Functional Analysis

Banach Spaces

Vector space—A vector space over the field
F, consists a set X, a mapping (x, y) = x+ yof X.
X into X and a mapping (a, x) = ax of F. X into
X, such that :

(a) X 1s an Abelian group with group opera-
tion(x, v/ = x+y

(b) a(bx) = (ab)x,

x € X, a, b € F (associativity)

(c) (a+b)x= ax + bx

al(x+y)= ax+ay,
x, vy € X, a, b e F (distributivity)

{(d) 1-x = x (1, and identity with respect to
mul tiplication}}

Direct product—Let X,,, ct€ A be a set of
vector spaces. The direct product X =7 (Xa :
o € A] has an elements, the functions [x,], where
xg € X for each @ € A, and their scalar
multiplication and addition are given by a [x4] =
[axy] and [xy + Yol = [Xu] + [Va] respectively.

Direct sum—Let X, ot € A be a set of vector

spaces whose identity elements are all designated
as (). The direct sum of vector spaces X, 0t € A is

X =Y [X,:ae A], consists of those [x,] € T [x,
: o € A] for which x;, = 0 for all but finite number
ofthe ot € A.

1. Y [X,:oe A]isavector subspace of T
[Xy:0e A]

2. Two spaces are identical iff A is finite.

Linear transformation—A linear transfor-
mation f1s a mapping f: X = Y on X into Y, such
that f(clx, + Pxy) = of (x1) + p f(x,) forall x, x,
e xandd, fe R

L (X, Y)—The set of linear transformations
from vector space X into Y and it is also a vector
space.

L (X, R)—The set of linear transformations
from vector space X into R, the elements of it are

called linear functional. It is also called Algebraic
dual denoted by X*.

Sub Spaces

Sub space—Let X be a vector space. A
subset Y X is a subspace of X, if x;, x; € X and

o, B € R the elements ox; + fix; € Y.

Improper subspace—X and null vector
space {0} of X.

Proper subspace—Y c Xand Y # X and Y
= {0].

Intersection of sub spaces: Y= {Y,:
€ A} where Y, ot € A is a set of subspaces of X.

Subspace generated by S, (S) : S c X, the
sub space (S) generated by S is a smallest sub-
space of X that contains 8.

Disjoint subspaces—Subspaces Y, Z of X
are disjoint if Y A Z = (0},
Hahn Banach Theorem

Hahn Banach Theorem—If 5 is a convex
set which contains an interior point and 0 ¢ S,
there 1s a hyperplane H, passing through 0, such
that all of S is on the same side of H.

1. If X is avector space and S is a convex
set in X, which contains an interior point,
and if Y is a subspace of X which has no
points in common with S, then there 15 a
hyperplane H such that Y — H and all
points of § are on the same side of H.

2. If X is a vector space and S is a convex
set in X and Y is a translation of a sub-
space of X which has no points in
common with S, then there 15 a hyper
plane H {(not necessarily a sub space)
containing Y, such that all pomts in 5 are
on the same side of H.

Extension form : Let X be a vector space, Y
is a subspace of X and P a real function on X such
that

Px)20,Px+yW<Px)+P(y)
and Pax)=lalP(x)
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If f is a linear functional on Y such that |f{x)|
<P (x) for every x € Y, there is a linear F on X
such that F {x)=f(x)on Y and | F (x) | £P (x) on
X,

Extension form—Let X be a (real) vector
space, P a real valued function on X such that

Pix+v)= Px})+P{v}
P{ax)= aP (x)
for a = () and Ya sub space of X.

If fis linear on Y and f{x) <P (x) for every x
€ Y, there is a linear F on X such that
F{x}= fix)onY
F (x)< P (x) on X.

Banach Limits Let m be the vector space of
all bounded sequences of real numbers. C the sub-
space of all convergent sequences. If xe C, then /
(x} =lim x, is defined and ! is a linear functional

"
onC.

Banach limit—A Banach limit is any linear
functional L defined on m such that :

{(ayL{x)20ifx,=0foralln

{b}) L (x) =L (¢ x), where ¢ x =& (x}, xa

.....}:{XZ,X3, ...... _}

YED=1x=411, ....c.)

Almost convergent and F-limit—x € m is
called almost convergent and the number S is

called F-limit of x if L {x) = s for all Banach limits
L.

and

and

S——
P (x)and P’ {x): P (x) = inf lim El S
e B f A Y |

and P (x)=—P(—x),x e m.

Theorems

1. ]f L__is a Banach limit, then lim x, £ L {x) =
lim x, for all x € m.

2. Foranyxe m,limx, <P (x) <P (x) < lim x,,.
In particular, P (x) =/ (x) forx € ¢.

3. For any Banach limitL andxe m, P’ (x) =
L{x)<P(x).

4. P(x)issuchthat P{x+ y}< P (x) +P (v) and
Plax)=aP (x)ifa=0.

5. xis almost convergent iff P’ (x)= P (x}.

6. xis almost convergent and F-limit of x is x iff
lim
P— e
uniformly in n.

1
l;{x,, E SR I S + X, .p_1) = S holds

Banach Spaces Dual Space

Norm—Let X be a vector space and x € X.
A real valued function on a vector space X, || x || is
anorm on X if,

{(a)x=0= x>0

()l o ll=ell xll

@ lx+ylslxll+lyll

Semi-norm—Let X be a vector space, Yis a
a sub space of X and P a real valued function on
X:

(ayxz20=P(x)>0

(BIP (x+y)=P(x)+P(y)

(c}P{ox)= ot | P(x)

Banach space—A complete normed vector
space is Banach space.

Bounded linear transform—A linear
transform T is bounded if there is an integer M
such that

IIT, Il < Ml x|l forevery x € X.
Norm (bound) or T—Let T be a bounded
linear transform and
ITI=Inf (M:IIT,I=sMIlx|l,xe X}
Then || T || is norm {bound) of T.
Here, | T, 1< Tl | x || for every xe X.
Dual of X—If X is a normed vector space,

then space X’ of continuous linear functionals on
X, with norm.

Nz ll= sup (I x () :llxll=1)
= inf (M:|x" {x)I
<Mllxllxe X
is called dual of X.

Theorems

1. Hahn Banach theorem—If X is a normed
vector space, Y is a sub space of X and fisa
bounded linear functional on Y with bound
Il £11, relative to Y, then f has a continuous
linear extension to an x" € X with || X ||
= £l

2. Forany x #£0 in X there is an x" € X', such
thatx (x) =l x|land || x"[I= 1.

3. If X is a complete normed vector space and f
is a continuzous linear functional on Y, a sub
space of X, then f can be extended to a linear
functional F on X such that

NE =1l £1



4. For every normed vector space X there is a
set A such that X is isomorphic with a sub
space of the Banach space of bounded
functions fon A with

lfll= sup {| f(r)|: 1€ A}
Uniform Boundedness Principle

1. Let X be a Banach space {f,} is a sequence of

continuous linear functional on X and for
every x € X, the sequence (| f, (x) |} is
bounded, then the sequence of {|| f, I} of
norms 15 bounded.
If X is a Banach space, Y 1s a normed vector
space and {T,} a sequence of continuous
linear transforms on X into Y such that for
every x € X, then sequence {I| T, (x} I} is
bounded, then the sequence (|| T, ||} of norm
1s bounded.

2. Let X be a Banach space and Y a normed
vector space forevery m = 1, 2, ....... ., Let
{T, (x, m}] be a sequence of continuous
linear operators on X with values in Y such
that for every m there is an x,, € X for which

lim || T, {x,.m)|l= +eo. Then there is an
"

x e Xforwhichlim | T (x, m) |l =+ oo,
i1

m=1,2 .4
3. Let X be a Banach space and Y a normed
vector space. Foreverym =1,2, ...... let {T,

{x, m)} be a sequence of continuous linear
operators on X with values in Y such that for
every m, there is an x,, € X for which [T, (x,,
mi}} does not converge. Then there is an x €
X for which {T, (x, m)} does not converge,
foranym=1,2 ......

4. If X is a Banach space and Y is a subspace of
X which is a Borel set, then Y is either of first
category in X or 15 identical with X,

Lemma of Riesz

1. IfY isa closed proper subspace of X and € >
0, there 15 an x_ on the unit sphere such that

Inf (Il x5 —x_ |l :
2. A normed vector space is finite dimensional

iff the closed bounded sets are compact.

3. There is a uniform convergent sequence of
functions of finite Baire type whose limit is
not of finite Baire type.

peYl>-¢
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Compact Transformation

Compact transformation—Let X and Y be
Banach spaces. A linear transformation T on X
into Y is called compact if every bounded set in X
is taken by T into a set whose closure 1s compact.

B (X, Y)—Let X and Y be Banach spaces
then B (X, Y) is the set of linear transformation
from X into Y. It is also a Banach space.

Adjoint of transformation—Let X and Y be
Banach spaces. Let X, =" and Y” be the dual of X
and Y respectively. Then X" and Y are Banach
spaces.

Let T € B (X, Y), then adjoint of T, T" is a
transformation T € B (Y,” X") defined as : for y’
€ X' foreach x € X has the value.

(T"y) (x) = ¥ (Tx)

Characteristic number—Given the equation
x—ATx=0.

