Hadoop Course Content

Introduction to Big Data and Hadoop (HDFS & MapReduce)

- Need of BIG DATA
- Sources of BIG DATA
- ^D Characteristics of BIG DATA
- Structure of BIG DATA
- Why Hadoop and Need of Hadoop
- History of Hadoop
- Uses of Hadoop
- Common Hadoop Distributions
- ^D Setting up Hadoop Development

Hadoop 1.0 Architecture

- Hadoop Architecture
- Networking concepts
- ^D Use cases where Hadoop fits into

Hadoop 2.0 Architecture

- ² Limitations on Hadoop 1.0 architecture
- [®] Features of Hadoop 2.0 architecture
- HDFS Federation
- High Availability of Name Node
- ☑ YARN
- Non MapReduce applications on top of Hadoop

Prerequisites for Hadoop Developer/ Data Analyst

<u>LINUX</u>

- UNIX architecture
- Linux basic to advanced commands
- Linux basic Admin activities
- Unix basic shell scripting
- Advanced shell scripting
- Scheduling jobs in unix

<u>Java</u>

- Introduction to Java. (JDK, JRE and JVM)
- Discussion on Object, Class and Methods
- OOPS concepts with examples
- ¹ Exception Handling
- ¹² Features and concepts of Core Java for developing MR jobs

Understanding HDFS In-depth

- ¹ HDFS Design
- HDFS Commands
- ^{II} Fundamental of HDFS (Blocks, NameNode, DataNode, Secondary Name Node)
- Rack Awareness from HDFS
- Read/Write from HDFS Command Line Interface
- Introduction to advanced HDFS commands

Understanding Map Reduce In-depth

- Introduction to Map Reduce architecture
- ^D Detail discussion on different phases of MR
 - Mapper
 - Reducer
 - Splitting
 - [®] Sorting
 - Shuffling
 - ² Combiner
 - Spilling
 - Partitioning
 - ^D Merging
- Developing Map Reduce Application from Scratch
- Handling of MapReduce Job
 - o Task Failure / TaskTracker Failure / JobTracker Failure
- Introduction to different file formats and their internal features (Sequential, Binary etc.,)
- Speculative Execution
- Programming in MapReduce using Java

Hadoop Eco System components

Deep Dive in Hive (DWH on top of Hadoop)

- ² What is Hive ?
- Introduction to HIVE architecture
- ² Configuring HIVE Metadata Store in different ways
- Basic queries in HIVE (DDL,DML..)
- how Hive Differs from Traditional RDBMS
- Introduction to HiveQL
- Data Types and File Formats in Hive
- Advanced features of HIVE
- JOINS (Mainly Map Side Join)
- ☑ UDF

PIG (Data Flow Language)

- What is Pig ?
- Basic commands in PIG
- ^D Introduction to Pig Data Flow Engine
- When should be Pig Used ?
- [®] Advanced features of PIG with real time scenarios
- Different ways of using PigStorage
- Dealing with unstructured data

- Developing regular expressions
- PigLatin Example in Detail

SQOOP (Import – Export Utility)

- Introduction to SQOOP
- Basic SQOOP commands
- Advanced Import Features
- Advanced Export Features
 - Upsert
 - Eval
 - Compressed formats

HBASE (NOSQL Database)

- NOSQL Landscape
- Introduction to HBASE and NOSQL
- ² Difference between row oriented and column oriented storage
- Basic HBASE commands
- Advanced HBASE features
 - Versions
 - Compression techniques
 - Bloom Filters
 - Sequential Scans
- Bulk Load to HBASE Features

IMPALA (InMemory Applicaition)

- What is IMPALA?
- Limitations of IMPALA?
- ^D How Impala improve productivity for typical analysis tasks
- ² Basic Hive and Impala Query Language Syntax
- Differences Between Hive and Impala Query Syntax

FLUME

- What is Flume?
- ^D When should Flume be used?
- ¹² Configuring Flume Components
- Basic Config File building
- ^{II} Building Flume Config files for different scenarios
- ² Config file for connecting to different File Servers

KAFKA

- ¹² Introduction to Kafka architecture
- Single and Multi-Broker configuration
- Java Sample Producer
- Integration with Hadoop (Flume) and Kafka

SPARK

- [®] What is Spark?
- Introduction to Spark and In-memory applications
- Get clear understanding of the limitations of MapReduce and role of Spark in overcoming these limitations

- Understanding RDD (Resilient Distributed Dataset)
- [®] Spark Context, hive Context and Spark SQL Context and Spark Session
- ^D Spark Dataframes and Dataset
- ^D Spark programming using Pyspark and Scala.

HUE

OOZIE Scheduler

Interview question and answer discussion

By Anil