 5.6, we can see that p = 1/2 which is not an integer.
So this integral does not belong to type 5.6 (i).
Check the sign of (m + 1)/n

n
1m +

 = 
2
5

1
2

13
+

 = 5
15

 = 3 ⇒ (m + 1)/n is an integer. So this integral belongs to type 5.6 (ii)

To solve this integral, substitute 1 + x5/2 = t2

⇒ 5/2 x3/2 dx = 2t dt

⇒ Ι = 5
2

 ∫ − dtt2)t()1t( 2/1222

⇒ Ι = 5
4

 ∫ − 222 )1t(t  dt
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⇒ Ι = 5
4

 ∫ −+ dtt2tt 426

⇒ Ι = 5
4

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+

5
t2

3
t

7
t 537

 + C

On substituting t = (1 + x5/2)1/2 , we get

Ι = 5
4

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
−

+
+

+
5

)x1(2
3

)x1(
7

)x1( 2/52/52/32/52/72/5

 + C

Example : 42

Evaluate : (1) ∫ + 2/32 )xax2(
dx

(2) ∫
+

4

2

x
1x

 dx

Solution

(1) Let Ι = ∫ + 2/32 )xax2(
dx

⇒ Ι = ∫ −+ 2/322 ]a)ax[(
dx

Put x + a = a sec θ ⇒ dx = a sin θ tan θ dθ
On substituting in Ι, we get

Ι = ∫ −θ
θθθ

2/3222 )aseca(
dtanseca

 = ∫ θ

θθθ
33 tana

dtansec2

⇒ Ι = 2a
1

 ∫ ∫ θ
θ

θ
=θθθ d

sin
cos

a
1dcotsec 22

2

⇒ Ι = 2a
1

 ∫ θ

θ
2sin

)(sind
 dθ = – 

θsina
1

2  + C

⇒ Ι = – 2a
1

 
ax2x

ax
2 +

+
 + C

(2) Let Ι = ∫
+

4

2

x
1x

 dx

Put x  tan θ ⇒ dx = sec2θ dθ
On substituting x and dx in Ι, we get

Ι = ∫ θ

+θ
4

2

tan
1tan

 sec2θ  dθ = ∫ θ

θθ
4

3

tan
dsec

⇒ Ι = ∫ θ

θ
4sin

cos
 dθ = ∫ θ

θθ
4sin

d)(sind
⇒ Ι = – 

θ3sin3
1

 + C

On substituting value of sin θ in terms of x, we get Ι = – 3
1

 3

2/32

x
)x1( +

 + C

Example : 43

Find the reduction formula for ∫ dxxsinn

Solution

Let Ι0 = ∫ dxxsinn  = ∫ − dxxsin.xsin 1n

Apply by parts taking sinn–1 x as first part and sin x as second part.
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⇒ Ιn  = sinn–1 x . (– cos x) + ∫ −− dxxcosxsin)1n( 22n

= – cos x sinn–1 x + (n - 1) ∫ −− dx)xsin1(xsin 22n

= – cos x sinn–1 x + (n – 1) ∫ ∫−−− dxxsin)1n(dxxsin n2n

⇒ Ιn = – cos x sinn–1x + (n – 1) Ιn–2 – (n – 1) Ιn
⇒ nΙn = – cos x . sinn–1 x + (n – 1) Ιn–2 ;

Ιn = – 
n

xsinxcos 1n−
 + 

n
1n −

 Ιn–2

Example : 44

Find the reduction formula for ∫ dxxtann .

If Ιn = dxxtann∫ , to prove that (n – 1) (Ιn + Ιn–2) = tann–1 x.

Solution

Here Ιn  = ∫ dxxtann  ∫ − dxxtanxtan 22n

= ∫ −− dx)1x(secxtan 22n

= ∫ − dxxsecxtan 22n  – ∫ − dxxtan 2n

= ∫ −
− Ι− 2n

22n xsecxtan

⇒ Ιn + Ιn–2 = 
1n

xtan 1n

−

−

Hence (n – 1) (Ιn + Ιn–2) = tann–1 x.

Example : 45

Find reduction formula for ∫ dxxsecn

Solution

Let Ιn = ∫ xsecn

⇒ Ιn  = ∫ −2nsec x sec2x dx

Apply by parts taking secn–2 x as the first part and sec2x as the second part

⇒ Ιn = secn–2 x ∫ xsec3  dx – ∫ ∫ ⎥⎦

⎤
⎢⎣

⎡ − dxxsec)x(sec
dx
d 22n

 dx

⇒ Ιn = secn–2 x tan x – ∫ −− xsec)2n( 3n  sec x tan x tan x dx

⇒ Ιn = secn–2 x tan x – (n – 2) ∫ −− dx)1x(secxsec 22n

⇒ Ιn + (n – 2) Ιn = secn–2 x tan x + (n – 2) ∫ − dxxsec 2n

⇒ (n – 1) Ιn = secn–2 x tan x + (n – 2) Ιn–2
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Hence ∫ dxxsecn  = 
1n

xtanxsec 2n

−

−

 + 
1n
2n

−
−

 ∫ − dxxsec 2n

This is the required reduction formula for ∫ dxxsecn

Example : 46

Find the reduction formula for ∫ dxxcose nax

Solution

Let Ιn  = ∫ dxxcose nax

Apply by parts taking cosnx as the first part and eax the second part

⇒ Ιn  = cosnx ∫ dxeax  – ∫ ∫ ⎥⎦

⎤
⎢⎣

⎡ dxdxe)x(cos
dx
d axn

⇒ Ιn = 
a

eax

 cosn x  – ∫ − xcosn 1n  x (– sin x) 
a

eax

 dx

⇒ Ιn = a
1

 eax cosn x + a
n

 ∫ − )xsinx(cos 1n  eax dx

Apply by parts again taking cosn–1 x sin x as first part and eax as second part

⇒ Ιn = a
1

 eax cosnx + a
n

 (cosn–1 x sin x) ∫ axe  – a
n

 dxdxe)xsinx(cos
dx
d ax1n∫ ∫ ⎥⎦

⎤
⎢⎣

⎡ −

⇒ Ιn = a
1

 eax cosnx + a
n

 cosn–1 x sin x 
a

eax

 – a
n

 ∫ −− +−− ]xcos.xcosxsinxcos)1n([ 1n22n  
a

eax

 dx

⇒ Ιn = a
1

 eax cosn x + 2a
n

 eax cosn–1 x sin x + 2a
)1n(n −
 ∫ −2nax cose x (1 – cos2x) dx – 2a

n  ∫ dxxcose nax

⇒ Ιn = a
1

 eax cosnx + 2a
n

 eax cosn–1 x sin x + 2a
)1n(n −

 Ιn–2 – 2

2

a
n

 Ιn

⇒ Ιn = ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+ 2

2

a
n1  Ιn = 2a

1
 eax (a cos x + n sin x) cosn–1 x + 2a

)1n(n −
 Ιn–2

Hence ∫ axe  cosnx dx = eax ⎟
⎠

⎞
⎜
⎝

⎛
+

+
22 na

xsinnxcosa
 cosn–1 x + 22 na

)1n(n
+

−
 ∫ − dxxcose 2nax

This is the required reduction formula.
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Example : 47

Find the reduction formula for ∫ xcosm  sin nx dx

Solution

Let Ιm, n = ∫ xcosm  sin nx dx

Apply by parts taking cosmx as the first part and sin nx as the second part.

⇒ Ιm, n = cosmx ⎟
⎠

⎞
⎜
⎝

⎛−
n

nxcos
 – ∫ −1mcosm  (– sin x) ⎟

⎠

⎞
⎜
⎝

⎛−
n

nxcos
 dx

⇒ Ιm,n = – 
n

nxcosxcosm
 – 

n
m

 ∫ −1mcos  x (sin x cos nx) dx

Now sin (n – 1) x = sin nx cos x – cos nx sin x or cos nx sin x = sin nx cos x – sin (n – 1) x

⇒ Ιm,n = – 
n

nxcosxcosm
 – 

n
m

 ∫ − xcos 1m  [sin nx cos x – sin (n – 1) x] dx

⇒ Ιm,n = – 
n

nxcosxcosm
 – 

n
m

 ∫ dxnxsinxcosm  + 
n
m

 ∫ −− dxx)1nsin(xcos 1m

⇒ ⎥⎦

⎤
⎢⎣

⎡ +
n
m1  Ιm,n = – 

n
nxcosxcosm

 + 
n
m

 Ιm–1,n–1

⇒ Ιm,n = 
nm

m
+

 Ιm–1, n–1 – 
nm

nxcosxcosm

+
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Example : 1
Find the domain and the range of the following functions

(a) y = 2x1− (b) y = 2 sin x (c) y = 
2x

1
−

Solution
(a) For domain : 1 – x2 ≥ 0

⇒ x2 ≤ 1
⇒ – 1 ≤ x ≤ 1

Hence the domain is x set [–1, 1].
For range : As – 1 ≤ x ≤ 1

⇒ 0 ≤ x2 ≤ 1
⇒ 0 ≤ 1 – x2 ≤ 1

⇒ 0 ≤ 2x1−  ≤ 1

⇒ 0 ≤ y ≤ 1
Hence the range is set [0, 1]

(b) y = 2 sin x
For domain : x ∈ R i.e. x (–∞, ∞)
For range : – 1 ≤ sin x ≤ 1

– 2 ≤ 2 sin x ≤ 2
– 2 ≤ y ≤ 2

Hence the range is y ∈ [–2, 2]
(c) As denominator cannot be zero, x can not be equal to 2

domain is x ∈ R – {2}
i.e. x ∈ (–∞ , 2) (2, ∞)

Range : As y can never become zero, the range is y ∈ R – {0}
i.e. y ∈ (–∞, 0) (0, ∞)

Example : 2
Find the domain of the following functions :

(a) x3 −  + xlog
1

10
(b) |x|x

1
+ (c) xlog1 10−

Solution

(a) x3 −  is defined if 3 – x ≥ 0

⇒ x ≤ 3 ............(i)

xlog
1

10
 is defined if x > 0 and x ≠ 1

⇒ x > 0 – {1} ............(ii)
Combining (i) and (ii), set of domain is :
x ∈ (0, 1) ∪ (1, 3]

(b) f(x) is defined if : x + |x| ≠ 0
⇒ |x| ≠ – x ⇒ x > 0
Hence domain is x ∈ (0, ∞)

(c) f(x) is defined if
1 – log10x ≥ 0 and x > 0
⇒ log10x ≤ 1 and x > 0
⇒ x ≤ 10 and x > 0
⇒ domain is x ∈ (0, 10]

Example : 3
(Using factorisation) Evaluate the following limits :

(a) 2x
lim
→  

2x3x
4x2x

2

3

+−

−−
(b) ax

lim
→  

axx
ax

2

33

−

−
(c) 5x

lim
→  

125x
625x

3

4

−

−

Limits & Derivatives
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Solution

(a) 2x
lim
→  

2x3x
4x2x

2

3

+−

−−
 = 2x

lim
→  )1x)(2x(

)2x2x)(2x( 2

−−
++−

 = 2x
lim
→  

1x
2x2x2

−
++

 = 10

(b) ax
lim
→  

axx
ax

2

33

−

−
 = ax

lim
→  )ax(x

)aaxx)(ax( 22

−
++−

 = ax
lim
→  

x
aaxx 22 ++

 = 3a

(c) 5x
lim
→  

125x
625x

3

4

−

−
 = 5x

lim
→  

5x
5x
5x
5x

33

44

−
−
−
−

 = 2

3

5.3
5.4

 = 3
20

[using section 2.2 (ix)]

Example : 4
(Using rationalisation) Evaluate the following limits :

(a) 3x
lim
→  

21x
47x3

−+

−+
(b) ax

lim
→  

x2xa3
x3x2a

−+

−+
(c) 1x

lim
→  

1x
1x

2

3

−

−

Solution

(a) 3x
lim
→  

21x
47x3

−+

−+

Rationalising the numerator and denominator,

= 3x
lim
→  

41x
167x3

−+
−+

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

++

++

47x3
21x

= 3x
lim
→  3x

)3x(3
−
−

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

++

++

47x3
21x

= 3 3x
lim
→  

47x3
21x
++

++
 = 3 ⎟

⎠

⎞
⎜
⎝

⎛
+
+

44
22

 = 
2
3

(b) Rationalising numerator and denominator we get,

= ax
lim
→  x4xa3

x3x2a
−+
−+

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

++

++

x3x2a
x2xa3

= ax
lim
→  )xa(3

xa
−
−

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

++

++

x3x2a
x2xa3

 = 3
1

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+

+

a3a3
a2a2

 = 33
2

(c) 1x
lim
→  

1x
1x

2

3
1

−

−  = 1x
lim
→  

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
++−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
++⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

1xx)1x(

1xx1x

3
1

3
2

2

3
1

3
2

3
1

1x
lim
→  

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+++−

−

1xx)1x)(1x(

)1x(

3
1

3
2  = 6

1
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Example : 5
(x → ∞ type problems) Evaluate the following limits :

(a)      ∞→x
lim  

2x7x5
1x3x2x

3

23

++

++−
(b)      ∞→n

lim  3

2222

n
n........321 ++++

      (c)       ∞→x
lim  

x41
x51x3x2

+
+++

Solution
In these type of problems, divide numerator and denominator by highest power of x.
(a) Dividing numerator and denominator by x3

= ∞→x
lim

32

32

x
2

x
75

x
1

x
3

x
21

++

++−

 = 5
1

[because as x → ∞, 
x
1

, 2x
1

, 3x
1

 ......... → 0]

(b) ∞→n
lim  3

2222

n
n........321 ++++

= ∞→n
lim  3n6

)1n2)(1n(n ++

= 6
1

 ∞→n
lim  ⎟

⎠

⎞
⎜
⎝

⎛ +
n
11  ⎟

⎠

⎞
⎜
⎝

⎛ +
n
12

= 6
1

 (1 + 0) (2 + 0) = 3
1

(c) The highest power of x is 1. Hence divide the numerator and denominator by x.

∞→x
lim  

x41
x51x3x2

+
+++

= ∞→x
lim  

4
x
1

5
x
1

x
31 2

+

+++

 = 
40
51

+
+

 = 
2
3

Example : 6
(∞ – ∞ form) Evaluate the following limits :

(a)
2

x
lim

π
→  (sec x – tan x) (b) ∞→x

lim  ( )2x)ax2)(a2x( −++ (c) ∞→x
lim  ⎟

⎠
⎞⎜

⎝
⎛ +− xxx 2

Solution

(a)
2

x
lim

π
→  (sec x – tan x) = 

2
x
lim

π
→  

xtanxsec
xtanxsec 22

+
−

2
x
lim

π
→  xtanxsec

1
+

 = 0

(b) ∞→x
lim  ( )2x)ax2)(a2x( −++

Rationalising the expression, we get

∞→x
lim  ( )2x)ax2)(a2x(

x2)ax2)(a2x( 2

+++

−++
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= ∞→x
lim  

2xa2ax5x2

a2ax5
22

2

+++

+

Dividing numerator and denominator by x, we get

= ∞→x
lim

2
x
a2

x
a52

x
a2a5

2

2

2

+++

+
 = 22

a5

(c) ∞→x
lim  ⎟

⎠
⎞⎜

⎝
⎛ +− xxx 2

On rationalising the expression, we get

= ∞→x
lim  

xxx

)xx(x
2

22

++

+−
 = ∞→x

lim  
xxx

x
2 ++

−

Divide by the highest power of x  i.e. x1

= ∞→x
lim  

x
111

1

++

−
 = 

11
1
+
−

 = – 
2
1

Example : 7

⎟
⎠

⎞
⎜
⎝

⎛ =
→

1
x

xsinlimgsinu
0x  Evaluate the following limits :

(a)
3

x
lim

π
→  22x9

3xtan
π−

−
(b)

2
x
lim

π
→  ecxcosxsin

xcos)xsin(cos
−

(c) ax
lim
→  ax

acosxcos
−
−

(d) ax
lim
→  

xaax
asinxxsina

22 −

−

Solution

(a)
3

x
lim

π
→  22x9

3xtan
π−

−
 = 

3
x
lim

π
→  

22x9
3

xtan

π−

π
−

Using tan A – tan B = BcosAcos
)BAsin( −

 we get,

3
x
lim

π
→  

)x3)(x3(
3

cosxcos

3
xsin

π+π−
π

⎟
⎠
⎞

⎜
⎝
⎛ π

−
 = 3

1
 

)(
3

cos
3

cos

1

π+π
ππ

⎟
⎠

⎞
⎜
⎝

⎛ =
θ
θ

→θ
1sinlimgsinu

0  = 
π3
2

(b)
2

x
lim

π
→  ecxcosxsin

xcos)xsin(cos
−

 = 
2

x
lim

π
→  xcos

)xsin(cos

2
x
lim

π
→  

ecxcosxsin
xcos2

−
 = 1 × 

2
x
lim

π
→  

1xsin
xsinxcos

2

2

−
⎟
⎠

⎞
⎜
⎝

⎛ =
θ
θ

→θ
1sinlimgsinu

0

= – 
2

x
lim

π
→  (sin x) = – 1



Page # 5.

(c) ax
lim
→  ax

acosxcos
−
−

 ax
lim
→  

⎟
⎠
⎞

⎜
⎝
⎛ −

×

⎟
⎠
⎞

⎜
⎝
⎛ −

⎟
⎠
⎞

⎜
⎝
⎛ +

−

2
ax2

2
axsin

2
axsin2

= – ax
lim
→  sin ⎟

⎠

⎞
⎜
⎝

⎛ +
2

ax
 ax

lim
→  

⎟
⎠
⎞

⎜
⎝
⎛ −

⎟
⎠
⎞

⎜
⎝
⎛ −

2
ax
2

axsin

 = – sin a

(d) ax
lim
→  

xaax
asinxxsina

22 −

−

= ax
lim
→  )ax(ax

asinxxsinxxsinxxsina
−

−+−
 = ax

lim
→  )ax(ax

)asinx(sinxxsin)xa(
−

−+−

= ax
lim
→  )ax(ax

xsin)xa(
−

−
 + ax

lim
→  )ax(a

asinxsin
−
−

 = – 2a
asin

 + ax
lim
→  a2

2
axcos2 ⎟
⎠
⎞

⎜
⎝
⎛ +

 
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−

2
)ax(

2
)ax(sin

= 2a
asin

 + a
acos

Example : 8

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

−
→

alog
x

1alimgsinu
x

0x  Evaluate the following limits :

(a) 1x
lim
→  

1x
22x

−
−

(b) ax
lim
→  

ax
ee ax

−
−

(c) 0x
lim
→  

xsin
1326

2

xxx +−−
(d) 0x

lim
→  

x
53 xx −

Solution

(a) 1x
lim
→  

1x
22x

−
−

 = 2  1x
lim
→  

1x
12 1x

−
−−

 = 2 log 2

(b) ax
lim
→  

ax
ee ax

−
−

 = ax
lim
→  

ax

1ee axa

−

⎟
⎠
⎞⎜

⎝
⎛ −−

= ae  ax
lim
→  

ax
1e ax

−

−−

 ax
lim
→  

ax
ax

−
−

= ae  (1) ax
lim
→  ( )ax)ax(

)ax(
+−

−
 = 

a2
e a
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(c) 0x
lim
→  

xsin
1326

2

xxx +−−

= 0x
lim
→  2

xx

x
)13)12( −−

 
xsin

x
2

2

= 0x
lim
→  

x
12x −

 0x
lim
→  

x
13x −

 0x
lim
→  

2

xsin
x

⎟
⎠

⎞
⎜
⎝

⎛
 = loge

2 loge
2

(d)  0x
lim
→  

x
53 xx −

 = 0x
lim
→  

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
−

−
x

15
x

13 xx

 = log 3 – log 5 = log 5
3

Example : 9

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=+

→
e)x1(limgsinu x

1

0x  Evaluate the following limits :

(a) 0x
lim
→  x

1

)x21( − (b) 1x
lim
→  xcotπx

Solution

(a) 0x
lim
→  x

1

)x21( −  = 0x
lim
→  

2

x2
1

)x21(
−−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

(b) 1x
lim
→  xcotπx  = 1x

lim
→  

xcot)1x(

1x
1

)1x1
π−

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+

= 
xcot)1x(lim

1xe
π−

→  = )xtan(
x1lim

1xe π−π
−

→  = )xtan(
x1lim

1xe π−π
π−π

π→  = π
1

e ⎟
⎠

⎞
⎜
⎝

⎛ =
θ
θ

→θ
1tanlimgsinu

0

Example : 10
Show that the limit of :

f(x) = 
⎩
⎨
⎧

>
≤−

1x;x
1x;1x2

at x = 1 exists

Solution

Left hand limit = −→1x
lim  f(x) = −→1x

lim  (2x – 1) = 2 – 1 = 1

(we use f(x) = 2x – 1 Q while calculating limit at x = 1, we approach x = 1 from LHS i.e. x < 1)

Right hand limit = +→1x
lim  f(x) = +→1x

lim (x) = 1

⇒ L.H.L. = R.H.L. = 1. Hence limit exists
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Example : 11
Find whether the following limits exist or not :

(a) 0x
lim
→  sin 

x
1

(b) 0x
lim
→  x sin 

x
1

Solution

(a) As x → 0,  
x
1

 → ∞ .

As the angle θ approaches ∞ , sin θ oscillates by taking values between – 1 and + 1.

Hence 0x
lim
→  sin 

x
1

 is not a well defined finite number.

⇒ limit does not exist

(b) 0x
lim
→  x sin 

x
1

 = 0x
lim
→  x 0x

lim
→  sin 

x
1

= 0 × (some quantity between – 1 and + 1) = 0

It can be easily seen that +→0x
lim  x sin 

x
1

 = −→0x
lim  x sin 

x
1

 = 0

Hence the limit exists and is equal to zero (0)

Example : 12
Comment on the following limits :

(a) 1x
lim
→  [x – 3] (b) 0x

lim
→  

x
|x|

Solution

(a) Right Hand limit = +→1x
lim  [x – 3]

= 0h
lim
→  [1 + h – 3] = 0h

lim
→  [h – 2]

= – 2 (because h – 2 is between – 1 and – 2)

Left hand limit = −→1x
lim  [x – 3]

= 0h
lim
→  [1 – h – 3] = 0h

lim
→  [–2 – h]

= – 3 (because – h – 2 is between – 2 and – 3)
Hence R.H.L. ≠ L.H.L.
⇒ limit does not exist.

(b) Left hand limit = −→0x
lim  

x
|x|

 = −→0x
lim  

x
x−

 = – 1

Right hand limit = +→0x
lim  

x
|x|

 = +→0x
lim  

x
x

 = + 1

Hence R.H.L. ≠ L.H.L.
⇒ limit does not exist

Example : 13
Find a and b so that the function :

f(x) = 

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

π≤<
π

−

π
≤≤

π
+

π
<≤+

x
2

;xsinbx2cosa
2

x
4

;bxcotx2
4

x0;xsin2ax
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is continuous for x ∈ [0, π]
Solution

At x = π/4

Left hand limit = 
4

x

lim
−π

→

 f(x) = 
4

x

lim
−π

→

 (x + a 2 sin x) = 
4
π

 + a

Right hand limit = 

4
x

lim
+π

→

 f(x) = 

4
x

lim
+π

→

 (2x cot x + b) = 
2
π

 + b

f ⎟
⎠

⎞
⎜
⎝

⎛ π
4  = 2 ⎟

⎠

⎞
⎜
⎝

⎛ π
4  cot 

4
π

 + b = 
2
π

 + b

for continuity, these three must be equal

⇒
4
π

 + a = 
2
π

 + b ⇒ a – b = 
4
π

.............(i)

At x = π/2

Left hand limit = 
2

x

lim
−π

→

 (2x cot x + b) = 0 + b = b

Right hand limit = 
2

x

lim
+π

→

 (a cos 2x – b sin x) = – a – b

f ⎟
⎠

⎞
⎜
⎝

⎛ π
2  = 0 + b

for continuity, b = – a – b
⇒ a + 2b = 0 ............(ii)

Solving (i) and (ii) for a and b, we get : b = – 
12
π

, a = 6
π

Example : 14
A function f(x) satisfies the following property f(x + y) = f(x) f(y). Show that the function is continuous for all
values of x if it is continuous at x = 1

Solution
As the function is continuous at x = 1, we have

−→1x
lim  f(x) = −→1x

lim  f(x) = f(1)

⇒ 0h
lim
→  f(1 – h) = 0h

lim
→  f(1 + h) = f(1)

using f(x + y) = f(x) f(y), we get

⇒ 0h
lim
→  f(1) f(–h) = 0h

lim
→  f(1) f(h) = f(1)

⇒ 0h
lim
→  f(–h) = 0h

lim
→  f(h) = 1 ..............(i)

Now consider some arbitrary point x = a

Left hand limit = 0h
lim
→  f(a – h) = 0h

lim
→  f(a) f(–h)

= f(a) 0h
lim
→  f(–h) = f(a) ............. using (i)

Right hand limit = 0h
lim
→  f(a + h) = 0h

lim
→  f(a) f(h)

= f(a) 0h
lim
→  f(h) = f(a) ............. using (i)

Hence at any arbitrary point (x = a)
L.H.L. = R.H.L. = f(a)

⇒ function is continuous for all values of x.



Page # 9.

Example : 15

f(x) = 
⎩
⎨
⎧

≤<−
≤≤+

3x2;x3
2x0;x1

Determine the form of g(x) = f(f(x)) and hence find the point of discontinuity of g, if any
Solution

g(x) = f(f(x)) = 
⎩
⎨
⎧

≤<−
≤≤+

3x2;x3
2x0;x1

 = 
⎪
⎩

⎪
⎨

⎧

≤<−
≤<+
≤≤+

3x2;)x3(f
2x1;)x1(f
1x0;)x1(f

Now x ∈ [0, 1] ⇒ (1 + x) ∈ [1, 2]
x ∈ (0, 2] ⇒ (1 + x) ∈ (2, 3]
x ∈ (2, 3] ⇒ (3 – x) ∈ [0, 1)

Hence

g(x) = 
⎪
⎩

⎪
⎨

⎧

<−≤⇒≤<−
≤+<⇒≤<+
≤+≤⇒≤≤+

1x303x2for)x3(f
31x22x1for)x1(f
21x11x0for)x1(f

Now if (1 + x) ∈ [1, 2], then f(1 + x) = 1 + (1 + x) = 2 + x ...........(i)
[from the original definition of f(x)]

Similarly if (1 + x) ∈ (2, 3), then
f(1 + x) = 3 – (1 + x) = 2 – 2 .............(ii)

If (3 – x) ∈ (0, 1), then
f(3 – x) = 1 + (3 + x) = 4 – x .............(iii)

Using (i), (ii) and (iii), we get g(x) = 
⎪
⎩

⎪
⎨

⎧

≤<−
≤<−
≤≤+

3x2;x4
2x1;x2
1x0;x2

Now we will check the continuity of g(x) at x = 1, 2
At x = 1

L.H.L. = −→1x
lim  g(x) = −→1x

lim (2 + x) = 3

R.H.L. = +→1x
lim  g(x) = +→1x

lim (2 – x) = 1

As L.H.L., g(x) is discontinuous at x = 1
At x = 2

L.H.L. = +→2x
lim  g(x) = −→2x

lim  (2 – x) = 0

R.H.L. = +→2x
lim  g(x) = +→2x

lim  (4 – x) = 2

As L.H.L. ≠ R.H.L., g(x) is discontinuous at x = 2

Example : 16

Discuss the continuity of f(x) = 
⎪⎩

⎪
⎨
⎧

=

≠
+

−

0x;0

0x;
1e
1e

x/1

x/1

 at the point x = 0

Solution

LHL = −→0x
lim  

1e

1e

x
1

x
1

+

−
 = −∞→t

lim  
1e
1e

t

t

+

−
 = 10

10
+
−

 = – 1
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RHL = +→0x
lim  

1e

1e

x
1

x
1

+

−
 = ∞→t

lim  
1e
1e

t

t

+

−
 = ∞→t

lim  t

t

e1
e1
−

−

+

−

⇒ R.H.L. = 01
01

+
−

 = 1

⇒ L.H.L. ≠ R.H.L. ⇒ f(x) is discontinuous at x = 0

Example : 17
Discuss the continuity of the function g(x) = [x] + [–x] at integral values of x.

Solution
Let us simplify the definition of the function
(i) If x is an integer :

[x] = x and [–x] = – x ⇒ g(x) = x – x = 0
(ii) If x is not integer :

let x = n + f where n is an integer and f ∈ (0, 1)
⇒ [x] = [n + f] = n
and [–x] = [–n – f] = [(–n – 1) + (1 – f)] = – n – 1

(because 0 < f < 1 ⇒ 0 , (1 – f) < 1)
Hence g(x) = [x] + [–x] = n + (–n – 1) =  – 1

So we get : g(x) = 
⎩
⎨
⎧
− egerintannotisxif,1

egerintanisxif,0

Let us discuss the continuity of g(x) at a point x = a
where a ∈ Ι

L.H.L. = −→ax
lim  g(x) = – 1

Q as x → a– , x is not an integer

R.H.L. = +→ax
lim  g(x) = – 1

as x → a+ , x is not an integer
but g(a) = 0 because a is an integer
Hence g(x) has a removable discontinuity at integral values of x.

Example : 18
Which of the following functions are even/odd?

(a) f(x) = 
1a
1a

x

x

+

−
(b) f(x) = x log ⎟

⎠

⎞
⎜
⎝

⎛
−
+

x1
x1

(c) f(x) = |x| (d) f(x) = log ⎟
⎠
⎞⎜

⎝
⎛ ++ 1xx 2

Solution

(a) f(–x) = 
1a
1a

x

x

+

−
−

−

 = x

x

a1
a1

+

−
 = – f(x) ⇒ f(x) is odd

(b) f(–x) = – x log ⎟
⎠

⎞
⎜
⎝

⎛
+
−

x1
x1

 = x log 
1

x1
x1 −

⎟
⎠

⎞
⎜
⎝

⎛
+
−

 = x log ⎟
⎠

⎞
⎜
⎝

⎛
−
+

x1
x1

 = f(x)

⇒ f(x) is even
(c) f(–x) = |–x| = |x| = f(x)

⇒ f(x) is even
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(d) f(–x) = log ⎟
⎠
⎞⎜

⎝
⎛ ++− 2x1x  = log ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

++

−+
2

22

x1x

xx1
 = – log ⎟

⎠
⎞⎜

⎝
⎛ ++ 1xx 2  = – f(x)

⇒ f(x) is odd.

Example : 19
Which of the following functions are periodic ? Give reasons

(a) f(x) = x + sin x (b) cos x
(c) f(x) = x – [x] (d) cos2x

Solution
If a function f(x) is periodic, then there should exist some positive value of constant a for which
f(x + a) = f(x) is an identity (i.e. true for all x)
The smallest value of a satisfying the above condition is known as the period of the function
(a) Assume that f(x + a) = f(x)

⇒ x + a + sin (x + a) = x + sin x
⇒ sin x – sin (x + a) = a

⇒ 2 cos ⎟
⎠

⎞
⎜
⎝

⎛ +
2
ax  sin 

2
a

 = – a

⇒ 2 cos ⎟
⎠

⎞
⎜
⎝

⎛ +
2
ax  sin 

2
a

= – a

This cannot be true for all values of x.
Hence f(x) is non-periodic

(b) Assume that f(x + a) = f(x)

⇒ cos ax +  = cos x

⇒ ax +  = 2np ± x

⇒ ax +  ± x  = 2nπ

⇒ 2x + a ± 2 axx2 +  = 4n2 π2

⇒ 2x ± 2 axx2 +  = 4n2 π2 – a

As this equation cannot be an identity, 3 f(x) is non-periodic
(c) Assume that f(x + a) = f(x)

⇒ x + a – [x + a] = x – [x]
⇒ [x + a] – [x] = a
This equation is true for all values of x if a is an integer hence f(x) is periodic
Period = smallest positive value of a = 1

(d) Let f(x + a) = f(x)
⇒ cos2 (x + a) = cos2x
⇒ cos2 (x + a) – cos2x = 0
⇒ sin (2x + a) sin (a) = 0
this equation is true for all values of x if a is an integral multiple of π
Hence f(x) is periodic. Period = smallest positive value of a = π

Example : 20

Find the natural number a for which ∑
=

+
n

1k

)ka(f  = 16(2n – 1) where the function f satisfies the relation

f(x + y) = f(x) f(y) for all natural numbers x, y and further f(1) = 2.
Solution

Since the function f satisfies the relation f(x + y) = f(x) f(y)
It must be an exponential function.
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Let the base of this exponential function be a.
Thus f(x) = ax

It is given that f(1) = 2. So we can make
f(1) = a1 = 2 ⇒ a = 2
Hence, the function is f(x) = 2x ..........(i)
[Alternatively, we have

f(x) = f(x – 1 + 1) = f(x – 1) f(1) = f(x – 2 + 1) f(1) = f(x – 2) [f(1)]2 = .............. = [f(1)]x = 2x]
Using equation (i), the given expression reduces to :

∑
=

+
n

1k

ka2  = 16 (2n – 1)

⇒ ∑
=

n

1k

ka 2.2  = 16 (2n – 1)

⇒ 2a  ∑
=

n

1k

k2  = 16 (2n – 1)

⇒ 2a (2 + 4 + 8 + 16 + ..............+ 2n) = 16 (2n – 1)

⇒ 2a 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−
12

)12(2 n

 = 16 (2n – 1)

⇒ 2a+1 = 16 ⇒ 2a+1 = 24

⇒ a + 1 = 4 ⇒ a = 3

Example : 21
Evaluate the following limits :

(i) 2x
lim
→  2/xx3

x3x

33
1233

−

−+
−

−

(ii) 3/x
lim
π→  

⎟
⎠
⎞

⎜
⎝
⎛ π

+

−

6
xcos

xtan3xtan3

(iii) −∞→x
lim  

|x|1

x
x
1sinx

3

24

+

+

Solution

(i) Let L = 2x
lim
→  2/xx3

x3x

33
1233

−

−+
−

−

⇒ L = 2x
lim
→  2/x

x

x
x

3
3
27

12
3
273

−

−+

⇒ L = 2x
lim
→  332/x

xx2

3)3(
273.123

−
+−

⇒ L = 0x
lim
→  )3.393)(33(

)33)(93(
2/xx2/x

xx

++−
−−

⇒ L = 2x
lim
→   )93.33(

)33)(33(
2/xx

x2/x

++
−+

⇒ L = 93.39
6.6
++

 = 
27
36

 = 3
4
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(ii) Let L = L = 3/x
lim
π→  

⎟
⎠
⎞

⎜
⎝
⎛ π

+

−

6
xcos

xtan3xtan3

and x – 3
π

 = t

⇒ L = 0t
lim
→  

⎟
⎠
⎞

⎜
⎝
⎛ π
+

⎟
⎠
⎞

⎜
⎝
⎛ π
+−⎟

⎠
⎞

⎜
⎝
⎛ π
+

2
tcos

3
ttan3

3
1tan3

⇒ L = 0t
lim
→  

tsin

1
3

1tan3)t3tan( 2

−

⎥
⎦

⎤
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛ π
+π+

⇒ L = 0t
lim
→  tsin

)t3tan(
−

−
 . 0t

lim
→  ⎥

⎦

⎤
⎢
⎣

⎡
−⎟

⎠

⎞
⎜
⎝

⎛ π
+ 1

3
ttan3 2

⇒ L = 3 0t
lim
→  t3

)t3tan(
 × 0t

lim
→  tsin

1
 × 0t

lim
→  ⎥

⎦

⎤
⎢
⎣

⎡
−⎟

⎠

⎞
⎜
⎝

⎛ π
+ 1

3
1tan3 2

⇒ L = 3 × 1 × 1 × 8 = 24

(iii) Let L = −∞→x
lim  

|x|1

x
x
1sinx

3

24

+

+

Divided Numerator and Denominator by x3 to get

L = −∞→x
lim  

3
3

2

|x|
x
1

x
x
1sinx

+

+
 = 

3

3

3 x
)x(

x
1

x
1

x/1
x
1sin

−
+

+

(Q for x < 0, |x3| = – x3)

⇒ L = −∞→x
lim  )1()0(

)0()1(
−+→

→+→
 = – 1

Example : 22

Let f(x) = 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

π
<<

=

<<
π

+

6
x0;e

0x;b

0x
6

;|xsin|1(

x3tan
x2tan

|xsin|/a

Determine a and b such that f(x) is continuous at x = 0

Solution
Left hand limit at x = 0

L.H.L. = −→0x
lim  f(x) = −→0x

lim  ( ) ⎥
⎦

⎤
⎢
⎣

⎡
+ |xsin|

a
|xsin|1

⇒ L.H.L. = 0h
lim
→  f(0 – h)

⇒ L.H.L. = 0h
lim
→  ( ) ⎥

⎦

⎤
⎢
⎣

⎡
+ |sinh|

a
|sinh|1  = ex

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=+

→
e)t1(lim:gsinu t

1

0t
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Right hand limit x = 0

R.H.L. = +→0x
lim  f(x) = +→0x

lim  x3tan
x2tan

e

⇒ R.H.L. = 0h
lim
→  f(0 + h)

⇒ R.H.L. = 0h
lim
→  h3tan

h2tan

e

⇒ R.H.L. = 0h
lim
→  

⎟
⎠
⎞

⎜
⎝
⎛

h3tan
h3.

h2
h2tan

3
2

e  = 3
2

e

for continuity
L.H.L. = R.H.L. = f(0)

⇒ ex = 3
2

e  = b

⇒ a = 3
2

, b = e2/3

Example : 23

Discuss the continuity of f(x) in [0, 2] where f(x) = ∞→n
lim  

n2

2
xsin ⎟
⎠

⎞
⎜
⎝

⎛ π

Solution

Since ∞→n
lim  x2n = 

⎩
⎨
⎧

=
<

1|x|;1
1|x|;0

∴ f(x) = ∞→n
lim  

n2

2
xsin ⎟
⎠

⎞
⎜
⎝

⎛ π

= 

⎪
⎪
⎩

⎪⎪
⎨

⎧

=
π

<
π

1
2
xsin;1

1
2
xsin;0

Thus f(x) is continuous for all x, except for those values of x for which 1
2
xsin =
π

i.e. x is an odd integer
⇒ x = (2n + 1) where x ∈ Ι
Check continuity at x = (2n + 1) :

L.H.L. = 1n2x
lim

+→  f(x) = 0 ............(i)

and f(2n + 1) = 1 ............(ii)
from (i) and (ii), we get  :
L.H.L. ≠  f(2n + 1),
⇒ f(x) is discontinuous at x = 2n + 1

(i.e. at odd integers)
Hence f(x) is discontinuous at x = (2n + 1).
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Example : 24

Let f (x) = 

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

>
−+

=

<
−

0x;
4x16

x
0x;a

0x;
x

x4cos1
2

Determine the value of a, if possible, so that the function is continuous at x = 0.
Solution

It is given that  f(x) = 

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

>
−+

=

<
−

0x;
4x16

x
0x;a

0x;
x

x4cos1
2

is continuous at x = 0. So we can take :

−→0x
lim  f(x) = f(0) = +→0x

lim  f(x)

Left hand limit at x = 0

L.H.L. = −→0t
lim  f(x) = −→0t

lim  2x
x4cos1−

Now, L.H.L. = 0h
lim
→  f(0 – h)

⇒ L.H.L. = 0h
lim
→  2h

h4cos1−
 = 0h

lim
→  2

2

h
h2sin2

 = 8 ⎥⎦

⎤
⎢⎣

⎡ =
→

1
t

tsinlim:gsinu
0t

Right hand limit at x = 0

R.H.L. = +→0t
lim  f(x) = +→0t

lim  
4x16

x

−+

Now, R.H.L. = 0h
lim
→  f(0 + h)

⇒ R.H.L. = 0h
lim
→  

4h16

h

−+

Rationalising denominator to get :

⇒ R.H.L. = 0h
lim
→  

h
h

 ⎟
⎠
⎞

⎜
⎝
⎛ ++ 4h16  = 8

For function f(x) to be continuous at x = 0,
L.H.L. = R.H.L. = f(0)
⇒ 8 = 8 = a
⇒ a = 8

Example : 25
Ler {x} and [x] denote the fractional and integral part of a real number x respectively.
Solve 4{x} = x + [x].