The number A; £ R is called characteristic
number of this equation if x — Ay Tx = (0 has a non
zero solution.

Theorems

1. The subset C(X, Y)c B (X, Y) of compact
transtormation is a Banach space.

2. BTe C (X, X), X a Banach space, then
vector space of solution of x — Tx = 0 is finite
dimensional.

3. If Te C (X, X), then set of characteristic
number of x— A Tx= 0 is an isolated set.

Weak Convergence
Weak convergence—If X is a normed vector
space and x,, € X',n =1, 2,...... we say X',

convergence weakly to x" € X if for each x € X,
lim ¥, (x) =X (x).

Total set—If X is a normed vector space, Y
c X is total if its closed linear space is X.

A-limit—A sequence x = (x}, X3, .....
to have A-limit, A {(x)}ifeachi= 1,2, 3...... the
sum A;(x) = i

Afxy=Ax). 2

A-regular—A is regular if for each conver-
gent sequence x, the A-limit exists and equals the
ordinary limit of the sequence x.

A-almost regular—A is called almost
regular if for every convergent sequence x = (x|,

ay X, 1s convergent and lim
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X3y seiann ) there is an N such that for every m > N,
(=
Y. @y X, convergence and
1
o

lim E Ay Xy = lim X,
=y =y oo
Theorems

1. If X is a Banach space, then (x",) converges
weakly to x” € X' iff the sequence {ll x", I} of
norms is bounded and lim x°, (x) = x” (x) for

every x in some total subset of X
2.  Ais regular iff
(@) ¥ laglsM,i=12, ... for some M.
k=1

() limay=0,k=1,2, ...... and
1

{c} 1IJJTI kEl ap= 1.

3. A is almost regular iff there is a fixed m, such
that :

(a) ¥ lap, | <M for fixed M and every
m=1
m > my, (b) lim a,,= 0 for every n, and

4. If {S,"™} is a sequence of sequences such that

E | S, M |=ee. m=1, 2,

n=1
sequence {1, } converging to zero, such that
L

all the series Y S, 1, m=1, 2, ... diverge.
n=1
Dual of Ip—If /< P < 0, and g is conjugate to
P, then (1) = !‘q.
Second dual space—Let X be normed vector
space and X’ be the dual of X.

For every xp # 0 € X consider the functional
xp on X' defined as x; (x7) = 27 ().

Dual of C (a, b) and Riesz Represen-
tation Theorem

BY {a, b)—Class of all functions of bounded
variation on [a, b]i.e., for all f which the total

variation V (fy =sup ¥ |f(x)—f(x;_,)|is finite,
=1

where the supremum 1s taken over all partition a =
XX < ennns <x,=b.

...... , there is a

BVN [a, #]—BYV [a. b] which satisfies
normalizing condition C [a, b] : metric space of all
continuous functions.

Riesz representation theorem—If F ¢ C
[a, b]. there exist g € BVN [a, 5] such that
F(f) = _Ilb fdg,
where fe Cla, bland |l gl =V {g)=IIF Il.
Open Mapping and Closed Graph
Theorem

Closed linear transformation—A linear
transformation T from Banach space X into a
Banach space Y with dom (T} < X 1s closed if x,
e dom (T},

lim x, = x,
n

and lim Tx, = y=%x € dom (T)
n

and y= Tx

Graph—A graph G (T) of mapping T : X —
Y is the set of points (x, Tx) e X. Y, withx € dom
T.

Theorems

1. If dom (T) is closed in X and T is bounded
then T is closed.

2. Tis aclosed linear transformation iff G (T) is
a closed vector subspace of X, Y.

Closed graph theorem—If X and Y are
Banach spaces and T is a linear transformation
from X and Y, then dom (T) is closed and
graph G (T) closed = T 1s bounded.

Open mapping theorem—If X and Y are
Banach spaces and T is bounded linear transfor-
mation which maps X on to all of Y, then T is an
open mapping (i.e., the image of open set in X
under T, 15 open setin Y}

1. LetX and Y are complete metric space

and F is continuous mapping of X onto Y
such that for every r > 0, there is k > 0
such that for every x € X, the closure of
the image of the sphere, 6 (x, r) in X, of
centre x and radius r, contains the sphere
G [F (x), k] in Y, then for every p > r the
image of & (x, p) contains & [F (x), k].

Hilbert Spaces
Inner product—Let X be a vector space over

the field F (real or complex). A mapping of X. X
mto F, which takes each ordered pair (x, y) e X. X



into the number (x, y} € F is called inner product
in X if,
() (x, y) =y, x)
{.“} {{h’t + I:-'IX/Z: _'.'r;} =4 {-xt!-}r} + B {XZ!-J'}
(linearity)
(1)} {x, x) =20 and (x, x) = Qiff x=0
1. If X is a real vector space, then (x, y) =

¥ x)

2. (x ayy=dix y)

Norm—Let x € X, then norm in the space X
il X l=V(x, x}=({x x)2

Inner product space—A vector space X,
together with an 1nner product in X, 1s called
inner product space.

Hilbert space—If X is complete under the

norm obtained from its inner product, then X is
called Hilbert space.

Theorems

Cauchy-Schwarz inequality—For evey

nye X, [y lxillyl

The Cauchy-Schwarz mequality states that
inner product space is a continuous function on X.
X into F, where the norm of {x, v} e X - Xis [ x|l
+1 vl

ie., limx,= x,limy,=¥

= lim (x,, v} = (x ¥)

Pythagorean theorem—

xl'y

= NxlP+llyPF= llx+yl?
15 valid in inner product space.

Parallelogram law—

lx+yIPF+llx—yIF=2{lIP+Iyl?}
holds in inner product space.

Banach space is Hilbert space iff the
parallelogram law holds.

Projection theorem and dual—If £ is a
closed convex set in X and x; € X ~ k, then there
15 a unique Y, € &, such that

lxg—voll = inf {[lxy—vll:ve k}

Projection theorem—If M is a closed sub-
space of a Hilbert space X, then every x € X hasa
unique decomposition x=y+z, ye M, ze M%,
where ML= (ze X:zlyforallye M},

The operator x — P, = v 15 a bounded linear
idempotent {a-projection} such that M = PX and
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ML = (1 — P) X are mutually orthogonal closed
subspaces with X =M + ML,

For each x € X, P, 15 the unique element of M
which minimizes the distance from x to M.

If x is a bounded linear functional on a
Hilbert space X, then there 15 a unique yg € X
such that

X(x)= (xyprxe X
1. Let ¥V be a bounded linear operator on a
Hilbert space X with
Ivi<1

and fe X

Put§, = [f+ Vf+ ..+ V'~ ! fln=1,2...

Then ¢ € X, is such that
lim ¢, = ¢pin X
Orthonormal Sets and Fourier
Expansion
Orthogonal set—A set S of elements of an
inner product space X is an orthogonal setif x Ly
wheneverxy, ye Sand x# v,
Orthonormal set—An orthonormal set 8
such that for each x € 8,
0, if x#vy
x )= { 1, if x=y
Complete sei—A set S is complete in X if no
non-zero x € X 15 orthogonal to 5.
Fourier coefficients—Let x € X and {x,} an
orthonormal family in X, possibly uncountable.

Then the fourier coefficients of x with respect
to {x, ) are the numbers.

(x, xg) = ¥ ay (xg. xp) =ap
Orthonormal basis—Let X be a Hilbert
space and 8 = {x, : o € A} is an orthonormal set
in X, then S is a orthonormal basis orthonormal

closed set) in X if the fourier series representation
x= E {x, xy) x, is valid for each xe X.
A

e

X, Ve S

Theorems—If {x;, x5 ..
normal set, then for any x € X,
i
E lx, % 2< llx|?
i=1
Bessel’s inquality—If X is a Hilbert space S
={x,:0e A} is an orthonormal setin X and x €
X, then

ceeuX,] 18 an ortho-

Yol x xR < xR

tE A
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Let X be an Hilbert space and S = {x, : ¢t €
A} is an orthonormal set in X, then 8 is a basis iff
it 15 complete in X.

Parseval’s formula—Let X be an Hilbert
space, 8 = {x, : @ € A} is an orthonormal set.
Then § 15 an basis iff equality holds in Bessel's
mequality.

lxlkt= ¥ Iz x)P xe X

te A

or, = Y xxd (yx)
e A

where x, v € X.

Parseval’s formula (for real trigonometric
system }—

SR Y. 2
w+ ¥ (@+by= | Fo R
n=

dp £ 5 - -
where — + }: (a, cos nr= b, sin nt) is the fourier

2 n=1
series of f € L, (0, 2m).
Isoperimetric theorem—Among all single,
closed piecewise smooth curves of length L in the
plane the circle encloses the maximum area.

Muntz Theorem

Gramm determinant—ULet x|, x5, ..... X, £
L, [0-1].
The gramm determinant of x;, X3, ...... X, 18
G=G{x, X coonn. Xt
(x5, x1) 1. X o (xp.x,)
{x2, x1) {x2. X2) ...l (X2, X}
(X X1} (X X3} ceeenn (X0 X

Theorems—A npecessary and sufficient

condition for (x;, x5, ...
independent is that G = 0.

