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Preface v

�������

Finite Element Analysis was developed as a numerical method of stress analysis, but now it has been extended
as a general method of solution to many complex engineering and physical science problems. As it involves
lot of calculations, its growth is closely linked with the developments in computer technology. Now-a-days a
number of finite element analysis packages are available commercially and number of users is increasing. A
user without a basic course on finite element analysis may produce dangerous results. Hence now-a-days in
many M.Tech. programmes finite element analysis is a core subject and in undergraduate programmes many
universities offer it as an elective  subject. The experience of the author in teaching this course to M.Tech
(Geotechnical Engineering) and M.Tech. (Industrial Structures) students at National Institute of Technology,
Karnataka, Surathkal (formerly, K.R.E.C. Surathkal) and to undergraduate students at SDM College of
Eingineering and Technology, Dharwad inspired him to write this book. This is intended as a text book to
students and as an introductory course to all users of finite element packages.

The author has developed the finite element concept, element properties and stiffness equations in first
nine chapters. In chapter X the various points to be remembered in discritization for producing best results is
presented. Isoparametric concept is developed and applications to simple structures like bars, trusses, beams
and rigid frames is explained thoroughly taking small problems for hand calculations. Application of this
method to complex problems like plates, shells and nonlinear analysis is introduced. Finally a list of
commercially available packages is given and the desirable features of such packages is presented.

The author hopes that the students and teachers will find it as a useful text book. The suggestions for
improvements are most welcome.

DR S.S. BHAVIKATTI
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The finite element analysis is a numerical technique. In this method all the complexities of the problems, like
varying shape, boundary conditions and loads are maintained as they are but the solutions obtained are
approximate. Because of its diversity and flexibility as an analysis tool, it is receiving much attention in
engineering. The fast improvements in computer hardware technology and slashing of cost of computers
have boosted this method, since the computer is the basic need for the application of this method. A number
of popular brand of finite element analysis packages are now available commercially. Some of the popular
packages are STAAD-PRO, GT-STRUDEL, NASTRAN, NISA and ANSYS. Using these packages one can
analyse several complex structures.

The finite element analysis originated as a method of stress analysis in the design of aircrafts. It started as
an extension of matrix method of structural analysis. Today this method is used not only for the analysis in
solid mechanics, but even in the analysis of fluid flow, heat transfer, electric and magnetic fields and many
others. Civil engineers use this method extensively for the analysis of beams, space frames, plates, shells,
folded plates, foundations, rock mechanics problems and seepage analysis of fluid through porous media.
Both static and dynamic problems can be handled by finite element analysis. This method is used extensively
for the analysis and design of ships, aircrafts, space crafts, electric motors and heat engines.

��� ����������������������������

In engineering problems there are some basic unknowns. If they are found, the behaviour of the entire structure
can be predicted. The basic unknowns or the Field variables which are encountered in the engineering
problems are displacements in solid mechanics, velocities in fluid mechanics, electric and magnetic potentials
in electrical engineering and temperatures in heat flow problems.

In a continuum, these unknowns are infinite. The finite element procedure reduces such unknowns to a
finite number by dividing the solution region into small parts called elements and by expressing the unknown
field variables in terms of assumed approximating functions (Interpolating functions/Shape functions) within
each element. The approximating functions are defined in terms of field variables of specified points called
nodes or nodal points. Thus in the finite element analysis the unknowns are the field variables of the nodal
points. Once these are found the field variables at any point can be found by using interpolation functions.

After selecting elements and nodal unknowns next step in finite element analysis is to assemble element
properties for each element. For example, in solid mechanics, we have to find the force-displacement i.e.
stiffness characteristics of each individual element. Mathematically this relationship is of the form
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[ ] { } { }k Fe e eδ =

where [k]
e
 is element stiffness matrix, { }δ e  is nodal displacement vector of the element and {F}

e
 is nodal

force vector. The element of stiffness matrix k
ij
 represent the force in coordinate direction ‘i’ due to a unit

displacement in coordinate direction ‘j’. Four methods are available for formulating these element properties
viz. direct approach, variational approach, weighted residual approach and energy balance approach. Any
one of these methods can be used for assembling element properties. In solid mechanics variational approach
is commonly employed to assemble stiffness matrix and nodal force vector (consistant loads).

Element properties are used to assemble global properties/structure properties to get system equations
[ ] { } { }k Fδ = .  Then the boundary conditions are imposed. The solution of these simultaneous equations give
the nodal unknowns. Using these nodal values additional calculations are made to get the required values e.g.
stresses, strains, moments, etc. in solid mechanics problems.

Thus the various steps involved in the finite element analysis are:

(i) Select suitable field variables and the elements.
(ii) Discritise the continua.

(iii) Select interpolation functions.
(iv) Find the element properties.
(v) Assemble element properties to get global properties.

(vi) Impose the boundary conditions.
(vii) Solve the system equations to get the nodal unknowns.

(viii) Make the additional calculations to get the required values.

��� ���������������������������
������������ ����������

The steps involved in finite element analysis are clarified by taking the stress analysis of a tension strip with
fillets (refer Fig.1.1). In this problem stress concentration is to be studies in the fillet zone. Since the problem
is having symmetry about both x and y axes, only one quarter of the tension strip may be considered as shown
in Fig.1.2. About the symmetric axes, transverse displacements of all nodes are to be made zero. The various
steps involved in the finite element analysis of this problem are discussed below:

Step 1: Four noded isoparametric element (refer Fig 1.3) is selected for the analysis (However note that 8
noded isoparametric element is ideal for this analysis). The four noded isoparametric element can take
quadrilateral shape also as required for elements 12, 15, 18, etc. As there is no bending of strip, only displacement
continuity is to be ensured but not the slope continuity. Hence displacements of nodes in x and y directions are
taken as basic unknowns in the problem.

�
!����� ��������	
��������	
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Step 2: The portion to be analysed is to be discretised. Fig. 1.2 shows discretised portion. For this 33 elements
have been used. There are 48 nodes. At each node unknowns are x and y components of displacements. Hence
in this problem total unknowns (displacements) to be determined are 48 × 2 = 96.

Step 3: The displacement of any point inside the element is approximated by suitable functions in terms of
the nodal displacements of the element. For the typical element (Fig. 1.3 b), displacements at P are

u N u N u N u N u N ui i= = + + +∑ 1 1 2 2 3 3 4 4

and v N v N v N v N v N vi i= = + + +∑ 1 1 2 2 3 3 4 4 …(1.2)

The approximating functions N
i
 are called shape functions or interpolation functions. Usually they are

derived using polynomials. The methods of deriving these functions for various elements are discussed in this
text in latter chapters.

Step 4: Now the stiffness characters and consistant loads are to be found for each element. There are four
nodes and at each node degree of freedom is 2. Hence degree of freedom in each element is 4 × 2 = 8. The
relationship between the nodal displacements and nodal forces is called element stiffness characteristics. It is
of the form

[ ] { } { } ,k Fe e eδ =  as explained earlier.

For the element under consideration, k
e
 is 8 × 8 matrix and δe  and F

e
 are vectors of 8 values. In solid

mechanics element stiffness matrix is assembled using variational approach i.e. by minimizing potential energy.
If the load is acting in the body of element or on the surface of element, its equivalent at nodal points are to be
found using variational approach, so that right hand side of the above expression is assembled. This process
is called finding consistant loads.
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Step 5: The structure is having 48 × 2 = 96 displacement and load vector components to be determined.
Hence global stiffness equation is of the form

[k] { }δ = {F}

96 × 96 96 × 1 96 × 1
Each element stiffness matrix is to be placed in the global stiffness matrix appropriately. This process is

called assembling global stiffness matrix. In this problem force vector F is zero at all nodes except at nodes
45, 46, 47 and 48 in x direction. For the given loading nodal equivalent forces are found and the force vector
F is assembled.

Step 6: In this problem, due to symmetry transverse displacements along AB and BC are zero. The system
equation [ ] { } { }k Fδ =  is modified to see that the solution for { }δ  comes out with the above values. This
modification of system equation is called imposing the boundary conditions.

Step 7: The above 96 simultaneous equations are solved using the standard numerical procedures like Gauss-
elimination or Choleski’s decomposition techniques to get the 96 nodal displacements.

Step 8: Now the interest of the analyst is to study the stresses at various points. In solid mechanics the
relationship between the displacements and stresses are well established. The stresses at various points of
interest may be found by using shape functions and the nodal displacements and then stresses calculated. The
stress concentrations may be studies by comparing the values obtained at various points in the fillet zone with
the values at uniform zone, far away from the fillet (which is equal to P/b

2
t).

��" �����������������#������������������

1. In classical methods exact equations are formed and exact solutions are obtained where as in finite
element analysis exact equations are formed but approximate solutions are obtained.

2. Solutions have been obtained for few standard cases by classical methods, where as solutions can
be obtained for all problems by finite element analysis.

3. Whenever the following complexities are faced, classical method makes the drastic assumptions’
and looks for the solutions:

(a) Shape
(b) Boundary conditions

(c) Loading

Fig. 1.4 shows such cases in the analysis of slabs (plates).
To get the solution in the above cases, rectangular shapes, same boundary  condition along a side
and regular equivalent loads are to be assumed. In FEM no such assumptions are made. The problem
is treated as it is.

4. When material property is not isotropic, solutions for the problems become very difficult in classical
method. Only few simple cases have been tried successfully by researchers. FEM can handle
structures with anisotropic properties also without any difficulty.

5. If structure consists of more than one material, it is difficult to use classical method, but finite
element can be used without any difficulty.

6. Problems with material and geometric non-linearities can not be handled by classical methods.
There is no difficulty in FEM.
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Hence FEM is superior to the classical methods only for the problems involving a number of complexities
which cannot be handled by classical methods without making drastic assumptions. For all regular problems,
the solutions by classical methods are the best solutions. Infact, to check the validity of the FEM programs
developed, the FEM solutions are compared with the solutions by classical methods for standard problems.

�
!����"

��$ ���#����������������������%���&

1. FDM makes pointwise approximation to the governing equations i.e. it ensures continuity only at
the node points. Continuity along the sides of grid lines are not ensured.

FEM make piecewise approximation i.e. it ensures the continuity at node points as well as along
the sides of the element.

2. FDM do not give the values at any point except at node points. It do not give any approximating
function to evaluate the basic values (deflections, in case of solid mechanics) using the nodal
values.

FEM can give the values at any point. However the values obtained at points other than nodes
are by using suitable interpolation formulae.

3. FDM makes stair type approximation to sloping and curved boundaries as shown in Fig. 1.5.
FEM can consider the sloping boundaries exactly. If curved elements are used, even the curved

boundaries can be handled exactly.
4. FDM needs larger number of nodes to get good results while FEM needs fewer nodes.

5. With FDM fairly complicated problems can be handled where as FEM can handle all complicated
problems.

(a) Irregular shaper (b) Irregular boundary condition

(c) Irregular loading
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Engineers, physicists and mathematicians have developed finite element method independently. In 1943 Courant
[1] made an effort to use piecewise continuous functions defined over triangular domain.

After that it took nearly a decade to use this distribution idea. In fifties renewed interest in this field was
shown by Polya [2], Hersh [3] and Weinberger [4]. Argyris and Kelsey [5] introduced the concept of applying
energy principles to the formation of structural analysis problems in 1960. In the same year Clough [6]
introduced the word ‘Finite Element Method’.

In sixties convergence aspect of the finite element method was pursued more rigorously. One such study
by Melesh [7] led to the formulation of the finite element method based on the principles of minimum potential
energy. Soon after that de Veubeke [8] introduced equilibrium elements based on the principles of minimum
potential energy, Pion [9] introduced the concept of hybrid element using the duel principle of minimum
potential energy and minimum complementary energy.

In Late 1960’s and 1970’s, considerable progress was made in the field of finite element analysis. The
improvements in the speed and memory capacity of computers largely contributed to the progress and success
of this method. In the field of solid mechanics from the initial attention focused on the elastic analysis of plane
stress and plane strain problems, the method has been successfully extended to the cases of the analysis of
three dimensional problems, stability and vibration problems, non-linear analysis. A number of books
[10 – 20] have appeared and made this field interesting.

��( ���������)� ������

Now, a number of users friendly packages are available in the market. Hence one may ask the question ‘What
is the need to study FEA?’.

The above argument is not sound. The finite element knowledge makes a good engineer better while just
user without the knowledge of FEA may produce more dangerous results. To use the FEA packages properly,
the user must know the following points clearly:

1. Which elements are to be used for solving the problem in hand.

2. How to discritise to get good results.
3. How to introduce boundary conditions properly.
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4. How the element properties are developed and what are their limitations.

5. How the displays are developed in pre and post processor to understand their limitations.
6. To understand the difficulties involved in the development of FEA programs and hence the need

for checking the commercially available packages with the results of standard cases.

Unless user has the background of FEA, he may produce worst results and may go with overconfidence.
Hence it is necessary that the users of FEA package should have sound knowledge of FEA.

��* +����������������,���)���

When hand calculations are made, the designer always gets the feel of the structure and get rough idea about
the expected results. This aspect cannot be ignored by any designer, whatever be the reliability of the program,
a complex problem may be simplified with drastic assumptions and FEA results obtained. Check whether
expected trend of the result is obtained. Then avoid drastic assumptions and get more refined results with FEA
package. User must remember that structural behaviour is not dictated by the computer programs. Hence the
designer should develop feel of the structure and make use of the programs to get numerical results which are
close to structural behaviour.

-)������

1. Explain the concept of FEM briefly and outline the procedure.
2. Discuss the advantages and disadvantages of FEM over

(i) Classical method

(ii) Finite difference method.
3. Clearly point out the situations in which FEM is preferred over other methods.
4. When there are several FEM packages are available is there need to study this method? Discuss.

����������
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This chapter summarizes the results from theory of elasticity which are useful in solving the problems in
structural and continuum mechanics by the finite element method.

��� �����������������������������

In theory of elasticity, usually right hand rule is used for selecting the coordinate system. Fig. 2.1 shows
various orientations of right hand rule of the coordinate systems. Equations derived for any one such orientation
hold good for all other orientations of

 �!�����

coordinate system with right hand rule. In this Chapter orientation shown in Fig. 2.1(a) is used for the
explanation. Fig. 2.2 shows a typical three dimensional element of size dx × dy × dz. Face abcd may be called
as negative face of x and the face efgh as the positive face of x since the x value for face abcd is less than that
for the face efgh. Similarly the face aehd is negative face of y and bfgc is positive face of y. Negative and
positive faces of z are dhgc and aefb.

The direct stresses σ  and shearing stresses τ  acting on the negative faces are shown in the Fig. 2.3 with
suitable subscript. It may be noted that the first subscript of shearing stress is the plane and the second subscript
is the direction. Thus the τ xy  means shearing stress on the plane where x value is constant and y is the
direction.

z
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z y
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x
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In a stressed body, the values of stresses change from face to face of an element. Hence on positive face
the various stresses acting are shown in Fig. 2.4 with superscript ‘+’.

All these forces are listed in table 2.1

Note the sign convention: A stress is positive when it is on positive face in positive direction or on negative
face in negative direction. In other words the stress is + ve when it is as shown in Figs 2.3 and 2.4.

 �!����#
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Face Stress on –ve Face Stresses on +ve Face

x σ x σ σ
∂σ
∂x x

x

x
dx+ = +

τ xy τ τ
∂τ
∂xy xy

xy

x
dx+ = +

τ xz τ τ
∂τ
∂xz xz

xz

x
dx+ = +

y σ y σ σ
∂σ
∂y y

y

y
dy+ = +

τ yx τ τ
∂τ
∂yx yx

yx

y
dy+ = +

τ yz τ τ
∂τ
∂yz yz

yz

y
dy+ = +

z σ z σ σ
∂σ
∂z z

z

z
dz+ = +

τ zx τ τ
∂τ
∂zx zx

zx

z
dz+ = +

τ zy τ τ
∂τ
∂zy zy

zy

z
dz+ = +

Note that stress on positive face is equal to the stress on negative face plus rate of change of that stress
multiplied by the distance between the faces.

 �!����&

dx

dy

dz

z Z

y
Y

x

X
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Let the intensity of body forces acting on the element in x, y, z directions be X, Y and Z respectively as
shown in Fig 2.5. The intensity of body forces are uniform over entire body. Hence the total body force in x,
y, z direction on the element shown are given by

(i) X dx dy dz in x – direction

(ii) Y dx dy dz in y – direction and
(iii) Z dx dy dz in z – direction

��" �'��������� ��'���������

Considering all the forces acting, we can write equations of equilibrium for the element.

Fx =∑ 0

σ σ τ τ τ τx x yx yx zx zxdy dz dy dz dx dz dx dz dx dy dx dy X dx dy dz+ + +− + − + − + =0

i.e. σ
∂σ
∂

σ τ
∂τ
∂

τx
x

x yx
yx

yx
x

dx dy dz dy dz
y

dy dx dz dx dz+�
��

�
�� − + +

�
��

�
��

−

+ +�
��

�
�� − + =τ

∂τ
∂

τzx
zx

zx
z

dz dy dx dx dy X dx dy dz 0 …(i)

Simplifying and then dividing throughout by dx dy dz, we get

∂σ
∂

∂τ
∂

∂τ
∂

x yx zx

x y z
X+ + + = 0

Similarly ΣFy = 0  and ΣFz = 0  equilibrium conditions give,

∂τ
∂

∂σ
∂

∂τ
∂

xy y zy

zx y
Y+ + + = 0 …(ii)

and
∂τ
∂

∂τ
∂

∂σ
∂

xz yz z

zx y
Z+ + + = 0 …(iii)

Now, Σ  moment about x-axis = 0 through the centroid of the element gives

τ τ τ τyz yz zy zydx dz
dy

dx dz
dy

dx dz
dy

dx dz
dy+ ++ − +�

�	


��

=
2 2 2 2

0

i.e. τ
∂τ
∂

τ τ
∂τ
∂

τyz
yz

yz zy
yz

zyy
dy dx dy

dz
dx dy

dz

z
dz dx dy

dz
dx dz

dz+
�
��

�
��

+ − +
�
��

�
��

+
�

�
	
	




�
�
�

=
2 2 2 2

0

Neglecting the small quantity of higher (4th) order and dividing throughout by dx dy dz, we get

τ τyz zy= …(iv)

Similarly the moment equilibrium conditions about y-axis and z-axis result into

τ τxz zx= …(v)
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and τ τxy yx= …(vi)

Thus the stress vector is

σ σ σ σ τ τ ττ = x y z xy yz xz …(2.1)

and the equations of equilibrium are

∂σ
∂

∂τ
∂

∂τ
∂

x xy xz

zx y
X+ + + = 0

∂τ
∂

∂σ
∂

∂τ
∂

xy y yz

x y z
Y+ + + = 0

and
∂τ
∂

∂τ
∂

∂σ
∂

xz yz z

x y z
Z+ + + = 0 …(2.2)

and note that

τ τxy yx= ,  τ τyz zy=  and τ τxz zx= …(2.3)

��# �������

Corresponding to the six stress components given in equation 2.1, the state of strain at a point may be divided
into six strain components as shown below:

ε ε ε ε γ γ γ �T
x y z xy yz yx= …(2.4)

��& ���������������������'�������

Taking displacement components in x, y, z directions as u, v and w respectively, the relations among components
of strains and components of displacements are

ε ∂
∂

∂
∂

∂
∂

∂
∂x

u

x

u

x

v

x

w

x
= + �

��
�
��

+ �
��
�
��

+ �
��
�
��

�

�
	
	




�
�
�

1

2

2 2 2

ε ∂
∂

∂
∂

∂
∂

∂
∂y

v

y

u

y

v

y

w

y
= +

�
��
�
��

+
�
��
�
��

+
�
��
�
��

�

�
	
	




�
�
�

1

2

2 2 2

ε ∂
∂

∂
∂

∂
∂

∂
∂z

w

z

u

z

v

z

w

z
= + �

��
�
��

+ �
��
�
��

+ �
��
�
��

�

�
	
	




�
�
�

1

2

2 2 2

γ
∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂xy

v

x

u

y

u

x

u

y

v

x

v

y

w

x

w

y
= + + ⋅ + ⋅ + ⋅
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γ
∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂yz

w

y

v

z

u

y

u

z

v

y

v

z

w

y

w

z
= + + ⋅ + ⋅ + ⋅ …(2.5)

and γ ∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂xz

u

z

w

x

u

x

u

z

v

x

v

z

w

x

w

z
= + + ⋅ + ⋅ + ⋅

In equation 2.5, strains are expressed upto the accuracy of second order (quadratic) changes in
displacements. These equations may be simplified to the first (linear) order accuracy only by dropping the
second order changes terms. Then linear strain – displacement relation is given by:

ε ∂
∂x
u

x
=     γ

∂
∂

∂
∂xy

u

x

v

y
= +

ε
∂
∂y
v

y
=     γ

∂
∂

∂
∂yz

w

y

v

z
= + …(2.6)

ε ∂
∂z
w

z
=     γ ∂

∂
∂
∂xz

w

x

u

z
= +

Equations 2.6 are used in small deflection theories and equations 2.5 in large deflection theories.

��( �����������������)���'�������

The constitutive law expresses the relationship among stresses and strains. In theory of elasticity, usually it is
considered as linear. In one dimensional stress analysis, the linear constitutive law is stress is proportional to
strain and the constant of proportionality is called Young’s modulus. It is very well known as Hooke’s law.
The similar relation is expressed among the six components of stresses and strains and is called ‘Generalized
Hookes Law”. This may be stated as:

σ
σ
σ
τ
τ
τ

ε
ε
ε
γ
γ
γ

x

y

z

xy

yz

xz

x

y

z

xy

yz

xz

D D D D D D

D D D D D D

D D D D D D

D D D D D D

D D D D D D

D D D D D D

�

�

�
�
��

�

�
�
�
�

�

�

�
�
��

�

�
�
�
�

=

�

�

�
�
��

�

�
�
��

�

�

�
�
��

�

�
�
��

�

�

�
�
��

�

�
�
�
�

�

�

�
�
��

�

�
�
�
�

11 12 13 14 15 16

21 22 23 24 25 26

31 32 33 34 35 36

41 42 43 44 45 46

51 52 53 54 55 56

61 62 63 64 65 66

…(2.7)

or in matrix form

σ ε �  �= D ,

where D is 6 × 6 matrix of constants of elasticity to be determined by experimental investigations for each
material. As D is symmetric matrix [D

ij
 = D

ji
], there are 21 material properties for linear elastic Anisotropic

Materials.
Certain materials exhibit symmetry with respect to planes within the body. Such materials are called

Ortho tropic materials. Hence for orthotropic materials, the number of material constants reduce to 9 as
shown below:
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σ
σ
σ
τ
τ
τ

ε
ε
ε
γ
γ
γ

x

y

z

xy

yz

xz

x

y

z

xy

yz

xz

D D D

D D

D

Sym D

D

D

�

�

�
�
��

�

�
�
�
�

�

�

�
�
��

�

�
�
�
�

=

�

�

�
�
��

�

�
�
��

�

�

�
�
��

�

�
�
��

�

�

�
�
��

�

�
�
�
�

�

�

�
�
��

�

�
�
�
�

11 12 13

22 23

33

44

55

66

0 0 0

0 0 0

0 0 0

0 0

0

…(2.8)

Using the Young’s Modulii and Poisons ratio terms the above relation may be expressed as:

ε
σ

µ
σ

µ
σ

x
x

x
yx

y

y
zx

z

zE E E
= − −

ε µ σ σ
µ

σ
y xy

x

x

y

y
zy

z

zE E E
= − + −

ε µ σ µ
σ σ

z xz
x

x
yz

y

y

z

zE E E
= − − + …(2.9)

γ
τ

xy
xy

xyG
= ,  γ

τ
yz

yz

yzG
= ,  γ

τ
zx

zx

zxG
=

Note that there are 12 material properties in equations 2.9. However only nine of these are independent
because the following relations exist

E E
x

xy

y

yxµ µ
= ,  

E Ey

yz

z

zyµ µ
= ,  

E Ez

zx

x

xzµ µ
= …(2.10)

For Isotropic Materials the above set of equations are further simplified. An isotropic material is the one
that has same material property in all directions. In other word for isotropic materials,

E
x
 = E

y
 = E

z
 say E and

µ µ µ µ µ µ µxy yx yz zy xz zx= = = = = say …(2.11)

Hence for a three dimensional problem, the strain stress relation for isotropic material is,

ε

ε

ε

γ

γ

γ

µ µ

µ

µ

µ

µ

σ

σ

σ

τ

τ

τ

x

y

z

xy

yz

xz

x

y

z

xy

yz

xz

E E E

E E

E

�

�

�
�
�
�
�
�

�

�
�
�
�
�
��

�

�

�
�
�
�
�
�

�

�
�
�
�
�
��

=

− −

−

−

−

−

�

�

�
�
�
�
�
�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�
�
�
�
�
��

�

�

�
�
�
�
�
�

�

�
�
�
�
�
��

1
0 0 0

1
0 0 0

1
0 0 0

1

2
0 0

1

2
0

1

2

…(2.12)
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Since G
E

=
−2 1( )µ

 and stress – strain relation is

σ

σ

σ

τ

τ

τ

µ µ

µ µ µ
µ µ

µ
µ

µ

µ

ε

ε

ε

γ

γ

γ

x

y

z

xy

yz

xz

x

y

z

xy

yz

xz

E

�

�

�
�
�
��

�

�
�
�
�
�

�

�

�
�
�
��

�

�
�
�
�
�

=
+ −

−
−

−
−

−

−

�

�

�
�
�
��

�

�
�
�
�
�

�

�

�
�
�
��

�

�
�
�
�
�

�

�

�
�
�
��

�

�
�
�
�
�

�

�

�
�
�
��

�

�
�
�
�
�

1 1 2

1 0 0 0

1 0 0 0

1 0 0 0
1 2

2
0 0

1 2

2
0

1 2

2

� � � � …(2.13)

In case of two dimensional elasticity, the above relations get further simplified. There are two types of
two dimensional elastic problems, namely plane stress and plane strain problems.

���%���*%����*�$�%+�

The thin plates subject to forces in their plane only, fall under this category of the problems. Fig. 2.6 shows a
typical plane stress problem. In this, there is

 �!����(

no force in the z-direction and no variation of any forces in z-direction. Hence

σ τ τz xz yz= = = 0

The conditions τ τxz yz= = 0  give γ γxz yz= = 0  and the condition σ z = 0  gives,

             σ µε µε µ εz x y z= + + − =1 0� �

o
x

y
y

z
o
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i.e. ε
µ

µ
ε εz x y= −

−
+

1
� �

If this is substituted in equation 2.13 the constitutive law reduces to

σ
σ

τ
µ

µ
µ

µ

ε
ε

γ

x

y

xy

x

y

xy

E
�

�
��

�
��

�

�
��

�
��

=
− −

�

�

	
	
	
	
	




�

�
�
�
�
�

�

�
��

�
��

�

�
��

�
��

1

1 0

1 0

0 0
1

2

2 …(2.14)

���%���*����*�$�%+�

A long body subject to significant lateral forces but very little longitudinal forces falls under this category of
problems. Examples of such problems are pipes, long strip footings, retaining walls, gravity dams, tunnels,
etc. (refer Fig. 2.7). In these problems, except for a small distance at the ends, state of stress is represented by
any small longitudinal strip. The displacement in longitudinal direction (z-direction) is zero in typical strip.
Hence the strain components,

 �!����,

y

x

z

y

x

z
(a) (b)

x

z

y

y

x

z
(c) (d)
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 �!����,��������

          ε γ γz xz yz= = = 0

γ γxz yz= = 0  means τ xz  and τ yz  are zero.

          ε z = 0  means

          ε
σ

µ
σ σ

z
z x y

E E
= −

+
=

( )
0

i.e.          σ µ σ σz x y= +( )

Hence equation 2.13 when applied to plane strains problems reduces to

σ
σ

τ
µ µ

µ µ
µ µ

µ

ε
ε

γ

x

y

xy

x

y

xy

E
�

�
��

�
��

�

�
��

�
��

=
+ −

−
−

−

�

�

�
�
�
�

�

�

�
�
�
�

�

�
��

�
��

�

�
��

�
��

( )( )1 1 2

1 0

1 0

0 0
1 2

2

…(2.15)

�-�.��++%�*����*�$�%+�

Axi-symmetric structures are those which can be generated by rotating a line or curve about an axis. Cylinders
(refer Fig. 2.8) are the common examples of axisymmetric structures. If such structures are subjected to
axisymmetric loadings like uniform internal or external pressures, uniform self weight or live load uniform
over the surface,

there exist symmetry about any axis. The advantage of symmetry may be made use to simplify the analysis. In
these problems cylindrical coordinates can be used advantageously. Because of symmetry, the stress components
are independent of the angular (θ ) coordinate. Hence all derivatives with respect to θ  vanish i.e. in these
cases.

v r z r z= = = = =γ γ τ τθ θ θ θ 0

X

z

y

(e)
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Hence there are only four nonzero components. The strain displacement relations for these components
are

ε ∂
∂r
u

r
= ,     εθ = u

r
,     ε

∂
∂z
w

z
=  and

γ ∂
∂

∂
∂rz

u

z

w

r
= + …(2.16)

In these cases stress-strain relation is

σ
σ
σ
τ

µ µ

µ µ µ
µ µ

µ
µ

ε
ε
ε
γ

θ θ

r

z

rz

r

z

rz

E

�

�
�
�

�
�
�

�

�
�
�

�
�
�

=
+ −

−
−

−
−

�

�

�
�
�
��

�

�

�
�
�
��

�

�
�
�

�
�
�

�

�
�
�

�
�
�

( )( )1 1 2

1 0

1 0

1 0
1 2

2

…(2.17)

'��������

1. Draw a typical three dimensional element and indicate state of stress in their positive senses.

2. Derive the equations of equilibrium in case of a three dimensional stress system.

z w,

ru,

z w,

ru,

ru,
Q

(a)

ru,
Q

(b)
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3. State and explain generalized Hooke’s law.

4. Give strain displacement relations in case of a three dimensional elasticity problem upto
(i) accuracy of linear terms only

(ii) accuracy of quadratic terms.

5. Explain the terms, ‘Anisotropic’, ‘Orthotropic’ and ‘Isotropic’ as applied to material properties.
6. Give constitutive laws for three dimensional problems of

(i) orthotropic materials

(ii) isotropic materials.
7. Explain the terms ‘Plane stress’ and ‘Plane strain’ problems. Give constitutive laws for these cases.
8. Explain the term ‘Axi-symmetric problems’ and give constitutive law for such problems.
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Though mathematicians, physicists and stress analysts worked independently in the field of FEM, it is the
matrix displacement formulation of the stress analysts which lead to fast development of FEM. Infact till the
word FEM became popular, stress analyst worked in this field in the name of matrix displacement method. In
matrix displacement method stiffness matrix of an element is assembled by direct approach while in FEM
though direct stiffness matrix may be treated as an approach for assembling element properties (stiffness
matrix as far as stress analysis is concerned), it is the energy approached which has revolutionized entire
FEM.

Hence in this chapter, a brief explanation of matrix displacement method is presented and solution
techniques for simultaneous equations are discussed briefly.

�����������	� !"��#�#���#$������ 

The standard form of matrix displacement equation is,

[ ] { } { }k Fδ =

where [k] is stiffness matrix

{ }δ is displacement vector and

{F} is force vector in the coordinate directions
The element k

ij
 of stiffness matrix maybe defined as the force at coordinate i due to unit displacement in

coordinate direction j.

The direct method of assembling stiffness matrix for few standard cases is briefly given in this article.

���%���#������

Common problems in this category are the bars and columns with varying cross section subjected to axial
forces as shown in Fig. 3.1.

For such bar with cross section A, Young’s Modulus E and length L (Fig. 3.2 (a)) extension/shortening δ
is given by

δ = PL

EA
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��&�����
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∴   P
EA

L
= δ

       ∴   If δ = 1,  P
EA

L
=

By giving unit displacement in coordinate direction 1, the forces development in the coordinate direction
1 and 2 can be found (Fig. 3.2 (b)). Hence from the definition of stiffness matrix,

k
EA

L11 =  and k
EA

L21 = −

Similarly giving unit displacement in coordinate direction 2 (refer Fig. 3.2 (c)), we get

A3 P3 A2 P2 A1

P1

x

L3 L1L2

(a)

P1

P2

P3

L3

L2

L1

(b)

A E,

L

1
2

(a)

P
P

1
(b)

L 1

(c)
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            k
EA

L12 = −  and k
EA

L22 =

Thus, k
EA

L
=

−
−
�

�
�

�

�
�

1 1

1 1 …(3.5)

������

�#������

Members of the trusses are subjected to axial forces only, but their orientation in the plane may be at any angle
to the coordinate directions selected. Figure 3.3 shows a typical case in a plane truss. Figure 3.4 (a) shows a
typical member of the truss with Young’s Modulus E, cross sectional area A, length L and at angle θ  to x-axis

��&�����

(i) Unit displacement of end 1 in x-direction.

Due to this, displacement along the axis is 1 × cosθ  as shown in Fig. 3.4 (b). Hence forces

development at the ends are as shown in figure.

P
EA

L
= cosθ

From the definition of elements of stiffness matrix, we get

k P
EA

L11 = =cos cos2θ θ

k P
EA

L21 = =sin cos sinθ θ θ

k P
EA

L31 = − = −cos cos2θ θ

      k P
EA

L41 = − = −sin cos sinθ θ θ

� 1

� 2

� 3

y

x
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��&����'

(ii) Unit displacement in coordinate direction 2;

This case is shown in Fig. 3.4 (c). In this case axial deformation is 1 × sinθ  and the forces developed

at each end are as shown in the figure.

             ∴ =P
EA

L
sinθ

 k P
EA

L12 = =cos sin cosθ θ θ

k P
EA

L22 = =sin sin2θ θ

k P
EA

L32 = − = −cos sin cosθ θ θ

 k P
EA

L42 = − = −sin sin2θ θ

(iii) Unit displacement in coordinate direction 3,

Extension along the axis is 1 × sinθ  and hence the forces developed are as shown in the

Fig. 3.4 (d)

             ∴ =P
EA

L
cosθ

 k P
EA

L13 = − = −cos cos2θ θ

�
1

2 E, A, L

4

3

(a)

�

(b)
P

P

1 × co
s �

�

(c)
P

P

1 × sin
�

(e)P

P

1 sin
�

1

(d)P

P
Cos �

1

1

1
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k P
EA

L23 = − = −sin cos sinθ θ θ

 k P
EA

L33 = =cos cos2θ θ

 k P
EA

L43 = =sin cos sinθ θ θ

(vi) Due to unit displacement in coordinate direction 4,

Extension of the bar is equal to 1 × sin ,θ  and hence the forces developed are as shown in

Fig. 3.4 (e).

             ∴ =P
EA

L
sinθ

k P
EA

L14 = − = −cos sin cosθ θ θ

 k P
EA

L24 = − = −sin sin2θ θ

 k P
EA

L34 = =cos sin cosθ θ θ

 k P
EA

L44 = =sin sin2θ θ

∴ The stiffness matrix is

k
EA

L
=

− −
−

−
−

�

�

�
�
�
�
�

�

�

�
�
�
�
�

cos cos sin cos cos sin

cos sin sin cos sin –sin

–cos cos sin cos cos sin

cos sin –sin cos sin sin

2 2

2 2

2 2

2 2

θ θ θ θ θ θ
θ θ θ θ θ θ

θ θ θ θ θ θ
θ θ θ θ θ θ

=

− −
− −

− −
− −

�

�

�
�
�
�
�

�

�

�
�
�
�
�

EA

L

l lm l lm

lm m lm m

l lm l lm

lm m lm m

2 2

2 2

2 2

2 2

…(3.6)

Where l and m are the direction cosines of the member i.e. l = cosθ  and m = cos (90 – θ ) = sinθ .

(v) Beam Element

In the analysis of continuous beams normally axial deformation is negligible (small deflection
theory) and hence only two unknowns may be taken at each end of a element (Fig. 3.5). Typical
element and the coordinates of displacements selected are shown in Fig. 3.5 (b). The end forces
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developed due to unit displacement in all the four coordinate directions are shown in Fig. 3.6 (a, b,
c, d).
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From the definition of stiffness matrix and looking at positive senses indicated, we can write

(a) Due to unit displacement in coordinate direction 1,
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(d) Due to unit displacement in coordinate direction 4,
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If axial deformations in the beam elements are to be considered as in case of columns of
frames, etc. (Fig. 3.7), it may be observed that axial force do not affect values of bending
moment and shear force and vice versa is also true. Hence stiffness matrix for the element
shown in Fig. 3.8 is obtained by combining the stiffness matrices of bar element and beam
element and arranging in proper locations. For this case
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The following special features of matrix displacement equations are worth noting:

(i) The matrix is having diagonal dominance and is positive definite. Hence in the solution process
there is no need to rearrange the equations to get diagonal dominance.

(ii) The matrix is symmetric. It is obvious from Maxwell’s reciprocal theorem. Hence only upper or
lower triangular elements may be formed and others obtained using symmetry.

(iii) The matrix is having banded nature i.e. the nonzero elements of stiffness matrix are concentrated
near the diagonal of the matrix. The elements away from the diagonal are zero. Considerable saving
is effected in storage requirement of stiffness matrix in the memory of computers by avoiding
storage of zero values of stiffness matrices. The banded nature of matrix is shown in Fig. 3.9.

��&����,

In this case instead of storing N ×N size matrix only N × B size matrix can be stored.
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The matrix displacement equations are linear simultaneous equations. These equations can be solved using
Gaussian elimination method. Let the equations to be solved be
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i.e. [A] {x} = {b}
The Gauss elimination method consists in reducing A matrix to upper triangular matrix and then finding

the variables x
n
, x

n–1
 …, x

k
…., x

2
, x

1
 by back substitution

Step 1: To eliminate x
1
 in the lower equations:

(i) First equation is maintained as it is

(ii) For equations below 1,

a a
a

a
aij ij

i
ij

( )1 1

11

= −

and b b
a

a
bij i

i( )1 1

11
1= −
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The above process is called pivotal operation on a
11

. For pivotal operation on a
kk

, no changes are
made in kth row but for the rows below kth,
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a
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a
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k k
k
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( – 1)
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( – 1)=  for i = k + 1, …, n.

After n – 1 pivotal operations, matrix equation is of the form
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From the last equation,
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Thus the required solution is obtained.
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In FEM size of stiffness matrix of size 1000 × 1000 or even more is not uncommon. Hence memory requirement
for storing stiffness matrix is very high. If user tries to implement Gaussian elimination straight way as
described above, ends up with the problem of shortage of memory. The following techniques are used to
reduce memory requirement for storing the stiffness matrices:

(i) Use of symmetry and banded nature

(ii) Partitioning of matrix (Frontal solution).
(iii) Skyline storage.

1�2��
���3� 4�����4���5�%��5�5�������

Since the stiffness matrix is always symmetric and banded in nature, techniques have been developed to store
only semiband width of non-zero elements and get the solution. If B is the semiband width of N × N matrix we
need to store only N × B elements as indicated in Fig. 3.9(b). The diagonal of the given matrix is stored as the
first column of the modified matrix. The computer coding is modified to use modified matrix for the solution
of the given problem. The modification required is,

a a i j iij = ′ − +, ( )1

1��2�!����������&��3��6��������

For larger systems, even this method of storage may be inadequate. In such cases the partitioning of the
matrix is made as shown in Fig. 3.10.
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Then only few of the triangular sub-matrices need to be stored in the computer core at a given time, while
the remaining portions are kept in peripheral shortage like hard disk. It may be noted that the elimination
performed using one row affects only the triangle of element within the band below that row. For example, in
Fig. 3.10 reduction involving row PQ modifies only the triangle PQR. This permits us to carry out the elimination
with only few of the sub-matrices of Fig. 3.10 in core. Frontal Solution Technique is developed on this scheme.

1���2� 84����� ����&�

Further saving in memory requirement is by making use of skyline storage technique. In this system of
storage, if there are zeros at the top of a column, only the elements starting from non-zero value need to be
stored. The line separating the top zeros from the first non-zero element is called the skyline. For the matrix
given below the skyline is indicated.
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$�# ���� 

1. Define stiffness matrix and explains its special features.
2. By direct stiffness matrix approach, determine stiffness matrix for

(a) Bar Element

(b) Truss Element
(c) Beam element neglecting axial deformation
(d) Beam element (Frame Element), considering axial deformation also.

3. Briefly explain various attempts made to reduce memory requirement in storing stiffness matrix.
4.  Explain the term “Skyline Storage Technique”.
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In this chapter, element shapes, types of nodes, order of the element, types of nodal unknowns, are disscussed.
Global – Local coordinate systems and natural coordinate systems are explained. Before taking up mathematical
aspect of finite element analysis, these preliminaries are to be understood.

�� �!�"����	#$%�	

Based on the shapes elements can be classified as
(i) One dimensional elements

(ii) Two dimensional elements

(iii) Axi-symmetric elements and
(iv) Three dimensional elements.

����������������������

These elements are suitable for the analysis of one dimensional problem and may be called as line elements
also. Figure 4.1 shows different types of one dimensional elements.
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We need two dimensional elements to solve two dimensional problems. Common two dimensional problems
in stress analysis are plane stress, plane strain and plate problems. Two dimensional elements often used is
three noded triangular element shown in Fig. 4.2. It has the distinction of being the first and most used
element. These elements are known as Constant Strain Triangles (CST) or Linear Displacement Triangles.
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Six noded and ten noded triangular elements (Fig. 4.3) are also used by the analysts. Six noded triangular
element is known as Linear Strain Triangle (LST) or as Quadratic Displacement Triangle. Ten noded
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triangular elements are known as Quadratic Strain Triangles (QST) or Cubic Displacement Triangles. One
can think of trying the use of still higher order triangular elements like Cubic Strain Triangles and Quartic
Strain Triangles.

A simple but less used two dimensional element is the four noded rectangular element whose sides are
parallel to the global coordinate systems (Fig. 4.5). This systems is easy to construct automatically but it is not
well suited to approximate inclined boundaries.
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Rectangular elements of higher order also can be used. Figure 4.6 shows a family of Lagrange rectangle
in which nodes are in the form of grid points. Figure 4.7 shows the family of Serendipity rectangles which
are having nodes only along the external boundaries.
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&�'����+ �������������
���������
����
����������

Quadrilateral Elements are also used in finite element analysis (Fig. 4.8). Initially quadrilateral elements
were developed by combining triangular elements (Fig. 4.9). But it has taken back stage after isoparametric
concept was developed. Isoparametric concept is based on using same functions for defining geometries and
nodal unknowns. Even higher order triangular elements may be used to generate quadrilateral elements.
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Using isoparametric concept even curved elements are developed to take care of boundaries with curved
shapes (Fig. 4.10).
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These are also known as ring type elements. These elements are useful for the analysis of axi-symmetric
problems such as analysis of cylindrical storage tanks, shafts, rocket nozzles. Axi-symmetric elements can be
constructed from one or two dimensional elements. One dimensional axi-symmetric element is a conical
frustum and a two dimensional axi-symmetric element is a ring with a triangular or quadrilateral cross section.
Two such elements are shown in Fig. 4.11.
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Similar to the triangle for two dimensional problems tetrahedron is the basic element for three dimensional
problems (Fig. 4.12). Tetrahedron is having four nodes, one at each corner. Three dimensional elements with
eight nodes are either in the form of a general hexahedron or a rectangular prism, which is a particular case of
a hexahedron. The rectangular prism element is many times called as a brick element also. In these elements
also one can think of using higher order elements. (Fig. 4.12).
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Nodes are the selected finite points at which basic unknowns (displacements in elasticity problems) are to be
determined in the finite element analysis. The basic unknowns at any point inside the element are determined
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by using approximating/interpolation/shape functions in terms of the nodal values of the element. There are
two types of nodes viz. external nodes and internal nodes. External nodes are those which occur on the edges/
surface of the elements and they may be common to two or more elements. In Fig. 4.13, nodes, 1 and 2 in one
dimensional element, nodes 1 to 9 in 10 noded triangular element and nodes 1 to 8 in 9 noded lagrangian
element are external nodes. These nodes may be further classified as (i) Primary nodes and (ii) Secondary
nodes.
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Primary nodes occur at the ends of one dimensional elements or at the corners in the two or three
dimensional elements. Secondary nodes occur along the side of an element but not at corners. Figure 4.13
shows such nodes.

Internal nodes are the one which occur inside an element. They are specific to the element selected i.e.
there will not be any other element connecting to this node. Such nodes are selected to satisfy the requirement
of geometric isotropy while choosing interpolation functions. Figure 4.13 shows such nodes for few typical
cases.
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Basic unknowns may be displacements for stress analysis, temperatures for heat flow problems and the potentials
for fluid flow or in the magneticfield problems. In the problems like truss analysis, plane stress and plane
strain, it is enough if the continuity of only displacements are satisfied, since there is no change in the slopes
at any nodal point. Such problems are classified as ‘zeroth’ continuity problems and are indicated as C0-
continuity problem. In case of beams and plates, not only the continuity of displacements, but the slope
continuity also should be ensured. Since the slope is the first derivative of displacement, this type of problems
are classified as ‘First order continuity problems and are denoted as C1 – continuity problems. In exact

plate bending analysis even second order 
∂
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unknowns in these problems are w, 
∂
∂

∂
∂

∂
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w

x

w

y

w

x y
, ,

2

 where w is displacement. Such problems are classified as

C2– continuity problems. In general Cr continuity problems are those in which nodal unknowns are to be
basic unknowns and up to rth derivatives of the basic unknowns.
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The following terms are commonly referred in FEM

(i) Global coordinates
(ii) Local coordinates and

(iii) Natural coordinates.

However there is another term ‘generalized coordinates’ used for defining a polynomial form of
interpolation function. This has nothing to do with the ‘coordinates’ term used here to define the location of
points in the element.
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The coordinate system used to define the points in the entire structure is called global coordinate system.
Figure 4.14 shows the cartesian global coordinate system used for some of the typical cases.
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For the convenience of deriving element properties, in FEM many times for each element a separate coordinate
system is used. For example, for typical elements shown in Fig. 4.14, the local coordinates may be as shown
in Fig. 4.15. However the final equations are to be formed in the common coordinate system i.e. global
coordinate system only.
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A natural coordinate system is a coordinate system which permits the specification of a point within the
element by a set of dimensionless numbers, whose magnitude never exceeds unity. It is obtained by assigning
weightages to the nodal coordinates in defining the coordinate of any point inside the element. Hence such
system has the property that ith coordinate has unit value at node i of the element and zero value at all other nodes.