Solution
We can write x as :
x = integral part + fractional part
⇒ x = [x] + {x}
The given equation is 4{x} = x + [x]
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⇒ 4{x} = [x] + {x} + [x]
⇒ 3{x} = 2[x] .............(i)
⇒ 3{x} is an even integer
But we have 0 ≤ {x} < 1
⇒ 0 ≤ 3 {x} < 3
⇒ 3{x} = 0, 2 [become 3{x} is even}

⇒ {x} = 0, 3
2

and [x] = 
2
3

{x} = 0, 1 ........... (using i)

⇒ x = 0 + 0 or x = 3
2

 + 1

⇒ x = 0 or x = 3
5

Example : 26

Discuss the continuity of f(x) in [0, 2] where f(x) = 
⎩
⎨
⎧

>−−
≤π

1x;]2x[|3x2|
1x;]x[cos

where [ ] : represents the greatest integer function.
Solution

First of all find critical points where f(x) may be discontinuous
Consider x – [0, 1] :
f(x) = [cos πx]
[f(x)] is discontinuous where f(x) ∈ Ι
⇒ cos πx = Ι

In [0, 1], cos πx is an integer at x = 0, x = 
2
1

 and x = 1

⇒ x = 0, x = 
2
1

 and x = 1 are critical points ............(i)

Consider x – (1, 2] :
f(x) = [x – 2] |2x – 3|
In x ∈ (1, 2) [x – 2] = – 1 and
for x = 2 ; [x – 2] = 0

Also |2x – 3| = 0 ⇒ x = 
2
3

⇒ x = 
2
3

 and x = 2 are critical points ............(i)

combining (i) and (ii), critical points are 0, 
2
1

, 1, 
2
3

, 2

On dividing f(x) about the 5 critical points, we get

f(x) = 

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

=−

−=−−=−<<−−

−=−−=−≤<−−

−=π⇒<π≤−≤<−

=π⇒<π≤≤<

=π=

0]2x[2;0

1]2x[and3x2|3x2|2x
2
3;)3x2(1

1]2x[andx23|3x2|
2
3x1;)x23(1

1]x[cos0xcos11x
2
1;1

0]x[cos0xcos0
2
1x0;0

1)0cos(0x;1

Q

Q

Q

Q

Q

Q
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Checking continuity at x = 0 :

R.H.L. = +→0x
lim  (0) = 0 and f(0) = 1

As, R.H.L. ≠ f(x)
⇒ f(x) is discontinuous at x = 0
Checking continuity at a + x = 1/2

L.H.L. = 
−

→
2
1x

lim  f(x) = 0

R.H.L. = 
−

→
2
1x

lim  f(x) = – 1

As L.H.L. ≠ R.H.L.,

f(x) is discontinuous at x = 
2
1

.

Checking continuity at x = 1 :

L.H.L. = −→1x
lim  f(x) = – 1

R.H.L. = +→1x
lim  f(x) = – 1 = +→1x

lim  (2x – 3) = – 1

and f(1) = – 1
As L.H.L = R.H.L. = f(1)
f(x) is continuous at x = 1
Checking continuity at x = 3/2 :

L.H.L. = 
−

→
2
3x

lim  (2x – 3) = 0

R.H.L. = 
+

→
2
3x

lim  (3 – 2x) = 0 and f ⎟
⎠

⎞
⎜
⎝

⎛
2
3

 = 0

As L.H.L. = R.H.L. = f ⎟
⎠

⎞
⎜
⎝

⎛
2
3

,

f(x) is continuous at x = 3/2
Checking continuity at x = 2 :

L.H.L. = −→2x
lim  (3 – 2x) = – 1 and f(2) = 0

As L.H.L. ≠ f(2),
f(x) is discontinuous at x = 2

Example : 27

If f(x) = 3x
xcosBxsinAx2sin ++

 is continuous at x = 0, find the values of A and B. Also find f(0).

Solution
As f(x) is continuous at x = 0

f(0) = ax
lim
→  f(x) and both f(0) and ax

lim
→  f(x) = are finite

⇒ f(0) = 0x
lim
→  3x

xcosBxsinAx2sin2 ++

As denominator → 0 as x → 0,
∴ Numerator should also → 0 as x → 0.
Which is possible only if (for f(0) to be finite)
sin 2(0) + A sin (0) + B cos 0 = 0
⇒ B = 0
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∴ f(0) = 0x
lim
→  2x

xsinAx2sin +

⇒ f(0) = 0x
lim
→  ⎟

⎠

⎞
⎜
⎝

⎛
x

xsin
 ⎟

⎠

⎞
⎜
⎝

⎛ +
2x

Axcos2
 = 0x

lim
→  ⎟

⎠

⎞
⎜
⎝

⎛ +
2x

Axcos2

Again we can see that Denominator → 0 as x → 0
∴ Numerator should also approach 0 as x → 0 (for f(0) to be finite)
⇒ 2 + A = 0 ⇒ A = – 2

⇒ f(0) = 0x
lim
→  ⎟

⎠

⎞
⎜
⎝

⎛ −
2x

2xcos2
 = 0x

lim
→  

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛ −

2

2

x
2
xsin4

 = 0x
lim
→  

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛
−

4
x

2
xsin

2

2

 = – 1

So we get A = – 2, B = 0 and f(0) = – 1

Example : 28

Evaluate 0x
lim
→  ( ) xsin2xcos3

124163264 xxxxx

−+

−++−−

Solution

Let L = 0x
lim
→  ( ) xsin2xcos3

124163264 xxxxx

−+

−++−−

On rationalising the denominated, we get

L = 0x
lim
→  xsin)1x(cos

122222 xx2x4x5x6

−
−++−−

 ( )2xcos3 ++

On factorising the numerator, we get

L = 0x
lim
→  xsin)1x(cos

1)12(22)[12( xx5x5x

−
+−−−

 × 0x
lim
→  ( )2xcos3 ++

⇒ L = 0x
lim
→ xsin)1x(cos

)]12()22)[(12( x2x3x5x

−
−−−−

 × 4

⇒ L = 0x
lim
→  xsin)1x(cos

)12)(12)(12( x3x2x

−
−−−

 × 4

⇒ L = 4 0x
lim
→  ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
x

12x

 × 2 0x
lim
→  ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
x2

12 x2

 × 3

0x
lim
→   ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
x3

12 x3

 × 0x
lim
→  ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

− )2/x(sin2
x

2

2

 × 0x
lim
→  ⎟

⎠

⎞
⎜
⎝

⎛
xsin

x

⇒ L = 4 (ln 2) = 2 (ln 2) × 3 (ln 2) × (–2) ⇒ L = – 48 (ln 2)3

Example : 29
(i) If f is an even function defined on the interval (–5, 5), then find the four real values of x satisfying

the equation f(x) = f ⎟
⎠

⎞
⎜
⎝

⎛
+
+

2x
1x

.

(ii) Evaluate : 0x
lim
→  

2x
1

2

2

x31
x51

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+

+
.
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(iii) If f(x) = sin2x + sin2 ⎟
⎠

⎞
⎜
⎝

⎛ π
+

3
x  = cos x cos ⎟

⎠

⎞
⎜
⎝

⎛ π
+

3
x  and g ⎟

⎠

⎞
⎜
⎝

⎛
4
5

 = 1, then find g [f(x)].

(iv) Let f(x) = [x] sin ]1x[
)(
+
π

 where [ ] denotes the greater integer function. Find the domain of f(x) and

the points of discontinuity of f(x) in the domain.
Solution

(i) It is given that f(x) = f ⎟
⎠

⎞
⎜
⎝

⎛
+
+

2x
1x

⇒ x = ⎟
⎠

⎞
⎜
⎝

⎛
+
+

2x
1x

⇒ x2 + x – 1 = 0

⇒ x = 
2

51±−
...........(i)

As f(x) is even, f(x) = f(–x)

– x = ⎟
⎠

⎞
⎜
⎝

⎛
+
+

2x
1x

⇒ x2 + 3x + 1 = 0 ⇒ x = 
2

53 ±−
...........(ii)

One combining (i) and (ii), we get :

x = 
2

51±−
 and x = 

2
53 ±−

.

(ii) Let L = 0x
lim
→  

2x
1

2

2

x31
x51

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+

+

⇒ L = 0x
lim
→  

2x
1

2

2
1

x31
x511 ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

+

+
+

⇒ L = 0x
lim
→  

2x
1

2

2

x31
x21 ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
+

⇒ L = 0x
lim
→  

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+ 2x31
2

e  = e2
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=+

→
e)t1(lim:gsinu t

1

0t

(iii) It is given that f(x) = 1 – cos2x + sin2 ⎟
⎠

⎞
⎜
⎝

⎛ π
+

3
x  + cos x cos ⎟

⎠

⎞
⎜
⎝

⎛ π
+

3
x

= 1 – ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛ π
+−

3
xsinxcos 22

 + 
2
1

 ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛ π
+

3
xcosxcos2

= 1 – cos ⎟
⎠

⎞
⎜
⎝

⎛ π
+

3
x2  cos 3

π
 + 2

3
x2cos ⎟

⎠
⎞

⎜
⎝
⎛ π

+

 + 2
3

cos ⎟
⎠
⎞

⎜
⎝
⎛ π

 = 1 + 2
3

cos ⎟
⎠
⎞

⎜
⎝
⎛ π

 = 
4
5
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⇒ For all values of x, f(x) = 
4
5

. (constant function)

Hence, g[f(x)] = g ⎟
⎠

⎞
⎜
⎝

⎛
4
5

But g ⎟
⎠

⎞
⎜
⎝

⎛
4
5

 = 1 ⇒ g [(f(x)] = 1

Hence, g[f(x)] = 1 for all values of x

(iv) Let f(x) = [x] sin ]1x[
)(
+
π

Domain of f(x) is x ∈ R excluding the point where [x + 1] = 0
(Q denominator cannot be zero)
Find values of x which satisfy [x + 1] = 0
[x + 1] = 0
⇒ 0 ≤ x + 1 < 1
⇒ – 1 ≤ x < 0
i.e. for all x ∈ [–1, 0), denominator is zero.
So, domain is x ∈ R [–1, 0)
⇒ Domain is x ∈ (–∞, –1) ∪ [0, ∞)
Point of Discontinuity
As greatest integer function is discontinuous at integer points, f(x) is continuous for all
non-integer points.
Checking continuity at x = a (where a – 1)

L.H.L. = 0h
lim
→  [a – h] sin ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+

π
]h1a[

⇒ L.H.L. = (a – 1) sin ⎟
⎠

⎞
⎜
⎝

⎛ π
a ............(i)

R.H.L. = 0h
lim
→  [a + h] sin ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++

π
]h1a[

⇒ L.H.L. = a sin ⎟
⎠

⎞
⎜
⎝

⎛
+
π

1a ............(ii)

From (i) and (ii), L.H.L. ≠ R.H.L.
⇒ f(x) is discontinuous at x = a (i.e. at integer values of x)
So, points of discontinuity are x ∈ Ι ∩ D. (i.e. integers lying in the set of domain)
⇒ x ∈ Ι – {–1}.
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Example : 1

How many (a) 5 – digit (b) 3–digit numbers can be formed using 1, 2, 3, 7, 9 without any repetition of
digits?

Solution
(a) 5-digit numbers

Making a 5-digit number is equivalent to filling 5 places

Places : 

No. of choices : 1 2 3 4 5

The last place (unit’s place) can be filled in 5 ways using any of the five given digits.
The ten’s place can be filled in four ways using any of the remaining 4 digits.
The number of choices for other places can be calculated in the same way.
No. of ways to fill all five places = 5 × 4 × 3 × 2 × 1 = 5! = 120
⇒ 120 five-digit numbers can be formed

(b) 3-digit numbers
Making a three-digit number is equivalent to filling three places (unit’s, ten’s, hundred’s)

Places : 

No. of choices : 3 4 5

No. of ways to fill all the three places = 5 × 4 × 3 = 60
⇒ 60 three-digit numbers can be formed

Example : 2
How many 3-letter words can be formed using a, b, c, d, e  if :
(a) repetition is not allowed (b) repetition is allowed ?

Solution
(a) Repetition is not allowed :

The number of words that can be formed is equal to the number of ways to fill the three places

Places : 

No. of choices : 5 4 3

⇒ 5 × 4 × 3 = 60 words can be formed
(b) Repetition is allowed:

The number of words that can be formed is equal to the number of ways to fill the three places.

Places : 

No. of choices : 5 5 5

First place can be filled in five ways (a, b, c, d, e)
If repetition is allowed, all the remaining places can be filled in five ways using a, b, c, d, e.
No. of words = 5 × 5 × 5 = 125 words can be formed

Example : 3
How many four-digit numbers can be formed using the digits 0, 1, 2, 3, 4, 5?

Solution
For a four-digit number, we have to fill four places and - cannot appear in the first place (thousand’s place)

Places : 

No. of choices : 5 5 4 3

For the first place, there are five choices (1, 2, 3, 4, 5); Second place can then be filled in five ways (0 and
remaining four-digits); Third place can be filled in four ways (remaining four-digits); Fourth place can be
filled in three ways (remaining three-digit).
Total number of ways = 5 × 5 × 4 × 3 = 300
⇒ 300 four-digits numbers can be formed

Permutations & Combinations
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Example : 4
In how many ways can six persons be arranged in a row?

Solution
Arranging a given set of n different objects is equivalent to filling n places
So arranging six persons along a row is equivalent to filling 6 places

Places : 

No. of choices : 6 5 4 3 2 1

No. of ways to fill all places = 6 × 5 × 4 × 3 × 2 × 1 = 6! = 720
Hence 720 arrangements are possible

Example : 5
How many nin-letter words can be formed by using the letters of the words
(a) E Q U A T I O N S (b) A L L A H A B A D

Solution
 (a) All nine letters in the word EQUATIONS  are different

Hence number of words = 9P9  = 9! = 362880
(b) ALLAHABAD contains LL, AAAA, H, B, D.

No. of words = !4!2
!9

 = 
2

56789 ××××
 = 7560

Example : 6
(a) How many words can be made by using the letters of the word C O M B I N E all at a time?
(b) How many of these words begin and end with a vowel?
(c) In how many of these words do the vowels and the consonants occupy the same relative

positions as in C O M B I N E ?
Solution

(a) The total number of words – arrangement of seven letters taken all at a time = 7P7 = 7! = 5040
(b) The corresponding choices for all the places are as follows :

Places vowel vowel

No. of choices 3 5 4 3 2 1 2

As there are three vowels (O I E), first place can be filled in three ways and the last place can be
filled in two ways. The rest of the places can be filled in 5 ! ways using five remaining letters.
No. of words = 3 × 5! × 2 = 720

(c) Vowels should be at second, fifth and seventh positions
They can be arranged in 3! ways
Consonants should be at first, third, fourth and sixth positions.
They can be arranged here in 4! ways
Total number of words = 3! × 4! = 144

Example : 7
How many words can be formed using the letters of the word TRIANGLE so that
(a) A and N are always together?
(b) T, R, I are always together?

Solution
(a) Assume (AN) as a single letter. Now there are seven letters in all : (AN), T, R, I, G, L, E

Seven letters can be arranged in 7! ways
All these 7! words will contain A and N together. A and N can now be arranged among themselves
in 2! ways (AN and NA).
Hence total number of words = 7! 2! = 10080

(b) Assume (TRI) as a single letters
(i) The letters : (TRI), A, N, G, L, E can be arranged in 6! ways
(ii) TRI can be arranged among themselves in 3! ways

Total number of words = 6! 3! = 4320
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Example : 8
There are 9 candidates for an examination out of which 3 are appearing in Mathematices and remaining
6 are appearing in different subjects. In how many ways can they be seated in a row so that no two
Mathematices candidates are together?

Solution
Divide the work in two operations.
(i) First, arrange the remaining candidate in 6! ways
(ii) Place the three Mathematices candidate in the row of six other candidate so that no two of them

are together.
X : Places available for Mathematices candidates.
O : Others

X O X O X O X O X O X O X

In any arrangement of 6 other candidates (O), there are seven places available for Mathematices candi-
dates so that they are not together. Now 3 Mathematices candidates can be placed in these 7 places in
7P3 ways.

Hence total number of arrangements = 6! 7P3  = 720 × 
!4
!7
 = 151200

Example : 9
(a) How many triangle can be formed by joining the vertices of a bexagon?
(b) How many diagonals are there in a polygon with n sides?

Solution
(a) Let A1, A2, A3, ........, A6 be the vertices of the bexagon. One triangle is formed by selecting a group

of 3 points from 6 given vertices.

No. of triangles = No. of groups of 3 each from 6 points = 6C3 = !3!3
!6

 = 20

(b) No. of lines that can be formed by using  the given vertices of a polygon = No. of groups of 2
points each selected from the n points

= nC2 = )!2n(!n
!n
−  = 

2
)1n(n −

Out of nC2 lines, n are the sides of the polygon and remaining nC2 – n are the diagonals

So number of diagonals = 
2

)1n(n −
 – n = 

2
)3n(n −

Example : 10
In how many ways can a circket team be selected from a group of 25 players containing 10 batsmen, 8
bowlers, 5 all-rounders and 2 wicketkeepers? Assume that the team of 11 players requires 5 batsmen, 3
all-rounders, 2-bowlers and 1 wicketkeeper.

Solution
Divide the selection of team into four operation.
I : Selection of bastsman can be done (5 from 10) in 10C5  ways.
II : Selection of bowlers can be done (2 from 8) in 8C2 ways
III : Selection of all-rounders can be done (3 from 5) in 5C3 ways
IV : Selection of wicketkeeper can be done (1 from 2) in 2C1 ways

⇒ the team can be selected in = 10C5 × 8C2 × 5C3 × 2C1 ways = !2!5!5
21078!10 ××××

 = 141120

Example : 11
A box contains 5 different red and 6 different white balls. In how many ways can 6 balls be selected so that
there are at least two balls of each colour?

Solution
The selection of balls from 5 red and 6 white balls will consist of any of the following possibilities
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RED BALLS
(out of 5)

WHITE BALLS
(out of 6)

2 4

3 3

4 2

• If the selection contains 2 red and 4 white balls, then it can be done in 5C2 
6C4 ways

• If the selection contains 3 red and 3 white balls then it can be done in 5C3 ways
• If the selection contains 4 red and 2 white balls then it can be done in 5C4 

6C2 ways
Any one of the above three cases can occur. Hence the total number of ways to select the balls
= 5C2 

6C4  + 5C3 
6C3 + 5C4 

6C2
= 10 (15) + 10 (20) + 5 (15) = 425

Example : 12
How many five-letter words containing 3 vowels and 2 consonants can be formed using the letters of the
word E Q U A T I O N so that the two consonants occur together in every word?

Solution
There are 5 vowels and 3 consonants in EQUATION. To form the words we will do there operations.
I. Select vowels (3 from 5) in 5C3 ways
II. Select consonants (2 from 3) in 3C2 ways
III. Arrange the selected letters (3 vowels and 2 consonants always together) in 4! 2! ways. Hence

the no. of words = 5C3 
3C2 4! 2! = 10 × 3 × 24 × 2 = 1440

Example : 13
How many four-letter words can be formed using the letters of the word I N E F F E C T I V E ?

Solution
INEFFECTIVE contains 11 letters : EEE, FF, II, C, T, N, V.
As all letters are not different, we cannot use nPr.
The four-letter words will be among any one of the following categories
(1) 3 alike letters, 1 different letter
(2) 2 alike letters, 2 alike letter
(3) 2 alike letters, 2 different letters
(4) All different letters
(1) 2 alike, 1 different :
3 alike can be selected in one way i.e. EEE
Different letters can be selected from F, I, T, N, V, C in 6C1 ways
⇒ No. of groups = 1 × 6C1 = 6

⇒ No. of words = 6 × 
!1!3

!4
×

 = 24

(2) 2 alike 2alike
Two sets of 2 alike can be selected from 3 sets (EE, II, FF) in 3C2 ways

⇒ No. of words = 3C2 × !2!2
!4
×  = 18

(3) 2 alike 2 different
⇒ No. of groups = (3C1) × (6C2) = 45

⇒ No, of words = 45 = 
!2
!4
 = 540

(4) All different
⇒ No. of groups = 7C4 (out of E, F, I, T, N, V, C)

Hence total four-letter words = 24 + 18 + 540 + 840 = 1422
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Example : 14
A man has 5 friends. In how many ways can he invite one or more of them to a party?

Solution
If he invites one person to the party No. of ways = 5C1

If he invites two persons to the party No. of ways = 5C2

Proceeding on the similar pattern,
Total number of ways to invite = 5C1 + 5C2 + 5C3 + 5C4 + 5C5 = 5 + 10 + 10 + 5 + 1 = 31
Alternate method :
To invite one or more friends to the party, he has to take 5 decisions - one for every friend.
Each decision can be taken in two ways - invited or not invited
Hence (the number of ways to invite one or more)
= (number of ways to make 5 decisions – 1)
= 2 × 2 × 2 × 2 – 1 = 25 – 1 = 5!
Note that we have subtract 1 to exclude the case when all are not invited.

Example : 15
Find the number of ways in which one or more letters can be selected from the letters :
A A A A B B B C D E

Solution
The given letters can be divided into five following categories : (AAAA), (BBB), C, D, E
To select at least one letter, we have to take five decisions-one for every category
Selections from (AAAA) can be made in 5 ways : include no A, include one A, include AA, include AAA,
include AAAA
Similarly, selections from (BBB) can be made in 4 ways, and selections from C, D, E can be made in
2 × 2 × 2 ways.
⇒ total number of selections = 5 × 4 × (2 × 2× 2) – 1 – 159
(excluding the case when no letter is selected)

Example : 16
The question paper is an examination contains three sections - A, B, C. There are 6, 4, 3 questions in
sections A, V, C respectively. A student has the freedom to answer any number of questions attempting at
least one from each section. In how many ways can the paper be attempted by a student?

Solution
There are three possible cases :
(i) Section A contains 6 questions. The student can select at least one from these in 26 – 1 ways.
(ii) Section B contains 4 questions. The student can select at least one from these in 24 – 1 ways.
(iii) Section C can similarly be attempted in 23 – 1 ways
⇒ Hence total number of ways to attempt the paper = (26 – 1) (24 – 1) (23 – 1) = 63 × 15 × 7 = 6615

Example : 17
Find all number of factors (excluding 1 and the expression itself) of the product of a7 b4 c3  d e f where a,
b, c, d, e, f are all prime numbers.

Solution
A factor of expression a7  b4  c3  d  e  f is simply the result of selecting one or more letters from 7 a’s, 4 b’s,
3a’s, d, e, f. The collection of letters can be observed as a collection of 17 objects out of which 7 are alike
of one kind (a’s), 4 are of second kind (b’s), 3 are of third kind (c, s) and 3 are different (d, e, f)
The number of selections = (1 + 7) (1 + 4) (1 + 3) 23 = 8 × 5 × 4 × 8 = 1280.
But we have to exclude two cases :
(i) When no letter is selected
(ii) When all are selected
Hence the number of factors = 1280 – 2 = 1278

Example : 18
In how many ways can 12 books be equally distributed among 3 students ?

Solution
Each student will get 4 books
1. First student can be given 4 books from 12 in 12C4 ways



Page # 6.

2. Second student can be given 4 books from remaining 8 books in 8C4 ways
3. Third student can be given 4 books from remaining 4 in 4C4 ways
⇒ the total number of ways to distribute the books = 12C4 × 8C4 × 4C4

Example : 19
How many four-letter words can be made using the letters of the word FAILURE, so that
(a) F is included in each word?
(b) F is not included in any word?

Solution
(a) To include F in every word, we will do two operators.
I. Select the remaining three letters from remaining 6 letters i.e. A, I, L, U, R, E in 7–1C4–1 = 6C3 ways
II. Include F in each group and then arrange each group of four letters in 4! ways
No. of words = 6C3 4! = 480
(b) If F not to be included, then we have to select all the four letters from the remaining 6.
No. of words = 7–1C4 4! = 6C4 4! = 360

Example : 20
(a) In how many ways can 5 persons be arranged around a circular table ?
(b) In how many of these arrangements will two particular persons be next to each other?

Solution
(a) Let the five persons be A1, A2, A3, A4 , A5 .
Let us imagine A1 as fixed in its position. The remaining 4 persons can be arranged among themselves in
4! ways.
Hence the number of different arrangements = (5 – 1)! = 4! = 24
(b) Let us assume that A1 and A2 are the two particular persons next to each other.
Treating (A1 A2) as one person, we have 4 persons in all to arrange in a circle : (A1 A2) A3 A4 A5 . These can
be arranged in a circle in (4 – 1)! = 3!  = 6 ways.
Now A1 and A2 can be arranged among themselves in 2! ways.
Hence total number of arrangement =  6 × 2! = 12

Example : 21
There are 20 persons among whom are two brothers. Find the number of ways in which we can arrange
them around a circle so that there is exactly one person between the two brothers.

Solution
Let B1 and B2 are the two brother and M be a person sitting between B1 and B2 .
Divide this problem into three operations.
I. Select M from 18 persons (excluding B1 and B2). This can be done in 18C1 ways
II. Treat (B1, M, B2) as one person. Arrange (B1, M, B2) and other 17 persons around a circle.

This can be done in (18 – 1) ! = 17 ! ways
III. B1 and B2 can be arranged among themselves in 2! ways.
So total number of ways = 18C1 × 17! × 2 = 2 (18!)

Example : 22
Three tourist want to stay in five different hotels. In how many ways can they do so if :
(a) each hotel cannot accommodate more than one tourist?
(b) each hotel can accommodate any number of tourists?

Solution
(a) There tourists are to be placed in 3 different hotels out of 5. This can be done in two steps :

I. Select three hotels from five in 5C3 ways.
II. Place the three tourists in 3 selected hotels in 3! ways
⇒ the required number of ways = 5C3 3! = 5 × 4 × 3 = 60

(b) To place the tourists we have to do following three operations
I. Place first tourist in any of the hotels in 5 ways ways
II. Place second tourist in any of the hotels in 5 ways
III. Place third tourist in any of the hotels in 5 ways
⇒ the required number of placements = 5 × 5 × 5 = 125
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Example : 23
How many seven-letter words can be formed by using the letters of the word S U C C E S S so that :
(a) the two C are together but not two S are together?
(b) no two C and no two S are together

Solution
(a) Considering CC as single object U, CC, E can be arranged in 3! ways.

X U X C C X E X
Now the three S are to be placed in the 4 available places (X) so that CC are not separated but S
are separated.
No. of ways to place SSS = (No. of ways to select 3 places) x 1 = 4C3 x 1 = 4
⇒ No. of words = 3! x 4 = 24

(b) Let us first find the words in which no two S are together. To achieve this, we have to do following
operations.

(i) Arrange the remaining letters UCCE in 
!2
!4
 ways

(ii) Place the three SSS in any arrangement from (i)
X U X C X C X E X

There are five available places for three SSS.
No. of placements = 5C3

Hence total number of words with no two S together = 
!2
!4
 5C3 = 120

No. of words having CC separated and SSS separated = (No. of words having SSS separated) -
(No. of words having SSS separated but CC together = 120 – 24 = 96 [using result of part (a)]

Example : 24
A ten party is arranged for 16 people along two sides of a long table with 8 chairs on each side. Four men
wish to sit on one particular side and two on the other side. In how many ways can they be seated?

Solution
Let A1, A2, A3, ............. , A16 be the sixteen persons. Assume that A1, A2, A3, A4 want to sit on side 1 and A5,
A6  wan to sit on side 2.
The persons can be made to sit if we complete the following operations.
(i) Select 4 chairs from the side 1 in 8C4 ways and allot these chairs to A1, A2, A3, A4 in 4! ways
(ii) Select two chairs from side 2 in 8C2 ways and allot these two chairs to A5 , A6 in 2! ways
(iii) Arrange the remaining 10 persons in remaining 10 chairs in 10 ! ways
⇒ Hence the total number of ways in which the persons can be arranged

= (8C4 4!) (8C2 2!) (10!) = !4!4
!8

 4! × !6!2
!2!8

 10! = !6!4
!10!8!8

Example : 25
A mixed doubles tennis game is to be arranged from 5 married couples. In how many ways the game be
arranged if no husband and wife pair is included in the same game?

Solution
To arrange the game we have to do the following operating
(i) Select two men from from 5 men in 5C2 ways.
(ii) Select two women from 5 women excluding the wives of the men already selected. This can be
done in 3C2 ways.
(iii) Arrange the 4 selected persons in two teams. If the selected men are M1 and M2 and the selected
women are W1 and W2 , this can be done in 2 ways :
M1 W1 play against M2 W2
M2 W1 play against M1 W2

Hence the number of ways to arrange the game = 5C2 
3C2 (2) = 10 × 3 × 2 = 60



Page # 8.

Example : 26
A man has 7 relatives, 4 of them ladies and 3 gentlemen; his wife has 7 relatives, 3 of them are ladies and
4 gentlemen. In how many ways can they invite a dinner party of 3 ladies and 3 gentlemen so that there
are 3 of man’s relatives and 3 of wife’s relatives?

Solution
The possible ways of selecting 3 ladies and 3 gentleman for the party can be analysed with the help of the
following table.

Number of ways

Ladies (4) Gentlemen (3) Ladies (3) Gentlemen (4)

3 0 0 3 4C3 
3C0 

3C0 
4C3 = 16

2 1 1 2 4C2 
3C1 

3C1 
4C2 = 324

1 2 2 1 4C1 
3C2 

3C2 
4C1 = 144

0 3 3 0 4C0 
3C3 

3C3 
4C0 = 1

Man's relative Wife's relative

Total number of ways in invite = 16 + 324 + 144 + 1 = 485

Example : 27
In how many ways can 7 plus (+) signs and 5 minus (–) signs be arranged in a row so that no two minus
(–) signs are together?

Solution
(i) The plus signs can be arranged in one way (because all are identical)

+ + + + + + +

A blank box shows available spaces for the minus signs.
(ii) The 5 minus (–1) signs are now to be placed in the 8 available spaces so that no two of them are

together
(i) Select 5 places for minus signs in 8C5 ways.
(ii) Arrange the minus signs in the selected places in 1 way (all signs being identical).
Hence number of possible arrangements = 1 × 8C5 × 1 = 56

Example : 28
There are p points in a plane, no three of which are in the same straight line with the exception of q, which
are all in the same straight line. Find the number of
(a) straight lines,
(b) triangles
which can be formed by joining them.

Solution
(a) If no three of the p points were collinear, the number of straight lines = number of groups of two

that can be formed from p points = pC2 .
Due to the q points being collinear, there is a loss of qC2 lines that could be formed from these
points.
But these points are giving exactly one straight line passing through all of them.
Hence the number of straight line = pC2 – qC2 + 1

(b) If no three points were collinear, the number of triangles = pC3
But there is a loss of qC2 triangles that could be formed from the group of q collinear points.
Hence the number of triangles formed = pC3 – qC3
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Example : 29
(a) How many six-digit numbers can be formed using the digits 0, 1, 2, 3, 4, 5?
(b) How many of these are even?
(c) How many of these are divisible by 4?
(d) How many of these are divisible by 25?

Solution
(a) To make six digit number we have to fill six places. The corresponding choices are as follows:

Places

No. of choices 5 5 4 3 2 1

⇒ 5 × 5! = 600 numbers.
(b) To calculate even numbers, we have to count in two parts :

(i) even number ending in 0

Places 0

No. of choices 5 4 3 2 1 1

⇒ 5! = 120 numbers can be formed
(ii) even numbers ending in 2, 4

Places  2, 4

No. of choices 4 4 3 2 1 2

There are two choices (2, 4) for the last place and four choices (non-zero digit from remaining) for
the first places.
⇒ 4 × 4! × 2 = 192 numbers can be formed. Hence total even numbers that can be formed

= 120 + 192 = 312
(c) The multiples of 4 can be divided into following groups

(i) ending with (04)

Places 0 4

No. of choices 4 3 2 1 1 1

⇒ 4! = 24 multiples of 4 ending in (04) are possible
(ii) ending with (24)

Places 2 4

No. of choices 3 3 2 1 1 1

There are 3 choices (1, 3, 5) for the first place. Remaining three places can be filled in 3! ways
using any of the remaining three digits
⇒ 3 × 3! = 18 numbers are possible
(iii) ending with 0

Places 2, 4 0

No. of choices 4 3 2 1 2 1

Note that there are two choices (2, 4) for the ten’s place.
⇒ 4! × 2 = 48 numbers are possible
(iv) ending with 2

Places 1, 3, 5 2

No. of choices 3 3 2 1 3 1

Note that there are three choices (1, 3, 5) for the ten’s place
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⇒ 3 × 3! × 3 × 1 = 54 numbers are possible
Hence the total number of multiples of 4 = 24 + 48 + 72 = 144

(d) numbers divisible by 25 must end with 25 or 50
(i) ending with 2,5

Places 2 5

No. of choices 3 3 2 1 1 1

⇒ 3 × 3! = 18 numbers are possible
(ii) ending with 5, 0

Places 5 0

No. of choices 4 3 2 1 1 1

⇒ 4! = 24 numbers are possible
Hence total numbers of multiples of 25 = 18 + 24 = 42

Example : 30
Find the sum of all five-digit numbers that can be formed using digits 1, 2, 3, 4, 5 if repetition is not
allowed?

Solution
There are 5! = 120 five digit numbers and there are 5 digits. Hence by symmetry or otherwise we can see

that each digit will appear in any place (unit’s or ten’s or ...........) 5
!5
 times

⇒ X = sum of digits in any place

X = 5
!5
 × 5 + 5

!5
 × 4 + 5

!5
 × 3 + 5

!5
 × 2 + 5

!5
 × 1

X = 5
!5
 × (5 + 4 + 3 + 2 + 1) = 5

!5
 (15)

⇒ the sum of all numbers = X + 10 X + 100X + 1000X + 10000X
= X(1 + 10 + 100 + 1000 + 10000)

= 5
!5
 (15) (1 + 10 + 100 + 1000 + 10000)

= 24 (15) (11111) = 3999960

Example : 31
Find the number of ways of distributing 5 identical balls three boxes so that no box is empty and each box
being large enough to accommodate all the balls.

Solution
Let x1, x2 and x3 be the number of balls places in Box – 1, Box - 2 and Box - 3 respectively.
The number of ways of distributing 5 balls into Boxes 1, 2 and 3 is the number of integral solutions of the
equation x1 + x2 + x3 = 5 subjected to the following conditions on x1, x2, x3 ...........(i)
Conditions on x1, x2 and x3
According to the condition that the boxes should contain atleast one ball, we can find the range of x1, x2

and x3 i.e.
Min. (xi) = 1 and Max (xi) = 3 for i = 1, 2, 3

[using : Max (xi) = 5 – Min (x2) – Min (x3)]
or 1 ≤ xi ≤ 3 for i = 1, 2, 3
So, number of ways of distributing balls
= number of integral solutions of (i)
= coeff. of x5 in the expansion of (x + x2 + x3)3

= coeff. of x2 in (1 – x3) (1 – x)–3

= coeff. of x2 in (1 – x)–3

= 3+2–1C2 = 6
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Alternate solution
The number of ways of dividing n identical objected into r groups so that no group remains empty
= n–1Cr–1 [using result 6.3(a)]
= 5+1C3–1 = 4C2 = 6

Example : 32
Find the number of ways of distributing 10 identical balls in 3 boxes so that no box contains more than four
balls and less than 2 balls

Solution
Let x1, x2 and x3 be the number of balls placed in Boxes 1, 2 and 3 respectively
Number of ways of distributing 10 balls in 3 boxes = Number of integral solutions of the equation
x1 + x2 + x3 = 10 ...........(i)
Conditions on x1, x2 and x3

As the boxes should contain atmost 4 ball, we can make Max(xi) = 4 and Min (xi) = 2 for i = 1, 2, 3
[using : Min (x1) = 10 – Max (x2) – Max (x3)]

or 2 ≤ xi ≤ 4 for i = 1,2 , 3
So the number of ways of distributing balls in boxes = number of integral solutions of equation (i)
= coeff. of x10 in the expansion of (x2 + x3 + x4)3

= coeff. of x10 in x6 (1 – x3)3 (1 – x)–3

= coeff. of x4 in (1 – x3)3 (1 – x)–3

= coeff. of x4 in (1 – 3C1 x
3 + 3C2 x

6 + ........) (1 – x)–3

= coeff. of x4 in (1 – x)–3 – coeff. of x in 3C1 (1 – x)–3

= 4+3–1C4 – 3 × 3+1–1C1 = 6C4 – 3 × 3C1 = 15 – 9 = 6
Note : Instead of taking minimum value xi = 2
(for i = 1, 2, 3), we can also consider it 0 i.e. we can take 0 ≤ xi ≤ 4

Example : 33
In a box there are 10 balls, 4 are red, 3 black, 2 white and 1 yellow. In how many ways can a child select
4 balls out of these 10 balls? (Assume that the balls of the same colour are identical)

Solution
Let x1, x2 x3 and x4 be the number of red, black, white, yellow balls selected respectively
Number of ways to select 4 balls = Number of integral solution of the equation x1 + x2 + x3 + x4 = 4
Conditions on x1, x2, x3 and x4
The total number of red, black, white and yellows balls in the box are 4, 3, 2 and 1 respectively.
So we can take :
Max (x1) = 4, Max (x2) = 3, Max (x3) = 2, Max (x1) = 1
There is no condition on minimum number of red, black, white and yellow balls selected, so take :
Min (xi) = 0 for 1 = 1, 2, 3, 4
Number of ways to select 4 balls = coeff. of x4 in
(1 + x + x2 + x3 + x4) × (1 + x + x2 + x3) × (1 + x + x2) × (1 + x)
= coeff. of x4 in (1 – x5) (1 – x4) (1 – x3) (1 – x2) (1 – x)–4

= coeff. of x4 in (1 – x)–4 – coeff. of x2 in (1 – x)–4 – coeff. of x1 in (1 – x)–4 – coeff. off x0 in (1 – x)–4

= 7C4 – 5C2 – 4C1 – 3C0 = !3
567 ××

 – 10 – 4 – 1 = 35 – 15 = 20

Thus, number of ways of selecting 4 balls from the box subjected to the given conditions is 20.
Alternate Solutions :
The 10 balls are RRRR BBB WW Y (where R, B, W, Y represent red, black, white and yellow balls
respectively).
The work of selection of the balls from the box can be divided into following categories

Case – 1 All alike
Number of ways of selecting all alike balls = 1C1 = 1
Case – 2 3 alike and 1 different
Number of ways of selecting 3 alike and 1 different balls = 2C1 × 3C1 = 6
Case – 3 2 alike and 2 alike
Number fo ways of selecting 2 alike and 2 alike balls = 3C2 = 3
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Case – 4 2 alike and 2 different
Number of ways of selecting 2 alike and 2 different balls = 3C1 × 3C1 = 9
Case – 5 All different
Number of ways of selecting all different balls = 4C4 = 1
Total number of ways to select 4 balls = 1 + 6 + 3 + 9 + 1 = 20

Example : 34
A person writes letters to 4 friends and addresses the corresponding envelopes. In how many ways can
the letters be placed in the envelopes so that :
(i) atleast two of them are in the wrong envelopes
(ii) all the letters are in the wrong envelopes

Solution
(i) Number of ways to place 4 letters in 4 envelopes without any condition = 4!

Number of ways to place all letters correctly into the corresponding envelopes = 1
Number of ways to place one letter is the wrong envelop and other 3 letters in the
write envelope = 0
(Because it is not possible that only one letter goes in the wrong envelop)
Number of ways to place atleast two letters in the wrong envelopes
= Total number of way to place letters
– Number of ways to place all letters correctly
– Number of ways to place on letter correctly = 4! – 1 – 0 = 23

(ii) Number of ways to put 2 letters in 2 addressed envelopes so that all are in the
wrong envelopes = 1.
Number fo ways to put 3 letters in 3 addressed envelopes so that all are in the
wrong envelopes = Number of ways without restriction – Number of ways in which
all letters are in the correct envelopes – Number of ways in which 1 letter is in the
correct envelope = 3! – 1 – 1 × 3C1 = 2.
(3C1 means that select one envelop to put the letter correctly)
Number of ways to put 4 letters in 4 addressed envelopes so that all are in the wrong envelopes
= Number of ways without restriction

– Number of ways in which all letters are in the correct envelopes
– Number of ways in which 1 letter is in the correct envelopes

(i.e. 3 are in the wrong envelopes)
– Number of ways in which 2 letters are in the correct envelopes

(i.e. 2 are in the wrong envelopes)
= 4! – 1 – 4C1 × 2 – 4C2 × 1 = 24 – 1 – 8 – 6 = 9

Alternate Solution :
Use result 6.4 (e)

The required number of ways to place all 4 letters in the wrong envelopes

= 4! ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−+−

!4
1

!3
1

!2
1

!1
11  = 24 ⎟

⎠

⎞
⎜
⎝

⎛ +−+−
24
1

6
1

2
111  = 9

Example : 35
Find the number of ways of distributing 5 different balls in there boxes of different sizes so that no box is
empty and each box being large enough to accommodate all the five balls.