Muntz theorem—A necessary and sufficient
condition for the set #* 1.

Mm2,.....,1=n <n <.... tobecomplete

ce. X,) to be linearly

inLyisthat § = oo
i=1 M
Dimension and Riesz-Fischer Theorem
Dimension—Orthogonal dimension of a Hilbert
space is the cardinality of its bases.

Theorems

1. The cardinality is the same for each basis of a
given Hilbert space.

2. The Hilbert space X is separable iff there is a
countable basis for 3.

3. Two Hilbert spaces are isomorphic if they
have the same dimension.

4. Riesz-fischer theorem—If } | C, |2 < oo,

then there is fe Ly (0, 2n) such that)’ C,

e™ is the fourier series of f and coverges to f
in the sense of L,.

Reproducing Kernel

Proper functional space—A vector space X
of functions on a set S, together with a norm in X,
is called a proper functional space if for every s
S, the evaluation functional at § is continuous, i.e.,
there exist M such that | x (S) <M |l x|, xe X.

Proper functional completion—A proper
functional completion of X is a proper functional

space X on the same basic set S such that X is

complete and X is a dense subspace of i

Reproducing Kernel—A Hilbert space of
functions on a set § is said to have a reproducing
Kernel if there 1s a function £ (S, 1) on 8.

S has the propeties :

(k{,Ne X,re S

(ix(H =Kk, 0l xe X, re S (repro-
ducing property ).

Positive matrix—A function k (5,1} on 5. §
is a positive matrix if foreachn=1,2, ...... and
each choice of points 7, #5, ......r, the quardratic

L —

form __EI k(t, 1D §&;in &, &, ...... §, is non
i j=

negative.

Theorems

1. A proper functional space X has a proper
functional completion iff for each Cauchy
sequence {x,} inX, limx,(S)=0forall s 8

"

= l.i.l'[l”x”::ﬂ
n

2. I X has areproducing Kernel, then

lx(t) =1 {x, k(- DIk DIIx I, x e X,
r £ 8 and X is proper functional space.



3. Eachreproducing Kernel is a positive matrix.
4. If X is a proper functional Hilbert space with
k(S,1) as reproducing Kernel andif [x,: @
€ A] is a complete orthonormal set in X, then
k(.n= X (k(.1),X0) Xqg

e A

= E X fE S

e A

k(S. )= L x4(S) x4 (0
oe A

or,

5. The mapping function fcan be expressed in
terms of k by the formula

_ _m
f(D= "\’ k{g’g}k{z &)

Adjoint Operator

Adjoint—Let T be a bounded linear operator
of Hilbert space H, then there exist an unique
operator on H called adjoint of T, T* such that (T,
¥)y={x, T'¥}x,y € Hand also

T ll= T
1. (T+8) =T +8"
2 (aT)'=aT
3. (ST)'= T* §*
4. ™=T
5. IT*Tl=ITI?
Bounded Operator

Bounded linear operator—Let T be a
bounded linear operator on Hilbert space H, then

(a) T is normal if T* T=TT"

(b) T is self adjoint if T*=T

(c) Tisunitary if T* T=1=TT", 1 being and
identity operator on H

(d) T is a projection if T? =T.
Theorems

1. If T is a bounded linear operator on Hilbert
space H, then
(a) Tis normal iff || T, |l = I T*, |l for every x
e H.

(b f Tisnormal and Tx=dxforxe H, o e
¢, then

T x= ox
(c) B T is normal and if &, p are distinct eigen

values of T, then the corresponding eigen
spaces are orthogonal to each other.
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2. I U is an unitary operator on H then (U,, U,)
=(x, yyand || Ux |l =l x || for every x € H.

3. If Pis aprojection on H, then
(a) P is self adjoint
{b) P is normal
(c) (Px,x) = Px | for every x € H.

4. If M, N, T are bounded linear operators. M, N
are normal operators and MT = NT, then

M"'T= TN"
Some Solved Examples

Example 1. If x and y are any two vectors in a
Hilbert space, then prove that
Dlx+ylP+llx—yIR=21xIF+2yI?
(i 4x,y) =llx+yIP - llx—yIP+illx+
iy P —illx—iyl
Solution : (i) We have
Il x+ yI?
= (x+v,x+V¥)
(x,x+v)+{y, x+v)
(o x)+ e y)+nxy+ 0, 3 ...(1)

Also
lx—yI?

= (x-y.x-y

= xx-y)-(nx-y)

= xx)-(xy)-0x+ny

= lxIP—(x, v)— (v, x4+l yI*..(2)
Adding (1) and (2}, we get
lx+yIP+llx—yI?

=2lxIF+21yI?
(ii) Subtracting (2) from (1), we get
lx+yIP—-llx—yl?

= 2{xyv)+2(y. 0
Replacing by iy in (3}, we get
lx+iyl?—llx—iyl?
2(x iy)+2(iy,x)
2i(x, v+ 2i (v, x)

= —2ilx, vy+2i(y, x) . Ad)
Multiplying both sides of (4) by i, we get
illx+ivI?—illx—ivI?

= —22(x, v)+22 (v, x)

= 2{x y)-2(y, x)
Adding (3) and (5), we get
lx+yI2=llx—yl2+

Pllx+iylZ—illx—iy P

w3}

w3}

= 4(x y)
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Example 2. For the special Hilbert space &,
by using Cauchy inequality prove Schwarz's
mequality.

Solution : Let x = (x;, X3, ...... X,), ¥ = (¥, ¥,

.....¥, be any two members of the Hilbert space
La by Cauchy’s mequality.
We have
i
Y Ixiyl
=1
n 172 " 1/2
<[xix |2] [z |y;-|2]
i=1 i=1

For inner product on :.’2‘, we have
i

=Y 5y
1=
sl fxewy
n
= Y lx %
I=]
=lxyy+xave+t ... +x, v,
= lxywl+lmwl+ . +lx, v,
=lxpyl+lxawml+ ... +1x, ¥, |

Y Ixwl

i=1

(£ [£ne]”

[by Cauchy’s inequality]
=Va-»Vo-» [by (1]
= lxllliyll [ (xox) =1l x 7]

Which 15 the required Schwarz’s mequality.
Example 3, If P and Q are the projections on
closed linear subspaces M and N of Hilbert space

H. Prove that the following statements are all
equivalent to each other.

[

(1) P< Q,

(i1} IP Il < || Q.| forevery x,

(1) Mc N,

(v} PQ= P,

(v) QP=P

Solution : In order to prove that the five

given statements are all equivalent to one another.
We shall prove that (i) — (i) — (iii), (iii) = (v},
(v) = (1v), (iv) = (1)

It should be recalled that if P is any projection
on H, then

(Px,x)= IPxIF ¥xe H
{1) = (i1}, we have
P=Q

= (Pro,x)= (Qx-x})VxeH
= IPxIF<IQxIF¥xe H
=% IPxll< I Qx|I¥xe H
(111} —» (i11). It is given that
IPxll< I Qx|I¥xe H
We are to prove that
Mc N

Let x € M since M is the range of of P,
therefore

xeM—= Px=x—=|Pxll=lxI
= lx < |l Qu Il
[." Il Px | =11 Qx |l by hypothesis]
=5 lxil= 1l Quxll
[C1Qxl=llx IV x e HJ]
= Qx==x

= x € N i.e, the range of Q.
Thus x € M —=x € N. Therefore M — N.

Example 4. Prove that if T is an arbitrary
operator on a Hilbert space H, and if & and p are
Scalars such that

letl= | B|then aT + pT"
is normal.
Solution : We know that
(aT+p T
= (aT)" +(BT")

= OT' +pT™ =0T’ + BT
Now (aT + BT*) («T + BT*)"
(ooT + PT" ) (aT" + BT)

= ooTT of T2+ Pa T+ PRT"T
= | PTT" + op T2 + paT™
+HIBRET'T ..(1)

Also (oT + BT)" («T + BT")

(oT" + PT) (aT + pT")

(oT" + BT) (aT + BT")

aoT" T+ afT + BoT? + BB TT"

e PT* T+ e T* + fio T2
+IPpRTT" ...(2)
Since | & | =| P | therefore, we see that the
right hand sides of (1) and (2) are equal. Hence,

the left hand sides (1) and (2) are also equal
therefore, we have

(WT+pTHaT+p T
= (aT+pTH (@T+pT)
Hence ooT + p T is normal.

Il

1l

i



Example 5. An operator T on a Hilbert space
H is normal iff || T* x || = || Tx || for every x.