The use of natural coordinate system is advantages in assembling element properties (stiffness matrices),
since closed form integrations formulae are available when the expressions are in natural coordinate systems.

Natural coordinate systems for one dimensional, two dimensional and three dimensional elements are
discussed below:
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Consider the two noded line element shown in Fig. 4.16. let the natural coordinate of point P be (L
1, 

L
2
) and the

Cartesian coordinate be x. Node 1 and node 2 have the Cartesian coordinates x
1
 and x

2
.
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Since natural coordinates are nothing but weightage to the nodal coordinates, total weightage at any point
is unity i.e.,

L
1
 + L

2
=1 …(4.1)

and also L
1 
x

1 
+ L

2 
x

2 
= x …(4.2)

i.e. In matrix form
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The variation of L
1
 and L

2
 is shown in Fig. 4.17. L

1
 is 1 at node 1 and is zero at node 2 where as L

2
 is zero

when referred to node 1 and is one when referred to node 2. The variation is linear.
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1

1

(a) Variation of L1

(b) Variation of L2
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The standard closed form integration over entire length is

L L dx
p q

p q
lP q

x

x

1 2

1

2

1� =
+ +

! !

!� �
…(4.4)

Example. 4.1: Integrate the following over the entire length l of the element:

(i)  L dx
o

l

1
2� (ii)  L L dx

o

l

1
3

2�

Solution: (i)  L dx
o

l

1
2�

Using the standard formula, L L dx
p q

p q
P q

o

l

1 2 1� =
+ +

! !

!� �

We note, p = 2, q = 0.

Hence L dx l
o

l

1
2 2 0

2 0 1� =
+ +

! !

!� �

=
×

=
2

2 3

1

3
l     Answer

(ii)  L L dx l
o

l

1
3

2
3 1

3 1 1� =
+ +

! !

!� �

           =
× ×

× × ×
=

3 2 1

205 4 3 2
l

l
Answer

���7��������������� ξ

In one dimensional problem, the following type of natural coordinate is also used. The natural coordinator ξ

for any point in the element shown in Fig. 4.18 is defined as ξ =
−�

��
�
��

PC

x x2 1

2

 where P is the point referred and

C is the centre point of nodes 1 and 2.

The relationship between natural coordinate ξ  and Cartesian coordinate x can be easily expressed as

shown next page:
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&�'�����, .
���
���		����
��� ξ

&�'�����- ,
��
��	��	�� ξ

ξ =
�
��
�
��

=
−PC x xc

1
2

1
2

,  where l is length of the element = x
2
 – x

1

            = −
+�

��
�
��

2

2
2 1

l
x

x x

            = −
− +�

��
�
��

2 2

2
2 1 1

l
x

x x x

            = −
+�

��
�
��

2 2

2
1

l
x

l x

            = − −�
�	



��

2

21l
x x

l

     l
x x

l

2 21ξ = − −

or           
l

x x
2

1 1+ = −ξ� � …(4.5)

It may be noted that, at node 1 where x = x
1
,

l
x x

2
1 01+ = − =ξ� �

    ∴ = −ξ 1

××

x1 x2x
x

1 2PC

x x1 2

2

�

� � � 1 � � 0 � � � 1

1
20

–1

1
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and at node 2, where x = x
2
, we get

l
x x l

2
1 2 1+ = − =ξ� �

or         ξ = 1

The variation of local coordinate ξ  is as shown in Fig 4.19.

The integration formula for integration over entire length is

ξ ξ ξpdx
l

d
x

x

p

1

2

2
1

1

� �=
−

  since dx
l

d= 2 ξ   (refer equation 4.5)

         =
+

+
−

l

p
p

2

1

1
1

1

1
ξ

          = 0,  if p is odd …(4.6a)

         =
+

=
+

l

p

l

p2

1

1
2

1
� � ,  if p is even …(4.6b)

���7������������������������������

Natural coordinates for triangular and rectangular elements are discussed below:

1. Natural Coordinates for Triangular Elements: Consider the typical 3 noded triangular element shown
in Fig. 4.20. Since there are three nodes, for any point there are three coordinates, say L

1
, L

2
 and L

3
. From the

definition of natural coordinates, we have

&�'���� . $����
��/��	�������
����
���������

L
1
 + L

2
 + L

3
 = 1 …(4.7a)

L
1
 x

1
 + L

2
 x

2
 + L

3
 x

3
 = x …(4.7b)

L
1
 y

1
 + L

2
 y

2
 + L

3
 y

3
 = y …(4.7c)

y

X

A

B

C

1

2

3

P L( , , )3L L1 2
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Expressing the above equations in matrix form,

1 1 1 1

1 2 3

1 2 3

1

2

3

x x x

y y y

L

L

L

x

y

�

�

	
	
	




�

�
�
�



�
�

�
�

�

�
�

�
�

=


�
�

�
�

�

�
�

�
�

L

L

L

x x x

y y y

x

y

1

2

3

1 2 3

1 2 3

1
1 1 1 1

�
�

�
�

�

�
�

�
�

=
�

�

	
	
	




�

�
�
�



�
�

�
�

�

�
�

�
�

−

It can be shown that the determinant,

1 1 1

1 2 3

1 2 3

x x x

y y y

is equal to twice the area of triangle with corners (x
1
, y

1
), (x

2
, y

2
) and (x

3
, y

3
)

Proof: Now,

Det = = − − − + −
1 1 1

1 2 3

1 2 3

2 3 3 2 1 3 3 1 1 2 2 1x x x

y y y

x y x y x y x y x y x y� � � � � �

Consider the triangle ABC shown in Fig. 4.21. Drop perpendiculars AD, BE and CF on to x-axis.

&�'���� �

Now, Area of triangle ABC
=Area ADEC + Area CEFB – Area ADFB

= + + + − +
1

2

1

2

1

2
AD CE DE CE BF EF AD BF DF� � � � � �

y

x

A

B

C

1

2

3 ( , )x y3 3

( , )x y2 2

( , )x y1 1

D E F
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= + − + + − − + −1

2

1

2

1

21 3 3 1 3 2 2 3 1 2 2 1y y x x y y x x y y x x� � � � � � � � � � � �

= − + − + − + − − + − +
1

2 1 3 1 1 3 3 3 1 3 2 3 3 2 2 2 3 1 2 1 1 2 2 2 1y x y x y x y x y x y x y x y x y x y x y x y x

= − + − − +
1

2 1 3 3 1 3 2 2 3 1 2 2 1y x y x y x y x y x y x

= − − − + −1

2 2 3 3 2 1 3 3 1 1 2 2 1x y x y x y x y x y x y� � � � � �

=
1

2
 Det

∴  Det = 2 Area of triangle ABC = 2A …(4.8)

  ∴


�
�

�
�

�

�
�

�
�

=
− − −
− − −
− − −

�

�

	
	
	




�

�
�
�



�
�

�
�

�

�
�

�
�

L

L

L
A

x y x y x y x y x y x y

y y y y y y

x x x x x x

x

y

T
1

2

3

2 3 3 2 3 1 1 3 1 2 2 1

2 3 3 1 1 2

3 2 1 3 2 1

1

2

1

=
− − −
− − −
− − −

�

�

	
	
	




�

�
�
�



�
�

�
�

�

�
�

�
�

1

2

12 3 3 2 2 3 3 2

3 1 1 3 3 1 1 3

1 2 2 1 1 2 2 1
A

x y x y y y x x

x y x y y y x x

x y x y y y x x

x

y

=
�

�

	
	
	




�

�
�
�



�
�

�
�

�

�
�

�
�

1

2

11 1 1

2 2 2

3 3 3
A

a b c

a b c

a b c

x

y

where a
1
 = x

2
y

3
 – x

3
y

2
a

2
 = x

3
y

1
 – x

1
y

3
a

3
 = x

1
y

2
 – x

2
y

1

b
1
 = y

2
 – y

3
b

2
 = y

3
 – y

1
b

3
 = y

1
 – y

2

c
1
 = x

3
 – x

2
c

2
 = x

1
 – x

3
c

3
 = x

2
 – x

1

[Note the cyclic order of subscript and absence of subscript of left hand term in right hand terms]

Thus

L

L

L

a b x c y

A
a b x c y

A
a b x c y

A

1

2

3

1 1 1

2 2 2

3 3 3

2

2

2



�

�
��

�

�
�
�

�

�

�
��

�

�
�
�

=

+ +

+ +

+ +



�

�
��

�

�
�
�

�

�

�
��

�

�
�
�

…(4.9)

Referring to Fig. 4.22 and applying equation 4.8, we get Area of subtraingle CPB

= =
�

�

	
	
	




�

�
�
�

2

1 1 1

1 2 3

2 3

A x x x

y y y
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&�'����  !��
��		����
�����	��
����
����

i.e.,  2A
1
 = x

2
y

3
 – x

3
y

2
 – (xy

3
 – x

3
y) + xy

2
 – x

2
y

       = x
2
y

3
 – x

3
y

2
 + x(y

2
 – y

3
) + y(x

3
 – x

2
)

       = a
1
 + b

1
x + c

1
y

Thirdly 2A
2
 = a

2
 + b

2
x + c

2
y

and 2A
3
 = a

3
 + b

3
x + c

3
y

∴  Equation 4.9 reduces to

L

L

L

A

A
A

A
A

A

A

A

A

A

1

2

3

1

2

3

1

2

3

2

2
2

2
2

2

1



�

�
��

�

�
�
�

�

�

�
��

�

�
�
�

=



�

�
�
�

�

�
�
�

�

�

�
�
�

�

�
�
�

=



�

�
��

�

�
�
�

�

�

�
��

�

�
�
�

…(4.10)

where A
1
, A

2 
and A

3
 are the areas of sub-triangles PCB, PAC and PAB, which are opposite to nodes 1, 2 and 3

respectively. Hence the natural coordinates in triangles are also known as area coordinates.
Note the following:

To get the natural coordinate of A, P is to be moved to A. Then we find area A
1
 = A, A

2
 = A

3
 = 0

∴  A (1, 0, 0)
Similarly natural coordinates of B and C are

A (0, 1, 0), C (0, 0,1)
For the point Q

1
, natural coordinates are to by found by shifting P to Q, (refer Fig. 4.22(b)). In this case

A
1 
= 0;

A
2 
= ½ CQ

1
 h

A
3
 = ½ BQ

1
 h

Where h is perpendicular distance of A from BC.

y

x

A

B

C

1

2

3

y

x

A

B

C

1

2

3

Q1

A2

A3

P

A2 A3

A1
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Then A = ½ BC h

   ∴ = =L
A

A1
1 0

L
A

A

CQ h

BC h

CQ

BC2
2

1
1

1
2
1
2

= = =

L
A

A

BQ h

BC h

BQ

BC3
3

1
1

1
2
1
2

= = =

Thus natural coordinate representation of Q
1
 is

Q
CQ

BC

BQ

BC1
1 10= �

��
�
��

, ,

Thirdly, Q
CQ

AC

AQ

BC2
2 20= �

��
�
��

, ,

and Q
BQ

AB

AQ

AB3
3 3 0= �

��
�
��

, ,

The closed form integration for the function

L L L dAp q r
1 2 3�

=
+ + +

p q r

p q r
A

! ! !

!2
2

� �
…(4.11)

Example 4.2: Determine the values of

(i) L L L dA
A

1 2 3�

(ii) L L dA
A

1
3

2�

(iii) L L L dA
A

1
2

2
2

3
3�

Solution:  (i) L L L dA
A

1 2 3�
Now, p = 1, q = 1, r = 1
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∴ =
+ + +� L L L dA A

A

1 2 3
1 1 1

1 1 1 2
2

! ! !

!� � =
× ×

× × × ×
1 1 1

5 4 3 2 1
2A = A

60

(ii) L L dA
A

1
3

2�
In this case, p = 3, q = 1, r = 0

L L dA A
A

1
3

2
3 1 0

3 1 0 2
2� =

+ + +
! ! !

!� � =
× × × ×

× × × × ×
3 2 1 1 1

6 5 4 3 2 1
2A = A

60

(iii) L L L dA
A

1
2

2
2

3
3�

In this case p = 2, q = 2, r = 3

  ∴ =
+ + +� L L L dA A

A

1
2

2
2

3
3 2 2 3

2 2 3 2
2

! ! !

!� �

=
× × × × × ×

× × × × × × × ×
2 1 2 1 3 2 1

9 8 7 6 5 4 3 2 1
2A  = A

7960

���7���������������8�����1���'7�����������

Natural coordinates for rectangular elements are as shown in Fig. 4.23. In these cases the centroid of the area
is the origin. The relationships between the local coordinates and the Cartesian coordinates are based on
isparametric concept, which is taken up in the latter chapter. It may be noted here that the coordinates ξ  and
η  vary from –1 to 1. The relationship between global coordinates and the natural coordinates are x L xi i= Σ
and y L yi i= Σ . The derivation of L

i
 are discussed in the chapter ‘isoparametric elements’. When the

expressions are formed in these coordinate systems, instead of seeking integrations in the closed form
expressions, numerical technique is usually employed.

&�'���� ( �	�
���		����
�����������	��
�����
����
���������

4 (–1, 1) 3 (1, 1)

2 (1, –1)1 (–1, –1)

P n� ,

�

n

O
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���7�������������������
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Natural coordinates for a 4 noded tetrahedron may be derived and it results into volume coordinates. Consider
the typical tetrahedron shown in Fig. 4.24.

&�'���� � $���
%���	���		����
���

The natural coordinates are related to the Cartesian coordinates as follows:

1 1 1 1 1

1 2 3 4

1 2 3 4

1 2 3 4

1

2

3

4

x

y

z

x x x x

y y y y

z z z z

L

L

L

L



�
�
�

�
�
�

�

�
�
�

�
�
�

=



�
�
�

�
�
�

�

�
�
�

�
�
�



�
�
�

�
�
�

�

�
�
�

�
�
�

…(4.12)

The above equation may be solved by inverting the 4 × 4 matrix. It gives

L
V

a b x c y d zi i i i i= + + +
1

6
( ),  for i = 1, 2, 3 and 4 …(4.13)

where 6

1 1 1 1

61 2 3 4

1 2 3 4

1 2 3 4

V
x x x x

y y y y

z z z z

= = ×  volume of tetrahedron defined by nodes 1, 2, 3 and 4

and a

x x x

y y y

z z z
1

2 3 4

2 3 4

2 3 4

=    b y y y

z z z
1 2 3 4

2 3 4

1 1 1

=

4, D

3
C

2
B

1
A

P

2

y

x
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c x x x

z z z
1 2 3 4

2 3 4

1 1 1

=   and  d x x x

y y y
1 2 3 4

2 3 4

1 1 1

=

The other constants are obtained by cyclic changes in the subscripts. It may be noted that the above
equations are valid only when the nodes are numbered so that nodes 1, 2 and 3 are ordered counter clockwise
when viewed from node 4. It is also necessary that for coordinates system of right hand rule is strictly adhered
to.

If V
i 
is the volume of the smaller tetrahedron which has vertices P and the three nodes other than the node

i, then the tetrahedron coordinates can be considered as volume coordinates, defined as

L
V

Vi
i=   for  i=1, 2, 3 and 4 …(4.14)

The closed form integration formula for the volume coordinates is

L L L L dV
p q r s

p q r s
Vp q r s

v

1 2 3 4 3
6� =

+ + + +
! ! ! !

!� �
…(4.15)

Example 4.3: Find the values of the following:

(i) L L L L dV
v

1 2 3 4� (ii) L L L dV
v

1
2

2 4�

Solution: (i) L L L L dV
v

1 2 3 4�
In this case  p = 1, q = 1, r = 1, s = 1
Hence using equation

       L L L L dV
p q r s

p q r s
Vp q r s

v

1 2 3 4 3
6� =

+ + + +
×

! ! ! !

� �

we get, L L L L dV V
v

1 2 3 4
1 1 1 1

1 1 1 1 3
6� =

+ + + +
! ! ! !

!� � =
× × ×

× × × × × ×
×

1 1 1 1

7 6 5 4 3 2 1
6V

          =
V

840
  Answer

(ii) L L L dV
v

1
2

2 4�
In this case p = 2, q = 1, r = 0 and s = 1

∴ =
+ + + +� L L L dV V1

2
2 4

2 1 0 1

2 1 0 1 3
6

ν

! ! ! !

!� �
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=
× × ×

× × × × × ×
2 1 1 1

7 6 5 4 3 2 1
6V =

V

420
  Answer

���7���������������8���#�/�
�����

Figure 4.25 shows a typical hexahedron with natural coordinates. It has origin at centroid of the hexahedron.
It may be noted that natural coordinates vary from –1 to +1. The natural coordinates are related to global
coordinates as

&�'���� )

x L xi i= Σ

y L yi i= Σ  and z L zi i= Σ …(4.16)

The derivation of L
i
 is discussed under the chapter ‘Isoparametric Elements’. Later for integration numerical

technique is preferred. Hence no discussion is taken up here about the closed form integrations for such cases.

9��	����	

1. Explain the following terms clearly

(i) Nodes, primary nodes, secondary nodes and internal nodes
(ii) Local coordinates, global coordinates, natural coordinates and area coordinates.

(iii) Higher order elements and lower order elements.

2. Explain the terms
(i) Constant strain triangle (CST)

(ii) Linear strain triangle(LST) and

(iii) Quadratic strain triangles (QST).
3. Explain the term Cr-continuity.

�

�

n

x

y

z
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4. Derive the expressions for natural coordinates for a two noded element

(i) In terms of L
1
 and L

2
, when range is 0 to 1

(ii) In terms of ξ , when range is –1 to 1.

5. Derive expressions for natural coordinates in a CST element. Show that they are nothing but area
coordinates.
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In the finite element analysis aim is to find the field variables at nodal points by rigorous analysis, assuming
at any point inside the element basic variable is a function of values at nodal points of the element. This
function which relates the field variable at any point within the element to the field variables of nodal points
is called shape function. This is also called as interpolation function and approximating function. In two
dimensional stress analysis in which basic field variable is displacement,

u N u v N vi i i i= =Σ Σ, …(5.1)

where summation is over the number of nodes of the element. For example for three noded triangular element,
displacement at P (x, y) is

u N u N u N u N ui i= = + +Σ 1 1 2 2 3 3

v N v N v N v N vi i= = + +Σ 1 1 2 2 3 3

i.e.,
u

v

N N N

N N N

u

v

u

v

u

v

��
�
��
�

=
�
�	



��

�

�





�





�

�





�





1 2 3

1 2 3

1

1

2

2

3

3

0 0 0

0 0 0

or
u

v

N

N

u

u

u

v

v

v

��
�
��
�

=
�
�	



��

�

�





�





�

�





�





0

0

1

2

3

1

2

3

=
�
�	



��

�

�





�





�

�





�





N N N

N N N

u

u

u

v

v

v

1 2 3

1 2 3

1

2

3

1

2

3

0 0 0

0 0 0

or δ δ� � � �
2 1 2 6 6 1× × ×

= N
e …(5.2a)
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where q is displacement at any point in the element

[N] shape function

δ� �e  is vector of nodal displacements

Similarly in case of 6 noded triangular element

δ δ� � � �
2 1 2 12 12 1× × ×

= N
e …(5.2b)

In case of 4 noded rectangular element

or δ δ� � � �
2 1 2 8 8 1× × ×

= N
e …(5.2c)

��� ������������ ��!����������

Polynomials are commonly used as shape functions. There are two reasons for using them:
(i) They are easy to handle mathematically i.e. differentiation and integration of polynomials is easy.

(ii) Using polynomial any function can be approximated reasonably well. If a function is highly
nonlinear we may have to approximate with higher order polynomial. Fig. 5.1 shows approximation
of a nonlinear one dimensional function by polynomials of different order.

�"����� ���������	��
���	�����
������

�
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A general one dimensional polynomial shape function of nth Order is given by,

u x x x xn
n� � = + + + +α α α α1 2 3

2
1... …(5.3)

In matrix form u G= α� � …(5.4)

where G x x xn= 1 2, , ...

and         α α α α α� �T
n= +1 2 3 1...

Thus in one dimensional nth order complete polynomial there are m = n + 1 terms. …(5.5)

u u u

u � �
1

u x� �� �
1 2 u x x� � �� � �

1 2 3

(a) Constant (b) Linear (c) Quadratic
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A general form of two dimensional polynomial model is

u x y x y x xy y x y

v x y x y y

m
n

m m m m
n

, ...

, ...

� �
� �

= + + + + + + +

= + + + ++ + +

α α α α α α α α

α α α α
1 2 3 4

2
5 6

2
7

3

1 2 3 2

…(5.6)

or       δ α α� � � �
� � � � � �=

�
�
�

�
�
�

= =
�
�	



��

u x y

v x y
G

G

G

,

,
1

1

0

0
…(5.7)

where         G
1
 = [1  x  y  x2  xy  y2  x3 ... yn]

    α α α α α α� �T
m= 1 2 3 4 2...

It may be observed that in two dimensional problem, total number of terms m in a complete nth degree
polynomial is

m
n n

=
+ +1 2

2

� �� �
…(5.8)

For first order complete polynomial n = 1,

∴ =
+ +

=m
1 1 1 2

2
3

� � � �

The first three terms are α α α1 2 3+ +x y

Similarly for n = 2, m =
+ +

=
2 1 2 2

2
6

� � � �

and we know the first six terms are,

α α α α α α1 2 3 4
2

5 6
2+ + + + +x y x xy y

Another convenient way to remember complete two dimensional polynomial is in the form of Pascal
Triangle shown in Fig. 5.2
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x
y

y 2xy

y 3xy 2

xy 3

xy 4
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x 2y

x 3y xy2 2

xy2 3

xy2 4xy3 3xy4 2

xy3 2x 4y

x 5y

y 4

y 5

y 6

1
Constant 1

Linear 3

Quadratic 6

Cubic 10

Quartic 15

Quintic 21

Hexadic 28
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A general three dimensional shape function of nth order complete polynomial is given by

u x y z x y z x x z

v x y z x y z x x z

w x y z x y z x z

m
n

m m m m m m
n

m m m m m
n

, , ...

, , ...

, , ...

� �
� �
� �

= + + + + + +

= + + + + + +

= + + + + +

−

+ + + + +
−

+ + + +
−

α α α α α α

α α α α α α

α α α α α

1 2 3 4 5
2 1

1 2 3 4 5
2

2
1

2 1 2 2 2 3 2 4 3
1

…(5.9)

or δ α αx y z

u x y z

v x y z

w x y z

G

G

G

G

, ,

, ,

, ,

, ,

� �
� �
� �
� �

� � � �=

�
�


�


�
�


�


= =
�

�

	
	
	




�

�
�
�

1

1

1

0 0

0 0

0 0

…(5.10)

Where G
1
 = [1 x y z x2 xy y2 yz z2 zx …zn zn-1x … zxn-1]

and α α α α α� �T
m= 1 2 3 3...

It may be observed that a complete nth order polynomial in three dimensional case is having number of
terms m given by the expression

m
n n n

=
+ + +1 2 3

6

� � � �� �

Thus when n = 1, m =
+ + +

=
1 1 1 2 1 3

6
4

� �� �� �

i.e. α α α α1 2 3 4+ + +x y z

For n = 2, m =
+ + +

=
2 1 2 2 2 3

6
10

� �� � � �

Thus second degree complete polynomial is

α α α α α α α α α α1 2 3 4 5
2

6 7
2

8 9
2

10+ + + + + + + + +x y z x xy y yz z zx

Complete polynomial in three dimensions may be expressed conveniently by a tetrahedron as shown in
Fig. 5.3.
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Numerical solutions are approximate solutions. Stiffness coefficients for a displacements model have higher
magnitudes compared to those for the exact solutions. In other words the displacements obtained by finite
element analysis are lesser than the exact values. Thus the FEM gives lower bound values. Hence it is desirable
that as the finite element analysis mesh is refined, the solution approaches the exact values. This requirement
is shown graphically in Fig. 5.4. In order to ensure this convergence criteria, the shape functions should
satisfy the following requirement:
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1. The displacement models must be continuous within the elements and the displacements must be
compatible between the adjacent elements. The second part implies that the adjacent elements must
deform without causing openings, overlaps or discontinuities between the elements. This requirement
is called ‘compatibility requirement’ .

Constant 1

Linear 4

Quadratic 10

Cubic 20

Quartic 35

1
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z 2

y 2

y 3

y 4

xy 3

xy 22

xz2

xy2
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xyz

xz 22

xz 2

yz2
yz 2

xyz2

xyz 2

xz 3

yz 3

yz2 2

yz3
xyz2

xz3

xy3

x 2

x 3

x 4

x

z 3

z 4

y

zx

xy yz

x z3

x 4
x z 22

x y 22

x y 22

xy z2 y z 22

y z3

y 4

xy 3

xyz 2

x y3 yz 3

xz 3
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15 terms
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According to Felippa and Clough this requirement is satisfied, if the displacement and its partial
derivatives upto one order less than the highest order derivative appearing in strain energy function
is continuous. Hence in plane stress and plane strain problems, it is enough if continuity of
displacement is satisfied, since strain energy function includes only first order derivatives of the
displacement (SE = ½ stress × strain). It implies, it is enough if C0 continuity is ensured in plane
stress and plane strain problems. In case of flexure problems (beams, plates, shells) the strain

energy terms include second derivatives of displacements like where
1

2

2 2

2

M

EI
M EI

d w

dx
= −

�
��

�
��

.

Hence to satisfy compatibility requirement, not only displacement continuity but slope continuity
( C1 -continuity) should be satisfied. Hence in flexure problems displacements and their first
derivatives are selected as nodal field variables.

2. The displacement model should include the rigid body displacements of the element. It means in
displacement model there should be a term which permit all points on the element to experience the
same displacement. It is obvious, if such term do not exists, shifting of the origin of the coordinate
system will cause additional stresses and strains, which should not occur. In the displacement
model,

u x y= + +α α α1 2 3

the term α 1  provides for the rigid body displacement. Hence to satisfy the requirement of rigid

body displacement, there should be constant term in the shape function selected.

3. The displacement models must include the constant strain state of the element. This means, there
should exist combination of values of polynomial terms that cause all points in the element to
experience the same strain. One such combination should occur for each possible strain. The necessity
of this requirement is understood physically, if we imagine the refinement of the mesh. As these
elements approach infinitesimal size, the strains within the element approach constant values. Unless
the shape function term includes these constant strain terms, we cannot hope to converge to a
correct solution. In the displacement model,

u x y x ym
n= + + + + +α α α α α1 2 3 4

2 ...

5

0

–5

–10

%
E

rr
or

FEM solution

Exact solution
No. of elements
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                 v x y x ym m m m m
n= + + + + ++ + + +α α α α α1 2 3 4

2
2...

α 2  and α m+2  provide for uniform strain ε x ,

α 3  and α m+3  provide for uniform strain ε y

An additional consideration in the selection of polynomial shape function for the displacement model
is that the pattern should be independent of the orientation of the local coordinate system. This property is
known as Geometric Isotropy, Spatial Isotropy or Geometric Invariance. There are two simple guidelines
to construct polynomial series with the desired property of isotropy:

1. Polynomial of order n that are complete, have geometric isotropy.
2. Polynomial of order n that are not complete, yet contain appropriate terms to preserve ‘symmetry’

have geometric isotropy. The simple test for this property is to interchange x and y in two dimensional
problems or x, y, z in cyclic order in three dimensional problems and see that the total expression do
not change. However the arbitrary constants may change.

For example, we wish to construct a cubic polynomial expression for an element that has eight
nodal values assigned to it. In this situation, we have to drop two terms from the complete cubic
polynomial which contains 10 terms. To maintain geometric isotropy drop only terms that occur in
symmetric pairs i.e. x3, y3 or x2y, xy2. Thus the acceptable eight term cubic polynomials shape
function exhibiting geometric isotropy are

α α α α α α α α1 2 3 4
2

5 6
2

7
2

8
2+ + + + + + +x y x xy y x y xy

and α α α α α α α α1 2 3 4
2

5 6
2

7
3

8
3+ + + + + + +x y x xy y x y

In finite element analysis, the safest approach to reach correct solution is to pick the shape functions
that satisfy all the requirements. For some problems, however, choosing shape functions that meet
all the requirements may be difficult and may involve excessive numerical computations. For this
reason some investigators have ventured to formulate shape functions for the elements that do not
meet compatibility requirements. In some cases acceptable convergence has been obtained. Such
elements are called ‘non-conforming elements’. The main disadvantage of using non-conforming
elements is that we no longer know in advance that correct solution is reached.

��, �!��)���������� ��!���������������*������������

Initially shape functions were derived interms of Cartesian coordinates. Polynomial function were used for
this. After natural coordinates were identified and its advantage was noticed researchers started deriving
shape functions in terms of natural coordinates. By this approach more elements could be developed. Advantages
of using Lagrangian and Hermetian functions were discovered latter. To handle few special cases, degeneration
technique was also developed. In this artiae these methods are illustrated for various elements.
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�#�$��	
���
���
���'#���-���'����
����'.
����

In this approach polynomials with number of constants exactly equal to nodal degrees of freedom of the
element are selected. Care is taken to see that geometric isotropy is not lost. Using nodal values number of
equations equal to number of constants in the polynomials are formed and then the constants found. Then the
shape functions are identified. This procedure may also be called as generalized coordinate approach, since
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the constants in the polynomial are called as generalized coordinates. This procedure is illustrated with few
cases below.

Example 5.4: Using generalized coordinate approach, find shape functions for two noded bar/truss element.

Solution: Figure 5.5 shows the typical truss element. In this case nodal unknowns are displacements u
1
 and u

2

along x-axis. For this element we have to select polynomial with only two constants to represent displacement
at any point in the elements. Hence we select

u x= +α α1 2 …(5.11)

where α 1  and α 2  are generalized coordinates. This polynomial satisfies compatibility and completeness

requirement. Writing equation 5.11 in the matrix form we have,
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u x=
��
�
��
�

1 1

2

α
α

since u = u
1
 at node 1 and equal to u

2
 at node 2, we have

δ
α
α

� � =
��
�
��
�

=
�
�	
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1

1

2x x

x

x

u

u
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−
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1
1 1
2 1 1
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u x1 1

2
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x
l
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       = − − +
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1
2 1

1
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x x

l

x x

l

u

u
2 1 1

2

       =
��
�
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�

N N
u

u1 2
1

2
= +N u N u1 1 2 2

×
u1

x1

u2

x2

x
1 2P

l

1 2

1

1

N1

N2
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where N
x x

l1
2= −

 and N
x x

l2
1= −

Thus the shape function [N] is

N N N
x x

l

x x

l
= =

− −�
�	



��1 2

2 1
Answer ...5.12.

Variation of shape function N
1
 and N

2
 is shown in Fig. 5.5. (b).

Example 5.5: Using polynomial functions (generalized coordinates) determine shape functions for a two
noded beam element.
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Solution: The typical beam element is shown in Fig. 5.6. (a). In this case C1 – continuing is to be satisfied,

since strain energy expression involves second differentiation term 
d w

dx

2

2
. Hence in this case at each node,

unknowns are the displacement and slope. i.e.,

x1 = 0 x l2 =

u2 2, 	u1 1, 	

1 2

l

1

1

N1

N3

N2

N4

1

1
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δ
θ

θ

� � =

�

�


�



�

�


�



w

w
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2

2

where θ
∂
∂1

1=
w

x

and θ
∂
∂2

2=
w

x

Since there are four nodal values, we select polynomial with four constants. Thus

w x x x= + + +α α α α1 2 3
2

4
3 …(5.13)

Equation 5.13 satisfies compatibility and completeness requirement. Now,

θ
∂

α α α= = + +
w

dx
x x2 3 4

22 3

For convenience we select local coordinate system.

i.e.,       x
1
 = 0

      x
2
 = l

             ∴ =w1 1α

    θ α1 2=

w l l l2 1 2 3
2

4
3= + + +α α α α

    θ α α α2 2 3 4
22 3= + +l l
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3 2= −    N
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x

l
4

2 3

2
= − +

Variation of these function is shown in Fig. 5.6 (b) (Note that at node 1, N
1
=1,

N
2
= N

3
= N

4
=0, and 

∂
∂
N

x
2 1= ,  

∂
∂

∂
∂

∂
∂

N

x

N

x

N

x
1 3 4 0= = =  similarly at node 2,

           N
1
= N

2
 = N

4
 = 0, N

3
 =1 and 

∂
∂

∂
∂

∂
∂

N

x

N

x

N

x
1 2 3 0= = =  and 

∂
∂
N

x
4 1= ,

Example 5.6: Determine the shape functions for the Constant Strain Triangle (CST). Use polynomial functions.
Solution: Figure 5.7 shows a typical CST element. Let the nodal variables be u

1
, u

2
, u

3
, v

1
, v

2
 and v

3
 i.e.,
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δ� �T
u u u v v v= 1 2 3 1 2 3

From the consideration of compatibility and completeness the following displacement model is selected

  u x y= + +α α α1 2 3

  v x y= + +α α α4 5 6 …(5.14)

          ∴ = + +u x y1 1 2 1 3 1α α α

u x y2 1 2 2 3 2= + +α α α

u x y3 1 2 3 3 3= + +α α α
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Where A is the area of triangle with vertices at (x
1
, y

1
), (x

2
, y

2
) and (x

3
, y

3
) i.e., the area of the element.
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same as used in deriving natural coordinates.
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Using polynomial functions and natural coordinate systems, shape functions can be derived easily. This
approach makes it possible to find shape functions for more elements. This approach is illustrated with few
standard cases below:

Example 5.7: For a two noded bar element, determine the shape functions. Use natural coordinate system.
Solution: As there are only two nodal values in this case, only linear function in natural coordinates are to be
taken. Fig. 5.8 shown the typical element. Thus

�"����1

    u L L= +α α1 1 2 2 =
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�	


��

L L1 2
1

2

α
α

…(5.17)
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2

Since u N N
u

u
=

�
�
�
�
�
�1 2

1

2
 by definition of shape function

∴ N
1
 = L

1
 and N

2
 = L

2

Example 5.8: Derive the expression for shape function for a two noded bar element taking natural coordinate

ξ  as varying from -1 to 1.

Solution: The typical bar element in the natural coordinate ξ  varying from –1 to 1 is shown in Fig. 5.9 (a).

Since there are only two nodal values, a linear polynomial is to be selected. Let displacement at any point

P ξ� �  be

×

L1 = 1 L1 = 0
L2 = 0 L2 = 1

1 2P L L( , )21
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α α ξ

ξ
α
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1 2
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1
…(5.18)
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 Since ξ = −1  at node 1 and ξ = 1 at node 2

       ∴
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2
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ξ ξ u
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N N
u

u1 2
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2

where N1
1

2
= − ξ

 and N2
1

2
= + ξ

…(5.19)

Variation of shape functions is shown in Fig. 5.9 (b).

Example 5.9: Determine the shape functions for a three noded bar element with natural coordinate system as
shown in Fig. 5.10

××
1 2

 = 0 = –1  = 1

P �� 1 2

1

1

N1

N2
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Solution: In this case there are three nodal unknowns. Hence a polynomial with 3 generalized coordinates as
shown below is selected

  u = + +α α ξ α ξ1 2 3
2 …(5.20)
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× ××

1 23
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1 23
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Now,    u = + +α α ξ α ξ1 2 3
2 =

�
�

�

�
�

�
1 2

1

2

3

ξ ξ
α
α
α

   = −
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1
1

2

0 0 2

1 1 0

1 1 2

2ξ ξ δ� �e
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ξ ξ ξ ξ ξ δ
2 2
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2 2
1 � �

e

  
= − + −�
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1

2
1

2
1 1 2ξ ξ ξ ξ ξ δ� � � � � �e

N N N
e1 2 3 δ� � …(5.21)

where N N N1 2 3
21

2
1

1

2
1 1= − = + = −ξ ξ ξ ξ ξ� � � �, ,

The variation of the shape functions are as shown in Fig. 5.10 (b).

Example 5.10: Determine the shape functions for a Constant Strain Triangular (CST) element in terms of
natural coordinate systems.
Solution: Let the natural coordinates of nodes 1,2,3 be L

1
, L

2
, L

3
 and shape functions be N

1
, N

2
, N

3
. The typical

CST element is shown in Fig. 5.11 (a). Since the CST element is a linear displacement model, let the
displacement function be

�"������

u L L L= + +α α α1 1 2 2 3 3 …(5.22)

         
=

�
�

�

�
�

�
L L L1 2 3

1

2

3

α
α
α

y
3 3

2 2

1 1

1

x

(a) Typical CST element (b) Variation of N1
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Since the natural coordinates of node 1,2,3 are (1,0,0), (0,1,0) and (0,0,1) respectively.
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Where N
1
 = L

1,
 N

2
 = L

2
 and N

3
 = L

3

Similarly we can show,

 v L v L v L v= + +1 1 2 2 3 3 = + +N v N v N v1 1 2 2 3 3

     
=

�
�
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�

�
N N N

v

v

v
1 2 3
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…(5.23)
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L L L

N N N e
1 2 3

1 2 3

0 0 0

0 0 0
δ� � =
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N

N e

0

0
δ� �

where N
1
 = L

1
, N

2
 = L

2
 and N

3
 = L

3
, variation of N

1
 is shown in Fig. 5.11 (b).

Example 5.11: Determine the shape function for Linear Strain Triangular (LST) element. Use natural coordinate
system.
Solution: Figure 5.12 (a) shows the typical LST element.

As there are three nodes along any side, it can be easily seen that displacement varies in the quadratic
form (one order higher than the variation of strain). As there are six nodal values we have to pick a polynomial
with six constants. Taking all the quadratic terms in natural coordinate system, we can select shape function
as:

u L L L L L L L L L= + + + + +α α α α α α1 1
2

2 2
2

3 3
2

4 1 2 5 2 3 6 3 1 …(5.24)
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4
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0 0 1 0 0 0
1
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4
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4
0 0

0
1

4
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4
0

1

4
0

1

4
0

1

4
0 0

1

4

α
α
α
α
α
α

since natural coordinates at nodes 1 to 6 are (1,0,0,), (0,1,0), (0,0,1), ( ½, ½, 0), (0, ½, ½) and (½, 0, ½)
respectively. Then, we have

u A
e� � � �= α

where {u}
e
 is the vector of nodal displacements in x directions, [A] is the matrix shown in the above equation

and α� �  is the vector of generalized coordinates (constants in polynomial)

A
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1 0 0 0 0 0
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1 1 0 4 0 0

0 1 1 0 4 0

1 0 1 0 0 4

   α� � � �= −
A u

e

1

and we have started with

u L L L L L L L L L= + + + + +α α α α α α1 1
2

2 2
2

3 3
2

4 1 2 5 2 3 6 3 1

y

3

2

1

1

1
x

(a) Typical LST element (b) Variation of N1 (c) Variation of N4
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Similarly N L L2 2 22 1= −� �

and N L L3 3 32 1= −� �
Similarly it can be proved that
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where          δ� �e

T
u u u u u u v v v v v v= 1 2 3 4 5 6 1 2 3 4 5 6
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and            N N N N N N N
e

= 1 2 3 4 5 6 δ� �
N

1
 = L

1
 (2L

1
 – 1); N

2
 = L

2
 (2L

2
 – 1); N

3
 = L

3
 (2L

3
 – 1); N

4
 = 4L

1
L

2
;

N
5
 = 4L

2
L

3
, and N

6
 = 4L

3
L

1

Variation of N
1
 and N

4
 are shown in Fig. 5.12 (b).

Example 5.12: Determine the shape functions for 4 noded rectangular elements. Use natural coordinate system.

Solution: The typical 4 noded rectangular element is shown in Fig. 5.13.
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Taking the centroid of the rectangle as origin and ξ  and η  as natural coordinates, we have

ξ η= − = −x x

a

y y

b
c cand

where 2a × 2b is the size of the element as shown in Fig. 5.13 and x
c
, y

c
 are the coordinates of the origin.

We need a polynomial in two dimension with 4 constants. Such polynomial is obtained by dropping ξ 2

and η 2  terms in second degree polynomial. Such polynomial maintains geometric isotropy also. Thus,

u = + + +α α ξ α η α ξ η1 2 3 4 …(5.25)
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In short N
1
 to N

4
 may be written as

Ni i i= + +
1

4
1 1ξξ ηη� �� �  for i = 1, 2, 3 and 4 …(5.26)
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Similarly        v N N N N
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v
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N N N N

N N N N e
1 2 3 4

1 2 3 4

0 0 0 0

0 0 0 0
δ� �

Note: N
i
 = 1 at node i and is zero at all other nodes.

Example 5.13: Determine the shape function for quadratic rectangular element shown in Fig. 5.14
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Solution: There are 8 nodal values for u and 8 for v. Hence the displacement function is to be selected with
only 8 constant. The polynomial has to maintain geometric isotropy also. This may be obtained by dropping

ξ 3  and η3  terms from complete 3rd order polynomial. Thus,

      u = + + + + + + +α α ξ α η α ξ α ξη α η α ξ η α ξη1 2 3 4
2

5 6
2

7
2

8
2 …(5.27)
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or α� � � �= −A u
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It may be shown that,
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e

   = N N N N N N N N u
e1 2 3 4 5 6 7 8 � � …(5.28)

Where N
1
 …N

8
 are as defined above.

In other words, for corner nodes (i = 1, 2, 3, 4)

Ni i i i i= + + + −1

4
1 1 1ξξ ηη ξξ ηη� �� �� � …(5.29)

For mid side nodes,

If ξ i = 0  then Ni i= − +
1

2
1 12ξ ηη� �� �  (i.e., for 5, 7) …(5.30)

If η i = 0  then Ni i= − +
1

2
1 12η ξξ� �� �  (i.e., for 6, 8) …(5.31)
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Thus,
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N
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v
e
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× ×

× ×

1 8 1 8

1 8 1 8

0

0

[Note: N
i
 =1 at node i and is zero at all other nodes, variation is quadratic]

Example 5.14: Determine the shape functions for a tetrahedron element.
Solution: The typical tetrahedron is as shown in Fig. 5.15.
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In Chapter 4, we have seen that the natural coordinates for such element are volume coordinates

L
V

Vi
i=

Where L
i
 = Natural coordinates

V
i
 = Volume of sub tetrahedron formed by the point and the nodes except ith and V = Volume of the

tetrahedron

∴  Natural coordinates for the node point 1, 2, 3 and 4 are
1(1,0,0,0), 2(0,1,0,0), 3(0,0,1,0) and 4(0,0,0,1)

Let the displacement in x direction at any point P in the element be

           u L L L L= + + +α α α α1 1 2 2 3 3 4 4 …(5.32)
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1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

u
e� � =

�

�

	
	
	
	




�

�
�
�
�

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

u
e� �

4

3

21
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      ∴ = + + +u L L L Lα α α α1 1 2 2 3 3 4 4

=

�

�


�



�

�


�



L L L L1 2 3 4

1

2

3

4

α
α
α
α

=

�

�

	
	
	
	




�

�
�
�
�

L L L L u
e1 2 3 4

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

� �

= L L L L u
e1 2 3 4 � � = N N N N u

e1 2 3 4 � � = N u
e� �

where N
1
 = L

1
, N

2
 = L

2
, N

3
 = L

3
 and N

4
 = L

4
…(5.34)

Similarly for displacement v and w, we get

  v = [N] {v}
e
 and w = [N] {w}

e

            

u

v

w

N

N

N
e

�
�

�

�
�

�
=

�

�

	
	
	
	
	




�

�
�
�
�
�

× × ×

× × ×

× × ×

1 4 1 4 1 4

1 4 1 4 1 4

1 4 1 4 1 4

0 0

0 0

0 0

δ� �

where δ� �e

T
u u u u v v v v w w w w= 1 2 3 4 1 2 3 4 1 2 3 4

Note: N
i
 = 1 at node i and is zero at all other nodes. Variation is linear.

Example 5.15: Explain the method of finding shape function for a hexahedral element.
Solution: The typical element selected is shown in Fig. 5.16. The natural coordinates of various nodal points are

�"�����/ ���������������
������
	

1 (1, –1, –1) 2 (1, 1, –1) 3(1, 1, 1) 4 (1, –1, 1)
5 (–1, –1, –1) 6 (–1, 1, –1) 7 (–1, 1, 1) 8 (–1, –1, 1)

There are only eight nodal values for defining displacement inside the element. Hence polynomial with
8 constants is to be selected for shape function. Keeping in view that geometric isotropy is to be maintained
the following polynomial is selected.

�



�

8 7
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u = + + + + + + +α α ξ α η α ζ α ξη α ηζ α ζξ α ξηζ1 2 3 4 5 6 7 8 …(5.35)

i.e.,    =
�
�

�

�
�

�
1

1

8

ξ ηζ ξη ηζ ζξ ξηζ
α

α
�

∴ =

− − − −
− − − −

− − − −
− − − −
− − − −
− − − −
− − − −

�

�

	
	
	
	
	
	
	
	
	
	
	




�

�
�
�
�
�
�
�
�
�
�
�

�

�






�







�

�






�







u
e� �

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1

2

3

4

5

6

7

8

α
α
α
α
α
α
α
α

= A α� �

∴ = −α� � � �A u
e

1

[A]-1 can be found. Then

            u = 1 ξ η ζ ξη ηζ ζξ ξηζ α� �

= −
1 1ξ η ζ ξη ηζ ζξ ξηζ A u

e� � = N u
e� �

where         N A= −
1 1ξ η ζ ξη ηζ ζη ξηζ

 = N N N N N N N N1 2 3 4 5 6 7 8

It will be found that

Ni i i i= + + +1

8
1 1 1ξξ ηη ζζ� �� �� � …(5.36)

           

u

v

w

N

N

N
e

�
�

�

�
�

�
=

�

�

	
	
	
	
	




�

�
�
�
�
�

× × ×

× × ×

× × ×

1 8 1 8 1 8

1 8 1 8 1 8

1 8 1 8 1 8

0 0

0 0

0 0

δ� �

where            δ� �e

T
u u v v w w= 1 8 1 8 1 8... , ... , ...

