
1

2

Git History
• Came out of Linux development community
• Linus Torvalds, 2005
• Initial goals:

▪ Speed
▪ Support for non-linear development (thousands of parallel branches)
▪ Fully distributed
▪ Able to handle large projects like Linux efficiently

3

SCM Terminologies
• Server/Client
• Repository
• Workspace
• Branch
• Checkin/Checkout
• Revision
• Baseline

4

Distributed version control system

Centralized Model Distributed Model

(CVS, Subversion, Perforce) (Git, Mercurial)

Result: Many operations are local

5

Git takes snapshots
Subversion

Git

6

Git uses checksums

7

A Local Git project has three areas

Unmodified/modifie
d

Files

Stage
d

Files

Committe
d

Files

Note: working directory sometimes called the “working tree”, staging area sometimes called the “index”.

8

Git file lifecycle

9

Aside: So what is github?
• GitHub.com is a site for online storage of Git repositories.
• Many open source projects use it, such as the Linux kernel.
• You can get free space for open source projects or you can pay for

private projects.

Question: Do I have to use github to use Git?
Answer: No!
• you can use Git completely locally for your own purposes, or
• you or someone else could set up a server to share files, or
• you could share a repo with users on the same file system, such as

we did for homework 9 (as long everyone has the needed file
permissions).

10

Basic Workflow

11

Get ready to use Git!
1. Set the name and email for Git to use when you commit:
$ git config --global user.name “Bugs Bunny”
$ git config --global user.email bugs@gmail.com
$ git config --global push.default simple

1. You can call git config –list to verify these are set.
2. These will be set globally for all Git projects you work with.
3. You can also set variables on a project-only basis by not using the

--global flag.
4. You can also set the editor that is used for writing commit

messages:
$ git config --global core.editor emacs (it is vim by default)

12

Repositories
• bare repository

▪ contains the version control information and no working files
▪ by convention the name of a bare repository should end with the .git

extension
$ git init --bare

• Non-bare repository
▪ These are regular user repository which has the working files & .git dir

• Creating a new reposiotory
$ git init
$ git clone <remote> <local>

13

Git commands
command description

git clone url [dir] copy a git repository so you can add to it
git add files adds file contents to the staging area
git commit records a snapshot of the staging area
git status view the status of your files in the working

directory and staging area
git diff shows diff of what is staged and what is

modified but unstaged
git help [command] get help info about a particular command
git pull fetch from a remote repo and try to merge

into the current branch
git push push your new branches and data to a remote

repository
others: init, reset, branch, checkout, merge, log, tag

14

Add, Status and Diff
• To add changes to the staging area :
$ git add <file>

• To view the status of your files in the working directory and staging
area:

$ git status or
$ git status –s
(-s shows a short one line version similar to svn)

• To see what is modified but unstaged:
$ git diff

15

Pulling and Pushing
Good practice:
1.Add and Commit your changes to your local repo
2.Pull from remote repo to get most recent changes (fix conflicts if
necessary, add and commit them to your local repo)
3.Push your changes to the remote repo

To fetch the most recent updates from the remote repo:
$ git pull origin master
To push your changes from your local repo to the remote repo:
$ git push origin master
Notes: origin = an alias for the URL you cloned from

master = the remote branch you are pulling from/pushing to,
(the local branch you are pulling to/pushing from is your current branch)

16

Ignoring files & Viewing logs
Ignoring certain files and directories
•.gitignore
•Git never ignores files which are already tracked, so changes in the
.gitignore file only affect new files
•Commit the .gitignore to the Git repository

File version
$ git log
$ git log --oneline --grep "workspace"
$ git shortlog
$ git log -1

17

Branching
To create a branch called experimental:
•$ git branch experimental

To list all branches: (* shows which one you are currently on)
•$ git branch

To switch to the experimental branch:
•$ git checkout experimental

Difference between branches:
•$ git diff master <your_branch>

Merge branches :
•$ git merge <source_branch> <destnation_branch>

18

Stashing commited changes
creates stash, remove changes from working dir:
•$ git stash

To list all stash available for the repository :
•$ git stash list

Reapply the changes, remove stash:
•$ git stash pop

Apply a specific stash from repo:
•$ git stash apply stash@{num}

Remove stash from repo
•$ git stash clear

19

Reverting changes
Revert uncommited changes:
•$ git reset <file>

Move only to HEAD pointer:
•$ git reset --soft

Move the HEAD pointer & reset the staging area (default):
•$ git reset --mixed

Move the HEAD pointer, resets staging area & working tree to the
new HEAD:
•$ git reset --hard

20

Reverting changes …
Revert a commit:
•$ git revert <commit>

Checkout specific commit:
•$ git checkout <commit_id>

Deleting a file:
•$ git rm <file>

Removing untracked file:
•$ git clean -n (-n is for dry run)
•$ git clean -f (force delete)

Discard changes in working directory
•$ git checkout -- <file>

21

Tags
Git has the option to tag a commit in the repository history so that
you find it easier at a later point in time

Apply tag to a commit:
•$ git tag –a <pattern> -m ‘comment’ <commitid>

Contents of the tag:

•$ git show <pattern>

Display list of tags available:
•$ git tag

Delete a tag:
•$ git tag –d <tag>

22

SVN vs. Git
• SVN:

▪ central repository approach – the main repository is the only “true”
source, only the main repository has the complete file history

▪ Users check out local copies of the current version
• Git:

▪ Distributed repository approach – every checkout of the repository is a
full fledged repository, complete with history

▪ Greater redundancy and speed
▪ Branching and merging repositories is more heavily used as a result

23

Do This:
1. $ git config --global user.name “Your Name”
2. $ git config --global user.email youremail@whatever.com
3. $ git clone https://github.com/rea2000/santalist.git
Then try:
1. $ git log, $ git log --oneline
2. Create a file named userID .txt (e.g. rea.txt)
3. $ git status, $ git status –s
4. Add the file: $ git add userID .txt
5. $ git status, $ git status –s
6. Commit the file to your local repo:

$ git commit –m “added rea.txt file”
7. $ git status, $ git status –s, $ git log --oneline
*WAIT, DO NOT GO ON TO THE NEXT STEPS UNTIL YOU ARE TOLD TO!!
1. Pull from remote repo: $git pull origin master
2. Push to remote repo: $git push origin master