Solution : We have T is normal
T"'=TT
TT" -T"T=10
[{TT*—T* Trx,x)=0%x
(TT' x,x)=T " Tx, x) ¥V x
T x,T x)=(Tx, T" ¥ ¥x
(T'x, T x)= (Tx, TX) ¥ x
1T xIR= I TxI? ¥x
1T xll= I Tx I ¥ x

Example 6. Prove that if T is an operator on
H, then the following are equivalent :

(1) ™T=1
(2) (Tf. Tg)= (f g), forallf, g€ H,
(3) I'Tf = |l fll, for all f € H.
Solution : Here, (1) = (2),if T" T =1, then
(Tf, Tg)= {f T Tg)
= (fgnforallf gc H
(2) = (3)if (T, Tg)
= (f g)forallf, ge H,
then in particular
(TLTH= (£
ie., WTfll=lIfll, forallfe H
(3= (1) if I TfI
= |IfIl, for all f € H, then
FEfR= || £
(TLTH= (£
ie, (T"TLH (£ H=0
Which is equivalent to (T* T-1) (f ) =0 for
all fe H. Therefore,
TT=1
Example 7. Prove that in a Hilbert space the
inner product is jointly continuous, ie., X, =X,
Yu 2Y= (X, Vo) (% )
Solution : We have
| {xmyn} _{xs _ﬂ' |
= | (X V) = (X ) + (X, 1) = (x, W)
= & Y =) + (3 -2 M |
[by linearty property of inner product]
= [ {Xp Ya—2) [+ 1 (X, —x ¥}
[Cla+pl<slal+|Bl]
S llx, Ny —wll+ 1 G, —x Lyl
[by Schwarz imequality]
Nowx, —»xandy, =y forn— s

{1 T N1 1 O

i.e.,
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Therefore, || y, —y|l—= 0and || x, —x || = 0,
forn — oo

Therefore, | (x,, ¥,) —(x ¥) | = O0forn —

Hence, (x,,, yu} = (x ¥)

Example 8. Prove that an operator T on a
Hilbert space H is unitary iff it is an isometric
isomorphism of H onto itself.

Solution : Suppose T is a unitary operator on
H, then T is invertible and, therefore, T is onto
also T* T = I. Therefore we have

ITxll=llxII¥xe H

Thus T preserves norms and so T 15 an
isometric isomorphism of H onto itself.

Conversely suppose that T 1s an 1sometric
isomorphism of H onto itself. Then T is one-one
and onto. Therefore T — 1 exists. Also T is an
isometric isomorphism

=% I'Txll= [l%| Ve, =T"T=1

= (Tr'DT !'=IT!

= T T D=

= T'I=T'=2T=T"1

A TT'=I=T TandsoT is unitary.

Example 9. Prove that if P;, P,, ...... P, are
projections on closed linear sub spaces M,;, Ma,
...... . M, of Hilbert space H, then P=P, + P; +
...... + P, is a projection if and only if the P; S are
pairwise orthogonal, and in this case P is the
projecionon M=M; + M, + ...... + M,

Solution : Suppose that Py, P;, Py, ...... 0
are the perpendicular projections and P; S are
pairwise orthogonal. Then we have (a) P 1s self-
adjoint since each P; is a projection.

P/ =P;=P/, foreachj=12,...... . n

Therefore,

P'=(P,+P +...... +P,)
=P, +Py " +......+B,"
=Py +P:+ .0 +P,=P

(b} P is idempotent. If P;'s are pairwise
orthogonal, then

P2=(P, +P,+......+P, )

n n
= LP?+2Y P,P=) P,=P
J=1 F=1 i=1

Thus P is idempotent.
{(c) If P is idempotent, then P;'s are pairwise
orthogonal, if f € range of P;, then P; (f) = fand

1112 = | By fIP < El I B, fIP
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E (P f. B f)

;_

P [ B f)

:urﬂx

}: (B .} = (Bf. Y = (P, f)
= {Pf, PA=IPfIR< I fI

n

Hence, E IP;fI* = Il P;fll % Therefore,

Il P; fll=0, ti.'.ll'_j'ii and hence P; f = 0, for j # i,
ﬂms f € null space of P, for j # i and hence range
of P;  null space of P; forj #1.
€ a MJ' ; Mjls

Consequently, M; + M, for j # i and so P;'s
are pairwise orthogonal i.e., P;P; =0, fori #j.

(d) P is a projection on M. Since || P fll= Il fIl,
for all f € M, each M, is contained in the range of
P,

forj+i.

n
Therefore, M = E M; is also contained in the
=1

range of P. Further 1ffE range of P, then
f= Pf=(P; +Pa+...... +P)f

=P f+Psf+...... +P.f
i

ie, fe M= ) M,since Pfe M,
=1

Example 10. Let f be a bounded linear
functional on the Hilbert space H which is
separable, prove that there 1s a unique y € H such
that f(x) = (x, y) for all x, moreover, || fll =l y II.

Solution : Let < ¢, > be a complete ortho-
normal system for H, and set b, =f (¢,). Then for
each n, we have

u;tl bf: f i b, 11}1)
IEN - E M:,,ll
£l [}: bvz]

Thus E.-!Jf*"-llfll2 and so E b2<|fI?

r=1

Il

< oo,

Hence, there is an element y = E b, d,. we
r=1

have || y || £ || f|l. Let x be any element of H. Then
Ll
Y a, ¢, —xandso

r=1

f(xy= lim f

Laa)
tim ¥ a, b,

r=1
::Pgaarbvzt&}q

By the Schwarz inequality || fIl <l y II.

Example 11. Prove that the set of all normal
operators on H 1s closed under scalar multipli-
cation.

Solution : If T is normal operator and a is any
scalar, then

(aT) (aT)"

(aT) (aT*) = aa (TT")

aa (T'T) =(@T") (aT)
= (aT)" (aT)
Therefore aT is normal.
Example 12. Let H be a Hilbert space and let
S=(4. b ......, L, ......} be a countably infinite
nrﬂmmrmal set 1n H. Prove that a series of the

form Eﬂ,,! i s convergent if and G]‘ll}"lfz |

n=1

Il

o, * < =o. Further |f)2 o, !, converges to x, then
n=l

0, =(x, 1)
Solution : Consider the partial sum

"
= z {[J_f‘
F=1
For m = n, we have

18,8, IF= | Z o 112

= n+l

E:lﬂ”z

i=n+1
It the series 2 o, [, 1s convergent, then the
n=1
sequence < S,, > of partial sums is convergent and
every convergent sequence 15 a Canchy sequence.

Therefore as m, # —» oo, we have
1S, —S, 2= 0

= ilu,-lz—rﬂ

f=n+1

The series i Y | a, P is convergent i.e.,
n=1
conversely suppose that the series ):" | o, |*is

n=1
¥ e, <o

n=1

convergent, i.e.,



Then as m, i — oo, we have
i

Y lesP=0
i=n+l

Therefore, the sequence < §, > 15 a Cauchy
sequence in H. But His complete. So< 5, >isa
convergent sequence mm H and thus the series

Y o, !,isconvergent.

n=1

Now suppose that the series ), o, L + 11, is

n=1
= o

convergent and letx = } o, 1,. If S, = } o/
1 1

then for n > j, we have I
Su = (£ ot fj) =0
Since this relationship is true for any n > j
theretore, 1t must also be true in the limit. So we
have o; = lim (8, /;)= (lim 8,, /;), by continuity of
inner product = (x, ;). Thus o, = (x, /) for each j.
Example 13. Prove that B (N, N") is a normal
linear space.
Solution : Define a function
| II: B{N,N)—=Rby
ITI= Supll TEHNIFI=1,
for all B (N, N"), since || || satisfies.
(i} I'TIl= sup I'T (f) Il
which is non-negative
IHfr= |l
(i1} ITI=0
=h sup. I Tl {(fy= 0
= b [n"“rf” =0

= ”ﬁ'_fll ”:ﬂ, for all f € N for which f# 0

= | T({H l=0, where f£0 andfe N,
=T ({f}=0,even when f=0,
= T = 0 (Null operator},

(iii) sup |l (azy (f) | = sup || aT(f |l
HFl<] il < |
= lalsup I T
Il <
= lalllTI,

for all scalars a
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(iv) I'Ty+ Ty ll=sup |l (Ty + T3} (A Il

fll<|

< sup | Ty (f}ll +sup [IT; ()l
Ifll<| Hfll<|

< 1Ty I+ T2

Thus B (N, N’} is a normed linear space.
Example 14. Prove that if T; and T, are self-

adjoint operators on H, then their product T, T; 1s
self-adjoint if and only if.

Tl.TZ = T2T|_
Solution : Let T, and T, be self-adjoint

operators on H,

then, T\* = T, andT,*=T,
Suppose that
T,T, = T,T,
Then (T, T, )*
= Ty* T;*
= T,T,
= T|T,

Thus T T, is self-adjoint
Let T, T, be self-adjoint
Then T,T, = (T,T,)*
T,*T,*
= T,T,.

Example 15. State and prove that Cauchy-
Schwarz mequality.

Solution : Cauchy-Schwarz inequality : For
any two vectors fand g of vector space X.