Note: N
i
 = 1 at node i and is zero at all other nodes.
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��� ������*�� ��!���������������*���*���*!������������

If only continuity of basic unknown (displacement) is to be satisfied, Lagrange polynomials can be used to
derive shape functions. Lagrange polynomial in one dimension is defined by

L x
x x

x xk
m

k mm
m k

n

� � =
−
−=

≠

∏
1

…(5.37)

Thus, if n = 5 and k = 3,

L x
x x x x x x x x

x x x x x x x x3
1 2 4 5

3 1 3 2 3 4 3 5
� � � � � �� �� �

� �� �� � � �=
− − − −

− − − −

Obviously equation 5.37 takes the value equal to zero at all points except at point k. At point k its value
is unity.

This is exactly the property required for the interpolation functions. Hence Lagrange Polynomial can be
straight way used as shape functions for one dimensional problems. The following example illustrates it.

Example 5.16: Using Lagrange polynomial find shape functions for
(i) Two noded bar element

(ii) Three noded bar element and
(iii) Five noded bar element

Plot the variation of shape functions.

Solution: (i) Two noded bar element
The typical two noded bar elements is shown in Fig. 5.17 (a)
General Lagrange Polynomial is

�"�����0 %�&�����
��������������
	

L
x x x x x x x x x x

x x x x x x x x x x
k

k k n

k k k k k k k n

=
− − − − −

− − − − −
− +

− +

1 2 1 1

1 2 1 1

� �� � � �� � � �
� �� � � �� � � �

... ...

... ...

Now n = 2. Hence when k = 1

Variation of N1

Variation of N2

Typical element

(a)
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∴ = =
−
−

=
−
−

N L
x x

x x

x x

x x1 1
2

1 2

2

2 1

, N
1 8×  same as found earlier

When k = 2,

N L
x x

x x2 2
1

2 1

= =
−
−

,  same as found earlier variation of N
1
 and N

2
 is also shown in Fig. 5.17 (a).

(ii) For Three Noded Element

n = 3. Hence when k = 1,

N L
x x x x

x x x x1 1
2 3

1 2 1 3

= =
− −
− −

� �� �
� �� �

When k = 2

N L
x x x x

x x x x2 2
1 3

2 1 2 3

= =
− −
− −

� �� �
� �� �

and N L
x x x x

x x x x3 3
1 2

3 1 3 2

= =
− −
− −

� � � �
� � � �

�"�����0�������� %�&������
��������������
	

The typical element and the variation of its shape functions are shown in Fig. 5.17 (b).

(iii) For Five Noded Element
n = 5

N L
x x x x x x x x

x x x x x x x x1 1
2 3 4 5

1 2 1 3 1 4 1 5

= =
− − − −

− − − −
� �� � � �� �
� �� � � �� �

1 23

Variation of N1

Variation of N2

Variation of N3

Typical 3 noded bar element
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N L
x x x x x x x x

x x x x x x x x2 2
1 3 4 5

2 1 2 3 2 4 2 5

= =
− − − −

− − − −
� �� �� � � �
� �� �� �� �

N L
x x x x x x x x

x x x x x x x x3 3
1 2 4 5

3 1 3 2 3 4 3 5

= =
− − − −

− − − −
� �� �� � � �
� �� �� �� �

N L
x x x x x x x x

x x x x x x x x4 4
1 2 3 5

4 1 4 2 4 3 4 5

= =
− − − −

− − − −
� �� �� � � �
� �� �� �� �

N L
x x x x x x x x

x x x x x x x x5 5
1 2 3 4

5 1 5 2 5 3 5 4

= =
− − − −

− − − −
� �� �� �� �
� �� �� �� �

The five noded bar element and variation of its shape functions are shown in Fig. 5.17 (c)

�"�����0�������� %�&���������'�
��������������
	

��"'�
"����$%
�#�$����'�����-�'��&���#�
��
�$�!$�#�
��

Although Lagrangian interpolation functions are for only one dimension, we may extend the concept to two
and three dimensions by forming the product of the functions which hold good for the individual one
dimensional coordinate directions i.e.,

Variation of N1

Variation of N2

Variation of N3

Variation of N5

Variation of N4

(a) Typical    noded element

1

1

1

1

1

1

3 4 5 2
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N L L1 1 1= ξ η� � � � …(5.38)

Thus for 4 noded rectangular element shown in Fig. 5.18,

       N L L1 1 1= ξ η� � � � =
−
−

−
−

ξ ξ
ξ ξ

η η
η η

2

1 2

4

1 4

=
−

− −
−

− −
= − −

ξ η
ξ η

1

1 1

1

1 1

1

4
1 1

� � � �� � = − −1

4
1 1ξ η� �� �

�"������1 ��������$�
��������	�
�����������
	

    N L L2 2 2= ξ η� � � � =
−
−

−
−

ξ ξ
ξ ξ

η η
η η

1

2 1

3

2 3

=
− −
− −

−
− −

ξ η1

1 1

1

1 1

� �� �
� �

� � =
+ −

−
= + −

ξ η
ξ η

1 1

4

1

4
1 1

� �� �
� � � �� �

    N L L3 3 3= ξ η� � � � =
−
−

−
−

ξ ξ
ξ ξ

η η
η η

4

3 4

2

3 2

          =
+

− −
+

− −
ξ η1

1 1

1

1 1� � � � =
+ +1 1

4

ξ η� �� �

    N L L4 4 4= ξ η� � � � =
−
−

−
−

ξ ξ
ξ ξ

η η
η η

3

4 3

1

4 1

          =
−

− −
+

− −
=

− +
−

=
− +ξ η ξ η ξ η1

1 1

1

1 1

1 1

4

1 1

4

� �
� � � �

� �� � � � � �

Thus     Ni
i i=

+ +1 1

4

ξξ ηη� �� �

Example 5.17: Using Lagrange functions write shape functions for the nine noded rectangular element shown
in Fig. 5.19.

4 (–1, 1) 3 (1, 1)

2 (1, –1)1 (–1, –1)



�
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�"�����2 ��������
�
��
��������	�
�����������
	

Solution: The natural coordinates of various nodes are as shown in the figure. For the Co continuity element
in two dimensions,

N L Li i i= ξ η� � � �
where L

i
 refers to Langrangian function at node i. In this case there are 3 nodes in each direction. Hence n =

3 in Lagrange function

     N1
2 3

1 2 1 3

4 7

1 4 1 7

=
− −
− −

− −
− −

ξ ξ ξ ξ
ξ ξ ξ ξ

η η η η
η η η η

� �� �
� �� �

� �� �
� �� �

=
− −

− − − −
− −

− − − −
ξ ξ η η0 1

1 0 1 1

0 1

1 0 1 1

� �� �
� �� �

� �� �
� �� � =

− −ξ ξ η η1 1

4

� � � �

    N2
1 3

2 1 2 3

5 8

2 5 2 8

=
− −
− −

− −
− −

ξ ξ ξ ξ
ξ ξ ξ ξ

η η η η
η η η η

� � � �
� � � �

� �� �
� �� �

           =
+ −
+ −

− −
− − − −

ξ ξ η η1 1

0 1 0 1

0 1

1 0 1 1

� �� �
� �� �

� �� �
� �� � =

+ − −
−

ξ ξ η η1 1 1

2

� �� � � �
� �

N3
1 2

3 1 3 2

6 9

3 6 3 9

=
− −
− −

− −
− −

ξ ξ ξ ξ
ξ ξ ξ ξ

η η η η
η η η η

� �� �
� �� �

� �� �
� �� �

           =
+ −
+ −

− −
− − − −

ξ ξ η η1 0

1 1 1 0

0 1

1 0 1 1

� �� �
� �� �

� �� �
� �� � =

+ −ξ ξ η η1 1

4

� � � �

    N4
5 6

4 5 4 6

1 7

4 1 4 7

=
− −
− −

− −
− −

ξ ξ ξ ξ
ξ ξ ξ ξ

η η η η
η η η η

� �� �
� �� �

� �� �
� �� �

7
(–1, 1)

9
(1, 1)

3
(1, –1)

1
(–1, –1)



�

6
(1, 0)

4
(–1, 0)

8
(0, 1)

2
(0, –1)

5 (0, 0)
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           =
− −

− − − −
+ −
+ −

ξ ξ η η0 1

1 0 1 1

1 1

0 1 0 1

� �� �
� �� �

� �� �
� �� � =

− + −
−

ξ ξ η η1 1 1

2

� �� �� �

     N5
4 6

5 4 5 6

2 8

5 2 5 8

=
− −
− −

− −
− −

ξ ξ ξ ξ
ξ ξ ξ ξ

η η η η
η η η η

� �� �
� �� �

� � � �
� � � �

           =
+ −
+ −

+ −
+ −

ξ ξ η η1 1

0 1 0 1

1 1

0 1 0 1

� �� �
� �� �

� � � �
� � � � =

+ − + −ξ ξ η η1 1 1 1

1

� � � �� �� �

     N6
4 5

6 4 6 5

3 9

6 3 6 9

=
− −
− −

− −
− −

ξ ξ ξ ξ
ξ ξ ξ ξ

η η η η
η η η η

� �� �
� �� �

� � � �
� � � �

           =
+ −
+ −

+ −
+ −

ξ ξ η η1 0

1 1 1 0

1 1

0 1 0 1

� �� �
� �� �

� �� �
� �� � =

+ + −
−

ξ ξ η η1 1 1

2

� � � �� �

     N7
8 9

7 8 7 9

1 4

7 1 7 4

=
− −
− −

− −
− −

ξ ξ ξ ξ
ξ ξ ξ ξ

η η η η
η η η η

� �� �
� �� �

� �� �
� �� �

           
=

− −
− − − −

+ −
+ −

ξ ξ η η0 1

1 0 1 1

0 0

1 1 1 0

� �� �
� �� �

� �� �
� �� � =

− +ξ ξ η η1 1

4

� � � �

     N8
7 9

8 7 8 9

2 5

8 2 8 5

=
− −
− −

− −
− −

ξ ξ ξ ξ
ξ ξ ξ ξ

η η η η
η η η η

� � � �
� � � �

� � � �
� � � �

           
=

+ −
+ −

+ −
+ −

ξ ξ η η1 1

0 1 0 1

1 0

1 1 1 0

� �� �
� �� �

� � � �
� � � � =

+ − +
−

ξ ξ η η1 1 1

2

� �� �� �� �

     N9
7 8

9 7 9 8

3 6

9 3 9 6

=
− −
− −

− −
− −

ξ ξ ξ ξ
ξ ξ ξ ξ

η η η η
η η η η

� �� �
� �� �

� �� �
� �� �

           
=

+ −
+ −

+ −
+ −

ξ ξ η η1 0

1 1 1 0

1 0

1 1 1 0

� �� �
� �� �

� �� �
� �� � =

+ +ξ ξ η η1 1

4

� � � �� �

Thus in this case, for corner nodes,

Ni i i= + +
1

4
ξη ξ ξ η η� �� � …(5.41)

For nodes 2 and 8 where ξ = 0 ;

N
i

i=
+ − +

−
ξ ξ η η η1 1

2

� �� � � �
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For nodes 4 and 6, where η i = 0

N
i

i=
+ − +

−
ξ ξ ξ η η� � � �� �1 1

2

and for central node,

N5

1 1 1 1

4
=

+ − + −ξ ξ η η� �� � � �� �

Example 5.18: Using Langrange functions, derive shape function for hexahedron (brick) element.
Solution: Typical hexahedron element is shown in Fig. 5.20.

The coordinates for various nodal points are

1 (1, –1, –1), 2 (1, 1, –1), 3 (1, 1, 1), 4 (1, –1, 1), 5 (–1, –1, –1), 6 (–1, 1, –1), 7 (–1, 1, 1), 8 (–1, –1, 1)
In general, shape function by Lagrange function for three dimensional case is given by

N L L Li i i i= ξ η ζ� � � � � �

�"�����3 ���������������
������
	

∴ =
−
−

−
−

−
−

N1
5

1 5

2

1 2

4

1 4

ξ ξ
ξ ξ

η η
η η

ζ ζ
ζ ζ

� � =
+ − −

+ − − − −
=

+ − −ξ η ζ ξ η ζ1 1 1

1 1 1 1 1 1

1 1 1

8

� � � � � �
� �� �� �

� �� �� �

N L L L2 2 2 2= ξ η ζ� � � � � �

      =
−
−

−
−

−
−

ξ ξ
ξ ξ

η η
η η

ζ ζ
ζ ζ

6

2 6

1

2 1

3

2 3

� �
� �

� �
� �

� �
� �

1

2

3
4

5
6

7

8

�

�



x

z

y
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      =
+ + −
+ + − −

=
+ + −

−
ξ η ζ ξ η ζ1 1 1

1 1 1 1 1 1

1 1 1

8

� � � �� �
� �� �� �

� � � �� �

     N L L L3 3 3 3= ξ η ζ� � � � � �

      =
−
−

−
−

−
−

ξ ξ
ξ ξ

η η
η η

ζ ζ
ζ ζ

7

3 7

4

3 4

2

3 2

� �

      =
+
+

+
+

+
+

=
+ + +ξ η ζ ξ η ζ1

1 1

1

1 1

1

1 1

1 1 1

8

� �� �� �

     N L L L4 4 4 4= ξ η ζ� � � � � � =
−
−

−
−

−
−

ξ ξ
ξ ξ

η η
η η

ζ ζ
ζ ζ

8

4 8

3

4 3

1

4 1

      =
+
+

−
− −

+
+

=
+ − +

−
ξ η ζ ξ η ζ1

1 1

1

1 1

1

1 1

1 1 1

8

� �� �� �

     N L L L5 5 5 5= ξ η ζ� � � � � �

      =
−
−

−
−

−
−

ξ ξ
ξ ξ

η η
η η

ζ ζ
ζ ζ

1

5 1

6

5 6

8

5 8

� �
=

−
− −

−
− −

−
− −

=
− − −

−
ξ η ζ ξ η ζ1

1 1

1

1 1

1

1 1

1 1 1

8

� � � �� �� �

     N L L L6 6 6 6= ξ η ζ� � � � � �

      =
−
−

−
−

−
−

ξ ξ
ξ ξ

η η
η η

ζ ζ
ζ ζ

2

6 2

5

6 5

7

6 7
=

−
− −

+
+

−
− −

=
− + −ξ η ζ ξ η ζ1

1 1

1

1 1

1

1 1

1 1 1

8

� �� �� �

     N L L L7 7 7 7= ξ η ζ� � � � � �

      =
−
−

−
−

−
−

ξ ξ
ξ ξ

η η
η η

ζ ζ
ζ ζ

3

7 3

8

7 8

6

8 6
=

−
− −

+
+

+
+

=
− + +

−
ξ η ζ ξ η ζ1

1 1

1

1 1

1

1 1

1 1 1

8

� � � �� �

     N L L L8 8 8 8= ξ η ζ� � � � � �

      =
−
−

−
−

−
−

ξ ξ
ξ ξ

η η
η η

ζ ζ
ζ ζ

4

8 4

7

8 7

5

8 5
=

−
− −

−
− −

+
+

=
− − +ξ η ζ ξ η ζ1

1 1

1

1 1

1

1 1

1 1 1

8

� � � � � �� �� �

In general it may be noted that,

Ni i i i= + + +1

8
1 1 1ξξ ηη ζζ� � � � � � …(5.42)

��/ � ��!����������������!�!���������������!�!�!���

Figure 5.21 shows Serendipity family elements. These elements may be called as boundary node family
elements also. In these elements nodes are only on the boundaries. Zienkiewcz called them as ‘Serendip
family’ elements by referring to the famous princess of Serendip noted for chance discoveries. The terms
linear, quadratic, cubic and quartic are used since the variation of shape functions about a boundary is of that
order. The shape functions are found from the consideration that Ni = 1 for ith node and is zero when referred
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to any other node. Discovery of these elements clubbed with isoparametric concept (explained in ch.13) has
made major break through in the finite element analysis. In this article derivation of shape functions for this
family of elements is presented, through examples.

�"������ (���
����	��������������
	�

Example 5.19: Using ‘serendipity concept’ derive shape functions for 4 noded rectangular element.
Solution: Figure 5.22 shows the typical element in natural coordinate system.

�"������ ������������
����	����
���������
	

N
1
 has to satisfy the conditions

(a) along ξ = 1,  N
1
 = 0.

(b) along η = 1,  N
1
 = 0

and (c) at ξ = −1 , η = −1 N
1
 = 1.

(a) Linear (b) Quadratic

(d) Quartic(c) Cubic

4 (–1, 1) 3 (1, 1)

2 (1, –1)1 (–1, –1)



 � 1

�
� = 1

0
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Hence let

N C1 1 1= − −ξ η� �� � ,  where C is arbitrary constant.

Conditions (a) and (b) are satisfied.
Condition (c) gives,

      1 1 1 1 1
1

4
= + + =C C� �� � or

∴ =
− −

N1

1 1

4

ξ η� �� �

On the same lines we can get,

N2

1 1

4
=

+ −ξ η� �� �

N3

1 1

4
=

+ +ξ η� �� �

and N4

1 1

4
=

− −ξ η� � � �

These are same as given in equations 5.26 and 5.40, which were derived from different approaches.

Example 5.20: Using serendipity concept find shape functions for quadratic serendipity family element.
Solution: Figure 5.23 shows a typical element of this type.

�"�����( ������������
����	��������	��������
	

The conditions to be satisfied by N
1
 are,

(a) along line ξ = 1, N
1
 = 0

(b) along line η = 1, N
1
 = 0

(c) along line 5–8, N
1
 = 0

4 (–1, 1)
3 (1, 1)

2 (1, –1)1 (–1, –1)



� � � � � 1 0

 �� � �1 0

� � � � � 1 0

 �� � �1 0
�

6 (1.0, 0)
8 ( –1, 0)

7 (0, 1)

5 (0, –1)

0
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i.e., ξ η+ + =1 0.

(d) At ξ = −1  and η = −1 , N
1
 = 1

Hence let

N C1 1 1 1= − − + +ξ η ξ η� � � �� �
It satisfies the requirements a, b, c. In other words it ensues N

1
 = 0 at nodes 2, 3, … 8.

From condition (d),

1 1 1 1 1 1 1 1
1

4
= + + − − ∴ = −C C� �� �� �

∴  For the corner node

N1

1 1 1

4
= −

− − + +ξ η ξ η� �� � � �

Similarly we can show that

N2

1 1 1

4
= −

+ − − +ξ η ξ η� � � � � �

N3

1 1 1

4
= −

+ + − −ξ η ξ η� �� �� �

and N4

1 1 1

4
= −

− + + −ξ η ξ η� �� � � �

For mid-side node 5, the conditions to be satisfied are

(a) Along ξ = 1 N
5
 = 0

(b) Along η = 1 N
5
 = 0

(c) Along ξ = −1   N
5
 = 0

(d) At node 5 where ξ η= = −0 1, ,  N
5
 = 1

∴  Let N C5 1 1 1= − − +ξ η ξ� �� �� �
This form satisfies N

1
 = 0 at all nodes other than node 5. From the condition ‘d’ we get,

1 = C (1 – 0) (1 + 1) (1 + 0)

    ∴ =C
1

2

∴ = − − + =
− −

N5

2
1

2
1 1 1

1 1

2
ξ η ξ

ξ η
� �� �� � � �� �

Similarly it may be shown that

N6

21 1

2
=

+ −ξ η� � � � …(5.44a)
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N7

21 1

2
=

− +ξ η� �� �
…(5.44b)

and N8

21 1

2
=

− −ξ η� � � �
…(5.44c)

Example 5.21: Determine the shape functions for cubic serendipity family element.
Solution: Typical element is shown in Fig. 5.24. Shape functions for corner nodes:

N
1
 = 0 for all nodes except 1 and is 1 for node 1.

N
1
 = 0 is satisfied for nodes 2, 7, 8, 3 if 1 0− =ξ

N
1
 = 0 is satisfied for nodes 3, 9, 10, 4 if 1 0− =η

�"�����, ����������
����	��������������
	

The points 5, 6, 7, 8, 9, 10, 11, 12 lie on the circle shown in Figure. The radius of this circle
= OA

= �
��
�
�� + �

��
�
�� =1

3
1

1

3
1 0 0

2

since andA O, ,� � = 10

3

∴  The equation of the circle is

             ξ η2 2 10

3
+ =



�

0

4 10 9 3

811

712

2651

A
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ξ η2 2 10

3
0+ − =

Satisfies N
1
 = 0 for nodes 5 to 12.

N C1
2 21 1

10

9
= − − + −�

��
�
��ξ η ξ η� �� �  Satisfies N

1
 = 0 for all nodes except for node 1.

For node 1 N
1
 = 1.

∴ = − − + −�
��

�
��1 1 1

10

91 1 1
2

1
2ξ η ξ η� � � �

But we know ξ η1 1 1= = −

∴ = × × + −�
��

�
�� =1 2 2 1 1

10

9

32

9
C C

or C =
9

32

        ∴ = − − + −�
��

�
��N1

2 29

32
1 1

10

9
ξ η ξ η� �� �

    = − − + −
1

32
1 1 9 102 2ξ η ξ η� � � � � �� �

Similarly it may be shown that

N2
2 21

32
1 1 9 10= + − + −ξ η ξ η� �� � � �� �

N3
2 21

32
1 1 9 10= + + + −ξ η ξ η� �� � � �� �

N4
2 21

32
1 1 9 10= − + + −ξ η ξ η� �� � � �� �

For mid side node 5,

1 0− =ξ  ensures N
5
 = 0 at nodes 2, 7, 8, 3

1 0− =η  ensures N
5
 = 0 at nodes 3, 9, 10, 4

1 0+ =ξ  ensures N
5
 = 0 at nodes 4, 11, 12, 1.

1 3 0− =ξ  ensures N
5
 = 0 at node 6.

∴ = − − + −Let N C5 1 1 1 1 3ξ η ξ ξ� �� �� � � �

At node 5, ξ η= − = − =1

3
1 15, and N
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∴ = × × × ×1
4

3
2

2

3
2C

i.e.,           C =
9

32

   ∴ = − − + −N5
9

32
1 1 1 1 3ξ η ξ ξ� �� �� �� �

= − − −
9

32
1 1 1 32ξ η ξ� �� � � �

Similarly,         N6
29

32
1 1 1 3= − − +ξ η ξ� �� �� �

       N7
29

32
1 1 1 3= − + −η ξ η� �� �� �

       N8
29

32
1 1 1 3= − + +η ξ η� �� �� �

       N9
29

32
1 1 1 3= − + +ξ η ξ� �� �� �

       N10
29

32
1 1 1 3= − + −ξ η ξ� �� � � �

       N11
29

32
1 1 1 3= − − +η ξ η� �� � � �

       N12
29

32
1 1 1 3= − − −η ξ η� �� �� �

��0  !����!����������������� ��!����������

Similar to Lagrangian functions for Co continuity elements, there are Hermite polynomials for cn continuity
elements. Hermite polynomial in one dimension is denoted as Hn(x). It is a polynomial of order 2n + 1. Thus
H1(x) is a first order polynomial which is cubic in x. H2(x) is a second order polynomial and is of 5th order.

The speciality of Hermite polynomials is their values and the values of their derivatives upto order n are
unity or zero at the end points of the interval 0 to 1. The elements of a set of Hermitian polynomials representing

these properties may be written as H xmi
n � �  where m is the order of derivatives, i the node number and n is the

order of the Hermitian function.
To illustrate it, let us take a two noded beam element (refer Fig. 5.25) in which nodal unknowns are the

displacement w and the slope 
∂
∂
w

x
. Since the element has four degrees of freedom, we have to select the

polynomial with only 4 constants i.e. the first order (cubic) Hermitian polynomials as shape function.
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�"������  ���������
	���	�
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�

These are given as

     H s s s01
1 2 31 3 2� � = − +

H s ls s11
1 2

1� � � �= −

 H s s s02
1 2 3 2� � � �= −

H s ls s12
1 2 1� � � �= −

Where s
x x

x x

x x

l
=

−
−

=
−1

2 1

1  and l x x= −2 1

The displacement model for the beam element is

     w N
e

= δ� �

i.e., w N N N N

w

w
=

�

�


�



�

�


�



1 2 3 4

1

1

2

2

θ

θ

…(5.47)

where      θ
∂
∂

=
w

x

Then   
∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

θ

θ

w

x

N

x

N

x

N

x

N

x

w

w
=
�
�	



��

�

�


�



�

�


�



1 2 3 4

1

1

2

2

We select Hermitian first order polynomial functions as shape functions i.e.,

N H s s s1 01
1 2 31 3 2= = − +� �

     N H s ls s2 11
1 21= = −� � � � …(5.48)

×
x w, , 	1 1 1 x w, , 	2 2 2

x
1 2P

l

x = 0

S = 0 S = 1

S
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 N H s s s s3 02
1 2 2= = −� � � �

N H s ls s4 12
1 2 1= = −� � � �

Now it may be observed that, at node 1,
   N

1
 = 1, N

2
 = N

3
 = N

4
 = 0

and
∂
∂

∂
∂

∂
∂

∂
∂

N

s

N

s

N

s

N

s
1 2 3 40 1 0= = = =,

Similarly at node 2,
    N

1
 = 0, N

2
 = 0,  N

3
 = 1, N

4
 = 0

∂
∂

∂
∂

∂
∂

∂
∂

N

s

N

s

N

s

N

s
1 2 3 40 1= = =and

This is exactly the requirement of the shape functions. Hence first order Hermite functions are suitable
for beam element in which C1 continuity is to be satisfied. If we select natural coordinate as shown in Fig.
5.26, it may be observed that

�"�����/  ���������
	���	�
�	�����������
�	��� ξ ������
�������*+�	��+

ξ = = − = −PC
l l

AP AC s

2

2
2 05� � � �.  = 2s – 1

Substituting this in equation 5.47 we get, Hermite polynomial of first order as,

N H1 01
1

32 3

4
= =

− +ξ ξ

          N H
l

2 11
1 2 31

8
= = − − +ξ ξ ξ� �

     N H3 02
1 31

4
2 3= = + −ξ ξ� � …(5.49)

            N H
l

4 12
1 2 3

8
1= = − − + +ξ ξ ξ� �

Hermitian shape functions in two dimensions may be constructed as multiplication of Hermitian functions
in x and y directions. Thus,

N H x H y1 01
1

01
1= � � � �  N H x H y2 11

1
11
1= � � � �

N H x H y3 02
1

02
1= � � � �  N H x H y4 12

1
12
1= � � � �

×× x1 2
PC

x = 0

S = 0 S = 1S = 0.5 S

 = 0 = –1   = 1

A B
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��1 ����������������� ��!����������
4���!*�����*��!� ��+�!

In the problems in which stress concentration is quite high in some portion and its variation is low in some
other portion, a stress analyst prefers to use higher order elements in the area of stress concentration and lower
order elements in the other areas. Fig. 5.27 shows a case in which this has been done using LST elements and
CST elements. In this problem left side portion is having stress variation fast. Hence LST elements are used
while on the right hand side CST elements are used. When this is done we come across few elements which do
not belong entirely to CST or LST category. In element No.5, we find there are five nodes while in element
No.7, there are four nodes. For these odd noded elements, we can find shape function by degrading higher
order (in this case LST) elements. This degrading technique is illustrated in this article.

�"�����0 �(���
��,(�������
	��������
����������

(i) Degrading Six Noded Triangular Element to Five Noded Triangular Element
Let the typical 6 noded and 5 noded triangular elements be as shown in Fig. 5.28. Five noded element is to be
obtained by dropping node 6 from LST element. Now for LST element,

�"�����1 ��������,(���
��'-
�����	���
�����������
	�

u N u N u N u N u N u N u N ui i= = + + + + +∑ 1 1 2 2 3 3 4 4 5 5 6 6 …(5.50)

where
N

1
 = L

1
 (2L

1
 – 1) N

2
 = L

2
 (2L

2
 – 1) N

3
 = L

3
 (2L

3
 – 1)

1
2

3

4

5
6

7

8

9

10

11

12

13

Area of
stress
concentration

1 1

4 4

2 2

6

5 5

3 3

×�6
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N
4
 = 4L

1
L

2
N

5
 = 4L

2
L

3
N

6
 = 4L

3
L

1

In this case variation of displacement is quadratic along all the three sides of the triangle.
In case of five noded triangle, the variation along line 1–3 should be linear, since there are only two nodes

along this line. Hence,

′ = +
u

u u
6

1 3

2

Replacing u
6
 by ′u6  in equation 5.46, we get

u N u N u N u N u N u N
u u= + + + + +

+�
��

�
��1 1 2 2 3 3 4 4 5 5 6

1 3

2

           = +�
��

�
�� + + +�

��
�
�� + +N

N
u N u N

N
u N u N u1

6
1 2 2 3

6
3 4 4 5 52 2 …(5.52a)

           =
=
∑ N ui i

i 1

5

, for five noded triangular element.

            = ′ + ′ + ′ + ′ + ′N u N u N u N u N u1 1 2 2 3 3 4 4 5 5 …(5.52b)

comparing equation 5.52a and 5.52b, we conclude,

′ = + = − +N N
N

L L
L L

1 1
6

1 1
3 1

2
2 1

4

2
� � = − +L L L1 1 32 1 2� �

            = − + −L L1 21 2 1� �  since L
1
 + L

2
 + L

3
 = 1 = −L L1 21 2

     ′ = = −N N L L2 2 2 22 1� �

     ′ = + = − +N N
N

L L
L L

3 3
6

3 3
3 1

2
2 1

4

2
� � = − +L L L3 3 12 1 2

            = − + −L L3 21 2 1� � = −L L3 21 2

      ′ = =N N L L4 4 1 24

      ′ = =N N L L5 5 2 34

(ii) Degrading LST element to 4-Noded Triangular Element
Let the typical LST and 4-Noded triangular elements be as shown in Fig. 5.29.

In this case it is possible to get shape functions for 4-noded triangular element by degrading LST element
from which nodes 5 and 6 are to be eliminated. If nodes 5 and 6 do not exist, the variation of displacements
along lines 2-3 and 1-3 should be linear. Thus in 4 noded triangle

′ =
+

u
u u

6
1 3

2
 and ′ =

+
u

u u
5

2 3

2
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�"�����2 ��������,(���
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�����	���
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Substituting these in equation 5.45, we get

u N u N u N u N u N
u u

N
u u= + + + +

+�
��

�
�� +

+�
��

�
��1 1 2 2 3 3 4 4 5

2 3
6

1 3

2 2

              = +�
��

�
�� + +�

��
�
�� + + +�

��
�
�� +N

N
u N

N
u N

N N
u N u1

6
1 2

5
2 3

5 6
3 4 42 2 2 2

…(5.34a)

But for 4 noded element,

u N u N u N u N u= ′ + ′ + ′ + ′1 1 2 2 3 3 4 4 …(5.34b)

Comparing 5.52a and 5.52b, we get,

′ = + = − +N N
N

L L
L L

1 1
6

1 1
3 1

2
2 1

4

2
� � = − +L L L1 1 32 1 2

             = − + −L L1 21 2 1� � , since L
1
 + L

2
 + L

3
 = 1 = −L L1 21 2

      ′ = + = − +N N
N

L L
L L

2 2
5

2 2
2 3

2
2 1

4

2
� � = − +L L L2 2 32 1 2

             = − + −L L2 11 2 1� � , since L
1
 + L

2
 + L

3
 = 1 = −L L2 11 2

      ′ = + + = − + +N N
N N

L L
L L L L

3 3
5 6

3 3
2 3 3 1

2 2
2 1

4

2

4

2
� �

             = − + +L L L L3 3 2 12 1 2 2

             = − +L3 1 2  since L
1
 + L

2
 + L

3
 = 1 = L3

Example 5.22: By degrading technique develop shape function for the seven noded rectangular element
shown in Fig. 5.30 (b). Given that for eight noded element shown in Fig. 5.30 (a)

Ni i i i i= + + + −
1

4
1 1 1ξξ ηη ξξ ηη� �� � � �  for nodes 1, 2, 3 and 4.

1 1

4 4

26

3

5

2

3

×

×

�6

�5
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   Ni i= − +
1

2
1 12ξ ηη� �� �  for nodes 5 and 7

   Ni i= − +
1

2
1 12η ξξ� �� �  for nodes 6 and 8

�"����(3 %�&����	�
����������
	�%�&�(���
�
����������
	

For eight nodded element,

  N1
1

4
1 1 1= − − − − −ξ η ξ η� �� �� �

N2
1

4
1 1 1= + − − −ξ η ξ η� � � �� �

N3
1

4
1 1 1= + + + −ξ η ξ η� �� �� �

  N4
1

4
1 1 1= − + − + −ξ η ξ η� �� �� �

 N5
21

2
1 1= − −ξ η� �� �

 N6
21

2
1 1= + −ξ η� �� �

 N7
21

2
1 1= − +ξ η� �� �

 N8
21

2
1 1= − −ξ η� �� �

For seven noded element, variation of displacement along the edge 1–4 is linear. Hence

u
u u

8
1 4

2
=

+

4 43 37 7

5 52 21 1

 

� �

6 6
8 8
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∴ = + + + + + + +
+�

��
�
��u N u N u N u N u N u N u N u N

u u
1 1 2 2 3 3 4 4 5 5 6 6 7 7 8

1 4

2

               = +�
��

�
�� + + + +�

��
�
�� + + +N

N
u N u N u N

N
u N u N u N u1

8
1 2 2 3 3 4

8
4 5 5 6 6 7 72 2

...(5.54a)

If the shape function for 7 noded element is ′N , then,

u N u N u N u N u N u N u N u= ′ + ′ + ′ + ′ + ′ + ′ + ′1 1 2 2 3 3 4 4 5 5 6 6 7 7 …(5.54b)

comparing equation 5.54a and 5.54b, we conclude

′ = + = − − − − − + − −N N
N

1 1
8 2

2

1

4
1 1 1

1

4
1 1ξ η ξ η ξ η� �� � � � � �� �

        = − − − − − + +
1

4
1 1 1 1ξ η ξ η η� �� �� � = − − −

1

4
1 1ξ η ξ� �� �� �

  ′ = ′ =N N N N2 2 3 3;

  ′ = + = − + − + − + − −N N
N

4 4
8 2

2

1

4
1 1 1

1

4
1 1ξ η ξ η ξ η� � � �� � � �� �

        = − + − + − + −
1

4
1 1 1 1ξ η ξ η η� �� �� � …(5.55)

        = − + −
1

4
1 1ξ η ξ� �� � � �

  ′ = ′ = ′ =N N N N N N5 5 6 6 7 7, , .

+�!������

1. Explain the term ‘Shape Functions’. Why polynomial terms are preferred for shape functions in
finite element method ?

2. State and explain the convergence requirements of polynomial shape functions.
3. Explain the term ‘geometric isotropy / geometric Invariance’. Why polynomial shape functions

should satisfy these requirement ? How do you check a polynomial for this requirement ?

4. Determine the shape function for a two noded bar element using
(i) Cartesian coordinate system

(ii) Local coordinate system ranging from 1 to zero.

(iii) Local coordinate system with range -1 to 1.
5. Determine the shape function for a three noded bar element

(i) using polynomial form in local coordinates

(ii) using Lagrangian functions.
Plot their shapes.
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6. Using generalized coordinate approach, determine shape functions for a two noded beam element
and apply necessary checks.

7. Determine the shape functions for a CST element. Show that they are nothing but area coordinate
8. Explain the method of finding shape functions for LST element in terms of local coordinates L

1,
 L

2,

and L
3,

9. Derive shape functions for a rectangular element for plane stress / plane strain analysis starting
with

(i) Polynomial form
(ii) Lagrange functions

Apply the checks

10. Explain the method of finding shape function for 8 noded rectangular element to be used for plane
stress/plane strain problems.

11. Using Lagrange functions determine the shape function for 9 noded rectangular element. Plot the
variation of shape function of a typical corner node, a typical mid side node and the central node.

12. Explain the situations where you need 4 noded and 5 noded triangular elements. By degradation
technique derive the shape functions for them. Apply necessary checks.

13. Write short note on Hermite polynomial.
14. Write short note on Lagrange functions.
15. Using Lagrange functions derive the shape functions for a hexahedron element.
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In the previous chapter we saw the shape function [N] which established the relationship between displacement
at any point in the element with nodal displacements of the element. In this chapter we establish the relationship
between strain at any point in the element with nodal displacement. We define strain displacement relation as

ε δ� � � �= B
e e …(6.1)

Where ε� �  is strain at any point in the element.

δ� �e  is displacement vector of nodal values of the element

[B]
e
 is strain displacement matrix

In this article strain displacement matrix will be found for few standard cases.

��� �������	������ � ��������!�"���#��� � � ���

There is only one strain component in such element i.e. ε x .  Thus for bar elements [refer Fig. 6.1]

ε ε ∂
∂

� � = =x
u

x

        =
�
�
�

�
	



∂
∂
u

x
N

u

u
1

2

         =
�
�
�

�
	



∂
∂
u

x
N N

u

u1 2
1

2

"�$�����

××
x1 xc x x2

1 2

l

� = 0� = –1 � � = 1
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But N
x x

l1
2= −

N
x x

l2
1= −

(from equation 5.12)

∴ = −
∂
∂
N

x l
1 1

 and 
∂
∂
N

x l
2 1

=

       ∴ = = −�
�

�
��
�

�

�

�
�ε ε� � x l l

u

u

1 1 1

2

   = [B] {q}

Thus            B
l

= −
1

1 1 …(6.2)

The above relationship may be derived using shape function in terms of natural coordinate ' 'ξ  also

ε ε ∂
∂

� � = =x
u

x
= ∂ξ

∂
∂
∂ξx

u =
�
�
�

�
	



∂ξ
∂

∂
∂ξx

N N
u

u1 2
1

2

where ξ =
−

= −
x x

l l
x x2

2

2

2
(from equation 4.5)

       N1
1

2
=

− ξ
 and N2

1

2
=

+ ξ
(from equation 5.19)

  ∴ = −
∂ξ
∂x l

2
     

∂
∂ξ
N1 1

2
= −     and 

∂
∂ξ
N2 1

2
=

 ∴ = = −�
�

�
��
�

�

�

�
�ε ε� � x l

u

u

2 1

2

1

2
1

2
= −

1
1 1

l e
δ� � = B

e
δ� �

where                     B
l

= −
1

1 1
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At any point in the constant strain triangle element [refer Fig. 6.2] used for plane stress or plane strain problems,

there are three strain components i.e. ε ε γx y xy, , .  They are given by

ε
ε
ε
γ

∂
∂
∂
∂

∂
∂

∂
∂
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The displacement vector is
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But in these elements (from equation 5.15 and 5.16)

N
a b x c y

A1
1 1 1

2
=

+ +
N

a b x c y

A2
2 2 2

2
=

+ +
 and N

a b x c y

A3
3 3 3

2
=

+ +
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ε δ� � � �
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2

0 0 0

0 0 0
1 2 3

1 2 3

1 2 3 1 2 3
A

b b b

c c c

c c c b b b
e = B

e
δ� �

Side 1

Side 2
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b2

c2 c1

b1

b3

c3
1

2

3

x

y

Cyclic Cyclic

b y y1 2 3� 	 c x x1 3 2� 	

c x x2 1 3� 	

c x x3 2 1� 	

b y y2 3 1� 	

b y y3 1 2� 	
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where

∴ =
�

�





�

�

�
�
�

B
A

b b b

c c c

c c c b b b

1

2

0 0 0

0 0 0
1 2 3

1 2 3

1 2 3 1 2 3

…(6.3)

where b
1
 = y

2
 – y

3
c

1
 = x

3
 – x

2

b
2
 = y

3
 – y

1
c

2
 = x

1
 – x

3

b
3
 = y

1
 – y

2
c

3
 = x

2
 – x

1

Note b
1
, b

2
, b

3
 and c

1
, c

2
, c

3
 are in cyclic order and they are constant for the triangle. Hence the strains are

constant within the element. Therefore the element is referred as constant strain triangle.
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We know from constitutive law

σ ε� � � �= D

From definition of strain displacement matrix

      ε δ� � � �= B
e

…(6.4)

∴ =σ δ� � � �D B
e

In case of beam, stress resultant is the moment, which is given by the expression,

M EI
v

x
= ∂

∂

2

2
…(6.5)

where v-displacement in y-direction.

Treating the stress resultant M similar to the stress σ  and curvature similar to strain, [D] and [ ]ε  matrix
are

[D] = EI …(6.6)

and   ε ∂
∂

� � =
2

2

v

x
…(6.7)

From equation 5.43, we have

    v N
e

= δ� �

  
=
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�
�
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N N N N

v

v1 2 3 4

1

1

2

2

θ

θ

for the typical beam element shown in Fig. 6.3 and from equation 5.44,
N

1
 = 1 – 3s2 + 2s3

N
2
 = ls(s – 1)2
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N
3
 = s2 (3 – 2s)

N
4
 = ls2 (s – 1)

"�$����%

where       s
x x

l
= − 1

∴ =ε ∂
∂
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2l

s l s s l s� � � � …(6.8)

'� ������

1. Selecting interpolation function for a bar element in its natural coordinates, find the strain matrix.
2. Selecting interpolation function for a CST element in its natural coordinates, find the strain matrix.
3. Determine the strain matrix for a beam element. Use shape functions in natural coordinates form.

4. Determine the natural coordinates (area coordinates) for a CST element. Assemble strain vector.
5. For a CST element shown in Fig. 6.4. Obtain the strain–displacement matrix. Assume Possion’s

ratio is zero and Young's modulus is constant.

×
x1 x x2

v , �1 1 v , �2 2P

l

S = 0 S = 1S
S

x x
l

=
– 1
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(1, 1)

(4, 3)

(2, 5)

x

y
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In assembling the element stiffness equation, [ ] { } { }k Fδ = ,  the first step is to derive the expression for

element stiffness property and nodal force vector. The first method developed in this field was direct approach.
Latter on variational approach and Galerkin’s weighted residual approaches developed. Direct approach is
the extension of matrix displacement approach. For one dimensional elements this is exactly same as explained
in Chapter 3. In fact no distinction was seen between matrix and finite element method. The analysts tried to
extend the matrix method to two dimensional problems also. The only element in which it could be done
successfully was the three noded triangular element (CST–element). This concept is explained in this chapter.
Lumped mass concept of assembling the nodal force vector is also presented.

��# �$�%�������&&�����%����'�& ��"��
�$�%����()�����"���**� �"+

Turner was first to suggest it and that was real starting point of FEM. Consider the typical element shown in
Fig. 7.1. It is subjected to constant stresses along its all the three edges. Let the constant stresses be

σ σ τ τx y xy yx, , .=  Assembling stiffness matrix means finding nodal equivalent set of forces which are

statically equivalent to the constant stress field acting at the edges of the elements.
The equivalent nodal forces to be found are F

1
, F

2
, F

3
 … F

6
 as shown in Fig. 7.2. We have six unknown

nodal forces, but only three equations of equilibrium. Hence it is not possible to determine F
1
, F

2
 … F

6
 in

terms of σ σ τx y xy, ,  mathematically. Turner resolved the uniform stress distribution into an equivalent force
system at midsides as shown in Fig. 7.3. Note side i is the side opposite to node i. With this notation,

F y y t x x tm x x xy1 3 2 2 3= − + −σ τ� � � �

where t is the thickness of the element.

F x x t y y tm y y xy1 2 3 3 2= − + −σ τ� � � �

 F y y t x x tm x x xy2 3 1 3 1= − − + −σ τ� � � �

F x x t y y tm y y xy2 3 1 3 1= − − −σ τ� � � � ...(7.1)
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F y y t x x tm x x xy3 2 1 2 1= − − −σ τ� � � �

    F x x t y y tm y y xy3 2 1 2 1= − − + −σ τ� � � �

After this Turner transferred half of mid side forces to nodes at the end of sides to get equivalent nodal
forces. Thus he got
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      F F Fm x m x1 2 3
1

2
= +� �

= − − + − + − − −1

2 3 1 3 1 2 1 2 1σ τ σ τx xy x xyy y t x x t y y t x x t� � � � � � � �

= − + + − + − − +
t

y y y y x x x xx xy2 3 1 2 1 3 1 2 1σ τ� � � �

= − + −
t

y y x xx xy2 2 3 3 2σ τ� � � �

     F F Fm x m x2 1 3
1

2
= +� �

= − + − + − − −
t

y y x x y y x xx xy x xy2 3 2 2 3 2 1 2 1σ τ σ τ� � � � � � � �

= − + −
t

y y x xx xy2 3 1 1 3σ τ� � � �

          F F Fm x m x3 1 2
1

2
= +� �

= − + − − − + −
t

y y x x y y x xx xy x xy2 3 2 2 3 3 1 3 1σ τ σ τ� � � � � � � �

= − + −
t

y y x xx xy2 1 2 2 1σ τ� � � �

x

y

1

2

Fm y2

Fm x2

Fm y3

Fm x3

Fm y1
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     F F Fm y m y4 2 3
1

2
= +� �

= − − − − − + −
t

x x y y x x y yy xy y xy2 3 1 3 1 2 1 2 1σ τ σ τ� � � � � � � �

= − + −
t

x x y yy xy2 3 2 2 3σ τ� � � �

     F F Fm y m y5 1 3
1

2
= +� �

= − + − − − + −
t

x x y y x x y yy xy y xy2 2 3 3 2 2 1 2 1σ τ σ τ� � � � � � � �

= − + −t
x x y yy xy2 1 3 3 1σ τ� � � �

     F F Fm y m y6 1 2
1

2
= +� �

= − + − + − − −
t

x x y y x x y yy xy y xy2 2 3 3 2 3 1 3 1σ τ σ τ� � � � � � � �

= − + −t
x x y yy xy2 2 1 1 2σ τ� � � �

Thus the force vector as derived by Turner is

F
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…(7.2)

where b
1
, b

2
, b

3
, c

1
, c

2
 and c

3
 have the expressions as used while deriving shape function expressions.
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2
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3
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and σ ε δ� � � � � �= =D D B
e

We have got

 F
t

A B D B
T

e� � � �=
2

2 δ = B D B t A
T

e
δ� � …(7.4)

        = B D B V
T

e
δ� �

where V is the volume

     ∴ =F k
e� � � �δ

where k B D B V
T� � = = � B D B dV

T
, …(7.5)

since [B] and [D] are constants.
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In the stiffness equation [ ] { } { },k Fδ =  the right hand side term {F} refers to the nodal forces. Generally,
while subdividing a structure, nodal locations are selected so as to coincide with the external forces applied.
This can be easily done in case of concentrated loads acting on the structure. But in case of distributed loads
like self weight, uniformly distributed load, uniformly varying load, we need a technique of transferring the
load as nodal loads. There are two procedures for it, namely direct procedure and variational approach. In this
chapter the direct procedure is dealt.

