Geometric Dimensioning

Rules and Practice

Accurate dimensioning is one of the most demanding undertakings when designing parts.

- Use the checklist to insure you have followed the basic dimensioning rules.
- Keep in mind there may be a case where the need to break a standard could occur to give clarity to the part and manufacturer.
- GD\&T is a method of defining parts by how they function.
- The method has been developed over the last forty years.
- It allows a designer to define the features of a part without increasing tolerances.
- The current standard is ASME Y14.5M-1994.

WHY IS GD\&T IMPORTANT

Saves money
For example, if large number of parts are being made - GD\&T can reduce or eliminate inspection of some features.
Ensures design, dimension, and tolerance requirements as they relate to the actual function

- Ensures interchangeability of mating parts at the assembly Provides uniformity
It is a universal understanding of the symbols instead of words

Standards

In order for the drawings to be dimensioned so that all people can understand them, we need to follow standards that every company in the world must follow. Standards are created by these organizations:
-ANSI
-MIL
-ISO
-DIN
-DOD
-CEN
-JIS

Standards Institutions
ANSI - American National Standards Institute - This institute creates the engineering standards for North America.

ISO - International Organization for Standardization - This is a world wide organization that creates engineering standards with approximately 100 participating countries.

Standards Institutions
DIN - Deutsches Institut für Normung The German Standards Institute created many standards used world wide such as the standards for camera film.

JIS - Japanese Industrial Standard Created after WWII for Japanese standards.

CEN - European Standards Organization

Scaling vs. Dimensioning

Drawings cam be diffferent: scales, but dimensions are ALTVNAYYS at FuULL scale

FULL SIZE

HALF SIZE

QUARTER SIZE

Linear dimensions are comprised of

 four components:Extension Lines

General Guidelines: Clarity is the Goal

Dimension Outside of View

Avoid

Dimension Lines

Leader lines

Leader lines are used to direct a dimension, note, or symbol to the intended place on the drawing. Normally a leader terminates in an arrow head. However, where it is intended for a leader to refer to a surface by ending within the outline of that surface, the leader should terminate in a dot.

Arrowheads

(Dimension Line Terminator)
Arrowheads are typical dimension line terminators. There are other acceptable dimension line terminators.

Arrowheads point directly to the object that is being dimensioned or the extension lines at the end of the dimension. Arrowheads are made three times as long as they are wide.

Oblique or architectural ticks Datum used in architectural drawings

Dimension Text

Dimensioning Methods

Dimensions are represented on a drawing using one of two systems, unidirectional or aligned.
The
method means all dimensions are read in the same direction.
The method means the dimensions are read in alignment with the dimension lines or side of the part, some read horizontally and others read vertically.

Dirmenssiona Text

Unidirectional vs. Aligned

dimensions are
placed so they can be read from the bottom of the drawing sheet. This method is commonly used in mechanical drafting.

dimensions are placed so the horizontal dimensions can be read from the bottom of the drawing sheet and the vertical dimensions can be read from the right side of the drawing sheet. This method is commonly used in architectural and structural drafting.

Types of Dimensions

There are two classifications of dimensions: size and location.
dimensions are placed in direct relationship to a feature to identify the specific size.
dimensions are used to identify the relationship of a feature to another feature within an object.

Linear Dimensioning

Dimensioning from feature to feature is known as
commonly used and easy to lay out. It does have possible consequences in the manufacturing of a part. Tolerances can accumulate, making the end product larger or smaller than expected.

Chain Dimensioning

Each of these steps can range between

490" and $.510^{\prime \prime}$ wide.

The chain dimensioning layout can have an effect on the final length of the part ranging from 1.47

$$
\text { to } 1.53
$$

This is a general note. It indicates that all two place decimal dimensions have a tolerance of plus or minus .01 inch unless otherwise specified

Dimensioning Symbols

Dimensioning Angles

Angled surface may be dimensioned using to specify the two location distances of the angle.
Angled surfaces may also be dimensioned using the by specifying one location distance and the angle.

Dimensioning Angles

Dimenssionniong Arcs and Cirrcíes

Arcs and circles are dimensioned in views that show the arc or circle. Arcs are dimensioned with a leader to identify the radius; in some cases, a center mark is included.
Circles should have a center mark and are dimensioned with a leader to identify the diameter.

Dimonssioning Curved. Features and. Aures

Diameters

A full circular object should be dimensioned using its diameter. Holes should use hole notes.

This specification calls for a hole with a .5 diameter and 1.00 deep.

Diameters

Cylindrical parts may show their diameters in this manner. Dimensioning on the right side view could be too crowded.

Note that the diameter symbol is used so it is not confused with a linear dimension.

Chordis

Chords may be dimensioned in one of the following ways.

Dimensioning Curved Features

Datum

Reference Dimensions

Chamfers

External chamfer for 45 degree chamfers only.
There are two options.

- -

Fitlets and Rounds

Large arcs use center marks

Small arcs do not need center marks.
Arrow can be outside the arc.

Use a capital "R" for dimensioning the arc.

Slot Dimensioniong

The two methods shown on the left are the acceptable methods for
dimensioning slotted holes.

Dimensioning Radial Patiterns

Angles and radius values are used to locate the centers of radial patterned features,
such as the holes on this plate.

Keyway

Keyway
Dimensions

Hole Dimensioning

The Hole Diameter is $.25^{\prime \prime}$ and will be drilled $.75^{\prime \prime}$ deep.
The Hole will be Counter bored to a $.38^{\prime \prime}$ diameter and to a depth of $.25^{\prime \prime}$

Holes are specified with numbers and symbols

Reading a Hole Note

The Hole
Diameter will be .38 "
through the whole block.

Reading Thoread Notes

Threads are dimensioned with the use of local notes. We will discuss two methods: the ISO and the Unified National Thread method.

Reading a. Uniffied National

Thread Note

Identifies coarse or fine
thread. In this case,
C for coarse.
F is for fine.

Reading a ISO Thread Notes

This number can be $3,4,5,6,7,8,9$. It is the grade of tolerance in the threads
from fine to coarse. The H is for allowance:
G would be a tight allowance and
H is no allowance.

Prior to THRU, you may have an LH for left hand thread.

Finally THRU or a depth may be specified.