Ifg l<lifll-llgl

Proof : When g = 0,

In this laye both sides are zero and eugality
holds.,

when g =0,
since g#0= llgl|=0,
wecanwrite O< | 1 g 12 f—(f. 2) g I?
={lglRf-f.ergllgl?
f=(zge
=llgl*E A= a)llgl?
@ HN-NglPFQfFIENglP=1¢f )P —1{feg )y +I
{f. &) )
= llglldfIrngir-|
gy
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Dividing by |l g II* so, we have
0 < (INfFIFNgIP=1(f )P

= I{f.g) < Il gl

Example 16. Prove that if x and v are any two
vectors in a Hibert space then :

Dllx+ylP-llx—ylP=4Re (x v)

(ii) (x y)=Re(x y) +iRe (x, iy)

Solution : If oo =P + iyis a complex number
where P, 'y are real numbers, then we write

p=Recand y=1I, o
{1} We have
Nx+ylF = lxlP+IyIP+(x ¥+ ()
(1)
and| x—vy |
= lxlP+lly P —(x y)—(nx)

.. (2)
subtracting (2) from (1), we get
lx+yIF-llx—yIP
2(x )+ 2(y, x)

2[(x y) + (x ]
2[2Re (x, ¥)]
[ o+™ =2Redq, if atis a complex

Il

number]
= 4Re(x, v)
(ii) We have (x,y) =Re (x Y} +i 1L, (x y)

If o = P =iy is a complex number,
then
y=La

= R, { _j{ﬁ +j}r}}

= R, (- it)
S y)

= R {-ix, )}

= R, (x iy)

[+ iyd= (x, )]

S y) = Roxy)+ iR, (x iy)

Example 17. Prove that an operator T on His
normal if and only if || T* fIl = || T |l for all fe H.

Solution : We see that

IT* £l = II'TfI

= IT*fI* = IITfFIR

e (T T*f) = (TLTH

= (IT*L N = (T*TLNH

&(TT*-T*T) £ f)

=0

forall fe H,
= (TT*-T*T) f = 0
ar TT* = T* T,

Thus T is normal.

Example 18. Prove that if T, and T, are
normal operators on H with the property that
either commutes with the adjoint of the other, than
T; + T and T} T, are normal.

Solution : (a) T, + T, is normal

Since T, and T, commutes with the adjoint of
others

e TI TZ* =

Theretore,

T:*T; and T *T; = T,T*.
(T, + T3} (T, + T,)*
= (T + T) (T * + T*)
= T,T;* + T, To* + T,T,* + T,T,*
= T,*T, + T2*T; + T *T> + T2*T,
= (T*+T,") (T, + Ty)
= (T +T)*(T1 + T3)
Thus T + T» is normal.
(b} T,T; is normal
Since T and T; commutes with the adjoint of
others.
ST T (T To)*
= (T2} (T*T %)
= T} (LT*) T*
= (T1Ty*)} (T.T,*)
= (Ty*T ) (T, *T,)
= T,¥T,T,*)T,
= To¥T*TT;
= (To*T*)(T Ty
= (T\T* (T, Ta)
Thus T, T, is normal.
Example 19. Prove that if the real and
imaginary parts commute, then T 18 normal.
Solution : Let T, and T, be the real and

imaginary parts of T, then

T =T, +iT;
and T* = T, -iT,
Further, assume that
T,Ts = Ts5T;,
then TT* = (T;+ iT2) (T} —iTs)

T2+ T2+ i (T,T, -TTy)



and T*T (T) —iT2)} (T +i T3)
= le + Tzz + i{Tsz = Tth}
Since T; and T, commute, we obtain
TT* = T*T, i.e., T 15 mnormal
conversely, suppose that T 15 normal, then we
have.

TT* = T*T
= T,T, -T; Ts
= T|T; -T;T},
= 2T,T, = 2T,T,
=5 T, T = T,T,

i.e., Ty and T; commute.

Example 20. If T is an arbitrary operator on a
Hilbert space H, then T is a zero operator iff
(T, ¥} =0 for all xand y.

Solution : Suppose T = 0 (i.e., zero operator),
than forall x and y

We have (Tx, v} = (ox ¥}

= {(o,¥}

=0
Conversely (Tx,y) = 0Vx,ye H
= (T, T,) = 0¥, H

(taking y = Tx)

= Tx = 0%, eH
= T = 0,ie., zero operator.

Example 21. If A, and A, are self-adjoint
operators on Hilbert space H, then their product
A A is self adjoint iff A; A, = A, AL

Solution : Let A; and A, be two self-adjoint
operators on a Hilbert space H. Then A * = A,
and A,* = A,

Suppose A; and A, commute, ie., AjA; =
A3A,. Then to prove that A} A; is self-adjoint, we
have.

(AAx)* = A" Ay
= AsA
= Ay

Threefore A A, is self-adjoint.

Conversely, suppose that A A, is self-adjoint
then,

{A[A'Z}* _— AIAE
= AZ*AL* = AEAE
— Azﬁ-[ = AEAZ

=+ A, and A; commute.
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Example 22. Let N be a normal linear space
and let x, ve M. Then

provethat |[llxll—llylll<llx—yll
Solution : Since N is a normal linear space
Nxll = l{x=y)+yll

< llx=yll+ 1yl
or Mxl=Nyll < Nx—yIl oo i
Similarly llyll—=llxll < ly—xIl R A
But ly—xll = I{=1){x=w

= |-1llx=yll

= llx-yll o I 7
From (2} and (3}, we have

Myll—=llxll < lx—vll A4

Then from (1} and (4), we obtain
[x =Nyl < lx—yll
Example 23. Let H be a Hilbert space and let
{e;} be an orthonormal set in H. Then prove that

the following conditions are equivalent to one
another.

{1} {e&;} is complete.

2y fL{e;}=f=0

(3} if f is an arbitrary vector in H, then f= ¢
{Jr; f} efs

(4) if f is an arbitrary vector in H. then || f .
Tl (fe ?

Solution : (1) = (2). If (2} is not true, then
we can obtain a vector f# 0 such that f 1
{e;}taking e = W_.lel’ we observe that {e, ¢;} is an

orthonormal set which properly contains {e;}. This
controdicts the completeness of {e;}. Thus (1) =
(2).

(2)= (3). As f— L (f, e;) &; is orthogonal to
(e}, so it follows from (2) that f— X (f, e) £,= 0
or equivalently, that

f=L{f.ee

(3) = (4) As the inner product is jointly

continuous, we have

”_f”2 {f,ﬁ:{}:'{ﬁef}efz{lﬁef} E:'}

2 (. e) ()
LI(fepl?

(4) = (1). If {g;} is not complete, then 1t 1s a
proper subset of an orthonormal set {e, e}
Since ¢ is orthogonal to all the e;s5 (4) gives || e |12

1l

Il
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=L | (e, e;) 12 = 0. This contradicts the fact that ¢ in
a unit vector.

Example 24. Prove that a bounded linear
operator is uniformly continuous. If a linear
operator 18 continuous at one point, 1t 1s bounded.

Solution : Suppose A is bounded linear
operator. Then

Il Ax; —Axa Il < | AN -1l x, —x4 |l <&. for
all x; and x, in X with || x; —x; < & || A |l. Thus is
nniformly continous.

Suppose now that A is a linear operator that 18
contivous at x,,. Then there is a & — 0 such that ||
Ax — Axg || < | for all x such that || x — x, || < 8. For
any zin XwithZ #8,set @=nz" |l z|. Where 0 <

1 < &. Then ﬁlﬁﬁz = A®
= A+ x) —A (xg)
and 1ol AZ = 1A @+ 30 - Alxo) 1< 1
Since

w4+ xg—xpll = ll@ll
= n<d
Consequently,
lazll < qtilzll,

and A is bounded.

Example 25. Prove that if T is normal
operator on H, then

NT20 = IT I
Solution : Since T is normal, then
I'T* £l = IITfI,
forevery fe H.
Therefore
I T*I = Sup (IT2fI:Nfll<1})

Il

Sup (IT(THI:Nfll<1}

Sup (IT*(TH l:1Ifll<1)
Sup (I T*T£I: lfll< 1)

I T*TIl

= |I'T I,

1l

OBJECTIVE TYPE QUESTIONS

1. Let T be a bounded linear operator on Hilbert
space H, then T is projection, if—
(A) Tis unitary if T* T = 1 =TT¥, I being an
identity operator on H.
(B) T°=T
{C) T*T=T*T*
{Dy Mone of these

2. Let T be a bounded linear operator on Hilbert
space H, then T 1s unitary if—
(A) Tis unitary if T* T = I= TT*, 1 being an
identity operator on H. (A}
(B T*=T
{(Cy T*T=T*T*
{D} Mone of these

3. Let T be a bounded linear operator on Hilbert
space H, then T is self adjoint if—
(A) T*=T
(B) T*"T=T*T*
(Cy T*"T=TT*
{Iy None of these

4. Let T be a bounded linear operator on Hilbert
space H, then T 15 normal if—

{A) T*T=TT

(B T*"T=T*T*

{C) T*T=TT*

(D) None of these
5. For inner product—

(A) (x,o9) =0 (x,y)
(B) (x,ay)=1(x,y)
(C) (x,ay)=a(x,y)
{D} None of these

6. For adjoint operator—
(A) IT*TI=ITI
B) IT*TIl=IT*|
(©) IT*Tl=ITI?
(D) None of these

7. For adjoint operator—
{A) T**=T
(B) T**=T*

{(C) T** =T+ T
(D) T**=T-T

8. For adjoint operator—

{A) (ST)* =T* 8%



10.

11

12,

13

14.