This procedure was first to be used in the finite element method. In this procedure classical structural
analysis background is utilized or a portion is assigned to each node and load on that region as the nodal load.
The latter method is called as lumped load method.

Consider the self weight of the uniform bar element shown in Fig. 7.4. Half the bar length may be

&�
����-
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2

l

� Al

2

1 2

l
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2
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assumed to contribute to each node. Hence at each node vertical downward load is

=
ρAl

2

Where ρ  is unit weight of the material, A the cross sectional area and l is the length of the element.

In case of beam element subject to uniformly distributed load (refer Fig. 7.5(a);

 (i) Lumped load procedure: half the region is assigned to each node as shown in Fig. 7.5(b). Its

equivalent 
wl

2
 is taken at the centre of gravity of the element as shown in Fig. 7.5(c). Then at the

node, the forces are 
wl

2
 and 

wl2

8
.  Hence Lumped load vector is

F
wl wl wl wlT� � = −
�

�
�
�

�

	



2 8 2 8

2 2

&�
����.

 (ii) Classical Structural Analysis Approach: In case of beam the end reactions, for a fixed beam
[shown in Fig. 7.6.(a)] are

wl

2
 and 

wl2

12

Hence the equivalent nodal loads are

− − −
�
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(iii) In case of a CST element 
1

3 rd
 area may be assigned to each node and hence equivalent nodal

force is 
1

3 rd
 the self weight as shown in Fig. 7.7

.

&�
�����

For complex loading and elements this method may not be of much use. The distribution obtained in
lumped load approach may be one of the possible distribution. We cannot say confidently that the distribution
considered is exact.

l

(a)

W/unit length

(b)

(c)

wl2

12

wl2

12

wl2

12

wl2

12

wl
2

wl
2

wl
2

wl
2

y

x

x

y

F6

F5

F4

1

2

3 F F F A t1 2 3
1
3

= = = �



Assembling Stiffness Equations—Direct Approach 117

Because of difficulties and uncertainties associated with direct approach not much progress could be
made with direct approach. The real break through was found in finite element analysis only when variational
approach was discovered.

0!���� ��

1. Derive stiffness matrix for a CST element by direct approach.
2. Differentiate between the terms ‘lumped loads’ and consistent loads.
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Finite Element Analysis is a versatile method which is used for solving a set of differential equations specified
over a region, the solution satisfying specified boundary conditions. In the solid mechanics we try to get the
displacements in a structure by solving the equations of equilibrium specified over the structure and the
displacements obtained are such that the specified support conditions and the values of loads are satisfied.
Galerkin has given a method for solving such differential equations which can be used by the analysts of solid
mechanics, fluid mechanics, heat flow, electrical engineering. Galerkin’s general method is briefly explained
first and then its application in elasticity is presented. It will be found that in elasticity problems this method
turns out to be principle of virtual work.

��) ��*�$+!",����#-%&

Let the governing differential equation on a specified region V be
L (u) = P …(8.1)

Where L is a differential operator on a basic unknown u. The value of u to be found has to satisfy
specified values on the boundary of the region. If we take u  as approximate solution, then we may get error

ε( )x  at a point x and

ε x L u P� � � �= − …(8.2)

ε( )x  is called residual at point x. The solution sought revolve around setting the residual, relative to a
weighting function w

i
 to zero i.e. to get

w Lu P dVi

v

− =� � � 0  for i = 1 to n …(8.3)

Depending upon the selection of weighting function, there can be different approaches. In the Galerkin’s
method the equation 8.3 is taken as,

ψ Lu P
v

− =� � � 0 …(8.4)
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where ψ  is also chosen from the basis function used for constructing approximate solution function u . Let

u Q Gi i

i

n

=
−
∑

1

…(8.5)

where Q
i
 is the basic unknown vector and G

i
 are basis functions. G

i
 are usually polynomial in space coordinates

x, y, z. Then in Galerkin’s method the weighting function φ  is taken as

φ ψ=
−
∑ i i

i

n

G
1

…(8.6)

In the above equation φi  are arbitrary, except at the points where boundary conditions are satisfied.

Since ψ  is constructed similar to that as u , Galerkin’s method leads to simplified method. Thus in Galerkin’s

method we choose basis function G
i
 and determine φi  in u Q Gi i

i

n

=
−
∑

1

 to satisfy Lu PdV
v

� � − =� 0  where

coefficient φi  are arbitrary except at specified boundaries.
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In case of three dimensional problems in elasticity the equations of equilibrium are:

∂σ
∂

∂τ
∂

∂τ
∂

x xy xz
bx y z

X+ + + = 0 …(8.7) (Refer 2.2)

∂τ
∂

∂σ
∂

∂τ
∂

xy y yz
bx y z

Y+ + + = 0

and
∂τ
∂

∂τ
∂

∂σ
∂

xz yz z
bx y z

Z+ + + = 0

The stresses { }σ  are in terms of displacements {u}. The displacements are arbitrary in the entire region
of structure except at specified boundaries and the solution has to see that specified load values are obtained,
wherever loading is existing. For simplicity we take two dimensional problem in elasticity and then extend
the results to three dimensional problems. In two dimensional elasticity, the equations of equilibrium is

∂σ
∂

∂τ
∂

x xy
bx y

X+ + = 0

and
∂τ
∂

∂σ
∂

xy y
bx y

Y+ + = 0 …(8.8)

If X
s
 and Y

s 
are the surface forces and α  is the angle made by normal to surface with x-axis (refer Fig.

8.1), then from the equilibrium of the element we find,
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X AC t ABt BC ts x xy= +σ τ

i.e.        X
AB

AC

BC

ACs x xy= +σ τ

   = +σ α τ αx xycos sin = +σ τx xyl m

where l and m are the direction cosines of normal to the surface.
Similarly, considering the equilibrium of the forces on the element in y direction, we get

Y l ms xy y= +τ σ

Thus the surfaces forces on the element are

X l ms x xy= +σ σ

and Y l ms xy y= +τ σ …(8.9)

Now consider the integral

∂σ
∂

∂τ
∂

δ
∂τ
∂

∂σ
∂

δx xy
b

xy y
bx y

X u
x y

Y v dx dy+ +
�
��

�
�	

+ + +
�
��

�
�	




�
�
�



�
�
�����

where δu  and δv  are the elemental displacements in x and y directions. The above bounded integral is zero,

since 
∂σ
∂

∂τ
∂

x xy
bx y

X+ + = 0  and 
∂τ
∂

∂σ
∂

xy y
bx y

Y+ + = 0  (from equation 8.8). Thus,

∂σ
∂

∂τ
∂

δ
∂τ
∂

∂σ
∂

δx xy
b

xy y
b

x y
X u

x y
Y v dx dy+ +

�
��

�
�	

+ + +
�
��

�
�	




�
�
�



�
�
�

=�� 0 …(8.10)

Now we can expand the integral 8.10 using Green’s theorem. According to Green’s theorem, if φ( , )x y

and ψ ( , )x y  are continuous functions then their first and second partial derivatives also continuous,

A

C
B

xs

ys Normal to surface
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90 – �

�
xy
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∂φ
∂

∂ψ
∂

∂φ
∂

∂ψ
∂

φ ∂ ψ
∂

∂ ψ
∂

φ ∂ψ
∂

∂ψ
∂x x y y

dx dy
x y

dx dy
x

l
y

m ds+


�
�


�
� = − +




�
�
�



�
�
�

+ +


�
�


�
��� �� �

2

2

2

2
…(8.11)

Now let us consider the integration of the first term in equation 8.11

∂σ
∂

∂x

x
u dx dy��

Assuming φ σ ∂ψ
∂

∂= =x
x

u  and 
∂ψ
∂y

= 0,  from Greens function we get

∂σ
∂

δ σ
∂ δ

∂
σ δx

x xx
u dx dy

u

x
dx dy l u ds�� ���= − +

� �

Similarly 
∂σ
∂

δy

y
u dx dy��  can be found by taking

φ σ ∂φ
∂

∂φ
∂

δ= = =y x y
v, ,0

It leads to

∂σ
∂

δ σ ∂
∂

δ σ δy
y y

y
u dx dy

y
u dx dy m v ds�� ���= − +� �

on the same lines, we can get,

     
∂τ
∂

δ τ ∂
∂

δ τ δxy
xy xyx

v dx dy
x

v dx dy l v ds�� ���= − +� �

and
∂τ
∂

δ τ ∂
∂

δ τ δxy
xy xyy

u dx dy
y

u m u ds�� ���= − +� �

Hence equation 8.10 is equal to

− + + +


�
�


�
��� σ

∂
∂

δ σ
∂
∂

δ τ
∂
∂

δ τ
∂
∂

δx y xy xy
x

u
y

v
x

v
y

u dx dy� � � � � � � �

+ + + +� σ δ σ δ τ δ τ δx y xy xyl u m v l v m u ds

+ + =�� ��X u dx dy Y v dx dyb bδ δ 0

Regrouping the terms, we get,

− + + +
�
�
�

�
�
��� σ ∂

∂
δ σ ∂

∂
δ τ ∂

∂
δ ∂

∂
δx y xyx

u
y

v
x

v
y

u dx dy� � � � � � � �

+ + + + + + =� ��� X u Y v dx dy l m u ds l m v dsb b x xy xy yδ δ σ τ δ τ σ δ� � � � � � 0 …(8.12)
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Now consider the term

X u Y v dx dyb bδ δ+�� � �  in equation 8.12

X
b
 is the body force in x direction and δu  is arbitrary (virtual) displacement in x direction. Similarly Y

b

and δv  are the body force and virtual displacements in y directions. Hence the above term represents virtual
work done by the body forces.

Now consider the term,

σ τ δ τ σ δx xy xy yl m u l m v ds+ + +� � � � �

from equation 8.9, we have X l ms x xy= +σ τ

and Y l ms xy y= +τ σ

Hence, σ τ δ τ σ δx xy xy yl m u l m v ds+ + +� � � � �

= +� X u Y v dss sδ δ …(8.13)

Thus the above expression represents the virtual work done by surface forces. Barring the first term the
other terms in equation 8.12, represents the virtual work done by external forces due to virtual displacements

δu  and δv.

Now let us try to attach physical meaning to first term in equation 8.12. Consider the element of unit

thickness shown in Fig. 8.2. Let a virtual displacement δu  be given to the element. Dotted position shows the

element with virtual displacement. Hence work done by σ x  stresses are

= +

��


��

−σ δ ∂
∂

δ σ δx xdy u
x

u dx dy u� � = σ ∂
∂

δx x
u dx dy� � …(8.14)

2�
����) �����	�����������������
�������	���	�	���������	

 u  u
x

u x
d
d

d� b g

dx

y

x
0
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It may be noted that due to virtual displacement δu  the change in strain δεx  is given by

δε
δ ∂

∂
δ δ

x

u
x

u dx u

dx
=

+

��


��

−� �
=

∂
∂

δ
x

u� �

Substituting it in equation 8.14, we get virtual work done by

σ σ δεx x x dx dy stresses = …(8.15)

Similarly it can be shown that the terms

σ
∂
∂

δy y
v dx dy�� � �  and τ ∂

∂
δ ∂

∂
δxy

y
v

x
u dx dy�� +

�
�
�

�
�
�

� � � �

i.e. σ δεy y dx dy��  and τ δγxy xy dx dy�� ,

represent the work done by σ y  and τ xy  stresses.

∴  First term in equation 8.12 is

δ σ δε σ δε τ δγU dx dyx x y y xy xy= + +�� � � …(8.16)

Thus the first term represents the work done by internal forces with negative sign. Therefore equation
8.12 may be looked as,

− + =δ δU We 0

 δ δU We= …(8.17)

where U is internal work done and W
e
 external work done. Thus in elasticity problems Galerkin’s method

turns out to be the principle of virtual work which may be stated as a deformable body is in equilibrium
when the total work done by external forces is equal to the total work done by internal forces. The work
done considered in the above derivation is called virtual, since the forces and deformations considered are not

related. The displacements ' 'δu  and ' 'δv  are arbitrary. It may also be noted that the principle of virtual work
is independent of the material properties.

�3�	��	���#�����&���	���	���/�������

The principal of virtual work holds good for the three dimensional problems also. In this case

δ δ δ δ δ δ δW X u Y v Z w dV X u Y v Z w dse b b b

v

s s s

s

= + + + + +��� ��� � � � …(8.18)

where s is the surface on which forces are acting. The above expression in the matrix form is,

δ δ δW u X dV u p dse
T T

s

= +��� ��� � � � � � � � …(8.19)

where δ δ δ δu u v w
T� � =
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X X Y Z
T

b b b� � =

and p X Y Z
T

s s s� � =

In three dimensional case, internal work expression is,

δ σ δε σ δε σ δε τ δγ τ δγ τ δγU dVx x y y z z xy xy yz yz xz xz

v

= + + + + +��� � �

or           δ δε σU
T

v

= ��� � � � � …(8.20)

where      δε δε δε δε γ γ γ� �T
x y z xy yz xz=

and        σ σ σ σ τ τ τ� �T
x y z xy yz zx=

From principal of virtual work,

δ δU We=

Example 8.1: Using virtual displacement principle, determine the forces developed in the three bar truss
shown in Fig. 8.3 (a).

2�
����.

Solution: Fig. 8.3 (a) shows the given truss. The length of various members are

1

2

3

2m

30°

60°
D

A

B

C

20 kN

(a)

(, )u v

30°

60°D
D

A A

B B

C C
(b) (c)

u v



Assembling Stiffness Equations—Galerkin's Method, Virtual Work Method 125

l m1
2

30
2 3094= =

Cos
.    l

2
 = 2m   l m3

2

60
4= =

Cos

Total displacement of point D is u in x direction and v in y direction. The displacements u and v are
separated and shown in Figs 8.2 (b) and 8.3 (c) respectively. From it we can see that total strains in the various
members are

ε1 2 3094
0 375 0 2165= = +u v

u v
cos30 + sin 30

.
. . …(a)

      ε 2 2
0 5= =

u
u.

      ε 3 4
0125 0 2165= = −

u v
u v

cos60 – sin 30
. .

Let a unit virtual displacement be given in x direction as shown in Fig. 8.4. Then due to δu = 1,  the

strains introduced are,

2�
����4

δε′ = × =1
1

2 3094
0 375

cos 30

.
.

        δε′ = =2
1

2
0 5.

        δε′ =
×

=3
1

4
0125

cos 60
.

D

A

B

C

 u = 1
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∴  Internal work done in a member when unit virtual displacement is introduced in x direction is

  δ σ δεU dVx x= ′���
= ′EAL x xε δε  since σ εx xE=  and V = AL

Internal work done in the truss

= + +δ δ δU U U1 2 3

= EA [2.3094 (0.375u + 0.2165v) 0.375 + 2 × 0.54 × 0.5 + 4 (0.125u – 0.2165v) 0.125]
= EA (0.88726u – 0.07924v)

work done by load δWe = 0, since no displacement in y direction. Equating internal work to external work,

we get
0.88726u = 0.07924v

    ∴  u = 0.0893v …(b)

Now consider virtual work principle when unit virtual displacement is given to point D in y direction

δv = 1.  Referring to Fig. 8.5, we can note virtual strains in the members as,

2�
����5

    δε′ =
×

=1
1

2 3094
0 2165

sin 30

.
.

    δε′ =2 0

δε′ = − × = −3
1

4
01265

sin 60
.

D

A

B

C

 u = 1
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∴  Work done by internal forces

δ δ δ δU U U U= + +1 2 3

  = EA [2.3094 (0.375u + 0.2165v) 0.2165 + 0 + 4 (0.125u – 0.2165v) (–0.2165)]
  = EA (0.0792u + 0.2957v)

From equation (b) u= 0.0893v

∴ =δU EA v0 3028.

work done by external forces

δWe = × =20 1 20

Equating internal work to external work, we get
0.3028v EA = 20

or v
EA EA

= =20

0 3028

66 048

.

.

Thus v
EA

=
66 048.

 and u v
EA

= =0 0893
5898

.
.

∴ = + =ε1 0 375 0 2165
26 045

. .
.

u v
EA

   ε 2 05 05
5898 2 949= = × =. .
. .

u
EA EA

     ε 3 0125 0 2165
13562= − = −. .

.
u v

EA

∴ = = =F A AE kNx1 1 26 045σ ε .

   F AE kN2 2 2 949= =ε . Answer

    F
3
 = –13.562kN

(����	���	��������	,�������

This is a method which can be applied to any problem involving solution of a set of equations subject to
specified boundary values. In mechanics of solids it turns out to be virtual work method.

6'��#!%"�

1. Write short note on Galerkin’s method.
2. Show that in elasticity problems Galerkin’s method turns out to be the principle of virtual work.
3. State and explain the principle of virtual work.
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This method of assembling stiffness equations is widely used in elasticity problem. In calculus we know a
function has extreme value when its first derivative with respect to variables is zero. The function is maximum,
if the second derivative is negative and is minimum, if its second derivative is positive. The first derivative of
function of a function is called first variance. The function of a function is termed a functional and the
statement that the first variance of functional is zero is termed as first variance attains a stationary value. In
many engineering problems there are such functional, the first variance of which attain stationary values. In
elasticity problems potential energy of the body of the structure is such functional. In this chapter we will first
study general mathematical method of variational approach, then assemble the expression for potential energy
in a deformable solid and derive principle of minimum potential energy. Few simple problems are solved to
explain the procedure. Then Raileigh–Ritz method is explained, which is useful for complex structural problems,
encountered in finite element analysis. The general procedure of assembling stiffness matrix and load vector
using the principle of minimum potential energy after expressing potential energy as a function with arbitrary
constant using Raileigh – Ritz method is presented. It may be noted that variational approach is possible only
if a suitable functional is available, otherwise the Galerkin’s method of weighted residual is to be used.

��$ %�����&�������� ��&����' !�����&����#��(�)� *&���

Let y be a function of x. Then, F y y y, ,′ ′′� �  is a functional. Say our concern is to find y = y (x), such that the

first variance of

I F y y y dx
x

x

= ′ ′′�
1

2

, ,� � …(9.1)

is made stationary satisfying the boundary conditions

y x y1 1� � =

and y x y2 2� � = …(9.2)

Figure 9.1 shows a typical function y = y (x). The continues line shows the exact function and dotted line
shows an approximate function. Since to start with we don’t know exact solution y = y (x), we have approximate

solution y y x= � � .
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+�
�����

Then, δ r y x y x= −� � � � . …(9.3)

We are interested in finding the solution with

             δ I = 0 …(9.4)

i.e.
∂
∂

δ ∂
∂

δ ∂
∂

δF

y
y

F

y
y

F

y
y dx

x

x

+
′

′ +
′′

′′
�
��

�
�	

=�
1

2

0 …(9.5)

Let us now find integration of second and third terms by parts.

∂
∂

δ ∂
∂

∂ ∂
∂

δF

y
y dx

F

y
y

d

dx

F

y
y dx

x

x

x

x

x

x

′
′ =

′


�
�


�
� −

′
�
��

�
�	��

1

2

1

2

1

2

…(9.6a)

and    
∂
∂

δ ∂
∂

∂ ∂
∂

δF

y
y dx

F

y
y

d

dx

F

y
y dx

x

x

x

x

x

x

′′
′′ =

′′
′



�
�


�
� −

′′
�
��

�
�	

′��
1

2

1

2

1

2

=
′′

′


�
�


�
� −

′′
�
��

�
�	



�
�
�


�
�
�

+
′′

�
��

�
�	�∂

∂
∂ ∂

∂
∂ ∂

∂
δF

y
y

d

dx

F

y
y

d

d

F

y
y dx

x

x

x

x

xx

x

1

2

1

2

1

2 2

2
…(9.6b)

Hence substituting equation 9.6 in equation 9.5, we get

∂
∂

∂
∂

∂
∂

δ
∂
∂

∂
∂

δ
∂
∂

∂
F

y

d

dx

F

y

d

dx

F

y
y dx

F

y

d

dx

F

y
y

F

y
y

x

x

x

x

x

x

−
′

�
��

�
�	

+
′′

�
��

�
�	

�
��

�
�	

+
′

−
′′

�
��

�
�	

�
��
��

�
��
��




�
�
�



�
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�

+
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′


�
�


�
� =�

2

2

1

2

1

2

1

2

0 …(9.7)

x1 x
X

x2
0

y x()

y

� y
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Since δ y  is arbitrary, all the three terms in equation 9.7 should be zero. Thus we have

∂
∂

∂
∂

∂
∂

F

y

d

dx

F

y

d

dx

F

y
−

′
�
��

�
�	

+
′′

�
��

�
�	

=
2

2
0 …(9.8a)

∂
∂

∂
∂

δ
F

y

d

dx

F

y
y

x

x

′
−

′′
�
��

�
�	

�
�
��
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�
��




�
�
�



�
�
�

1

2

…(9.8b)

and   
∂
∂

∂F

y
y

x

x

′′
′



�
�


�
� =

1

2

0 …(9.8c)

Equation 9.8 (a) is known as Euler–Lagrange equation. Equations 9.8 (b) and 9.8 (c) are known as
boundary conditions. To satisfy equation 9.8 (b).

δ
∂
∂

∂
∂

y x
F

y

d

dx

F

y at x1 0 0
1

� � =
′

−
′′

�
��

�
�	

=or |

Similarly at boundary x = x
2
,

δ
∂
∂

∂
∂

y x
F

y

d

dx

F

y at x2 0 0
2

� � =
′

−
′′

�
��

�
�	

=or |

To satisfy equation 9.8 (c),

δ
∂
∂

′ =
′′

=y x
F

y at x1 0 0
1

� � or |

and at x = x
2
,

δ
∂
∂

′ =
′′

=y x
F

y at x2 0 0
2

� � or |

The conditions like

δ δy x y x1 20 0� � � �= =,

δ δ′ = ′ =y x y x1 20 0� � � �, and …(9.9)

are known as kinematic boundary conditions. In solid mechanics they specify displacement requirement at
support points.

The conditions like

∂
∂

∂
∂

F

y

d

dx

F

y at x′
−

′′
�
��

�
�	

=|
1

0

∂
∂

∂
∂

F

y

d

dx

F

y at x′
−

′′
�
��

�
�	

=|
2

0
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∂
∂

∂
∂

F

y

F

yx x at x′′
=

′′
==| |

1 2
0 0and

are known as natural boundary conditions. In solid mechanics, they specify force conditions like moment and
shear force conditions at supports.

Thus the first variance of the functional for stationary value yields Euler–Lagrange equation [equation
9.8(a)], kinematics boundary conditions [equation. 9.9(a)] and natural boundary conditions [equation. 9.9(b)].
A finite element analyst who is interested in solving a set of equations subject to a set of boundary values aim
at first identifying the functional which satisfy Euler–Lagrange equation and satisfies boundary values specified.
Then tries to solve Euler–Lagrange equation.

In solid mechanics it has been identified that total potential energy is suitable functional, the first variance
of which yields equation of equilibrium satisfying the boundary conditions. This statement is verified with the
following simple problems in solid mechanics.

Example 9.1: Show that the condition that first variance of total potential energy is stationary, is equivalent
to satisfying equilibrium equation and boundary conditions in case of

(i) Simply supported beam subjected to udl.
(ii) Cantilever beam subjected to udl.

Solution: Figs 9.2 (a) and 9.2 (b) show the typical beams considered.

+�
����$

In beams, strain energy due to bending

             = � M

EI
dx

l 2

0
2

=

�
��

�
�	�

EI
d y

dx

EI
dx

l

2

2

2

0
2

             =
�
��

�
�	� EI d y

dx
dx

l

2

2

2

2

0

x = 01 x l=2

l

p/unit length

(a)
x = 01 x l=2

l

p/unit length

(b)
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Potential energy due to load

= − � py dx
l

0

∴  Total energy is given by

Π =
�
��

�
�	

−� �EI d y

dx
pydx

l l
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2

2

2

0 0

          =
�
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dx
py dx
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2

2

2

2

0

          = � F dx
l

0

where       F
EI d y

dx
py=

�
��

�
�	

−
2

2

2

2

From equation 9.8, we know that the first variance of F dx�  is stationary, means

∂
∂

∂
∂

∂
∂

F
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dx
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d

dx

F

y
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=
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0 (a)

           
∂
∂

∂
∂

δF

y

d

dx

F

y
y

x

x

′
−

′′
�
��

�
�	



�
�
�


�
�
�

=
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0 (b)

and   
∂
∂

δF

y
y

x

x

′′
′
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�
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1

2

0 (c)

In this problem we are trying

           F
EI d y

dx
py=

�
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�
�	

−
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2
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∴ = −
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=
∂
∂

∂
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y
0  and 
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∂

∂
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y
EI

y

x′′
=

2

2

since           ′′ =y
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Hence Euler–Lagrange equation (equation a) for the beams is,

− − +
�
��

�
�	

=p
x

EI
y

x
0 0

2

2

2

2

∂
∂

∂
∂

i.e.,           EI
y

x
p

∂
∂

4

4
0− =

This is the well known equation of equilibrium in structural mechanics. Thus in case of beams Euler–
Lagrange equation yields equation of equilibrium. Now let us see whether boundary conditions are satisfied
or not.

Noting that y is exact solution and δy  is the difference between exact and approximate solution, we find

at supports

y = 0 means δy = 0

and ′ =y 0  means δ ′ =y 0

In case of simply supported beam,

At x = x
1

δy x y x1 1 0� � � �= =  hence equation (b) is satisfied. From equation (c), we have

dF

dy

EI d y

dx′′
=

2

2  = M, where M is moment.

At x = x
1
 we know moment is zero. Hence equation (c) is also satisfied.

At x = x
2
,

δy x y x2 2 0� � � �= =

and    
∂
∂

F

y
M xx x′′

= ==|
2 2 0� �

Thus the boundary conditions at x = x
2
 are also satisfied. Hence the condition that first variance of total

potential energy to be stationary, satisfies Euler–Lagrange equation as well as the boundary conditions.
Consider the cantilever beam [refer Fig. 9.2(b)].

At x = x
1
,

Equation (b) is satisfied since δy x y x1 1 0� � � �= =  and equation (c) is satisfied, since

δ ′ = ′ =y x y x1 1 0� � � �
At x = x

2
,

∂
∂

∂
∂

F

y

d

dx

F

y
−

′′
�
��

�
�	

= 0

yields,           0 0
2

2
−

�
��

�
�	

=d

dx
EI

d y

dx
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i.e.,     EI
d y

dx
= =

3

3
0

i.e., shear force = 0
We know at free end, shear force is zero. Hence equation (c) is satisfied.
Thus, if potential energy is selected as a suitable function, its first variance is stationary, satisfies equilibrium

equation as well as the boundary conditions.

��,�) ������&�����%(�����&����#�* !���

Potential energy is the capacity to do the work by the forces acting on deformable
bodies. The forces acting on a body may be classified as external forces and
internal forces. External forces are the applied loads while internal forces are
the stresses developed in the body. Hence the total potential energy is the sum
of internal and external potential energies. We will derive first the potential
energy in a spring which is uniaxially stressed member then we will derive the
expression for potential energy in a three dimensionally stressed body.

(a) Potential Energy in a Spring: Figure 9.3 shows a typical spring. Let its
stiffness (load per unit extension) be k and length L. Due to a force P let it
extend by u.

The load P moves down by distance u. Hence it looses its capacity to do
work by Pu. Hence the external potential energy in this case
                                           Wp = –Pu                                                   …(9.10)

When the load has reached equilibrium position after extension of spring
by u, the force in spring = ku. But when extension was zero the resisting force

was also zero. Hence the average force during the extension is 
0

2 2

+
=

ku ku
.

Hence the energy stored in the spring due to straining,
= Average force × Extension

     = =
1

2

1

2
2kuu ku …(9.11)

∴  Total Potential Energy in the Spring

Π = −1

2
2ku pu …(9.12)

(b) Potential Energy in a There Dimensional Body: Consider a body of volume V subjected to
(i) body forces X

b
, Y

b
, Z 

b
, in x, y, z directions.

(ii) surface forces X
s
, Y

s
, Z

s
, on surface S

1

Let u, v and w be the displacement components. Then the potential energy of the external forces

W X u Y v Z w dV X u Y v Z w dsp b b b

v

s s s

s

= − + + − + +��� ��� � � �
1

…(9.13a)

LStiffness k

u

P

Fig. 9.3
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= − − ����� u X dV u X ds

T
b

T
s

sv

� � � � � � � �
1

…(9.13b)

where   u u v w
T� � =

X X Y Zb
T

b b b� � =

X X Y Zs
T

s s s� � =

To find the internal energy due to straining, let us consider one by one stress component. Figure 9.4

shows a typical element of size dx × dy × dz subjected to σ x  stresses and displacement in x-directions. The

work done by σ x  stresses in the element

+�
���-

= +
�
��

�
�	

−σ δ
∂ δ

∂
σ δx xdydz u

u

x
dx dy dz u

� �

        = σ
δ

∂x

d u

x
dx dy dz

� �
, since 

du

dx x= ε

∴   The work done by σ x  stresses in the element is = σ εx xd dx dy dz

As the strain increases from zero to the final value ε x , the work stored as strain energy is

= �σ ε
ε

x xd du
x

0

In the three dimensional element, there are six stress components σ σ σ σ τ τ τ� �T
x y z xy yz zx= .

Hence the total strain energy in the element

� u


 x
 x

�
� �

�u
u

x
ud�

dx

dy

y

x
0
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= + + + + +



�
�
�
�



�
�
�
�

� � � � � �σ ∂ε σ ε σ ε τ γ τ γ τ γ
ε

γ γ

εγ ε γ

γ

γ γ

x x

x

t z z

z

xy xy

xy

yz z

yz

zx zx

x

d d d dV
z

0 0 0 0 0 0

2

The integration is from initial to the final state of stress. Let U
o
 be the strain energy per unit volume. Then

from the above equation, we get

dU d d d d d dx x y y z z xy xy yz yz zx zx0 = + + + + +σ ε σ ε σ ε τ γ τ γ τ γ (a)

But from chain rule of differentiation, we know

∂ ∂
∂ε

ε ∂
∂ε

ε ∂
∂ε

ε ∂
∂γ

γ ∂
∂γ

γ ∂
∂ε

γU
U

d
U

d
U

d
U

d
U

d
U

d
x

x
y

y
z

z
xy

xy
yz

yz
zx

zx0
0 0 0 0 0 0= + + + + + (b)

Comparing equations (a) and (b) we get,

          
∂
∂ε

σ ∂
∂ε

σ ∂
∂ε

σU U U

x
x

y
y

z
z

0 0 0= = =, ,

∂
∂γ

τ ∂
∂γ

τ ∂
∂γ

τU U U

xy
xy

yz
yz

zx
zx

0 0 0= = =, and …(9.14)

Thus we find that the first derivate of strain energy per unit volume with respect to a strain component is
the corresponding stress component i.e.,

 
dU

d
0

ε
σ���

���
= � � …(9.15)

 = D ε� �
Integration equation 9.15 we get,

U D
T

0
1

2
= ε ε� � � � = 1

2
ε σ� � � �T

To get total strain energy of the solid, the term U
0
 be integrated over the entire volume of the solid. Thus,

U U dV dV
v

T

v

= =��� ���0
1

2
ε σ� � � � = ���1

2
ε ε� � � �T

v

D dV

∴  Total potential energy of the solid

  Π = +U Wp …(9.16a)

i.e., Π = − −��������1

2
1

ε ε� � � � � � � � � � � �T T
b

T
s

svv

D dV u X dV u X ds …(9.16b)

��- )���#�)&�� +������"��) ������&�����%(

From the expression for total potential energy (9.16.a) we know

Π = +U Wp

∴ = +δ δ δΠ U Wp . …(9.17)
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Comparing equation 9.13 (a) with equation 8.18, we find potential energy of external forces Wp is equal
but opposite to total virtual work done by external forces. Thus,

       W Wp e= −

∴ = −δ δW Wp e

∴  From Equation 9.17, we conclude

δ δ δΠ = −U We .

But from principle of virtual work (equation 8.17) we know, δ δU We=

∴ =δ Π 0 …(9.18)

Hence we can conclude that a deformable body is in equilibrium when the total potential energy is having
stationary value. By taking second variance of potential energy, it has been proved by researchers that the
value is positive definite. And hence it is concluded that the condition that value of total potential energy is
stationary correspond to minimum value. Hence we have principle of minimum potential energy in solid
mechanics, which. may be stated as “of all the possible displacement configurations a body can assume
which satisfy compatibility and boundary conditions, the configuration satisfying equilibrium makes
the potential energy assume a minimum value”. This is the variation principle in solid mechanics.

Example 9.2: Assemble equations of equilibrium for the spring system shown in Fig. 9.5 by direct approach.
Show that minimization of potential energy also yields same result.

+�
����.

Solution: Consider the free body diagram of nodes 1, 2 and 3 shown in Fig. 9.6. Let the displacement of nodes
be u

1
, u

2
, u

3
. Then the extensions of spring 1, 2 and 3 are

δ δ1 1 2 2 1= = −u u u  and δ 3 3 2= −u u ...(1)

+�
����/

Equations of equilibrium are,

− + + =k k F1 1 2 2 1 0δ δ ...(2a)

− + + =k k F2 2 3 3 2 0δ δ ...(2b)

      − + =k F3 3 3 0δ ...(2c)

k1 δ1 k2 δ2 k3 δ3k2 δ2 k3 δ3

F1 F2

F3

(a) (b) (c)

k1

u1u1 u2 u3

k2 k3

F1 F2 F3

1 2 3
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From equations 1 and 2, we get

         − + − + =k u k u u F1 1 2 2 1 1 0� �

− − + − + =k u u k u u F2 2 1 3 3 2 2 0� � � �

       − − + =k u u F3 3 2 3 0� �

i.e.,       k k u k u F1 2 1 2 2 1+ − =� � ...(3a)

   − + + − =k u K k u k u F2 1 2 3 2 3 3 2� � ...(3b)

and − + =k u k u F3 2 3 3 3 ...(3c)

The above equations in the matrix form are

k k k

k k k k

k k

u

u

u

F

F

F

1 2 2

2 2 3 3

3 3

1

2

3

1

2

3

0

0

+ −
− + −

−




�

�
�
�



�

�
�
�

�
��

��

�
��

��
=
�
��

��

�
��

��

� �
...(4)

Now, let us see the potential energy approach. Total potential energy it the system is,

Π = + + − − −1

2

1

2

1

21 1
2

2 2
2

3 3
2

1 1 2 2 3 3k k k F u F u F uδ δ δ

= + − + − − − −
1

2

1

2

1

21 1
2

2 2 1
2

3 3 2
2

1 1 2 2 3 3k u k u u k u u F u F u F u� � � �

    ∴ =
∂
∂

Π
u1

0 ,  gives

k u k u u F1 1 2 2 1 11 0+ − − − =� �� �

i.e.,          k u k u u F1 1 2 2 1 1 0− − − =� � ...(a)

i.e.,   k k u k u F1 2 1 2 2 1+ − =� �

            
∂
∂

Π
u2

0=  gives

k u u k u u F2 2 1 3 3 2 21− + − − =� � � �� � ...(b)

    − + + − =k u k k u k u F2 1 2 3 2 3 3 2� �

and
∂
∂

Π
u3

0=  gives,

         k u u F3 3 2 3 0− − =� � ...(c)

or − + =k u k u F3 2 3 3 3
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In the matrix form,

k k k

k k k k

k k

u

u

u

F

F

F

1 2 2

2 2 3 3

3 3

1

2

3

1

2

3

0

0

+ −
− + −

−




�

�
�
�



�

�
�
�

�
��

��

�
��

��
=
�
��

��

�
��

��

� �
...(5)

Equations 4 and 5 are exactly same. Thus the condition that potential energy should have extreme value
(minimum) leads to equations of equilibrium.

Example 9.3: Determine the displacements of nodes 1 and 2 in the spring system shown in Fig. 9.7. Use
minimum of potential energy principle to assemble equations of equilibrium.

+�
����0

Solution: Let u
1
 and u

2
 be the displacements of nodes 1 and 2. Then the extensions of springs are

    δ δ δ1 1 2 1 3 2 1= = = −u u u u

Π = + + − −1

2

1

2

1

2
100 801 1

2
2 2

2
3 3

2
1 2k k k u uδ δ δ

        = + + − − −1

2

1

2

1

2
100 801 1

2
2 1

2
3 2 1

2
1 2k u k u k u u u u� �

          ∴ = → + + − − − =
∂
∂

Π
u

k u k u k u u
1

1 1 2 1 3 2 10 1 100 0� �� � . ...(a)

i.e., k k k u k u1 2 3 1 3 2 100+ + − =� �

          ∴ = → − − =
∂
∂

Π
u

k u u
2

3 2 10 80 0� � . ...(b)

 − + =k u k u3 1 3 2 80

k k k k

k k

u

u
1 2 3 3

3 3

1

2

100

80

+ + −
−



��


��
�
�
�
�
�
�

=
�
�
�
�
�
�

Substituting the values of k
1
,k

2
 and k

3
, we get.

235 100

100 100

100

80
1

2

−
−


��


��
�
�
�
�
�
�

=
�
�
�
�
�
�

u

u

(� 1)

(� 3)

(� 2)

k1 = 60 N/m

k3 = 100 N/m

k2 = 75 N/m

100 N
21

80 N
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∴
�
�
�
�
�
�

=
−



��


��
�
�
�
�
�
�

u

u
1

2

1

23500 10000

100 100

100 235

100

80
=
�
�
�

�
�
�

1333

2133

.

.
Answer

Example 9.4: Solve the three bar truss problem given in Example 8.1 by minimum potential energy principle.
Solution: As given in example 8.1,

 l
1
 = 2.309 m l

2
 = 2 m and l

3
 = 4.0 m.

ε1 0 375 0 2165= +. .u v

ε2 05= . u

and ε 3 0125 0 2165= −. .u v

Strain energy of a bar

=
1

2
 stress × strain × volume

     = × × =
1

2

1

2
2E AL EAlε ε ε

∴  Potential energy of the structure is

  Π Σ= −1

2
202EAl vi iε

= + + + − −1

2
2 3094 0 375 0 2165 2 05 4 0125 0 2165 20

2 2 2
EA u v u u v v. . . . . .� � � � � �

Which is exactly same as in example 8.1.

∴ =u u0 0893.

∂
∂
Π
v

EA u v u v= → × + × + − − − =0
1

2
2 3094 2 0 375 0 2165 0 2165 4 0125 0 2165 0 2165 20 0. . . . . . .� � � �� �

This equation is also exactly same as in example 8.1 for vertical virtual displacement. Hence here also

v
EA

u
EA

= =66 048 5898. .
and

and member forces are
F

1
=26.045 kN

F
2
=2.949 kN

and F
3
= - 13.562 kN Answer

��. �'����(&��%'1���2����' !

The Rayleigh–Ritz method of expressing field variables by approximate method clubbed with minimization
of potential energy has made a big break through in finite element analysis. In this article Rayleigh – Ritz
method is explained with simple problems.
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In 1870 Rayleigh used an approximating field with single degree of freedom for studies on vibration
problems. In 1909 he used approximating field with several functions, each function satisfying boundary
conditions and associating with separate degree of freedom. Ritz applied this technique to static equilibrium
and Eigenvalue problems. The procedure for static equilibrium problem is given below:

Consider an elastic solid subject to a set of loads. The displacements and stresses are to be determined.
Let u, v and w be the displacements in x, y and z coordinate directions. Then for each of displacement component
an approximate solution is taken as

       u a x y z i mi i= =∑ φ , ,� � for to1 1

v a x y z j m mj j= = +∑ φ , ,� � for to1 21 …(9.12)

w a x y z k m mk k= = +∑ φ , ,� � for to2 1

The function φi  are usually taken as polynomials satisfying the boundary conditions. ‘a’ are the amplitudes

of the functions. Thus in equation 9.21 there are n number of unknown ‘a’ values. Substituting these expressions
for displacement in strain displacements and stress strain relations, potential energy expression 9.16 can be
assembled. Then the total potential energy

Π Π= + +a a a a a a am m m m m1 2 1 1 1 2 2 1, .. , .... ...� �
From the principle of minimum potential energy,

d

da
i m

i

Π
= =0 1for to . …(9.22)

From the solution of m equation of 9.22, we get the values of all ‘a’ . With these values of ‘a
i
’s and φi ’s

satisfying boundary conditions, the displacements are obtained. Then the strains and stresses can be assembled.
The Rayleigh – Ritz procedure is illustrated with small problems below:

Example 9.5: Using Ragleigh–Ritz method determine the expressions for deflection and bending moments in
a simply supported beam subjected to uniformly distributed load over entire span. Find the deflection and
moment at midspan and compare with exact solutions.

Solution: Figure 9.8 shows the typical beam. The Fourier series y a
m x

li

m

=
=
∑ sin

πα

1 3,

 is the ideal function

for simply supported beams since y = 0 and M EI
d y

x
= =

2

2
0

∂
 at x = 0 and x = l are satisfied. For the simplicity

+�
����3

x = 0
x l=

l

w/unit length

y

A
B

x
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let us consider only two terms in the series i.e. let

��� y a
x

l
a

x

l
= +1 2

3
sin sin

π π
������

Π =
�
��

�
�	

−� �EI d y

dx
dx wy dx

l l

2
0

2

2

2

0

...(b)

Substituting y in equation (b) we get

= − −


�
�
�


�
�
�

− +�
��

�
�	� �EI

l
a

x

l l
a

x

l
dx w a

x

l
a

x

l
dx

l l

2

9 3 3

0

2

2 1

2

2 2

2

0

1 2
π π π π π π

sin sin sin sin

= +�
��

�
�	 − − −


��

���EI

l
a

x

l
a

x

l
dx w a

l x

l
a

l x

l

l l

2
9

3

3

34

4 1 2

2

0

1 2
0

π π π
π

π
π

π
sin sin cos cos

= + +�
��

�
�	 − +


��

���EI

l
a

x

l
a a

x

l

x

l
a

x

l
dx

wl
a

a
l

2
18

3
81

3
2

2

3

4

4 1
2 2

1 2 2
2 2

0

1
2π π π π π

π π
sin sin sin sin

Noting that sin cos2

0 0

1

2
1

2 1

2

π πx

l
dx

x

l
dx

l l

� �= −���
�
�	 =

  sin sin cos cos
π π π πx

l

x

l
dx

x

l

x

l
dx

l l
3 2 4

0
0 0
� �= −�

��
�
�	 =

and sin 1 – cos2 3 1

2

6 1

2
0 0

π πx

l

x

l
dx

l l

� �= �
��

�
�	 =

we get, y
EI

l
a

l l
a

wl
a

a
= +�

��
�
�	 − +�

��
�
�	2 2

81
2

2

3

4

4 1
2

2
2

1
2π

π

        = + − +�
��

�
�	

EI

l
a a

wl
a

a

4
81

2

3

4

3 1
2

2
2

1
2π

π� �

Π  to be minimum,

∂
∂

∂
∂

Π Π
a a1 2

0 0= =and .

i.e.,             EI

l
a

wlπ
π

4

3 1
4

2
2

0− =

or       a
wl

EI
1

4

5

4=
π

and    
EI

l
a

wlπ
π

4

3 2
4

81 2
2

3
0× − =
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or       a
wl

EI
2

4

5

4

243
=

π

    ∴ = +y
wl

EI

x

l

wl

EI

x

l

4 4

243

34

5

4

5π
π

π
π

sin sin

∴  Max. deflection which occurs at x
l=
2

 is

y
wl

EI

wl

EI
max = −4 4

243

4

5

4

5π π
= wl

EI

4

76 82.

we know the exact solution is

y
wl

EI

wl

EImax = =5

384 768

4 4

.

Thus the deflection is almost exact.

Now, M EI
d y

dx
EI a

l

x

l
a

l

x

lx = = − −
�
��

�
�	

2

2 1

2

2 2

2

2

9 3π π π π
sin sin

    = − −


�
��


�
��

EI
wl

EI

x

l

wl x

EI

x

l

4 4 9

243

32

3

2

3π
π

π
π

sin sin

       M
wl

EI

wl x

EI
centre = − +



�
��


�
��

4 4 9

243

2

3

2

3π π = wl2

8 05.

we know the exact value is 
wl2

8
.

By taking more terms in Furier series more accurate results can be obtained.

Example 9.6: Using Rayleigh-Ritz method, determine the expressions for displacement and stress in a fixed
bar subject to axial force P as shows in Fig. 9.9. Draw the displacement and stress variation diagram. Take 3
terms in displacement function.

+�
�����

×
1

P

n

E – Youngs modulus

A – Cross sectional
area

l/2 l/2
x = 0 x l= /2 x l=
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Solution: Let the displacement at load point be u
1
. Then the strain energy of the bar

U EA
du

dx
dx

l

= �
��
�
�	�12

2

0

and potential energy due to external forces = –Pu
1

∴ = �
��
�
�	 −�Π

1

2

2

1

0

EA
du

dx
dx Pu

l

Let the displacement at any point be given by,
u = a

1
 + a

2
 x + a

3
 x2

This function has to satisfy the boundary conditions
(i) at x = 0, u = 0

(ii) at x = l, u = 0

From Boundary condition (i), we get
0 = a

1
(1)

From Boundary condition (ii), we get,

0 = a
1
 + a

2
l + a

3
 l2 (2)

∴  From equations (1) and (2) we get
0 = a

2
 l + a

3
 l2

or   a
2
 = –a

3
 l (3)

             ∴  u = –a
3
 l x + a

3
 x2 = − +a lx x3

2

At   x
l=
2

  
u u a l

l l= = − +


�
��


�
��1 3

2

2 4

i.e., u
a l

1
3

2

4
= − ...(4)

Now              
du

dx
a l x= − +3 2� �

          ∴ = − + +�Π 1

2
2

43
2 2

0

3

2

EA a l x dx Pa
l

l

� �

    = − + +�1

2
4 4

43
2 2 2

0

3

2

EA a l lx x dx Pa
l

l

� �

    = − +


�
�
�


�
�
�

+1

2
2

4

3 43
2 2 2

3

0

3

2

EA a l x lx
x

Pa
l

l
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    =
�
��
�
�	

+1

2 3 43
2

3

3

2

EA a
l

Pa
l

      ∴ = → + =
d

da
EAa

l
P

lΠ

3
3

3 2

0
3 4

0

             a
p

EAl3
3

4
= −

          ∴ = − − +u
p

EAl
lx x

3

4
2

         ∴ = − =u
a l pl

1
3

2

4

3

16

             σ = = − +E
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The variation of displacement and stresses are shown in Fig. 9.10.
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Example 9.7: Determine the displacement and stress in a bar of uniform cross section due to self weight only
when held as shown in Fig. 9.11. Use (i) two terms (ii) three terms, for approximating polynomial. Verify the
expression for total extension with the exact value.