Solution
Method – 1
The five balls can be distributed in 3 non-identical boxes in the following 2 ways :

Boxes Box 1 Box 2 Box 3

Number of balls 3 2 1

No. of choices 2 2 1

Case – 1 : 3 in one Box, 1 in another and 1 in third Box (3, 1, 1) ..........(i)
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Number of ways to divide balls corresponding to (1) = !1!1!3
!5

 !2
1

 = 10

But corresponding to each division there are 3! ways of distributing the balls into 3 boxes.
So number of ways of distributing balls corresponding to

(i) = (No. of ways to divide balls) × 3! = 10 × 3! = 60
Case – 2 : 2 in one Box, 2 in another and 1 in third Box (2, 2, 1)

Number of ways to divide balls corresponding to (2) = !1!2!2
!5

 
!2

1
 = 15

But corresponding to each division there are 3! ways of distributing of balls into 3 boxes.
So number of ways of distributing balls corresponding to

(2) = (No. of ways to divide balls) × 3! = 15 × 3! = 90
Hence required number of ways = 60 + 90 = 150
Method – 2
Let us name to Boxes as A, b and C. Then there are following possibilities of placing the balls :

Box A Box B Box C Number of ways

1 2 2 5C1 × 4C2 × 2C2 = 30

1 1 3 5C1 × 4C1 × 3C3 = 20

1 3 1 5C1 × 4C3 × 1C1 = 20

2 1 2 5C2 × 3C1 × 2C2 = 30

2 2 1 5C2 × 3C2 × 1C1 = 30

2 1 1 5C3 × 2C1 × 1C1 = 20

Therefore required number of ways of placing the balls = 30 + 20 + 20 + 30 + 30 + 20 = 150
Method – 3
Using Result 6.2 (a)
Number of ways of distributing 5 balls in 3 Boxes so that no Box is empty = 35 – 3 × 25 + 3 × 15 = 150.

Example : 36
If n distinct objects are arranged in a circle, show that the number of ways of selecting three of these

things o that no two of them are next to each other is 6
n

 (n – 4) (n – 5).

Solution
Let a1, a2, a3 ..........., be the n distinct objects
Number of ways to select three objects so that no two of them are consecutive = Total number of ways to
select three objects – Number of ways to select three consecutive objects – Number of ways to select
three objects in which two are consecutive and one is separated ...........(i)
Total number of ways to select 3 objects from n distinct objects = nC3 ...........(ii)
Select three consecutive objects
The three consecutive objects can be selected in the following manner
Select from :
a1 a2 a3, a2 a3 a4 , a3 a4 a5, ........, an–1 an a1 , an a1 a2
So number of ways in which 3 consecutive objects can be selected from n objects arranged in a circle in
n. ...........(ii)
Select two consecutive (together) and 1 separated
The three objects so that 2 are consecutive and 1 is separated can be selected in the following manner :
Take a1 a2 ad select third object from a4, a5 , ........, an–1
i.e. take a1 a2 and select third object in (n – 4) ways or in general we can say that select one pair from
n available pairs i.e. a1, a2, a2, a3 , ..........., an a1 and third object in (n – 4) ways
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So number of ways to select 3 objects so that 2 are consecutive and 1 is separated = n (n – 4)
.......(iv)

Using (i), (ii), (iii) and (iv), we get
Number of ways to select 3 objects so that all are separated

= nC3 – n – n (n – 4) = 6
)2n)(1n(n −−

 – n – n (n – 4) = n 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −−+−
6

)3n(62n3n2

= 6
n

 (n2 – 9n + 20) = 6
n

 (n – 4) (n – 5)

Example : 37
Find the number of integral solutions of the equation 2x + y + z = 20 where x, y, z ≥ 0

Solution
2x = y + z = 20 ............(i)
Condition on x
x is maximum when y and z are minimum
⇒ 2 Max (x) = 20 – Min (y) – Min (x)

⇒ Max (x) = 
2

0020 −−
 = 10

Let x = k where 0 ≤ k ≤ 10
Put x = k in (i) to get, y + z = 20 – 2k ...........(ii)
Number of non-negative integral solutions of (ii) = 20 – 2k + 1 = 2k – 2k
As k is varies from 0 to 10, the total number of non-negative integral solutions of (1)

= ∑
=

−
10

0k

)k221(  = ∑
=

10

0k

21 = 2 ∑
=

10

0k

k  = 231 – 110 = 121

⎟
⎠

⎞
⎜
⎝

⎛ +
=∑ 2

)1n(nngsinu

Hence, total number of non-negative integral solutions of (i) is 121

Example : 38
These are 12 seats in the first row of a theater of which 4 are to be occupied. Find the number of ways of
arranging 4 persons so that :
(i) no two persons sit side by side
(ii) there should be atleast 2 empty seats between any two persons
(iii) each person has exactly one neighbour

Solution
(i) We have to select 4 sets for 4 persons so that no two persons are together. It means that there

should be atleast one empty seat vacent between any two persons.
To place 4 persons we have to select 4 seats between the remaining 8 empty seats so tat all
persons should be separated.
Between 8 empty seats 9 seats are available for 4 person to sit.
Select 4 seats in 9C4 ways
But we can arrange 4 persons on these 4 seats in 4! ways. So total number of ways to give seats
to 4 persons so that no two of them are together = 9C4 = 4! = 9P4
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(ii) Let x0 denotes the empty seats to the left of the first person, xi (i = 1, 2, 3) be the number of empty
seats between i th and (i + 1) st person and x4 be the number of empty seats to the right of 4th
person.
Total number of seats are 12. So we can make this equation : x0 + x1 + x2 + x3 + x4 = 8 ......(i)
Number of ways to give seats to 4 persons so that there should be two empty seats between any
two persons is same as the number of integral solutions of the equation (i) subjected to the
following conditions.
Conditions on x1, x2, x3, x4

According to the given condition, these should be two empty seats between any two persons i.e.
Min (xi) = 2 for i = 1, 2, 3
Min (x0) = 0 and Min (x0) = 0
Max (x0) = 8 – Min (x1 + x2 + x3 + x4) = 8 – (2 + 2 + 2 – 0) = 2
Max (x4) = 8 – Min (x0 + x1 + x2 + x3) = 8 – (2 + 2 + 2 – 0) = 2
Similarly,
Max (xi) = 4 for i = 1, 2, 3
No. of integral solutions of the equation (i) subjected to the above conditions = coeff. of x8 in the
expansion of (1 + x + x2)2 (x2 + x3 + x4)3 = coeff. of x8 in x6 (1 + x + x2)5 = coeff of x2 in
(1 – x3)5 (1 – x)–5 = coeff of x2 in (1 – x)–5 = 5+2–1C2 = 6C2 = 15
Number of ways to select 4 seats so that there should be atleast two empty seats between any
two persons = 15.
But 4 persons can be arranged in 4 seats in 4! ways.
So total number of ways to arrange 4 persons in 12 seats according to the given condition
= 15 × 4! = 360

(iii) As every person should have exactly one neighbour, divide 4 persons into groups consisting two
persons in each group.
Let G1 and G2 be the two groups in which 4 persons are divided.
According to the given condition G1 and G2 should be separated from each other.
Number of ways to select seats so that G1 and G2 are separated  8+1C2 = 9C2

But 4 persons can be arranged in 4 seats in 4! ways. So total number of ways to arrange
4 persons so that every person has exactly one neighbout = 9C2 × 4! = 864

Example : 39
The number of non-negative integral solutions of x1 + x2 + x3 + x4 ≤ n where n is a positive integer

Solution
It is given that : x1 + x2 + x3 + x4 ≤ 4 ..........(i)
Let x5 ≥ 0
Add x5 on LHS of (i) to get x1 + x2 + x3 + x4 + x5 ..........(ii)
Number of non-negative integral solutions of the inequation (i) = Number of non-negative integral solu-
tions of the equation (ii)
= coeff. of xn in (1 + x + x2 + x3 + x4 + .......... + xn)5

= coeff. of xn in (1 – xn+1)5 (1 – x)–5

= coeff. of xn in (1 – x)–5  = n+5+1Cn = n+4Cn = n+4Cn.

Example : 40
If all the letters of the word RANDOM are written in all possible orders and these words are written out as
in a dictionary, then find the rank of the word RANDOM in the dictionary.

Solution
In a dictionary the words at each stage are arranged in alphabetical order. In the given problem we must
therefore consider the words beginning with A, D, M, N, O, R in order. A will occur in the first place as often
as there are ways of arranging the remaining 5 letters all at a line i.e. A will occur 5! times. D, M, N, O will
occur in the first place the same number of times.
Number of words starting with A = 5! = 120
Number of words starting with D = 5! = 120
Number of words starting with M = 5! = 120
Number of words starting with N = 5! = 120
Number of words starting with O = 5! = 120
After this words beginning with RA must follow
Number of words beginning with RAD or RAM = 3!
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Now the words beginning with RAN must follow
First one is RANDMO and the next one is RANDOM.
∴ Rank of RANDOM = 5(5!) + 2 (3!) + 2 = 614

Example : 41
What is the largest integer n such that 33! divisible by 2n?

Solution
We know that : 33! = 1 × 2 × 3 × 4 ............. × 32 × 33
⇒ 33! = (2 × 4 × 6 ........ × 32) (1 ×  3 × 5........ × 33)
⇒ 33! = 216 (1 × 2 × 3 × 4 ...... × 15 × 16) (1 × 3 × 5 ...... × 33)
⇒ 33! = 216 (2 × 4 ........ × 16) (1 × 3 ..... × 15) (1 × 3 ........×33)
⇒ 33! = 216 (1 × 2 × ........ × 8) (1 × 3 × ....... × 15) (1 × 3 ...... × 33)
⇒ 33! = 224 (2 × 4 × 6 × 8) (1 × 3 × 5 × 7) (1 × 3 × ..... × 15) *1 × 3 × .......× 33)
⇒ 33! = 224 . 24 (1 × 2 × 3 × 4) (1 × 3 × 5 × 7) (1 × 3 .......... × 15) (1 × 3 ........ × 33)
⇒ 33! = 228 (2 × 4) (1 × 3) (1 × 3 × 5 × 7) (1 × 3 × ........ × 15) (1 × 3 × ...... × 33)
⇒ 33! = 231 (1 × 3) (1 × 3 × 5 × 7) (1 × 3 × ....... × 15) (1 × 3 × ....... × 33)
Thus the maximum value of n for which 33! is divisible by 2n is 31

Example : 42
Find the sum of all four digit numbers formed by using the digits 0, 1, 2, 3, 4, no digits being repeated in
any number.

Solution
Required sum of number = (sum of four digit number using 0, 1, 2, 3, 4, allowing 0 in first place) – (Sum of
three digit numbers using 1, 2, 3, 4)

= 5
!5
 (0 + 1 + 2 + 3 + 4) (1 + 10 + 102 + 103) – 

4
!4

(i.e. 3 are in the wrong envelopes) (1 + 2 + 3 + 4) (1 + 10 + 102)
= 24 × 10 × 1111 – 6 × 10 × 111 = 259980

Example : 43
In how many ways three girls and nine boys can be seated in two vans, each having numbered seats, 3
in the front and 4 at the back? How many seating arrangements are possible if 3 girls should sit together
in a back row on adjacent seats?

Solution
(i) Out of 14 seats (7 in each Van), we have to select 12 seats for 3 girls and 8 boys

12 seats from 14 available seats can be selected in 14C12  ways
Now on these 12 seats we can arrange 3 girls and 9 boys in 12! ways
So total number fo ways = 14C12 × 12! = 91

(ii) One Van out of two available can be selected in 2C1ways
Out of two possible arrangements (see figure) of adjacent seats, select one in 2C1 ways
Out of remaining 11 seats, select 9 for 9 boys in 11C9 ways
Arrange 3 girls on 3 seats in 3! ways and 9 boys on 9 seats in 9! ways
So possible arrangement of sitting (for 3 girls and 9 boys in 2 Vans)
= 2C1 × 2C1 × 11C9 × 3! × 9! = 12! ways

Example : 44
Show that the number of ways of selecting n things out of 2n things of which na re of one kind and alike
and n are of a second kind and alike and the rest are unlike is (n + 2) 2n–1 .

Solution
Let group G1 contains first n similar things, group G2 contains next n similar things let D1, D2, D3, ......, Dn be
the n unlike things.
Let x1 be the number of things selected from group G1, x2 be the number of things selected fro group G2

and p1, p2, p3 ,........., pn be the number of things selected from D1, D2, D3 , ........, Dn respectively.
As we have to select n things in all, we can make x1 + x2 + p1 + p2 + ......... + pn = n ........(i)
Number of ways to select n things = Number of integral solutions of the equation (i) subjected to following
conditions
Conditions on the variables
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There is no condition on the number of items selected from group G1 and G2 . So we can take :
Min (x1) = Min (x2) = 0 and Max (x1) = Max (x2) = n
For items D1 to Dn , we can make selection in two ways. That is either we take the item or we reject the
item. So we can make :
Min (Pi) = 0 for i = 1, 2, 3 ....., n and
Max (pi) = 1 for i = 1, 2, 3 ......., n
Find solutions

Number of integral solutions of (1)
= coeff. of xn in (x0 + x1 + ......... + xn)2 (1 + x) (1 + x) ....... n times
= coeff. of xn in (1 – xn+1)2 (1 – x)–2 (1 + x)n

= coeff. of xn in (1 – x)–2 [2 – (1 – x)]n

= coeff. of xn in (1 – x)2 + ......... + nCn 2
0 (1 – x)n = coeff. of xn in [nC0 2

n (1 – x)–2 – nC1 2
n–1 (1 – x)–1]

(because other terms can not product xn)
= 2n × n+2–1Cn – n 2n–1 × 2+1–1Cn = (n + 1) 2n – n 2n–1 = (n + 2) 2n–1
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Example : 1
Two candidates A and B appear for an interview. Their chances of getting selected are 1/3 and 1/5
respectively. Assuming that their selections are independent of each other, find :
(a) the probability that both are selected
(b) the probability that exactly one of them is selected
(c) at least one of them is selected.

Solution
Let us denote the following events

A : A is selected
B : B is selected

⇒ P(A) = 1/3 and P(B) = 1/5
(a) P(both selected) = P(A ∩ B) = P(A) P(B) (As A and B are independent)

= (1/3) (1/5) = 1/15
(b) P (exactly one is selected = P(only A is selected or only B is selected)

Now BA ∩  represents the event that only A is selected. 

BA ∩

 is the event that only B is selected

⇒ P(exactly one is selected) = P(A ∩ 

B

 ∪ 

A

 ∩ B)

= P(A ∩ 

B

)  + P (

A

 ∩ B)

= P(A) P(

B

) + P(

A

) P(B)

= 

3
1

 ⎟
⎠

⎞
⎜
⎝

⎛ −
5
11  + ⎟

⎠

⎞
⎜
⎝

⎛ −
3
11  5

1
 = 15

6
 = 5

2

(c) P (at least one is selected) = P(A ∪ B) = P(A) + P(B) – P(A ∩ B) = 1/3 + 1/5 – 1/3 . 1/5 = 7/15
alternatively, we can say that
P(at least one is selected)   = 1 – P (none is selected)

      = 1 – P ( A  ∩ 

B

) = 1 – P (

A

) P (

B

) = 1 – (1 – 1/3) (1 – 1/5) = 7/15

Example : 2
Five cards are drawn from a pack of well-shuffled pack of 52 cards. The cards are drawn one by one
without replacement.
(a) What is the probability of getting 3 aces?
(b) What is the probability of obtaining aces on the first three cards only?
(c) What is the probability of getting exactly three consecutive aces?

Solution
(a) total number of ways to select 5 cards = 52C5

number of ways to select three aces and two non-aces = 4C3 
48C2

P(3 aces out of 5 cards) = 

5
53

2
48

3
4

C
CC ×

= 48495051522
!547484
×××××

×××
 = 4951713

94
×××

 = 54145
94

(b) Let Ai represent the vent that ace is drawn on ith card and Ni be the event that non-zero is
drawn on ith card.
P (first three aces) = P(A1 ∩ A2 ∩ A3 ∩ N4 ∩ N5) = P(A1) P(A2/A1) P(A3/A1 ∩ A2) ........

= 52
4

 × 51
3

 × 50
2

 × 49
48

 × 48
47

 = 270725
47

(c) P(three consecutive aces) = P(forst three aces and fourth non ace) + P(first non ace, 3 aces,
last non ace) + P (first two non ace, last three aces) + P (first ace, second non ace and last
three aces)

= 52
5

 × 51
3

 × 50
2

 × 49
48

 × 48
48

+ 52
48

 × 51
4

 × 50
3

 × 49
2

 × 48
47

+ 52
48

 × 51
47

 × 50
4

 × 49
3

 × 48
2

 + 52
5

 × 51
48

 × 50
3

 × 49
2

 × 48
1

Probability
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= 270725
143

Example : 3
Three identical dice are thrown
(a) What is the probability of getting a total of 15?
(b) What is the probability that an odd number is obtained on each dice given that the sum obtained
is 15?

Solution
(a) Let A be the event that sum is 15.

The favourable outcomes are : A = {366, 456, 465, 546, 555, 564, 636, 645, 654, 663}
and n(S) = 63 = 216
⇒ P(A) = 10/216

(b) Let B be the vent that odd number appears on each die.

⇒ P(B/A) = )A(P
)AB(P ∩

⇒ We have B ∩ A = (555)

⇒ P(B/A) = 216/10
216/1

 = 10
1

Note : The number of ways to obtains a sum of 15 on three dice can also be contained by calculating the
coefficient of x15 in the expansion of (x + x2 + x3 + x4 + x5 + x6)3

Example : 4
In a game, two persons A and B each draw a card from a pack of 52 cards one by one until an ace is
obtained. The first one to drawn an ace wins the game. If A starts and the cards are replaced after each
drawing, find the probability of A winning the game.

Solution
Let A1 (or B1) denote the event that A(or B draws ace in ith attempt
P(A wins) = P(A wins in Ist attempt) + P(A wins in IInd attempt) + ..........

⇒ P(A wins) = P(A1) + P ( 1A  ∩ 1B  ∩ A2) + ........

= 52
4

 + 52
48

 × 52
48

 × 52
4

 + ..........

= 2)52/48(
52/4

−  = 22 4852
524
−

×
 = 25

13

Example : 5
Two cards are drawn one by one without replacement from a pack of 52 cards.
(a) What is the probability of getting both aces?
(b) What is the probability that second cards is an ace?

Solution
A : first is ace
B : second is ace
(a) P(both aces) = P(A ∩ B) = P(A) P(B/A) = 4/52 × 3/51 = 1/221

(b) P(second is ace) = P(B) = P(A ∩ B ∪ A  ∩ B)

= P(A) P(B/A) + P(

A

) P(B/

A

) = 4/52 × 3/51 + 48/52 × 4/51 = 1/13
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Example : 6
Cards are drawn one by one without replacement from a pack of 52 cards till all the aces are drawn out.
What is the probability that only two cards are left unturned when all aces are out?

Solution
P(two cards are left) = P(52th card drawn is last ace)
Let A : 50th cards is last ace

A1 : 3 aces are drawn in first 49 cards
A2 : 50th card is ace

⇒ A = A1 ∩ A2
⇒
⇒ P(A) = P(A1 ∩ A2) = P(A1) P(A2/A1)

⇒ P(A1) = P(3 aces and 46 non-aces in first 49 cards) = 

49
52

46
48

3
4

C
CC

⇒ P(A2/A1) = P (50th card is ace given that 3 aces and 46 non-aces have been drawn out)

= 3
1

 (i.e. 1 ace out of 3 remaining cards)

⇒ P(A) = 
49

52
46

48
3

4

C
CC

 × 3
1

 = 5525
1128

Example : 7
A candidate has to appear in an examination in three subjects : English, Mathematics and Physics. His
chances of passing in these subjects are 0.5, 0.7 and 0.9 respectively. Find the probability that :
(a) he passes in at least one of the subjects
(b) he passes exactly in two subjects.

Solution
A : he passes in english
B : he passes in Mathematics
C : he passes in Physics
(a) P (he passes in at least one subject) = P(A ∪ B ∪ C)

To calculate P(A ∪ B ∪ C), use :
P(A ∪ B ∪ C) = P(A) + P(B) + P(C) – P(A ∩ B) – P(A ∩ C) – P(C ∩ A) + P(A ∩ B ∩ C)

= 0.5 + 0.7 + 0.9 – (0.35 + 0.63 + 0.45) + 0.315 = 0.985
Alternatively,

it is easy to calculate P(A ∪ B ∪ C) by :

P(A ∪ B ∪ C) = 1 – P( A  ∩ 

B

 ∩ 

C

) = 1 – ( A ) × P(

B

) × P(

C

)
= 1 – (1 – 0.5) (1 – 0.7) (1 – 0.9) = 0.985

(b) P(He passes exactly in two subjects) = P(A ∩ B ∩ C )  + P(A ∩ B  ∩ C) + P(

A

 ∩ B ∩ C)
= 0.5 × 0.7 (1 – 0.9) + 0.5 × (1 – 0.7) × 0.9 + (1 – 0.5) × 0.7 × 0.9 = 0.485

Example : 8
A man takes a step forward with probability 0.4 and backwards with probability 0.6. Find the probability
that at the end of eleven steps he is one step away from the starting point.

Solution
(1) If the man is one step forward after eleven steps, he has six forward and five backward steps.
(2) If the man is one step backward after eleven steps, he has taken five forward and six backward
steps.

These are the only two probability
Let success : forwards step

failure : backward step
⇒ p = 0.4 and q = 0.6
P(one step away) = P(6 successes) + P(5 successes)
P(one step away) = 11C6 (0.4)6 (0.6)5 + 11C5 (0.4)5 (0.6)6  = 11C6 (0.4)5 (0.6)5
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Example : 9
(i) A coin is tossed 5 times. What is the probability of obtaining at most 3 heads?
(ii) A coin is biased in such a manner that the chances of getting head is twice the chances of getting
tail. Find the probability that heads will appear an odd number of times in n tosses of the coin.

Solution
(i) success : getting head

⇒ p = 1/2 and q = 1/2
P(at most 3 heads) = P(r ≤ 3)

= P(r = 0) + P(r = 1) + P(r = 2) + P(r = 3)
= 1 – P(r = 4) – P(r = 5)

= 1 – 5C4 p
4q – 5C3 p

5 = 1 – 

52
5

 – 52
1

 = 16
13

(ii) success : getting head
failure : getting tail
⇒ p + q = 1 and p = 2q
⇒ p = 2/3 and q = 1/3
P(odd number of heads) = nC1 p qn–1 + nC3 p

3 qn–3 + .........

= 
2

)pq()pq( nn −−+
 = 2

3
2

3
11

n

⎟
⎠
⎞

⎜
⎝
⎛ −−

 = n

nn

3.2
)1(3 −−

Example : 10
Suppose the probability for A to win a game against B is 0.4. If A an option of playing either a ‘best of 3
games’ or ‘beast of 5 games’ match against B, which option should he choose so first the probability of his
winning the match is higher? (no game ends in a draw and all the games of the match the played).

Solution
Success : A wins a game
⇒ p = 0.4 and q = 0.6
P(A wins ‘best of 3 games’ match) = P(r = 2) + P(r = 3)

= 3C2 p
2q + 3C3 p

3

= 3(0.4)2 (0.6) + (0.4)2

= 125
36

 + 125
8

 = 125
44

P(A wins ‘best of 5 games’ match) = P(r = 3) + P(r = 4) + P(r = 5)
= 5C3 p

3 q2 + 5C4 p
4q + 5C5 p

5

= 10 ⎟
⎠

⎞
⎜
⎝

⎛
3125

72
 + 5 ⎟

⎠

⎞
⎜
⎝

⎛
3125

48
 + 3125

32
 = 3125

992
 = 125

68.39

⇒ P(A wins ‘beast of 3 games’ match) > P(A wins ‘best of 5 games’ match)
⇒ A should choose a ‘best of 3 games’ match

Example : 11
Six persons try to swim across a wide river. It is known that on an average, only three persons out of ten
are successful in crossing the river. What is the probability that at most four of the six persons will cross
river safely?

Solution
Let success : crossing the river
⇒ p = 3/10 and q = 7/10
number of trials = n = 6

P(at most 4 success in 6 trials) = ∑
=

4

0r

)r(P  = 1 – ∑
=

6

5r

)r(P  = 1 – 6C5 p
5 q – 6C6 p

6

= 1 – 6 
5

10
3
⎟
⎠

⎞
⎜
⎝

⎛
 ⎟

⎠

⎞
⎜
⎝

⎛
10
7

 – 
6

10
3
⎟
⎠

⎞
⎜
⎝

⎛
 = 1 – 

6

10
3
⎟
⎠

⎞
⎜
⎝

⎛
 (13) = 0.990523
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Example : 12
An unbiased dice is thrown. If a multiple of 3 appears, two balls are drawn from box A. If a multiple of 3
does not appear, two balls are drawn from box B. The balls drawn are found to be of different colours. Box.
A contains 3 white, 2 black balls and Box B contains 4 white and 1 black balls. Find the probability that the
balls were drawn from box B if the balls are drawn with replacement.

Solution
A1 : event that balls were drawn from box A
A2 : event that balls were drawn from box B
E  : balls are of different colours

P(A1) = P(balls from A)
= P(3, 6 on dice)
= 2/6 = 1/3

P(A2) = P(balls from B)
= P(1, 2, 4, 5 on dice)
= 4/6 = 2/3

P(E/A1) = P(1 W, 1 B from box A)
= P(1 success in two trials) (taking W balls as success)
= 2C1 pq
= 2(3/5) (2/5) = 12/25

P(E/A2) = P(1 W, 1 B from box B)
= P(1 success in two trials) (taking W balls as success)
= 2C1 pq
= 2(4/5) (1/5) = 8/25

P(E) = P(A1) . P(E/A1) + P(A2) . P(E/A2)
= 1/3 (12/25) + 2/3 (8/25)
= 25/75

Required probability is

P(A2/E) = )E(P
)A/E(P)A(P 22  = 

75
28
25
8

3
2

⎟
⎠
⎞

⎜
⎝
⎛

 = 
7
4

Example : 13
Box I contain 4 red, 5 white balls and box II contains 3 red, 2 white balls. Two balls are drawn from box I
and are transferred to box II. One ball is then drawn from box II. Find the probability that :
(a) ball drawn from box Ii is white
(b) the transferred balls were both red given that the balls drawn from box II is white.

Solution
A1 : transferred balls were both red
A2 : transferred balls were both white
A3 : transferred balls were one red and one white
E : ball drawn from box II is white
(a) P(E) = P(A1) . P(E/A1) + P(A2) . P(E/A2) + P(A2) . P(E/A2)

= ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

2
9

2
4

C
C

 
7
2

 + ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

2
9

2
5

C
C

 
7
4

 + ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

2
9

1
5

1
4

C
CC

 
7
3

 = 
21
1

 + 63
10

 + 
21
5

 = 63
28

(b) P(A1/E) = )E(P
)A/E(P)A(P 11  = 

63
28
21
1

 = 28
3
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Example : 14
A person drawn two cards successively with out replacement from a pack of 52 cards. He tells that both
cards are aces. What is the probability that both are aces if there are 60% chances that he speaks truth?

Solution
A1 : both are aces
A2 : both are not aces
E  : the person tells that both are aces

P(E) = P(A1 ∩ E) + P(A2 ∩ E)
= P(A1) P(E/A1) + P(A2) P(E/A2)
= P(both aces) × P(speaking truth) + P(both not aces) P (not speaking truth)

= ⎟
⎠

⎞
⎜
⎝

⎛ ×
51
3

52
4

 ⎟
⎠

⎞
⎜
⎝

⎛
100
60

 + ⎟
⎠

⎞
⎜
⎝

⎛ ×−
51
3

52
41  ⎟

⎠

⎞
⎜
⎝

⎛
100
40

= 1105
3

 + 1105
440

 = 1105
443

Required probability is P(A1/E) = )E(P
)A/E(P)A(P 11  = 

1105
443

1105
3

 = 443
3

Example : 15
A letter is known to have come either from TATANAGAR or CALCUTTA . On the envelop just two con-
secutive letters TA are visible. What is the probability that the letter came from Tata Nagar?

Solution
Let A1 denotes the event that the letter come from TATANAGAR and A2 denote the event that the letter
come from CALCUTTA. Let E denotes the event that the two visible letters on the envelope be TA.

As Events A1 and A2 are equally likely, we can take : P(A1) = 
2
1

 and P(A2) = 
2
1

If the letter has come from TATANAGAR, then the number of ways in which two consecutive letters
choosen be TA is 2. The total number of ways to choose two consecutive letters is 8.

⇒ P (two consecutive letters are TA/letter has come from TATANAGAR) = P(E/A1) = 8
2

 = 
4
1

If the letter has come from CALCUTTA, then the number of ways in which two consecutive letters choosen
be TA is 1. The total number of ways to choose two consecutive letters is 7.

⇒ P(two consecutive letters are TA/letter has come from CALCUTTA) = P(E/A1) = 
7
1

Using the Baye’s theorem, we get

P(A1/E) = )A/E(P)A(P)A/E(P)A(P
)A/E(P)A(P

2211

11

+

⇒ P(A1/E) = )7/1)(2/1()4/1)(2/1(
)4/1)(2/1(

+  = 
11
7

Example : 16
A factory A produces 10% defective valves and another factory B produces 20% defective valves. A bag
contains 4 values of factory A and 5 valves of factory B. If two valves are drawn at random from the bag,
find the probability that atleast one valve is defective. Give your answer upto two places of decimals.

Solution

Probability of producing defective valves by factory A = 100
10

 = 10
1
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Probability of producing defective valves by factory B = 100
20

 = 5
1

Bag A contains 9 valves, 4 of factory A and 5 of factory B. Two valves are to be drawn at random.
P(at least one defective) = 1 – P(both are non defective)
P(both are non defective) = P(both valves of factory A) = P(both are non defective) + P(both valves of
factory B) × P(both are non defective) + P(one valve of factory A and other of factory B) × P (both are non

defective) = 
2

9
2

4

C
C

 
2

10
9
⎟
⎠

⎞
⎜
⎝

⎛
 + 

2
9

2
5

C
C

 
2

5
4
⎟
⎠

⎞
⎜
⎝

⎛
 + 

2
9

1
5

1
4

C
C.C

 . 10
9

 . 5
4

= 6
1

 
2

10
9
⎟
⎠

⎞
⎜
⎝

⎛
 + 36

10
 . 25

16
 + 5.10.6.3

4.9.5.4
 = 200

27
 + 45

8
 + 5

2
 = 1800

1283

∴ p(at least one defective) = 1 – 1800
1283

 = 0.2872 = 0.29 (approx.)

Example : 17
If four squares are chosen at random on a chess board, find the chance that they should be in a diagonal
line.

Solution
Three are 64 squares on the chess board.
Consider the number of ways in which the squares selected at random are in a diagonal line parallel to
AC.
Consider the triangle ACB. Number of ways in which 4 selected squares are along the lines,
A4C4, A3 C3, A2 C2 , A1C1 and AC are 4C4 , 

5C4 , 
6C4 , 

7C4 and 8C4 respectively.
Similarly in triangle ACD there are equal number of ways of selecting 4 squares in a diagonal line parallel
to AC.
∴ The total number of ways in which the 4 selected squares are in a diagonal line parallel to AC are:

= 2(4C4 + 5C4 + 6C4 + 7C4) + 8C4

Since there is an equal number of ways in which 4 selected squares are in a diagonal line parallel to BD.
∴ the required number of ways of favourable cases is given by

2[(4C4 + 5C4 + 6C4 + 7C4)]
Since 4 squares can be selected out of 64 in 64C4 ways, the required probability

= 
4

64
4

8
4

7
4

6
4

5
4

4

C
]C)CCCC(2[2 ++++

 = 61626364
234]140)351551(4[

×××
×××++++

 = 158844
91

Example : 18
Of these independent events, the chance that only the first occurs is a, the chance that only the second
occurs is b and the chance of only third is c. Show that the chances of three events are respectively
a/(a+x), b/(b+x) c/(c+x), where x is a root of the equation (a + x) (b + x) (c + x) = x2

Solution
Let A, V, C be the three independent events having probabilities p, q and r respectively.
Then according to the hypothesis, we have :
P(only that first occurs) = p (1 – q) (1 – r) = a, .............(i)
P(only the second occurs) = (p – 1) q (1 – r) = b and
P(only the third occurs) = (1 – p) (1 – q) r = c.
∴ pqr [1 – p) (1 – q) (1 – r)]2 = abc

Let pqr
abc

 = [(1 – p) (1 – q) (1 – r)]2 = x2 (say) .............(ii)

Using (i) and (ii),
x
a

 = p1
p
−

⇒ a – ap = px
⇒ p = a/(a + x)
Similarly q = b/(b + x) and r = c/(c + x)
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Replacing the values of p, q and r in (ii), we get
(a + x) (b + x) (c + x) = x2

i.e. x is a root of the equation : (a + x) (b + x) (c + x) = x2

Example : 19
A and B bet on the outcomes of the successive toss of a coin. On each toss, if the coin shows a head, A
gets one rupee from B, whereas if the coin shows a tail, A pays one rupee to B. They continue to do this
unit one of them runs out of money. If it is assumed that the successive tosses of the coin are indepen-
dent, find the probability that A ends up with all the money if A starts with five rupees and B starts with
seven rupees.

Solution
Let Pi denotes the probability that A ends with all the money when A has i rupees and B has (12 – i) rupees.
Let E denote the event that A ends up with all the money.
Consider the situation of the game when A has i rupees and B has (12 – i) rupees.
P(E) = Pi = P(coin shows bead) × Pi – 1 + P(coin shows tail) × Pi–1

Pi = 
2
1

 × Pi+1 + 
2
1

 × Pi–1

⇒ 2Pi = Pi+1 + Pi–1
⇒ Pi–1 Pi and Pi+1 are in A.P. ..............(i)
Also : P0 = prob that A ends up with all the money when he has noting to begin with = 0 .......(ii)
and : Pn = prob that A ends up with all the money B has nothing to being with = 1 .......(iii)
From (i), (ii) and (iii), we get :

P0  , P1 , P2 , ........... Pn are in A.P. with P0 = 0, Pn = 1

common difference of the A.P. = d = 
n

PP 0n −  = 
n
1

The (i + 1) th term of the A.P. = P1 = P0 + id = i/n
So probability A ends up with all the money starting i rupees = Pi= i/n
Here A starts with 5 rupees and B with 7 rupees so i = 5, n = 12
∴ P5 = 5/12

Example : 20
Two points are taken at random on the given straight line AB of length ‘a’ Prove that the probability of their

distance exceeding a given length c(<a) is equal to 
2

a
c1 ⎟
⎠

⎞
⎜
⎝

⎛ −

Solution
In this question we can not use the classical definition of probability because there can be infinite
outcomes of this experiment. So we will use geometrical method to calculate probability in this question.
Let P, Q be any two points chosen randomly on the line AB of length ‘a’.
Let AP = x and AQ = y
Note that : 0 ≤ x ≤ a and 0 ≤ y ≤ a .............(i)
The probability that the distance between P and Q exceeds c = P(|x – y| > c)
So we need to find P (|x – y| > c) in this question.
Take x along X-axis and y along Y-axis
Using (i), Total Area in which the possible outcomes lie = a.a = a2

Now we have to find the area in which favourable outcomes lie.
Plot the line x – y = c and y – x = c
From figure, total area where the outcomes favourable to event |x – y| > c lie = is given by :

Favourable Area = ∆ABC + ∆PQR = 
2
1

 AB . BC + 
2
1

 PQ. QR

= 
2
1

 (a – c) (a – c) + 
2
1

 (a – c) (a – c) = (a – c)2

P{|x – y| > c} = 2

2

a
)ca( −

 = 
2

a
c1 ⎟
⎠

⎞
⎜
⎝

⎛ −
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Example : 21
Two players A and B want respectively m and n points of winning a set of games. Their chances of winning
a single game are p and q respectively where p + q = 1. The stake is to belong to the player who first
makes up his set. Find the probabilities in favour of each player.

Solution
Suppose A wins in exactly m + r games. To do so he must win the last game and m – 1 out of the preceding
m = r – 1 games. The chance of this is  m+r–1Cm–1 p

m–1 qr p
⇒ P(A wins in m + r games) = m+r–1Cm–1 pm qr ...............(i)
Now the set will definitely be decided in m + n – 1 games. To win the set, A has to win m games. This be
can do either in exactly m games or m + 1 games of m + 2 games, ........., or m + n – 1 games.
Hence we shall obtain the chance of A’s winning the set by putting r the values 0, 1, 2, ........, n – 1 in
equation (i)
Hence A’s probability to win the set is :

P(A wins) = ∑
−

=
−

−+
1n

0r
1m

1rm C  pm qr = pm ⎥
⎦

⎤
⎢
⎣

⎡
−−

−+
++

+
++ −1n2 q

)!1n()!1m(
)!2nm(......q

2.1
)1m(mmq1

Similarly B’s probability to win the set is :

P(B wins) = qn ⎥
⎦

⎤
⎢
⎣

⎡
−−

−+
++

+
++ −1m2 p

)!1n()!1m(
)!2nm(.......p

2.1
)1n(nnp1

Example : 22
An unbiased coin is tossed. If the result is a head a pair of unbiased dice is rolled and sum of the numbers
on top faces are noted. If the result is a tail, a chard from a well shuffled pack of eleven cards numbered
2, 3, 4, ......, 12 is picked and the number on the card is noted. What is the probability that the noted
number is either 7 or 8?

Solution
Let A1 be the event of getting head, A2 be the event of getting tail and let E be the event that noted number
is 7 or 8.

Then, P(A1) = 
2
1

; P(A2)  = 
2
1

P(E/A1) = P(getting either 7 or 8 when pair of unbaised dice is thrown) = 36
11

P(E/A2) = P(getting either 7 or 8 when a card is picked from the pack of 11 cards = 
11
2

Using the result, P(E) = P(A1) P(E/A1) + P(A2) P(E/A2), we get :

P(E) = 
2
1

 . 36
11

 + 
2
1

 . 
11
2

⇒ P(E) = 
72
11

 + 
11
1

 = 792
122

 = 396
61

Example : 23
An urn contains four tickets with numbers 112, 121, 211, 222 and one ticket is drawn. Let Ai (i = 1, 2,3) be
the vent that the ith digit of the number on ticket drawn is 1. Discuss the independence of the events A1 A2

A3.
Solution

According to the question,

P(A1) = the probability of the event that the first digit of the selected number is 1 = 
4
2

 = 
2
1

(Q there are two numbers having 1 at the first place out of four)
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Similarly, P(A2) = P(A2) = 
2
1

A1 ∩ A2 is the and so
P(A1 ∩ A2) = the probability of the event that the first two digits in the number drawn are each equal to

1 = 
4
1

⇒ P(A1 ∩ A2) = 
2
1

, 
2
1

 = P(A1) P(A2)

⇒ A and B are independent events
Similarly
P(A2 ∩ A2) = P(A2) P(A3)
and P(A3 ∩ A1) = P(A3) P(A1)
This the events A1, A2 and A3 are equal to 1 and since there is no such number, we have
P(A1 ∩ A2 ∩ A3) = 0
⇒ P(A1 ∩ A2 ∩ A3) ≠ P(A1) P(A2) P(A2)
Hence the events A1, A2, A3 are not mutually independent althrough they are pairwise independent

Example : 24

A coin is tossed (m + n) times (m > n) ; show that the probability of at least m consecutive heads is 
12

2n
m +
+

Solution
We denote by H the appearance of head and T the appearance of tail.
Let X denote the appearance of head or tail
Then,

P(H) = P(T) = 
2
1

 and P(X) = 1

If the sequence of m consecutive heads starts from the first throw, we have
(HHH ..... m times) (XXX ...... n times)

∴ The chance of this event = 
2
1

, 
2
1

, 
2
1

 ......m times = m2
1

[Note that last n throws may be head or tail since we are considering at least m consecutive heads]
If the sequence of m consecutive heads starts from the second throw, the first must be a tail and we have

T(HHH ...... m times) (XXX ..... 1n −  times)

The chance of this event  = 

2
1

 . m2
1

 = 1m2
1
+

If the sequence of heads starts with the (r + 1)th throw, then the first (r – 1) throws may be head or tail but

rth throw must be tail and we have (XX ........ 1r −  times) T (HHH ..... m times) (XX ....... 

rn −

 times)

The probability of this event = 

2
1

 . m2
1

 = 1m2
1
+

It can be easily observed that probability of occurrence of atleast m consecutive heads in same for all
cases.
Since all the above cases are mutually exclusive, the required probability is :

P(atleast m consecutive heads) = m2
1

+ ⎟
⎠

⎞
⎜
⎝

⎛ +++
++

timesnto.....
2

1
2

1
1m1m  = m2

1
 + 1m2

n
+  = 1m2

n2
+

+
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Example : 25
Out of 3n consecutive integers, three are selected at random. Find the chance that their sun is divisible by
3.