(B) (ST)*=TS

(C) (STYy*=T*+5%*
(D) (STy*=T*-8*
For adjoint opearator—
(A) (aT)*=aT

(B) (aT)*=0atT*

©) (aT)*=a

{D)} Mone of these

For adjoint operator—

(A (T+5)*=T*4 5%

(B (T+5)*=T+35

(C) (T+5)*=T58

(D) Mone of these

Let T be a bounded linear operator of Hilbert

space H, then there exist an unique operator
on H called adjoint of T, T* such that—

(A) (Tx,y)= (x, T'yV)x,ye H
B) IT =TI

{C)} Both{A) and (B)

{Dy Mone of these

If x has a reproducing Kernel, then—

Ay Ix(@ =1 kGG Tx], x
e X, 15

(B) X is a proper functional space

(C) Both (A} and (B) above

{D)y MNone of these

Let x be a Hilbert space and S = {x, : 0te A}
15 an orthonormal set in X, then S is a
aorthonormal basis {orthonormal closed set) in
X it—

{A) The fourier series representation x=

Y (x. xy) x,isvalid for eachx e X
ae A
{B) The fourier series representation x=

(x, x4) X, is not valid for each x
e A

X.

(C) The fourier series representation x=

(x, xy) X 15 valid for somex € X
e A

(D)} MNone of these

A set S 1s complete in X—
(A) If no non-zero x € X is orthogonal to S
(B) If non-zero x € X is orothogonal to 5

15.

16.

17.

18.

19.
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(C) If no non-zero x € X is orthogonal to S

(D} None of these

Orthonormal set is—

{A) An orthonormal set S such that (x, ¥} =

0ifxzy

{ l,if x=¥

(B} An orthonormal set S such that (x, ¥} =

lifx#y

{ Oifx=y

{C} An orthonormal set S such that {x, yv}= 0,
XYES

{D) None of these

If ¥ is a bounded linear functional on a

Hilbert space X, then—

(A) There is unique ¥, € X such that x* (x) =
{(vphhxe X

(B) There is unique y; € x such that x" (x)} =
{(vp. X}, xe X

(C) There is a unique ¥, € X such that x* (x)
={x, whrxe X

(D)} None of these

If ¥ is a closed convex set in X and x, €

X ~k, then there is a unique yy € &, such

that—

(A) llxg—yll=sup [l xg—¥yIl: ye k}

(B) lxg—wll=inf {ll xo—vl:ve k)

C) g —wll={llxg—vll:ve k}

(D) None of these

A set S of elements of an inner product space.

X 15 an orthogonal set—

(A) if x L ywheneverx, ye Sandx#y

(B) If x L y wheneverx,ye Sandx=y

(C) If x Ly wheneverx,ye S

{D) None of these

If X is a real vector space, then—
{A) Inner product (x, ¥} = (v, x}
(B) Inner product (x, ¥} # (v, x}
{(C) Inner product (x, ¥} > (¥, x}
{D) None of these

X, VE S

J,VES

. For mner product—

{A) (x,x)=0iff x=10
(B) {(x,x}>0iffx=0
C) (x,x)<0iffx=10
(D} None of these
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2z

23,

24,

25,

26.

27,

For inner product—

(A) (x,x) =0 (B) (x,x)<0

(C) (x,x)=10 (D) None of these
For mner product—

(A) (v, =(nx)

(B) (x,y1=0.»

©C =02

{Dy Mone of these

If M, N, T are bounded linear operators, M, N
are normal operators and MT = NT, then—
{AY M*T=T N* (B M*T =T* N*
{C) MT=T*N* (D) M*T*=T*N*

If p is a projection on H, then (i) p is self
adjoint (ii) p is normal (iii) (px, x) = |l px |12
for every x € H—

(A) (i) is trne

(B} (1}istrue

{C) (ii1) 1s true

(D) (1), (1} and (1) are true

If U is an unitary operator on H, then—

(A) (Ux, Uy)=(x, y)

(B) IUxll=llx|lforeveryx € H

{C) Both A and B are true

(D) None of these

If T is a bounded linear operator on Hilbert
space H, then—

(A) T is normal iff || Tx || = || T* x || for every

xeH

(B) T is normal iff || Tx |l > || T*x || for every
xeH

(C) T is normal iff || Tx Il < || T*x || for every
xeH

{D)y Mone of these

If T is a bounded linear operator on Hilbert

space H, then—

(A) T is normal iff || Tx || = || T* x || for
every xe H

(ByY If T is normal and Tx = ox for x € H,

o € C, then T*x = 0lx
(C) If T is normal and if o, P are distinct
eigen values of T, then the corresponding
eigen spaces are orthogonal to each other
{D} All the above

28 If {S{’,':]} is a sequence of sequences such that

3l

ElS{’:ﬁl=o¢.m=l,2, ...... , then—

:A}: There 1s a sequence (1, } diverge, such
that all the series i S{:” team =1, 2,
...... converge "=

(B) There is a sequence (f,} converging to
zero, such that all the series "il S{‘,',” L,.m
=12 ccnnns converge

(C) Three is a sequence {f,} converging to
zero, such that all the series ) S e m

n=1
=12 cinns diverge
(D) There is a sequence {1, } diverging, such
that all the series ) Sy om=1,2,

n=

...... diverge
. A is called almost regular if, for every
convergent sequence X = (X, Xz...... —

{A) There is an N such that for every m > N,

E dyn X, diverges
n=1

{(B) There is an N for every m > N, E s J

n=1
L=
x, converges and lim_ E o X, =
in — n=1
lim x;,

i — =
{(C} There is an N such that for every m < N,

Y. ay, x, converges
n=1

(D) None of these

. If dom (T) is closed in Banach space X and

linear transtormation T is bounded, then—
{A)Y Tis closed

(B) T is open

{C} T is constant

{D) T is null

Given the equation x — A Tx = 0. The number
Ay € R is called characteristic number of this
equation if—

(A) x— Ay Tx=0 has a non-zero solution

(B} x— &y Tx=0 has ano solution

(C) x— Ay Tx=0 has a finite solution

{D¥y None of these



32,

33

34.

Projection theorem 15—

(A) If X and Y are Banach Spaces and Tis a
linear trasnformation from X and Y, then
dom (T) is closed and graph G(T} closed
= T is bounded.

If X and Y are Banach spaces and T is
bounded linear transformation which
maps X on to all of Y, then T is an open
mapping (ie., the image of open setin X
under T, 15 open setin Y ).

If M is a closed subspace of a Hilbert
space X, then every x € X, has a umique
decompositionx=y+z ye M, Ze ML,
where Mt = {ze X:z Lyforally e
M}

{D} None of these

Open mapping theorem 1s—

(A) If X and Y are Banach spaces and T is a
linear transformation from X and Y, then
dom (T) 1s closed and graph G(T) closed
= T is bounded

If X and Y are Banach spaces and T is
bounded linear transformation which
maps X on to all of Y, then T is an open
mapping (i.e., the image of open set in X
under T, 1s open set in Y}

If M is a closed subspace of a Hilbert
space X, then every x € X has a unique
decomposition x=y+z,y € M,ze M+
where Mt = [z e X:z1lyforall Y
M}

{D)} MNone of these

Closed graph theorem 15—

(A) If X and Y are Banach spacesand T is a
linear transformation from X and Y, then
dom (T) is closed and graph G(T} closed
= T 15 bounded

If X and Y are Banach spaces and T is
bounded linear transformation which
maps X on to all of Y, then T is an open
mapping (ie., the image of open setin X
under T, 15 open set in Y}

If M is a closed subspace of a Hilbert
space X, then every x € X has a umique
decompositionx=y+z,ye M,z € ML,
where Mt = [z e X:z1 Y forally
M}

{D} Mone of these

(B)

(C)

(B)

(C)

(B)

(C)

35.

37

38,
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T is closed linear transformation if graph

G(T)is a—

(A) Closed vector subspace of Banach spaces
XY

(B) Open vector subspace of Banach spaces
XY

(C) Null vector subspace of Banach spaces X
-Y

{D) None of these

. A graph G(T) of a mapping T : X — Y is the

set of points—

(A (x, Tx) e X-Y, with Tx e dom T

{BY {(x,Tx}e X-Ywithxe domT

C) (x, T e X -Xwithxe domT

(D} None of these

A linear transformation T from a Banach

space X into a Banach space Y with dom (T}
c X is closed if—

{A)} x, € dom (T}
(B} lim x, = x,

{(C) lim Tx,=y=xe dom(T)and y=Tx

{D} All are true

If X is a Banach space, Y 15 a normed vector

space and {T,} a sequence of continuous

linear transformation on X into Y such that

for every x € X, the sequence {Il T, (x} |l} is

bounded, then—

(A) The sequence {ll T, I} of norm is
bounded

(B) The sequence {|| T, |l of norm is
unbounded

(C) The sequence {|| T, I} of norm is open

(D)} None of these

. Let X be a Banach space, {f,} is a sequence

of continuous linear functional on X and for
every x € X, the sequence {| f, (x)|} is
bounded, then—

(A) The sequence of {Il f, ||} of norms is
bounded

(B) The sequence of {Il f, ||} of norms is
unbounded

(C) The sequence of {Il f, ||} of norms is

closed

(D} None of these
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40.

41.