+�
������

Solution: Let ‘ ρ ’ be unit weight and E Young’s modulus of the material of the bar. If A is the cross section
of the bar then,

   U dV
T

v

= ∈��� 1

2
� � � �σ

= �
��
�
�	


��


��� 1

2
0

l T
du

dx
E

du

dx
A dx ...(1)

= �
��
�
�	�1

2
0

2

EA
du

dx
dx

l

and          W u X dVe
T

b

v

= −���� � � �

= − � u A dx
l

0

ρ ...(2)

Polynomial function for displacement may be taken as

u a a x a x a x a xn n
n= + + + + +0 1 2

2
3

3 ... ...(3)

The boundary condition to be satisfied is
At x = 0, u = 0

l

y
0

x
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From this we get 0 = a
0

∴ = + + + +u a x a x a x a xn
n

1 2
2

3
3 ...

(i) When only two terms of polynomial equations are used,

     u a x
du

dx
a= ∴ =1 1

∴ = �
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�
�	�U EA

du
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dx

l
1

2
0

2

= �12
0
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2EA a dx
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2 1
2EA a l
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2

ρ ρ

        = − ρAa
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2 21
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2
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From minimization condition, we get

d

da
EAa l A

lΠ

1
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2

0 0
2

= = −i.e., ρ

or    a
l

E1 2
=

ρ
...(4)

∴ =u l

E
x

ρ
2

...(5)

and   σ
ρ

= =E
du

dx

l

2
...(6)

The displacement and stress variations are shown in Fig. 9.12.
Extension of the bar = u

l
 – u

0

= − =ρ ρl

E
l
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E2
0

2

2

...(7)
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(ii) When three terms are considered for displacement in equation 3:
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i.e.,            a a l
l

E1 2 2
+ =

ρ
...(8)
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From equation 8 and 9 we get,

1

3 3 2 62a l
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l
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      ∴ = −a
E2 2

ρ

Substituting it in equation 8, we get
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The variations of displacement and stress in this case also are shown in Fig. 9.12.
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= = =
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2

0

2

2 2

ρ ρ ρ

Thus total extension of the bar obtained is exact in both the cases.
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In this method the approximating functions must satisfy the boundary conditions and should be easy to use.
Polynomials are normally used. Some times sine-cosine terms are also used.

Results can be obtained for complex problems. But for complex problems it is difficult to say whether the
results obtained are accurate enough to use. The doubt will arise due to the following two reasons

(i) Whether this is the only function which can be used
(ii) How many terms in the function are to be used.

The best way to ensure the accuracy is to get result using a certain number of terms and then use additional
terms to get the results. If the difference is negligible, we can conclude that the satisfactory result is obtained.
However it may be noted that the lowest terms in the series should not be omitted in the approximating
functions.

��/�������� ��&�+ ��"&��� �����+�������&���������&(���

From variational principle, we have concluded that a body is in equilibrium when potential energy is minimum.
From Rayleigh-Ritz method we have found approximating functions satisfying the boundary conditions can
be used to get the solutions. In finite element analysis we use approximating functions for the elements but not
for entire body and use the principle of minimizing potential energy to get the solutions for complex structures.
The similarity and the differences in Rayleigh-Ritz method and finite element method are as listed below:

(a) Similarity:

(i) Both methods use approximating functions as trial solution
(ii) Both methods take linear combinations of trial functions.

(iii) In both methods completeness condition of the function should be satisfied

(iv) In both methods solution is sought by making a functional stationary.

Difference
(i) Rayleigh-Ritz method assumes trial functions over entire structure, while finite element method

uses trial functions only over an element.
(ii) The assumed functions in Rayleigh-Ritz method have to satisfy boundary conditions over entire

structure while in finite element analysis, they have to satisfy continuity conditions at nodes and
some times along the boundaries of the element. However completeness condition should be
satisfied in both methods.

Now let us see the variational method in finite element analysis in detail. The potential energy of a
structure is

Π  = Internal potential energy – External potential energy
= Strain energy – Work done by external forces
= U – W

These expressions involve integration terms.
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The above expression refers to entire structure. Since the integration of the summation is the same as the
sum of the individual integrals, we can apply the principle to each element separately. Thus

     Π Π= = −
= = =
∑ ∑ ∑e Ue We
e

n

e

n

e

n

1 1 1

∴ = = − ∑∑d

d

dUe

d

dWe

d
e e

Π
δ δ δ

0
� � � �

…(9.23)

Where δ� �  is vector of nodal displacement in the structure.

And δ� �e
 is the vector of nodal displacements in the element.

Now, U
e
 = Strain energy of the element

= ��� 1

2
ε σ� �T

v
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B D B dV , …(9.24)

If X X Y Z
T

b b b� � � �=  and X X Y Zs
T

s s s� � � �= , then the work done by these forces is given by

equation 9.13 as
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…(9.25)
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But          u N
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where δe  is the nodal displacement vector of the element.
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Hence,

 Πe Ue Wp= +

= − −��� ��� ��1

2
1

δ δ δ δ� � � � � � � � � �
e

T T

e
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B D B dV N X dV N X ds .

From principle of minimum potential energy (equation 9.23),
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e
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i.e., B D B dV N X dV N X ds
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e
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b
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s��� ��� ��= +δ� � � � � �
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Thus element equilibrium equation is

             k F
e e e

δ� � � �=

where        k B D B dV
e

T

v

= ��� …(9.26)

and F N X dV N X ds
e

T

v

b
T

s

s� � � � � �= +��� ��
1

The matrix k B D B dV
e

T

v

= ���  is called stiffness matrix of the element and the load vector F
e� �

is called consistent load. Thus

k B D B
e

T= � �  is stiffness matrix of the element and F N X dV N X ds
e

T

v

b
T

s

s� � � � � �= −��� ��
1

is called consistent load vector.

The above equation of equilibrium is to be assembled for entire structure and boundary conditions are to
be introduced. Then the solution of equilibrium equations result into nodal displacements of all the nodal
points. Once these basic unknowns are known, then displacement at any point may be obtained by the relation

u N
e

= δ� � . The strains are assembled using the relation ε δ� � � �= B
e  and then stresses also can be found

σ ε� � � �= D
e .

#����	���	��������	��������

It is a versatile method. Using this method stiffness matrices and consistent load vectors can be assembled
easily. This method has made finite element analysis a versatile method. All complex problems can be solved.
This is universally used method in solid mechanics.
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1. State and explain the principle of minimum potential energy.
2. Derive the general equation for determining the stiffness of an element with usual notations in the

form

k B D B dV
e

T= � .

(i) Explain the principle of Rayleigh–Ritz method.

(ii) Write short note on variational principles.
(iii) Derive Euler–Lagrange equation for an integral function using variational principle.
(iv) Using principle of minimum potential energy derive the expressions for consistent loads for

body forces and surface forces.
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The process of modeling a structure using suitable number, shape and size of the elements is called discretization.
The modeling should be good enough to get the results as close to actual behavior of the structure as possible.
In this chapter various aspects of discretization of structures are discussed.

���� ������������������������

In a structure we come across the following types of discontinuities:
(a) Geometric
(b) Load

(c) Boundary conditions
(d) Material.

��� ��� �	���������	���	���

Wherever there is sudden change in shape and size of the structure there should be a node or line of nodes.
Figure 10.1 shows some of such situations.

!�"������ ����������	
�������������������	������������������

Node

(a)

Line of nodes

t1 t2

(b)
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!�"�������������� �������	��������������������

�#� �����	���	$����%��&�

Concentrated loads and sudden change in the intensity of uniformly distributed loads are the sources of
discontinuity of loads. A node or a line of nodes should be there to model the structure. Some of these
situations are shown in Fig. 10.2.

!�"������ ����� !��������	�����	������������������
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Node

Node Node
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��� �����	���	$����'��&��$���&�	���

If the boundary condition for a structure suddenly change we have to discretize such that there is node or a
line of nodes. This type of situations are shown in Fig. 10.3.

!�"�����( ���	��������������������������������

�&� )�	����*������	���	$

Node or node lines should appear at the places where material discontinuity is seen.

!�"�����+ !������������������

!�"�����, "������������������������	����������������

���( ��!������)��-

To get better results the finite element mesh should be refined in the following situations
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(a) To approximate curved boundary of the structure

(b) At the places of high stress gradients.

Such situations are shown in Fig. 10.5 and Fig. 1.2.

���+ �����!��.))���.

Wherever there is symmetry in the problem it should be made use. By doing so lot of memory requirement is
reduced or in other words we can use more elements (refined mesh) for the same capacity of computer
memory. When symmetry is to be used, it is to be noted that at right angles to the line of symmetry displacement
is zero. In the tension bar example shown in Fig. 1.2, biaxial symmetry of the problem is utilized and only
quarter of the bar is taken for the analysis.

���, !��������/�������������!���!������'�����

Soil is a typical example of infinite body. Wherever settlement of soil is to be studied or study is required
about soil structure interaction, the mass of soil is to be modeled. It is well known fact that the soil mass away
from footing is not affected. However the question remains how much mass of soil is to be considered. Best
way to handle this type of problems is to consider a certain mass of soil and determine the settlement under the
load. Then increase or decease the mass of soil, analyses and again compare the results. This type of preliminary
study helps in identifying the mass of soil to be considered. Figure 10.6 shows the finite element idealization
of one such problem. There are research reports that for homogeneous soil mass, H should be 4 to 6 times and
V should be 10 to 12 times the footing width or diameter.

!�"�����0

B Dor

V B D= 10 to 12  or

H B D= 4 to 6  or
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The shape of the element also affects the accuracy of analysis. Defining the aspect ratio as ratio of largest to
smallest size in an element, the conclusion of many researchers is aspect ratio should be as close to unity as
possible. For a two dimensional rectangular element, the aspect ratio is conveniently defined as length to
breadth ratio. To study the effect of aspect ratio on the accuracy of results, Desai and Abel analyzed a beam
with 12 elements of different aspect ratios as shown in Figs. 10.7 and 10.8 shows the plot of inaccuracy of the
displacement verses the aspect ratio. From this it can be concluded that the aspect ratio closer to unity yields
better results.
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!�"�����2  ����������#����������������������������

���1 -��-����������%�)�����3����!�����)��-

Accuracy of calculation increases if higher order elements are used. Accuracy can also be increased by using
more number of elements. Limitation on use of number of elements comes from the total degrees of freedom
the computer can handle. The limitation may be due to cost of computation time also. Hence to use higher
order elements we have to use less number of such elements. The question arises whether to use less number
of higher order elements or more number of lower order elements for the same total degree of freedom. There
are some studies in this matter keeping degree of accuracy per unit cost as the selection criteria. However the
cost of calculation is coming down so much that such studies are not relevant today. Accuracy alone should be
selection criteria which may be carried out initially on the simplified problem and based on it element may be
selection for detailed study.

���2 ��)'�������.���)�����������'����4���-

Storing global stiffness matrix in the computer memory imposes a serious limitation on the number of elements/
degrees of freedom to be used. In elasticity problem the stiffness matrix is symmetric and banded. In a problem
with 1000 degree of freedom the size of stiffness matrix is 1000 × 1000. If it has semi band width of 28, we
can store only 1000 × 28 elements and handle the solution using suitable programming technique. The size of
semi band width of stiffness matrix depends upon the numbering system adopted for nodes. The semi band
width B is given by the expression

B = (D + 1) f …(10.1)
where D is maximum difference in node number in an element after considering all elements

f-degrees of freedom per node.
The semi band widths for various types of numbering for a two dimensional problems are shown in

Fig. 10.9. It may be concluded that the semi band width is minimum if numbering is in shorter direction and
restarted from the initial end after reaching other end.

In many standard packages numbering is done automatically to keep the semi band width least.
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1. Write short notes on:
(a) Effect of element aspect ratio on accuracy

(b) Numbering nodes for band width minimization
(c) Mesh refinement vs higher order elements.

2. Discuss the various points to be considered while descretizing a structure for finite element analysis.

3. Briefly explain how problem involving infinite bodies are handled in finite element analysis.

1         2          3         4         5          6         7 1         2          3         4         5          6         7

13        12       11       10        9 9         10       11       12        13

16        17       18       19        20 16        17       18       19        20

27       26        25       24       23 23       24        25       26       27

29       30        31       32        33       34        35 29       30        31       32        33       34        35

14 8

15 15

28 22

8 14

21 21

22 28

B = (13 + 1) × 2 = 28 B = (8 + 1) × 2 = 18

1         10       11        20       21        30       31 1         6        11        16       21        26       31

9        12        19        22       29

9         14       19        24       29

8         13       18        23        28 8         13       18        23        28

7         14        17       24       27

7         12        17       22       27

5           6        15       16        25       26        35 5          10       15        20       25       30        35

2 2

3 3

4 4

32 32

33 33

34 34

B = (9 + 1) × 2 = 20 B = (6 + 1) × 2 = 14
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Under ‘bars’ we consider the analysis of members subject to axial forces only. These members are having one
dimension (length) considerably large compared to cross sectional dimensions. Tension bars and columns fall
under this category. In case of pin connected frames (trusses), members can be assumed to have only axial
forces. In this chapter the analysis of the following three types of members is explained:

(i) Tension bars/columns
(ii) Two dimensional trusses (plane trusses)

(iii) Three dimensional trusses (space trusses)

Various steps involved in finite element analysis is thoroughly presented and few simple problems are
solved with hand calculations.

���� ��������������� �!��

The typical member considered for explaining the procedure is shown in Fig.11.1. In this problem we see
cross section varies in 3 steps A

1
, A

2
 and A

3
. There are three point loads P

1
, P

2
 and P

3
. The surface forces are

x
s1

, x
s2

, and x
s3

 and X
b
 is the body force. The surface forces may be due to frictional forces, viscous drag or

surface shear. The body force is due to self weight. The material of the bar is same throughout.

Step 1: Selecting suitable field variables and elements:
In all stress analysis problems, displacements are selected as field variables. In the tension bar or columns at
any point there is only one component of displacement to be considered, i.e., the displacement in x direction.

Since there is only one degree of freedom and it needs only Co continuity, we select bar element shown in
Fig. 11.2. In this case there are only two nodes.

Step 2: Discritise the continua
In this problem there are geometric discontinuities at x = 200 mm, 500 mm and 650 mm. There is additional
point of discontinuity at x = 350 mm, where concentrated load P

1
 is acting. Hence we discritise the continua

as shown in Fig. 11.3 using four bar elements.
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Hence nodal displacement vector is

δ
δ
δ

� � =
�
�
�
�
�
�

1

2

In finite element analysis the nodes may be numbered in any fashion, but to keep the band width minimum
we number the nodes continuously. In this problem there are five nodes and in all such problem there is
definite relationship between number of nodes and number of element i.e. Number of node = Number of
elements + 1.

There is only one degree of freedom at each node. Hence total degree of freedom in the problem is
= Number of nodes × degree of freedom at each node

= 5 × 1 = 5

i.e.      δ δ δ δ δ δ� �T = 1 2 3 4 5 ...(11.2)
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��"�����#

For any element local node number is 1 and 2 only, but global coordinate numbers for each element are
different. For example, local coordinate numbers 1 and 2 for element 3 refers to global numbering system 3
and 4 respectively. The relation between the local and global node number is called connectivity details. In
this problem the connectivity detail is as shown in Fig. 11.4. From this Figure it can be seen that the connectivity
detail can be easily generated also. Thus

For element (i),
Local node number 1 = i
Local node number 2 = i + 1

��"�����$
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Step 3: Select Interpolation Functions
In chapter 5 we have seen interpolation functions [N] is given by

u N
e� � � �= δ ...(11.3)

and for bar elements
           [N] = [N

1
 N

2
], where

N
x x

le
1

2 1

2
=

−
=

− ξ

and            N
x x

le
2

1 1

2
=

−
= + ξ

...(11.4)

Step 4: Element Properties
In this step we assemble element stiffness matrix and nodal force vector of the element. At any point in the
element,

u u� � � � � �= = =ε ε σ σand ,  all in x direction, which is the only direction for these elements.

From strain displacement relations,

ε ε
δ
δ

� � = = =
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dx
N N1 2
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= 	

�

�
�
�
�
�
�
�
�
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dx
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dx
1 2 1

2
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...(11.5)
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�

B
δ
δ

1

2

,  where B
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= −1
1 1

          σ σ ε� � � �= = D

   = E ε ,  since D = E ...(11.6)

Element stiffness matrix
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1 1

1 1
...(11.7)
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Equivalent nodal loads are to be calculated for each type of load acting on the element

(i) Body Force: Xb is the only body force in this case. In case of self weight Xb = ρ  where ρ  is unit weight

of the material. From equation 9.26 the consistant load due to this body force is given by

F N X dV
e

T
b

v

� � � �= ��� =
�
�
�
�
�
��

N

N
A dx

le

b
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20

ρ

since            ξ =
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= −
x x

l l
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e e
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we get          d
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dx dx
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d
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2
or

and limits of integration will be from –1 to 1
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e
e b� � ρ
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1

1 ...(11.8)

Noting that Al
e
 is volume of the element, we find that half the self weight goes to each node.

(ii) Surface Load: If X
s
 is the intensity of surface load, T = X

s
 × perimeter is the load per unit length of the

element. Then consistant load corresponding to it is

      F N X ds
e

T
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1
...(11.9)
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Thus the consistant load for such surface traction is also half the total load at each node.

(iii) Point Load: Point loads can be directly added to nodal force vector.

After finding consistant load due to all types of loads, element nodal force vector F
F

Fe
e

e
� � =

�
�
�
�
�
�

1

2

 can be

assembled. ...(11.10)

Step 5: Global Properties
From step 3, we have
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For each element their position corresponding to global rows and columns are indicated above. Now
global stiffness matrix {k} of size 5 × 5 is to be assembled. First this is made a null matrix and then one by
element stiffness matrix is added to corresponding element in global matrix. After first element stiffness
matrix is placed in global stiffness matrix, it looks as-
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After second element stiffness is placed in global stiffness matrix, it looks as

E

A

l

A

l

A

l

A

l

A

l

A

l

A

l

A

l

e e

e e e e

e e

1

1

1

1

1

1

1

1

2

1

2

2

2

2

2

2

0 0 0

0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

−

− + −

−

	




�
�
�
�
�
�
�
�
�
�

�



�
�
�
�
�
�
�
�
�
�



Finite Element Analysis—Bars and Trusses 167

Final stiffness matrix in global system
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...(11.11)

Thus we find the stiffness matrix is a symmetric matrix and its half the band width is equal to maximum
difference in nodes of any element multiplied by degrees of freedom at each node plus 1, that is 2 in this
problem

Load Vector {F}

Load vector {F}T = [F
1
    F

2
    F

3
    F

4
    F

5
]

Let the element load vectors be

F
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Fe� � 1
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=
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=
�
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�
�
�

Then global load vector {F}is given by
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F F
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11

12 21

22 31

32 41
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...(11.12)

Thus we can assemble global / structure stiffness equation as

k F
x x x5 5 5 1 5 1

δ� � � �= ...(11.13)

Step 6: Boundary Conditions

In this problem there is only one boundary condition i.e. δ1 0=  or it may have specified value. There are two

methods of imposing the boundary conditions:
(i) Elimination Approach

(ii) Penalty Approach
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In this method the known displacement is removed from the list of unknowns and the equations are reduced.

If δ1  is known displacement , then
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...(11.14)

Note elements corresponding to row and column of k
11

 are eliminated. If δ1  is zero F F F F F
T = 2 3 4 5 .

This method is useful when hand calculations are made. If computers are used, computer coding becomes
too lengthy.

&��'�+���	���((�%�)*

The round off errors involved in computations are advantageously used in imposing boundary conditions. It
involve adding a very large number to the diagonal element and right hand side vector corresponding to the

displacement on which boundary condition is specified. Thus to impose δ1 1= a , the modified equation will be
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...(11.15)

Because of the modified equation 1, δ1  results into δ1 1= a

Other values are obtained as usual. Thus the required result is achieved without much changes in computer
coding. The value of C selected should be much larger than k

11
, not less than 108 times k

11
 so that with round

off errors δ1  comes out to be a
1
. The author used C = 1 × 1020 to 1 × 1030 and got satisfactory results.

Step 7: Solution of Simultaneous Equations

After imposing the boundary conditions, the simultaneous equations 11.13 are to be solved. Any method of
solving simultaneous equations can be employed. Gauss elimination is commonly employed. In many programs
to save the memory in storing stiffness matrix k, half the band width of the matrix is stored and Choleski’s
decomposition method employed. The solution gives the unknown nodal values.

Step 8: Additional Calculations

The additional calculations required may be to find strains and stresses at various points. These calculations
are carried out element by element. From the list of global nodal values δ , for each element nodal values δ1
and δ 2  of the element under consideration is picked up. Then displacement within the element.
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u N N N
e

= =
�
�
�
�
�
�

δ
δ
δ

� � 1 1
1

2

since ‘ ξ ’ coordinate of the point under consideration is known ‘u’ can be found. Then

        ε ε δ� � � �= = B
e

and σ σ ε ε� � � �= = =D E
e ...(11.16)

 = E B
e

δ� � ...(11.17)

��	)�	���%��%,����)��%��

Another important stress resultant required in the stress analysis is the reactions at support. This can be found
from the equilibrium conditions of the support. For example, in this problem support is at node 1 and at this
point displacement δ1  is zero. Hence if R

1
 is the reaction of the support in direction 1,then

k k k k k F R11 1 12 2 13 3 14 4 15 5 1 1δ δ δ δ δ+ + + + = +

or R k k k k k F1 11 1 12 2 13 3 14 4 15 5 1= + + + + −δ δ δ δ δ
In general R k k k FN N1 11 1 12 2 1 1= + + + −δ δ δ... ...(11.18)

Where N is total number of nodal displacements

Example 11.1: The thin plate of uniform thickness 20 mm, is as shown in Fig. 11.5(a). In addition to the self
weight, the plate is subjected to a point load of 400N at mid-depth. The Young's modulus E = 2 × 105 N/mm2

and unit weight ρ = × −08 10 4.  N/mm2. Analyse the plate after modeling it with two elements and find the
stresses in each element. Determine the support reactions also.

��"�����-

250 mm

250  mm

125 mm

A1

A2

xb

xb

400N 400N

100 mm

x

(a)

1 1 322

xb xb

x

P = 400 N

(b)
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Solution:

A
1
 = 125 × 20 = 2500 mm2

A
2
 = 100 × 20 = 2000 mm2

The plate is modeled with two elements as shown in Fig. 11.5 (b)
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Consistant Loads: Due to body force only
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Apart form these there is a 400N concentrated load at node 2. Hence,
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The boundary condition is δ1 0= . Hence the reduced equation is,
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i.e. 2 10
18 8

0 4 444
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217 778
5 2

3

×
−	


�
�
�
�
�
�
�
�
�

=
	

�

�
�. .

δ
δ

∴ =
× ×

= × −δ 3 5
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.
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from equation 1, we have
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2 3× − =δ δ
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3 3δ − × = ×− −. .

            δ 2
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[Obviously in this simple problem reaction = total load].

Example 11.2: Assemble the element properties for a bar with uniformly varying area subject to self weight
only as shown in Fig. 11.6(a). Neglect the possibility of buckling. Treat it as a single element.
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where A
A A

= = +
Average area 1 2

2
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Only body force is acting and it is in the x-direction
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1

+ =
−
� ξ ξ� � d

           
∴ =

	




�
�
�
�

�



�
�
�
�

�
��

��

�
��

��
F

l
A

A
e� � ρ

8

8

3

4

3
4

3

8

3

1

2

          =
	

�

�
�
�
�
�
�
�
�

ρl A

A6

2 1

1 2
1

2

          =
+

+
�
�
�

�
�
�

ρl A A

A A6

2

2
1 2

1 2

...(11.20)

Hence the element equilibrium equation is

E A

l

l A A

A Ae

1 1

1 1 6

2

2
1

2

1 2

1 2

−
−
	

�

�
�
�
�
�
�
�
�

=
+

+
�
�
�

�
�
�

δ
δ

ρ
Answer ...(11.21)

Example 11.3: Determine the extension of the bar shown in Fig. 11.7 due to self weight and a concentrated
load of 400N applied at its end. Given b

1
 = 150 mm b

2
 = 75 mm t = 20 mm

E = 2 × 105 N/mm2 ρ = × −08 10 4 3. /N mm

��"�����/

b1

b2

xb

(a)

(b)

t - 20 mm 1 2
x

� 1

� = –1 � = 0 � � = 1

� 2

400 N

600 mm
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Solution:

A
1
 = 150 × 20 = 3000 mm2;    A

2
 = 75 × 20 = 1500 mm2;

   ∴  Average area A =
+

=
3000 1500

2
2250 2mm

       ∴ =
−

−
	

�

�
�

=
× × −

−
	

�

�
�

k
E A

le

1 1

1 1

2 10 2250

600

1 1

1 1

5

since it is the only element, above expression is global stiffness matrix also. Due to self weight

          F
l A A

A Ae
e� � =

+
+

�
�
�

�
�
�

ρ
6

2

2
1 2

1 2

=
× × × +

+ ×
�
�
�

�
�
�

−08 10 600

6

2 3000 1500

3000 2 1500

4.
=
�
�
�
�
�
�

60

48

Due to concentrated load

     F
e� � =
�
�
�
�
�
�

0

400

∴ =
�
�
�
�
�
�

F
e� �

60

448

since there is only one element,

F F
e� � � �= =
�
�
�
�
�
�

60

448

The equation is

=
× × −

−
	

�

�
�
�
�
�
�
�
�

=
�
�
�
�
�
�

2 10 2250

600

1 1

1 1

60

448

5
1

2

δ
δ

The boundary condition is δ1 0= . Hence the equation reduces to

  =
× ×

= =
2 10 2250

600
448

5

2δ

or δ 2
45973 10= × −. mm

         ∴  Extension of the bar =δ δ2 1−
     = 5.973 × 10–4 mm

��
(����������������

Change in the temperature in a member causes stresses, if its free expansion is prevented. Let ∆ T  be the rise
in temperature andα  be the coefficient of thermal expansion. To find the stresses developed due to change in
temperature we can use any one of the following two methods:

(i) Direct Approach

(ii) Variational Approach
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&�'�����)���((�%�)*

The free expansion of the element shown in Fig. 11.8(a) will be l Te eα ∆ . This is as good

��"�����0

as applying tensile forces E A Te e eα ∆  at the ends of the element as shown in Fig. 11.8(b). Hence the nodal

load vector due to rise in temperature in the element is

F E A TeT� � =
−�
�
�
�
�
�

α ∆
1

1
...(11.23)

This may be added to nodal load vector {F} due to the other loads.

If u is the final displacement of any point in the element, displacement due to elastic strain
= Total displacement – Free expansion

           = −u l Te eα ∆

∴  Elastic Strain            = = −ε δ
α

B
l T

le
e e

e
� � ∆

           = −B T
e eδ α� � ∆ ...(11.24)

Elastic Stress σ ε= Ee

= −E B E Te e e eδ α� � ∆ ...(11.25)

[Note: Free expansion will not cause stresses in a member]

&��'�1������%���((�%�)*

Strain due to change in temperature may be treated as initial strain as shown in Fig. 11.9

��"�����2

1 2

lc

l T
e e
� 

El T
e e
� 

El T
e e
� 

� 0 �

�

�

E
1
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Thus, ε α0 = ∆T ...(11.25)

Stress strain relation is

σ ε ε= −E 0� � ...(11.26)

If our interest is to find the stresses due to temperature rise only, then equation 9.16(b) for total potential
energy reduces to

  Π = ���1

2
ε ε� � � �T

v

D dV =
−
�∑ 1

2 2
1

1

ε ε ξ� � � �T
e

e e

e

E
A l

d

      = − −
−
�∑ 1

4 0 0

1

1

E A l de e e
T

e

ε ε ε ε ξ� � � �

      = − −
−
�∑ 1

4 0 0

1

1

E A l B B de e e e

T

e
e

δ ε δ ε ξ� �� � � �� �

= − +
−
�∑ 1

4
2 0 0

2

1

1

E A l B B B de e e e

T T

e

T T

e

δ δ δ ε ε ξ� � � � � �� �

Minimization of potential energy 
d

d

Π
δ� �

= 0 , gives

= − + =
−
�1

4
2 2 0 00

1

1

E A l B B B de e e
T

e

Tδ ε ξ� �� �

The first term correspond to element stiffness matrix as found earlier. The second term corresponds to
load vector due to temperature changes. Thus the load vector due to temperature effect is given by

F
E A l

l
B deT

e e e

e

T� � =
−
�2

1
0

1

1

ε ξ

substituting B
le

= −1
1 1

and      ε α0 = ∆T , we get

F
E A l

l
TeT

e e e

e

� � � �=
−�
�
�
�
�
� −2

1 1

1 1

1α ε∆

         =
−�
�
�
�
�
�

E A Te e α ∆
1

1
...(11.27)
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This load vector may be added to load vector due to body forces, surface forces or the applied load and

the problem solved to get displacements due to all the causes. After nodal displacements δ� �  are found,

member stress may be found by

 σ ε ε ε ε= − = −E E Ee e e0 0� �

       = −E B E Te e e eδ α� � ∆ ...(11.28)

Example 11.4: Determine the nodal displacements at node 2, stresses in each material and support reactions
in the bar shown in Fig. 11.10, due to applied force P = 400 × 103N and temperature rise of 30oC. Given:

A
1
 = 2400 mm2 A

2
 = 1200 mm2

l
1
 = 300 mm l

 2
 = 400 mm

E
1
 = 0.7 × 105 N/mm2 E

2
 = 2 × 105 N/mm2

and α 1
622 10= × °− /C α 2

612 10= × °− /C

��"������3

Solution:

     k
E A

le
=

−
−
	

�

�
�

1 1

1

1 1

1 1

            =
× × −

−
	

�

�
�

0 7 10 2400

300

1 1

1 1

5. =
−

−
	

�

�
�

←
�

10
560 560

560 560

1

2
3

1 2 Global

     k
2

52 10 1200

400

1 1

1 1
=

× × −
−
	

�

�
�

=
−

−
	

�

�
�

←
�

10
600 600

600 600

2

3
3

2 3 Global

∴ =
−

− + −
−

	




�
�
�

�



�
�
�

=
−

− −
−

	




�
�
�

�



�
�
�

k 10

560 560 0

560 560 600 600

600 600

10

560 560 0

560 1160 600

0 600 600

3 3

Aluminium

1 2 3

300 mm 400 mm

P

Steel

( , , , )A l E1 �1 1 1 ( , , , )A l E2 �2 2 2
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�%��	��%�)��1�)�%�

Due to temperature changes

FeT� �1
5 60 7 10 2400 22 10 30

1

1

110880

110880

1

2
= × × × × ×

−�
�
�
�
�
�

=
−�
�
�

�
�
�

−

�

.

Global

FeT� �2
5 62 10 1200 12 10 30

1

1

86400

86400

2

3
= × × × × ×

−�
�
�
�
�
�

=
�
�
�

�
�
�

− –
Global

          ∴ =
−

−
�
��

��

�
��

��
=

−�
��

��

�
��

��
FeT� �

110880

110880 86400

86400

110880

24480

86400

Due to applied forces

F� � =
�
��

��

�
��

��

0

400000

0

∴  Load vector due to applied loads and temperature effect is

F� � =
− +

+
+

�
��

��

�
��

��
=

−�
��

��

�
��

��

110880 0

24480 400000

86400 0

10

11088

424 48

86 40

3

.

.

.

The equilibrium equation is

10

560 560 0

560 1160 600

0 600 600

10

11088

424 48

86 40

3
1

2

3

3

−
− −

−

	




�
�
�

�



�
�
�

�
��

��

�
��

��
=

−�
��

��

�
��

��

δ
δ
δ

.

.

.

The boundary conditions are δ δ1 3 0= =

∴  The equation reduces to

       1160 424 482δ = .

i.e.    δ 2 0 36593= . Answer

    σ δ α= −E B E Te e e e� � ∆

∴ = × × −
�
�
�

�
�
�

− × × × ×−σ 1
5 5 60 7 10

1

300
1 1

0

0 36593
0 7 10 22 10 30.

.
.

       = 39.18 N/mm2 Answer
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   σ 2
5 5 62 10

1

400
1 1

0 36593

0
2 10 12 10 30= × × −

�
�
�

�
�
�

− × × × ×−.

       = 50.965 N/mm2 Answer

   R k k k F1 11 12 13

1

2

3

1=
�
��

��

�
��

��
−

δ
δ
δ

        = −
�
��

��

�
��

��
+10 560 560 0

0

0 36593

0

1100803 .  = –94041N Answer

   R3
310 0 600 600

0

0 36593

0

86400= −
�
��

��

�
��

��
−. = –305959N Answer

[Check: H = → − + − =∑ 0 94040 400000 305959 0 ].

���# �4����!������� ���������&+ �����������'

Fig. 11.11 shows a typical plane truss. The truss may be statically determinate or indeterminate. In the analysis
all joints are assumed pin connected and all loads act at joints only. These assumptions result into no bending
of any member. All members are subjected to only direct stresses–tensile or compressive. Now we are interested
to see the finite element analysis procedure for such trusses.

��"������� ��������	��	�
������

Step 1: Field Variables and Elements
Joint displacements are selected as basic field variables. Since there is no bending of the members, we have to
ensure only displacement continuity (Co-continuity) and there is no need to worry about slope continuity
(C1continuity). Hence we select two noded bar elements for the analysis of trusses. Since the members are
subjected to only axial forces, the displacements are only in the axial directions of the members. Therefore the

P8

P9

P7

P1 P2 P3

P6 P5 P4

y

x
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nodal variable vector for the typical bar element shown in Fig. 11.12 is

′ =
′
′

�
�
�
�
�
�

δ
δ
δ

� � 1

2
...(11.29)

where ′δ1  and ′δ 2  are in the axial directions of the element. But the axial direction is not same for all members.

If we select x-y as global coordinate system, there are two displacement components at every node. Hence the
nodal variable vector for a typical element is,

δ δ δ δ δ� �T = 1 2 3 4 ...(11.30)

��"������� ������	��	���
���
������
���	�����	�����
��

as shown in Fig. 11.12
From the Figure it is clear that

′ = +δ δ θ δ θ1 1 2cos sin

′ = +δ δ θ δ θ2 3 4cos sin

If l and m are the direction cosines,

           l m= =cos sinθ θ, ,

                   ∴ ′ = +δ δ δ1 1 2l m

        ′ = +δ δ δ2 3 4l m

i.e.               ′ =
′
′

�
�
�
�
�
�

=
	

�

�
�

�

�
��

�
�
�

�

�
��

�
�
�

δ
δ
δ

δ
δ
δ
δ

� � 1

2

1

2

3

4

0 0

0 0

l m

l m

i.e.       ′ =δ δ� � � �L ...(11.31)

�

�

�

�

� 2

� 4

�� 1

�� 1

� 1

� 3

1

2

1�

2� x �

x

y

1 1

1 1
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where  L
l m

l m
=
	

�

�
�

0 0

0 0

and [L] is called transformation (or rotation) matrix. If the coordinates (x
1
, y

1
) and (x

2
, y

2
) of node 1 and 2 of

the elements are known, we can find

l
x x

l
m

y y

le e

=
−

=
−2 1 2 1,

where        l x x y ye = − + −2 1
2

2 1
2� � � � ...(11.32)

Step 2: Discritising
A member may be taken as an element conveniently. Hence in the typical truss considered. There are

(a) 4 – top chord members

(b) 4 – bottom chord members
(c) 5 – vertical members and
(d) 8 – diagonal members

∴  Total elements selected are –21

There are 10 nodal points and they are numbered as shown in Fig. 11.13.

��"������# ������
��
������
���������

The numbering is such that the band width is minimum. In this case maximum difference in the node
numbers of an element is in diagonal members and is equal to 3. The degree of freedom of each node is 2, one
in x-direction and another in y-direction. Hence the maximum band width

= (3 + 1) × 2 = 8
Total degrees of freedom is

= Total number of nodes × degree of freedom of each node
         = 10 × 2 = 20

        ∴ =δ δ δ δ δ δ δ� �T
1 2 3 4 19 20...

2                              4                              6                               8                             10

1                              3                              5                               7                              91                              2                              3                               4

5                              6                              7                               8

15                             17                            19                             21

14                             16                            18                             20

9                                   10                            11                             12                            13
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The nodal connectivity details is as given below:

Element No. Element Node 1 Element Node 2

1 1 3

2 3 5

3 5 7

: : : Global

: : : numbers

20 7 10

21 8 9

Step 3: Interpolation Functions
Since bar element is used,

           u N� � � �= ′δ

where N N N
x x

l

x x

l
= = ′ − ′ ′ − ′	


�
�
�1 2

2 1 =
− ′ + ′	


�
�
�

1

2

1

2

ξ ξ

Step 4: Element Properties

(a) Stiffness Matrix: In the analysis of bars and columns, we have seen the element stiffness matrix is

k
EA

le
=

−
−
	

�

�
�

1 1

1 1

when viewed in local coordinate system, the truss is also a one dimensional two noded bar element. Hence the

element stiffness matrix of truss element in local coordinate system, ′k
e

 is given by

′ =
−

−
	

�

�
�

k
EA

le
e

1 1

1 1

            ∴ = ′ ′ ′U ke
T1

2
δ δ� � � �

′ =δ δ� � � �L

            ∴ = ′U L k Le
T1

2
δ δ� �� � � �

= ′
1

2
δ δ� � � �T T

L k L =
1

2
δ δ� � � �T

ek

where  k L k L
e

T= ′ ...(11.33a)

and it may be called as element stiffness matrix in global coordinate system.

 
∴ =

	




�
�
�
�

�



�
�
�
�

−
−
	

�

�
�
	

�

�
�

k

l

m

l

m

E A

l

l m

l me
e e

e

0

0

0

0

1 1

1 1

0 0

0 0
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=

	




�
�
�
�

�



�
�
�
�

− −
− −
	

�

�
�

E A

l

l

m

l

m

l m l m

l m l m
e e

e

0

0

0

0

=

− −
− −

− −
− −

	




�
�
�
�
�

�



�
�
�
�
�

E A

l

l lm l lm

lm m lm m

l lm l lm

lm m lm m

e e

e

2 2

2 2

2 2

2 2

...(11.33b)

[Note: The above expression is same as equation 3.6, which was obtained by direct approach]

(b) Consistant Loads:
Since all loads are acting at joints which are node points also, the load vector can be assembled straight way.
Normally load vector {F} of size equal to degrees of freedom is generated as null vector and then load vector
values are supplied. In the problem shown in Fig. 11.11,

F
6
 = –P

1
, F

10
 = –P

2
, F

14
 = –P

3
,

F
3
 = –P

9
, F

8
 = –P

7
, F

12
 = –P

6
, F

16
 = –P

5
 and F

20
 = –P

4

Step 5: Global Properties
It may be noted that for member i j.

δ δ δ δ1 2 1 2 2= =−i i, ,

        δ δ δ δ3 2 1 4 2 1= =− −j jand

Hence the position of elements of [k]
e
 in global stiffness matrix for member i j are as shown below:

k
E A

l

l lm l lm

lm m lm m

l lm l lm

lm m lm m

i

i

j

j

e
e e

e

i i j j

=

− −
− −

− −
− −

	




�
�
�
�
�

�



�
�
�
�
�

−

−

− −
2 2

2 2

2 2

2 2

2 1 2 2 1 2

2 1

2

2 1

2

The global stiffness matrix of required size is initially developed as null matrix. Then for element number
1, element matrix is generated and they are added to the existing values of elements of global matrix at
approximate places. Then next element stiffness matrix is generated and placed in appropriate positions in
global matrix. The process is continued till all elements are handled.

Assembling of load vector is already explained in step 4.

Step 6: Boundary Conditions
If hand calculations are made usually elimination approach is used and if computers are used penalty approach
is used for imposing boundary conditions. The method is exactly same as explained in the analysis of columns
and tension members.

Step 7: Solution of Simultaneous Equations

This step is also same as explained in the analysis of tension bars and columns.

Step 8: Additional Calculations
Analysts are interested in finding stresses and forces in the members of the truss. We know

σ ε= Ee

But ε
δ δ

= = ′ − ′′Change in length

Original length
2 1

le
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          ∴ = = ′ − ′σ
δ δ

E
le
e

2 1

    = −
′
′

�
�
�
�
�
�

E

l
e

e

1 1 1

2

δ
δ

But            ′ = =
	

�

�
�

�

�
��

�
�
�

�

�
��

�
�
�

δ δ

δ
δ
δ
δ

� � � �L
l m

l m

0 0

0 0

1

2

3

4

           ∴ = −
	

�

�
�

σ δ
E

l

l m

l m
e

e

1 1
0 0

0 0
� �

    = − −
E

l
l m l me

e

δ� � ...(11.34)

Using equation 11.34 stresses are calculated in all the elements / members. If forces are required the
stresses may be multiplied by the cross sectional areas. Positive value indicates tension and the negative
compression. The reactions at supports may be calculated on the lines explained in the analysis of tension bars
and columns. To make the analysis procedure clear, a small problem is solved below with hand calculations.

Example 11.4: For the three – bar truss shown in Fig. 11.14, determine the nodal displacements and the stress
in each member. Find the support reactions also. Take modulus of elasticity as 200 GPa.
Solution: Element numbers, node numbers and displacement numbers are as shown in Fig. 11.15. Taking
node 1 as the origin, the coordinates of various nodes are 1 (0,0), 2 (800, 0), 3 (400, 400).

∴ = − + − =lel 800 0 0 0 800
2 2� � � � mm

le2
2 2

400 800 400 0 400 2= − + − =� � � � mm

    le3
2 2

400 0 400 0 400 2= − + − =� � � � mm

��"������$

150 kN
C

20
00

m
m

2 2000
m

m
2

400 mm

400 mm 400 mm
BA

1500 mm2
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��"������-

Element No. Node 1 Node 2 Element

1 1 2

2 2 3 Global

3 1 3

θ1 0= θ 2 135= ° θ 3 45= °

l
1
 = 1.0 l

2
 = – 0.707 l

3
 = 0.707

m
1
 = 0 m

2
 = 0.707 m

3
 = 0.707

E
1
 = E

2
 = E

3
 = 200GPa = 200 kN/mm2

k
E A

l

l l m l l m

l m m l m m

l l m l l m

l m m l m m

e
e

1
1 1

1

1
2

1 1 1
2

1 1

1 1 1
2

1 1 1
2

1
2

1 1 1
2

1 1

1 1 1
2

1 1 1
2

=

− −
− −

− −
− −

	




�
�
�
�
�

�



�
�
�
�
�

=
×

−

−

	




�
�
�
�

�



�
�
�
�

200 1500

800

1 0 1 0

0 0 0 0

1 0 1 0

0 0 0 0

   =

−

−

	




�
�
�
�

�



�
�
�
�

375 0 375 0

0 0 0 0

375 0 375 0

0 0 0 0

1 2 3 4

1

2

3

4

Global Numbers

k
e2

3 4 5 6

200 2000

400 2

05 05 05 05

05 05 05 05

05 05 05 05

05 05 05 05

= ×
− −

− −
− −

− −

	




�
�
�
�

�



�
�
�
�

. . . .

. . . .

. . . .

. . . .

3

4

5

6

Global numbers

1

� 2

� 1

� 6

� 5

� 4

� 3

2
21

23

3
y
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   =

− −
− −
− −

− −

	




�
�
�
�

�



�
�
�
�

35355 35355 35355 35355

35355 35355 35355 35355

35355 35355 35355 35355

35355 35355 35355 35355

3 4 5 6

. . . .

. . . .

. . . .

. . . .

3

4

5

6

Global numbers

       k
e3

1 2 5 6

200 2000

400 2

05 05 05 05
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. . . .

F
1
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5
 = 0 and F
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The boundary conditions are,

δ δ δ1 2 4 0= = =

Hence the equation reduces to

  

72855 35355 35355

35355 70710 0

35355 0 7071

0

0

150

3

5

6

. . .

. .
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−
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=

−

�
��
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δ
δ
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72855 35355 35355

0 53553 17157

0 17157 53553

0

0

150

1

2
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. . .
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=

−
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∴
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=

−
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��

��

72855 35355 35355

0 556 98 17157

0 0 48056

0

0

150

3

5

6

. . .

. .

.

δ
δ
δ

from equation 3; 48056 150 0 3126 6. .δ δ= − = −i.e. mm

from equation 2; 556 98 17157 0 312 05. . .δ + − =� �

δ5 01= . mm

from equation 1; 72855 35355 01 35355 0 312 03. . . . .δ − + − =� � � �

∴ =
× + ×

=δ 3
35355 01 35355 0 312

72855
0 2

. . . .

.
. mm

   
∴ = − −

�

�
��

�
�
�

�

�
��

�
�
�

σ

δ
δ
δ
δ

1
1

1
1 1 1 1

1

2

3

4

E

l
l m l m

= −

�

�
��

�
�
�

�

�
��

�
�
�

200

800
1 0 1 0

0

0

0 2

0

. = –0.05 Answer

   ∴ = = − × = −P A1 1 1 0 05 1500 75σ . kN Answer

       
σ 2

200

400 2
0 707 0 707 0 707 0 707

0 2

0 0

01

0 312

= − −

−

�

�
��

�
�
�

�

�
��

�
�
�

. . . .

.

.

.

.
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= − − − =1

2 2
0 707 0 2 0 01 0 312 0 053. . . . .� � Answer

   ∴ = = − × =P A2 2 2 0 053 2000 106σ . kN Answer

       
σ 3

200

400 2
0 707 0 707 0 707 0 707

0 2

0 0

01

0 312

= − −

−

�

�
��

�
�
�

�

�
��

�
�
�

. . . .

.

.

.

.

= − − + −1

2 2
0 707 0 0 01 0 312. . .� � = 0.053 kN/mm2 Answer

   ∴ = = × =P A3 3 3 0 053 2000 106σ . kN Answer

 
R1 0 72855 35355 3750 0 35355 35355

0 0

0 0

0 2

0 0

01

0 312

+ = − − −

−

�

�

�
�
��

�

�
�
��

�

�

�
�
��

�

�
�
��

. . . . .