Solution
Let the sequence of numbers start with the integer m so that the 3n consecutive integers are
m, m + 1, m + 2, ........., m + 3n – 1
Now they can be classified as
m, m + 3, m + 6, ...... m + 3n – 3
m + 1, m + 4, m + 7 ...... m + 3n – 2
m + 2, m + 5, m + 8 ...... m + 3n – 1
The sum of the three numbers shall be divisible by 3 if either all the three numbers are from the game row
or all the three numbers are form different rows.
The number of ways that the three numbers are from the game row is 3 nC3  and
The number of ways that the numbers are from different rows in n × n × n = n3 since a number can be
selected from each row in n ways.
Hence the favourable no. of ways = 3 . nC3 + n3

The total number of ways = 3nC3

∴ The required probability = waystotal
waysfavourable

 = 
3

n3

3
3

n

C
nC.3 +

 = )2n3)(1n3(
2n3n3 2

−−
+−

Example : 26
out of (2n + 1) tickets consecutively numbered, three are drawn at random. Find the chance that the
numbers on them are in A.P.

Solution
Let us consider first (2n + 1) natural numbers as (2n + 1) consecutive numbers.
The groups of three numbers in A.P. with common difference 1 :
(1, 2, 3); (2, 3, 4) ; (3, 4, 5);  ........ ; (2n – 1, 2n, 2n + 1)    ⇒ (2n – 1) groups with numbers in A.P.
The groups of three numbers in A.P. with common difference 2 :
(1, 3, 5); (2, 4, 6) ; (3, 5, 7);  ........ ; (2n – 3, 2n – 1, 2n + 1) ⇒ (2n – 3) groups with numbers in A.P.
The groups of three numbers in A.P. with common difference 3 :
(1, 4, 7); (2, 5, 8) ; (3, 6, 9) ; ........ ; (2n – 5, 2n – 2, 2n + 1) ⇒ (2n – 5) groups with numbers in A.P.
.....................................
..............................
The groups of three numbers in A.P. with common difference n :
(1, n + 1, 2n + 1) ⇒ 1 groups with numbers in A.P.

⇒ The total number of groups with numbers in A.P. = ∑
=

−
n

1r

)1r2(  = 2 
2

)1n(n +
 – n = n2

The total number of ways to select three numbers from (2n + 1) numbers = 2n+1C3

⇒ P(three selected numbers are in A.P.) = waystotal
waysfavorable

 = 
3

1n2

2

C
n
+  = 

1n4
n3

2 −

Example : 27
Two friends Ashok and Baldev have equal number of sons. There are 3 tickets for a circket match which
are to be distributed among the sons. The probability that 2 tickets go to the sons of the one and one ticket
goes to the sons of the other is 6/7. Find how many sons each of the two friends have

Solution
Let each of them have n sons each.
Hence we have to distribute 3 tickets amongst the sons of Ashok and Baldev, in such a manner that one
ticket goes to the sons of one and two tickets to the sons of other.
We can make two cases.
Case 1 : 1 to Ashok’s sons and 2 to Baldev’son
Case 2 : 2 to Ashok’s sons and 1 to Baldev’s son
⇒ Total number of ways of distribution the tickets = nC1 . nC2 + nC2 nC1 = 2. nC1 nC2



Page # 12.

But in all 3 tickets are to be distributed amongst 2n sons of both.
Hence total number of ways to distribute tickets = 2nC3

Hence, P(2 tickets go to the sons of one and 1 ticket goes to the sons of other) = 

3
n2

2
n

1
n

C
C.C.2

 (given)

⇒ 7 . 
2

)1n(n −
 . n = 3. 6

)2n2)(1n2(n2 −−

⇒ 7n = 4(2n – 1) ⇒ n = 4
Hence both Ashok and Baldev have four sons each.

Example : 28
Sixteen players S1, S2 .........., S16 play in a tournament. They are divided into eight pairs at random. From
each pair a winner is decided on the basis of a game played between the two players of the pair. Assume
that all the players are of equal strength
(a) Find the probability that the players S1 is among the eight winners
(b) Find the probability that exactly one of the two players S1 and S2 is among the eight winners.

Solution
According to the problem, S1, S2 , ......... S16 players are divided onto eight groups and then from each from
each group one winner emerges. So in all out of 16 players, 8 are winners.
(a) In this part, we have to find the probability of the event that S1 should is there in the group of eight
winners which is selected from 16 players.
So,

P(S1 is among the winners) = winners8selecttowaysof.No
includedalwaysisSthatsuchwinners8selecttowaysof.No 1

= 
8

16
7

15

C
C

 = 
2
1

(b) In this part, we have to find the probability that exactly one of S1 , S2 should be among the 8
winners selected

P(exactly one of S1, S2) = 1 – P(both S1 and S2 are among the winners) – P(none of S1 , S2 is
among the winners)

⇒ P(exactly one of S1 , S2) = 1 – 
8

16
6

14

C
C

 = 
8

16
8

14

C
C

⇒ P(exactly one of S1, S2) = 15
8

Example : 29
If p and q are choosen randomly from the set {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, with replacement, determine the
probability that the roots of the equation x2 + qx + q = 0 are real.

Solution
For the roots of the quadratic equation x2 + px + q = 0 to be real, D ≥ 0.
⇒ p2 – 4q ≥ 0 .............(i)
According to the question, coefficients p and q of the quadratic equation are choosen from the following
set
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10} .............(ii)
Total number of ways in which q can be choosen from the set = 10 ways
Total number of ways to choose q from the game set = 10 ways
So the total number of ways in which both p and q can be choosen = 10 × 10 ways = 100 ways
Out of these 100 ways, we have to find the favoruable ways such that p and q satisfy (i)
If p takes the values from the set (ii), then p2 takes the values from the following set.
p2 ∈ {1, 4, 9, 16, 25, 36, 49, 64, 81, 100}
and similarly
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4q ∈ {4, 8, 12, 16, 20, 24, 28, 32, 36, 40}
If we select 1 from the set of p2 , then no element from the set of 4q can make (i) true.
If we select 4 from the set of p2, then the favourable selection from the set of 4q is 4.
If we select 9 from the set of p2 , then the favoruable selection from the set of 4q are 4 and 8.
Similarly find other combinations of p2 and 4q such that (i) is true.
in all there are 62 combinations pf p2 and 4q such that p2 – 4q ≥ 0

⇒ P(roots  are real) = P (b2 – 4ac ≥ 0) = qandpofselectionspossible
qandpofselectionsfavoruable

 = 100
62

 = 50
31
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Example : 1
If a, b, c are the x th, y th and z th terms of an A.P., show that :
(a) a (y – z) + b (z – x) + c (x – y) = 0
(b) x(b – c) + y (c – a) + z (a – b) = 0

Solution
Let A be the first term and D be the common difference,
⇒ Tx = A + (x – 1) D = a ............(i)

Ty = A + (y – 1) D = b ............(ii)
Tx = A + (z – 1) D = c ............(iii)

operating (2 – 3), (3 – 1) and (1 – 2) we get :
b – c = (y – z) D c – a = (z – x) D a – b = (x – y) D

y – z = 
D

cb −
z – x = 

D
ac −

x – y = 
D

ba −

Now substituting the values of (y – z), (z – x) and (x – y) in L.H.S. of the expression (a) to be proved.

⇒ LHS = 
D

)cb(a −
 + 

D
)ac(b −

 + 
D

)ba(c −

⇒ LHS = 
D

cbcaabbcacab −+−+−
 = 0 = RHS

Now substituting the values of (b – c), (c – a) and (a – b) in LHS of the expression (b) to be proved
⇒ LHS = x(y – z) D + y (z – x) D + z (x – y) D

= {xy – xz + yz – xz + zx – zy} D = 0 = RHS

Example : 2
The sum of n terms of two series in A.P. are in the ratio 5n + 4 : 9n + 6. Find the ratio of their 13th terms.

Solution
Let a1, a2 be the first terms of two A.P.s and d1, d2 are their respective common differences.

⇒
]d)1n(a2[

2
n

]d)1n(a2[
2
n

22

11

−+

−+

 = 6n9
4n5

+
+

⇒
22

11

d
2

)1n(a

d
2

)1n(a

−
+

−
+

 = 6n9
4n5

+
+

............(i)

Now the ratio of 13th terms = 
22

11

d12a
d12a

+
+

⇒ put 
2

)1n( −
 = 12 i.e. n = 25 in equation (i)

⇒
22

11

d12a
d12a

+
+

 = 6)25(9
4)25(5

+
+

 = 231
129

Example : 3
If the sum of n terms of a series is Sn = n (5n – 3), find the nth term and pth term.

Solution
Sn = T1 + T2 + T3 + T4 + ............ + Tn–1 + Tn
Sn = {sum of (n – 1) terms} + Tn

⇒ Tn = Sn – Sn–1
Now in the given problem :
Sn = n (5n – 1) and Sn–1 [5(n – 1) – 3]
⇒ Tn = Sn – Sn–1 = 10n – 8
⇒ Tp = 10p – 8

Progressions
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Example : 4
If a, b, c, d are in G.P., show that
(a) (a – d)2 = (b – c)2 + (c – a)2 + (d – b)2

(b) a2 – b2, b2 – c2 and c2 – d2 are also in G.P.
Solution

(a) a, b, c, d are in G.P.
⇒ b2 = ac, c2 = bd, bc = ad ..............(i)
Now expanding the RHS, we get
RHS = (b2 + c2 – 2bc) + (c2 + d2 – 2ac) + (d2 + b2 – 2bd)

= 2(b2 – ac) + 2(c2 – bd) + a2 + d2 – 2bc
= 2(0) + 2(0) + a2 + d2 – 2ad (from i)
= (a – d)2 = LHS

(b) Now we have to prove that a2 – b2, b2 – c2 and c2 – d2 are in G.P. i.e.
(b2 – c2)2 = (a2 – b2) (c2 – d2)
Consider the RHS
(a2 – b2) (c2 – d2) = a2c2 – b2c2 – a2d2 + b2d2

 = b4 – b2c2 – b2c2 + c4

 = (b2 – c2) = LHS

Example : 5
If a, b, c are in A.P. and x, y, z are in G.P., prove that xb–c yc–a za–b = 1.

Solution
a, b, c are in A.P. ⇒ 2b = a + c or a – b = b – c
x, y, z are in G.P. ⇒ y2 = xz
proceeding from LHS

= xb–c zb–c yc–a {as b – c = a – b}
= (xz)b–c yc–a = y2(b–c) yc–a {as xz = y2}
= y{2(b–c) + (c – a)}

= y2b–a–c = y0 = 1 = RHS {as 2b = a + c}

Example : 6
The sum of three numbers in H.P. is 26 and the sum of their reciprocals is 3/8. Find the numbers.

Solution
Three numbers in H.P. are taken as :

da
1
−

, a
1

, da
1
+

⇒ da
1
−

 + a
1

 + da
1
+

 = 26   ........ (i)

also (a – d) + a + (a + d) = 3/8 ........ (ii)

from (i) and (ii) a = 8
1

 and d = ± 
24
1

⇒ the number are 12, 8, 6 or 6, 8, 12

Example : 7
If pth term of an A.P. is 1/q and the qth term is 1/p. Find the sum of p q terms.

Solution
Let A and D be the first term and the common difference of the A.P.

⇒ q
1

 = A + (p – 1) D, p
1

 = A + (q – 1) D

solving these two equations to get A and D in terms of p and q

⇒ A = pq
1

 and D = pq
1

sum of pq terms = 
2

pq
 [2A + (pq – 1) D] = 

2
pq

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+

pq
1pq

pq
2
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⇒ sum = 
2

1pq +

Example : 8
If the continued product of three numbers in G.P. is 216 and the sum of the products taken in pairs is 156,
find the numbers.

Solution

Let
r
b

, b, br be the three numbers.

⇒
r
b

, b, br = 216 ⇒ b = 6

also 
r
b

 (b) + b (br) + 
r
b

(br) = 156

⇒ b2 ⎟
⎠

⎞
⎜
⎝

⎛ ++ 1r
r
1

 = 156 ⇒ 62 (r2 + r + 1) = 156r

⇒ 3r2 + 3r + 3 = 13r

⇒ r = 3, 3
1

Hence the numbers are 2, 6, 18 or 18,, 6, 2

Example : 9
In a HP, the pth term is q r and qth term is r p. Show that the rth term is p q.

Solution
Let A, D be the first term and the common difference of the A.P. formed by the reciprocals of given H.P.

pth term of A.P. is qr
1

 and qth term of A.P. is rp
1

⇒ qr
1

 = A + (p – 1) D and rp
1

 = A + (q – 1) D

We will solve these two equation to get A and D

subtracting, we get pqr
qp −

 = (p – q) D ⇒ D = pqr
1

Hence qr
1

 = A + pqr
1p −

⇒ A = pqr
1

Now the rth term of A.P. = Tr = A + (r – 1) D

⇒ Tr = pqr
1

 + pqr
1r −

 = pq
1

Hence rth term of the given H.P. is pq.

Example : 10
The sum of first p, q, r terms of an A.P. are a, b, c respectively. Show that :

p
a

 (q – r) + q
b

 (r – p) + 
r
c

 (p – q) = 0.

Solution
Let A be the first term and D be common difference of the A.P.

⇒ a = 
2
p

 [2A + (p – 1) D]
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We can write p
a

 (q – r) + q
b

 (r – p) + 
r
c

 (p – q) = ∑ − )rp(
p
a

LHS = ∑ − )rq(
p
a

= ∑ −+− ]d)qp(A2[)rq(
2
1

= 
2
1 ∑ +−

2
1)rq(A2  ∑ −− )1p(D)rq(

= A ∑ ∑ ∑ −−−+− )rq(
2
D)]rq(p[

2
D)rq(  = 0 + 0 – 0 = 0 = RHS

Example : 11
If a, b, c are in A.P., then show that a2 (b + c), b2 (c + a), c2 (a + b) are in A.P., if bc + ca + ab ≠ 0.

Solution
We have to prove that

a2 (b + c), b2 (c + a), c2 (a + b) are in A.P.
i.e. a(ab + ca), b (bc + ab), c(ca + bc) are in A.P.
a(ab + bc + ca) – abc, b (bc + ab + ac) – abc, c (ca + bc + ab) – abc are in A.P.
a(ab + bc + ca), b(bc + ab + ca), c (ca + bc + ab) are in A.P.
⇒ a, b, c are in A.P., which is given.
Hence a2 (b + c), b2 (c + a), c2 (a + b) are in A.P.
Alternate method :

As a, b, c are in A.P., we get : a – b = b – c ..........(i)
Consider a2 (b + c) – b2 (c + a) = (a2b – b2a) + (a2c – b2c) = (a – b) (ab + ac + bc) ..........(ii)
Also b2 (c + a) – c2 (a + b) = (b2c – c2b) + (b2a – c2a) = (b – c) (bc + ba + ca) ..........(iii)
From (i), (ii), (iii), we get,
a2 (b + c) – b2 (c + a) = b2 (c + a) – c2 (a + b)
⇒ a2 (b + c), b2 (c + a), c2 (a + b) are in A.P.

Example : 12

If (b – c)2 , (c – a), (a – b)2 are in A.P., then prove that : cb
1
−

, ac
1
−

, ba
1
−

 are also in A.P.

Solution
(b – c)2 , (c – a)2 , (a – b)2 are in A.P.
⇒ (b – c)2 – (c – a)2 = (c – a)2 – (a – b)2

⇒ (b – c) (b + a – 2c) = (c – b) (b + c – 2a)
⇒ (b – a) [(b – c) + (a – c)] = (c – a) [(b – a) + (c – a)]
Divide by (a – b) (b – c) (c – a)

⇒ cb
1
−

 – ac
1
−

 = – ba
1
−

 + ac
1
−

⇒ cb
1
−

 – ac
1
−

 = ac
1
−

 – ba
1
−

⇒ cb
1
−

, ac
1
−

, ba
1
−

 are in A.P.

Example : 13

If a, b, c are in G.P., prove that : 
abcabc
baba 22

++
++

 = bc
ab

+
+

Solution
As a, b, c are in G.P., let us consider b = ar, and c = ar2



Page # 5.

LHS = 
abcab
baba 22

++
++

 = 
rarara

raraa
22232

2222

++

++
 = 

)1rr(ra
)rr1(a

22

22

++

++
 = 

r
1

RHS = bc
ab

+
+

 = 
arar
aar

2 +

+
 = )1r(ar

)1r(a
+
+

 = 
r
1

Hence LHS = RHS

Example : 14
If a, b, c are respectively pth, qth, rth terms of H.P., prove that bc (q – c) + ca (r – p) + ab (p – q) = 0.

Solution
Let A and D be the first term and common difference of the A.P. formed by the reciprocals of the given H.P.

⇒ a
1

 = A + (p – 1) D ............(i)

b
1

 = A + (q – 1) D ............(ii)

c
1

 = A + (r – 1) D ............(iii)

Subtracting II and III we get bc
bc −

 = (q – r) D

⇒ bc (q – r) = – 
D

)cb( −

LHS = ∑ − )rq(bc

= – ∑ ∑ −−= )cb(
D
1

D
bc

= – 
D
1

 [b – c + c – a + a – b] = 0 RHS

Example : 15
If ax = by = cx and x, y, z are in G.P., prove that logba = logcb.

Solution
Consider ax = by = cx . Taking log

x log a = y log b = z log c

⇒ y
x

 = alog
blog

 and 
x
y

 = blog
clog

as x, y, z are in GP ⇒ y
x

 = 
z
y

⇒ alog
blog

 = blog
clog

⇒ blog
alog

 = clog
blog

⇒ logba = logcb
Example : 16

If zyx cba ==  and if a, b, c are in G.P., then prove that  x, y, z are in A.P.

Solution
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Let z
1

y
1

z
1

cba ==

⇒
x

alog
 = y

blog
 = 

z
clog

 = k

⇒ log a = kx, log b = ky, log c = kz
As b2 = ac ⇒ 2 log b = log a + log c
We have 2 ky = kx + kz
⇒ 2y = x + z
⇒ x, y, z are in A.P.

Example : 17
If one GM G and two AM’s p and q be inserted between two quantities, show that G2 = (2 p – q) (2 p – q).

Solution
Let a, b be two quantities
⇒ G2 = ab and a, p, q, b are in A.P.

⇒ p = a + 3
)ab( −

 = 3
a2b +

, q = a + 2 3
ab +

 = 3
ab2 +

RHS = (2p – q) (2q – p)

= ⎟
⎠

⎞
⎜
⎝

⎛ +
−+

3
ab2)a2b(

3
2

 ⎟
⎠

⎞
⎜
⎝

⎛ +
−

+
3

a2b
3

)ab2(2

= 9
1

 (2b + 4a – 2b – a) (4b + 2a – b – 2a)

= 9
1

 (3a) (4b) = ab = G2 = RHS

Example : 18
If Sn is the sum of first n terms of a G.P. (an) and S′n that of another G.P. (1/an) then show that :
Sn = S′n = a1 an.

Solution
Sn = a1 + a2 + a3 + .......... + an

S′n = 
1a

1
 + 

2a
1

 + ........ + 
na
1

For the first G.P. (an), an = a1r
n–1

Sn = 
r1

)r1(a n
1

−
−

, where r is the common ratio

For the second G.P. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

na
1

, common ration = 
r
1

S′n = 
1a

1
 

⎟
⎠
⎞

⎜
⎝
⎛ −

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

r
11

r
11
n

 =  1n
1

n

r)1r(a
)1r(
−−

−
 = )1r(a

1r

n

n

−
−

⇒ S′n = 
n1aa

1
 + 

1r
)1r(a n

1

−
−

⇒ S′n = 
n1aa

1
 Sn

⇒ Sn = S′n a1 an
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Example : 19
At what values of parameter ‘a’ are there values of n such that the numbers :
51+x + 51+x , a/2, 25x + 25–x form an A.P.?

Solution
For the given numbers to be in A.P.

2 ⎟
⎠

⎞
⎜
⎝

⎛
2
a

  51+x + 51–x + 25x + 25–x

Let 5x = k

⇒ a = 5k + 
k
5

 + k2 + 2k
1

⇒ a = 5 ⎟
⎠

⎞
⎜
⎝

⎛ +
k
1k  + ⎟

⎠

⎞
⎜
⎝

⎛ + 2
2

k
1k

As the sum of positive number and its reciprocal is always greater than or equal to 2,

k + 
k
1

 ≥ 2 and k2 + 2k
1

 ≥ 2

Hence a ≥ 5 (2) + 2 ⇒ a ≥ 12

Example : 20
The series of natural numbers is divided into groups : (1) : (2, 3, 4); (5, 6, 7, 8, 9) and so on.
Show that the sum of the numbers in the nth group is (n – 1)3 + n3

Solution
Note that the last term of each group is the square of a natural number. Hence first term in the nth group
is = (n – 1)2 + 1 = n2 – 2n + 2
There is 1 term in Ist group, 3 in IInd, 5 in IIIrd, 7 in IVth, ..........
No. of terms in the nth group = nth term of (1, 3, 5, 7 .....) = 2n – 1
Common difference in the nth group = 1

Sum = 
2

1n2 −
 [2(n2 – 2n + 2) + (2n – 2) 1]

= 
2

1n2 −
 [2n2 – 2n + 2] = (2n – 1) (n2 – n + 1)

= 2n3 – 3n2 + 3n – 1 = n3 + (n – 1)3

Example : 21

If a
1

 + c
1

 + ba
1
−

 + bc
1
−

 = 0, prove that a, b, c are in H.P., unless b = a + c

Solution

a
1

 + c
1

 + ba
1
−

 + bc
1
−

 = 0

⇒ ac
ca +

 + 2b)ca(bac
b2ca
++−

−+
 = 0

Let a + c = t

⇒ ac
1

 + 2bbtac
b2t
+−

−
 = 0

⇒ act – bt2 + b2t + act – 2abc = 0
⇒ bt2 – b2t – 2act + 2abc = 0
⇒ bt (t – b) – 2ac (t – b) = 0
⇒ (t – b) (bt – 2ac) = 0
⇒ t = b or bt = 2ac
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⇒ a + c = b or b (a + c) = 2ac

⇒ a + c = b or b = ca
ac2
+

⇒ a, b, c are in H.P. or a + c = b

Example : 22
If a1, a2, a3, ......., an are in HP, prove that :  a1 a2 + a2 a3 + ........... + an–1 an = (n – 1) a1 an .

Solution
Let D be the common difference of the A.P. corresponding to the given H.P.

⇒
na
1

 = 
1a

1
 + (n – 1) D ...........(i)

Now
1a

1
, 

2a
1

, 
3a

1
 ........ are in A.p.

⇒
2a

1
 – 

1a
1

 = D

⇒ a1 a2 = 
D

aa 21 − and a2a3 = 
D

aa 32 −  and so on.

⇒ an–1 an = 
D

aa n1n −−

Adding all such expressions we get

⇒ a1a2 + a2a3 + a3a4 + ........ an–1 an = 
D

aa n1 −

⇒ a1a2 + a2a3 + .......... + an–1 an = 
D
aa n1  ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

1n a
1

a
1

⇒ a1 a2 + a2a3 + ......... + an–1 an = 
D
aa n1  [(n – 1)D] .......... using (i)

Hence a1 a2 + a2 a3 + ............... + an–1 an = (n – 1) a1an

Example : 23
If p be the first of n AM’s between two numbers ; q be the first of n HM’s between the same numbers, prove

that the value of q cannot lie between p and 
2

1n
1n
⎟
⎠

⎞
⎜
⎝

⎛
−
+

 p.

Solution
Let the two numbers be a and b. If p is first of n AM’s then :

p = a + 
1n
ab

+
−

 = 
1n

anb
+
+

...........(i)

If q is first of n HM s then :

q
1

 = a
1

 + 1n
a
1

b
1

+

−
⇒ q = abn

)1n(ab
+
+

...........(ii)

Dividing (ii) by (i) we get p
q

 = )ban()abn(
)1n(ab 2

++
+



Page # 9.

⇒ q
p

 = 
⎟
⎠
⎞

⎜
⎝
⎛ +++

+

a
b

b
an1n

)1n(
2

2

As the sum of a number and its reciprocal cannot lie between – 2 and +2

⇒ 2 ≤ b
a

 + a
b

 ≤ –2

⇒ (n + 1)2 ≤ n ⎟
⎠

⎞
⎜
⎝

⎛ +
a
b

b
a

 + n2 + 1 ≤ (n – 1)2

⇒ 2)1n(
1
+  ≥ )1n(p

q
+  ≥ 2)1n(

1
−

⇒ p ≥ q ≥ p 
2

1n
1n
⎟
⎠

⎞
⎜
⎝

⎛
−
+

⇒ q cannot lie between p and p 
2

1n
1n
⎟
⎠

⎞
⎜
⎝

⎛
−
+

Example : 24

If a, b, c are in A.P., α, β, γ are in A.P. and aα, bβ, cγ are in G.P., prove that a : b : c = γ
1

 : β
1

 : 
α
1

.

Solution
a, b, c are in A.P. .........(i)
⇒ 2b = a + c
α, β, γ  are in H.P.

⇒ β = γ+α
αγ2

 .........(ii)

aα, bβ, cγ are in GP
⇒ b2β2 = aα cγ  .........(iii)

Using (i), (ii) and (iii), 
2

2
ca
⎟
⎠

⎞
⎜
⎝

⎛ +
 

2
2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
γ+α

αγ
 = aα cγ

ac
)ca( 2+

 = 
αγ
γ+α 2)(

⇒ c
a

 + a
c

 = γ
α

 + 
α
γ

Multiplying by γ
α

 we get,

2

2

γ
α

 – γ
α

 ⎟
⎠

⎞
⎜
⎝

⎛ +
a
c

c
a

 + 1 = 0

⇒ γ
α

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

γ
α

c
a

 – a
c

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

γ
α

c
a

 = 0

⇒ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

γ
α

a
c

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

γ
α

c
a

 = 0
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⇒ aα = cγ or cα = aγ
aα = cγ is not possible an aα, bβ , cγ are in GP {obviously with common ratio ≠ 1)
Hence we have only cα = aγ
Using this in (iii)
b2β2 = a2γ2 ⇒ bγ = aγ

⇒ γ/1
1

 = β/1
b

 = 
α/1

c

⇒ a : b : c = γ
1

 : β
1

 : 
α
1

Example : 25
Find three numbers a, b, c between 2 and 18 such that :
(i) their sum is 25,
(ii) the numbers 2, a, b are consecutive terms of an A.P.
(iii) the numbers b, c, 18 are consecutive terms of a G.P.

Solution
According to the given condition, we have

a + b + c = 25 ............(i)
2a = b + 2 ............(ii)
c2 = 18b ............(iii)

eliminating b and a, using (ii) and (iii) we get

2
1

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+ 2

18
c2

 + 
18
c2

 + c = 25

⇒ c2 + 36 + 2c2 + 36c = 25 (36)
⇒ (c + 24) (c – 12) = 0
⇒ c = 12, – 24
As a, b, c are between 2 and 18, c = 12 is the only solution
Using (iii), b = c2/18 = δ

Using (ii), a = 
2

2b +
 = 5

Hence a = 5, b = 8, c = 12

Example : 26
If a, b, c are in G.P., and the equations ax2 + 2bx + c = 0 and dx2 + 2ex + f = 0 have a common root then
show that d/a, e/b, f/c are in A.P.

Solution
a, b, c are in G.P. ⇒ b2 = ac
Hence the first equation has real roots because its discriminant = 4b2 – 4ac = 0

the roots are x = a2
b2−

 = – a
b

As the two equations have a common roots, –b/a is root of the second equation also.

⇒ d 
2

a
b
⎟
⎠

⎞
⎜
⎝

⎛−  + 2e ⎟
⎠

⎞
⎜
⎝

⎛−
a
b

 + f = 0

⇒ db2 – 2abc + a2f = 0

dividing by ab2 ⇒ a
d

 – b
e2

 + 2

2

ab
fa

 = 0

⇒ a
d

 – b
e2

 + )ac(a
fa2

 = 0 ⇒ a
d

 – b
e2

 + c
f

 = 0
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⇒ a
d

, b
e

, c
f

 are in A.P.

Example : 27
The sum of the squares of three distinct real numbers, which are in G.P. is S2 . If their sum is αS, show that

: α2 ∈ ⎟
⎠

⎞
⎜
⎝

⎛ 1,
3
1

 ∪ (1, 3)

Solution
Let the numbers be b, br and br2

b2 + b2 r2 + b2  r4 = S2

b + br + br2 = αS
eliminating S, we get

222

422

)rr1(b
)rr1(b

++

++
 = 22

2

S
S

α

⇒ α2 = 42

22

rr1
)rr1(

++

++
 = 222

22

r)r1(
)rr1(
−+

++

⇒ α2 = 
)rr1)(rr1(

)rr1(
22

22

−+++

++
 = 2

2

rr1
rr1

+−

++

⇒ r2 (α2 – 1) – r (α2 + 1) + α2 – 1 = 0
as r is real, this quadratic must have non-negative discriminant
⇒ (α2 + 1)2 – 4(α2 – 1) (α2 – 1) ≥ 0
⇒ [α2 + 1 + 2(α2 – 1)] [α2 + 1 – 2 (α2 – 1)] ≥ 0
⇒ (3α2 – 1) (3 – α2) ≥ 0
⇒ (α2 – 1/3) (α2 – 3) ≤ 0
As the numbers in G.P. are distinct, the following cases should be excluded.
α2 = 3 ⇒ r = 1
α2 = 1/3 ⇒ r = 1
α2 = 1 ⇒ r = 0
Hence α2 is between 1/3 and 3, but not equal to 1.

⇒ α2  ∈ ⎟
⎠

⎞
⎜
⎝

⎛ 1,
3
1

 ∪ (1, 3)

Example : 28
If the first and the (2n – 1) st term of an A.P., a G.P. and a H.P. are equal and their nth terms are a, b and
c respectively, then :
(A) a = b = c (B) a ≥ b ≥ c (C) a + c = b (D) ac – b2 = 0

Solution
Let the first term = A
The last term [(2n – 1) st term] = L
No. of terms  2n – 1 i.e. odd

Middle term = 
2

1)1n2( +−
 = nth term

⇒ Tn is the middle term for all the three progressions. In an A.P. the middle term is the arithmetic
mean of first and the last terms.

⇒ a = 
2

LA +

In a G.P. the middle term is the geometric mean of first and last terms.

⇒ b = AL
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In an H.P. the middle term is the harmonic mean of first and last terms.

⇒ c = 
LA

AL2
+

Hence a, b, c are AM, GM and HM between the numbers A and L.
As (GM)2 = (AM) (HM)
We have b2 = ac
⇒ (B) and (D) are the correct choices.

Example : 29
Sum of the series : 1 + 3x + 5x2 + 7x2 + .........

Solution
Note that the given series is an Arithmetico-Geometric series.
1, 3, 5, ........... are in A.P. ⇒ Tn = 2n – 1
1, x, x2 , ......... are in G.P. ⇒ Tn = xn–1

(a) This means that nth term of A – G series = (2n – 1) xn–1

S = 1 + 3x + 5x2 + ........ + (2n – 3) xn–2 + (2n – 1) xn–1 ..............(i)
xS = x + 3x2 + 5x3 + ........... + (2n – 3) xn–1 + (2n – 1)xn ..............(ii)
⇒ (1 – x) S = 1 + 2x + 2x2 + ......... + 2xn–1 – (2n – 1) xn

⇒ (1 – x) S = 1 + 
x1

)x1(x2 1n

−
− −

 – (2n – 1) xn

⇒ S = 
x1

1
−

 + 
)x1(

)x1(x2
2

1n

−

− −

 – 
x1

x)1n2( n

−
−

(b) Sn = 1 + 3x + 5x2 + ............. to ∞
xSn = x + 3x2 + 5x3 + ........... to ∞
⇒ (1 – x) S∞ = 1 + 2x + 2x2 + ............ to ∞
⇒ (1 – x) S∞ = 1 + 2x (1 + x + x2 + .......... to ∞)

⇒ (1 – x) S∞ = 1 + 2x ⎟
⎠

⎞
⎜
⎝

⎛
− x1
1

 = 
x1
x1

−
+

⇒ S∞ = 2)x1(
x1

−
+

Example : 30
Sum the series : 1.2.3 + 2.3.4 + 3.4.5. + ......... + to n terms.

Solution
Here Tn = n(n + 1) (n + 2)
⇒ Tn = n3 + 3n2 + 2n
⇒ Tn = n3 + 3n2 + 2n

⇒ Sn = ∑ nT  = ∑ 3n  + 3 ∑ 2n  + 2 ∑n

⇒
4

)1n(n 22 +
 + 6

)1n2)(1n(n2 ++
 + 

2
)1n(n2 +

⇒
4

)1n(n +
 [n(n + 1) + 2 (2n + 1) + 4]

⇒
4

)1n(n +
 [n2 + 5n + 6] = 

4
)3n)(2n)(1n(n +++
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Example : 31
Sum the series : 12 + (12 + 22) + (12 + 22 + 32) + ........ to n terms.

Solution
First determine the nth term.
⇒ Tn  = (12 + 22 + 32 + ............ + n2)

⇒ Tn = ∑ 2n  = 6
)1n2)(1n(n ++

⇒ Tn = 3
1

 n3 + 
2
1

 n2 + 6
1

 n

Now Sn = ∑ nT = 3
1

 ∑ 3n  + 
2
1

 ∑ 2n  + 6
1

 ∑n

Sn = 3
1

 
4

)1n(n 22 +
 + 

2
1

 6
)1n2)(1n(n ++

 + 6
1

 
2

)1n(n +

Simplify to get Sn = 
12

)2n()1n(n 2 ++

Example : 32
Find the sum of n terms of series : (x + y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + ........

Solution
Let Sn = (x + y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y2) + ...........

Sn = yx
yx 22

−
−

 + yx
yx 33

−
−

 + yx
yx 44

−
−

 + .........

= yx
1
−  (x2 + x3 + x4 + .......) – yx

1
−  (y2 + y3 + y4 + ......)

= yx
1
−  ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−
x1

)x1(x n2

 – yx
1
−  ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−
y1

)y1(y n2

Note : The following results can be very useful

(i) yx
yx nn

−
−

 = xn–1 + xn–2 + xn–3 + ........... + xyn–2 + yn–1 (n is an integer)

(ii) yx
yx nn

+
+

 = xn–1 – xn–2 + xn–3 y2 – xn–4 y3 + ...... + yn–1 (n is odd)

Example : 33

Sum the series : 1 + 5
4

 + 25
7

 + 35
10

 + ........... to n terms and to ∞.

Solution
The given series is arithmetico-geometric series

Let S = 1 + 5
4

 + 25
7

 + ....... + 1n5
2n3

−

−

5
1

 S = 5
1

 + 25
4

 + .......... + 1n5
5n3

−

−
 + n5

2n3 −

⇒ 5
4

 S = 1 + ⎟
⎠

⎞
⎜
⎝

⎛ +++
−1n2 5

3.....
5
3

5
3

 – ⎟
⎠

⎞
⎜
⎝

⎛ −
n5

2n3
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⇒ S =  
4
5

 + 
4
5

 × 5
3

 
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−

−
−

5
11

5
11 1n

 – ⎟
⎠

⎞
⎜
⎝

⎛ ×
−

4
5

5
2n3

n

⇒ S = 
4
5

 + 
4
3

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−

4
15 1n

 2n5
1
−  – 1n5.4

2n3
−

−

⇒ S = 
4
5

 + 16
15

 – 2n5.16
3

−  – 2n5.20
2n3
−

−

⇒ S = 16
35

 – ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
− )5(80
7n12
2n

Now Sn = 1 + 5
4

 = 25
7

 + ......... ∞

5
1

 S∞ = 5
1

 + 25
4

 + .......... ∞

⇒ 5
4

S∞ = 1 + 5
3

 + 25
3

 + ........ ∞

⇒
4

 S∞ = 1 + 5/11
5/3

−

⇒ S∞ = 
4
5

 ⎟
⎠

⎞
⎜
⎝

⎛ +
4
31  = 16

35

Example : 34
Sum the series :

1
13

 + 
31
21 33

+
+

 + 
531
321 333

++
++

 + ........... to n terms.

Solution

Tn = 
n....531

n.....21 233

++++
+++

Tn = 
]2)1n(2[

2
n

n3

−+

∑
 = 

4
)1n( 2+

⇒ Tn = 
4

1n2n2 ++

Sn = ∑ nT  = 
4
1

 [ ]∑ ∑∑ ++ 1n2n2  = 
4
1

 ⎥⎦

⎤
⎢⎣

⎡ +−+
++ n)1n(n

6
)1n2)(1n(n

 = 
24
n

 [2n2 + 3n + 1 + 6n + 6 + 6]

⇒ Sn = 
24
n

 [2n2 + 9n + 12]
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Example : 35
Find the sum of the products of every pair of the first n natural numbers.

Solution
The required sum is given as follows.
S = 1.2 + 1.3 + 1.4 + ....... + 2.3 + 2.4 + ........ + 3.4 + 3.5 + ....... + ....... + (n – 1)n

Using : S = 
( )

2

nn 22 ∑∑ −
, we get :

S = 
2
1

 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ ++
−

+
6

)1n2)(1n(n
4

)1n(n 22

 = 
24

)1n(n +
 [3n (n + 1) – 2 (2n + 1)]

= 
24

)1n(n +
 [3n2 – n – 2]

⇒ Sn = 
24

)1n)(2n3)(1n(n −++

Example : 36
Find the sum of first n terms of the series : 3 + 7 + 13 + 2Ι + 3Ι + ............

Solution
The given series is neither an A.P. nor a G.P. but the difference of the successive terms are in A.P.
Series : 3 7 13 21 31 .............
Differences :       4       6        8         10 .............
In such cases, we find the nth term as follows :
Let S be the sum of the first n terms.
S = 3 + 7 + 13 + 2Ι + 3Ι + ......... + Tn

S =    3 + 7 + 13 + 2Ι + 3Ι + ....... + Tn–1 + Tn

On subtracting, we get :
0 = 3 + {4 + 6 + 8 + 10 + ........} – Tn

⇒ Tn = 3 + {4 + 6 + 8 + 10 + .........(n – 1) terms}

⇒ Tn = 3 + 
2

1n −
 [2(4) + (n – 2) 2]

⇒ Tn = n2 + n + 1

⇒ S = ∑
=

n

1k
kT  = ∑ 2k  + ∑k  + ∑1

⇒ 6
)1n2)(1n(n ++

 + 
2

)1n(n +
 + n = 3

n
 (n2 + 3n + 5)

Example : 37
Sum the series : 1 + 4 + 10 + 22 + 46 + ...... to n terms.

