Hyper Mesh-Time Duration-60 Hours

Hyper Mesh Window
The Files Panel
The Collectors Panel
Default HyperMesh Files

Creating an FEA Model

Creating, Solving, and Analyzing an FEA Model

Retrieving a Hyper Mesh Database

Creating Material Collectors

Creating and Editing Component Collectors

Creating 2-D Elements

Creating 3-D Elements with the Line Drag Panel

Cleaning up the Model

Creating Load Collectors

Applying Constraints to the Model

Creating Forces

Creating Load Steps

Geometry Clean Up and Tetra meshing

Geometry Cleanup

Importing and observing the model

Cleaning up geometry

Surface Meshing

Checking the Element Quality and Tetra meshing

Cleaning up and verifying the model

Chapter:1 Auto meshing

Exercise 1.1: Model Preparation

Exercise 1.2: Using the Automesh Panel / Interactive Mode

Exercise 1.3: Using the Automesh Module / Density Sub-panel

Exercise 1.4: Using the Automesh Module / Algorithm & Checks Sub-panels

Exercise 1.5: Using the Automesh Module/Type and Biasing Sub-panel

Exercise 1.6: Equivalencing Nodes

Exercise 1.7: Using chordal

Exercise 1.8: Understanding mesh parameters.

Exercise 1.9: Using the Automesh Panel / Automatic Mode

Exercise 1.10: Remeshing surfaces

Chapter: 2:Creating a 2-D Mesh

- Exercise 2.1: Importing IGES Data
- Exercise 2.2: Setting up Material Properties
- Exercise 2.3: Creating Component Collectors

2-D Modeling

- Exercise 2.4: Editing Geometry
- Exercise 2.5: Trimming A Surface
- Exercise 2.6: Using the Spin Panel
- Exercise 2.7: Meshing a Surface
- Exercise 2.8: Using the Ruled Panel
- Exercise 2.9: Using the Skin Panel
- Exercise 2.10: Using the Spline Panel
- Exercise 2.11: Checking Elements and Models
- Exercise 2.12: Splitting Elements
- Exercise 2.13: Checking Normals

Chapter 3: Creating a 3-D Mesh

- Exercise 3.1: Using the Linear Solid Panel
- Exercise 3.2: Using the Solid Map Panel
- Exercise 3.3: Using the Element Offset Panel
- Exercise 3.4: Checking Element Connectivity
- Exercise 3.5: Reflecting Elements
- Exercise 3.6: Creating Load Collectors
- Exercise 3.7: Creating Pressures
- Exercise 3.8: Creating Constraints
- Exercise 3.9: Creating Load Steps
- Exercise 3.10: Writing the Analysis Deck
- Exercise 3.11: Running the OptiStruct Solver

Chapter 4: Post-Processing

Analyzing Results

- Exercise 4.1: Using Visualization Tools
- Exercise 4.2: Using the Deformed Panel
- Exercise 4.3: Viewing a Replay File

Chapter 5: Post-processing with HyperView

Hand-on Domain Projects

1. A	Assembly	connections	with	1D	Elements.
------	----------	-------------	------	----	-----------

2. Weld connections for Automotive, heavy engineering industries.