.

.

.

.

.

.

  ∴ =R1 0 Answer

 
R2 0 35355 35355 0 0 35355 35355

0 0

0 0

0 2

0 0

01

0 312

+ = − −

−

�

�

�
�
��

�

�
�
��

�

�

�
�
��

�

�
�
��

. . . .

.

.

.

.

.

.

  ∴ =R2 75kN  Answer

Similarly R
3
 = 75 kN Answer

Example 11.5: If the support B of truss shown in Fig. 11.15 yields by 0.1 mm, determine the member forces
due to applied load and yielding of the support.

Solution: The equation of equilibrium remains as in the previous problem. Only boundary condition changes.

In this case δ 4 01= . mm . The other two boundary conditions are same as in the previous case i.e., δ δ1 2 0= = .
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Imposing the boundary conditions δ δ1 2 0= = , the equation reduces to

72855 35355 35355 35355

35355 35355 35355 35355

35355 35355 7071 0

35355 35355 0 7071
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. . . .
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Introducing δ 4 01= − .  we get

72855 35355 35355
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. . .

. .

. .

. .

. .

. .

−
−
	




�
�
�

�



�
�
�

�
��

��

�
��

��
=

− ×
+ ×

− − ×

�
��

��

�
��

��

δ
δ
δ
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0 53553 17157

0 0 48056
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δ
δ
δ

          δ 6
111318

48056
0 2318= − = −.

.
. mm

  53553 17157 0 2318 181985. . . .δ + × = −� �
            ∴ =δ5 0 04028. mm

 72855 35355 0 04028 35355 0 2318 353553. . . . . .δ − + − =� � � �
   δ 3 018056= . mm

P
E A

l
l m l m

e
1

1 1

1
1 1 1 1

1

2

3

4

= − −

�

�
��

�
�
�

�

�
��

�
�
�

δ
δ
δ
δ

  =
×

−

−

�

�
��

�
�
�

�

�
��

�
�
�

200 1500

800
1 0 1 0

0

0

018056

01

.

.

= 67.71 kN
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           P2
200 2000

400 2
0 707 0 707 0 707 0 707

018056

01

0 04028

0 2318

=
×

− −
−

−

�

�
��

�
�
�

�

�
��

�
�
�

. . . .

.

.

.

.

= 4.24 kN

           P3
200 2000

400 2
0 707 0 707 0 707 0 707

0

0

0 04028

0 2318

=
×

− −

−

�

�
��

�
�
�

�

�
��

�
�
�

. . . .
.

.

= –95.76 k

         P� � =
−

�
��

��

�
��

��

67 71

4 24

9576

.

.

.
 Answer

��
(����������������

(i) Direct Approach: When viewed in local coordinate system, this element is one dimensional and for such

element thermal forces due to ∆T  rise in temperature are E A Te e eα ∆  as shown in Fig. 11.16

��"������.

∴ ′ =
−�
�
�
�
�
�

F E A TeT e e eα ∆
1

1

where ′FeT� �  is load vector due to temperature effect in local coordinate system.

x

y

1

2

�FeT sin �

�FeT sin �

� � �F E AeT e e e� 
T

� �F E AeT e e e� 
T

�F coseT �

�F coseT �

�



192 Finite Element Analysis

In global x-y system, it is seen easily that the load vector is,

′ =

− ×
− ×

×
×

�

�
��

�
�
�

�

�
��

�
�
�

=

−
−
�

�
��

�
�
�

�

�
��

�
�
�

F E A T E A T

l

m

l

m

eT e e e e e e� � α

α
α
α
α

α∆ ∆

1

1

1

1

cos

sin

cos

sin

(ii) Variational Approach: If we represent the load vector due to temperature effect by ′FeT� �  in local

coordinate system, then from equation 11.27, we get,

∴ ′ =
−�
�
�
�
�
�

F E A TeT e e eα ∆
1

1

Let ′FeT� �  be the corresponding load vector in global system. Then potential energy due to this load is

obviously same whether expressed in local or in global coordinates system. Thus,

′ ′ =δ δ� � � � � � � �e

T
eT e

T
eTF F

but from equation 11.31,

         ′ =δ δ� � � �e eL

∴ ′ =δ δ� � � � � � � �e

T T
eT e

T
eTL F F

i.e.,         F L FeT
T

eT� � � �= ′

    =
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�
�
�
�

−�
�
�
�
�
�

l

m

l

m

E A Te e e

0

0

0

0

1

1
α ∆ =

−
−
�

�
��

�
�
�

�

�
��

�
�
�

E A T

l

m

l

m

e e eα ∆ ...(11.35)

The stress and force in the element can be found as was done in case of tension bars /columns

i.e.,   σ ε ε= −E 0� �

= −
E

l
B l Te

e
e eδ α� �� �∆ = − − −

E

l
l m l m E Te

e
e eδ α� � ∆ ...(11.36)

and  P A
E A

l
l m l m E A Te e

e
e e e= = − − −σ δ α� � ∆ ...(11.37)
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��������������%� �)5�%,����

At the time of fabricating the statically indeterminate frames, if a member is found to be slightly shorter or
longer (lacks in Fit), the member is forced in position. This is possible by introducing initial forces in the

member. If the member is longer by δ l , the initial force applied on joint in outward direction is,

P
E A

l
le e

e
0 = δ

i.e. initial stress = E
l

le
e

δ

or initial strain ε
δ

0 =
l

le

This problem of initial stress may be handled on the lines similar to stresses due to temperature effect.

The term α ∆ T  in case of temperature effect is to be replaced by 
δ l

le

 in this case.

Example 11.5: Fig. 11.17 shows an indeterminate pin connected plane stress with cross sectional area of
diagonal members equal to 2000 mm2 and all other members with cross sectional area of 1000 mm2. If
Youngs modulus E = 200kN/mm2

(i) Assemble global stiffness matrix

(ii) Determine load vector if temperature of member 1–3 increases by 25oC. Given α = × °−12 10 6 / C
(iii) Determine load vector if member 1–3 is longer by 0.2 mm.
(iv) Introduce Boundary Conditions

��"������/

Solution: Joints and members are numbered as shown in Fig. 11.17.

11

5

6

2

2

4

4 3 3

4000 mm

3000 mm
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Member No. End 1 End 2 L m l
e 
in mm A

e
 in mm2

1 1 2 1.0 0.0 4000 1000

2 2 3 0.0 1.0 3000 1000

3 3 4 –1.0 0.0 4000 1000

4 1 4 0.0 1.0 3000 1000

5 1 3 0.8 0.6 5000.0 2000

6 2 4 –0.8 0.6 5000.0 2000

We know

k
E A

l

l lm l lm

lm m lm m

l lm l lm

lm m lm m

e
e e

e

=

− −
− −

− −
− −
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       =

− −
− −

− −
− −
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6

1 2 5 6
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Global

  k6

3 4 7 8

512 38 4 512 38 4
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Global

Global Stiffness Matrix k

1 2 3 4 5 6 7 8

50.0 0 –50.0 0 0 0
0 0 0 0 1

51.2 38.4 51.2 –38.4

0 0 0 0
0 66.67 0 –66.67 2

38.4 28.87 –38.4 –28.8

–50 0 50.0 0
0 0 0 0 3

51.2 –38.4 –51.2 38.4

0 0 0 0
0 66.67 0 –66.67 4

–38.4 28.80 38.4 –28.8

0 0 0 0

50 0 –50 0 5
–51.2 –38.4 51.2 38.4

0 –66.67 0 66.67

0 0 0 0 6
–38.4 –28.8 38.4 28.8

–50 0 50 0
0 0 0 0 7

–51.2 38.4 51.2 –38.4

0 0 0 0
0 –66.67 0 66.67 8

38.4 –28.8 –38.4 28.80
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k =

− − −
− − −

− − −
− − −

− − −
− − −

− − −
− − −
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38 4 9547 0 0 38 4 288 0 66 67

50 0 1012 38 4 0 0 512 38 4

0 0 38 4 9547 0 66 67 38 4 288
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Answer

(ii) Load vector for temperature forces:

      
F E A T

l

m

l

m

T5 5 5 5=

−
−
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�
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�

�
��
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α ∆

= × × × ×
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=
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200 2000 12 10 25
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72 0
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72 0
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6

6

.

.

.

.

.

.

.

.

Global

  FT
T� � = − −96 0 72 0 0 0 96 0 72 0. . . .

(ii) Load vector if the member 5(1–3) is longer by 0.2mm

F E A
l

l

l

m

l

m
e

5 5 5� � =

−
−
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δ
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200 2000
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.
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.

.

.

.

.

Global

Equations after introducing boundary conditions: Since it is too big problem for hand calculations penalty

method may be used and solution may be obtained using standard programs. Now ∆ ∆ ∆1 2 4 0= = =
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For temperature forces the final equation is:

k

C

C

C
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δ
δ
δ
δ
δ
δ
δ
δ

1

2

3

4

5

6

7

8

0

0

0

0

96 0

72 0

0

0

.

.

In case of stresses due to lack of fit only, only right hand side changes,

F
T� � = 0 0 0 0 128 0 96 0 0 0. .

���$ �6������!������� ���������&�+�����������'

Typical two noded truss element is shown in Fig. 11.18(a). In this ′x  is the local coordinate system. While x,
y, z are the global coordinate system. Fig. 11.18(b) shows the

��"������0

displaced position of the element. In local system, the displacement vector =
′
′

�
�
�
�
�
�

δ
δ

1

2

In global system, the displacement vector is

δ δ δ δ δ δ δ� �T = 1 2 3 4 5 6

1

2
x �

lc

x

y

z

(a)

1 1

2

2

x �

x

y

z

(b)

�� 2

�� 1
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If l, m and n are the direction cosines, we know,

l
x x

l
m

y y

l
n

z z

le e e

=
−

=
−

=
−2 1 2 1 2 1, and

The length of the member l x x y y z ze = − + − + −2 1
2

2 1
2

2 1
2� � � � � � . We know,

′ = + +δ δ δ δ1 1 2 3l m n

and ′ = + +δ δ δ δ2 4 5 6l m n

In matrix form,

′
′

�
�
�
�
�
�

=
	

�

�
�

�

�
��

�
�
�

�

�
��

�
�
�

δ
δ

δ
δ

δ

1

2

1

2

6

0 0 0

0 0 0

l m n

l m n �

 ′ =δ δ� � � �L ...(11.38)

where      L
l m n

l m n
=
	

�

�
�

0 0 0

0 0 0

is called transformation matrix. From equation 11.33(a), we know the relationship between global and local
stiffness matrices is,

k L k L
e

T

e
= ′� � =

	




�
�
�
�
�
�
�
�

�



�
�
�
�
�
�
�
�

−
−
	

�

�
�
	

�

�
�

l

m

n

l

m

n

E A

l

l m n

l m n
e e

e

0

0

0

0

0

0

1 1

1 1

0 0 0

0 0 0

k
E A

l

l

m

n

l

m

n

l m n l m n

l m n l m ne
e e

e

=

	




�
�
�
�
�
�
�
�

�



�
�
�
�
�
�
�
�

− − −
− − −
	

�

�
�

0

0

0

0

0

0

       
=

− − −
− − −
− − −

− − −
− − −
− − −

	




�
�
�
�
�
�
�
�

�



�
�
�
�
�
�
�
�

E A

l

l lm l lm

lm m mn lm m mn

mn n mn n

l lm l lm

lm m mn lm m mn

mn n mn n

e e

e

2 2

2 2

2 2

2 2

2 2

2 2

ln ln

ln ln

ln ln

ln ln

...(11.39)
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Example 11.6: The tripod shown in Fig. 11.19 carries a vertically downward load of 10kN at joint 4. If
Young's modulus of the material of tripod stand is 200kN/mm2 and the cross sectional area of each leg is
2000mm2, determine the forces developed in the legs of the tripod.

��"������2

Solution: Each member is taken as a bar element in space. The coordinates of various joints are

1(–3, 0, 0); 2(2, 0, 2), 3(2, 0, –2) and 4(0, 5, 0)
Length of each element is given by

l x x y y z ze = − + − + −2 1
2

2 1
2

2 1
2� � � � � �

and the direction cosines are given by

l
x x

l
m

y y

l
n

z z

le e e

=
−

=
−

=
−2 1 2 1 2 1, and

The details of the three elements are given below in the tabular form:

Element No. Node 1 Node 2 l
e
 in mm l m n

1 1 4 5831 0.514 0.857 0

2 2 4 5745 –0.348 0.870 –0.348

3 3 4 5745 –0.348 0.870 –0.348

From equation 11.39,

k1

1 2 3 10 11 12

1811 30184 0 1811 30184 0

30184 50 350 0 30184 50 350 0

0 0 0 0 0 0

1811 30184 0 1811 30184 0

30184 50 350 0 30184 50 350 0

0 0 0 0 0 0

1

2

3

10

11

12

=

− −
− −

− −
− −

	




�
�
�
�
�
�
�
�

�



�
�
�
�
�
�
�
�

←
�

. . . .

. . . .

. . . .

. . . .

Global

2m

3m

2

2m

2m

2m

z1
x

y

5m

4

10KN

3
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k2

4 5 6 10 11 12

8 425 21097 8 425 8 425 21097 8 425

21097 52 707 21037 2109 52 707 21097

8 425 21097 8 425 8 425 21097 8 425

8 425 21097 8 425 8 425 21097 8 425

21097 52 707 21097 21097 52 707 21097

8 425 21097 8 425 8 425 21097 8 425

4

5

6

10

11

12

=

− − −
− − −

− − −
− − −

− − −
− − −

	




�
�
�
�
�
�
�
�

�



�
�
�
�
�
�
�
�

←
�

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

Global

k3

7 8 9 10 11 12

8 425 21097 8 425 8 425 21097 8 425

21097 52 707 21097 21097 52 707 21097

8 425 21097 8 425 8 425 21097 8 425

8 425 21097 8 425 8 425 21097 8 425

21097 52 707 21097 21097 52 707 21097

8 245 21097 8 425 8 425 21097 8 425

7

8

9

10

11

12

=

− − −
− − −
− − −
− − −

− − −
− − −

	




�
�
�
�
�
�
�
�

�



�
�
�
�
�
�
�
�

←
�

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

Global

Global matrix of size 12 × 12 can be assembled.

The load vector is

F
T = −0 0 0 0 0 0 0 0 0 0 10 0

Hence the equilibrium equation can be assembled. Noting that δ δ δ1 2 9 0= = = =... , the reduced matrix

equation will be of size 3 × 3, the elements being from rows and columns of 10, 11, 12. The reduced equation
of equilibrium is i.e.,

18110 30148 0

8 425 21097 8 425

8 425 21097 8 425

30148 50 35 0

21097 52 707 21097

21097 52 707 21097

0 0 0

8 425 21097 8 425

8 425 21097 8 425

0

10

0

10

11

12

. .

. . .

. . .

. .

. . .

. . .

. . .

. . .

−
− −

− −
−

−
−

�

�

�
�
�
�

�

�
�
�
�

�

�

�
�
�
�

�

�
�
�
�

= −

�

�

�
�
�
�

�

�
�
�
�

�

�

�
�
�
�

�

�
�
�
�

δ

δ

δ

i.e.

34 96 12 046 0

12 046 155764 0

0 0 16 950

0

10

0

10

11

12

. .

. .

.

−
−
	




�
�
�

�



�
�
�

�
��

��

�
��

��
= −
�
��

��

�
��

��

δ
δ
δ
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i.e.
34 96 12 046 0

0 151589 0

0 0 16 950

0

10

0

10

11

12

. .

.

.

−	




�
�
�

�



�
�
�

�
��

��

�
��

��
= −
�
��

��

�
��

��

δ
δ
δ

∴ =∆12 0

From equation 2,

151584 10 0 06569712 11. .δ δ= − = −or

34 96 12 046 0 06597 010. . .δ − − =� �

∴ = −δ10 0 02273.

F1
200 2000

5831
0514 0857 0 0514 0857 0

0

0

0

0 02273

0 06597

0

=
×

− −
−

�

�

�
�
��

�

�
�
��

�

�

�
�
��

�

�
�
��

. . . .
.

.

       = –4.680 kN

   F2
200 2000

5745
0 0 0 0 348 0 02273 087 0 06597 0= × − + − − + − +. . . .� � � �

       = –3.445 kN

  F3
200 2000

5745
0 0 0 0 348 0 02273 0 87 0 06597 0=

×
− + − − + − +. . . .� � � �

       = – 3.445 kN

          F
T� � = − − −4 680 3 445 3 445. . . Answer

Note: As the degrees of freedom is high three dimensional problems are not suited for hand calculations. The
computer program with penalty method of imposing boundary conditions is ideally suited for such problems.

7��������

1. Differentiate between a bar element and a truss element

2. Using variational approach derive element stiffness matrix of
(a) bar element
(b) plane truss element

3. Derive the expressions for nodal load vector in a two noded bar element due to
(a) Body force
(b) Surface load

Use variational approach
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4. Explain the elimination method and penalty method of imposing boundary conditions. Comment
on the two methods.

5. In axially loaded cases, how do you find the support reactions after getting required displacements?
Explain.

6. Using variational approach determine the expression for consistant load, due to rise in temperature

∆ T  in an element.

7. Determine the nodal displacement, element stresses and support reactions of the axially loaded bar
as shown in Fig. 11.20. Take

E = 200 GPa and P = 30 kN

��"������3

[Answer: ∆2 = 0.062307mm ∆3  = 0.034615mm

σ 1  = 83.08 N/mm2 σ 2  = 36.92 N/mm2

σ 3  = 23.08 N/mm2 R
1
 = –20.77 kN R

4
 = –9.23 kN]

8. Obtain the forces in the plane truss shown in Fig. 11.21 and determine the support reactions also.
Use finite element method. Take E = 200 GPa and A = 2000 mm2.

��"�������

[Answer: {F}T = [ 0   –37.25   18.75] in kN
R

1
 = –11.25 kN R

2
 = –15 kN  R

4
 = 31.25 kN]

31 4

150 mm 150 mm 300 mm

400 mm2

250 mm2

2             P

3000 mm

20 KN

15 KN
3

4000 mm

2
1
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9. Determine the forces in the members of the truss shown in Fig. 11.22 Take  E = 200GPa, A = 2000
mm2.

[Answer: {F}T = [ 20   –26.25   4.961   0   –6.2752] in kN]

��"�������

3 m

30 KN

3

4 m

21

4

4
5

2

3

1
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�����������
�������������
���

���� ������������

In this chapter, first we see the general method for the analysis of plane stress/plane strain problems using
CST elements. Then a small problem is taken up and hand calculations are made. The idea of such approach
is to explain the steps involved is computer programming and make it clear by giving physical feel of the
calculations involved. The lengthy calculations involved are pointed out when higher order elements are
used.

����  	�	��!�����	���	�"#	������	!	$	������	���	�

The general procedure is explained referring to tension bar problem shown in Fig. 1.2 and the dam section
analysis problem shown in Fig. 10.5.

Step 1: Field Variable and Element:
Since plane stress and plane strain problems are two dimensional problems, we need two dimensional elements.
Any one from the family of triangular elements (CST/LST/QST) are ideally suited for these problems. Any
one element from the family of two dimensional isoparametric elements (to be explained in next chapter) also
may be used. In these elements there are two degree of freedom at each node i.e. the displacement in x-
direction and displacement in y-direction. Hence total degree of freedom in

(i) each element = 2 × No. of nodes per element
(ii) structure = 2 × No. of nodes in entire structure.

For a CST element shown in Fig. 12.1, the displacement vector may be taken as

δ δ δ δ δ δ δ� � � �e

T = 1 2 3 4 5 6 …(12.1a)

       = u u u v v v
e1 2 3 1 2 3� �

or as

δ� � � �
T

u v u v u v= 1 1 2 2 3 3 …(12.1b)

In most of the programs the order shown in equation 12.1 (b) is selected. Hence in this chapter the

displacement vector δ� �  is used in the form of equation 12.1 (b). Then the x and y displacements of the node

in global system are referred as 2n – 1th and 2nth displacements.
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��%������ ���������	�
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Step 2: Discritization

Discritization of the structure should be made keeping in mind all the points listed in Chapter 10. For all nodes
x and y coordinates are to be supplied/generated. Then nodal connectivity detail is to be supplied. For the dam
analysis problem shown in Fig. 10.5, the nodal connectivity detail is of the form shown in Table 12.1.

��
������ �����������	�	��

Element No. 1 2 3 Local Numbers

Global Numbers

1 1 2 7

2 2 7 8

:

7 4 11 10

8 4 5 11

:

10 6 12 11

:

Step 3: Shape/Interpolation Functions
As shown in equation 5.15, the shape function terms are

N
a b x c y

A1
1 1 1

2
= + +

, N
a b x c y

A2
2 2 2

2
=

+ +
 and N

a b x c y

A3
3 3 3

2
=

+ +

where a
1
 = x

2 
y

3
 – x

3 
y

2
a

2
 = x

3 
y

1
 – x

1 
y

3
a

3
 = x

1 
y

2
 – x

2 
y

1

b
1
 = y

2
 – y

3
b

2
 = y

3
 – y

1
b

3
 = y

1
 – y

2

c
1
 = x

3
 – x

2
c

2
 = x

1
 – x

3
c

3
 = x

2
 – x

1

and 2

1

1

1

1 1

2 2

3 3

A

x y

x y

x y

=

When we select nodal displacement vector as shown in Fig. 12.1 (b),

x x

y y

0 0

�
6

�
6

�
3

�
5

�
5

�
4

�
2

�
3

�
1

�
1

�
4

�
2

1 1

3 3

2 2

(a) (b)
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u x y
u x y

v x y

N N N

N N N e
,

,

,
� �

� �

� �
� �=

�
�
�

��

	


�

��
=
�


�

�

�
�

1 2 3

1 2 3

0 0 0

0 0 0
δ …(12.3)

Step 4: Element Properties

Since strain vector

ε
ε
ε
ε

∂
∂
∂
∂

∂
∂

∂
∂

� � =
�

�
�

�
�

	



�

�
�

=

+

�

�

�
�
�

�

�
�
�

	




�
�
�

�

�
�
�

x

y

u

x
v

y
u

y

v

x

2

and nodal displacement vector is in the form 12.3, the strain displacement vector ({ } [ ]{ }),ε δ= B  [B] is given

by

B
A

b b b

c c c

c b c b c b

=
�



�
�
�

�

�

�
�
�

1

2

0 0 0

0 0 0
1 2 3

1 2 3

1 1 2 2 3 3

…(12.4)

According to variational principal (equation 9.26)

k B D B dV
e

T

v

= ��� � �

Since [B], [D] are constant matrices we get
[k]

e
 = [B]T [D][B]V …(12.5)

where V = A t

This is exactly same as equation 7.4 which was obtained by Turner by the direct approach. In equation
12.5, [D] is the elasticity matrix, which is as presented in Chapter 2 (equation 2.14 and 2.15). In case of
isotropic materials, for plane stress case,

D
E=

− −

�



�
�
�
�
�

�

�

�
�
�
�
�

1

1 0

1 0

0 0
1

2

2µ

µ
µ

µ
…(12.6)

and for plane strain case,

D
E=

+ −

−
−

−

�



�
�
�
�
�

�

�

�
�
�
�
�

1 1 2

1 0

1 0

0 0
1 2

2

µ µ

µ µ
µ µ

µ� �� � …(12.7)

Using equation 12.5, the element stiffness matrix can be found.
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Consistent loads can be derived using the equation

F N X dV N T ds
e

T
b

T
� � � � � �= + �� (equation 9.26)

If there are nodal forces, they are to be added directly to the vector {F}
e
.

Step 5: Global Properties
Using nodal connectivity details the exact position of every term of stiffness matrix and nodal vector must be
identified and placed in global stiffness matrix.

Step 6: Boundary Conditions
Since in most of the problems in plane stress and plane strain degree of freedom is quite high, the computers
are to be used. These problems are not suitable for hand calculations. When computer programs are to be
developed, imposition of boundary condition is conveniently done by penalty method.

Step 7: Solution of Simultaneous Equations
Gauss elimination method or Cholesky’s decompositions method may be used. In elasticity problems, there
exits symmetry and banded nature of stiffness matrix. Hence the programs are developed to store only half the
band width of stiffness matrix and solve simultaneous equations using Choleski’s decomposition method.

Step 8: Additional Calculations
After getting nodal displacements stresses and strains in each element is assembled using the relations

ε δ� � � �= B
e

and  σ δ� � � �= D B
e

The calculated value of stress for an element is constant. It is assumed to represent the value at the
centroid of the element. As a designer is normally interested in the principal stresses, for each element these
values also may be calculated.

Example 12.1: Find the nodal displacements and element stresses in the propped beam shown in Fig. 12.2.
Idealize the beam into two CST elements as shown in the figure. Assume plane stress condition. Take µ  =
0.25, E = 2 × 105 N/mm2, Thickness = 15mm.

��%������

500 mm

50 KN
3

750 mm

21

4

2

1

Y

x
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Solution: For element (1), global nodal numbers are 1, 3, 4. Local numbers 1, 2, 3 selected are indicated in
Fig. 12.3. Selecting node 4 as the origin of global coordinate system.

��%�����&

1(0, 0), 2(750, 500) and 3(0, 500)

            2

1 0 0

1 750 500

1 0 500

750 500 0 750 500A = = × − = ×

∴ =
×

−
−

− −

�



�
�
�

�

�

�
�
�

B
1

750 750

0 0 500 0 500 0

0 750 0 0 0 750

750 0 0 500 750 500

   =
−

−
− −

�



�
�
�

�

�

�
�
�

1

750

0 0 1 0 1 0

0 15 0 0 0 15

15 0 0 1 15 1

. .

. .

           
D

E=
+ −

−
−

−

�



�
�
�
�
�

�

�

�
�
�
�
�

1 1 2

1 0

1 0

0 0
1 2

2

µ µ

µ µ
µ µ

µ� �� �

   = ×
×

�



�
�
�

�

�

�
�
�

2 10

125 05

0 75 0 25 0

0 25 0 75 0

0 0 0 25

5

. .

. .

. .

.

= ×
�



�
�
�

�

�

�
�
�

0 2 10

3 1 0

1 3 0

0 0 1

5.

3

1

4

v4

v1

v3

u3

u4

u1

(3)

(1)

(2)

1
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      D B = × ×
�



�
�
�

�

�

�
�
�

−
−

− −

�



�
�
�

�

�

�
�
�

1

750
0 2 10

3 1 0

1 3 0

0 0 1

0 0 1 0 1 0

0 15 0 0 0 15

15 0 0 1 15 1

5. . .

. .

   = ×
− −
− −

− −

�



�
�
�

�

�

�
�
�

0 2 10

750

0 15 3 0 3 15

0 4 5 1 0 1 4 5

15 0 0 1 15 1

5.
. .

. .

. .

           [k]
1
 = t A [B]T [D][B]

=
× ×

×

−
−

−
−

�



�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

×
− −
− −

− −

�



�
�
�

�

�

�
�
�

15 750 500

2

1

750

0 0 15

0 15 0

1 0 0

0 0 1

1 0 15

0 15 1

0 2 10

750

0 15 3 0 3 15

0 4 5 1 0 1 4 5

15 0 0 1 15 1

5

.

.

.

.

.
. .

. .

. .

  

u v u v u v

u

v

u

v

u

v

1 1 3 3 4 4

1

1

3

3

4

4

100000

2 25 0 0 15 2 25 150

0 6 75 15 0 15 6 75

0 15 30 0 30 15

15 0 0 1 15 10

2 25 15 3 15 525 30

15 6 75 15 1 30 7 75

Global
�

=

− −
−

− −
− −

− − −
− −

�



�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

. . . .

. . . .

. . . .

. . .

. . . . .

. . . . .

For element (2),

Local and global node numbers are as shown in Fig. 12.4.

��%�����'

3

1 2

v2
v1

v3

u3

u2u1 (2)(1)

(3)

2
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The coordinates of nodes are

1(0, 0), 2(750, 0), 3(750, 500)
b

1
 = y

2
 – y

3
 = –500 b

2
 = y

3
 – y

1
 = –500 b

3
 = y

1
 – y

2
 = –0

c
1
 = x

3
 – x

2
 = 0 c

2
 = x

1
 – x

3
 = –750 c

3
 = x

2
 – x

1
 = 750

          2

1 0 0

1 750 0

1 750 500

1 750 500 750 500A = = × = ×( )

B =
×

−
−

− −

�



�
�
�

�

�

�
�
�

1

750 500

500 0 500 0 0 0

0 0 0 750 0 750

0 500 750 500 750 0

 =
−

−
− −

�



�
�
�

�

�

�
�
�

1

750

10 0 10 0 0 0

0 0 0 15 0 15

0 10 15 10 15 0

. .

. .

. . . .

         D = ×
�



�
�
�

�

�

�
�
�

0 2 10

3 1 0

1 3 0

0 0 1

5. ,  same as for element 1.

∴ = × ×
�
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�
�

�

�

�
�
�

−
−

− −

�



�
�
�

�

�

�
�
�

D B
1

750
0 2 10

3 1 0

1 3 0

0 0 1

10 0 10 0 0 0

0 0 0 15 0 15

0 10 15 10 15 0

5.

. .

. .

. . . .

  = ×
− −
− −

− −

�



�
�
�

�

�

�
�
�

0 2 10

750

30 0 30 15 0 15

10 0 10 4 5 0 4 5
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u v u v u v
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u
1

v
1

u
2

v
2

u
3

v
3

u
4

v
4

2.25 0 0 –1.5 –2.25 1.50 u
1

3.0 0 –3.0 1.5 0 –1.5

0 6.75 –1.5 0 1.5 6.75 v
1

0 1.0 1.5 –1.0 –1.5 0

–3.0 1.5 5.25 –3.0 –2.25 1.5 u
2

1.5 –1.0 –3.0 7.75 1.5 –6.75 v
2

[k] = 100000

0 –1.5 3.0 0 –3.0 1.5 u
3

0 –1.5 –2.25 1.5 2.25 0

–1.5 0 0 1.0 1.5 –1.0 v
3

–1.5 0 1.5 –6.75 0 6.75

–2.25 1.5 –3.0 1.5 5.25 –3.0 u
4

1.5 6.75 1.5 –1.0 –3.0 7.75 v
4

F
T

� � = 0 0 0 0 50000 0 0 0

∴  The equation is

k Fδ = � �.
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The boundary conditions are
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∴  Reduced equation is,
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δ5 0118236= .
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Example 12.2: Derive the expression for consistent load vector due to self weight in a CST element.
Solution: The general expression for the consistent load in any element due to the body force is

F N X dV
e

T
b

v

� � � �= ���

For self weight Xb� � =
−
�
�
�

	


�

0

ρ

Where ρ  is unit weight of the material

It is advantageous to take interpolation functions in the natural coordinate system, since closed form
integration formulae can be used.

We know for CST element,

N
L L L

L L L
=
�


�

�

�
�

1 2 3

1 2 3

0 0 0

0 0 0

when nodal vector selected is in the order 
u

v
i
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Noting that the standard integration formula is

 L L L dA
p q r

P q r
Ap q r

A

1 2 3 2
2�� =

+ + +
! ! !

� �

we get − = −
+ + +

= −
×

= −�� L hdA h A A
hA

A

1
1 0 0

1 0 0 2
2

1

2 3
2

3
ρ ρ ρ ρ! ! !

� �

Similarly      − = −�� L dA
hA

A

2 3
ρ ρ

and      − = −�� L dA
hA

A

3 3
ρ ρ
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Answer

Example 12.3: Find the expression for nodal vector in a CST element subject to pressures P
x1

, P
y1

 on side 1,
P

x2
, P

y2
 on side 2 and P

x3
, P

y3
 on side 3 as shown in Fig. 12.5.

��%�����(

x

y

1

1

3

3

22

p
y2

p
y1

p
x1

p
x3

p
y3

p
x2

0
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Solution: Let us first consider nodal vector due to pressure P
x1

 and P
y1

 only. [Refer Fig. 12.6]

We know in CST element
[N] = [L]

Along side 1, L
1
 = 0  ∴ L

2
 + L

3
 = 1

i.e., L
3
 = 1 – L

2

ds
1
 = l

1
 dL

2
, when s is measured from node 3 towards 2.

��%�����)

The surface forces are

X
P

Ps
x

y
� � =

�
�
�

	


�

1

1

Hence the line integral form exits for nodal force vector as given below:

F N X ds t
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T
s� � � �= � 1
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Noting that the standard integration form for natural coordinate system is

            L L ds
p q

P q
lp q

1 2 1� =
+ +

! !

!� �

we get L P ds l P
l

px x x2 1 1 1
1

1
1 0

1 0 1 2� =
+ +

=
! !

!� �

x

y

1

3

3

2
2

p
x1

0
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           L P ds
l

py y2 1
1

12� =

L P ds l P
l

px x x3 1 1 1
1

1
0 1

0 1 1 2� =
+ +

=! !

!� �

and            L P ds
l

py y3 1
1

12� =

  ∴ =F
tl

p p p p
e

T
x y x y� � 1
1 1 1 12

0 0

Similarly due to forces on side 2 we get

F tl p p p p
e

T
x y x y� � = 2 2 2 2 20 0

and due to forces on side 3,

F tl p p p p
e

T
x y x y� � = 3 3 3 3 3 0 0

∴  Nodal vector due to forces on all the three sides is,
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The procedure explained for CST element may be extended to LST (6 noded) QST (10 noded) and rectangular
family of elements also. However the procedure becomes lengthy. The shape functions to be used for these
elements are already presented in Chapter 5. For LST elements the shape functions are

N L L1 1 12 1= −� �, N L L2 2 22 1= −� �, N L L3 3 32 1= −� �

        N
4
 = 4 L

1
 L

2
, N

5
 = 4 L

2
 L

3
 and N

6
 = 4 L

3
 L

1

We know,
 u = N

1 
u

1
 + N

2 
u

2
 + N

3 
u

3
 + N

4 
u

4
 + N

5 
u

5
 + N

6 
u

6

∴ = = �
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ε x
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dx

dN

dx

dN

dx

dN

dx

dN

dx

u

u

u

1 2 3 4 5 6

1

2

6

:

Now          
dN

dx

dN

dL

dL

dx

dN

dL

dL

dx

dN

dL

dL

dx
1 1

1

1 1

2

2 1

3

3= + +
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   = + +b
dN

dL
b

dN

dL
b

dN

dL1
1

1
2

1

2
3

1

3
    = b (4L

1
 – 1)

Similarly the expressions for 
dN

dx

dN

dx
2 6...  can be assembled. It gives first row of [B] matrix knowing

that ε y
dv

dx
=  and v = N

1 
v

1
 + N

2 
v

2
 + … + N

6 
v

6
 the second row of [B] matrix can be assembled. The third row

of [B] matrix correspond to

γ xy
du

dy

dv

dx
= + .

This also can be assembled.
After finding [B] matrix our interest is to assemble stiffness matrix

k B D B dV
e

T

v

= ���
Noting that [B] matrix is not a constant matrix, direct integration using closed form expressions become

lengthy process, though not impossible. Similarly the assembly of consistent loads using the expression

F N X dV N X ds
e

T
b

v

T
s

s

� � = +��� ��   is lengthy process.

The isoparametric concept and numerical integration techniques to be explained in Chapter 13, have not
only simplified and standardized the FEA analysis, but have made such elements adoptable for curved
boundaries also.

The procedure in using rectangular family of elements is same as explained above and the observations
are also similar.

*�	������

1. For the CST element shown in Fig. 12.7, assemble strain–displacement matrix. Take, t = 20 mm,
E = 2 × 105 N/mm2.

��%�����+

(200, 400)
y

x

(100, 100) (400, 100)
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2. Derive the consistant load vector in a CST element due to

(i) Self weight
(ii) Uniform pressures P

x1
, P

y1
 acting on the side 1.
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The various elements so far we have seen are having straight edges. To take care of curved boundaries refined
meshes are to be used when straight edged elements are employed. Even with refined meshes analysts were
not happy with the results since unnecessary stress concentrations are introduced. Higher order elements also
do not overcome the problem of suitably approximating curved boundaries. The isoparametric concept brought
out by Taig [1] and latter on generalized by B.M. Irons [2] revolutionized the finite elements analysis and it
also helped in properly mapping the curved boundaries. They brought out the concept of mapping regular
triangular and rectangular elements in natural coordinate system, to arbitrary shapes in global system as
shown in Fig. 13.1. In this chapter method of coordinate transformation of natural coordinates to global
coordinate system is presented. The terms isoparametric, super parametric and subparametrics are defined.
The basic theorems on which isoparametric concept is based are explained and need for satisfying uniqueness
theorem of mapping is presented. Assembling of stiffness matrix is illustrated. For assembling stiffness matrix
integration is to be carried out numerically. The Gaussion integration technique which is commonly employed
is explained briefly. To make the procedure clear few small numerical problems are illustrated and lastly
application to structural engineering problems is presented.

Parent elements in natural Mapped element if global
coordinate system system

��������� ���������	�
����������������
���������
����

y

x
0
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�����������������
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�����������������

���� ������������������� �����

So far we have used the shape functions for defining deflection at any point interms of the nodal displacement.
Taig [1] suggested use of shape function for coordinate transformation form natural local coordinate system
to global Cartesian system and successfully achieved in mapping parent element to required shape in global
system. Thus the Cartesian coordinate of a point in an element may be expressed as

x = N
1 
x

1
 + N

2 
x

2
 + ... + N

n 
x

n

y = N
1 
y

1
 + N

2 
y

2
 + ... + N

n 
y

n

z = N
1 
z

1
 + N

2 
z

2
 + ... + N

n 
z

n

or in matrix form

x N x
e� � � �=

where N are shape functions and (x)
e
 are the coordinates of nodal points of the element. The shape functions

are to be expressed in natural coordinate system.

For example consider mapping of a rectangular parent element into a quadrilateral element:

��������� ��������	���������������
��������������������
����������������
�������������������������������������
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y
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0
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P ( )����
P x y(, )

3 ( , )x y3 34 ( , )x y4 4

1 ( , )x y1 1

2 ( , )x y2 2

(a) Parent element (b) Mapped element
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The parent rectangular element shown in Fig. 13.2 (a) has nodes 1, 2, 3 and 4 and their coordinates are
(–1, –1), (–1, 1), (1, 1) and (1, –1). The shape functions of this element are

     N1

1 1

4
=

− −ξ η� � � �
, N2

1 1

4
=

+ −ξ η� � � �

N3

1 1

4
=

+ +ξ η� � � �
 and N4

1 1

4
=

− +ξ η� � � �

P is a point with coordinate ( , ).ξ η  In global system the coordinates of the nodal points are

(x
1
, y

1
), (x

2
, y

2
), (x

3
, y

3
) and (x

4
, y

4
)

To get this mapping we define the coordinate of point P as

x = N
1 
x

1
 + N

2 
x

2
 + N

3 
x

3
 + N

4 
x

4

and y = N
1 
y

1
 + N

2 
y

2
 + N

3 
y

3
 + N

4 
y

4

Noting that shape functions are such that at node i, N
i
 = 1 and all others are zero, it satisfy the coordinate

value at all the nodes. Thus any point in the quadrilateral is defined in terms of nodal coordinates.

Similarly other parent elements are mapped suitably when we do coordinate transformation.

���� !������"���� ��������#��� �����������#�

Isoparametric concept is developed based on the following three basic theorems:

Theorem I: If two adjacent elements are generated using shape functions, then there is continuity at the
common edge.

���������

It may be observed that in the parent element, for any point on edge AB, shape functions N
i
 = 0 for nodes

not on the edge and N
i
 exists for nodes on the edge. Hence the final function is the same for the common edge

AB in any two adjacent elements, when we give the same coordinate values for the nodes on common edge.
Hence edge AB is contiguous in the adjacent elements.

y

x
0

� �

� �

B

B

A A
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Theorem II: It states, if the shape functions used are such that continuity of displacement is represented in
the parent coordinates, then the continuity requirement, will be satisfied in the isoparametric elements also.

The proof is same as for theorem 1.

Theorem III: The constant derivative conditions and condition for rigid body are satisfied for all isoparametric
elements if,

Ni =∑ 1

Proof: Let the displacement function be

u x y z= + + +α α α α1 2 3 4 …(13.1)

∴  Nodal displacement at ‘i’th node is given by

u x y zi i i i= + + +α α α α1 2 3 4

In finite element analysis we define nodal displacement at any point in the element in terms of nodal
displacement as

          u N ui i= ∑
      ∴ = + + +∑u N x y zi i i iα α α α1 2 3 4� �

 = + + +∑∑∑ ∑α α α α1 2 3 4N N x N y N zi i i i i i i

From the isoparametric concept, we know

     N x xi i∑ =

     N y yi i∑ =

      N z zi i∑ =

∴ = + + +∑u N x y zi iα α α α2 3 4 …(13.2)

Hence if equation 13.2 has to represent equation 13.1 uniquely, then

Ni =∑ 1

The shape functions developed in natural coordinate systems satisfy this requirement. Hence they can be
safely used for isoparametric representation. This theorem is known as convergence criteria for isoparametric
elements.

���$ ���%���������� �##��&

It is absolutely necessary that a point in parent element represents only one point in the isoparametric element.
Some times, due to violent distortion it is possible to obtain undesirable situation of nonuniqueness. Some of
such situations are shown in Fig. 13.4. If this requirement is violated determinant of Jacobiam matrix (to be
explained latter) becomes negative. If this happens coordinate transformation fails and hence the program is
to be terminated and mapping is corrected.
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We have seen that in the finite element analysis with isoparametric elements, shape functions are used for
defining the geometry as well as displacements. If the shape functions defining the boundary and displacements
are the same, the element is called as isoparametric element. For example, in Fig. 13.5 (a) all the eight nodes
are used in defining the geometry and displacement. Thus, in this case

��������' �������
����������������
�����������������
���������
����

Nodes used for defining geometry

Nodes used for defining displacement

(a) Isoparametric (b) Superparametric (c) Subparametric
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u N e= [ ] { } ,δ  x = [N] {x}
e
 and y = [N] {y}

e
 where [N] is quadratic shape function of serendipity family.

The element in which more number of nodes are used to define geometry compared to the number of nodes
used to define displacement are known as superparametric element. One such element is shown in Fig. 13.5
(b) in which 8 nodes are used to define the geometry and displacement is defined using only 4 nodes. In the
stress analysis where boundary is highly curved but stress gradient is not high, one can use these elements
advantageously.

Figure 13.5 (c) shows a subparametric element in which less number of nodes are used to define geometry
compared to the number of nodes used for defining the displacements. Such elements can be used
advantageously in case of geometry being simple but stress gradient high.

���* ���� !)��&����������� ����+

Assembling element stiffness matrix is a major part in finite element analysis. Since it involves coordinate
transformation from natural local coordinate system to Cartesian global system, isoparametric elements need
special treatment. In this article assembling of element stiffness matrix for 4 noded quadrilateral element is
explained in detail. The procedure can be easily extended to higher order elements by using suitable functions
and noting the increased number of nodes.

Figure 13.6 shows the typical parent element and isoparametric quadrilateral element.

��������* ���������������
�����������������������
���

For parent element, the shape functions are

        Ni
i i=

+ +1 1

4

ξξ ηη� � � �
…(13.3)

i.e., N1

1 1

4
=

− −ξ η� � � �
, N2

1 1

4
=

+ −ξ η� � � �

        N3

1 1

4
=

+ +ξ η� � � �
 and N4

1 1

4
=

− +ξ η� � � �

We use the above functions for defining the displacement as well as for defining the geometry of any
point within the element in terms of nodal values.

y

x
0

4 (–1, 1)
3 (1, 1)

2 (1, –1)1 (– 1, –1)

�

�

( , )x y3 3

( , )x y4 4

( , )x y1 1

( , )x y2 2

0
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When we use shape functions for the geometry,
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N N N N

N N N N
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1 2 3 4
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0 0 0 0

0 0 0 0
�

…(13.4)

The above relation helps to determine the (x, y) coordinates of any point in the element when the

corresponding natural coordinates ξ  and η  are given.

We are also using the same functions for defining the displacement at any point in the element
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v
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1 2 3 4

1 2 3 4

1
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4

4

0 0 0 0

0 0 0 0
�

…(13.5)

In assembling the stiffness matrix we need the derivatives of displacements with respect to global x, y

system. It is easy to find derivatives with respect to local coordinates ξ  and η  but it needs suitable assembly

to get the derivatives w.r.t. to global Cartesian system.

The relationship between the coordinates can be computed using chain rule of partial differentiation.
Thus,
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∂
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∂
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…(13.6)

where   J

x y

x y
=

�

�
��

�
�
�

�

	
��



�
�

∂
∂ξ

∂
∂ξ

∂
∂η

∂
∂η

…(13.7)
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The matrix [J] shown above is called Jacobian matrix. It relates derivative of the function in local coordinate
system to derivative in global coordinate system. In case of three dimensional problem it is given by

J

x y z

x y z

x y z

=

�

�









�

�

�
�
�
�
�
�
�

∂
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∂
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∂
∂η

∂
∂η

∂
∂ς

∂
∂ς

∂
∂ς

Now going back to isoparametric quadrilateral element,
Let

          J
J J

J J
=
�
�


�
�
�

11 12

21 22

Where           J
x

11 = ∂
∂ξ

J
y

12 = ∂
∂ξ

J
x

21 =
∂
∂η

J
y

22 =
∂
∂η

we know,              x N x N x N x N x N xi i

i

= = + + +
=
∑

1

4

1 1 2 2 3 3 4 4

       ∴ = = + + +J
x N

x
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x
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x
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x11
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∂
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Similarly J
12

, J
21

 and J
22

 can be assembled.
Then we get
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4 …(13.8)

For any specified point the above matrix can be assembled. Now,
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…(13.9)

where J J J11 12 21
* * *, ,  and J22

*  are the elements of Jacobian inverse matrix. Since for a given point Jacobian

matrix is known its inverse can be calculated and Jacobian inverse matrix is assembled. With this transformation
relation known, we can expresses derivatives of the displacements as shown below:
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…(13.10)

The strain displacement relation is given by
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Substituting it in equation 13.11 strain displacement matrix [B] is obtained as,
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…(13.12)

Then element stiffness matrix is given by

k B D B dV
T= �

In this case,

k t B D B x y
T= �� ∂ ∂ …(13.13)

where t is the thickness.