Solution
The differences of successive terms are in G.P. :
Series : 1 4 10 22 46 .............
Differences :       3       6        12         24 .............
Let S = sum of first n terms.
⇒ S = 1 + 4 + 10 + 22 + 46 + .......... + Tn
⇒ S = 1 + 4 + 10 + 22 + 46 + ............ + Tn–1 + Tn

On subtracting, we get
0 = 1 + {3 + 6 + 12 + 24 + ............} – Tn
Tn = 1 + {3 + 6 + 12 + 24 + ........(n – 1) terms}

⇒ Tn = 1 + 
12

)12(3 1n

−
−−
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⇒ Tn  = 3.2n–1 – 2

⇒ S = ∑
=

n

1k
kT  = 

2
3

 ∑ k2 – ∑ 2  = 
2
3

 (2 + 4 + 8 + .......+ 2n) – 2n

= 
2
3

 
12

)12(2 n

−
−

 – 2n = 3.2n – 2n – 3

Example : 38

Find the sum of the series : 
4.1

1
 + 

7.4
1

 + 10.7
1

 + ....... to n terms

Solution

Let S = 
4.1

1
 + 

7.4
1

 + 10.7
1

 + ....... + )1n3)(2n3(
1

+−

⇒ 3S = 
4.1

3
 + 

7.4
3

 + 10.7
3

 + .......... + )1n3)(2n3(
3

+−

⇒ 3S = 
4.1
14 −

 + 
7.4
47 −

 + 10.7
710 −

 + ........... + )1n3)(2n3(
)2n3)(1n3(

+−
−+

⇒ 3S = ⎟
⎠

⎞
⎜
⎝

⎛ −
4
1

1
1

 + ⎟
⎠

⎞
⎜
⎝

⎛ −
7
1

4
1

 + ⎟
⎠

⎞
⎜
⎝

⎛ −
10
1

7
1

 + .......... + ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
− 1n3

1
)2n3(

1

⇒ S = 
1
1

 – 1n3
1
+

⇒ S = 1n3
n
+

Note : The above method works in the case when nth term of a series can be expressed as the differ-
ence of the two quantities of the type :

Tn = f(n) – f(n – 1)
or

Tn = f(n) – f(n+1)

In the above example, Tn = )1n3)(2n3(
1

+−  = 3
1

 ⎟
⎠

⎞
⎜
⎝

⎛
+

−
− 1n3

1
2n3

1

It si the form f(n) – f (n + 1)

Example : 39

Find the sum fo first n terms of the series : 3.2.1
1

 + 4.3.2
1

 + 5.4.3
1

 + 6.5.4
1

 + .........

Solution

Let S = 3.2.1
1

 + 4.3.2
1

 + 5.4.3
1

 +  ......... + )2n)(1n(n
1

++

2S = 3.2.1
13 −

 + 4.3.2
24 −

 + 5.4.3
35 −

 + ........... + )2n)(1n(n
n)2n(
++
−+

2S = ⎟
⎠

⎞
⎜
⎝

⎛ −
3.2

1
2.1

1
 + ⎟

⎠

⎞
⎜
⎝

⎛ −
4.3

1
3.2

1
 + ........ + ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++

−
+ )2n)(1n(

1
)1n(n

1
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2S = 
2.1

1
 – )2n)(1n(

1
++

⇒ S = 
4
1

 – )2n)(1n(2
1

+−

Note : You should observe that here,

Tn = )2n)(1n(n
1

++  = 
2
1

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

−
+ )2n)(1n(

1
)1n(n

1

It is in the form f(n) – f(n+1)

Example : 40
Find the sum of first n terms of the series : 1(1)! + 2(2) ! + 3(3)! + 4(4)! + ........

Solution
The nth term = Tn = n(n) !
Tn can be written as

Tn = (n + 1 – 1) (n)!
⇒ Tn = (n + 1) ! – (n) ! ..........(i)
This is in the form f(n) – f(n – 1)
S = T1 + T2 + T3 + T4 + .......... + Tn

S = (2! – 1!) + (3! – 2!) + (4! – 3!) + ......... + {(n + 1)! – n!}
⇒ S = – 1! + (n + 1)!
⇒ S = (n + 1)! – 1

Example : 41
Sum the series to n terms : 4 + 4 4 + 4 4 4 + 4 4 4 4 + ....... to n terms.

Solution
Let Sn = 4 + 44 + 444 + 4444 + .......... to n terms
⇒ Sn = 4(1 + 11 + 111 + 1111 + ............ n terms)
⇒ Sn = 4/9 {(10 – 1) + (100 – 1) + (1000 – 1) + ............ n terms}
⇒ Sn = 4/9 {(10 + 102 + 103  + ........... n terms) – (1 + 1 + 1 + ......... n terms)}

Sn = 9
4

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

−
− n
110

)110(10 n

⇒ Sn = 81
4

 [10 (10n – 1) – 9n]
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Example : 1
What can you say about the roots of the following equations ?
(i) x2 + 2(3a + 5) x + 2 (9a2 + 25) = 0
(ii) (y – a) (y – b) + (y – b) (y – c) + (y – c) (y – a) = 0

Solution :

(i) Calculate Discriminant D
D = 4(3a + 52) – 8(9a2 + 25)
D = – 4(3a – 5)2

⇒ D ≤ 0, so the roots are :
complex if a ≠ 5/3 and real and equal if a = 5/3.

(ii) Simplifying the given equation ;
3y2 – 2(a + b + c) y + (ab + bc + ca) = 0
⇒ D = 4(a + b + c)2 – 12 (ab + bc + ca)
⇒ D = 4(a2 + b2 + c2 – ab – bc – ca)
Now using the identity

(a2 + b2 + c2 – ab – bc – ca) = 
2
1

 [(a – b)2 + (b – c)2 + (c – a)2]

we get :
D = 2[(a – b)2 + (b – c)2 + (c – a)2]

⇒ D ≥ 0, so the roots are real
Note : if D = 0, then (a – b)2 + (b – c)2 + (c – a)2 = 0
⇒ a = b = c
⇒ if a = b = c, then the root are equal

Example : 2
Find the value of k, so that the equations 2x2 + kx – 5 = 0 and x2 – 3x – 4 = 0 may have one root in
common.

Solution :
Let α be common root of two equations.
Hence 2α2 + kα – 5 = 0 and α2 – 3α – 4 = 0
Solving the two equations;

15k4

2

−−
α

 = 58 +−
α−

 = k6
1
−−

⇒ (–3)2 = (4k + 15) (6 + k)
⇒ 4k2 + 39k + 81 = 0
⇒ k = – 3 or k = –27/4

Example : 3
If ax2 + bx + c = 0 and bx2 + cx + a = 0 have a root in common, find the relation between a, b and c.

Solution
Solve the two equations as done in last example,
ax2 + bx + c = 0 and bx2 + cx + a = 0

2

2

cba
x
−

 = 
bca

x
2 −

−
 = 2bac

1
−

⇒ (a2 – bc)2 = (ba – c2) (ac – b2)
simplifying to get : a (a3 + b3 + c3 – 3abc) = 0
⇒ a = 0 or a3 + b3 + c3 = 3abc
This is the relation between a, b and c.
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Example : 4
If α, β are the roots of x2 + px + q = 0 and γ, δ are the roots of x2 + rx + s = 0, evaluate the value of
(α – γ) (α – δ) (β – γ) (β – δ) in terms of p, q, r, s. Hence deduce the condition that the equation have a
common root.

Solution
Let α, β be the roots of x2 + px + q = 0
⇒ α + β = – p and αβ = q ........(i)
γ, δ be the roots of x2 + rx + s = 0
⇒ γ + δ = – r and γ δ = s ........(ii)
Expanding (α – γ) (α – δ) (β – γ) (β – δ)
= [α2 – (γ + δ) α + γδ]  [β2 – (γ + δ) β + γδ]

...............[using (i) and (ii)]

= (α2 – rα + s) (β2 + rβ + s)
As α is a root of x2 + px + q = 0
we have α2 + pα + q = 0
and similarly β2 + pβ + q = 0
Substituting the values of α2 and β2 , and we get;
(α – γ) (α – δ) (β – γ) (β – δ)
= (–pα – q + rα + s) (–pβ – q + rβ + s)
= [(r – p) α + s – q] [(r – p) β + s – q]
= (r – p)2 αβ + (s – q)2 + (s – q) (r – p) (α + β)
= (r – p)2 q + (s – q)2 – p (s – q) (r – p)
= (r – p) (rq – pq – ps + pq) + (s – q)2

= (r – p) (qr – ps) + (s – q)2

If the equation have a common root then either
α = γ or α = δ  or β = γ  or β = δ
i.e. (α – γ) (α – δ) (β – γ) (β – δ) = 0
⇒ (s – q)2 + (r – p) (qr – ps) = 0
⇒ (s – q)2 = (r – p) (ps – qr)

Example : 5
If the ratio of roots of the equation x2 + px + q = 0 be equal to the ratio of roots of the equation
x2 + bx + c = 0, then prove that p2c = b2q.

Solution
Let α and β be the roots of x2 + px + q = 0 and γ, δ be the roots of equation x2 + bx + c = 0

⇒ β
α

 = 
δ
γ

⇒ γ
α

 = 
δ
β

⇒ γ
α

 = 
δ
β

 = δ+γ
β+α

 = γδ

αβ
⇒ δ+γ

β+α
 = γδ

αβ

⇒ b
p

−
−

 = 
c
q

⇒ p2c = b2q

Another Method :

β
α

 = 
δ
γ

⇒ 2

2

)(
)(

β−α
β+α

 = 2

2

)(
)(
δ−γ
δ+γ

⇒ 22

2

)()(
)(

β−α−β+α
β+α

 = 22

2

)()(
)(

δ−γ−δ+γ
δ+γ

⇒
αβ
β+α

4
)( 2

 = 
γδ
δ+γ

4
)( 2

⇒ q4
p2

 = 
c4

b2

⇒ p2c = b2q
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Example : 6
If α is a root of 4x2 + 2x – 1 = 0, prove that 4α3 – 3α is the other root.

Solution
If α is one root, then the sum of root = – 2/4 = – 1/2
⇒ other root = β = – 1/2 – α
Now we will try to prove that :

–1/2 – α is equal to 4α3 – 3α.
We have 4α2 + 2α – 1 = 0, because α is a root of 4x2 + 2x – 1 = 0
Now 4α3 – 3α = α (4α2 + 2α – 1) – 2α2 – 2α
= α (0) – 1/2 (4α2 + 2α – 1) – 1/2 – α
= α (0) – 1/2 (0) – 1/2 – α = –1/2 – α
hence 4α3 – 3α is the other root.

Example : 7

Find all the roots of the equation : 4x4 – 24x3 + 57x2 + 18x – 45 = 0 if one root is 3 + i 6 .
Solution

As the coefficients are real, complex roots will occur in conjugate pairs. Hence another root is 3 – i 6
Let α, β be the remaining roots.

⇒ the four roots are 3 ± i 6 , α, β

⇒ the factors

= (x – 3 – i 6 ) (x – 3 + i 6 ) (x – α) (x – β)

= [(x – 3)2 + 6] (x – α) (x – β)
= (x2 – 6x + 15) (x – α) (x – β)

Dividing 4x4 – 24x3 + 57x2 + 18x – 45 by x2 – 6x + 15 or by inspection we can find the other factor of
quadratic equation is 4x2 – 3
⇒ 4x4 – 24x3 + 57x2 + 18x – 45 = (x2 – 6x + 15) (4x2 – 3)
⇒ α, β are roots of 4x2 – 3 = 0

⇒ α, β = ± 2/3

Hence roots are 3 ± i 6 , ± 2/3

Example : 8

Show that f(x)  can never lie between 5 and 9 if x ∈ R, where : f(x) = 
7x2x
71x34x

2

2

−+

−+

Solution

Let 
7x2x
71x34x

2

2

−+

−+
 = k

⇒ x2 (1 – k) + (34 – 2k) x + 7k – 71 = 0
As x ∈ R, discriminant ≥ 0
⇒ (34 – 2k)2 – 4(1 – k) (7k – 71) ≥ 0
⇒ (17 – k)2 – (1 – k) (7k – 71) ≥ 0
⇒ 8k2 – 112k + 360 ≥ 0
⇒ k2 – 14k + 45 ≥ 0
⇒ (k – 5) (k – 9) ≥ 0
⇒ k ∈ (–∞, 5] ∪ [9, ∞)
Hence k can never lie between 5 and 9
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Example : 9

Find the values of m for which the expression : 
mx4

3x5x2 2

−
+−

 can take all real values for x ∈ R.

Solution

Let 
mx4

3x5x2 2

−
+−

 = k

⇒ 2x2 – (4k + 5) x + 3 + mk = 0
⇒ as x ∈ R, discriminant ≥ 0
⇒ (4k + 5)2 – 8 (3 + mk) ≥ 0
⇒ 16k2 + (40 – 8m) k + 1 ≥ 0
k can take values which satisfy this inequality. Hence k will take all real values if this inequality is true for
all values of k.
A quadratic in k is positive for all values of k if coefficient of k2 is positive and discriminant ≤ 0
⇒ (40 – 8m)2 – 4 (16) (1) ≤ 0
⇒ (5 – m)2 – 1 ≤ 0
⇒ (m – 5 – 1) (m – 5 + 1) ≤ 0
⇒ (m – 6) (m – 4) ≤ 0
⇒ m ∈ [4, 6]
So for the given expression to take all real values, m should take values : m ∈ [4, 6]

Example : 10

Solve for x : )4x)(3x2(
51x16x8 2

+−
−+

 > 3

Solution

)4x)(3x2(
51x16x8 2

+−
−+

 – 3 > 0

⇒ )4x)(3x2(
)4x)(3x2(351x16x8 2

+−
+−−−+

 > 0

⇒ )4x)(3x2(
15xx2 2

+−
−+

 > 0

⇒ )4x)(3x2(
)3x)(5x2(

+−
+−

 > 0

Critical points are : x = – 4, –3, 3/2, 5/2
The solution from the number line is :

x ∈ (–∞, –4) ∪ ⎟
⎠

⎞
⎜
⎝

⎛−
2
3,3  ∪ ⎟

⎠

⎞
⎜
⎝

⎛ ∞,
2
5

Example : 11

Find the values of m so that the inequality : 1xx
1mxx

2

2

++

++
 < 3 holds for all x ∈ R.

Solution
We know that |a| < b ⇒ – b < a < b

Hence 1xx
1mxx

2

2

++

++
 < 3

⇒ – 3 < 
1xx
1mxx

2

2

++

++
 < 3
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First consider 
1xx
1mxx

2

2

++

++
 < 3

⇒
1xx

)1xx(3)1mxx(
2

22

++

++−++
 < 0

⇒

4
3

2
1x

2x)3m(x2
2

2

+⎟
⎠
⎞

⎜
⎝
⎛ +

−−+−
 < 0

multiplying both sides by denominator, we get :
⇒ –2x2 + (m – 3) x – 2 < 0

(because denominator is always positive)
⇒ 2x2 – (m – 3) x + 2 > 0
A quadratic expression in x is always positive if :
coefficient of x2 > 0 and D < 0
⇒ (m – 3)2 – 4(2) (2) < 0
⇒ m2 – 6m – 7 < 0
⇒ (m – 7) (m + 1) < 0
⇒ m ∈ (–1, 7) .........(i)

Now consider – 3 < 
1xx
1mxx

2

2

++

++

⇒

4
3

2
1x

)1xx(3)1mxx(
2

22

+⎟
⎠
⎞

⎜
⎝
⎛ +

+++++
 > 0

⇒ 4x2 + (m + 3) x + 4 > 0
For this to be true, for all x ∈ R, D < 0
⇒ (m + 3)2 – 4(4) (4) < 0
⇒ m2 + 6m – 55 < 0
⇒ (m – 5) (m + 11) < 0
⇒ m ∈ (–11, 5) .........(ii)
We will combine (i) and (ii), because both must be satisfied
⇒ The common solution is m ∈ (–1, 5).

Example : 12

Let y = 
1x
)1x2(

1x
1

1xx
2

32 +

+
−

+
−

+−
 ; find all the real values of x for which y takes real values.

Solution
For y to take real values

1xx
2

2 +−
 – 

1x
1
+

 – 
1x
)1x2(

3 +
+

 ≥ 0

⇒
1x

)1x2()x1x()1x(2
3

2

+

+−−+−+
 ≥ 0

⇒ )1xx)(1x(
xx

2

2

+−+
+−

 ≥ 0

⇒ )1xx)(1x(
)1x(x

2 +−+
−

 ≤ 0

As x2 – x + 1 > 0 for all x ∈ R (because D < 0, a > 0)
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Multiply both sides by x2 – x + 1

⇒ )1x(
)1x(x

+
−

 ≤ 0

Critical points are x = 0, x = 1, x = – 1
Expression is negative for
⇒ x ∈ (–∞, –1) ∪ [0, 1]
So real values of x for which y is real are
x ∈ (–∞, – 1) ∪ [0, 1]

Example : 13
Find the values of a for which the inequality (x – 3a) (x – a – 3) < 0 is satisfied for all x such that 1 ≤ x ≤ 3.

Solution
(x – 3a) (x – a – 3) < 0
Case – I :
Let 3a < a + 3 ⇒ a < 3/2 ........(i)
Solution set of given inequality is x ∈ (3a, a + 3)
Now for given inequality to be true for all x ∈ [1, 3], set [1, 3] should be the subset of (3a, a + 3)
i.e. 1 and 3 lie inside 3a and a + 3 on number line
So we can take, 3a < 1 and a + 3 > 3 ........(ii)
Combining (i) and (ii), we get :
⇒ a ∈ (0, 1/3)
Case – II :
Let 3a > a + 3 ⇒ a > 3/2 ........(iii)
Solution set of given inequality is x ∈ (a + 3, 3a)
As in case–I, [1, 3] should be the subset of (a + 3, 3a)
i.e. a + 3 < 1 and 3a > 3 ........(iv)
Combining (iii) and (iv), we get :
a ∈ { } i.e. No solution ........(vi)
Combining both cases, we get : a ∈ (0, 1/3)
Alternate Solution :
Let f(x) = (x – 3a) (x – a – 3)
for given equality to be true for all values of x ∈ [1, 3], 1 and 3 should lie between the roots of f(x) = 0.
⇒ f(1) < 0 and f(3) < 0 .........[using section 4.1(f)]
Consider f(1) < 0 :
⇒ (1 – 3a) (1 – a – 3) < 0
⇒ (3a – 1) (a + 2) < 0
⇒ a ∈ (–2, 1/3) ...........(ii)
Consider f(3) < 0 :
⇒ (3 – 3a) (3 – a – 3) < 0
⇒ (a – 1) (a) < 0
⇒ a ∈ (0, 1) ........(iii)
Combining (ii) and (iii) we get : a ∈ (0, 1/3)

Example : 14
Find all the values of m, for which both the roots of the equation 2x2 + mx + m2 – 5 = 0 are less than 1.

Solution
Let f(x) = 2x2 + mx + m2 – 5
As both roots of f(x) = 0 are less than 1, we can take a f (1) > 0, –b/2a < 1 and D ≥ 0

.........[using section 4.1(b)]
Consider a f(1) > 0 :
⇒ 2[2 + m + m2 – 5] > 0
⇒ m2 + m – 3 > 0

⇒ m ∈ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−
∞−

2
131,   ∪ ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
∞

+− ,
2

131
..........(i)
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Consider – b/2a < 1 :

4
m−

 < 1

⇒ m > – 4 ..........(ii)
Consider D ≥ 0 :
m2 – 8 (m2 – 5) ≥ 0
⇒ – 7m2 + 40 ≥ 0
⇒ 7m2 – 40 ≤ 0

⇒ m ∈ 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

7
40,

7
40

..........(iii)

Combining (i), (ii) and (iii) on the number line, we get :

m ∈ ⎟
⎟
⎠

⎞

⎢
⎢
⎣

⎡ −−
−

2
131,

7
40  ∪ 

⎥
⎥
⎦

⎤
⎜
⎜
⎝

⎛ −
7
40,

2
113

Example : 15
Suppose x1 and x2 are the roots of the equation x2 + 2 (k – 3) x + 9 = 0. Find all values of k such that both
6 and 1 lie between x1 and x2.

Solution
Let f(x) = x2 + 2(k – 3) x + 9
As 1 and 6 lie between x1 and x2 , we have
a f (6) < 0, and a f(1) < 0

................ [using section 4.1 (f)]
a f(6) < 0
⇒ 36 + 2 (k – 3) (6) + 9 < 0
⇒ 12k + 9 < 0
⇒ k < –3/4 ............(i)
a f(1) < 0
⇒ 1 + 2 (k – 3) + 9 < 0
⇒ 2k + 4 < 0
⇒ k < – 2
Combining (i), (ii) and (ii) on the number line, we get : k ∈ (–∞, – 2)

Example : 16
If 2, 3 are roots 2x3 + mx2 – 13x + n = 0, find m, n and the third root of the equation.

Solution
Let α be the third root of the equation
Using section 4.2 (d) we can make the following equations,
⇒ α + 2 + 3 = – m/2 (sum of roots)

2α + 3α + 2(3) = – 13/2 (sum of roots taken two at a time)
2.3 . α = –n/2 (product of roots)

Hence : α + 5 = – m/2 ..........(i)
5α + 6 = – 13/2 ..........(ii)
6α = –n/2 ..........(iii)

Solving (i), (ii), (iii) for α, m and n we get; α = –5/2, m = –5, n = 30

Example : 17

Find all the values of p for which the roots of the equation (p – 3)x2 – 2px + 5p = 0 are real and positive
Solution

Roots are real and positive if :
D ≥ 0, sum of the roots > 0 and product of the roots > 0
D ≥ 0
⇒ 4p2 – 20p (p – 3) ≥ 0
⇒ – 4p2 + 15p ≥ 0
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⇒ 4p2 – 15p ≤ 0
⇒ p ∈ [0, 15/4] ...........(i)
Sum of the roots > 0

3p
p2
−  > 0 ⇒ 3p

p
−  > 0

⇒ p (p – 3) > 0
⇒ p ∈ (–∞, 0) ∪ (3, ∞) ...........(ii)
Product of the roots > 0

3p
p5
−  > 0

⇒ 3p
p
−  > 0

⇒ p (p – 3) > 0
⇒ p ∈ (–∞, 0) ∪ (3, ∞) ...........(iii)
Combining (i), (ii) and (iii) on the number line, we get p ∈ (3, 15/4]

Example : 18
If 1, a1, a2 .......an–1 are nth roots of unity, then show that (1 – a1) (1 – a2) (1 – a3) ......... (1 – an–1) = n.

Solution
The roots of equation xn = 1 are called as the nth roots of unity
Hence 1, a1, a2, a3, .........an–1 are the roots of xn – 1 = 0
xn – 1 = (x – 1) (x – a1) (x – a2) (x – a3) ........ (x – an–1)
is an identity in x (i.e., true for all values of x)

⇒
1x
1xn

−
−

= (x – a1) (x – a2) (x – a3) ......... (x – an–1)

⇒ xn–1  + xn–2 + ........... + x0 = (x – a1) (x – a2) (x – a3) ........ (x – an–1)
[using xn – yn = (x – y) (xn–1 y0 + xn–2 y1 + ......... + x0 yn–1)

substituting x = 1 in the above identity, we get;
n = (1 – a1) (1 – a2) .......... (1 – an–1) + 0
⇒ (1 – a1) (1 – a2) ......... (1 – an–1) = n.

Example : 19
Solve for x : |x2 + 2x – 8| + x – 2 = 0

Solution
|x2 + 2x – 8| + x – 2 = 0
Case – I
Let (x – 2) (x + 4) ≤ 0
⇒ x ∈ [–4, 2] .............(i)
the given equation reduces to : –(x – 2) (x + 4) + x – 2 = 0
⇒ x2 + x – 6 = 0
⇒ x = – 3, 2
We accept both the values because they satisfy (i)
Case – II
Let (x – 2) (x + 4) > 0
⇒ x ∈ (–∞, –4) ∪ (2, ∞) .............(ii)
the given equation reduces to : (x – 2) (x + 4) + x – 2 = 0
⇒ (x – 2) (x + 5) = 0
⇒ x = –5, 2
We reject x = 2, because it does not satisfy (ii)
Hence the solution is x = – 5
Now combining both cases, the values of x satisfying the given equation are x = – 5, – 3, 2.
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Example : 20
Solve for x : x2 + 2a |x – a| – 3a2 = 0 if a < 0

Solution
Case – I
Let x ≥ a or x ∈ [a, ∞) and a < 0 ...........(i)
⇒ the equation is x2 + 2a (x – a) – 3a2 = 0
⇒ x2 + 2ax – 5a2 = 0

⇒ x = – ( 6  + 1) a, ( 6  – 1) a

We reject ( 6  – 1) a because it does not satisfy (i)

Hence one solution is  – ( 6  + 1) a.

Case – II
Let x < a or x ∈ (–∞, a) and a < 0 ..........(ii)
⇒ the equation is x2 – 2a (x – a) – 3a2 = 0
⇒ x2 – 2ax – a2 = 0

⇒ x = (1 + 2 ) a, (1 – 2 ) a

We reject x = (1 – 2 ) a because it does not satisfy (ii). Hence one solution is (1 + 2 ) a

Now combining both cases, we have the final solution as x = – )16( +  a, )21( +  a

Example : 21
Solve the following equation for x : log2x+3 (6x2 + 23x + 21) + log3x+7 (4x2 + 12x + 9) = 4

Solution
log2x+3 (6x2 + 23x + 21) + log3x+7 (4x2 + 12x + 9) = 4
⇒ log2x+3 (2x + 3) (3x + 7) + log3x+7 (2x + 3)2 = 4
⇒ 1 + log2x+3 (3x + 7) + 2 log3x+7 (2x + 3) = 4 .................  [using : log(ab) = loga + logb]

⇒ log2x+3 (3x + 7) + )7x3(log
2

3x2 ++
 = 3 .................  [using logab = alog

1

b
]

Let log2x+3 (3x + 7) = t ............(i)

⇒ t + t
2

 = 3

⇒ t2 – 3t + 2 = 0
⇒ (t – 1) (t – 2) = 0
⇒ t = 1, 2

Substituting the values of t in (i), we get :
log2x+3 (3x + 7) = 1 and log2x+3 (3x + 7) = 2
3x + 7 = 2x + 3 and (3x + 7) = (2x + 3)2

⇒ x = – 4 and 4x2 + 9x + 2 = 0
⇒ x = – 4 and (x + 2) (4x + 1) = 0
⇒ x = – 4 and x = – 2, x = – 1/4
As logax is defined for x > 0 and a > 0 (a ≠ 1), the possible values of x should satisfy all of the following
inequalities :
⇒ 2x + 3 > 0 and 3x + 7 > 0
Also, (2x + 3) ≠ 1 and 3x + 7 ≠ 1
Out of x = – 4, x = – 2 and x = – 1/4, only x = –1/4, only x = 1/4 satisfies the above inequalities
So only solution is x = – 1/4
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Example : 22

Solve the following equality for x : 
⎟
⎠
⎞

⎜
⎝
⎛ +

2
5x

log  
2

3x2
5x
⎟
⎠

⎞
⎜
⎝

⎛
−
−  < 0

Solution

⎟
⎠
⎞

⎜
⎝
⎛ +

2
5x

log  
2

3x2
5x
⎟
⎠

⎞
⎜
⎝

⎛
−
−  < 0

If logab < 0, then 0 < b < 1 and a > 1 OR b > 1 and 0 < a < 1
Case – I

Let ⎟
⎠

⎞
⎜
⎝

⎛ +
2
5x  > 1 and 0 < 

2

3x2
5x
⎟
⎠

⎞
⎜
⎝

⎛
−
−

 < 1

Consider ⎟
⎠

⎞
⎜
⎝

⎛ +
2
5x  > 1

⇒ x > – 3/2 ............(i)

Consider 
2

3x2
5x
⎟
⎠

⎞
⎜
⎝

⎛
−
−

 < 1

⇒ (x – 5)2 < (2x – 3)2

⇒ x2 + 25 – 10x < 4x2 + 9 – 12x
⇒ 3x2 – 2x – 16 > 0
⇒ (3x – 8) (x + 2) > 0
⇒ x ∈ (–∞, –2) ∪ (8/3, ∞) ............(ii)

Consider 
2

3x2
5x
⎟
⎠

⎞
⎜
⎝

⎛
−
−

 > 0

⇒ x ∈ R – {3/2, 5} ............(iii)
Combining (i), (ii) and (iii), we get :
x ∈ (8/3, ∞) – {5}
Case – II

Let : 0 < ⎟
⎠

⎞
⎜
⎝

⎛ +
2
5x  < 1 and

2

3x2
5x
⎟
⎠

⎞
⎜
⎝

⎛
−
−

 < 1

Consider : 0 < ⎟
⎠

⎞
⎜
⎝

⎛ +
2
5x  < 1

⇒ – 
2
5

 < x < – 
2
3

............(iv)

Consider 
2

3x2
5x
⎟
⎠

⎞
⎜
⎝

⎛
−
−

 > 1

⇒ x ∈ (–2, 8/3) – {3/2} ............(v)

Combine (iv) and (v) to get : x ∈ ⎟
⎠

⎞
⎜
⎝

⎛ −−
2
3,2

Now combining both cases we have the final solution as :

x ∈ ⎟
⎠

⎞
⎜
⎝

⎛ −−
2
3,2  ∪ ⎟

⎠

⎞
⎜
⎝

⎛ ∞,
3
8

 – {5}
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Example : 23
For what values of the parameter a the equation x4 + 2ax3 + x2 + 2ax + 1 = 0 has at least two distinct
negative roots.

Solution
The given equation is : x4 + 2ax3 + x2 + 2ax + 1 = 0
Divide by x2 to get : (because, x = 0 does not satisfy the equation)

x2 + 2ax + 1 + 
x
a2

 + 2x
1

 = 0

⇒ x2 + 2x
1

 + 2a ⎟
⎠

⎞
⎜
⎝

⎛ +
x
1x  + 1 = 0

Let ⎟
⎠

⎞
⎜
⎝

⎛ +
x
1x  = t

⇒ (t2 – 2) + 2at + 1 = 0
⇒ t2 + 2at – 1 = 0

⇒ t = 
2

4a4a2 2 +±−

⇒ t = – a ± 1a2 +

So we get,

x + 
x
1

 = – a + 1a2 +  and ............(i)

x + 
x
1

 = – a – 1a2 + ............(ii)

Consider (i)

x + 
x
1

 = – a + 1a2 +

⇒ x2 + ⎟
⎠
⎞⎜

⎝
⎛ +− 1aa 2  x + 1 = 0

Sum of the roots = 1a2 +  – a

It can be easily observed that for all a ∈ R sum of the roots is positive
Product of the roots = 1 > 0
Product of roots is also positive for all a ∈ R
⇒ As sum of the roots is positive and product of roots is positive, none of the roots is negative
So for given equation to have atleast 2 roots negative both roots of equation (ii) should be negative
Consider (ii)

x + 
x
1

 = – a – 1a2 +

⇒ x2 + ⎟
⎠
⎞⎜

⎝
⎛ ++ 1aa 2  x + 1 = 0

Sum of roots = – ⎟
⎠
⎞⎜

⎝
⎛ ++ 1aa 2  < 0 for all a ∈ R

Product of the roots = 1 > 0 for all a ∈ R
So for above equation to have both roots negative, D should be positive
i.e. ............ [using section 4.1 (g)]
D > 0

⇒
2

2 1aa ⎟
⎠
⎞⎜

⎝
⎛ ++  – 4 > 0
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⇒ ⎟
⎠
⎞⎜

⎝
⎛ −++ 21aa 2  ⎟

⎠
⎞⎜

⎝
⎛ +++ 21aa 2  > 0

⇒ ⎟
⎠
⎞⎜

⎝
⎛ −++ 21aa 2  > 0 ......... (As ⎟

⎠
⎞⎜

⎝
⎛ +++ 21aa 2  is positive for all a ∈ R)

⇒ 1a2 +  > 2 – a ............(iii)

consider a < 2 ⇒ a2 + 1 > 4 + a2 – 4a
⇒ 4a > 3 ⇒ a > 3/4 ............(iv)
consider a – 2
⇒ for a > 2, RHS < 0 and LHS > 0
⇒ (iii) is true for all a ≥ 2 ............(v)
Combining (iv) and (v) we get a > 3/4

Example : 24
Solve for real x : x(x– – 1) (x + 2) + 1 = 0

Solution
x (x2 – 1) (x + 2) + 1 = 0
⇒ x(x – 1) (x + 1) (x + 2) + 1 = 0
⇒ (x2 + x) (x2 + x – 2) + 1 = 0
Let x2 + x = y
⇒ y(y – 2) + 1 = 0
⇒ y2 – 2y + 1 = 0
⇒ (y – 1)2  = 0
⇒ y = 1
So x2 + x – 1 = 0
⇒ x2 + x – 1 = 0

⇒ x = 
2

51±−

Example : 25
If each pair of the three equations x2 + p1x + q1 = 0, x2 + p2x + q2 = 0 and x2 + p3x + q3 = 0 have a common
roots, then prove that p1

2 + p2
2 + p3

2 + 4 (q1 + q2 + q3) = 2 (p1p2 + p2p3 + p3p1).
Solution

Since each pair has a common root, the roots of the three equations can be taken as α, β ; β, γ and γ, α
respectively.
First equation is : x2 + p1x + q1 = 0
⇒ α + β = –p1 ........(i)
⇒ αβ = q1 ........(ii)
Second equation is : x2 + p2x + q2 = 0
⇒ β + γ = – p2 ........(iii)
⇒ βγ = q2 ........(iv)
Third equation is : x2 + p3x + q3 = 0
⇒ α + γ – p3 ........(v)
⇒ αγ = q3 ........(vi)
On adding (i), (iii) and (v), we get :
2(α + β + γ) = – (p1 + p2 + p3) ........(vii)
To prove that :
p1

2 + p2
2 + p3

2 + 4(p1 + p2 + p3) = 2 (p1p2 + p2p3 + p3p1)
To prove that :
p1

2 + p2
2 + p3

2 = 2 (p1p2 + p2p3 + p3p1) – 4 (p1 + p2 + p3)
Add 2 (p1p2 + p2p3 + p3p1) to both sides, we get :
(p1 + p2 + p3)

2 = 4 (p1p2 + p2p3 + p3p1 – q1 – q2 – q3)
Consider RHS
RHS = 4 (p1p2 + p2p3 + p3p1 – q1 – q2 – q3)
Using (ii), (iv) and (vi), we get :
= 4[(α + β) (β + γ) + (β + γ) (α + γ) + (α + γ) (α + β) – αβ – βγ – γα)]
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= 4(α2 + β2 + γ2 + 2αβ + 2αγ + 2βγ)
= 4(α + β + γ)2 ........... [using (7)]
= (p1 + p2 + p3)

2 = LHS

Example : 26

Solve for real x : x2 + )1x(
x2

+
 = 3

Solution
Use : a2 + b2 = (a – b)2 + 2ab to get

2

1x
xx ⎟

⎠

⎞
⎜
⎝

⎛
+

−  + )1x(
x2 2

+
 – 3 = 0.

⇒

22

1x
xxx
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
−+

 + )1x(
x2 2

+
 – 3 = 0

⇒

22

1x
x

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+  + )1x(
x2 2

+
 – 3 = 0

Let )1x(
x2

+
 = y

⇒ y2 + 2y – 3 = 0
⇒ y = 1, – 3

⇒ )1x(
x2

+
 = 1 and )1x(

x2

+
 = – 3

⇒ x2 + x – 1 = 0 and x2 + 3x + 3 = 0

⇒ x = 
2

51±
and No real roots (D < 0)

So possible values of x are 
2

51±

Example : 27
Solve for x : 2|x+1| – 2x = |2x – 1| + 1

Solution
Find critical points
x + 1 and 2x – 1 = 0
⇒ x = – 1 and x = 0
so critical points are x = 0 and x = – 1
Consider following cases :
x ≤ – 1 ........(i)
2–(x+1) – 2x = – (2x – 1) + 1
2–x–1 – 2x = – 2x + 2
⇒ 2–x–1 = 2
⇒ – x – 1 = 1
⇒ x = – 2
As x = – 2 satisfies (i), one solution is x = – 2
– 1 < x ≤ 0 ........(ii)
2x+1 – 2x = – (2x – 1) + 1
⇒ 2x+1 = 2
⇒ x + 1 = 1
⇒ x = 0
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As x = 0 satisfies (ii), second solution is x = 0
x > 0 ........(iii)
2x+1 – 2x = (2x – 1) + 1
⇒ 2x+1 = 2x+1

⇒ identity in x, i.e. true for all x ∈ R
On combining x ∈ R with (iii), we get :

x > 0
Now combining all cases, we have the final solution as :

x ≥ 0  and  x = – 2
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Example : 1
A straight line drawn through point A (2, 1) making an angle π/4 with the +X-axis intersects another line
x + 2y + 1 = 0 in point B. Find the length AB.

Solution
Let AB = r
from parametric form, the point B can be taken as :
B = (xA + r cos  θ, yA + r sin θ)
B = (2 + r cos π/4,1 + r sin π /4)

B = (2 + r/ 2 , 1 + r/ 2 )

As B lies on x + 2y + 1 = 0, we have ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

2
r2  + 2 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

2
r1  = – 1

⇒ r = – 
3

25

r is negative because the point B lies below the point A.

⇒ AB = 
3

25

Alternative Method :
Find the equation of AB from point-slope form and then solve with x + 2y + 1 = 0 simultaneously to get
coordinates of AB. Then use distance formula to find AB.

Example : 2
If two opposite vertices of a square are (1, 2) and (5, 8), find the coordinates of its other vertices.

Solution
Let ABCD be the square and A ≡ (1, 2) and C ≡ (5, 8)
Let P be the intersection of diagonals
⇒ P ≡ [(1 + 5)/2, (2 + 8)/2]
⇒ P ≡ (3, 5)
To find B and D, we will apply parametric form for the line BD with P as the given point

PB = PD = 
2
1

 AC = 
2
1

 22 )15()28( −+−

⇒ PB = PD = 13

Slope (AC) =  15
28

−
−

 = 
2
3

⇒ slope (BD) = – 3
2

 = tan θ ⇒ tan θ is obtuse

Where θ is the angle between BD and +ve X-axis

⇒ cos θ = – 
13
3

 and sin θ = 
13
2

using parametric form on BD with P ≡ (x1, y1) ≡ (3, 5)
Coordinates of D :

r = + 13 because D is above P.
⇒ D ≡ (x1 + r cos θ, y1 + r sin θ)

⇒ D ≡ 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+

13
2135,

13
3133

⇒ D ≡ (0, 7)
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Coordinates of B :

r = – 13 because B is below P.

⇒ B ≡ (x1 + r cos θ, y1 + r sin θ)

⇒ B ≡ 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−

13
2135

13
3133

⇒ B ≡ (6, 3)

Example : 3
Two opposite vertices of a square are (1, 2) and (5, 8). Find the equations of its side.

Solution
Let ABCD be the square
m = slope of AC = (8 – 2) / (5 – 1) = 3/2
lines AB and AD make an angle α = 45º with AC

m1 = slope (AD) = α−
α+

tan.m1
tanm

 = º45tan.2/31
º45tan2/3

−
+

 = – 5

m2 = slope (AB) = α+
α−

tan.m1
tanm

 = º45tan2/31
º45tan2/3

+
−

 = 5
1

We also have AB || DC and  AB || DC.
⇒ slope (DC) = 1/5 and slope (BC) = – 5
Now use y – y1 = slope (x – x1) on each side
Equation of AB :

y – 2 = 1/5 (x – 1) ⇒ x – 5y + 9 = 0
Equation of AD :

y – 2 = – 5 (x – 1) ⇒ 5x + y – 7 = 0
Equation of BC :

y – 8 = – 5 (x – 5) ⇒ 5x + y – 33 = 0
Equation of CD :

y – 8 = 1/5 (x – 5) ⇒ x – 5y + 35 = 0
Alternative Method :
Find the coordinates of B and D on the pattern of illustration and then use two-point form of equation of
line for each side.

Example : 4
The equation of the base of an equilateral triangle is x + y = 2 and its vertex is (2, – 1). Find the length and
equations of its sides.

Solution
Let A ≡ (2, –1) and B, C be the other vertices of the equilateral triangle. Length of the perpendicular from
A to BC (x + y – 2 = 0)

⇒ p = 
22 11

|2)1(2|

+

−−+
 = 2

1

Side = º60sin
p

 = 2
1

 × 3
2

 = 3
2

Now AB and AC make equal angles α = 60º with line BC whose slope is m = – 1

m1 = slope (AC) = α−
α+

tan,m1
tanm

 = º60tan.)1(1
º60tan)1(

−−
+−

 = 2 – 3

m2 = slope of (AB) = α−
α−

tan.m1
tanm

 = º60tan.)1(1
º60tan1

−+
−−

 = 2 + 3

Equation of AC :

y = (–1) = (2 – 3 ) (x – 2)
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⇒ (2 – 3 ) x – y – 5 + 2 3  = 0

Equation of AB :

y – (–1) = (2 + 3 ) (x – 2)

⇒ (2 + 3 ) x – y – 5 – 2 3  = 0

Example : 5
Find the equations of straight lines passing through (–2, –7) and having an intercept of length 3 between
the straight lines : 4x + 3y = 12, 4x + 3y = 3.