42,

43,

44,

45,

For every normed vector space X, these 1s a
set A such that X is 1somorphic with a
subspace of the Banach space of bounded
functions fon A with—

(A) I fll=inf {| firy|: 1€ A}

B) Ifll=(1f@):1e A}

(Cy Ifll=sup {If(fH]:1e A}*

{D)} Mone of these

If X is a complete normed vector space and f
is a continuous linear functional on Y, a
subspace of X, then—

(A} fcan be extended to a linear functional F
on X suchthat [|F |l =l fII

(BY f can not be extended to a linear
functional F on X such that | E |l = || £l

(C) fcan be extended to a linear functional F
onX suchthat F=f

{D)y Mone of these
If X is a normed vector space, Y is a subspace
of X and f is a bounded linear functonal on Y

with bound || f || relative to Y then f has a
continuous linear extension to an x°" € X" with

Hx" 1= lfll—

{A) Hahn Banach theorem

(B) Uniform Boundedness Principle
{C)} Muntz theorem

{D)} Mone of these

Each reproducing Kernel is—
(A} A positive matrtix

(B} A pegative matrix

{C)y A null matrix

(D} A identity mafrix

47,

Muntz theorem states necessary and sufficient
condition forthe set 7 ,t" , ...l <m <ny <
...... to be complete in L; 15 that—

@ X, >e 49.
= l_

® ;‘=1”;'_ﬂu

© ¥ +=0
;‘=1":‘_
=1

{D) gln—f{m

A function K(s, 1) on 5 - S is a positive matrix
ifforeschn=1,2...... and each choice of

48,

[}
pointsfy, f,..., 1, the quardratic form }, ke #,1;

i,j=1
§i&in&,, &y, .. .8 —
(A} 15 non-negative
(B) is non-positive
(C) 15 negative
(D) 1s positive

. A Hilbert space of functions on a set S is said

to have a reproducing Kernel if there is a
function K(s, Hon 8§ - S is such that—

(I k(e X, te §

2y x(iN=x, K(;Nxe X 1te 8

(A) (1) 1s true only

(B) (2)is true only

(C) (1) and (2) both are true

{D} None is true

A proper functional completion of X is a

proper functional space X on the same basic
set 8 such that—

(A) X is complete

(B) Xisa dense subspace of X

(C) Both(A) and (B}

(D)} None of these

A vector space X of functions a set 5,

together with a norm in X, 1s called a proper
functional space if for every s € 5—

(A) There exist Ms such that | x (S} | = Ms| x
lLxe X

(B) There exist Ms such that | x {S) | = Msl| x
lLxe X

{C) There exist Ms such that | x (S| < Ms || x
lLxe X

{D} None of these

A vector space X of functions on a set 5,

together with a norm in X, is called a proper
functional space—

(A) If for evrey se 8, the evaluation
functional at s is discontinnous

(B) If for every se 8, the evaluation
functional at s is constant

(C) If for every s€ 8, the evaluation
functional at s is continnous®

(D} None of these



50

51.

52,

53.

54.

35.

56.

Riesz-Fischer theorem states that if } | C, |2

n—ea

< oo, then there 1s fe L, (0, 2x) such that f:
Cn T e

(A) the fourier series of f

(B) convergesto fin the sense of L,

{C) both (A} and (B} above

(I} None of these

If there is a countable basis for X, then—

(A) The Hilbert space X is separable

(B) The Hilbert space X is not separable

(C) The Hilbert space X 1s null

{Iy MNone of these

Two Hilbert spaces are isomorphic if they
have—

{A) Same dimension

(B} Different dimension

{C) Almost different dimension

{D)} Mone of these

If Hilbert space X is separable, then there is
a—

(A) Countable basis for X

(B} Mon countable basis for X

(C) Mull basis for X

{Dy Mone of these

The Cardinality is...... for each basis of a
given Hilbert space—

(A) Same

(B) Different

(C) Almost different

(D) None of these

A necessary and sufficient condition for the

| B
set ", 1", ...l <n;<n; < ... to be

complete in L, is that Emll = oo, This is—
I=

{A)Y Muntz theorem

(B) Isoperimetric theorem

{C) Bassel’s inequality

{D) Parseval's formmula

A npecessary and sufficient condition for
(x;, X3..x,) to be linearly independent is
that—

{A) Gramm determinant G = O

38.

61.
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(B) Gramm determinant G >0
{C} Gramm determinant G <0
(D} Gramm determinant G =10

. Among all simple, closed, plecewise smooth

curves of length L in the place the circle
encloses the maximum area. This 15—

(A) Isoperimetric theorem

(B) Bassel's mequality

(C) Cauchy-Schwarz inequality

{D) Parseval’s formula

Let X be an Hilbert space, 5 = {x,: 0 €
A} is an orthonormal set. Then S is basis iff
equality holds in Bassel's inequality this 15—
(A) Bassel's mequality

(B) Cauchy-Schwarz inequality

(C) Parseval's formula

(D} None of these

. Let X be an Hilbert space and S = {x,: 0t e

A} is an orthonormal set in X, then S is a
hasis—

(A) If it is complete in X

(B) If it is not complete in X

(C) If it is compact in X

{D) None of these

. X 1s a Hilbert space, 8 = {x,: 0t A} isan

orthonormal set in X and x € X, then E

e A
| {x, x,) F < |lx |I2. This is—
(A) Bassel's mequality
{(B) Cauchy-Schwarz inequality
(C) Parseval’s formula
(D) Mone of these
If {xy, 2, ...v.., X, }18 a0 orthonormal set, then

foranyx e X—

(A) Ylxx)P<lixl?

=1

YixxPglx?

i=1

(@ Y IxxPexd
i=1

(D) None of these

(B)

. Parallelogram law states that—

Ay xLy=llxIF+IlylF=llx+yl*is valid
in 1nner product space
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63.

64.

65.

66.

67.

68.

(B) lx+yIP+lx=yl*=2(llxIF+I yI*)

holds in inner products space
c {{]1 fxzy 8
Cr x,y= 1, ifx=y 7€

{D)} Mone of these

Pythagorean theorem states that—
Ay xly=IlxIP+lylP=Ilx+ylP? isvalid

in inner product space®
B) lx+yIP+lx—yl*=2 (llx P+l yI*}

holds m inner product space

0, ifxzy

A= { 1, ifx=y
{D) Mone of these
Banach space is Hilbert space if—
(A) Parallelogram law holds
(B} Pythagorean theorem holds
{C) Projection theorem holds
{Dy Mone of these
lx+yIP+llx—yIP=2{lx I+ yI?} holds
in inner product space this is—
(A) Pythagorean theorem
(B} Parallelogram law
(C) Cauchy-Schwarz inequality
{D)y Mone of these
Ly=lxIP+llylP=Ilx+yl?isvalid in
inner product space. This 15—
(A) Pythagorean theorem
(B) Parallelogram law
(C) Cauchy-Schwarz inequality
{D)y Mone of these

The Cauchy-Schwarz mequality states that

inner product space 15—

{A) Continuous function on X. X into F,
where the norm of (x,v) e X -Xis
I lT4 11yl

(BY Constant function on X. X into F, where
thenormof (x, y)e X-Xisll x/l+ 1l vl

(C) Discontinuous function on X - X into F.
where norm of (x, v) € X, Xisllx|l+
Iyl

{D) Mone of these

For a fixed my such thai—

X, VE S

(1) ¥ lay,!l<M for fixed M and every
m=1

> Hig

69,

71,

73.

74,

=

L

n=1

(2} lim a,, = 0 for every n, andlim
i in

e = 1, then

(A) Aisregular (B) A is almost regular
(C) A not regular {D} None of these
It

(1 Y lagl <M,i=1,2, ... forsome M
k=1

(2) limag=0,k=1,2, ... and

(3) lim } ay=1,then—
i =

(A) Aisregular

(B) Aisalmost regular
(C) Anotregular

(D} None of these

. If parallelogram law holds, then—

(A) Banach space 1s Hilbert space
(B) Hilbert space is Banach space
(C) Banach space is vector space
{D¥y None of these

Cauchy-Schwarz mnequality states—

(A) Foreveryx, ve X, | {x v} I<llx Iyl
(B) Foreveryx,ve X, | (x,¥) > lxI Il vl
(C) Foreveryx,ve X, | (x,y) < lxIl [l vl
(D) Foreveryx, ve X, | (x, ) =lxIl vl

. X is called Hilbert space, then—

(A) If X 1scomplete under the norm obtained
from its inner product®

(B) If X is complete space

{C) If X is not complete under theorem
obtained from its inner product

(D} None of these

A vector space X, together with an inner

product in X, is called—

{A) Inner product space

(B) Outer product space

(C) Closed space

(D) None of these

Let x € X, then norm in the space X 15—

{A) Ixll=V{x, x)= (x, x)I2

B) llxll={x, xy

C) llxll=1

{D¥y None of these
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76.

7.

T8.

79.