It can be shown that elemental area in Cartesian coordinates (x, y) can be expressed in terms of the area

in local coordinates ( , )ξ η  as

∂ ∂ ∂ξ ∂ηx y J= …(13.14)
Where |J| is the determinant of the Jacobian.

∴ = ��k t B D B J
T ∂ξ ∂η …(13.15)

Integration is to be performed so as to cover entire area i.e. the limit of integration is from ξ  is form –1

to 1 and η  is also from –1 to 1. It is difficult to carryout all the multiplications in equation 13.15 and then the
integration. It is convenient to go for numerical integration.
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���, �� �����)�����&������

In mathematics numerical integration techniques like trapezoidal rule, Simpson’s 
1

3
rd rule, Simpson’s 

3

8
th

rule and Gauss quadrate formula are available. In trapezoidal rule, the variation of the function between two

sampling point is assumed linear. In Simpson’s 
1

3
rd rule 3 sampling points are used and second degree curve

is fitted. In Simpson’s 
3

8
th rule 4 sampling points are selected and 3rd degree (cubic) curve is fitted. All these

methods are based on Newton Cotes formula in which values at n equally spaced sampling points are required
to fit in n – 1 degree variation curve.

In finite element analysis Gauss quadrate formula is preferred since in this values at n sampling points
can be used to fit in 2n – 1 degree variation, as the evaluation of functions like BTDBdV is a time consuming
process. In this method, the numerical integration is achieved by the following expression.

f w fi

i

n

iξ ∂ξ ξ� � � �=
=−
∑�

11

1

…(13.16)

Where w
i
 – weight function and f i( )ξ  is values of the function at pre determined sampling points.

In Gauss quadrature formula sampling points are cleverly placed. In this, both n sampling points and n
weights are treated as variables to make exact 2n – 1 degree polynomial. This is an open quadrature formula,
the function values need not be known at end points but they must be known at predetermined sampling
points.

The location of sampling points ξ i  and weight function w
i 
are determined using Legendre polynomials.

Hence this method is some times called as Gauss Legendre quadrature formula. Table 13.1 shows location of

Gauss sampling points ( )ξ i  and corresponding weight function (w
i
) for different number (n) of Gauss integration

scheme.

��-�
����� ����������	���
����������������������	��������

�������������������� f W fi

i

n

iξ ∂ξ ξ� � � �=
=−
∑�

11

1

n ξ W1

1 ξ 1 0 00000000= . W
1
 = 2.00000000

2 − = =ξ ξ1 2 057735027. W1 = W2 = 1.00000000

3 − = =ξ ξ1 3 0 77459667. W
1
 = W

3
 = 0.55555556

ξ 2 0 00000000= . W2 = 0.88888889

4 − = =ξ ξ1 4 086113631. W1 = W4 = 0.34785485

− = =ξ ξ2 3 0 33998104. W
2
 = W

3
 = 0.65214515
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Fig. 13.7 shows the integration scheme for 3 point Gauss integration. It may be noted that the sampling
points are symmetrically placed, all weight are positive and the weights of symmetrically placed points are
same. Depending upon the degree of variation, the number of Gauss points n can be chosen so that integrations
are exact. Since in finite element analysis, the exact degree of variation of the functions like element stiffness
matrix are not known, preliminary investigations may be made by changing n to get stable result. Many
investigators have reported that two point house integration is more than sufficient. The above scheme may
be extended to 2 and 3 dimensional problems also.

��������,  ���
���	�!�����������������������

For two dimensional problem n = 2 means 2 × 2 = 4 Gaussian points and for three dimensional problems
it works out to be 2 × 2 × 2 = 8. Thus,

��������. ��������
���������������������
������������
����

f d d W f di
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ξ η ξ η ξ η η, ,� � � �
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1

11

1

f1 ( )� 1 f2 ( )� 0
f3 ( )� 3

–1 –0.77459667 0 0.77459667 1

(–1, 1) (–1, 1)(1, 1) (1, 1)

(1, –1) (1, –1)(–1, –1) (–1, –1)
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� �

( , )� �1 2 ( , )� �2 2

( , )� �2 1( , )� �1 1

� �,1 3

� �,1 2

� �,1 1

� �,2 3

� �,2 2

� �,2 1

� �,3 3

� �,3 2

� �,3 1

(a) 2 × 2 points (b) 3 × 3 points
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ξ η,� �
11

For a two dimensional problem, Gauss points for n = 2 and n = 3 are shown in Fig. 13.8.

���. �� �����)��+� #)��

Finite element analysis using isoparametric element involves too many calculations and hence not suitable for
hand calculations. For such analysis one has to go for computer analysis by developing programs. With slight
additional statements various elements can be easily incorporated in a single analysis package. However to
make the procedure clear to learners of finite element analysis a small numerical problem is taken up here.

Example 13.1: Assemble Jacobian matrix and strain displacement matrix corresponding to the Gauss point
(0.57735, 0.57735) for the element shown in Fig. 13.9. Then indicate how do you proceed to assemble element
stiffness matrix.

��������/

Solution: The coordinates of node points in Cartesian system are (0, 0), (60, 0), (65.7735, 10) and (5.7735, 10).
The shape functions are

Ni i i= + +
1

4
1 1ξξ ηη� �� �

∴ = +
∂
∂ξ

ξ ηη
Ni

i i
1

4
1� �

and     
∂
∂η

η ξξ
Ni

i i= +1

4
1� �

1

�
�

�

�
60°

60 mm

10 mm

2

34
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∴ = − − = − − = −
∂
∂ξ

η
N1 1

4
1

1

4
1 057735 010566� � � �. .

  
∂
∂ξ

η
N2 1

4
1

1

4
1 057735 010566= − = − =� � � �. .

  
∂
∂ξ

η
N3 1

4
1

1

4
1 057735 0 39438= + = + =� � � �. .

  
∂
∂ξ

η
N4 1

4
1

1

4
1 057735 0 39438= − + = − + = −� � � �. .

Similarly,

∂
∂η

ξ
N1 1

4
1

1

4
1 057735 010566= − − = − − = −� � � �. .

∂
∂η

ξ
N2 1

4
1

1

4
1 057735 0 39438= − + = − + = −� � � �. .

∂
∂η

ξ
N3 1

4
1

1

4
1 057735 0 39438= + = + =� � � �. .

∂
∂η

ξ
N4 1

4
1

1

4
1 057735 010566= − = − =� � � �. .

The Jacobian Matrix is given by

J

N
x

N
y

N
x

N
y

i
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i
i

i
i

i
i
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�
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∑ ∑
∑ ∑

∂
∂ξ

∂
∂ξ

∂
∂η

∂
∂η

∴ = ∑J
N

xi
i11

∂
∂ξ

= –0.10566 × 0 + 0.10566 × 60 + 0.39438 × 65.7735 – 0.39438 × 5.7735 = 30.0000

J
N

yi
i12 = ∑ ∂

∂ξ = 0 + 0 + 0.39438 × 10 – 0.39438 × 10 = 0

J
N

xi
i21 = ∑∂

∂η = 0 – 0.39438 × 60 + 0.39438 × 65.7735 + 0.10566 × 5.7735 = 2.88698

J
N

yi
i22 = ∑∂

∂η = 0 + 0 + 0.39438 × 10 + 0.10566 × 10 = 5.0000
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∴ =
�
�


�
�
�J

30 0000 0

2 88698 50000

.

. .

J J*

. .

. .

.
=

×
−�

�


�
�
�

−1 1

30 0000 50000

50000 2 88698

0 30 0000
=

−�
�


�
�
�

0 033333 0 019246

0 0166667

. .

.

The strain displacement matrix is given by
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Where Jij
*  are the elements of Jacobian inverse matrix,

∴ =
−

−
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×B

0 033333 0 019246 0 0

0 0 0 0166667

0 0166667 0 033333 0 019246

. .

.

. . .

− −
− −

− −
− − −

�

�






�

�

�
�
�
�

010566 0 010566 0 0 39438 0 0 39438 0

010566 0 0 39438 0 0 39438 0 010566 0

0 010566 0 010566 0 0 39438 0 0 39438

0 010566 0 0 39438 0 0 39438 0 010566

. . . .

. . . .

. . . .

. . . .

=
× × −

− −
− × − ×

�

�





�

�

�
�
�

− −

− −

1 48843 10 0 0 011112 0 5 55563 10 0 0 022915 0

0 0 01761 0 0 06573 0 0 06573 0 0 01761

0 01761 148843 10 0 06573 0 011112 0 06573 5 55563 10 0 01761 0 015179

3 3

3 3

. . . .

. . . .

. . . . . . . .

Answer

���
	-�������
	
������00�
��� ����1

D matrix can be assembled for the plane stress or plane strain as the case may be, by using material properties

of the structure. Then the following matrix multiplication may be carried out to assemble 
t

B D B
T

2
 for

the Gauss point (0.57735, 0.57735). This value when multiplied with weight function (in this case 1) gives the
contribution of the Gauss point (0.57735, 0.57735) to the element stiffness matrix.
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Assembling of the Jacobian matrix and [B] matrix may be carried out for the Gauss point (0.57735,
–0.57735) and then its contribution to stiffness matrix may be found. On the same line assemble the contribution
of remaining two Gauss points. Addition of all the four Gauss points contribution gives the element stiffness
matrix of size 3 × 8.

Example 13.2: Determine the Cartesian coordinate of the point P( , )ξ η= =05 0 6. .  shown in Fig. 13.10.

���������2

Solution: It is given that

         ξ = 0 5.  and η = 0 6.

       N1

1 1

4

1 05 1 0 6

4
0 05=

− −
=

− −
=

ξ η� �� � � �� �. .
.

       N2

1 1

4

1 0 5 1 0 6

4
015=

+ −
=

+ −
=

ξ η� �� � � �� �. .
.

       N3

1 1

4

1 05 1 0 6

4
0 6=

+ +
=

+ +
=

ξ η� �� � � �� �. .
.

       N4

1 1

4

1 05 1 0 6

4
0 2=

− +
=

− +
=

ξ η� �� � � �� �. .
.

    ∴ = ∑x N xi i = 0.05 × 2 + 0.15 × 8 + 0.6 × 7 + 0.2 × 3 = 6.1

y N yi i= ∑ = 0.05 × 1 + 0.15 × 3 + 0.6 × 7 + 0.2 × 5 = 5.7

The Cartesian coordinates of point P are (6.1, 5.7)

Example 13.3: In the element shown in Fig. 13.10, P is the point (6, 5). On this point the load components in
x and y directions are 8 kN and 12 kN respectively. Determine its nodal equivalent forces.
Solution: We have to first determine the local natural coordinates of point P. We know

x N xi i= ∑  and y N yi i= ∑

y

x
0

P
(3, 5)

(7, 7)

(8, 3)

(2, 1)

�

�
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For the quadrilateral element

       Ni
i i=

+ +1 1

4

ξξ ηη� �� �

i.e., N1

1 1

4
=

− −ξ η� �� �
N2

1 1

4
=

+ −ξ η� �� �

N3

1 1

4
=

+ +ξ η� �� �
N4

1 1

4
=

− +ξ η� �� �

      ∴ = ∑x N xi i  gives

6
1

4
1 1 2 1 1 8 1 1 7 1 1 3= − − + + − + + + + − +ξ η ξ η ξ η ξ η� � � � � � � � � � � � � � � �

∴ = − − + + + − − + + + + + − + −24 2 1 8 1 7 1 3 1ξ η ξη ξ η ξη ξ η ξη ξ η ξη� � � � � � � �
    = + + −20 10 0 2ξ η ξη

 4 10 2= −ξ ξη …(1)

or 2 5= −ξ ξη

∴ = ∑y N yi i  gives

5
1

4
1 1 3 1 7 1 5 1= − − + + + − − + + + + + − + −ξ η ξη ξ η ξη ξ η ξη ξ η ξη� � � � � � � �

  20 16 4 8= + +ξ η

or 4 4 8= +ξ η
or 1 2= +ξ η …(2)

From equation (2), η
ξ= −1

2

Substituting it in equation 1, we get

   2 5
1

2
= − −�

��
�
��

ξ ξ ξ

or 4 10 1 9 2= − − = −ξ ξ ξ ξ ξ� �

i.e.  ξ ξ2 9 4 0+ − =

    ξ =
− + + ×

=
9 9 4 4

2
0 42443

2

.

∴ =
−

=η
1 0 42443

2
0 28779

.
.
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Now, the equivalent load is given by

F N
X

Y

T� � =
�
�
�
�
	



For Point P.

N1

1 0 42443 1 0 28779

4
010248=

− −
=

. .
.

� �� �

N2

1 0 42443 1 0 28779

4
0 25362=

+ −
=

. .
.

� �� �

N3

1 0 42443 1 0 28779

4
0 45859=

+ +
=

. .
.

� �� �

N4

1 0 42443 1 0 28779

4
018530=

− +
=

. .
.

� �� �

     {F
x
} = [N]T {X}

  

F

F

F

F

N

N

N

N

x

x

x

x

1

2

3

4

1

2

3

4

8 8

010248

0 25362

0 45859

018530

081984

2 02896

366872

148240

�

�
��

�
�
�

�

	
��



�
�

=

�

�






�

�

�
�
�
�

=

�

�
��

�
�
�

�

	
��



�
�

=

�

�
��

�
�
�

�

	
��



�
�

� �

.

.

.

.

.

.

.

.

  

F

F

F

F

y

y

y

y

1

2

3

4

010248

0 25362

0 45859

018530

12

122976

304344

550308

2 22360

�

�
�
�

�
�
�

�

	
�
�



�
�

=

�

�
��

�
�
�

�

	
��



�
�

=

�

�
��

�
�
�

�

	
��



�
�

.

.

.

.

.

.

.

.

� �

Example 13.4: The quadrilateral element shown in Fig. 13.11 is 20 mm thick and is subjected to surface
forces T

x
 and T

y
. Determine expressions for its equivalent nodal forces. If T

x
 = 10N/mm2 and T

y
 = 15 N/mm2,

determine the numerical values of the nodal forces.

����������

y

x
0

Ty

Tx

3, (700, 700)

4 (300, 500)

t = 20 mm

1 (200, 100) 2 (800, 300)

All linear dimensions
In mm
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Solution: The element is subjected to load along edge 3–4. We know along edge 3–4, η = 1

            ∴ = − − =N1
1

4
1 1 0ξ η� �� �

N2
1

4
1 1 0= + − =ξ η� �� �

N3
1

4
1 1

1

2
1= + + = +ξ η ξ� �� � � �

N4
1

4
1 1

1

2
1= − + = −ξ η ξ� �� � � �

Nodal forces are given by the expressions like

F N T dsx
T

x� � � �= �
     = �t N T dl

T
x� �

We know,

∆ ∆ ∆l x y= +� � � �2 2  and 
∆
∆

∆
∆

∆
∆

l x y

ξ ξ ξ
=
�
��
�
��

+
�
��
�
��

2 2

In isoparametric concept, we know

x N xi i= ∑  and y N yi i= ∑
In this case, along line 3–4,

x x x= + + + + −0 0
1

2
1

1

2
13 4ξ ξ� � � �

∴  In limiting case,

         
dx

d

x

y
x x

ξ
= = −∆

∆
1

2 3 4� �

Similarly,             y y y= + + + + −0 0
1

2
1

1

2
13 4ξ ξ� � � �

∴  In limiting case

         
dy

d
y y

ξ
= −1

2 3 4� �

                  ∴ = = −�
�
�

�
	



+ −�
�
�

�
	



dl

d

l
x x y y

ξ ξ
∆
∆

1

2

1

23 4

2

3 4

2

� � � � = 1

2 34l



Isoparametric Formulation 239

or         dl l d= 1

2 34 ξ

∴ = �F t N T dlx
T

x� � � �

= +

−

�

�








�

�

�
�
�
�
�
�

−
�t T l dx

0

0
1

2
1

1

2
1

1

2
1

1

34ξ

ξ

ξ� �

� �

� �
 
=

+
−

�

�







�

�

�
�
�
�
�

−
�t

l
T

T

d
x

x

34

1

1

4

0

0

1

1

ξ
ξ

ξ
� �
� �

For uniformly distributed load, T
x
 is constant,

∴

�

�
��

�
�
�

�

	
��



�
�

=

�

�
�
�

�
�
�

�

	
�
�



�
�

F

F

F

F

t l
T

T

x

x

x

x

x

y

1

2

3

4

34

4

0

0

2

2

 since 1 1 2
1

1

1

1

+ = − =
− −
� �ξ ξ ξ ξ� � � �d d

Similarly =

�

�
�
�

�
�
�

�

	
�
�



�
�

t l
T

T
x

y

34

2

0

0

F

F

F

F

N T ds
t l

T

T

y

y

y

y

T
y

x

y

1

2

3

4

34

2

0

0

�

�
�
�

�
�
�

�

	
�
�



�
�

= =

�

�
�
�

�
�
�

�

	
�
�



�
�

� � �

In this problem,

l34
2 2

700 300 700 500 447 21= − + − =� � � � . mm

    t = 20 mm
   T

x
 = 10 N/mm2

       
∴

�

�
��

�
�
�

�

	
��



�
�

=

�

�
��

�
�
�

�

	
��



�
�

F

F

F

F

x

x

x

x

1

2

3

4

0

0

4472136

4472136

.

.
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F

F

F

F

y

y

y

y

1

2

3

4

0

0

67082 04

67082 04

�

�
�
�

�
�
�

�

	
�
�



�
�

=

�

�
��

�
�
�

�

	
��



�
�

.

.

%��������

1. Explain the isoparametric concept in finite element analysis.
2. State and explain the three basic laws on which isoparametric concept is developed.
3. Discuss the convergence criteria for isoparametric elements.

4. Explain the terms isoparametric, subparametric and superparametric elements.
5. Write short notes on

(a) Uniqueness of mapping of isoparametric elements.

(b) Jacobian matrix
(c) Gaussian quadrature integration technique.

6. Explain the isoparametric elements and their advantages.

7. For the isoparametric quadrilateral elements shown in Fig. 13.12, determine

 (a) Cartesian coordinates of the point P which has local coordinates ξ = 0 57735.  and

η = 057735. (Ans. x = 6.36603,  y = 4.75088)

 (b) Local coordinates of the point Q which has Cartesian coordinates (7, 4)

(Ans. ξ = 0 91255. , η = 0 21059. )

����������

8. For the element shown in Fig. 13.13, assemble Jacobian matrix and strain displacement matrix for
the Gaussian point (0.57735, 0.57735).

y

x
0

4 (–1, 1)
3 (1, 1)

2 (1, –1)1 (– 1, –1)

�

�

P.

3 (8, 6)
4 (2, 5)

1 (3, 1) 2 (6, 1)

Q.
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����������

[Ans. J =
�
�


�
�
�

150012 0

0 20 0016

.

.

B =
− × × −

− × − ×
− − × − × ×

�

�





�

�

�
�
�

− −

− −

− −

7 044 10 0 7 044 10 0 0 026292 0 0 026292 0

0 5 283 10 0 0 019719 0 0 019719 0 5 283 10

0 019719 7 044 10 0 019719 7 044 10 0 019719 0 026292 5 283 10 0 026292

3 3

3 3

3 3 3

. . . .

. . . .

. . . . . . . .

�	
	�	��	�

1. Taig I.C., ‘Structural Analysis by the Matrix Displacement Method’, Engl. Electric Aviation Report,
No. 5017, 1961

2. Irons B-14, ‘Engineering Application of Numerical Integration in Stiffness Method’, Journal of
A1AA, 14 2035–7, 1966.

y

x
1 (0, 10)

(0, 40) (30, 40)

2 (30, 10)
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��

������	�
��
����
���
�	�	�
������

���� ������������

In Chapter 3 direct stiffness formulation of beams was discussed, which is actually stiffness matrix method
for the analysis. In Chapter 5 shape functions were derived for two noded beam element by considering
polynomial interpolation function and also using Hermitian functions both ultimately result into same shape
functions. Assembling of strain displacement matrix [B-matrix] was presented in Chapter 4. In this chapter
assembling of stiffness matrix for a two noded beam element by variational approach is presented. Taking
simple problems for hand calculation, formulation of system equations and solution procedure is explained.
The members of rigid frames are similar to beam elements, but their orientation in global system are different.
Transforming the stiffness equations of beam element to global system is required before assembling global
system. This aspect is presented and illustrated with numerical problem taking simple frame analysis.

It was found difficult to extend the beam theory discussed above to plate bending. A new beam theory
was developed in which lateral deflection w and rotation θ x  

were decoupled and treated as independent
variables. However it needs inclusion of shear deformation and hence shear strain energy. Hence the beam
theory becomes Co-continuity problem. This is known as Timoshenko Beam theory and the element developed
on this theory is also presented in this chapter.

���� ���
��� !"�"
�"��#
�$�
�����
� �����"

The typical beam element is shown in Fig. 14.1. Note the orientation of axes is as per the right hand thumb
rule.

�	��
���� ��������	�
�����	����

The nodal variable vector is

δ δ δ δ δ θ θ� �T
w w= =1 2 3 4 1 1 2 2

le

x = 0 x l= e

s = 0 s = 1

� = –1 � = 0 � = 1

x
le�
2

s �
1

2z

y

x
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where w
i
–lateral displacement at node i.

θ i –Rotation at node i.

In Chapter 5 the shape functions for such element have been determined as,

           N l
x

l

x

le e
1

2

2

3

3

3 2= − +

          N x
x

l

x

le e
2

2 3

2

2
= − +

N
x

l

x

le e
3

2

2

3

3

3 2
= −  and N

x

l

x

le e
4

2 3

2
= − + …(14.1)

If non-dimensiolising is done using s
x

le
= ,  the shape functions are (Chapter 4, Art 4).,

N
1
 = 1 – 3s2 + 2s3

 N
2
 = l

e 
s(s – 1)2 …(14.2)

 N
3
 = s(3 – 2s)

 N
4
 = l

e 
s2(s – 1)

If we use non-dimensiolising concept as used in isopatametric formulation i.e. ξ  varying from –1 to 1,

then the shape functions are

  N1

32 3

4
= − +ξ ξ

 N
le

2

2 3

2

1

4
=

− − +ξ ξ ξ
…(14.3)

N3

32 3

4
= + −ξ ξ

 and N
le

4

2 3

2

1

4
= − − + +ξ ξ ξ

where   ξ = −2
1

x

le
.

�����%
�&�'�%&��
����%	��

From basic solid mechanics we know

        M EI
y

x
= ∂

∂

2

2

Since y N
e

= δ� � = N N N N
e1 2 3 4 δ� �
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we get   M EI
N

x

N

x

N

x

N

x
e e

=
�

�
�
�

�

�
�
�

∂
∂

∂
∂

∂
∂

∂
∂

δ
2

1
2

2
2

2

2
3

2

2
4

2 � �

          = D B
e

δ� � …(14.4)

where     [D] = EI …(14.5)

    B
N

x

N

x

N

x

N

x
=
�

�
�
�

�

�
�
�

∂
∂

∂
∂

∂
∂

∂
∂

2
1

2

2
2

2

2
3

2

2
4

2
…(14.6)

which is stress resultant curvature matrix.

Strain Energy

From basic solid mechanics we know strain energy dU
e
 in an elemental length dx is given by

         dU
M

EI
dVe = 1

2

2

           U EI
y

x

I

EI
dxe

le

=
	

�
��


��
���1

2

2

2

2

0

∂
∂

= �1

2

2

2
0

EI
y

x
dx

le
∂
∂

= �1

2
0

EI B B dxe
T

le

e
δ δ� �� � � �

  = �1

2 2
0

δ δ ξ� � � �e

T T

e

le
eEI B B

l
d

since              ξ = −2
1

x

le

       ∴ = �U EI
l

B B de
e

e

T T

e

le

2
0

δ δ ξ� � � � …(14.7)

Now,           B
N

x

N

x

N

x

N

x
=
�

�
�
�

�

�
�
�

∂
∂

∂
∂

∂
∂

∂
∂

2
1

2

2
2

2

2
3

2

2
4

2

since              ξ = −2
1

x

le

        
∂
∂

∂
∂ξ

∂ξ
∂

∂
∂ξ

N

x

N

x

N

l
i i i

e

= = 2
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    ∴ = �
��

�
�� =

�
��

�
��

∂
∂

∂
∂

∂
∂

∂
∂ξ

∂
∂ξ

2

2

2 2N

x x

N

x l l

Ni i

e e

i

   =
4
2

2

2l

N

de

i∂
ξ

      ∴ =
�

�
�
�

�

�
�
�

B
l

N N N N

e

4
2

2
1

2

2
2

2

2
3

2

2
4

2

∂
∂ξ

∂
∂ξ

∂
∂ξ

∂
∂ξ

   = −
−

−
+�

�
�
�

�

�
�
�

4 6

4

1 3

4

6

4

1 3

42l
l l

e
e e

ξ ξ ξ ξ� � � �

   = − − − +
1

6 1 3 6 1 3
2l

l l
e

e eξ ξ ξ ξ� � � � …(14.8)

   ∴ =
− −

−
+

�

�

�
�
�
�
�

�

�

�
�
�
�
�

− − − +B B
l

l

l
l

l l
T

e

e

e

e
e e

1

6

1 3

6

1 3

1
6 1 3 6 1 3

2 2

ξ
ξ

ξ
ξ

ξ ξ ξ ξ
� �

� �

� � � �

=

− − +

− − − + −
− +

+

�

�

�
�
�
�
�

�

�

�
�
�
�
�

1

36 1 3 6 36 6 1 3

1 3 6 1 3 1 3 1 3

36 6 1 3

1 3

4

2 2

2 2 2

2

2 2
l

l l

l l l

SYM l

l
e

e e

e e e

e

e

ξ ξ ξ ξ ξ ξ
ξ ξ ξ ξ ξ

ξ ξ ξ
ξ

� � � � � �
� � � � � �� �

� �
� �

…(14.9)

Now noting that

ξ ξ ξ ξ ξ ξd d d= = =
− − −
� � �2 0

2

3
1

1
2

1

1
3

1

1

, , and

We can write

 
U EI

l

l

l l

l l l

SYM l

l

e e

T e

e

e e

e e e

e

e

e
=

−
−

−

�

�

�
�
�
�

�

�

�
�
�
�

1

2 2

1

24 12 24 12

8 12 4

24 12

8

4

2 2

2

δ δ� � � �

=

−
−

−

�

�

�
�
�
�

�

�

�
�
�
�

1

2

12 6 12 6

4 6 21

12 6

4

3

2 2

2

δ δ� � � �T

e

e e

e e e

e

e

e

EI

l

l l

l l l

SYM l

l

= 1

2
δ δ� � � �

e

T

e e
k …(14.10a)
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Where [k]
e
 is element stiffness matrix and

is equal to 
EI

l

l l

l l l

SYM l

l
e

e e

e e e

e

e

3

2 2

2

12 6 12 6

4 6 21

12 6

4

−
−

−

�

�

�
�
�
�

�

�

�
�
�
�

…(14.10b)

Potential Energy

Potential energy of an element is equal to strain energy minus the work done by the external forces acting on
the element. Thus

∏ = − − ∑ − �
��
�
����e e m m k

k

l

U pydx P Y M
dy

dx

e
1

2
0

…(14.11)

Where p—Distributed load per unit length

P
m
—Concentrated load at point m

M
k
—External moment applied at k.

The strain energy term U
e
 has been already derived. The work done by external loads can be assembled

as explained below:

Due to Uniformly Distributed load P/unit length:

pydx p N N N N
l

d
e

e� �= 1 2 3 4 2
δ ξ� �

=
− + − − + + − − − + +�

�
�
�

�
�
�
�−

�pl l l
de e e

e2

2 3

4 2

1

4

2 3

4 2

1

4

3 2 3 3 2 3

1

1
ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ δ ξ� �

Noting that         C d C d dξ ξ ξ ξ ξ= = =
− − −
� � �2 0
1

1

1

1
3

1

1

,  and

        ξ ξ2

1

1
2

3
d =

−
� ,  we get

py dx
pl l le e e

e
= × −�
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�
�� × − +�

��
�
��

�
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�
��−

� 8
2 2

2
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2
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2 2

2
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3
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1
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      = −
�

�
�
�

�

�
�
�

pl pl pl ple e e e
e2 12 2 12

2 2

δ� � …(14.12)

This equivalent load on the element is shown in the Fig. 14.2. The point loads like P
m
 and M

k
 are readily

taken care by introducing nodes at the points of application.
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Thus work done by external load is assembled. Let it be represented by

F F F F Fi iδ δ δ δ δ∑ = + + +1 1 2 2 3 3 4 4

        = δ� � � �e

T

e
F …(14.13)

�	��
���� ��������	
�	���������������

Minimization of Potential Energy

It is to be noted that, in solid mechanics, minimization of potential energy of entire structure is to be assembled.
In finite element analysis the total potential energy of the system is considered as the summation of total
potential energy of the elements. Thus

           ∏ = ∑ ∏e

= ∑ − ∑U Fe e

T

e
δ� � � � = −1

2
F k F

T T� � � � � � � �δ δ

where { }δ  and {F} are nodal unknown vector and load vector respectively. From the principle of minimization
of potential energy we get,

            
d

d

∏
=

δ
0

k Fδ� � − = 0

or          k Fδ� � = …(14.15)

In finite element analysis, element stiffness matrix [k]
e
 is assembled and placed in global matrix at

appropriate place. When this process is completed for all the elements, we get global stiffness matrix [k].
Similarly global load vector {F} is assembled.

The necessary boundary conditions are imposed by (i) Elimination Method if the hand calculations are
made or by (ii) Penalty Method if computers are used.
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le
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The solution of equation 14.14 gives the displacement vector { }δ .  The required stress resultants are
determined for each element.

Moment at nodes:

M EI B
e

= δ� �

= − − − +
EI

l
l l

e
e e e2

6 1 3 6 1 3ξ ξ ξ ξ δ� � � � � � …(14.15)

Shear forces at nodes

  V
dM

dx

dM

d

d

dx
= − = −

ξ
ξ = − 2

l

dM

de ξ

= −
2

6 3 6 3
3

EI

l
l l

e
e e e

δ� � = −
EI

l
l l

e
e e e3

12 6 12 6 δ� � …(14.16)

The reactions at supports are nothing but end equilibrium forces. Hence

R k F
e e e� � � �= −δ …(14.17)
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���( �����������������

For uniformly distributed load the above equation will be
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Note that the above reactions are to be interpreted as per sign conversion i.e. R
1
, R

2
 are positive in positive

direction of z-axis (i.e. downward) and R
2
, R

4
 (the end moments) are positive when they are clockwise (refer

Fig. 14.3).

Example 14.1: Analyse the beam shown in Fig. 14.4 (a) by finite element method and determine the end
reactions. Also determine the deflections at mid spans given

E = 2 × 105 N/mm2 and I = 5 × 106 mm4

le

R
1

R
3

R
4

R
2
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�	��
����

Solution: Using kN and m units throughout,

E = × = × × = ×2 10 2 10
10

10
2 105 2 5

6

3
8 2N/mm kN/m

 I = 5 × 106 mm4 = 5 × 10–6 m4

       ∴  EI = 2 × 108 × 5 × 10–6 = 1000kN-m2

Let the two elements be numbered as shown in Fig. 14.4 (b). The nodal displacement vector is

        δ δ δ δ δ δ δ� �T = 1 2 3 4 5 6

k
E I
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k2

3 4 5 6

8

12 30 12 30

30 100 30 50

12 30 12 30

30 50 30 100

3

4

5

6

=

−
−

− − −
−

�

�

�
�
�
�

�

�

�
�
�
�

←
�
δ Global Numbers

5 m 5 m

12 kN/m
24 kN/m

(a)

(b)

1 2 21 3

� 1 � 3 � 5

� 2 � 4
� 6



250 Finite Element Analysis

∴ =

−
−

− −

−
− − −

−

�

�

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

+ +
−

+
−

+

←
�

k 8

12 30 12 30

30 100 30 50

12 30 12 30

30 50 30 50

12 30 12 30

30 50 30 100

12
12

30
30

30
30

100
100

1 2 3 4 5 6 δ

1

2

3

4

5

6

global numbers

      
∴ =

−
−

− − −
−

− − −
−

�

�

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

←
�

k 8

12 30 12 30 0 0

30 100 30 50 0 0

12 30 24 0 12 30

30 50 0 200 30 50

0 0 12 30 12 30

0 0 30 50 30 100

1 2 3 4 5 6

1

2

3

4

5

6

global numbersδ

Consistent load vector is given by
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∴  The stiffness equation is
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Boundary conditions:

In the given problem the boundary conditions are

δ δ δ δ1 2 3 5 0= = = =

Imposing them by elimination method, we get
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End reactions
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For element 2
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Deflection at mid span

      y N N N N
e
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l le e � �

For mid span ξ = 0
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For element 2,

∴ = × − ×
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0
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0
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centre . . . .

= –0.02790 m = –27.9 mm
= 27.9 mm, downward Answer

Example 14.2: A beam of length 10 m, fixed at one end and supported by a roller at the other end carries a 20
kN concentrated load at the centre of the span. By taking the modulus of elasticity of material as 200 GPa and
moment of inertia as 24 × 10–6 m4, determine:

1. Deflection under load
2. Shear force and bending moment at mid span
3. Reactions at supports

Solution: The beam is shown in Fig. 14.5 (a). Its finite element idealization is shown in Fig. 14.5 (b). In this
problem,

E = 200 GPa = 200 × 109 N/m2 = 200 × 106 kN/m2

�	��
���)

5 m 5 m

(a)

(b)

(c)

� 1 � 3 � 5

� 2 � 4
� 6

20 kN

37.25

6.25

13.75 13.75
31.25

6.25

0



254 Finite Element Analysis

Nodal displacement vector is

δ δ δ δ δ δ δ� �T = 1 2 3 4 5 6

Stiffness matrix for an element is given by

  
k

E I

l

l l

l l l l

l l

l l l l

i

i i

e

e e

e e e e

e e

e e e e

=

−
−

− − −
−

�

�

�
�
�
�

�

�

�
�
�
�

3

2 2

2 2

12 6 12 6

6 4 6 2

12 6 12 6

6 2 6 4

∴ =

−
−

− − −
−

�

�

�
�
�
�

�

�

�
�
�
�

←
�

k1

1 2 3 4

4800

125

12 30 12 30

30 100 30 50

12 30 12 30

30 50 30 100

1

2

3

4

δ, Global Numbers

Similarly,

        k2

3 4 5 6

4800

125

12 30 12 30

30 100 30 50

12 30 12 30

30 50 30 100

3

4

5

6

=

−
−

− − −
−

�

�

�
�
�
�

�

�

�
�
�
�

←
�
δ, Global Numbers

∴ =

−
−

− − −
−

− −
−

�

�

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

←
�

k
4800

125

12 30 12 30 0 0

30 100 30 50 0 0

12 30 24 0 12 30

30 50 0 200 30 50

0 0 12 30 12 50

0 0 30 50 30 100

1 2 3 4 5 6

1

2

3

4

5

6

, Global Numberδ

The consistent load vector is directly available as

F
T� � = −0 0 20 0 0 0

The stiffness equation is

k Fδ� � � �=

The boundary conditions are,

δ δ δ1 2 5 0= = =
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Imposing these boundary conditions by elimination method, the stiffness equation reduces to
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By using direct inversion, we get
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.

.

Deflection under the load = δ3  = –0.03798 and rotation under the load = δ 4  = –3.2552 × 10–6
 radians

Shear Force and bending Moment at midspan: Considering element (1), for mid span of beam ξ = 1

         
M
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l
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e e= −

−
−

�

�

�
�
�
�

�

�

�
�
�
�

2
6 2 6 4

1

0

0

182 292

15625

.

.

  = −
−
−

�

�

�
�
�
�

�

�

�
�
�
�

1

25
6 10 6 20

0

0

182 292

15625

.

.

 = 31.250 KN m Answer

V
EI

EI
= × − ×

−
−

�

�

�
�
�
�

�

�

�
�
�
�

125
12 6 5 12 6 5

1

0

0

182 292

15625

.

.

 = 31.75 kN Answer

Considering element 2, shear force at mid span may be found as 6.25 kN
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End Reactions

At support on left hand side, from element 1,
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Considering element 2, the reactions at right hand supports can be obtained
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The reactions and shear force and bending moment at midspan are shown in Fig. 14.5 (c).

Example 14.3: Derive the expression for consistant load, which varies linearly from p
1
 at node 1 to p

2
 at node

2 on a beam element of length l
e
.

Solution: The element with given load is shown in Fig. 14.6.

�	��
���*

The load intensity at a point x distance from node 1 is given by

     p p p p
x

le
= + −1 2 1� �

= + −
+

p p p
le

1 2 1

1
� � � �ξ

 since 
x

le
= +1

2

ξ

        =
−

+
+

p p1 2
1

2

1

2

ξ ξ
…(14.18)
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1 2
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Similarly the other terms may be evaluated. Finally we get,
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Example 14.4: Determine the consistent nodal vector due to loads acting on the beam shown in Fig. 14.7.

�	��
���+

Solution: The beam is idealized with two elements as shown in Fig. 14.7 (b). Due to concentrated load, the
nodal vector is directly obtained since there is a node directly under the load. It is given by

F =
−

	




�
�
��

�

�
�
��



�

�
�
��

�

�
�
��

0

0

100

0

0

0

Due to udl, it is given by the expression

   

F

pl

pl

pl

pl

e

e

e

e

e

� � =

−

	




�
�
�
��

�

�
�
�
�
�



�

�
�
�
��

�

�
�
�
�
�

2

12

2

12

2

2

∴ =

− ×

− ×

− ×

− − ×

	




�
�
�
�

�

�
�
�
�



�

�
�
�
�

�

�
�
�
�

=

−
−

−

	



��

�
�
�



�
��

�
�
�

F� �

� �

1

20
4

2

20
16

12

20
4

2

20
16

12

40

26 667

40

26 667

1

2

3

4

.

.

δ Global Numbers

(b)

F1 F3 F5

F2 F4
F6

4 m 6 m

(a)

100 kN

20 kN/m



Analysis of Beams and Rigid Frames 259
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∴  Due to udl,
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Hence due to udl and the concentrated load
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The members of a rigid frame differs from the beam in the following two respect:
(i) They carry axial loads also and hence their deformation in axial direction also is to be considered.

(ii) They are oriented in any direction in the plane.

The typical frame element is shown in Fig. 14.8. The element selected is in x – y plane. The right hand

thumb rule is used for the selection of Cartesian coordinates. Let ′ − ′x y  be the local coordinate system.

The nodal displacement vector in local coordinate system is

′ = ′ ′ ′ ′ ′ ′δ δ δ δ δ δ δ� �e

T

e1 2 3 4 5 6 …(14.20)

and the nodal displacement vector in global system is,

δ δ δ δ δ δ δ� �e

T

e
= 1 2 3 4 5 6 …(14.21)
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It may be observed that,

       ′ = + = +δ δ θ δ θ δ δ1 1 2 1 2e e e e el mcos sin

′ = − + = − +δ δ θ δ θ δ δ2 1 2 1 2e e e e em lsin cos

      ′ =δ δ3 3e e

Similarly

           ′ = +δ δ δ4 4 5e e el m

′ = − +δ δ δ5 4 5e e em l

           ′ =δ δ6 6e e

where l, m are direction cosines

         ∴ ′ =δ δ� � � �e e
L …(14.22a)

where L

l m

m l

l m

m l

=

−

−

�

�

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

0 0 0 0

0 0 0 0

0 0 1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0 1

…(14.22b)

′δ1  and ′δ 4  are like the degrees of freedom of bar element while ′ ′ ′δ δ δ2 3 5, ,  and ′δ 6  are like the degrees

of freedom of beam element. Hence the stiffness matrix of frame element in the local coordinate system can
be obtained by appropriately placing the two stiffnesses as

� '5

� '6 � '4

� '2

y '

� '3
� '1

x '

y

x

z

� 5

� 6

� 4

� 2
y '

� 3

� 1

x '

y

x

(a) (b)

�
�
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l

EI

l
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l
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l
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l
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l
EI

l
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l
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l
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l
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EI

l

e

e e

e e e e

e e e e

e e

e e e e

e e e e

=
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−

− − −

−
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�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

0 0 0 0

0
12 6

0
12 6

0
6 4

0
6 2

0 0 0 0

0
12 6

0
12 6

0
6 2

0
6 4

3 2 3 2

2 2 2

3 2 3 2

2 2

…(14.23)

From equation 14.10, we know strain energy of the element is given by

U ke e

T

e e
= ′ ′ ′

1

2
δ δ� � � �

But from equation 14.22 ′ =δ δ� � � �e e
L

 ∴ = ′U L k Le e

T

e e
δ δ� �� � � �

= ′δ δe
T T

e
L k L� � � � = δ δ� �e

T

e e
k

where   k L k L
e

T

e
= ′ …(14.24)

[k]
e
 is element stiffness matrix in global coordinate system.

Using stiffnesses matrices of all elements, system stiffness matrix [k] can be assembled.

 ���
.�/%��

�	��
���0 �	�����	������������������������
�����	���

y '

x '

y y

x x

ple
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Figure 14.9 shows the uniformly distributed load acting on the typical element. Noting that the load

acting is in ′y -direction, the nodal force system in local coordinate system is

′ = −
�

�
�
�

�

�
�
�

F
pl pl pl pl

e
e e e e� � 0

2 12
0

2 12

2 2

…(14.25)

By transforming it to global system, we get, { } [ ] { }F L Fe
T

e= ′ .  Using such expressions for all elements
the load vector of the system due to the distributed loads can be assembled. The load vector due to concentrated
loads and external moments can be directly added to global load vector, since at all such loads nodes are
selected.

The final system equation is [ ] { } = { }k Fδ  as usual. After introducing boundary conditional, the system
equations are solved to get nodal displacement vector { }δ .  Then the required stress resultants can be assembled.

Example 14.5: Assemble element stiffness matrices for the rigid frame shown in the Fig. 14.10 (a). Explain
how do you proceed further to solve the problem. Take,

E = 200 GN/m2

  I
o
 = 40 × 10–6 m4

A = 4 × 10–3 m2

�	��
����1

4 m

3 m

30 kN

20 kN/m

2I0

I0 I0

2

1

3

1

2 3

4

(a)

5

46

8

7
9

11

10
12

2

1
3

(b)
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Solution: Figure 14.10 (b) shows the positive directions of the 12 nodal displacements. Thus in this problem

δ δ δ δ� � � �T = 1 2 12...

For any element, stiffness matrix is given by

k

EA
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l
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l
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0
6 4

0
6 2

0 0 0 0

0
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0
12 6

0
6 2

0
6 4

3 2 3 2

2 2

3 2 3 2

2 2

Let us take element and nodal connectivity as given below:

Element Node 1 Node 2

1 1 2

2 2 3

3 4 3

For element No. 1
      l

e
 = 3, EA = 200 × 109 × 4 × 10–3 = 800 × 106 N

  = 800 × 103 kN

   EI = EI
0
 = 200 × 109 × 40 × 10–6 = 800 × 103 N – m2 = 800 kN – m2

          
∴ ′ =

−
−
−

−
− − −

�

�

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

k
1

800

333333 0 0 333333 0 0

0 0 444 0 667 0 0 444 0 667

0 0 667 1333 0 0 667 0 667

333333 0 0 333333 0 0

0 0 444 0 667 0 0 444 0 667

0 0 667 0 667 0 0 667 1333

. .

. . . .

. . . .

. .

. . . .

. . . .

For this element θ = 90,  l = =cosθ 0  m = =sinθ 1

∴  The transformation matrix is
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          L =

−

−
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0 1 0 0 0 0
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0 333333 0 0 333333 0
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1 2 3 4 5 6

. . . .

. .

. . . .

. . . .

. .

. . . .

1

2

3

4

5

6

, Global Numbersδ

For element No. 2, local and global coordinates are the same, and l
e
 = 4m, I

e
 = 2I

o
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k k
2 2

4 5 6 7 8 9

800

250 0 0 250 0 0

0 0 375 0 750 0 0 375 0 750

0 0 750 2 0 0 0 75 10
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, Global Numbersδ

For element No. 3, if we take it as member 4–3, we get the stiffness matrix identical to element 1.

However nodal displacement vector for it is [ ].10 11 12 7 8 9δ δ δ δ δ δ  Hence

k
3

10 11 12 7 8 9

800

0 444 0 0 667 0 444 0 0 667

0 333333 0 0 333333 0
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(i) Stiffness matrix of the system [k] is of size 12 × 12. It can be assembled by placing the elements
of the element stiffness matrices [k]

1 
[k]

2,
 and [k]

3
 in the appropriate positions of 12 × 12 matrix.

(ii) There are six boundary conditions, namely δ δ δ δ δ δ1 2 3 10 11 12 0= = = = = = .

They are imposed either by elimination method or by penalty method. When hand calculations
are made the elimination method is ideal. In this method, the elements corresponding to rows and
columns corresponding to 1, 2, 3, 10, 11 and 12 get eliminated and the stiffness matrix reduces to

6 × 6 size corresponding to displacement vector { } [ ].δ δ δ δ δ δ δT = 4 5 6 7 8 9  If penalty

method is used, which is suitable for computer applications, 12 × 12 size of stiffness matrix is
maintained but diagonal elements corresponding to the rows 1, 2, 3, 10, 11 and 12 are increased
by very large numbers.

(iii) The equivalent nodal forces due to the applied loads are as shown in Fig. 14.11.
Aprat from these loads, there is a 30 kN load in the direction 4. Hence the load vector is

{ } [ ].F T = − − −0 0 0 30 0 40 26 667 0 40 26 667 0 0 0. . .  In case of elimination

method of imposing boundary conditions, we get reduced load vector corresponding to the
directions 4, 5, 6, 7, 8 and 9 as

F
T� � = − − −30 0 40 26 667 0 40 26 667. . .



266 Finite Element Analysis

�	��
�����

(iv) The system equations may be solved to get the nodal displacement vector.
(v) The member forces may be calculated as usual. The tensile force as positive is given by,

P
EA

le
= −δ δ4 1� � …(14.26)

The bending moment and shear forces are obtained by:

M
EI

l
l l

e
e e= − − − +
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� � � �
…(14.27)

   
V

EI

l
l l

e
e e= −
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6

12 6 12 6

δ
δ
δ
δ

…(14.28)

(vi) The end reaction vector, +ve in the +ve direction of degrees of freedom is obtained by the expression

R k F� � � � � �= −δ …(14.29)
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The typical element is shown in Fig. 14.12. In this, there are six degrees of freedom at each node. Hence total
degrees of freedom are 12. It may be noted that the rotations are about the axes but not in the directions of
axes. Thus,

         δ δ δ δ δ� �T = 1 2 3 12...