Solution
Let the required line cut the given parallel lines in points A and B.
⇒ AB = 3
Let AC be the perpendicular distance between the given lines

⇒ AC = 22 34

|312|

+

−
 = 5

9

⇒ sin θ = 
AB
AC

 = 3
5/9

 = 5
3

hence the required line(s) cut the given parallel lines at an angle θ where :
sin θ = 3/5 ⇒ tan θ = 3/4
Let m1 and m2 be the slopes of required lines.
Slopes of the given parallel lines = m = –4/3

m1 = 
θ−
θ+

tanm1
tanm

 = 4/3.3/41
4/33/4

+
−−

 = – 
24
7

m2 = θ+
θ−

tan.m1
tanm

 = 4/3.3/41
4/33/4

−
−−

 = undefined.

Hence one line is parallel to Y-axis and passes through (–2, –7)
⇒ its equation is : y + 7 = –7/24 (x + 2)
⇒ 7x + 24y + 182 = 0

Example : 6
Two straight lines 3x + 4y = 5 and 4x – 3y = 15 intersect at point A. Points B and C are chosen on these two
lines, such that AB = AC. Determine the possible equations of the line BC passing through the point (1, 2).

Solution
Through the point (1, 2) two lines L1 and L2 can be drawn and
hence two equations are possible for line BC.
Let m be the slope of BC
AB = BC ⇒ ∆ABC is isosceles and hence acute angle between BC
and AB is equal to the acute angle between BC and AC.
Acute angle between AB(3x  4y = 5) and BC is α :

tan α = )4/3(m1
)4/3(m

−+
−−

Acute angle between AC (4x – 3y = 15) and BC is α :

tan α = )4/3(m1
)3/4(m

−+
−

⇒ )4/3(m1
)4/3(m

−+
−−

 = )3/4(m1
)3/4(m

+
−

⇒ m34
3m4

−
+

 = ± m43
4m3

+
−

 = ± )3/4(m1
)3/4(m

+
−
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Taking + sign
(4m + 3) (3 + 4m) = (3m – 4) (4 – 3m)
16m2 + 24m + 9 = –9m2 + 24m – 16
25m2 = – 25 which is impossible
Taking + sign
(4m + 3) (3 + 4m) = –(3m – 4) (4 – 3m)
16m2 + 24m + 9 = 9m2 – 24m + 16
⇒ 7m2 + 48m – 7 = 0
⇒ (m + 7) (7m + 1) = 0
⇒ m = – 7 or m = 1/7
Equation of BC are :

y – 2 = –7 (x – 1) and y – 2 = 1/7 (x – 1)
⇒ 7x + y – 9 = 0 and x – 7y + 13 = 0
Method 2 ;
As line BC makes equal angles with AB and AC, it must be parallel to one of the angle bisectors of AB and
AC. By finding the equations of bisectors, we get the slope of BC.
Angle bisectors of AB and AC are :

169
5y4x3

+

−−
 = ± 916

15y3x4
+

−−

⇒ x – 7y – 10 = 0 and 7x + y – 20 = 0
⇒ slopes are 1/7 and – 7
⇒ slopes of BC are m = 1/7 and m = –7
⇒ Equations are BC are

y – 2 = 1/7 (x – 1) and y – 2 = –7 (x – 1)
⇒ 7x + y – 9 = 0 and x – 7y + 13 = 0

Example : 7
Lines L1 ≡ ax + by + c = 0 and L2 ≡ lx + my + n = 0 intersect at point P and make an angle θ with each other.
Find the equation of the line L different from L2 which passes through P makes the same angle with L1 .

Solution
 As L passes through the intersection of L1 and L2 , let its equation be :
(ax + by + c) + k (lx + my + n) = 0 ............(i)
where k is a parameter
As L1 is the angle bisector of L and L2 , any arbitrary point A(x1, y1) on L1 is equidistant from L and L2 .

⇒
22

11

m

|nmyx

+

++

l

l
 = 22

1111

)kmb()ka(

)nmyx(kcbyax|

+++

+++++

l

l

But A lies on L1 . hence it must satisfy the equation of L1
⇒ ax1 + by1 + c = 0

⇒ 22
11

m

|nmyx|

+

++

l

l
 = 22

11

)kmb()ka(

)nmyx(0|

+++

+++

l

l

⇒ k2 (l2 + m2) = (a + kl)2 + (b + km)2

⇒ k = – 
bm2a2

ba 22

+
+

l

⇒ (ax + by + c) – ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
+

bm2a2
ba 22

l  (lx + my + n) = 0 is the equation of L.

⇒ (2al + 2bm) (ax + by + c) – (a2 + b2) (lx + my + n) = 0
Alternative Method :
Let S be the slope of line L.
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⇒ tan θ = )b/a(S1
)b/a(S

−+
−−

 = 

mb
a1

)b/a()m/(
l

l

+

−−−

(Q by taking +ve sign, we will get S = –l/m which is not the slope of L)

We also have S = – ⎟
⎠

⎞
⎜
⎝

⎛
+
+
kmb
ka l

[equation (i)]

Substituting for S, we can value of k.

Example : 8
Find all points on x + y = 4 that lie at a unit distance from the line 4x + 3y – 10 = 0

Solution
Let P (t, 4 – t) be an arbitrary point on the line x + y = 4
distance of P from 4x + 3y – 10 = 0 is unity

⇒ 916
|10)t4(3t4|

+

−−+
 = 1

⇒ |t + 2| = 5
⇒ t = – 2 ± 5 = –7, 3
⇒ points are (–7, 11) and (3, 1)
Draw the diagram yourself

Example : 9
One side of a rectangle lies on the line 4x + 7y + 5 = 0. Two of its vertices are (–3, 1) and (1, 1). Find the
equations of other three sides.

Solution
One side is 4x + 7y + 5 = 0

⇒ slope of the four sides of rectangle are : – 
7
4

, 
4
7

, – 
7
4

, 
4
7

Slope of Line joining (–3, 1) and (1, 1) = 31
11

+
−

 = 0

Hence A(–3, 1) and C(1, 1) are opposite vertices. Let ABCD be the rectangle with AB lying along
4x + 7y + 5 = 0 (check that A lies on this line)
Equation of AD :

y – 1 = 7/4 (x + 3)
⇒ 7x – 4y + 25 = 0
Equation of CB :

y – 1 = 7/4 (x – 1)
⇒ 7x – 4y – 3 = 0
Equation of CD :

y – 1 = – 4/7 (x – 1)
⇒ 4x + 7y – 11 = 0

Example : 10
Find the coordinates of incentre of the triangle formed by 3x – 4y = 17; y = 4 and 12x + 5y = 12.

Solution
Let A, B and C be the vertices of the triangle Let us first find the equation of interior angle bisectors of the
triangle ABC. The coordinates of vertices can be calculate as :
A ≡ (19/9, –8/3), B ≡ (11, 4) and C ≡ (–2/3, 4)
Interior Bisector of angle A :
bisectors of AB and AC are :

5
17y4x3 −−

 = ± 13
12y5x12 −+

21x + 77y + 161 = 0 and 99x – 27y – 281 = 0
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⇒ 3x + 11y + 23 = 0 and 99x – 27y – 281 = 0
B and C must lie on opposite sides of the interior bisector
Consider 3x + 11y + 23 = 0
for B ≡ (11, 4)  : LHS = 3(11) + 11(4) + 23 = 100
for C ≡ (–2/3, 4) : LHS = – 2 + 44 + 23 = 65
Both have same sign and hence B, C are one same side.
⇒ this is exterior bisector.
Hence the interior bisector of angle A is :

99x – 27y – 281 = 0 ..........(i)
Interior bisector of angle B :
following the same procedure, we get the equation of interior bisector of B as :

3x + 9y + 3 = 0 ..........(ii)
Solving (i) and (ii) simultaneously, we get the coordinates of incentre :

Ι = ⎟
⎠

⎞
⎜
⎝

⎛
27
38,

9
29

Example : 11
The ends AB of a straight line segment of constant length C slide upon the fixed rectangular axes OX and
OY respectively. If The rectangle OAPB be completed, then show that the locus of the foot of perpendicu-
lar drawn from P to AB is x2/3 + y2/3 = C2/3 .

Solution
Let A ≡ (a, 0) and B ≡ (0, b)
⇒ P ≡ (a, b)
PQ ⊥ AB
We have to find the locus of the point Q.
Let Q ≡ (x1, y1)
AB = C ⇒ a2 + b2 = c2 ...........(i)
PQ ⊥ AB ⇒ slope (PQ) × slope (AB) = – 1

⇒ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

1

1

xa
yb

 × ⎟
⎠

⎞
⎜
⎝

⎛
−
−

0a
b0

 = – 1

⇒ ax1 – by1 = a2 – b2 ...........(ii)

Q lies on AB whose equation is a
x

 + b
y

 = 1

⇒ a
x1  + b

y1  = 1

⇒ bx1 + ay1 = ab ...........(iii)
In the problem, C is a fixed quantity while a, b are changing, we will eliminate a, b from (i), (ii) and (iii) to get
the locus. By solving (ii) and (iii), we get :

x1 = 22

3

ba
a
+

and y1 = 22

3

ba
b
+

consider x1
2/3  + y1

2/3  = 3/222

22

)ba(
ab

+
+

 = (a2 + b2)1/3  = (C)2/3

⇒ x1
2/3 + y1

2/3 = C2/3

⇒ x2/3 + y2/3 = C2/3 is the equation of required locus.
Alternative method :
Let angle OAB = θ
⇒ OA = C cos θ and OB = C sin θ = AP
From ∆APQ :

AQ = (C sin θ) sin θ = Csin2θ
Draw QM ⊥ OA

From ∆AQM :
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AM = AQ cos θ = C sin2θ cos θ
QM = AQ sin θ = C sin3θ
QM = y1 = C sin3θ

and OM = x1 = OA – AM = C cos θ – C sin2θ cos θ
⇒ x1 = C cos θ (1 – sin2θ) = C cos3θ
⇒ x1 = C cos3θ and y1 = C sin3θ. We will eliminate θ
Substituting for cos θ , sin θ in sin2θ + cos2θ = 1, we get :

3/2
1

C
x

⎟
⎠

⎞
⎜
⎝

⎛
 + 

3/2
1

C
y

⎟
⎠

⎞
⎜
⎝

⎛
 = 1

⇒ x1
2/3 + y1

2/3 = C2/3

⇒ x2/3 + y2/3 = C2/3 is the locus of Q.

Example : 12
A variable line is draw through O to cut two fixed straight lines L1 and L2 in R and S. A point P is chosen on

the variable line such that : OP
nm +

 = OR
m

 + OS
n

. Show that the locus of P is a straight line passing through

intersection of L1 and L2
Solution

Let the fixed point O be at origin.
Let L1 ≡ ax + by + c = 0, L2 ≡ Lx + My + N = 0 and P ≡ (x1, y1)
As lines L1 and L2 are fixed, (a, b, c, L, M, N) are fixed quantities.
Parametric form is likely to be used because distance of P, R and S from a fixed point are involved.
Let θ be the angle made by the variable line ORS with + ve X-axis. Note that θ is a changing quantity and
we will have to eliminate it later
Let OR = r1 ; OS = r2 and OP = r
Note that r1, r2 r are also changing quantities.
Using parametric form, we have :

R  ≡ (r1 cos θ, r1 sin θ), S ≡ (r2 cos θ, r2 sin θ)
P ≡ (r cos θ, r sin θ) ≡ (x1, y1)
As R lies on L1 , ar1 cos θ + br1 sin θ + c = 0

⇒ r1 = 
θ+θ

−
sinbcosa

c

As S lies on L2 , Lr2 cos θ + Mr2 sin θ + N = 0

⇒ r2 = 
θ+θ

−
sinMcosL

N

Substituting in OP
nm +

 = OR
m

 + OS
n

⇒
r

nm +
 = 

1r
m

 + 
2r
n

⇒
r

)nm( +
 = – c

)sinbcosa(m θ+θ
 – 

N
)sinMcosL(n θ+θ

Put cos θ = 
r
x1 and sin θ = 

r
y1  to eliminate θ

⇒
r

nm +
 = – c

m
⎥
⎦

⎤
⎢
⎣

⎡ +
r

by
r

ax 11  – 
N
n

 ⎥
⎦

⎤
⎢
⎣

⎡ +
r

My
r

Lx 11

⇒ (m + n) = – c
m

 (ax1 + by1) – 
N
n

 (Lx1 + My1)

⇒ (ax1 + by1 + c) + 
mN
nc

 (Lx1 + My1 + N) = 0
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The above equation is the locus of P which represents a straight line passing through the intersection of
L1 and L2

Example : 13
Let (h, k) be a fixed point, where h > 0, k > 0. A straight line passing through this point cuts the positive
direction of the coordinates axes at the points P and Q. Find the minimum area of the triangle OPQ, O
being the origin.

Solution
Equation of any line passing through the fixed point (h, k) and having slope m can be taken as :

y – k = m (x – h) ............(i)

Put y = 0 in (i) to get OP i.e. Xintercept = OP = h – 
m
k

Put x = 0 in (i) to get OQ i.e. Yintercept = OQ = k – mh

Area of triangle OPQ = A(m) 
2
1

 ⎟
⎠

⎞
⎜
⎝

⎛ −
m
kh  (k – mh) = 

2
1

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−

m
kmhhk2

2
2

⇒ A(m) = 
2
1

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−

m
kmhhk2

2
2

............(ii)

To minimise A(m), Put A′ (m) = 0

⇒ A′(m) = 
2
1

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+− 2

2
2

m
kh  = 0 ⇒ m = ± 

h
k

A′′(m) = – 2

2

m
k

⇒ A′′ ⎟
⎠

⎞
⎜
⎝

⎛ −
h
k

 = 
k
h3

 > 0

⇒ for m = –k/h, A(m) is minimum.
Put m = –k/h is (ii) to get minimum area.

⇒ Minimum Area of ∆OPQ = 
2
1

 [2hk + kh + hk[ = 2hk]

Example : 14
A rectangle PQRS has its side PQ parallel to the line y = mx and vertices P, Q and S lie on the lines y = a,
x = b and x = – b, respectively. Find the locus of the vertex R.

Solution
Let coordinates of P be (t, a) and R be (x1, y1)
Slope of PQ = m (given)
Slope of PS = – 1/(slope of PQ) = –1/m
Equation of Pθ ≡ y – a = m (x – t) ..........(i)
As Q lies on x = b line, put x = b in (i) to get Q.
⇒ Q ≡ [b, a + m (b – t)]
Equation of PS ≡ y – a = – 1/m (x – t) ..........(ii)
As S lies on x = – b line, put x = –b in (ii) to get S.
⇒ S ≡ [–b, a + 1/m (b + t)]

Slope of RS = 
bx

)tb(
m
1ay

1

1

+

+
−

−
 = m ..........(iii)

⇒ b + t = m (y1 – a) – m2 (x + b)

Slope of RQ = bx
)tb(may

1

1

−
−−−

 = – 
m
1

⇒ 2
11

m
)bx()ay(m −+−

 = b – t

Add (iii) and (iv) to eliminate t
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⇒ 2b = m (y1 – a) – m2 (x + b) + 2
11

m
)bx()ay(m −+−

⇒ Locus is : my + (1 – m2) x – am – b (1 + m2) = 0

Example : 15
Let ABC be a triangle with AB = AC. If D is the midpoint of BC, E the foot of the perpendicular drawn from
D to AC and F the midpoint of DE, prove the AF is perpendicular to BE.

Solution
Let vertex A of the triangle be at origin and AC as x-axis. Let the coordinates of C and B be (4a, 0) and
(4b, 4c) respectively.
Then the coordinates of points D, E and F will be (2a + 2b, 2c), (2a + 2b, 0) and (2a + 2b, c) respectively.
Since AB = AC, we will have (4c)2 + (4b)2 = (4a2)
⇒ b2 + c2 = a2 .........(i)

Now, Slope of BE = b4)b2a2(
c40
−+

−
 = ab

c2
−

Slope of AF = 0)b2a2(
0c
−+

−
 = )ab(2

c
+

Slope of BE × AF = 22

2

ab
c
−

 = – 1 [using (i)]

Hence AF ⊥ BE

Example : 16
A line through A (–5, –4) meets the lines x + 3y + 2 = 0, 2x + y + 4 = 0 and x – y – 5 = 0 at the points B, C
and D respectively. If (15/AB)2 + (10/AC)2 = (6/AD)2 , find the equation of the line.

Solution
The parametric form of the line passing through A(–5, –4) is

x = – 5 + r cos θ
y = –4 + r sin θ ..........(i)

where r is the distance of any other point P(x, y) on this line from A.
Equation (i) meets the line x + 3y + 2 = 0 at B.
Let AB = r1
⇒ The coordinates of B are (–5 + r1 cos θ, – 4 + r1 sin θ)
Since B lies on x + 3y + 2 = 0, we get

(–5 + r1 cos θ) + 3 (–4 + r1 sin θ) + 2 = 0

⇒ r1 = 
θ+θ sin3cos

15
..........(ii)

Equation (i) meets the line 2x + y + 4 = 0 at C.
Let Ac = r2
⇒ The coordinates of C are (–5 + r2 cos θ, –4 + r2 sin θ)
Since C lies on 2x + y + 4 = 0, we get

2(–5 + r2 cos θ) + (–4 + r2 sin θ) + 4 = 0

⇒ r2 = 
θ+θ sincos2

10
..........(iii)

Similarly, r3 = 
θ−θ sincos

6
where r3 = AD ..........(iv)

It is given that : 
2

AB
15

⎟
⎠

⎞
⎜
⎝

⎛
 + 

2

AC
10

⎟
⎠

⎞
⎜
⎝

⎛
 = 

2

AD
6

⎟
⎠

⎞
⎜
⎝

⎛

⇒
2

1r
15

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 + 

2

2r
10

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 = 

2

3r
6
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
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Substituting r1, r2 and r3 from equation (ii), (iii) and (iv), we get
(cos θ + 3 sin θ)2 + (2 cos θ + sin θ)2 = (cos θ – sin θ)2

⇒ (cos2 θ + 9 sin2 θ + 6 cos θ sin θ) + (4 cos2θ + sin2θ + 4 cos θ sin θ)
= cos2 θ + sin2θ – 2 cos θ sin θ

⇒ 4 cos2θ + 9 sin2θ + 12 cos θ sin θ = 0
⇒ (2 cos θ + 3 sin θ)2 = 0
⇒ 2 cos θ + 3 sin θ = 0 ⇒ tan θ = –2/3
⇒ slope of the line = –2/3
Hence equation of required line is : y + 5 = –2/3 (x + 4)
⇒ 3y + 2x + 23 = 0

Example : 17

Using the methods of co-ordinates geometry, show that PC
BP

. QA
CQ

. 
RB
AR

 = – 1, where P, Q, R the points of

intersection of a line L with the sides BC, CA, AB of a triangle ABC respectively.
Solution

Let A (x1, y1), B (x2 , y2) and C(x3, y3) be the vertices of the ∆ABC.
Let the equation of the line L be ax + by + c = 0

Let L divide BC at P in the ratio m : 1 i.e. PC
BP

 = 
1
m

Using section formula, the coordinates of P are ⎟
⎠

⎞
⎜
⎝

⎛
+
+

+
+

m1
myy

,
m1
mxx 3231

As P lies on the line L

a ⎟
⎠

⎞
⎜
⎝

⎛
+
+

m1
mxx 32  + b ⎟

⎠

⎞
⎜
⎝

⎛
+
+

m1
myy 32  + c = 0

⇒ m (ax3 + by3 + c) + (ax2 + by2 + c) = 0

⇒
1
m

 = – ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++
++

cbyax
cbyax

33

22

⇒ PC
BP

 = – ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++
++

cbyax
cbyax

33

22
............(i)

Similarly QA
CQ

 = cbyax
cbyax

11

33

++
++

............(ii)

and
RB
AR

 = – cbyax
cbyax

22

11

++
++

............(iii)

Multiple (i), (ii) and (iii) to get : PC
BP

, QA
CQ

, 
RB
AR

 = – 1

Example : 18
The vertices of a triangle are A(x1, x1 tan θ1), B(x2, x2 tan θ2), and C(x3, x3 tan θ3). If the circumcentre of

∆ABC coincides with the origin and H(x′, y′) is the orthocentre, show that : 
x
y
′
′

 = 
321

321

coscoscos
sinsinsin

θ+θ+θ
θ+θ+θ

Solution
Let circumcentre of the triangle ABC = r
Since origin is the circumcentre of ∆ABC, OA = OB = OC = r
Using Distance Formula,

x1
2 + x1

2 tan2θ1 = x2
2 + x2

2 tan2θ2  = x3
2 + x3

2 tan2θ3
⇒ x1 secθ1 = x2 cos θ2 = x3 = secθ3 = r
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⇒ x1 = r cos θ1 , x2 = sec θ2 , x3 = r cos θ3

Therefore, the coordinates of the vertices of the triangle are :
A ≡ (r cos θ1, r sin θ1)
B ≡ (r cos θ2, r sin θ2) and
C ≡ (r cos θ3, r sin θ3)

In triangle, we know that the circumcentre (O), centroid (G) and orthocentre (H) are collinear.
Using this result,

Slope of OH = Slope of GO

⇒ 0x
0y

−′
−′

 = 0)Gofcordinatex(
0)Gofcordinatey(

−
−

⇒
x
y
′
′

 = 
321

321

coscoscos
sinsinsin

θ+θ+θ
θ+θ+θ

Hence proved

Example : 19
Find the coordinates of the points at unit distance from the lines : 3x – 4y + 1 = 0, 8x + 6y + 1 = 0

Solution
Let L1 ≡ 3x – 4y + 1 = 0 and L2 ≡ 8x + 6y + 1 = 0
In diagram, A, B, C and D are four points which lie at a unit distance from the two lines. You can also
observe that A, B, C and D lie on angle bisectors of L1 and L2 .
Let (h, k) be the coordinates of a point of unit distance from each of the given lines.

⇒ 22 43

|1k4h3|

+

+−
and 22 68

|1k6h8|

+

++

⇒ 3h – 4k + 1 = ± 5 and 8h + 6k + 1 = ± 10
⇒ 3h – 4k – 4 = 0 ...............(i)

3h – 4k + 6 = 0 ...............(ii)
8h + 6k – 9 = 0 ...............(iii)

and 8h + 6k + 11 = 0 ...............(iv)

Solve (i) and (iii) to get : (h, k) ≡ ⎟
⎠

⎞
⎜
⎝

⎛ −
10

1,
5
6

Solve (i) and (iv) to get : (h, k) ≡ ⎟
⎠

⎞
⎜
⎝

⎛ −−
10
13,

5
2

Solve (ii) and (iii) to get : (h, k) ≡ ⎟
⎠

⎞
⎜
⎝

⎛
2
3,0

Solve (ii) and (iv) to get : (h, k) ≡ ⎟
⎠

⎞
⎜
⎝

⎛ −
10
3,

5
8

Hence the required four points are ⎟
⎠

⎞
⎜
⎝

⎛ −
10

1,
5
6

, ⎟
⎠

⎞
⎜
⎝

⎛ −−
10
13,

5
2

, ⎟
⎠

⎞
⎜
⎝

⎛
2
3,0  and ⎟

⎠

⎞
⎜
⎝

⎛ −
10
3,

5
8

Example : 20
Show that the area of the parallelogram formed by the line 3y – 2x = a; 2y – 3x + a = 0; 2x – 3y + 3a = 0

and 3x – 2y = 2a is ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

5
a2 2

Solution
The equations of four sides of the line are :
2x – 3y + a = 0 ........(i)
–3x + 2y + a = 0 ........(ii)
2x – 3y + 3a = 0 ........(iii)
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–3x + 2y + 2a = 0 ........(iv)

Area of the parallelogram formed by above sides = 
θsin

pp 21 .............(v)

where p1 = perpendicular distance between parallel sides (i) and (iii),
p2 = perpendicular distance between parallel sides (ii) and (iv),
θ = angle between adjacent sides (i) and (ii)

Find p1

p1 = perpendicular distance between (i) and (iii) = 
22 )3(2

|a3a|

−+

−
 = 13

|a2|

Find p2

p2 = perpendicular distance between (ii) and (iv) = 
22 )3(2

|a2a|

−+

−
 = 13

|a|

Find sin θ
If θ is the angle between (i) and (ii), then

tan θ = 
21

21

mm1
mm

+
−

 = )2/3(.)3/2(1
2/33/2

+
−

⇒ tan θ = 5/12
⇒ sin θ = 5/13
On substituting the values of p1, p2 and sin θ in (v), we get

Area of the parallelogram formed by above sides = 
13/5

13
|a|

13
|a2| −

⇒ Area of parallelogram = 2a2 /5q. units

Example : 21
The line joining the points A(2, 0); B(3, 1) is rotated about A in the anticlockwise direction through an angle
of 15º. Find the equation of the line in the new position. If B goes to C in the new position, what will be the
co-ordinate of C?

Solution

Slope of AB = 23
01

−
−

 = 1 = tan 45º

⇒ ∠BAX = 45º
Now line AB is rotated through an angle of 15º
⇒ ∠CAX = 60º and

AC = AB ⇒ AC = 2
Equation of line AC in parametric form is :

x = 2 + r cos 60º
y = 0 + r sin 60º ............(i)

Since AC = 2 , pur r = 2  in (i) to get the coordinates of point C, i.e.

coordinates of C are ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
2
6,

2
24
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Example : 22
Prove that two of the straight lines represented by the equation ax3 + bx2y + cxy2 + dy3 = 0 will be at right
angles, if a2 + ac + bd + d2 = 0.

Solution
ax3 + bx2y + cxy2 + dy3 = 0 ..............(i)
Equation (i) is a homogeneous equation of third degree in x and y
⇒ It represents combined equations of three straight lines passing through origin
Divide (i) by x3 ⇒ a + b (y/x) + c (y/x)2 + d (y/x)3 = 0

Put (y/x) = m
⇒ a + bm + cm2 + dm3 = 0
⇒ dm3 + cm2 + bm + a = 0
This is a cubic equation in ‘m’ with three roots m1, m2, m3 [i.e. slopes of the three lines]

product of roots = m1 m2 m3 = – a/d ..........(ii)
product of roots taken two at a time = m1 m2 + m2 m3 + m1 m3 = b/d .........(iii)
sum of roots = m1 + m2 + m3 = –c/d ..........(iv)

If any two lines are perpendicular to each other, then :
m1 m2 = – 1 ..........(v)

Solving (ii) and (v), we get
m3 = a/d

On substituting the value of m3 in (iv), we get
m1 + m2 = – (a + c)/d ..........(vi)
Solve (v) and (iii) and substitute the value of m3 to get :
m3 (m1 + m2) = (b + d)/d
On substituting the value of m1 + m2 from (vi) in above equation, we get
(a/d) [–(a + c)/d] = (b + d)/d
⇒ –a2 – ac = bd + d2

⇒ a2 + ac + bd + d2 = 0
Hence proved

Example : 23
The sides of a triangle are, Lr ≡ x cos θr + y sin θr  – ar = 0, r = 1, 2, 3. Show that the orthocentre of the
triangle is given by : L1 cos (θ2 – θ3) = L2 cos (θ3 – θ1) = L3 cos (θ1 – θ2).

Solution
Equation of any line through the point of intersection of L1 = 0 and L2 = 0 is
L1 + kL2 = 0, where k is a parameter.
⇒ (cos θ1 + k cos θ2) x + (sin θ1 + k sin θ2) y – (a1 + k a2) = 0 .........(i)
Line (i) will be perpendicular to L3 ≡ x cos q3 + y sin θ3 – a3 = 0 if
[slope of (i)] × [slope of L3] = – 1
– [(cos θ1 + k cosθ2) / (sin θ1 + k sin θ2)] . [–(cos θ3) / (sin θ3)] = – 1
⇒ k = –[cos (θ3 – θ1)] / [cos (θ2 – θ3)]
On substituting the value of k in (i), we get the equation of one altitude as :

L1 cos (θ2 – θ3) = L2 cos (θ3 – θ1) .........(ii)
Similarly, we can obtain the equations of second altitudes as :

L2 cos (θ3 – θ1) = L3 cos (θ1 – θ2) .........(iii)
Solving the equations of altitudes (ii) and (iii), the orthocentre of the triangle is given by,

L1 cos (θ2 – θ3) = L2 cos (θ3 – θ1) = L3 cos (θ1 – θ2).
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Example : 1
Find the maximum and minimum value of :
(i) sin θ + cos θ
(ii) √3 sin θ – cos θ
(iii) 5 sin θ + 12 cos θ + 7

Solution
Given expressions are in the form of a sin θ + b cos θ

Express this in terms of one t-ratio by dividing and multiplying by 22 ba +

(i) sin θ cos θ = 1 . sin θ + 1 . cos θ

= 2  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
θ+θ cos

2
1sin

2
1

= 2  ⎟
⎠

⎞
⎜
⎝

⎛ π
θ+

π
θ

4
sincos

4
cossin

= 2  sin ⎟
⎠

⎞
⎜
⎝

⎛ π
+θ

4

Now sine of angle must be between – 1 and 1

⇒ – 1 ≤ sin ⎟
⎠

⎞
⎜
⎝

⎛ π
+θ

4  ≤ 1

⇒ –√2 ≤ √2 sin ⎟
⎠

⎞
⎜
⎝

⎛ π
+θ

4  ≤ √2

So maximum value of sin θ + cos θ is √2 and minimum value of sin θ + cos θ is – √2

(ii) 3  sin θ – cos θ = 2 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
θ−θ cos

2
1sin

2
3

= 2 ⎟
⎠

⎞
⎜
⎝

⎛ π
θ−

π
θ

6
sincos

6
cossin

= 2 sin ⎟
⎠

⎞
⎜
⎝

⎛ π
−θ

6

as – 1 ∴ sin ⎟
⎠

⎞
⎜
⎝

⎛ π
−θ

6  ≤ 1

⇒ – 2 ≤ 2 sin ⎟
⎠

⎞
⎜
⎝

⎛ π
−θ

6  ≤ 2

so maximum value is 2 and minimum value is – 2
(iii) Consider 5 sin θ + 12 cos θ = 13 [5/13 sin θ + 12/13 cos θ]

construct a triangle with sides, 5, 12, 13. If α is an angle of triangle,
then cos α = 5/13, sin α 12/13,

⇒ 5 sin θ + 12 cos θ = 13 [sin θ cos α + cos θ – sin α]
5 sin θ + 12 cos θ + 7 = 13 [sin (θ + α)] + 7
as – 1 ≤ sin (θ + α) ≤ 1

⇒ – 13 ≤ 13 sin (θ + α) ≤ 13
– 13 + 7 ≤ 13 sin (θ + α) + 7 ≤ 13 + 7

So maximum value s 20 and minimum value is – 6.

Trigonometry
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Example : 2
Show that sin π/13 is a root of 8x3 – 4x2 + – 4x + 1 = 0

Solution
Let θ = π/14
⇒ 4θ = π/2 – 3θ
⇒ sin 4θ = sin [π/2 – 2θ] = cos 3θ
⇒ 2[2 sin θ cos θ] cos 2θ = cos θ [4 cos2θ – 3]
⇒ 4 sin θ [1 – 2 sin2θ] = 4 – 4 sin2θ – 3
⇒ 8 sin3θ – 4 sin2θ – 4 sin θ + 1 = 0
⇒ sin θ is root of 8x3 – 4x2 – 4x + 1 = 0

Example : 3
If α and β are roots of a tan θ + b sec θ = c, find the value of :
(i) tan [α + β] (ii) cos [α + β]

Solution
(i) To find tan (α + β), we need tan α + tan β and tan α tan β, so express the given equation in terms

of a quadratic in tan θ where sum of roots is tan α + tan β and product of roots in tan α tan β
Consider a tan θ + b sec θ = c
⇒ (c – a tan θ)2 = b2 sec2θ
⇒ c2 + a2 tan2θ – 2ac tan θ = b2 + b2 tan2θ
⇒ (a2 – b2) tan2θ – 2ac tan θ + c2 – b2 = 0

tan α + tan β = sum of roots = 22 ba
ac2
−

tan α tan β = product of roots = 22

22

ba
bc

−

−

⇒ tan (α + β) = βα−
β+α

tantan1
tantan

 = 

22

22

22

ba
bc1

ba
ac2

−
−

−

−  = 22 ca
ac2
−

(ii) To find cos (α + β), express given equation as :
1. quadratic in cos θ to find cos α cos β
2. quadratic in sin θ to find sin α sin β

Given equation can be written as :
a sin θ + b = c cos θ

⇒ a2 sin2θ + b2 + 2ab sin θ = c2 cos2θ = c2 (1 – sin2θ)
⇒ (a2 + c2) sin2θ + 2ab sin θ sin θ + b2 – c2 = 0

Hence product of roots of sin α sin β = 22

22

ca
cb

+

−

Given equation can be written as
a sin θ + b = cos θ

⇒ a2 sin2θ + b2 + 2ab sin θ = c2 cos2θ = c2 (1 – sin2θ)
⇒ (a2 + c2) sin2θ + 2ab sin θ + b2 – c2 = 0

Hence product of roots of sin α sin β = 22

22

ca
cb

+

−

Given equation can be written as
a sin θ + b = c cos θ

⇒ a2 sin2θ = (c cos θ – b)2

⇒ a2 (1 – cos2θ) = c2 cos2θ + b2 – 2bc cos θ
⇒ (a2 + c2) cos2 θ – 2bc cos θ + b2 – a2 = 0

so product of roots = cos α cos β = 22

22

ca
ab

+

−
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Now cos (α + β) = cos α cos β – sin α sin β

= 22

22

ca
ab

+

−
 – 22

22

ca
cb

+

−
 = 22

22

ca
ac

+

−

Example : 4

If m tan (θ – 30º) = n tan (θ + 120º), then show that : cos 2θ = )nm(2
nm
−
+

Solution

)º30tan(
)º120tan(

−θ
+θ

 = 
n
m

⇒ )º30sin()º120cos(
)º30cos()º120sin(

−θ+θ
−θ+θ

 = 
n
m

⇒ )º30sin()º120cos()º30cos()º120sin(
)º30sin()º120cos()º30cos()º120sin(

−θ+θ+−θ+θ
−θ+θ−−θ+θ

 = 
nm
nm

+
−

⇒ )º902sin(
º150sin

+θ  = 
nm
nm

+
−

⇒ )]º30()º120sin[(
)]º30()º120sin[(

−θ++θ
−θ−+θ

 = 
nm
nm

+
−

⇒
2
1

 (m + n) = (m – n) cos 2θ

⇒ cos 2θ = )nm(2
nm
−
+

Example : 5
Show that : sin2B = sin2A + sin2 (A – B) – 2 sin A cos B sin (A – B)

Solution
Starting from RHS :
RHS = sin2A + sin2(A – B) – 2 sin A cos B sin (A – B)

= sin2A + sin2(A – B) – [sin (A + B) + sin (A – B)] sin (A – B)
= sin2A + sin2(A – B)– sin (A + B) sin (A – B) – sin2 (A – B)
= sin2A – [sin2A – sin2B]
= sin2B = LHS

Example : 6

If tan 
2
θ

 = e1
e1

+
−

 tan 
2
φ

, show that : cos φ = 
θ−

−θ
cose1

ecos

Solution
We have to find cos φ in terms of e and cos θ, so try to convert tan θ/2 to cos φ

tan2 
2
θ

 = e1
e1

+
−

 tan2 
2
φ

⇒ tan2 
2
φ

 = e1
e1

−
+

 tan2 
2
θ

 = e1
e1

−
+

 ⎟
⎠

⎞
⎜
⎝

⎛
θ+
θ−

cos1
cos1

⇒
1

2
tan2 φ

 = 
θ−θ+−
θ−θ−+

cosecose1
cosecose1
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⇒
2/tan1
2/tan1

2

2

φ+

φ−
 = )cosecose1()cosecose1(

)cosecose1()cosecose1(
θ−θ−++θ−θ+−
θ−θ+−θ−θ++

⇒ cos φ = 
θ−
θ+−

cose22
cos2e2

 = 
θ−

−θ
cose1

ecos

Example : 7

If tan β = γα+
γ+α

tantan1
tantan

, prove that : sin 2β = γα+
γ+α

2sin2sin1
2sin2sin

Solution
We are given tan β in terms of α and γ , so we have to express sin 2β in terms of α, γ . Hence we will start
with sin 2β = (2 tan β) / (1 + tan2β) and substitute for tan β in RHS. Also, as the final expression does not
contain tan α and tan γ , so express tan β in terms of sine and consine.

tan β = γα+γα
αγ+γα

sinsincoscos
sincoscossin

 = )cos(
)sin(
γ−α
γ+α

Now sin β = β+
θ
2tan1

tan2

⇒ sin 2β = 

)(cos
)(sin1

)cos(
)sin(2

2

2

γ−α
γ+α

+

γ−α
γ+α

 )(sin)(cos
)cos()sin(2

22 γ+α+γ−α
γ−αγ+α

= 
[ ] [ ]

)(sin)(sin1
sinsin

22 γ−α−γ+α+
γ−α−γ+α+γ−α+γ+α

= [ ] [ ]γ−α+γ+αγ−α+γ+α+

γ+α

sinsin1
2sin2sin

⇒ sin 2β = γα+
γ+α

2sin2sin1
2sin2sin

Example : 8

If 2 tan α = 3 tan β , then show that : tan (α – β) = β−
β
2cos5

2sin

Solution
We have to express tan (α – β) in terms of β only. Staring with standard result of tan (α – β) and
substituting for tan α = 3/2 tan β in RHS, we have :

⇒ tan (α – β) = βα+
β+α

tantan1
tantan

 = β+
β−β

2tan2/31
tantan2/3

⇒ tan (α – β) = β+
β

2tan32
tan

 = β+β
ββ

22 sin3cos2
cossin

 = β+β
ββ

22 sin6cos4
cossin2

 = )2cos1(3)2cos1(2
2sin

β−+β+
β

⇒ tan (α – β) = β−
β
2cos5

2sin
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Example : 9
Prove that tan α + 2 tan 2α + 4 tan 4α + 8 cot 8α = cot α.

Solution
For this problem, use the result cos α – tan α = 2 cot 2α
Now we can express the above relation as :

tan α = cot α – 2 cot 2α
Replacing α by 2α :

tan 2α = cot 2α – 2 cot 4α
Replacing α by 4α :

tan 4α = cot 4α – 2 cot 8α
Multiplying these equations by 1, 2, 4 respectively and adding them together, we get

tan α + 2 tan 2α + 4 tan 4α = cot α – 8 cot 8α
⇒ tan α + 2 tan 2α + 4 tan 4α + 8 cot 8α = cot α

Example : 10

Show that cos 33
π

 cos 33
2π

 cos 33
4π

 cos 33
8π

 cos 33
16π

 = 32
1

Solution
If θ = π/33, observe that pattern cos θ cos 2θ cos 4θ cos 16θ
In this pattern sin 2α = 2 sin α cos α will be used repeatedly in LHS, so multiply and divide by 2 sin π/33.