B0,

Bl

If | < p < %o, and g is conjugate to p, then—
(A) (L) = f.; (B) (LY = f.;
(C) (1) < !q {D) None of these

A is almost regular iff there is a fixed my, such
that—

(A) z | @y | < M for fixed M and every m

m=1
> My
(B) lim a,, = 0 for every n

L]

{D} All the above

A is regular iff—

(A) Y lagl<M,i=1,2,... forsomeM
k=1

(B) lima,=0,k=1,2,......
'

(©) lim ¥ az=1
I k=1
{D} All the above
A is regular if for each convergent sequence
x_
{A) the A-limit exists
(B) A-limit equals the ordinary limit of the
sequence x
{C} Both{A) and (B)
{D} None of these
If x is a normed vector space Y — X is total
if—
(A} 1ts closed linear span 1s X
(B) 1ts open linear spanis X
(C) its closed linear span is not X
(D) None of these
If X is a normed vector space and x°, € X', (n
=1,2...... )} we say x’, converges weakly to x’
e X if—
(A) foreachx e X, lim x",{x)=x"(x)
(B) foreachxe X, x’, (x) =x" (x)
(C) foreachx e X, lim x",{x)=0

{D)} None of these

A normed vector space is finite dimensional
if—
(A} the closed bounded sets are compact

B3.
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(B) the closed bounded sets are not compact
(C) the open bounded sets are compact
(D) the open bounded sets are not compact

. H X is a Banach space and Y is a subspace of

X, which is a Borel set, then—

(A) Y is of first category in X and is identical
with X

(B} Y is of second category i X and 1s
identical with X

(C) Y is either of first category in X or is
identical with X

(D) Y is either of second category in X or is
1dentical with X

If P {x)= P (x), then—

(A} x1is almost convergent

(B) xi1s divergent

{C) xis constant

{D} None of these

. The closed bounded sets are compact if—

{A) A normed wvector
dimensional

space is finite

(B) A vector space is finite dimensional
(C) A normed vector space is inifinite
{D} None of these

(E) P'(x)=P(x)

. A linear transformation T is bounded if—

{A) T is continuous
{B) T is discrete

{C)y T is dis continuous
{D) None of these

. If X is normed vector space. The space X of

continuous linear functional on X, is referred
as dual of X if—

(A I Nl=M:I1x&x)I<MIlxll,xe X}

B) Il x Il=8up (M: | X(x)|cMlixl.x
e X}

(C) Ixll =inf (M : |2 ) l<Mlix|, x
e X}

(D} None of these

. A linear transformation T of X into Y is

continuous, then—
{A) T is bounded
{B) T is not bounded
{C) T is constant
(D} None of these
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If X is a normed vector space, the space X' of
continuous linear functional on X" is refered
as dual of X if—

(A 1 x" ll=inf {lx" (x} | : lxlI=1)
(B) lx"ll=Sup {k"(x):llxll=1}
C Ixll={1Xx):xll=1}

{D} Mone of these

If || T |l is norm of T, then—

(AY IT, < TN x |l for every xe X
(B) IT Nl<IITII x| forevery xe X
(C) 1T =TIl x| for every xe X
D) 1T N=NTINxI| forevery xe X

If Il Tl is norm of T if—

(A} Tis alinear transform

(B ITNinf {M:IIT, =Ml xll,xe X}
{C) T is bounded

{D} All the above

A linear transform T is bounded if there is an
integer M such that—

(A) IT, ll<M |lx | foreveryx e X

(B) IT,/I=M x|l foreveryx e X

(C) IT,l<M llx |l foreveryx e X

{D} None of these

Banach space 15 a—

{A) Complete normed vector space
(B) MNormed vector space

(C) Complete vector space

{D} Mone of these

Let x be a vector space and p a real valved
function on X is semi norm if—
(A x#0=px)>0

(B} plx+y) = plx) +p(y)

(C) plox) = | atlplx)

(D} All the above

Let X be a vector space, and p a real valued
function on X is semi norm then—

(A) plow) = o p(x)
(B) plowx)=|alplx)
(C) plowx) = afipix)l
(D) plox)= o+ p(x)

Let X be a vector space, and p a real valued
function on X is semi norm then—

(A plx+y)<px)+p(y)

o8.

B) px+y)=px)+p
(C) plx+y)=pixi+pl(y)
D) px+y)r<px)+p(y)

. Let X be a vector space, and p a real valued

function on X is semi norm then—
(A) x20=px)=0

(B x#0=plx)< 0

(Cy x20=px)>0

(D) None of these

. Let X be a vector space and x € X. A real

valued function on a vector space X, || x|l is a
norm on X, then—

(A) lox ll=a Il x|l

(B) llew =1 x|l

C) lexll=atllx |l

{D) None of these

Let X be a vector space and x € X. A real
valued function an a vector space X, || x|l is a
norm on X, then—

(A) lx+yll<lixll+llyll

(B) lx+vyl=>lxll+Iyl

C) lx+yli=lxll+llvl

D) llx+vli<lxll+I1yll

. Let x be a vector space and x € X, A real

valued function on a vector space X, || x|l is a
norm on X, then—

(A) x2z0=lxll>0
(BY x0=|lx|l<0
(C) x20=xl=0
{D} None on these

100. xis almost convergent if—

(A) p'(x)=plx)
(©) p'ix) <plx)

(B) p'(x) >p(x)
{D} None of these

101. IfL is a Banach limit then—

(A) limx, =L{x)< ﬁx,, forall x € m
{B) L{x}ilﬁnx,, <lim x, forallx € m

(€) lim x, <lim x, <L(x) forallxe m
{DYy None of these

102. The subspaces Y, Z of vector space X are

disjoint if—
(A) YRZ=({0)] (B)YNZ=X
C YRZ=Y D)YNZ=Z
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104,

105.

106.

107.

108.

109,

The subspace generated by S of vector space
Xisa—

(A) Smallest subspace of X that contains 5
(B) Largest subspace of X that contains S

(C) Largest subspace of X that does not
contains 5

(D) Largest subspace of X that does not
contains 5

Y=n{Y,:0te A) where Y,,aec Aisa

set of subspace of X, is refered as—

(A) Intersection of subspace

(B) Union of subspace

(C) Disjoint intersection of subspace

(D) Disjoint union of subspace

Proper subspace of vector space X is—

(A) YcXand Y#X and Y = {0)

(B YcXand Y=Xor Y= [0}

(C) YcXand Y#X but Y = {0}

{Dy Mone of these

Improper subspace of vector space X are—
(A) Xonly

(B) Null vector space {0} of X only

(C) X and null vector space {0} of X

{D)y Mone of these

Let m be the vector space of all bounded
sequences of real numbers, x € m is called

almost convergent and the number’s 1s
called F-limit of x if—

{A) L{x)=s for all Banach limits L

{BY L{x)> s for all Banach limits L

{C) L {x)=< s for all Banach limits L.

{D} MNone of these

A Banach limit is any linear functional L

defined on m, m. be the vector space of all
bounded sequences of real numbers—

{A) L{x} =L (ox), where ¢x = d(x;, X2, ...}

(C) Both (A) and (B}
{Dy Mone of these
A Banach limit is any linear functional L

defined on m - m be the vector space of all
bounded sequences of real numbers, then—

Mathematics |

(A) L{x)>0if x, >0foralln
(B) Lix)=0if x, >0 foralln
(C) Lix)>0if x, =0foralln
(D} None of these

189G

110. A sequence x= (X, X3, ...}1s 5aid to have A-

limit, A{x), if foreachi= 1,2, 3

sum A;{x)} = E @y Xp—
k=1

...... the

(A) 1s convergent and lim A; (x) = A(x)
(B) 1sdivergent and lim A; (x} = A{x)
(C) 1s oscillating
(D)} None of these

111. A dual of normed vector space is—

(A) Banach space

(B) Mot a Banach space

(C) Bounded space
{Dy None of these

—

(C)
6. (B)
11. (C)
16. (C)
21. (A)
26. (A)
31. (A)
36. (B)
41. (A)
46. (C)
51.(D)
56. (A)
61. (A)
66. (A)
71. (A)
76. (A)
81. (A)
86. (C)
91.(C)
96. (C)

2.(C)

7.(B)
12.(C)
17. (B)
22. (A)
27. (D)
32.(C)
37. (D)
42. (A)
47.(C)
52. (A)
57. (A)
62. (B)
67. (A)
72. (A)
77.(B)
82.(C)
87. (A)
92. (A)
97.(C)

Answer

3. (A)

8. (A)
13.(B)
18. (A)
23. (A)
28.(C)
33. (B)
38. (A)
43. (A)
48.(C)
53. (A)
58.(C)
63. (A)
68. (B)
73. (A)
78.(C)
83. (A)
88. (B)
93. (D)
98. (D)

101. {A) 102. (A} 103.{A)
106. (C)y 107.(A) 108.(B)

111. (A}

4.(A)
9.(B)
14. (C)
19.(A)
24. (D)
29. (B)
34. (A)
39.(A)
44. (B)
49. (C)
54.(A)
59.(A)
64. (A)
69. (A)
74. (A)
T9.(A)
84. (C)
89.(A)
9. (B)
99. (A)
104. (A)
109. (A)

5.(A)
10. (A)
15. (A)
20. (A)
25. (A)
30. (A)
35. (D)
40. (C)
45. (A)
50. (A)
55. (A)
60. (A)
65. (B)
70. (A)
75. (A)
80. (A)
85. (A)
90. (D}
95. (A)

100. (A)

105. (A)

110. (A)