LHS = 
33

sin2

33
16cos

33
8cos

33
4cos

33
2cos

33
cos

33
sin2

π

⎟
⎠
⎞

⎜
⎝
⎛ ππππ
⎟
⎠
⎞

⎜
⎝
⎛ ππ

= 
33

sin2.2

33
16cos

33
8cos

33
4cos

33
2cos

33
2sin2

π

⎟
⎠
⎞

⎜
⎝
⎛ πππ
⎟
⎠
⎞

⎜
⎝
⎛ ππ

............................. following the same pattern .... we have

LHS = 

33
sin.2

33
32sin

5 π

π

 =  

33
sin32

33
sin

π

⎟
⎠
⎞

⎜
⎝
⎛ π

=π

 = 32
1

Example : 11
Show that tan 6º sin 42º sin 66º sin 78º = 1/16

Solution
Note that (66 + 6)/2 = 36º (66 – 6)/2 = 30º. Hence sin 6º and sin 66º should be combined.
LHS = 1/4 [2 sin 6º sin 66º] [2 sin 42º sin 78º]

= 1/4 [cos (6º + 66º) – cos (6º + 66º)] [cos (42º – 78º) – cos (42º + 78º)]
= 1/4 [cos 60º – cos 72º] [cos 36º – cos 120º]

Substituting the values, we get

LHS = 
4
1

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−

4
15

2
1

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

+
2
1

4
15

 = 
4
1

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +−
4

152
 ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ ++
4

215

= 64
1

 (3 – 5 ) (3 + 5 ) = 16
1

 RHS
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Example : 12
If α = 2π/7, show that tan α tan 2α tan 4α tan α = – 7

Solution

LHS = 
ααα

ααα+ααα+ααα
4cos2coscos

2cossin4sincos4sin2sin4cos2sinsin

We will use the formula for cos (A + B + C)
cos (A + B + C) = cos A cos B cos C – sin A sin B cos C – sin B sin C cos A – sin A cos B

⇒ LHS = 
ααα

α+α+αααα
4cos2coscos

)42(4cos2coscos

= 1 – 
ααα

α
4cos2coscos

7cos
 = 1 – 

αααα
απ

4cos2coscossin2
)sin2(2cos

= 1 – 
ααα

α
4cos2cossin2

sin4

= 1 – 
αα

α
4cos4sin2

sin8

= 1 – 
α
α

8sin
sin8

 = 1 – )2sin(
sin8

α+π
α

 = 1 – 
α
α

sin
sin8

 = – 7

Example : 13
Show that cos 2π/7 + cos4π/7 + cos 6π/7 = – 1/2.

Solution

LHS = 
7

sin2

7
6cos

7
4cos

7
2cos

7
sin2

π

⎟
⎠
⎞

⎜
⎝
⎛ π

+
π

+
ππ

= 
7

sin2

1
π  ⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛ π
−

π
+⎟

⎠

⎞
⎜
⎝

⎛ π
−

π
+⎟

⎠

⎞
⎜
⎝

⎛ π
−

π
7

5sin
7
7sin

7
3sin

7
5sin

7
sin

7
3sin

= 
7

sin2

7
sinsin

π

π
−π

 = – 
2
1

Alternative Method :
We can also use the relation :

cos a + cos (a + d) + .........+ ( )d1na −+  = 2/dsin
2/ndsin

 cos ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −+
2

d1na2

⇒ LHS = 

2
7/2sin

2
7/23sin

π

⎟
⎠
⎞

⎜
⎝
⎛ π

 cos 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ π

+
π

2
7
22

7
4

 = 7/sin
7/3sin

π
π

 cos ⎟
⎠

⎞
⎜
⎝

⎛ π
7
4

 = 7/sin2
)7/sin(sin

π
π−+π

 = – 
2
1
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Example : 14
Let cos α cos β cos φ = cos γ cos θ and sin α = 2 sin φ/2 sin θ/2, then prove that tan3α/2 = tan2β/2 tan2γ/2.

Solution
From the given three equations, we have to eliminate two variables, θ and φ
cos α = cos β cos φ = cos γ cos θ

⇒ cos φ = β
α

cos
cos

 ; cos θ = γ
α

cos
cos

⇒ 2 sin2 

2
φ

 = 1 – β
α

cos
cos

; 2 sin2 
2
θ

 = 1 – γ
α

cos
cos

substitute these is sin α = 2 sin 
2
φ

 sin 
2
θ

⇒ sin α = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
γ
α

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
β
α

−
cos
cos1

cos
cos1

⇒ sin2α ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

γβ
α

+
γ
α

−
β
α

−
coscos

cos
cos
cos

cos
cos1

2

⇒ cos α ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
γβ

+
coscos

11  = γβ
γ+β

coscos
coscos

⇒ cos α (cos β cos α + 1) = cos β + cos γ

⇒ cos α = γβ+
γβ

coscos1
coscos

Using component and dividendo, we get :

α+
α−

cos1
cos1

 = γ+β+γβ+
γ−β−γβ+

coscoscoscos1
coscoscoscos1

⇒ tan2 
2
α

 = )cos1)(cos1(
)cos1)(cos1(
γ+β+
γ−β−

⇒ tan2 
2
α

 = tan2 
2
β

 tan2 
2
γ

Example : 15

If 
a

sin4 α
 + 

b
cos4 α

 = ba
1
+

, then show that : 3

8

a
sin α

 + 3

8

b
cos α

 = 3)ba(
1
+

Solution
Express the given equation in quadratic in terms of sin2α

a
sin4 α

 + 
b

cos4 α
 = ba

1
+

⇒
a

sin4 α
 + 

b
)(sin 22 α

 = ba
1
+

⇒ (a + b)2 sin4α – 2a (a + b) sin2α + a2 = 0
⇒ [(a + b) sin2α – a]2 = 0

⇒ sin2α = ba
a
+

⇒ cos2α = ba
b
+
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Now LHS of the equation to be proved is :

= 3

8

a
sin α

 + 3

8

b
cos α

= 43

4

)ba(a
a
+

 + 43

4

)ba(b
b
+

= 4)ba(
ba

+
+

 = 3)ba(
1
+  = RHS

Example : 16

If ycos
xcos

2

4

 = ysin
xsin

2

4

 = 1, then prove that : 
xcos
ycos

2

4

 = 
xsin
ysin

2

4

 = 1

Solution

Consider ycos
xcos

2

4

 = ysin
xsin

2

4

 = 1

⇒ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
− xcos

ycos
xcos 2

2

4

 + ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
− xsin

ysin
xsin 2

2

4

 = 0

⇒ ycos
xcos

2

2

 (cos2x – cos2y) + ysin
xsin

2

2

 (sin2x – sin2y) = 0

⇒ ycos
xcos

2

2

 (cos2 x – cos2y) + ysin
xsin

2

2

 (cos2x – cos2y) = 0

⇒ (cos2x – cos2y) 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

ysin
xsin

ycos
xcos

2

2

2

2

 = 0

⇒ cos2x = cos2y or tan2x = tan2y .............(i)

=
xcos
ycos

2

4

 + 
xsin
ysin

2

4

=
xcos
xcos

2

4

 + 
xsin
xsin

2

4

(using i)

= cos2x + sin2x = 1 = RHS

Example : 17
Show that 1 + sin2α + sin2β > sin α + sin β + sin α sin β

Solution
Consider the expression :

a2 + b2 + c2 – ab – bc – ca
1/2 [(a – b)2 + (b – c)2 + (c – a)2]

which is positive
⇒ (a2 + b2 + c2 – ab – bc – ca) > 0 If a, b, c are unequal

Taking a = 1, b = sin α c = sin β, we get
1 + sin2α  + sin2β – sin α – sin α sin β – sin β > 0

⇒ 1 + sin2α + sin2β > sin α + sin β + sin α sin β
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Example : 18

If 
θcos

ax
 + 

θsin
by

 = a2 – b2 and 
θ

θ
2cos

sinax
 – 

θ

θ
2sin

cosby
 = 0, then show that (ax)2/3 + (by)2/3 = (a2 – b2)2/3 .

Solution

From 
θ

θ
2cos

sinax
 – 

θ

θ
2sin

cosby
 = 0 ⇒ tan θ = 

3/1

ax
by

⎟
⎠

⎞
⎜
⎝

⎛

Substituting this value of tan θ in the other given condition.
We have : ax sec θ + by cosec θ = a2 – b2

⇒ ax θ+ 2tan1  + by θ+ 2cot1  = a2 – b2

⇒ ax 
3/2

ax
by1 ⎟

⎠

⎞
⎜
⎝

⎛+  + by 
3/2

by
ax1 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+  = a2 – b2

⇒ 3/1)ax(
ax

3/23/2 )by()ax( +  + 3/1)by(
by

 3/23/2 )by()ax( +  = a2 – b2

⇒ [(ax)2/3 + (by)2/3] 3/23/2 )by()ax( +  = a2 – b2

⇒ ((ax)2/3 + (by)2/3)3/2 = a2 – b2

⇒ (ax)2/3 + (by)2/3 = (a2 – b2)2/3

Example : 19
If a, b, c are unequal. Eliminate θ from : a cos θ + b sin θ = c and a cos2θ + 2a sin θ cos θ + b sin2θ = c.

Solution
Consider a cos θ + b sin θ = c
⇒ a2 cos θ + b2 sin2θ + 2ab sin θ cos θ = c2

⇒ (a2 – c2) cos2θ + 2ab sin θ cos θ + (b2 – c2) sin2θ = 0 ............(i)
Now consider a cos2θ + 2ab sin θ cos θ + (b2 – c2) sin2θ = c
⇒ (a – c) cos2θ + 2a sin θ cos θ + (b – c) sin2θ = 0 ............(ii)
Use cross-multiplication method on (i) and (ii).

(a2 – c2) cos2θ + 2ab sin θ cos θ + (b2 – c2) sin2θ = 0
(a – c) cos2θ + 2a sin θ cos θ + (b – c) sin2θ = 0

⇒ )cb(a2)cb(ab2
cos

22

2

−−−
θ

 = )cb)(ca()ca)(cb(
cossin

2222 −−−−−
θθ−

 = )ca(ab2)ca(a2
sin
22

2

−−−
θ

⇒ )c)(cb(ab2
cos2

−−
θ

 = )ba)(ca)(cb(
cossin

−−−
θθ−

 = )bca)(ca(a2
sin2

−+−
θ

⇒ (a – b)2 (b – c)2 (a – c)2 = 4a2c (b – c) (c – a) (a + c – b)
⇒ (a – b)2 (b – c) (c – a) = 4a2c (a + c – b)

Example : 20
If m2 + m2 + 2m = m′ cos θ = 1, n2 + n′2 + 2nn′ cos θ = 1 and mn + m′ n′ + (mm′ + m′n) cos θ = 0, then prove
that : m2 + n2 = cosec2θ

Solution
Consider the first given condition :

m2 + m′2 + 2mm′ cos θ = 1
⇒ m2 (sin2θ + cos2θ) + m′2 + 2mm′ cos θ = 1
⇒ m2 cos2θ + m′2 + 2mm′ cos θ = 1 – m2 sin2θ
⇒ (m cos θ + m′)2 = 1 – m2 sin2θ ..........(i)
Similarly using the second given condition, we can get

(n cos θ + n′)2 = 1 – n2 sin2θ ..........(ii)
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By multiplying (i) and (ii) we can prove the required relation.
(m cos θ + m′)2 (n cos θ + n′)2 = (1 – m2 sin2θ) (1 – n2 sin2θ)

⇒ [mn cos2θ + m′n′ + (m′n + mn′) cos θ]2 = 1 – m2 sin2θ – n2 sin2θ + m2 n2 sin4θ
Using the third given condition in LHS, we get :

[mn cos2θ – mn]2 = 1 – m2 sin2θ – n2 sin2θ + m2 n2 sin4θ
m2n2 sin4θ = 1 – sin2θ (m2 + n2) + m2n2 sin4θ

⇒ m2 + n2 = cosec2θ

Example : 21

If tan θ = m/n and θ = 3φ (0 < θ < π/2) show that : φsin
m

 – φcos
n

 = 22 nm2 +

Solution
tan θ = m/n

⇒ sin θ = 22 nm

m

+
 and cos θ = 22 nm

n

+

LHS of given equation = φsin
m

 – φcos
n

 = 22 nm +  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
φ
θ

−
φ
θ

cos
cos

sin
sin

= 22 nm +  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
φφ
φ−θ

cossin
)sin(

 = 2 22 nm +  φφ
φ−θ

cossin2
)3sin(

= 2 22 nm +  φφ
φ

cossin2
2sin

 = 2 22 nm +  = RHS

Example : 22
If A + B + C = π , then show that
(i) sin2A + sin2B – sin2C = 2 sin A sin B cos C
(ii) cos2A/2 + cos2 B/2 + cos2C/2 = 2 + 2 sin A/2 sin B/2 sin C/2
(iii) sin2A + sin2B + sin2C = 2 + 2 cos A cos B cos C

Solution
(i) Starting from LHS

= sin2A + sin2B – sin2C
= sin2A + sin (B + C) sin (B – C)
= sin2A + sin (π – A) sin (B – C)
= sin A [sin A + sin (B – C)
= sin A [sin (π – (B + C) + sin (B – C)]
= sin A [sin (B + C) + sin (B – C)]
= sin A [2 sin B cos C] = 2 sin A sin B cos C = RHS

(ii) LHS = cos2A/2 + (1 – sin2B/2) + cos2C/2
= 1 + (cos2A/2 – sin2B/2) + cos2C/2
= 1 + cos (A + B)/2 cos (A – B)/2 + cos2C/2
= 1 + sin C/2 cos (A – B)/2 +1 – sin2C/2
= 2 + sin C/2 [cos (A – B)/2 – sin C/2]
= 2 + sin C/2 [cos (A – B)/2 = cos (A + B)/2
= 2 + 2 sin C/2 sin A/2 sin B/2 = RHS

(iii) LHS = sin2A + sin2B + sin2C
= 1 – (cos2A – sin2B) + sin2C
= 1 – cos (A + B) cos (A – B) + sin2C
= 1 + cos C cos (A – B) + 1 – cos2C
= 2 + cos C[cos (A – B) – cos C]
= 2 + cos C [cos (A – B) + cos (A + B)]
= 2 + 2 cos C cos A cos B = RHS
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Example : 23
If A + B + C = π , Show that cos A/2 + cos B/2 + cos C/2 = 4 cos (π – A)/4 cos (π – B)/4 cos (π – C)/4.

Solution

LHS = cos 
2
A

 + cos 
2
B

 + cos 
2
C

 = 2 cos 
4

BA +
 cos 

4
BA −

 + cos 
2
C

= 2 cos 
4

C−π
 cos 

4
BA −

 + sin 
2

C−π

= 2 cos 
4

C−π
 cos 

4
BA −

 + 2 sin 
4

C−π
 cos 

4
C−π

= 2 cos 
4

C−π
 ⎥⎦

⎤
⎢⎣

⎡ −π
+

−
4

Csin
4

BAcos

= 2 cos 
4

C−π
 ⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛ −π
−

π
+

−
4

C
2

cos
4

BAcos

= 2 cos 
4

C−π
 ⎥⎦

⎤
⎢⎣

⎡ −π−−−++π
8

CBAcos
8

BCAcos2

= 4 cos 
4

C−π
 ⎥⎦

⎤
⎢⎣

⎡ −−
4

CBcos
4

CAcos

= 4 cos 
4

C−π
 cos 

4
B−π

 cos 
4

A−π
 = RHS

Example : 24

If x + y + z = xyz, then show that 2x1
x2

−
 + 

2y1
y2

−
 + 2z1

z2
−

 = 
)z1)(y1)(x1(

xyz8
222 −−−

Solution
Let x = tan A, y tan B, z = tan C

⇒ tan (A + B + C) = AtanCtanCtanBtanBtanAtan1
CtanBtanAtanCtanBtanAtan

−−−
−++

 = zxyzxy1
xyzzyx
−−−

−++

⇒ A + B + C = nπ = (n ∈ Ι) (tan θ = 0  ⇒ θ = nπ)
⇒ 2A + 2B + 2C = 2nπ
⇒ tan (2A + 2B + 2C) = tan 2nπ = 0

⇒ A2tanC2tanC2tanB2tanB2tanA2tan1
C2tanB2tanA2tanC2tanB2tanA2tan

−−−
−++

 = 0

⇒ tan 2A + tan 2B + tan 2C = tan 2A tan 2B tan 2C

⇒
Atan1

Atan2
2−

 + 
Btan1

Btan2
2−

 + 
Ctan1

Ctan2
2−

 = 
Atan1

Atan2
2−

 . 
Btan1

Btan2
2−

 . 
Ctan1

Ctan2
2−

⇒ 2x1
x2

−
 + 

2y1
y2

−

 + 2z1
z2

−
 = 

)x1)(y1)(x1(
xyz8

222 −−−
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Example : 25

If xy + yz + zx = 1, the prove that 2x1
x
+

 + 

2y1
y
+

 + 2z1
z
+

 = 

( )( )( )222 z1y1x1

2

+++

Solution
Let = tan A/2, y = B/2, z = tan C/2
⇒ tan A/2 tan B/2 + tan B/2 tan C/2 + tan C/2 tan A/2 = 1

⇒ tan ⎟
⎠

⎞
⎜
⎝

⎛ ++
2
C

2
B

2
A

 is undefined

⇒
2
A

 + 
2
B

 + 
2
C

 = 
2
π

⇒ A + B + C = π

Using the relation : sin α + sin β + sin γ – sin (α + β + γ) = 4 sin ⎟
⎠

⎞
⎜
⎝

⎛ β+α
2  sin ⎟

⎠

⎞
⎜
⎝

⎛ γ+β
2  sin ⎟

⎠

⎞
⎜
⎝

⎛ α+γ
2

Substitute α + A , β = B γ = C

⇒ sin A + sin B + sin C = 4 cos 
2
A

 cos 
2
B

 cos 
2
C

⇒

2
Atan1

2
Atan2

2+
 + 

2
Btan1

2
Btan2

2+
 + 

2
Ctan1

2
Ctan2

2+
 = 4 cos 

2
A

 cos 
2
B

 cos 
2
C

⇒ 2x1
x2

+
 + 

2y1
y2

+

 + 2z1
z2

+
 = 4 

2x1

1

+

 . 2y1

1

+  . 2z1

1

+

⇒ 2x1
x
+

 + 2y1
y
+ + 2z1

z
+

 = 
)z1)(y1)(x1(

2
222 +++

Example : 26
If A + B + C = π , the show that :
sin 3A cos3 (B – C) + sin 3B cos3 (C – A) + sin 3C cos3 (A – B) sin 3A sin 3B sin 3C

Solution
LHS = sin 3A cos3(B – C) + sin 3B cos3 (C – A) + sin 3C cos3 (A – B)

= ∑ − )CB(cosA3sin 3

= 
4
1

 ∑ −+− )]C3B3cos()CBcos(3[A3sin

= 
4
3

 ∑ ∑ −+− )C3B3cos(A3sin
4
1)CBcos(A3sin

Substitute 3A = 3π – (3B + 3C)

= 
4
3

 ∑ ∑ −++−+ )C3B3cos()C3B3sin(
4
1)CBcos()C3B3sin(

= 8
3

 ∑ ∑ +++++ ]C6sinB6[sin
8
1)]C4B2sin()C2B4[sin(

= 8
3

 (0) + 8
2

 (4 sin 3C sin 3B sin 3A) = sin 3A sin 3B sin 3C
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Example : 27
Find the values of x lying between 0 and 2 and satisfying the equation sin x + sin 3x = 0.

Solution
The given equation is sin x + sin 3x = 0

2 sin 
2

x3x +
 cos 

2
x3x −

 = 0

⇒ 2 sin 2x cos x = 0
Hence sin 2x = 0 or cos x = 0
⇒ 2x = nπ , n ∈ Ι or x = (2n + 1) π/2 , n ∈ Ι
⇒ x = nπ/2, n ∈ Ι or x = (2n + 1) π/2,  n ∈ Ι
(i) n = 0 ⇒ x = 0, π/2
(ii) n = 1 ⇒ x = π/2, 3π/2
(iii) n = 2 ⇒ x = π , 5π/2
(iv) n = 3 ⇒ x = 3π/2, 7π/2
Hence for 0 < x < 2π , the solution is :
x = π/2, π , 3π/2

Example : 28
Find the values of θ satisfying sin θ = sin α

Solution
sin θ = sin α
⇒ sin θ – sin α = 0

⇒ 2 cos 
2
α+θ

 sin 
2
α−θ

 = 0

⇒ cos 
2
α+θ

 = 0 or sin
2
α−θ

 = 0

⇒
2
α+θ

 = (2l + 1) 
2
π

or
2
α−θ

 = nπ (where l, n are integers)

θ = (2l + 1) π – α or θ = 2nπ + α
θ = (odd no.) π – α or θ = (even no.) π + α
θ = (integer) π + (–1)integer α
θ = nπ + (–1)nα ; n ∈ Ι

Example : 29
Find the values of θ satisfying cos θ = cos α in the interval 0 ≤ θ ≤ π.

Solution
cos θ = cos α
⇒ cos θ – cos α = 0

⇒ – 2 sin 
2
α+θ

 sin 
2
α−θ

 = 0

⇒ sin 
2
α+θ

 = nπ or
2
α−θ

 = nπ

⇒ θ = 2nπ – α or θ = 2nπ + α
combining the two values :

θ = 2nπ ± α ; n ∈ Ι
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Example : 30
Find the values of θ satisfying tan θ = tan α

Solution
 tan θ = tan α

⇒
θ
θ

cos
sin

 = 
α
α

cos
sin

⇒ sin θ cos α – cos θ sin α = 0
⇒ sin (θ – α) = 0
⇒ θ – α = nπ , n ∈ Ι
⇒ θ = nπ + α, n ∈ Ι
Note : The following results should be committed to memory before proceeding further.
(i) sin θ = sin α ⇒ θ = nπ + (–1)nα  n ∈ Ι
(ii) cos θ = cos α ⇒ θ = 2nπ ± α, n ∈ Ι
(iii) tan θ = tan α ⇒ θ = nπ + α , n ∈ Ι
Every trigonometric equation should be manipulated so that it reduces to any of the above results.

Example : 31
Solve the equation cos x + cos 2x + cos 4x = 0, where 0 ≤ x ≤ π

Solution
cos x + (cos 2x + cos 4x) = 0
⇒ cos x + 2 cos 3x cos x = 0
⇒ cos x (1 + 2 cos 3x) = 0
⇒ cos x = 0 or 1 + 2 cos 3x = 0
⇒ cos x = 0 or cos 3x = –1/2 = cos 2π/3
⇒ x = (2n + 1) π/2 or 3x = 2nπ ± 2π/3
⇒ x = (2n + 1) π/2, n ∈ Ι or x = 2nπ/3 ± 2π/9, n ∈ Ι
This is the general solution of the equation. To get particular solution satisfying 0 ≤ x ≤ p, we will substitute
integral values of n.
(i) n = 0 ⇒ x = π/2, ± 2π/9
(ii) n = 1 ⇒ x = 3π/2, 8π/9, 4π/9
(iii) n = 2 ⇒ x = 5π/2, 14π/9, 10π/9 (greater than π)
(iv) n = – 1 ⇒ x = –π/2, –2π/3 ± 2π/9 (less than 0)
Hence the values for 0 ≤ x ≤ p are
x = π/2, 2π/9 , 4π/9, 8π/9

Example : 32
Solve the equation sin x = cos 4x for 0 ≤ x ≤ p

Solution
sin x = cos 4x
⇒ cos 4x = cos (π/2 – x)
⇒ 4x = 2nπ ± (π/2 – x)
⇒ 4x = 2nπ + π/2 – x or 4x = 2nπ – π/2 + x
⇒ x = 2nπ/5 = π/10 or x = 2nπ/3 – π/6
(i) n = 0 ⇒ x = π/10, –π/6
(ii) n = 1 ⇒ x = π/2
(iii) n = 2 ⇒ x = 9π/10, 7π/6
(iv) n = 3 ⇒ x = 13π/10, 11π/6 (greater than π)
(v) n = – 1 ⇒ x = –3π/10, –5π/6 (less than 0)
Hence the required solution for 0 ≤ x ≤ π is : x = π/10, π/2, 9π/10

Example : 33
Solve the equation √3 sin x + cos x = 1 in the interval 0 ≤ x ≤ 2p.

Solution
For the equation of the type a sin θ + b cos θ = c,

write a sin θ + b cos θ as 22 ba +  cos (θ – α)

√3 sin x + cos x = 1
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⇒ 2(√3/2 sin x + 1/2 cos x) = 1
⇒ 2(cos π/3 cos x + sin π/3 sin x) = 1
⇒ 2 cos (x – π/3) = 1
⇒ cos (x – π/3) = cos π/3
⇒ x – π/3 = 2nπ ± π/3
⇒ x = 2nπ ± π/3 + π/3
(i) n = 0 ⇒ x = 0, 2π/3
(ii) n = 1 ⇒ x = 2π + 2π/3, 2π
(iii) n = 2 ⇒ x = 4π + 2π/3, 3π (greater than 2π)
(iv) n = – 1 ⇒ x = –4π/3, –2π (less than 0)
Hence the required values of x are 0, 2π/3, 2π

Example : 34
Solve tan θ + tan 2θ + tan 3θ = 0 for general values of θ .

Solution
Using tan (A + B), tan θ + tan 2θ = tan 3θ (1 – tan θ tan 2θ)
Hence the equation can be written as :
tan 3θ (1 – tan θ tan 2θ) + tan 3θ = 0
tan 3θ (2 – tan θ tan 2θ) = 0
⇒ tan 3θ  = 0 or tan θ tan 2θ = 2
⇒ 3θ = nπ or 2 tan2θ = 2 (1 – tan2θ)
⇒ θ = nπ/3, n ∈ Ι or tan θ = ± 1/√2
⇒ θ = nπ/3, n ∈ Ι or θ = nπ ± tan–1 1/√2

Example : 35
Solve the equation sin x + cos x = sin 2x – 1

Solution
Let t = sin x + cos x
⇒ t2 = 1 + 2 sin x cos x
⇒ sin 2x = t2 – 1
Hence the given equation is :
t = (t2 – 1) – 1
⇒ t2 – t – 2 = 0
Solving the equation, (t – 2) (t + 1) = 0
⇒ t = 2 or t = – 1
⇒ sin x + cos x = 2 or sin x + cos x = – 1
⇒ √2 cos (x – π/4) = 2 or √2 cos (x – π/4) = – 1
⇒ cos (x – π/4) = √2 or cos (x – π/4) = –1/√2
As – 1 ≤ cos θ ≤ 1, cos (x – π/4) = √2 is impossible.
⇒ cos (x – π/4) = –1/√2 is the only possibility.
⇒ cos (x – π/4) = cos (π – π/4)
⇒ x – π/4 = 2nπ ± 3π/4
⇒ x = 2nπ ± 3π/4 + π/4 is the general solution

Example : 36
Solve sin4x + cos4x = 7/2 sin x cos x

Solution
sin4x + cos4x = 7/2 sin x cos x
⇒ (sin2x + cos2x)2 – 2 sin2x cos2x = 7/2 sin x cos x
let t = 2 sin x cos x = sin 2x

⇒ 1 – 
4
t2 2

 = 
4
t7

⇒ 2t2 + 7t – 4 = 0
⇒ (2t – 1) (t + 4) = 0
⇒ t = 1/2 or t = – 4
⇒ sin 2x = 1/2 or sin 2x = – 4 (impossible)
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⇒ sin 2x = sin π/6
⇒ 2x = nπ + (–1)n π/6, n ∈ Ι
⇒ x = nπ/2 + (–1)n π/12 is the general solution.

Example : 37
Put cos 2x = 2 cos2x – 1
⇒ 3 – 2 cos x – 4 sin x – (2 cos2x – 1) + sin 2x = 0
⇒ (4 – 4 sin x) – 2 cos2x – 2 cos x + sin 2x = 0
⇒ 4(1 – sin x) – 2 (1 – sin2x) – 2 cos x (1 – sin x) = 0
⇒ (1 – sin x) (2 – 2 sin x – 2 cos x) = 0
⇒ sin x = 1 or sin x + cos x = 1
⇒ sin x = sin π/2 or √2 cos (x – π/4) = 1
⇒ x = nπ + (–1)n π/2 or x – π/4 = 2nπ ± π/4
⇒ x = nπ + (–1)n π/2 or x = 2nπ ± π/4 + π/4
⇒ x = nπ + (–1)n π/2 or x = 2nπ, 2nπ + π/2
Combining the two, we get x = 2nπ, 2nπ + π/2

Example : 38
Solve the inequality sin x + cos 2x > 1 if 0 ≤ x ≤ π/2

Solution
Let sin x = t
⇒ cos 2x = 1 – 2t2
⇒ the inequality is : t + 1 – 2t2 > 1
⇒ t – 2t2 > 0
⇒ 2t2 – t < 0
⇒ t(2t – 1) < 0
⇒ (t – 0) (t – 1/2) < 0
⇒ 0 < t < 1/2
⇒ 0 < sin x < 1/2
In 0 ≤ x ≤ π/2, this means that 0 < x < π/6 is the solution

Example : 39
Find the principal and general solution of the equation : √3/2 sin x – cos x = cos2x

Solution
√3/2 sin x – cos x = cos2x
squaring, 3(1 – cos2x) – 4 cos2x (1 + cos x)2 = 0
⇒ (1 + cos x) [3 – 3 cos x – 4 cos2x (1 + cos x)] = 0
⇒ (1 + cos x) [4 cos3x + 4 cos2x + 3 cos x – 3] = 0

(1 + cos x) [2 cos x – 1] [2 cos2x + 3 cos x + 3] = 0
The quadratic factor has no real roots
⇒ cos x = – 1 or cos x = 1/2
⇒ x = (2n – 1) π or x = 2nπ ± π/3

As we have squared the original equation, we must check whether these values satisfy the given
equation. On checking, it is found that both solutions are accepted.
⇒ x = (2n – 1) π , 2nπ ± π/3 where n ∈ Ι

Example : 40
Solve for x ; sec 4x – sec 2x = 2 ; – π ≤ x ≤ π

Solution
sec 4x – sec 2x = 2

⇒ x4cos
1

 – x2cos
1

 = 2

⇒ cos 2x – cos 4x = 2 cos 2x cos 4x
⇒ cos 2x – cos 4x = cos 6x + cos 2x
⇒ cos 6x + cos 4x = 0
⇒ 2 cos 5x cos x = 0
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⇒ cos 5x = 0 or cos x = 0
⇒ 5x = nπ + π/2 or x = nπ + π/2
⇒ x = nπ/5 + π/10 or x = nπ + π/2
Consider : x = nπ/5 + π/10 :
n = 0 ⇒ x = π/10
n = ± 1 ⇒ x = 3π/10, – π/10
n = ± 2 ⇒ x = π/2, –3π/10
n = ± 3 ⇒ x = 7π/10, –π/2
n = ± 4 ⇒ x = 9π/10, –7π/10
n = ± 5 ⇒ x = –9π/10
Consider : x = nπ + π/2
n = 0 ⇒ x = π/2
n = ± 1 ⇒ x = –π/2
These are the only values of x in [–π, π]

Example : 41
Solve the following equation for x if a is a constant. sin 3a = 4 sin a sin (x + a) sin (x – a)

Solution
sin 3α = 4 sin α (sin2x – sin2α)
⇒ 3 sin α – 4 sin2α = 4 sin α sin2x – 4 sin3α
⇒ 3 sin α – 4 sin α sin2x = 0
⇒ sin α (3 – 5 sin2x) = 0
If sin α = 0, then the equation is true for all real values of x.
If sin α ≠ 0, then 3 – 4 sin2x = 0
⇒ sin2x = sin2π/3
⇒ x = nπ ± π/3
Note : The following results are very useful
1. cos θ = 0 ⇒ θ = nπ + π/2
2. sin θ = 1 ⇒ θ = 2nπ + π/2
3. sin θ = –1 ⇒ θ = 2nπ – π/2
4. cos θ = 1 ⇒ θ = 2nπ
5. cos θ = –1 ⇒ θ = 2nπ + π
6. sin2 θ = sin2α ⇒ θ = nπ ± α
7. cos2 θ = cos2α ⇒ θ = nπ ± α
8. tan2 θ = tan2α ⇒ θ = nπ ± α

Example : 42
If tan (A – B) = 1, sec (A + B) = 2√3, calculate the smallest positive values and the most general values of
A and B.

Solution
Smallest positive values
Let A, B ∈ (0, 2π)
⇒ (A + B) > (A – B)
Now tan (A – B) = 1
⇒ (A – B) = π/4, 5π/4
sec (A + B) = 2/√3
⇒ (A + B) = π/6, 11π/6
As (A + B) > (A – B), these are two possibilities :
1. A – B = π/4 & A + B = 11π/6
2. A – B = 5π/4 & A + B = 11π/6

From (i), we get : A = 
24
25π

 and B = 
24

19π

From (ii), we get : A = 
24

37π
 and B = 

24
7π

General Values
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tan (A – B) = 1 ⇒ A – B = nπ + π/4

sec (A + B) = 3
2

⇒ A – B = nπ + π/4

Taking A – B = nπ + 
4
π

and A + B = 2kπ + 6
π

 we get :

A = 
2

)nk2( π+
 + 

24
5π

and B = 
2

)nk2( π−
 – 

24
π

Taking A – B = nπ + 
4
π

and A + B = 2kπ – 6
π

 we get :

A = 
2

)nk2( π+
 + 

24
π

and B = 
2

)nk2( π−
 – 

24
5π

Example : 43

Solve for  θ : tan ⎟
⎠

⎞
⎜
⎝

⎛ θ
π sin
2  = cot ⎟

⎠

⎞
⎜
⎝

⎛ θ
π cos
2

Solution

tan ⎟
⎠

⎞
⎜
⎝

⎛ θ
π sin
2  = tan ⎟

⎠

⎞
⎜
⎝

⎛ θ
π

−
π cos

22

⇒
2
π

 sin θ = nπ + 
2
π

 – 
2
π

 cos θ

⇒ sin θ + cos θ = 2n + 1

⇒ cos ⎟
⎠

⎞
⎜
⎝

⎛ π
−θ

4  = 2
1n2 +

As cosine lies between 1 and – 1, n = 0, – 1 are the only

Possible values of n for – 1 ≤ 2
1n2 +

 ≤ 1

⇒ cos ⎟
⎠

⎞
⎜
⎝

⎛ π
−θ

4  = ± 2
1

⇒ θ – 
4
π

 = 2kπ ± cos–1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
±

2
1

⇒ θ = 2kπ + 
4
π

 ± cos–1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
±

2
1

⇒ θ = 2kπ ± 
2
π

, 2kπ , 2kπ + π

For θ = 2kπ ± π/2, the equation becomes undefined.
Hence the solution is : θ = 2kπ , 2kπ + π
⇒ θ = mπ , where m ∈ Ι

Example : 44
If sin A = sin B and cos A = cos B, find the value of A is terms of B.

Solution

sin A – sin B ⇒ 2 cos 
2

BA +
 sin 

2
BA −

 = 0
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cos A = cos B ⇒ 2 sin 
2

BA +
 sin 

2
BA −

 = 0

Both the equation will be satisfied if sin 
2

BA −
 = 0

⇒
2

BA −
 = nπ

⇒ A = 2nπ + B where n ∈ Ι

Example : 45
Evaluate : (i) sin–1 sin 4π/3 (ii) cos–1 cos5π/4 (iii) tan–1 tan2π/3

Solution
(i) 4π/3 does not lie in the principal value branch of sin–1x. Hence sin–1 sin 4π/3 ≠ 4π/3

sin–1 sin 4π/3 = sin–1 sin (π + π/3)
= sin–1 (– sin π/3)
= sin–1 sinπ/3 = –π/3

(ii) cos–1 cos 5π/4 = cos–1 cos (π + π/4)
= cos–1 (–cos π/4)
= π – cos–1 cos π/4
= π – π/4
= 3π/4

(iii) tan–1 tan 2π/3 = tan–1 tan (π – π/3)
= tan–1 (–tan π/3)
= tan–1 tan π/3
= –π/3

Example : 46
Show that tan–1 1/3 + tan–1 1/2 = π/4

Solution
LHS = tan–1 1/3 + tan–1 1/2

= tan–1 
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−

+

2
1

3
11

2
1

3
1

⎟
⎠

⎞
⎜
⎝

⎛ < 1
2
1

3
1

Q

= tan–1 ⎟
⎠

⎞
⎜
⎝

⎛
6/5
6/5

= tan–1 1  = 
4
π

= RHS

Example : 47

Show that : cos–1 9 + cosec–1 
4
41

 = 
4
π

Solution

LHS = cos–1 9 + cosec–1 
4
41

= tan–1 9
1

 + sin–1 41
4

= tan–1 9
1

 + tan–1 5
4

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−
= −−

2
11

x1

xtanxsingsinu
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= tan–1 
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−

+

5
4

9
11

5
4

9
1

⎟
⎠

⎞
⎜
⎝

⎛ <×= 1
5
4

9
1xyQ

= tan–1 ⎟
⎠

⎞
⎜
⎝

⎛
41
41

= tan–11 = 
4
π

Example : 48
Show that :

(i) 2 tan–1 x = tan–1 2x1
x2

−
, – 1 < x < 1

(ii) 2 tan–1 x = sin–1 

2x1
x2

+

, – 1 < x < 1

(iii) 2 tan–1 x = cos–1 

2

2

x1
x1

+

−

, x > 0

Solution

(i) Let x = tan θ ,
4
π

 < θ < 
4
π

 (using – 1 < x < 1)

RHS = tan–1 
θ−

θ
2tan1

tan2
 = tan–1 tan2θ

= 2θ = 2 tan–1 x = LHS [Q 2θ ∈ (–π/2, π/2) lies in the principal value branch of tan–1x]

(ii) Let x = tanθ ⇒
4
π

 < θ < 
4
π

 (using – 1 < x < 1)

RHS = tan–1 
θ+

θ
2tan1

tan2
 = sin–1 sin 2θ

= 2θ [Q 2θ ∈ (–π/2, π/2) lies in the principal value branch of sin–1x]
= 2 tan–1x = LHS

(iii) Let x = tan θ , 0 < θ < π/2 (using x > 0)

RHS = cos–1 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

θ+

θ−
2

2

tan1
tan1

= cos–1 cos 2θ
= 2θ [Q 2θ ∈ (0, π) lies in the principal value branch of cos–1x]
= 2 tan–1x = LHS

Example : 49
Prove that

(i) tan–1 ⎟
⎠

⎞
⎜
⎝

⎛
θ+θ
θ−θ

sincos
sincos

 = 
4
π

 – θ

(ii) tan–1  ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−++

−−+
22

22

x1x1

x1x1
 = 

4
π

 – 
2
1

 cos–1 x2

Solution

(i) LHS = tan–1 ⎟
⎠

⎞
⎜
⎝

⎛
θ+θ
θ−θ

sincos
sincos

 = tan–1 ⎟
⎠

⎞
⎜
⎝

⎛
θ+
θ−

tan1
tan1

(dividing by cos θ)
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= tan–1 tan ⎟
⎠

⎞
⎜
⎝

⎛ θ−
π
4  = 

4
π

 – θ [for θ ∈ (–π/4, 3π/4)]

(ii) Put x2 = cos 2θ in LHS

LHS = tan–1 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

θ−+θ+

θ−−θ+

2cos12cos1
2cos12cos1

 = tan–1 ⎟
⎠

⎞
⎜
⎝

⎛
θ+θ
θ−θ

sincos
sincos

= tan–1 tan ⎟
⎠

⎞
⎜
⎝

⎛ θ−
π
4

= 
4
π

 – θ [for θ ∈ (–π/4, 3π/4)]

= 
4
π

 – 
2
1

 cos–1 x2 [using x2 = cos 2θ]

RHS

Example : 50

Show that : 2 tan–1 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

θ+
θ−

+
−

cos1
cos1

ba
ba

 = cos–1 
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞

⎜
⎝
⎛

θ+
θ−

⎟
⎠
⎞

⎜
⎝
⎛

+
−

+

⎟
⎠
⎞

⎜
⎝
⎛

θ+
θ−

⎟
⎠
⎞

⎜
⎝
⎛

+
−

−

cos1
cos1

ba
ba1

cos1
cos1

ba
ba1

= cos–1 ⎥
⎦

⎤
⎢
⎣

⎡
θ−−+θ++
θ−−−θ++
)cos1)(ba()cos1)(ba(
)cos1)(ba()cos1)(ba(

 = cos–1 ⎥⎦

⎤
⎢⎣

⎡
θ+

+θ
cosba

bcosa
 = RHS

Example : 51

Show that : 2 tan–1 ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛ β
−

π
⎟
⎠

⎞
⎜
⎝

⎛ α
−

π
24

tan
24

tan  = tan–1 ⎥
⎦

⎤
⎢
⎣

⎡
α+β
βα

sinsin
coscos

Solution

LHS = 2 tan–1 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

β+
β−

α+
α−

sin1
sin1

sin1
sin1

Using 
θ+
θ−

sin1
sin1

 = tan ⎟
⎠

⎞
⎜
⎝

⎛ θ
−

π
24

= tan–1 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
β+
β−

⎟
⎠
⎞

⎜
⎝
⎛

α+
α−

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
β+
β−

⎟
⎠
⎞

⎜
⎝
⎛

α+
α−

sin1
sin1

sin1
sin11

sin1
sin1

sin1
sin12

= tan–1 ⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

β−α−−β+α+
β−α− −

)sin1)(sin1()sin1)(sin1(
)sin1)(sin1(2 22

= tan–1 ⎥
⎦

⎤
⎢
⎣

⎡
β+α
βα

sin2sin2
coscos2

 = RHS
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Example : 52

Show that : sin cot–1 cos tan–1 x = 
2x
1x

2

2

+

+

Solution

Let x = tan θ ⇒ cos θ = 2x1

1

+

LHS = sin cot–1 cos θ = sin cot–1 2x1

1

+

Let 2x1

1

+
 = cot α ⇒ sin α = 

1x1

x1
2

2

++

+

⇒ LHS = sin cot–1 cos α = sin α = 2

2

x2
x1

+

+
 = RHS

Example : 53

If sin–1 2a1
n2

+
 + sin–1 2b1

b2
+

 = 2 tan–1 , then show that x = ab1
ba

−
+

Solution

The given relation is : sin–1 2a1
a2

+
 + sin–1 2b1

b2
+

 = 2 tan–1 x

⇒ 2 tan–1 a + 2 tan–1 b = 2 tan–1x

⇒ tan–1 ⎟
⎠

⎞
⎜
⎝

⎛
−
+
ab1
ba

 = tan–1 x

⇒ x = ab1
ba

−
+

Example : 54

Solve for x : tan–1 
1x2

1
+

 + tan–1 
1x4

1
+

 = tan–1 2x
2

.

Solution

Equating the tan of both sides tan ⎥⎦

⎤
⎢⎣

⎡
+

+
+

−−

1x4
1tan

1x2
1tan 11

 = tan–1 2x
2

⇒

)1x4)(1x2(
11

1x4
1

1x2
1

++
−

+
+

+  = 2x
2

⇒ 1)1x4)(1x2(
2x6

−++
+

 = 2x
2

⇒ (3x + 1) x2 = 8x2 + 6x
⇒ 3x3 – 7x2 – 6x = 0
⇒ x = 0, 3, –2/3

x = 0 and –2/3 are rejected because they don’t satisfy the equation
Note that for x = 0, RHS is undefined

⇒ the only solution is x = 3.
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Example : 55

Show that ∑
∞

=

−

++1n
2

1

nn1
1tan  = 

4
π

Solution

LHS = ∑
∞

=

−

++1n
2

1

nn1
1tan

= ∑
∞

=

−

++
−+

1n

1

n)1n(1
n1ntan

= [ ]∑
∞

=

−− −+
1n

11 ntan)1n(tan

= (tan–12 – tan–11) + (tan–13 – tan–12) + ..........
= –tan–11 + tan–1 ∞

= – 
4
π

 + 
2
π

 = 
4
π

 = RHS
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Example : 1
Prove the following results :

(i) r = (s – a) tan 
2
A

 = (s – b) tan 
2
B

 = (s – c) tan 
2
C

(ii) r1 = s tan 
2
A

, r2 = s tan 
2
B

, r3 = s tan 
2
C

(iii) r = 4R sin 
2
A

 sin 
2
B

 sin 
2
C

Solution

(i) r = s
∆

 = (s – a) )as(s −
∆

⇒ r = (s – a) tan 
2
A ⎟

⎠

⎞
⎜
⎝

⎛
∆
−

=
)as(s

2
Acotgsinu

other results follows by symmetry.

(ii) r1 = as −
∆

 = )as(s
s
−
∆

 = s tan 
2
A

Other results follow by symmetry.

(iii) sin 
2
A

 = bc
)cs)(bs( −−

; sin 
2
B

 = ca
)as)(cs( −−

 ; sin 
2
C

 = ba
)bs)(as( −−

multiply the three results to get :

⇒ sin 
2
A

 sin 
2
B

 sin 
2
C

 = abc
)cs)(bs)(as( −−−

⇒ sin 
2
A

 sin 
2
B

 sin 
2
C

 = ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ∆
s

2

 ⎟
⎠

⎞
⎜
⎝

⎛
∆R4

1

⇒ sin 
2
A

 sin 
2
B

 sin 
2
C

 = ⎟
⎠

⎞
⎜
⎝

⎛ ∆
s  ⎟

⎠

⎞
⎜
⎝

⎛
R4
1

⇒ r = s
∆

 = 4R sin 
2
A

 sin 
2
B

 sin 
2
C

Example : 2
Show that in a triangle ∆ABC : a cot A  b cot B + c cot C = 2 (R + r).

Solution

LHS = ∑  2R sin A cot A = 2R 

∑

 cos A

⇒ LHS = 2R (cos A + cos B + cos C)

⇒ LHS = 2R 

⎟
⎠

⎞
⎜
⎝

⎛ +
2
Csin

2
Bsin

2
Asin41

⇒ LHS = 2R + 8R sin 
2
A

 sin 
2
B

 sin 
2
C

⇒ LHS = 2R + 2r = RHS (using the result of last Ex.)
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Example : 3

Show that : bc
r1  + ca

r2  ba
r3  = 

r
1

 – 
R2
1

Solution

LHS = abc
∆

 ⎟
⎠

⎞
⎜
⎝

⎛
−

+
−

+
− cs

c
bs

b
as

a

LHS = abc
∆

 ⎟
⎠

⎞
⎜
⎝

⎛
−

+
−

+
− cs

c
bs

b
as

a
 + 

R2
1

 – 
R2
1

LHS = abc
∆

 ⎟
⎠

⎞
⎜
⎝

⎛
−

+
−

+
− cs

c
bs

b
as

a
 + abc

2∆
 – 

R2
1

LHS = abc
∆

 ⎟
⎠

⎞
⎜
⎝

⎛
−

++
−

++
− cs

c1
bs

b1
as

a
 – 

R2
1

LHS = abc
∆

 ⎟
⎠

⎞
⎜
⎝

⎛
−

+
−

+
− cs

c
bs

b
as

a
 – 

R2
1

LHS = abc
∆

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+
−−
−−

cs
c

)bs)(as(
)bas2(s

 – 
R2
1

LHS = ab
∆

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−−−
+−−+−
)cs)(bs)(as(

abbsassscs 22

 – 
R2
1

LHS = ab
∆

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−−−
+−

)cs)(bs)(as(
ab)s2(ss2 2

 – 
R2
1

LHS = ab
∆

 )cs)(bs)(as( −−−
∆

 – 
R2
1

LHS = 2
s

∆
∆

 – 
R2
1

 = 
r
1

 – 
R2
1

 = RHS

Example : 4
In a ∆ABC, show that :

1. c2 = (a – b)2 cos2 
2
C

 + (a + b)2 sin2 
2
C

2. a sin ⎟
⎠

⎞
⎜
⎝

⎛ +B
2
A

 = (b + c) sin 
2
A

3. (b + c) cos A + (c + a) cos B + (a + b) cos C = a + b + c
Solution

1. RHS = (a – b)2 ⎟
⎠

⎞
⎜
⎝

⎛ +
2

Ccos1
 = (a + b)2 ⎟

⎠

⎞
⎜
⎝

⎛ −
2

Ccos1

2. RHS = 
2
1

 [(a – b)2 + (a + b)2] + 
2
1

 cos C [(a – b)2 – (a + b)2]

RHS a2 + b2 + 
2
1

 cos C (–4ab) = c2 (using cosine rule)



Page # 3.

Note : Try to prove the same identity using sine rule on RHS

2. LHS = a sin ⎟
⎠

⎞
⎜
⎝

⎛ +B
2
A

 = 2R sin A sin ⎟
⎠

⎞
⎜
⎝

⎛ +B
2
A

(using sine rule)

LHS = 2R ⎟
⎠

⎞
⎜
⎝

⎛
2
Acos

2
Asin2  sin ⎟

⎠

⎞
⎜
⎝

⎛ +B
2
A

LHS = 2R sin 
2
A

 ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛ +B
2
Asin

2
Acos2

LHS = 2R sin 
2
A

 [sin (A + B) – sin (–B)]

LHS = 2R sin 
2
A

 [sin C + sin B]

LHS = sin 
2
A

 [2R sin C + 2R sin B]

LHS = sin 
2
A

 (c + b) = RHS

Note : Try to prove the same identity using RHS
3. LHS = (b + c) cos A + (c + a) cos B + (a + b) cos C

LHS = [c cos B + b cos C] + a [a cos C + c cos A] + [b cos A + a cos B]
LHS = a + b + c = RHS

Example :
In a ∆ABC, prove that (b2 – c2) cot A + (c2 – a2) cot B + (a2 – b2) cot C = 0

Solution
Starting from LHS

= ∑ − )cb( 22  cot A

= 4R2 ∑ − )CsinB(sin 22  cot A (using sine rule)

= 4R2 ∑ −− )CBsin()CBsin(  cot A

= 4R2 ∑ −
Asin
Acos)CBsin(Asin

= –2R2 ∑ −+ )CBsin()CBcos(2 (using cos A = – cos (B + C)

= – 2R2 ∑ − )C2sinB2(sin

= – 2R2 [(sin 2B – sin 2C) + (sin 2C – sin 2A) + (sin 2A – sin 2B)]
= 0 = RHS

Example : 6

In a ∆ABC, show that : (a + b + c) ⎥⎦

⎤
⎢⎣

⎡ +
2
Btan

2
Atan  = 2c cot 

2
C

Solution
Starting from LHS

= (a + b + c) ⎥⎦

⎤
⎢⎣

⎡
∆

−−
+

∆
−− )as)(cs()cs)(bs(

= ⎟
⎠

⎞
⎜
⎝

⎛
∆
++ cba

 (s – c) [s – b + s – a]
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= ⎟
⎠

⎞
⎜
⎝

⎛
∆
− cs

 (a + b + c) (c)

= 
∆
− )cs(

 = 2c ⎥⎦

⎤
⎢⎣

⎡
∆
− )cs(s

 = 2c cot 
2
C

 = RHS

Example : 7
In a ∆ABC, prove that :
(i) r1 + r2 + r3 – r = 4R
(ii) rr1 + rr2 + rr3 = ab + bc + ca – s2

Solution
(i) Starting from LHS

= ⎟
⎠

⎞
⎜
⎝

⎛
−
∆

+
−
∆

bsas  + ⎟
⎠

⎞
⎜
⎝

⎛ ∆
−

−
∆

scs

= ∆ )bs)(as(
)bas2(

−−
+−

 + )cs(s
)css(

−
−−∆

= )bs)(as(
c
−−

∆
 + )cs(s

c
−
∆

= )cs)(bs)(as(s
c

−−−
∆

 [ss – c) + ) s – a) (s – b)]

= 
∆
c

 [2s2 – 2s2 + ab] = 
∆

abc
 = 4 ⎟

⎠

⎞
⎜
⎝

⎛
∆4

abc
 = 4R

(ii) Starting from LHS

= 
s

2∆
 ⎥⎦

⎤
⎢⎣

⎡
−

+
−

+
− cs

1
bs

1
as

1

= 
s

2∆
 ⎥

⎥

⎦

⎤

⎢
⎢

⎣

⎡

−−−

−−∑
)cs)(bs)(as(

)cs)(bs(

= 3s2 – 2s (a + b + c) + bc + ca + ab
= 3s2 – 4s2 + bc + ca + ab
= ab + bc + ca – s2 = RHS

Example : 8

In a ∆ABC, show that : 222

2

cba
)cba(

++

++
 = 

CcotBcotAcot
2
Ccot

2
Bcot

2
Acot

++

++

Solution
Starting from RHS

= 

∆
−+

+
∆
−+

+
∆
−+

∆
−

+
∆
−

+
∆
−

4
cba

4
bac

4
acb

)cs(s)bs(s)as(s

222222222  = 222 acb
]csbsas[s4

++

−+−+−

= 222 cba
)s2s3(s4

++

−
 = 222

2

cba
s4
++

 = 222

2

cba
)cba(

++

++
 LHS
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Example : 9
If a2 , b2 , c2  in a ∆ABC are in A.P. Prove that cot A, cot B and cot C are also in A.P.

Solution
cot A, cot B and cot C are in A.P. if :
cot A – cot B = cot B – cot C

⇒ Asin
Acos

 – Bsin
Bcos

 = Bsin
Bcos

 – Csin
Ccos

⇒ BsinAsin
)ABsin( −

 = CsinBsin
)BCsin( −

⇒ sin (B – A) sin C = sin (C – B) sin A
⇒ sin (B – A) sin (B + A) = sin (C – B) sin (C + B)
⇒ sin2B – sin2A = sin2C – sin2B

⇒ 2

2

R4
b

 – 2

2

R4
a

 = 2

2

R4
c

 – 2

2

R4
b

(using sine rule)

⇒ b2 – a2 = c2 – b2 ⇒ ab2 = a2 + c2

⇒ a2 , b2 , c2 are in A.P.
⇒ cot A, cot B and cot C are also in A.P.

Example : 10
If x, y, z are respectively the perpendiculars from circumcentre to the sides of the triangle ABC prove that

x
a

 + y
b

 + 
z
c

 = xyz4
abc

Solution
We known that : x = R cos A, y = R cos B, z = R cos C
Consider LHS :

= AcosR
a

 + BcosR
b

 + CcosR
c

= AcosR
AsinR2

 + BcosR
BsinR2

 = CcosR
CcosR2

= (tan A + tan B + tan C)
= (tan A tan B tan C) (Q A + B + C = π)

= 2 ⎥⎦

⎤
⎢⎣

⎡
Ccos
Csin

Bcos
Bsin

Acos
Asin

= 3R8
2

 ⎥⎦

⎤
⎢⎣

⎡
CcosBcosAcos

abc
(using sine rule)

= 
4
1

 ⎥
⎦

⎤
⎢
⎣

⎡
)CcosR)(BcosR)(AcosR(

abc
 = 

4
1

 xyz
abc

 = RHS

Example : 11
Ι is the incentre of ∆ABC and P1 , P2 , P3 are respectively the radii of the circumcircle of DΙBC, ∆ΙCA and
ΙAB, prove that : P1 P2 P3 = 2R2 r.

Solution

∠BΙC = π – 
2
1

 (B + C) = π – 
2
1

 (π – A) = 
2
π

 + 
2
A

Circumradius of ∆ABC is :

P1 = CBsin2
BC

Ι∠
 = 

⎟
⎠
⎞

⎜
⎝
⎛ +
π

2
A

2
sin2

BC
 = 

2
Acos2

a



Page # 6.

Similarly we can show that : P2 = 

2
Bcos2

b
and P3 = 

2
Ccos2

c

⇒ P1P2P3 = 

2
Ccos

2
Bcos

2
Acos8

abc
 = 

2
Ccos

2
Bcos

2
Acos8

CsinBsinAsinR8 2

= 

2
Ccos

2
Bcos

2
Acos

2
Ccos

2
Csin

2
Bcos

2
Bsin

2
Acos

2
AsinR8 3

 = 8R3 sin 
2
A

 sin 
2
B

 sin 
2
C

= 2R2 r = RHS

Example : 12
(Ptolemy Theorem) If ABCD is cyclic quadrilateral, show that AC . BD = AB . CD + BC . AD

Solution
Let AB = a, BC = b, CD = c, DA = d
using cosine rule in ∆ABC and ∆ADC, we get :

AC2 = a2 + b2 – 2ab cos B
AC2 = c2 + d2 – 2cd cos D

and B + D = π
⇒ cos B + cos D = 0
⇒ AC2 (cd + ab) = (a2 + b2) cd + (c2 + d2) ab

⇒ AC2 = 
abcd

)abdcdb()abccda( 2222

+
+++

Similarly by taking another diagonal BD, we can show that :

BD2 = bcda
)cabd)(cdba(

+
++

Multiplying the two equations
⇒ (AD . BD)2 = (ac + bd)2

⇒ AC . BD = ac + bd
⇒ AC . BD = AB . CD + BC . AD

Example : 13

Show that : ⎥⎦

⎤
⎢⎣

⎡ +
2
Bcot

2
Acot  ⎥⎦

⎤
⎢⎣

⎡ +
2
Asinb

2
Bsina 22

 = c cot 
2
C

Solution
Taking LHS :

= ⎥⎦

⎤
⎢⎣

⎡
∆
−

+
∆
− )bs(s)as(s

  ⎥⎦

⎤
⎢⎣

⎡ −−
+

−−
bc

)cs)(bs(b
ca

)as)(cs(a

= 
∆
s

 [2s – a – b] ⎟
⎠

⎞
⎜
⎝

⎛ −
c

cs
 (2s – a – b)

= c
)cs(s

∆
−

 c2 = c 
∆
− )cs(s

 = c cot 
2
C

 = RHS
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Example : 14
In a ∆ABC, show that a3 cos (B – C) + b3 cos (C – A) + c3 cos (A – B) = 3 abc

Solution

Given expression = ∑ − )CBcos(a3

= ∑ − )CBcos()AsinR2(a2

= R ∑ −+ )CBcosCBsinR2(a2

= R ∑ + )C2sinB2(sina2

= 2R ∑ ++ )CcosCsinBsinB(sina2  = ∑ + )CcoscBcosb(a2

= a2 (b cos B + Ccosc ) + b2 (c cos C + a cos A) + c2 ( Acosa  + b cos B)
= ab (a cos B + b cos A) + ac (a cos C + a cos A) + bc (b cos C + c cos B)
= abc + acb + bca (using projection formula)
= 3abc = RHS

Example : 15

If the sides a, b, c of a ∆ABC are in A.P., then prove that cot 
2
A

, cot 
2
B

 and cot 
2
C

 are also in A.P.

Solution
a, b, c are in A.P. ⇒ a – b = b – c
⇒ sin A – sin B = sin B – sin C

⇒ 2 cos 
2

BA +
 sin 

2
BA −

 = 2 cos 
2

CB +
 sin 

2
CB −

⇒ sin 
2
C

 sin 
2

BA −
 = sin 

2
A

 sin 
2

CB −

⇒
2
Bsin

2
Asin

2
B

2
Asin ⎟

⎠
⎞

⎜
⎝
⎛ −

 = 
2
Csin

2
Bsin

2
C

2
Bsin ⎟

⎠
⎞

⎜
⎝
⎛ −

⇒ cot 
2
B

 – cot 
2
A

 = cot 
2
C

 – cot 
2
B

⇒ cot 
2
A

, cot 
2
B

, cot 
2
C

 are in A.P.

Example : 16

In a ∆ABC, prove that A = B if : a tan A + b tan B = (a + b) tan ⎟
⎠

⎞
⎜
⎝

⎛ +
2

BA

Solution
Rearranging the terms of the given expression as follows :

⇒ a tan A – a tan 
2

BA +
 – b tan 

2
BA +

 – b tan B

⇒
2

BAcosAcos

2
BAAsina

+

⎟
⎠
⎞

⎜
⎝
⎛ +

−

 = 
Bcos

2
BAcos

B
2

BAsinb

+

⎟
⎠
⎞

⎜
⎝
⎛ −

+
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⇒
Acos

2
BAsinAsinR2 ⎟
⎠
⎞

⎜
⎝
⎛ −

 = 
Bcos

2
BAsinBsinR2 ⎟
⎠
⎞

⎜
⎝
⎛ −

⇒ sin ⎟
⎠

⎞
⎜
⎝

⎛ −
2

BA
 [tan A – tan B] = 0

⇒ sin ⎟
⎠

⎞
⎜
⎝

⎛ −
2

BA
 = 0 or tan A – tan B = 0

⇒ A = B

Example : 17
If the sides of a triangle are in A.P. and the greatest angle exceeds the smallest angle by α , show that the

sides are in the ratio 1 – x : 1 : 1 + x; where x = 
α−
α−

cos7
cos1

Solution
Let A > B > C
⇒ A – C = α and ab = a + c
We will first find the values of sin B/2 and cos B/2
2b = a + c
⇒ 2 sin B = sin A + sin C

⇒ 4 sin 
2
B

 cos 
2
B

 = 2 sin 
2

CA +
 cos 

2
CA −

⇒ 4 sin 
2
B

 cos 
2
B

 = 2 cos 
2
B

 cos 
2
α

⇒ sin 
2
B

 = 
2
1

 cos 
2
α

⇒ sin 
2
B

 = 22
cos1 α+

⇒ cos 
2
B

 = 
2
Bsin1 2−  = 

22
cos7 α−

...........(i)

Consider

c
a

 = Csin
Asin

(using sine rule)

⇒ ca
ca

−
+

= CsinAsin
CsinAsin

−
+

⇒ ca
ca

−
+

 = 

2
cAsin

2
CAcos2

Bsin2
−+

⇒ ca
ca

−
+

 = 
2

sin
2
Bsin2

2
Bcos

2
Bsin22

α

⎟
⎠
⎞

⎜
⎝
⎛

⇒ ca
ca

−
+

 = 2 2/sin
2/Bcos

α
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⇒ ca
ca

−
+

 = 2/sin
22

cos72

α

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ α−

(using (i))

⇒ ca
ca

−
+

 = 
α−

α−

cos1
cos7

⇒ ca
ca

−
+

 = 
x
1

⇒ c
a

 = 
x1
x1

−
+

⇒
x1

a
+

 = 
x1

c
−

⇒
x1

a
+

 = 
x1

c
−

 = 
2

ca +

⇒
x1

a
+

 = 
x1

c
−

 = 
2
b2

⇒
x1

a
+

 = 
1
b

 = 
x1

c
−

Example : 18

∆ is the mid point of BC in a ∆ABC. If AD is perpendicular to AC, show that : cos A cos C = 
ac3

)ac(2 22 −

Solution
The value of cos C can be found by cosine rule in ∆ABC or ∆ADC

From ∆ABC : cos C = 
ab2

cba 222 −+

From ∆ADC : cos C = 2/a
a

⇒ a
b2

 = 
ab2

cba 222 −+

⇒ b2 = 
3

ca 22 −
(i)

= LHS = cos A cos C = ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −+
bc2

acb 222

 ⎟
⎠

⎞
⎜
⎝

⎛
2/a

b

= 
ac

acb 222 −+
 = 

ac

ac
3

ca 22
22

−+
−

(using (i))

= 
ac3

)ac(2 22 −
 = RHS
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Example : 19
Let O be a point inside a ∠ABC such that ∠OAB = ∠OBC = ∠OCA = ω , Show that
(i) cos ω = cot A + cot B + cot C
(ii) cosec2ω = cosec2A + cosec2B + cosec2C

Solution
Apply the sine rule in ∆OBC

⇒ a
OB

 = )Csin(
)csin(
ω−+ω−π

ω−

⇒ a
OB

 = Csin
)Csin( ω−

..........(i)

Applying sine rule in ∆OAB and proceeding similarly :

⇒ c
OB

 = Bsin
sinω

Divide (i) by (ii) to get :

a
c

 = Csinsin
Bsin)Csin(

ω
ω−

 (sine rule in ∆ABC)

⇒ BsinAsin
Csin

 = Csinsin
)Csin(

ω
ω−

⇒ BsinAsin
)BAsin( +

 = Csinsin
)Csin(

ω
ω−

⇒ cot B + cot A = cot ω – cot C
⇒ cot ω = cot A + cot B + cot C
(ii) Squaring the above result :

cot2ω = (cot A + cot B + cot C)2

⇒ cosec2ω – 1 = ∑  cot2A + 2 ∑ cot A cot B

⇒ cosec2ω – 1 = 

∑
(cosec2A – 1) + 2 (Q in a ∆ 

∑
 cot A cot B = 1)

⇒ cosec2ω = 

∑

 cosec2A – 3 + 2

⇒ cosec2ω = cosec2A + cosec2B + cosec2C

Example : 20
For a triangle ABC, it is given that : cos A + cos B + cos C = 3/2. Prove that the triangle is equilateral.

Solution
Consider cos A + cos B + cos C = 3/2

⇒

bc2
acb 222 −+

 + 
ca2

bac 222 ++
 + 

ab2
cba 222 ++

 = 
2
3

⇒ 2(b2 + c2 – a2) + b (c2 + a2 – b2) + c (a2 + b2 + c2) = 3abc
⇒ a(b2 + c2) + b(c2 + a2) + c(a2 + b2) = a3 + b3 + c3 + 3abc
⇒ a(b2 + c2 – 2bc) + b (c2 + a2 – 2ac) + c (a2 + b2 – 2ab) = a3 + b3 – 3abc
⇒ a(b – c)2 + b(c – a)2 + c(a – b)2 – 1/2 (a + b + c) [(b – c)2 + (c – a)2 + (a – b)2] = 0
⇒ (b – c)2 (b + c – a) + (c – a)2 (c + a – b) + (a – b)2 (a + b – c) = 0
⇒ Q sum of two sides > third side
⇒ All terms in LHS are non-negative
⇒ each term = 0
⇒ b – c = c – a = a – b = 0
⇒ a = b = c
⇒ ∆ABC is a equilateral.
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Example : 21
If a = 100, c = 100 √2 and A = 30º, solve the triangle.

Solution
a2 = b2 + c2 – 2bc cos A
b2 – 2b (100 √2) cos 30º + (100√2)2 – 1002 = 0
b2 – 100√6 b + 10000 = 0

b = 
2

21006100 ±
 = 250  ( )13 ±

b1 = 50√2 (√3 – 1), b2 = 50√2 (√3 + 1)

sin C = a
Asinc

 = 
100

º30sin2100
 = 2

1

C1 = 135º and C2 = 45º
B1 = 180 – (135º + 30º) = 15º
B2 = 180 – (45º + 30º) = 105º

Example : 22
In the ambiguous case, if the remaining angles of the triangle formed with a, b and A be B1 , C1 and B2 , C2,

then prove that : 
1

2

Bsin
Csin

 + 
2

2

sin
Csin

 = 2 cos A.

Solution

sin B1 – sin B2 = a
Asinb

(using sine rule)

sin C1 = a
Asinc1  and sin C2 = a

Asinc2

⇒ LHS = 

a
Asinb

a
Asinc1

 + 

a
Asinb

a
Asinc2

⇒ LHS = b
cc 21 +  = b

Acosb2
 = 2 cos A

Example : 23
In a ∆ABC; a, c, A are given and b1 = 2b2 , where b1 and b2 are two values of the third side : then prove that:

3a = Asin81c 2+

Solution
a2 = b2 + c2 – 2bc cos A
consider this equation as a quadratic in b.
⇒ b2 – (2c cos A) b + c2 – a2 = 0
⇒ b1 + b2 = 2c cos A
and b1 – b2 = c2 – a2

and b1 = 2b2
⇒ 3b1 = 2c cos A and 2b1

2 = c2 – a2

⇒ 2 
2

3
Acosc2
⎟
⎠

⎞
⎜
⎝

⎛
 c2 – a2

⇒ 8c2 cos2A = 9c2 – 9a2

⇒ 8c2 (1 – sin2A) = 9c2 – 9a2

⇒ 9a2 = c2 + 8c2 sin2A

⇒ 3a = c Asin81 2+
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Example : 24
A man observes, that when he moves up a distance c meters on a slope, the angle of depression of a
point on the horizontal plane from the base of the slope is 30º; and when he moves up further a distance
c meters the angle of depression of that point is 45º. Obtain the angle of elevation of the slope with the
horizontal.

Solution
Let the point A be observed from Q and R
⇒ PQ = QR = c
Apply m – n theorem in ∆APR. Q divides PR in ratio c : c
⇒ (c + c) cot (θ – 30º) = c cot 15º – c cot 30º

⇒ 2 cot (θ – 30º) = 2 + 33 −
⇒ 2 cot (θ – 30º) = 2
⇒ cot (θ – 30º) = 1
⇒ θ – 30º = 45º ⇒ θ = 75º

Example : 25
A vertical pole (more than 100 ft high) consists of two portions, the lower being one third of the whole. If the
upper portion subtends an angle tan–1 (1/2) at a point in the horizontal plane through the foot of the pole
and at a distance of 40ft from it, find the height of the pole.

Solution
Let PQ be the tower and R be the point dividing PQ in 1 : 2
Angle subtended at A = α = tan–11/2

⇒ α = tan–1 
AP
PQ

 – tan–1 
AP
PR

⇒ tan–1 
2
1

 = tan–1 40
h

 – tan–1 40
3/h

⇒
2
1

 = 

4800
h1

120
h

40
h

2
+

−

⇒ 1 + 
4800
h2

 = 20
h

 – 60
h

⇒ h2 – 160 h + 4800 = 0
⇒ h = 40, 120
⇒ h = 120 ft. (as h > 100ft)

Example : 26
A 2 metre long object is fired vertically upwards from the mid-point of two locations A and B, 8 metres
apart. The speed of the object after t seconds is given by ds/dt = 2t + 1 m/s. Let α and β be the angles
subtended by the object at A and B respectively after one and two seconds. Find the value of cos (α – β).

Solution
At t = 1 s :

OP = s = ∫ +
1

0

)1t2(  dt = 2m

⇒ α = tan–1 ⎟
⎠

⎞
⎜
⎝

⎛ +
OA

PQOP
 – tan–1 ⎟

⎠

⎞
⎜
⎝

⎛
OA
OP

⇒ α = tan–1 ⎟
⎠

⎞
⎜
⎝

⎛ +
4

22
 – tan–1 ⎟

⎠

⎞
⎜
⎝

⎛
4
2
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⇒ tan α = 3
1

At t = 2 s :

OP = ∫ +
2

0

)1t2(  dt = 6m.

⇒ β = tan–1 ⎟
⎠

⎞
⎜
⎝

⎛ +
4

26
 – tan–1 ⎟

⎠

⎞
⎜
⎝

⎛
4
6

⇒ tan β = 2/3.21
2/32

+
−

⇒ tan β = 8
1

⇒ tan α = 3
1

 and tan β = 8
1

⇒ sin α = 10
1

, cos α = 10
3

⇒ sin β = 65
1

, cos β = 65
8

⇒ cos (α – β) = cos α cos β + sin α sin β = 10
3

 65
8

 + 10
1

 65
1

 = 26
5

Example : 27
A man observes two objects in a straight line in the west. On walking a distance c to the north, the object
subtend as angle α in front of him and on walking a further distance of c to the north, they subtend an

angle β . Prove that the distance between the objects is : α−β cotcot2
c3

Solution
Let x = distance between objects A and B.
y = distance of B from initial position of man.
The man starts from O and observes angle α and β at P and Q respectively as shown.

α = tan–1 c
yx +

 – tan–1 c
y

β = tan–1 c2
yx +

 tan–1 c2
y

⇒ tan α = 

2

2

c
yxy1

c
y

c
yx

+
+

−
+

 = 22 yxyc
ac

++

⇒ tan β = 

2

2

c4
yxy1

c2
y

c2
yx

+
+

−
+

 = 22 yxyc4
xc2

++
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By eliminating (xy + y2), we can find x.
Equate values of (xy + y2) from the two equations.

⇒
αtan

xc
 – c2 = βtan

xc2
 – 4c2

⇒ xc (cot α – 2 cot β) = – 3c2

⇒ x = α−β cotcot2
c3

Example : 28
A right circular cylinder tower of height h and radius r stands on a horizontal lane. Let A be a point in the
horizontal plane and PQR be the semi-circular edge of the two of the tower such that Q is the point in it
nearest A. The angles of elevation of the point P and Q from A are 45º and 60º respectively. Show that :

r
h

 = 
2

)51(3 +

Solution
Let P′, Q′, R′ be the projection of P, Q, R in the base of the lower. Hence PP′, QQ′, RR′ are vertical lines.
From ∆AQQ′ AQ′ = h cot 60º
From ∆APP′ AP′ = h cot 45º
If O is the centre of the circular base of the lower, triangle ∆AOP′  is right angled

(h cot 60º + t)2 + r2 = (h cot 45º)2

⇒
3
h2

 + r2 + 3
hr2

 + r2 = h2

⇒ 2h2 – 2 3 hr – 6r2 = 0

⇒
r
h

 = 
4

481232 ++
(taking only position values of 

r
h

)

⇒
r
h

  = 
2

)31(3 +

Example : 29
From a point on the horizontal plane, the elevation of the top of the hill is α. After walking a metres towards
the summit up a slope inclined at an angle β to the horizontal, the angle of elevation is γ. Find the height
of the hill.

Solution
Let PQ = h = height of the hill.
P is the top of the hill (summit)
At A, on the ground level, elevation of P is α
at B(AB = a) elevation of P is γ . AB is inclined at β to the horizontal
Let NQ = y
from ∆PAQ : AQ = h cot α
from ∆PBN : BN = (h – y) cot γ
from ∆BAM : AM = a cos β
BM = y = a sin β
But AQ = AM = BM
⇒ h cot α = a cos β + (h + y) cot γ
⇒ h cot α = a cos β + (h – a sin α) cot γ

⇒ h = γ−α
γβ−β

cotcot
cotsinacosa

⇒ h = αγ−αγ
αγβ−γαβ

sincoscossin
]sincossinsinsin[cos2
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⇒ h = )sin(
)sin(sina

α−γ
β−γα

Example : 30
Due south of a tower which is leaving towards north, there are two  stations at distances x, y respectively
from its foot. If α and β are the angles of elevation of the top of the tower at these station respectively,

show that the inclination of the tower to the horizontal is given by : cot–1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

β−α
xy

cotxcoty

Solution
Let PQ be the tower and θ be its inclination with the horizontal. At A, elevation of the top is α and at B, the
elevation is β
Let PM is perpendicular to the ground and PM = h
from ∆PQM : MQ = h cot θ
from ∆PAM : AM = h cot α
from ∆PBM : BM = h cot β
⇒ AM – QM = x ⇒ h cot α – h cot = x ............(i)
⇒ BM – QM = y ⇒ h cot β – h cot θ = y ............(ii)
dividing (i) by (ii), we get

⇒ θ−β
θ−α

cotcot
cotcot

 = y
x

⇒ cot θ = xy
cotxcoty

−
β−α

⇒ θ = cot–1 ⎥
⎦

⎤
⎢
⎣

⎡
−

β−α
xy

cotxcoty

Example : 31
The width of a road is b feet. On one side of the road, there is a pole h feet high. On the other side, there
is a building which subtends an angle θ at the top of the pole. Show that the height of the building is

θ+θ
θ+

sinhcosb
sin)hb( 22

.

Solution
Let PQ = y be the height of the building
Let AB = h be the height of the pole.
Let ∠QAB = α = ∠AQP
from ∆AOB :

AQ = 22 hb + and sin α = 22 hb

b

+
, cos α = 22 hb

h

+

in ∆APQ
∠APQ = π = (θ + α)
using the sine rule in this triangle

θsin
y

 = APQsin
AQ
∠

⇒
θsin

y
 = 

)sin(
hb 22

α+θ−π

+

⇒ y = 
αθ+αθ

θ+
sincoscossin

sinhb 22
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⇒ y = 
θ

+
+θ

+

θ+

cos
hb

bsin
hb

h
sinhb

2222

22

⇒ y = 
θ+θ
θ+

cosbsinh
sin)hb( 22

Example : 32
The angle of elevation of a tower at a point A due south of it is 30º. AT a point b due east of A, the elevation

is 18º. If AB = a, show that the height of the tower is : 
522

a

+

Solution
Let PQ = h be the height of the tower.
At A, due to south of it, the elevation is ∠PAQ = 30º
At B, due east of A, the elevation is ∠PBQ = 18º
from ∆PAQ : AQ = h cot 30º
from ∆PBO : BQ = h cot 18º
Now consider the right angled triangle ∆AQB in the horizontal plane :
AQ2 + AB2 = BQ2

h2 cot2 30º + a2 = h2 cot2 18º

⇒ h = 
º30cotº18cot

a
22 −

we have cot2 30º = 3 and cot 18º = 5 + 2√5 (try to calculate it yourself)

⇒ h = 
522

a

+

Example : 33
A circular plate of radius a touches a vertical wall. The plate is fixed horizontally at a height b above the
ground. A lighted candle of length c stands vertically at the centre of the plate. Prove that the breadth of

the shadow thrown on the wall where it meets the horizontal ground is : c
a2

 bc2b2 +

Solution
Let r be the radius of the circle formed by the shadow of the plate on the ground
Length of candle = PQ = c

a
r

 + c
bc +

⇒ r = c
a

 (c + b)

let AB be the shadow cut by the vertical wall.

⇒ AB =  22 ar −  = 2 22
2

2
a)bc(

c
a

−+

⇒ AB = c
a2

 22 c)bc( −+  = c
a2

 bc2b2 +
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Example : 34
A man standing south of a lamp-post observes his shadow on the horizontal plane to be 24 feet long. On
walking eastward a distance of 300 feet, he finds that his shadow is now 30 feet. If his height is 6ft, find the
height of the lamp above the horizontal plane.

Solution
Let PQ be the lamp-post and AB be the man in his initial position. He moves from AB to A′B′.
⇒ AA′ = 300ft and AX = 24ft
initial length of the shadow = AX = 24ft.
final length of the shadow = A′Y′ = 30ft
∆QXP ~ ∆BXA

⇒
AB
PQ

 = 
AX
PX

⇒ 6
h

 = 
24

PA24 +

⇒ PA = 4 h – 24
∆QYP ~ D′YA′

⇒
BA

PQ
′′
 = 

YA
PY
′

⇒ 6
h

 = 30
AP30 ′+

⇒ PA′ = 5h – 30
Apply Pythagoras Theorem in ∆PAA′ :
⇒ PA2 + AA′2 = PAα

⇒ (4h – 24) + 3002 = (5h – 30)2

⇒ 9 (h – 6)2 = 3002

⇒ h = 106 ft.

Example : 35
An object is observed from three points A, B, C in the same horizontal line passing through the base of
object. The angle of elevation at B is twice and at C is thrice that at A. If AB = a, BC = b, prove that the

height of the object is : b2
a

 )ab3)(ba( −+ .

Solution
Let PQ be tower of height h.
Let θ , 2θ and 3θ be the angles of elevations of Q at A, B and C respectively
∆QAB is isosceles ⇒ QB = a

from ∆PQC; QC = 
θ3sin

h

Applying sine rule in ∆QBC :

⇒ )3sin(
a

θ−π  = 
θsin

b
 = 

θ
θ

2sin
3sin/h

⇒
θ3sin

a
 = 

θsin
b

 = 
θθ 2sin3sin

h

⇒
θ3sin

a
 = 

θsin
b

⇒ a = b (3 – 4 sin2θ)
⇒ sin2θ = 3b – a

⇒ cos2θ = 1 – ⎟
⎠

⎞
⎜
⎝

⎛ −
b4

ab3
 = b4

ab +

⇒
θ3sin

a
 = 

θθ 2sin3sin
h

⇒ h = a sin 2θ
⇒ h = 2a sin θ cos θ
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⇒ h = 2a b4
ab3 −

 b4
ab +

⇒ h = b2
a

 )ab)(ab3( +−

Example : 36
A flagstaff on the top of a tower is observed to subtend the same angle α at two points on a horizontal
plane, which lie on a line passing through the centre of the base of tower and whose distance from one
another is 2a and angle β at a point half-way between them. Prove that the height of flagstaff is :

a sin α )sin(cos
sin2

α−βα
β

Solution
Let PQ be the tower and QR be the flagstaff. Let QR = 2h and PN = y
QR subtends α at A and B (where N is the mid-point of QR)
⇒ Q, R, A, B are concyclic. Let O be the centre of circle passing through these points.
⇒ ∠POQ = 2α (angle subtended at centre is double)
from ∆NOR : ON = h cot α

OR = radius = h cosec α
Let M be the mid-point of AB where QR subtends β
Let PM = x = ON
⇒ x = h cot α ...........(i)
from ∆OBM : OM2 = OB2 – a2 = h2 cosec2α – a2

⇒ y2 = h2 cosec2α – a2 ...........(ii)

Now β = tan–1 
PM
PR

 – tan–1 
PM
PQ

 = tan–1 
x

hy +
 = tan–1 

x
hy −

⇒ tan β = 

2

22

x
hy1

x
hy

x
hy

−
+

−
−

+

⇒ tan β = 222 hyx
hx2
−+

From (i), (ii) and (iii), we will eliminate x and y to get h.
⇒ tan β (h2 cot2α + h2 cosec2α – a2 – h2) = 2h (h cot α)
⇒ tan β (2h2 cot2α – a2) = 2h2 cot α

⇒ h2 = 
α−αβ

β

cot2cottan2
tana
2

2

 = 
ααβ−αβ

αβ

sincoscos2cossin2
sinsina

2

22

⇒ h2= )sin(cos2
sinsina 22

α−βα
αβ

⇒ h = a sin α )sin(cos2
sin

α−βα
β

⇒ height of flagstaff = 2h = a sin α )sin(cos
sin2

α−βα
β