= u v w u v wx y z x y z1 1 1 1 1 1 2 2 2 2 2 2θ θ θ θ θ θ …(14.30)
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The 12 × 12 stiffness matrix in local coordinate system, may be written down as shown in equation 14.31
by carefully noting the contribution of each nodal displacement.
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…(14.31)
If the member axes do not coincide with global axes, we need transformation matrix. Figure 14.13 (a)

shows arbitrary orientation of the member axis in global system and Fig. 14.13 (b) shows the orientation of
principal axes of the member. Then the transformation matrix T works out to be

L

L

L

L

L

=

′
′

′
′

�

�

�
�
�
�
�

�

�

�
�
�
�
�

0 0 0

0 0 0

0 0 0

0 0 0

…(14.32)

where L is a 12 × 12 matrix and each sub matrix on right hand side is a 3 × 3 matrix. [ ]′L  matrix is given by

′ =
− −

+
+

− +

+

−

+
− +

−
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x y z

x y z

x y
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y z x

x z

x y z

x z

x z
y z x

x z

cos cos
cos

cos sin

sin cos
sin

sin cos

α α
α

α α

α α
α

α α

2 2

2 2

2 2

2 2

2 2

2 2

…(14.33)
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In the above expression,

C
x x

lx
j i

e

=
−

, C
y y

ly
j i

e

=
−

 and C
z z

lz
j i

e

=
−

       l x x y y z ze j i j i j i= − + − + −� � � � � �
2 2 2

For the derivation of above transformation matrix reorders may refer to Krishnamurthy[1]
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In the theory used so far, the assumption was made that the plane section before bending remains plane even
after bending. The plane section remain plane even after bending, means shear deformations are neglected. In
most of the beams bending is associated with the shear. Elementary bending theory shows that shear stress is
zero at extreme fibers and is maximum at the centroid of the cross section. These longitudinal stresses cause
varying strain in the plane section. As a result of these shear stresses, plane section will not remain plane after
bending. If the beam thickness is small, these stresses are small and hence the assumption that plane section is
plane even after bending, gives good results; but in thick beams this assumption will not give good results.

Timoshenko beam theory recognieses that the action of the shear force causes a shear strain. This causes
warping of the beam element as shown in Fig. 14.14. The shear stress in general can be express as

�	��
����� �������
�����	����

τ φxz xzG= …(14.34)

and the shear force as

Q dz bxz= � τ …(14.35)

where φxz  is the shear strain at distance z from neutral axis at section x.

However the use of general equations 14.34 and 14.35 complicates the problem and a simplified approach
is possible. In order to account for non-uniform stress distribution at a cross section while still retaining one
dimensional approach, the equations 14.34 and 14.35 are modified using a shear correction factor as follows:

b
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        τ α φxz xG= …(14.36)

and Q A AGxz x= =τ α φ …(14.37)

The shear correction factor ' 'α  is a function of the cross sectional shape and Poisson ratio µ.  The term

' 'αA  is the ‘shear area’ of the section associated with shear and may be denoted as A
s
. Thus

A As = α  where α < 1 …(14.38)

Values of α  for various cross sectional shapes are given in the solid mechanics books by DYM C.L. &
Shames I.H. [2] and Ugural A.C. and Fenster S.K. [3].

The value ofα  for a rectangular section is 5/6. Hence,

φ = Q

G As
…(14.39)

Timoshenko beam theory averages the effect of shear strain over the cross section i.e. it takes,

φ θ
∂
∂

= −
w

x …(14.40)

where θ  is the angle through which the face of the cross section rotates after deformation as shown in Fig.
14.15.
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Now, in a beam element

M EI
d

dx
= θ

∴  Strain energy due to flexure = = �
��
�
���� M

EI
dx

EI d

dx

le2 2

0
2 2

θ
dx and strain energy due to shear

= ×� 1

2
 shear stress × shear strain × dV

�

�
�

w
x

Before deformation After deformation
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    = � 1

2
τ φxy dV

= � 1

2
2G dVφ = −�
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�
���1

2

2

0

G A
w

x
dxs
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θ ∂
∂

∴  Total strain energy of the element is
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∂

…(14.41)
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Since according to Timoshenko theory θ θ=
dw

dx
,  and w are decoupled i.e. they are independent of each

other, at every node there are two independent displacement components θ  and w. In a two noded beam
element they vary linearly. Thus,

w = N
1
 w

1
 + N

2
 w

2

and θ θ θ= +N N1 1 2 2

In matrix form,

w N N

N N

w

wθ
θ

θ
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1 2

1 2

1
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2

2

0 0

0 0 …(14.42)

where N
1
 and N

2
 are interpolation functions i.e. N

x

le
1 1= −  and N

x

le
2 =

Using isoparametric concept, we have

x N xi i= ∑ …(14.43)

Now,            
d

dx

N

x
i

i

i

θ ∂
∂

θ=
=
∑

1

2

…(14.44)

 ∴ = −φ θ ∂
∂
w

x
= −

= =
∑ ∑N

N

x
wi i

i

i
i

i

θ ∂
∂

1

2

1

2

…(14.45)

Strain vector

ε
κ
φ

� � =
	


�

�
�
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where κ  is curvature = 
d

dx

θ

∴ =
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=
− −
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The stress resultants M and Q are related to strain as

σ ε=
	


�

�
�

=
M

Q
D � �

Now M = EI κ

For rectangular section I bh= 1

12
3

       ∴ =D
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bh11
3

12

and             Q A A hs xy s= =τ φ =
+

=α
µ

φ α φA
E bh

E
2 1 2� �

∴ =
	


�

�
�

=

�

�

�
�
�
�

�

�

�
�
�
�

	


�

�
�

=
�
�
��

�
�
��
	


�

�
�

σ
α

κ
φ α

κ
φ

� � M

Q

E
bh

bh
E

Ebh h12
0

0
2

12
0

0 6

3
2

∴  Assuming µ = 0,  D matrix for rectangular section is
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…(14.48)

          ∴ = �κ
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Separating bending and shear terms, we can write

κ α
e

e

e

e e e e
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e

l
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i.e.,    κ κ κ
e be se

= + …(14.49)

where [ ]κ be  and [ ]κ se  are the contributions of bending and shear to the total stiffness. The integrations can be

performed to get [ ]κ be  and [ ]κ se as shown below:

           κ
se

e
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l
=
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−
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…(14.50)
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…(14.51)

The above formulation gives good results for moderately thick beams. For thin beams (  very large),
l

h
e

the results obtained by this formulation are not correct. The shear term, which should tend to zero in such
cases, do not tend to zero. This is called shear locking. The shear stiffness is increasingly constrained. This is
called spurious constraint. There are two popular remedies for the elimination of this type of errors:

(i) Reduced Integration Technique
(ii) Using field consistency element

(i) Reduced Integration Technique: If shear stiffness in equation 14.49 is integrated with one point Gaussian
technique, we get
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since  x =
+1

2

ξ
,  dx d=

1

2
ξ

and       f d fξ ξ ξ� � � �= =2 0

In case of two point integration sampling points are at ± 1

3
 and weight function W

i
 = 1.

Hence
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Now consider the analysis of a cantilever beam with single element (refer Fig. 14.16). The stiffness
matrix of the beam is

k k k k
e be se

= = +

�	��
����*

M

P

l

b = 1

h
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Applying the boundary conditions that w
1
 = 0, θ1 0=  and defining ψ = =

Eh

l

Eh

le

3 3

12 12
 and

β α α= =Gh

l

Gh

le

,  we get the equilibrium equation from one point quadrature as,
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i.e.,        
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Solving the above equation, we get

w
l

P M2

2

4

1 1

2
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+
ψ β ψ

…(14.54)

and      θ
ψ2

2=
+l

P M
…(14.55)

In case of thin beam, β ψ≥ .  Hence equation 14.54 reduces to

w
lP

M2
1

2 2
= +�

��
�
��ψ …(14.56)

and θ2  remains same as equation 14.55. Thus the beam deformation is solely due to bending as shown by

equation 14.55 and 14.56. Hence for thin beams one point integration gives correct results.
If two point quadrature is used for integration, after applying the boundary conditions we get the equations

as
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Solving for w
2
 and θ 2 , we get

w
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l
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l
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2 2
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β ψ β ψ β
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=
+

+

M
l

P

l

In case of thin beams β ψ≥ .  Hence we get

w
P

M
l

2

4 6
=

+

β
…(14.57)

and   θ
β2 2

6 2
=

+l P M

l

� �
…(14.58)

The above two equations show that the free end deformation depends on the coefficient β  correspongind

to shear deformation, which is not true in case of thin beams. Hence two point integration (equations 14.57
and 14.58) lead to erroneous results.

Thus the reduced integration (1 point Gaussian integration instead of 2 point Gaussian integration) gives
better results than the exact integration. The reduced integration technique is used to get good results for thin
beams.

(ii) Field Consistant Element Formulation: Let us first see how the element formulation is field inconsistent
in the case of very thin beams. In the formulation we have taken,

w N N
w

w
N w N w=
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= +1 2
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2
1 1 2 2

and θ
θ
θ

θ θ=
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2
1 1 2 2

where             N1
1

2
=

− ξ
 and N2

1

2
=

+ ξ

and              ξ = −2
1

x

le
rearranging the terms, we get

 w w w= − + +1

2

1

21 2
ξ ξ = + + −w w w w1 2 2 1

2 2
ξ  = +a a1 2ξ
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where a
w w

1
1 2

2
= +

  and a
w w

2
2 1

2
= −

similarly   θ ξ= +b b1 2

where   b1
1 2

2
=

+θ θ
 and b2

2 1

2
= −θ θ

Now bending strain

  κ
θ θ

ξ
ξ= = =d

dx

d

d
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dx l
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2
2

and shear strain

  φ θ ξ ξ
ξ
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Strain energy due to bending is given by,

U
EI d

dx
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…(14.59)

and strain energy due to shear is

U
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dxs
s= � 2

2φ� � = − +�
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b
l

a b dxs

2

2
1 2 2

2

ξ …(14.60)

As the thickness approaches zero, the shear strain energy should vanish and bending strain energy should
exist.

i.e., b
l

a b1 2 2
2

0− + →ξ

i.e., b
l

a1 2
2

0− → …(14.61)

and b2 0→ …(14.62)

The terms corresponding to condition 14.61 correspond to both the strain fields flexure and shear. Hence
it is called field consistant term. The constraint corresponding to equation 14.62 contains the term corresponding
only to flexure field. If b2 0→ , the strain energy due to bending tends to zero, which should not happen.
Hence this constraint requirement in the limiting case is spurious and it is this requirement which causes shear
locking.

To get rid of this situation in the limiting case, the function smoothening is required i.e. alter the terms to
over come this situation. This is achieved by making b

2
 = 0 in the shear strain field i.e. by taking

θ
θ θ

= =
+
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1 2

1
 in the shear field

Thus, θ
θ θ θ
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i.e. in shear field interpolation function for θ  will be taken as N N1 2
1

2

1

2
= �
��

�
��

. This smoothening is

required not only in the shear strain field but even in the shear stress field also.
The greatest advantage of Timoshenko beam element is C1 continuity problem is reduced to Co continuity

problem. The extension of this concept by Mindlin to plate bending problems, (to be discussed in next chapter)
is a great achievement in the plate analysis.

5��"����"

1. Derive the stiffness matrix for a beam element.

2. Analyse the beam shown in Fig. 14.17 using FEM technique. Determine the rotations at the supports.
Given E = 200GPa and I = 4 × 106 mm4.

�	��
����+

(Ans. θ θ θA B C= = − =0 3 0 375 01625. , . ; . )

3. Assemble the stiffness matrix for a plane beam element oriented at angle θ  to the x-axis. Explain
its use in FEA.

4. Assemble element stiffness matrix for the member of plane frame shown in Fig. 14.18, if it is
oriented at angle 30o to the x-axis. Take

E = 200GPa, I = 4 × 10-6 m4 and A = 4 × 10–3 m2.

�	��
����-

(Ans.) 

150 025 86558 012 150 015 086558 012

50 070 0 208 86558 50 070 0 208

08 012 0 208 0 4

150 015 86558 012

50 070 0 208

08

. . . . . .

. . . . .

. . . .

. . .

. .

.

− − − −
− −

−

−

�

�

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

SYM

5 m

y

x1

2

30°

4 m6 m

20 kN/m

A B C
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5. Explain Timoshenko Beam Theory. Discuss its advantages and disadvantages.

6. Explain the term Timoshenko Beam Theory and briefly explain the stiffness formulation for such
element.

7. Explain the term ‘shear locking’ as used in Timoshenko Beam Theory. How this problem is
overcome?

8. Taking the example of a single element cantilever beam, show that single point Gaussian integration
overcomes the problem of shear locking.

9. Explain what is meant by field consistant formulation to overcome shear locking in Timoshenko
Beam Theory. Use the example of a single element cantilever beam.

����������

1. Krishnamoorthy C.S., Finite Element Analysis—Theory and Programming, Tata McGraw-Hill
Publishing Co. Ltd., New Delhi.

2. DYM C.L. and Shames I.H., Solid Mechanics, International Students Edition, McGraw-Hill
Kogakusha Ltd., 1973.

3. Ugural A.C. and Fenster S.K., Advanced Strength and Applied Elasticity, American Elsevier
Publishing Co., New York, 1975.
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Plate is a flat surface having considerably large dimensions as compared to its thickness. Slabs in civil
engineering structures, bearing plates under columns, many parts of mechanical components are the common
examples of plates. In this chapter, we are considering bending of such plates under lateral loads. The bending
properties of a plate depend greatly on its thickness. Hence in classical theory we have the following groups

(i) thin plates with small deflections
(ii) thin plates with large deflections, and

(iii) thick plates

In thin plates with small deflections theory, the following assumption are made

(a) There is no deformation in the middle plane of the plate. This plane remains neutral during bending.
(b) Points of the plate lying initially on a normal to the middle surface of the plate remain on the

normal to the same surface even after bending.
(c) The normal stresses in the direction transverse to the plate are negligible.

This theory is satisfactory for plates with ratio of thickness to span exceeding 
1

10
 and the ratio of maximum

deflection to thickness less then 
1

5
.  Many engineering problems lie in the above category and satisfactory

results are obtained by classical theories of thin plates.
Stresses in the middle plane are negligible, if the deflections are small in comparison with thickness. If

the deflections are large, the in plane stresses developed in the so called neutral surfaces are to be considered.
This gives rise to theory of thin plates with large deflections, in which geometric non-linearity is incorporated.

If the plate has thickness to span ratio less than 
1

10
th the assumption (a) and (b) listed under theory of

thin plates will not hold good. Such plates need three dimensional analysis. Theory developed for the analysis
of such plates may be called as thick plate theory.

In this chapter, analysis of thin plates with small deflections with finite element approach is explained.
Since many stress-strain-displacement relation in the theory of thin plates with small deflection are used, the
limitations of classical theory remains in this finite element analysis also. The advantage of finite element
analysis is that it can handle the structures with different end conditions and shapes easily.
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For the derivation of basic relations, readers may refer to standard text books on analysis of plates [1, 2]. In
this articles the necessary relations are listed taking the notations as indicated in the typical, plate element
shown in Fig. 15.1.

"���	����

It may be noted that, in Fig. 15.1, the right hand thumb rule of coordinate directions is used. The deflections
are taken positive when they are in the positive directions of the coordinates. Stresses are taken as positive
when they are in positive directions on positive faces or when they are in negative directions on negative
faces. Moments are positive due to positive stress in positive direction of z.

Let u, v and w be the displacement at any point (x, y, z) in the plate. The variation of displacement u and
v across the thickness can be expressed in terms of displacement w as,

      u z
w

x
v z

w

y
= − = −∂

∂
∂
∂

and …(15.1)
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2 …(15.2)
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For thin plates, γ γxz yz= = 0.

Stress—strain relation for isotropic material is
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2 …(15.4)

The moments are given by
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…(15.5)

where D EI
Eh

= =
−

3

212 1 µ� �
 and it is called as flexural rigidity
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The development of displacement based finite element method within the frame work of classical plate theory
possesses an extra level of difficulty. The fact that classical plate behaviour is characterized by single variable
‘w’ has considerable advantages in the derivation of governing differential equations for the problem. But the
problem of satisfying continuity requirements along the element edges based on the single variable w and its
derivatives creates considerable difficulties in the finite element modeling. Considerable research work has
taken place to develop suitable plate bending elements. All these works may be grouped into the following
three categories:

Category I: C2-Continuity element i.e. second order continuity elements in which seconderivates of ‘w’
are also nodal unknowns.

Category II: C1-Continuity elements i.e. first order continuity elements in which highest order of derivatives
of ‘w’ is one only.

Category III: C0-Continuity element i.e. the elements in which only continuity of nodal variables are to be
ensured.

���#�� ��%�
����&��'	���(����

Figure 15.2 shows some of the C2-continuity elements. In the three noded triangular plate element nodal

variables considered are w, 
∂
∂

∂
∂

∂
∂

∂
∂

∂
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w
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Hence number of nodal unknowns are 18. If fifth order polynomial shape function is used, there are 21
terms. By adding three normal slopes at mid-side as additional unknowns, twenty one degree freedom triangular
element has been developed. An exhaustive references to such works may be seen in the books by Zienkwicz
[3], Dawe [4] and Gallaghar [5], Krinshnamoorthy [6]. Thus

w x y= + + +α α α1 2 21
5...

Using 21 conditions, 21 equations are obtained and the unknowns are expressed as

δ α� � � �e
C= .

As it is not easy to obtain inverse of [C], stiffness expressions are developed using numerical method.
If quadrilateral element is used there are 24 degrees of freedom.
In case of rectangular element at each node only four degrees of freedom may be considered i.e. w,

∂
∂

∂
∂

∂
∂ ∂

w

x

w

y

w

x y
, , .

2

 Its formulation is explained in detail latter in this chapter. However use of this element is

limited.

3
3

4

1

12

2

(a) (b)

4 3

21
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���#�� ��%�
����&��'	���(����

To simplify analysis, many researchers, considered only three degrees of freedom at a node i.e. w, 
∂
∂

∂
∂

w

x

w

y
and .

There is discontinuity of curvature at the corners. These are called non-conforming elements. The performance
of such elements have been studied and some researchers have expressed, satisfaction to great extent. Some
of them have considered the normal slopes along the edges to improve the performance of such elements. One
of such element is 12 degree freedom rectangular elements and its use is explained in detail in the article. 15.4

���#�# �)%�
����&��'	���(���

Due to Kirchoff’s assumption that plane section remains plane even after bending, we have the relations

between the slopes and displacement as θ
∂
∂

θ
∂
∂x y

w

x

w

y
= =and .  If Kirchoff’s assumption is not made, slopes

are independent of deflections and hence w, θ θx y,  as nodal unknowns reduces to C0-continuity requirement.

It simplifies a lot in the finite element analysis. Mindlin [7] developed an element of this type. However it is

to be noted that giving up the relationship θ
∂
∂

θ
∂
∂x y

w

x

w

y
= =and means permitting shear deformations. Hence

in assembling stiffness expression shear strain energy is also to be considered. This element formulation is
discussed in detail latter in this chapter.

���* ��+����&��,	�����	���(���	-��	��	���,���	
�	",���
(

In these elements C1-continuity is considered, i.e. at each node three degrees of freedom, namely w, 
∂
∂

∂
∂

w

x

w

y
and

are treated as basic unknowns. Hence it leads to 12 degrees of freedom per element. This type of element is
shown in Fig. 15.3. The typical element has size 2a × 2b. It may be noted that when seen in z–direction, the
nodes are numbered in clockwise directions.

A complete cubic polynomial has only 10 generalized terms. If we go for complete quartic polynomial,
there are 15 generalized terms. Hence to get geometric isotropy with only 12 generalized terms, drop the
terms corresponding to x4,x2 y2 and y4. Hence the generalized form of the displacement selected is,

w x y x xy y x x y xy y x y a xy= + + + + + + + + + + +α α α α α α α α α α α1 2 3 4
2

5 6
2

7
3

8
2

9
2

10
3

11
3

12
3

    = P α� � …(14.6)

Where      P x y x xy y x x y xy y x y xy= 1 2 2 3 2 2 3 3 3

∂
∂

θ α α α α α α α α
w

y
x y x xy y x xyx= = + + + + + + +3 5 6 8

2
9 10

2
11

3
12

22 2 3 3

and          
∂
∂

θ α α α α α α α α
w

x
x y x xy y x y yy= = + + + + + + +2 4 5 7

2
8 9

2
11

2
12

32 3 2 3
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"���	���# �����������������������������	����������������������

Substituting the values of x
i
, y

i
 for nodes 1,2,3 and 4, we get
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x

y

w

x

y
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x

y
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y

1

1

1

2

2

2

3

3

3

4

4

4

1

2

3

4

5

6

7

8

9

10

11

12

12 12

θ
θ
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θ

θ
θ
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i.e.,           δ α� � � �e G= …(15.7)

or            α δ� � � �= −
G

e

1 …(15.8)

The displacement within the element can be expressed in the form,

w P P G
e

= = −α δ� � � �1 …(15.9)

1 2

34

2a

2b

2

0

y

x

Nodal unknowns: For  = 1, 2,
3 and 4

i

w
w

x

w

y
i

i i
, ,
�
�

�
�HG KJ
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The deflection field for any point can be expressed in terms of normalized coordinates as

  w N w N Ni
I

i

i i
II

i

xi i
III

i

yi= + +
= = =
∑ ∑ ∑

1

4

1

4

1

4

θ θ …(15.10a)

Where Ni
I

i i i i= + + + + − −1

8
1 1 2 2 2ξξ ηη ξξ ηη ξ η� �� �� � …(15.10b)

             N
b

i
II

i i i i= − + + −
8

1 1 1
2η ξξ ηη ηη� �� � � � …(15.10c)

            N
a

i
III

i i i i= − + − +
8

1 1 1
2ξ ξξ ξξ ηη� � � �� � …(15.10d)

Where ξ  and η  are dimensionless coordinates, defined as

ξ η= − = −x x

a

y y

b
c c, , xc, yc being the coordinates of centre of element

     ∴ =w N
eδ� � …(15.11)

It should be noted that the displacement field obtained by equations 15.6 and 15.10 are precisely the

same. The use of dimensionless natural coordinates ξ  and η  is for simplifying.

The strain matrix [B] is obtained by referring to curvature terms as strains and the moments as stress
resultants.

ε

∂
∂

∂
∂
∂
∂ ∂

� � =

�
�
�

�
��

�
�
�

�
��

=

−

−

−

�

�

�
�
��

�

�
�
��

�

�

�
�
��

�

�
�
��

k

k

k

w

x
w

y

w

x y

x

y

xy

2

2

2

2

2

2

=
− − − −
− − − −

− − − − −

�
��

��

�
��

��

2 6 2 6

2 2 6 6

2 4 4 6 6

4 7 8 11

6 9 10 12

5 8 9 11
2

12
2

α α α α
α α α α

α α α α α

x y xy

x y xy

x y x y

    = Q α� � = −
Q G

e
1 δ� � = B

e
δ� �

where             B Q G= −1 …(15.15)

in which,

Q

x y xy

x y xy

x y x y

=
− − − −

− − − −
− − − −

�

	








�

�





0 0 0 2 0 0 6 2 0 0 6 0

0 0 0 0 0 2 0 0 2 6 0 6

0 0 0 0 2 0 0 4 4 0 6 62 2
...(15.16)



Bending of Thin Plates 287

In case equation 15.10 are used,

B

a

N

b

N

ab

N

i

i

i

=

−

−

−

�
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1

2

2

2

2

2

2

2

2

∂
∂ξ

∂
∂η

∂
∂ξ ∂η

…(15.17)

The stiffness matrix relating nodal forces M
x
, M

y
, M

xy
 with nodal displacements w x y, ,θ θ  is given by

k B D B dx dy
e

T= �� = �� ���� −
G Q C Q dx dy G

T T� � 1 …(15.18)

or, if natural coordinate system is used

k B D B J d d
e

T=
−−
��
1

1

1

1

ξ η …(15.19)

where | J | is Jacobian determinant and is equal to ab

If generalized coordinate form (equation 15.18) is used for stiffness calculations, the terms within the
integration signs can be multiplied and integrated explicitly. An explicit expression for the stiffness matrix
[k]

e
 has been evaluated for the case of an orthotropic plate and is given in Zienkiewiez book[3].

If equation 15.19 is used, the integration is carried out numerically. It may be noted that the shape
function expression contain 4th order terms. Hence the second order differentiation terms in [B] matrix contain

second order terms. The stiffness matrix which has the form [B]T [D] [B] will contain 4th order terms in ξ  and

η . Hence it needs 3 × 3 Gaussian integration to get exact solution (2n – 1)th order.

The lateral loads of both surface and body type are assumed to act at the middle surface. The consistent
load vector for distributed load on the surface is then given by

F N X dx dy
e

T
s� � � �= ��  or F N X J d d

e

T
s� � =

−−
��
1

1

1

1

ξ η

= − ��G P X dx dy
T T

x
1� � � � …(15.20)

If a concentrated load W
c
 is acting at a point whose coordinates are x

c
 and y

c
, then its nodal equivalent is

obtained as

F N W
e

T
c� � = � …(15.21)

With the element stiffness matrix and the consistent load columns vector established, the assembly of the
system equations and the solution procedure follows as usual.

Non-conformity of the Element

Non-conformity of the element can be easily seen by considering two adjacent elements as shown in Fig. 15.4.

In this element, let common edge be along y = 0 and let nodes be 1 and 2. Since y = 0 the displacement
along this edge is given by

             w x x x= + + +α α α α1 2 4
2

7
3
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            θ
∂
∂

α α αy
w

x
x x= = + +2 4 7

22 3

θ
∂
∂

α α α αx
w

y
x x x= = + + +3 5 8

2
11

3

"���	���* �������������
�������������������������
�������	����������������������

The conditions available are

   w w1 1 1 2� � � �= ...(1)

   w w2 1 2 2� � � �= ...(2)

∂
∂

∂
∂

w

x

w

x
1

1

1

2

�
��
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�� =
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��
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��

...(3)
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∂
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x
2
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2

2

�
��

�
�� =
�
��

�
��

...(4)

and
∂
∂

∂
∂

w

y

w

y
1

1

1

2

�
��

�
�� =
�
��

�
�� ...(5)

∂
∂

∂
∂

w

y

w

y
2

1

2

2

�
��

�
�� =
�
��

�
�� ...(6)

From the conditions 1, 2, 3 and 4, we get four equations in 4 unknowns α α α1 2 4, ,  and α 7 . Hence they

are uniquely determined. In other words w and 
∂
∂
w

x
 satisfy the requirement of uniqueness along the common

edge. From the condition 5 and 6, we get two equation in 4 unknowns, namely α α α3 5 8, ,  and α 11 . Hence

x

y

1
2

1

2

w1 w1w2 w2

�
�
w
xHG KJ 2

�
�
w
yHG KJ 2

�
�
w
xHG KJ 1

�
�
w
yHG KJ1

(a) (b) (c)
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it is not possible to get uniqueness of 
∂
∂
w

y
 along the common edge. These situations are shown in Figs 15.4

(b) and (c). Thus there is non-conformity of slope 
∂
∂
w

y
 along the edge considered.

However the performance of the element is reasonably good when sufficiently finer mesher are used.
The results obtained by Gowdaiah [8] for a simply supported plate and a fixed plate, considering uniformly
distributed load are shown in Tables 15.1 and 15.2.

��.��	���� ���������������������� �����������!���
�!	��������!�	����"����#���������������
������������������$������	���"����%�����&

Mesh. Total No. of Nodes Central Deflection. % Error Central Moment Mx % Error

2 × 2 9 0.5063238 24.65 6.601858 37.83

4 × 4 25 0.4328214 6.55 5.216951 8.91

8 × 8 81 0.4129367 1.65 4.891917 2.12

12 × 12 169 0.4091184 0.72 4.833032 0.9

Exact (Timoshenko) 0.4062 4.79

��.��	���� ���������������������� �������������'�����	����"����#�����������������������
����������$������	���"����%�����&

Mesh Total No. w % Error Mx, Centre % Error Mx, Support % Error

 of Nodes of Middle edge

2 × 2 9 0.1479614 17.43 4.616477 99.84 –3.551136 30.78

4 × 4 25 0.1493343 11.38 2.778318 20.27 –4.760767 7.19

8 × 8 81 0.1303969 3.48 2.404827 4.10 –5.028381 1.98

12×12 169 0.128266 1.8 2.340618 1.33 –5.082736 0.92

Exact(Timoshenko) 0.126 2.31 –5.13

���� ������/����	�����	���$���	0�� 	�1	��/����	�"	"�����$

Bogner, Fox and Schmit [9] considered 
∂
∂ ∂

2w

x y
 also as nodal unknown to overcome non-conformity faced in

12 degrees freedom element. It leads to 16 degrees of freedom, namely w,
∂
∂

∂
∂

w

x

w

y
,  and 

∂
∂ ∂

2w

x y
 at each node.

The generalized form displacement considered by Bogner is,
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w x y x x y x x y xy yxy= + + + + + + + + + +α α α α α α α α α α1 2 3 4
2

5 6
2

7
3

8
2

9
2

10
3

α α α α α α11
3

12
2 2

13
3

14
3 2

15
2 3

16
3 3x x y xy x y x y x y+ + + + + …(15.22)

It may be noted that to get geometric isotropy, Bogner etal. [9] have considered the terms appearing in the
product (1 + x + x2 + x3) (1 + y + y2 + y3). One can proceed on the lines explained for 12 degrees of freedom
element to assemble [P], [G], [F] and [B] matrix and then evaluate stiffness matrix. Size of the element
stiffness matrix in this case is 16 × 16.

The above problem can be solved using natural coordinates and numerical integration technique. The
deflection field given by equation 15.22 may be expressed in the natural coordinates form using non-

dimensionalised coordinates ξ  and η

w f w f x f y f x yi
I

i

i i
II

i i
III

i i
IV

i i= + + +
=
∑

1

4

θ θ θ …(15.23)

Where θ
∂
∂ ∂

xy
w

x y
=

2

f f f fi
I

i
II

i
III

i
IV, , and  are Hermetian shape functions. Dawe D.J.[4] has presented these functions as,

N f I
1 1

3 3 3 3 3 31

16
4 6 6 9 2 2 3 3= = − − + + + − − +ξ η ξη ξ η ξη ξ η ξ η� �

N f
bII

2 1
2 2 3 3 3 2 3 3 3 3

16
2 3 2 3 2 3 2 3= = − − + − + − + − + + +ξ η ξη η ξη ξ η η ξ η ξη ξ η ξ� �

N f
aIII

3 1
2 2 3 3 2 3 3 3 3 3

16
2 2 3 3 2 3 3 2 3= = − − + − + − + − − + +ξ η ξη ξ ξ η ξη ξ ξ η ξ η ξ η η� �

N f
abIV

4 1
2 2 2 2 3 3 3 3 2 3 2 2 3 2 3 3

16
1= = − − + − − + + + + − − − + − +ξ η ξη ξ η ξη ξ η ξ η ξη ξ η ξ η ξ η ξ η ξ η� �

N5
3 3 3 3 3 31

16
4 6 6 9 2 2 3 3= + − − − + + + −ξ η ξη ξ η ξη ξ η ξ η� �

N
b

6
2 2 3 3 3 3 2 3 3

16
2 3 2 3 2 3 3 2= + − − − − + − + + −ξ η ξη η ξη ξη ξ η ξ η ξ η� �

N
a

7
2 3 2 2 3 3 3 3 3 3

16
2 2 3 3 2 3 2 3= − − + + + − − + + − − +ξ η ξη ξ ξη ξ η ξ η ξ η ξ η ξ η� �

N
ab

8
2 2 2 3 2 2 2 2 3 3 3 3 3 2 3 3

16
1= − − + + + + + − − − + + − − − +ξ η ξη ξ η ξη ξη ξ η ξ η ξ η ξ η ξ η ξ η ξ η� �

N9
3 3 3 3 3 31

16
4 6 6 9 2 2 3 3= + + + − − − − +ξ η ξη ξ η ξη ξ η ξ η� �

N
b

10
2 2 3 2 3 3 3 3 3 3

16
2 3 2 3 2 3 2 3= − − − − + + − + + + + −ξ η ξη η ξη ξ η ξ η ξ η ξη ξ η� �
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N
a

11
2 2 2 3 3 3 3 3 3

16
2 2 3 3 2 3 3= − − − − + + − + + + −ξ η ξη ξ ξ η ξ η ξη η ξ η ξ η� �

N
ab

12
2 2 2 2 3 3 2 2 3 3 2 3 3 2 3 3

16
1= + + + − − − − − − + − − + + +ξ η ξη ξ η ξη ξ η ξ η ξ η ξη ξ η ξ η ξ η ξ η� �

N13
3 3 3 3 3 31

16
4 6 6 9 2 2 3 3= − + − + − + + −ξ η ξη ξ η ξη ξ η ξ η� �

N
b

14
2 3 2 3 2 3 3 3 3 3

16
2 3 2 3 2 3 2 3= − + − + + − − + + − − +ξ η ξη η ξ η ξη ξ η ξ ξη ξη ξ η� �

N
a

15
2 2 3 3 3 3 2 3 3 3

16
2 2 3 3 2 3 3 2= − + − − − + − + + + −ξ η ξη ξ ξ η ξ η η ξ ξη ξ η ξ η� �

N
ab

16
2 2 2 2 3 2 2 3 2 3 3 3 2 3 3 3

16
1= − + − + + + + − − − + − + − − +ξ η ξη ξ η ξ η ξη ξ η ξ η ξ η ξ η ξη ξ η ξ η� �

…(15.24)

where ξ = x

a
 and η = y

b

∴ =w N
e

δ� � …(15.25)

Where [N] is the shape function matrix and δ� �e
 = Nodal displacement vector.

Stiffness and load matrices may be assembled on the lines similar to 12 degrees freedom element and
system equations assembled. This approach needs fifth order Gaussian integrations, since the stiffness matrix
involves 8th order terms. Gowdaiah [9] developed a program to analyze plates using 16 degrees freedom
rectangular elements and studied the behaviour of square plates subject to uniformly distributed load. Tables
15.3 and 15.4 shows the results for simply supported and fixed plates:

��.��	���# ��������������� ������������!���
�!	��������!�	����"����(���������
�#������)
��������������������������%������&

Mesh No. of nodes W centre % Error Mx, centre % Error

2 × 2 9 0.4808683 18.38 5.085667 6.17

4 × 4 25 0.422946 4.123 4.669042 –2.53

8 × 8 81 0.4087133 0.619 4.762794 –0.57

12 × 12 169 0.4072136 0.25 4.781559 –0.17

Exact (Timoshenko) 0.4062 4.79
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��.��	���* ��������������� ��������������'���!�	����"����(���������
�#������)�����������
�����������������%������&

Mesh No. fo nodes W centre % Error Mx, centre % Error Mx, Support % Error

at mid span

2 × 2 9 0.1324794 5.14 4.13357 –78.9 –3.179505 –38.02

4 × 4 25 0.132185 4.94 2.31496 0.215 –3.942102 –23.2

8 × 8 81 0.1279442 1.54 2.283149 –1.162 –4.533 –11.6

12 × 12 169 0.1270355 0.82 2.289747 –0.877 –4.749 –7.43

Exact (Timoshenko) 0.126 2.31 –5.13

���1 $������2�	�����	���$���

Mindlin’s [7] theory is the extension of Timoshenko theory to the analysis of plates. In this theory the rotation
and lateral deflections are decoupled and shear deformations are considered. This resulted into development
of C0-continuity plate element. This helped in extending isoparametric concept in plate analysis resulting to
development of 4-noded quadrilateral and 8-noded quadratic plate bending elements.

Mindlin[7] retained the following assumptions of thin plates small deflection theory:

(i) The lateral deflections ‘w’ are small

(ii) Stresses normal to the midsurface are negligible

However he gave up Kirchoff’s assumption that plane normal to the midsurface remain plane even after
bending. Instead of this he assumed normal to the plate midsurface before deformation remains straight but
not necessary normal to it after deformation. This is shown in Fig. 15.5. Hence, if,

"���	���� ���������������������������'*�����

�
�
w
x

� x

Normal before deformation

Normal after deformation

Assumed deformation
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θ x  is the final rotation in x-direction, we get

θ
∂
∂x
w

x
= -average shear strain in x-direction

i.e.,   θ
∂
∂

φx x
w

x
= −

Similarly θ
∂
∂

φy y
w

x
= − …(15.26)

At any node there are three independent field variables w, θ x  and θ y . The displacement at any point

inside the element is given by

w N

N

N

w

x

y

i

i

i

i
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yi
i

n
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θ
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θ
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��=
∑

0 0

0 0

0 01

…(15.27)

where n is the number of nodes in the element. For quadrilateral element n = 4 and

N N1 2

1 1

4

1 1

4
=

− −
=

+ −ξ η ξ η� �� � � �� �
,

      N N3 4

1 1

4

1 1

4
=

+ +
=

− +ξ η ξ η� �� � � �� �
and

Similarly for quadratic element n = 8, and the shape functions are as given in equation 5.44. For cubic
element the shape functions are as presented in equation 5.46. The position of the point itself is given by,

x

y

N x

N y

N
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y
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=

0

0
1

…(15.28)

The measure of strain in this element includes both flexural strain k and shear strain ε . The flexural
strain is given by.

ε

∂θ
∂

∂θ
∂

∂θ
∂

∂θ
∂
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…(15.29)
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Shear strain is given by
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The stress resultant curvature (strain) relation is given by
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where D
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The shear forces, referred as shear stress resultants are given by
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where A is area per unit length, since θ x  and θ y  are defined as the forces per unit length and γ γxz yz,  are

shear strains and G is modulus of rigidity.

For isotropic plates the relation is
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However for [D
s
] a correction factor α  is suggested by Proger et. al.[10]. They suggest D

s
 may be taken

as Ghα  to represent the restraint of the cross section against warping. The value of α  commonly used is 5/
6. Equation 14.31 may be written as
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The local coordinates and the global coordinate systems can be related by using isoparametric concept
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Where [J] is Jacobian matrix

i.e., J
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Now the stiffness due to flexure and shear together is given by
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Gaussian integration is used to evaluate[k]. Consistent load vector is obtained as usual, for uniformly
distributed load of intensity ‘q’
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The remaining part of finite element analysis follows the steps as usual.
Mindlin plate element gives good results for moderately thick plates. They can be used even for odd

shaped plates.

Unfortunately these elements behave very erratically in extreme thin plates. This has been the subject of
interest in 1970s, 1980s and lot of research [11–14] has gone in to get rid of the problem faced in extremely
thin plates. Zienkiewicz etal. [11]. showed that the lack of field consistency in field definition introduces
spurious constraints. This can be removed by an appropriate integration strategy.

Ideally, for a consistent definition of shear strain, one must have associated with each term of the polynomial

expansion of the shear strain field, contribution from both w and θ x  and w and θ y  
interpolations. This can be

achieved only if unequal order interpolations are used for w and the rotation terms. If equal order is used it
turns out that some of the term in shear strain field have contributions only from the interpolations for face

rotations θ x  
and θ y . In case of extreme thinness, these terms severely constrain the behaviour of the rotations

θ x  
and θ y . This situation is termed as shear locking.

Hughes etal. [12] has successfully used uniform one point integration for shear strain energy terms and 2
× 2 integration for bending energy terms. The element behaves very well in this thin plate situations but
restricts the use of the element beyond a moderately thick situation. Pratap and Viswanath [10] suggested an
optimal integration strategy for 4 noded Mindlin plate bending element. The strategy suggested incorporates
a 2 × 2 Gaussian integration of the bending energy and separate 1 × 2 and 2 × 1 integration rules for the shear

energy contributions from the 
∂
∂

θ
w

x x−
�
��

�
��  and 

∂
∂

θ
w

x y−
�
��

�
��  terms respectively. The results are good for

moderately thick to thick plate situations, especially if local axes ξ  and η  are aligned with global x and y

axes.



Bending of Thin Plates 297

It may be noted that the Kirchoff’s constraint in thin plate theory is dependent on x and y orthogonal
Cartesian system. With the distortion to non-rectangular forms or with the arbitrary orientation system, it is
impossible to devise a simple integrations strategy that will correctly retain all valid constraints. This deficiency
felt more severely in thin plate situations rather than thick plate situations.

The derivation of element properties based on Mindlin plate theory is incorporated in many standard
Finite Element Analysis packages. It allows the use of isoparametric concept, hence more general element
shapes, such as quadrilateral and quadratic can be devised. The shape functions and element routines are also
simple compassed to C1-continuity elements. With the judicial selection of the order of integration the same
element may be used both in the analysis of thin plates and moderately thick plates.

Need for Stress Smoothening
In the finite element analysis it is proved that

1. Stresses are discontinuous at nodes.

2. Stresses at interior of the elements are more accurate. And
3. Stresses obtained at Gaussian points are accurate.

The stress discontinuities obtained at node points are shown in Fig. 15.6. Hence there is need for stress
smoothening.

"���	���1 !���������������	��������������

Stress Smoothening Technique: Initially it was thought that at node point the average of the values obtained
from different elements may be taken. But this technique has draw back that it is not considering the size
effect of the various elements meeting at that node. Finally it is accepted that since Gauss point values are
accurate, they may be used for bilinear extrapolation and nodal values calculated. This technique was suggested
by Hinton and Campbell [15].

For a 2 × 2 Gauss point integration bilinear extrapolation may be done as explained below:

Let σ σ σ1 2 3, , ,  and σ 4  be nodal values to be obtained by extrapolations and σ σ σI II III, ,  and σ IV

be the values at Gauss points as shown in Fig. 15.7. In two point Gauss integrations the Gauss point are at

(0.57735, 0.57735) i.e. at 
1

3

1

3
,

�
��

�
��  From the centre. To find σ 1 ,  first we can get ′σ 1  and ′σ 2  values by

extrapolating σ σI II,  and σ IV  and σ III  values as follows:
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Similarly the values at other node points may be obtained by bilinear extrapolation to get the following
relations:
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1. Discuss the use of triangular plate bending elements.
2. Discuss the conforming and non-conforming rectangular plate bending analysis.
3. Explain the term Mindlin’s C0-continuity plate element and briefly explain stiffness matrix

formulation for such elements.

4. Explain the term ‘Shear locking’. How this problem is overcome?
5. Write short notes on numerical integration and stress smoothening in the case of four noded

quadrilateral plate element.
6. Write short notes on

(i) Triangular plate bending elements
(ii) Conforming and non-conforming plate bending elements

(iii) Mindlins C0–continuity element

(iv) Shear locking and
(v) Stress smoothening as applied to plate bending analysis.
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A shell is a curved surface. Due to their shape they transfer most of the load applied on their surface as inplane
forces (membrane forces) rather than by flexure. Hence the shells are examples of strength through form
rather than mass. Civil engineers use them as roofs to get large column free areas covered. Cylindrical shells,
domes hyperbolic parabolic shells etc. are common examples of shell roofs. Cooling towers, conical shells
are also commonly used shells. Mechnical and chemical engineers use shells as pressure vessels and as
components of many machines.

Shells may be classified as singly curved or doubly curved. Classification of shell surfaces is attempted
on the basis of Gauss curvature (product of principle curvature in two perpendicular directions). If the Gauss
Curvature is positive, zero, negative the surface will be classified as synclastic, developable, anticlastic
respectively. Further classification is possible depending upon whether a shell is translational surface, a ruled
surface or a surface of revolution. Indian standard code 2210[1] gives the classification of shells and folded
plates by various criteria.

As most of the load is transformed as inplane, the shells can be thin resulting into considerable reduction
in material cost. In addition shells have aesthetic advantage. However the cost of form work required for
reinforced concrete make shell roof expensive. Unless there is chance of several reuse of form work shell
roofs are not used. For details of classical shell theory one can refer the book by Ramaswamy [2]

In this chapter, first various forces developed in a shell elements are explained. Then various finite
elements developed are briefly explained. Finite element formulation for 4-noded degenerated shell element
is shown and it is hoped that reader, if need be, will be able to extend the finite element formulation to 8-
noded degenerated element also.
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Fig. 16.1 shows a typical shell element and various stress resultants acting on it. It may be noted that the sign
convention is:

(i) Coordinate direction are as per right hand thumb rule
(ii) A force acting on +ve face in +ve direction or –ve face –ve direction is +ve

(iii) A +ve force acting on +ve z-direction produces +ve moment, about mid surface
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Curved shell structures constitute possibly the most difficult class of structures to analysis by the finite element
method and the difficulties involved have lead to the development of considerable variety of approaches to
the problems and a large number of element types. The following are the four different approaches used to
generate the shell elements:
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1. Flat Elements

2. Curved Elements
3. Solid Elements
4. Degenerated Solid Elements.

The above elements are briefly explained below and their performance is commented.

�� ���"
���#��"�

The earliest method to analysis shells by finite element method was to approximate the curved surface with a
number of flat elements. Fig. 16.2 shows approximation of a cylindrical shell roof by a number of flat elements.
Since shell, have bending as well as in plane forces, for flat element stiffness matrix should be assembled
using both plate bending consideration and considering in plane forces. Fig. 16.3 shows in plane and bending
forces to be considered. One can use triangular, rectangular or quadrilateral plate elements. Smaller the element
size, better is the result. The development of such shell elements progressed along with the development of
plate elements. Using such elements arch dams, cylindrical shell roofs and cooling towers have been successfully
analysed by zienkiewicz et al.[3, 4, 5]

�	��
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The shortcomings of these flat elements (also called as Facet Elements) are as listed below:
(i) The curvature of the elements is absent within the element.

(ii) The discontinuities of slope between the plate elements produce spurious moments.

(iii) The plate elements themselves have limitations in the analysis of plates, which continues to stay
in the shell analysis too.

However singly curved shells may be analysed satisfactorily by taking refined meshes.

(a) Actual shell surface (b) Approximated shell surface
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There are a number of practical problems in which we come across axi-symmetric shell analysis. Fig. 16.4
shows one such case.
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���( ������������������

In this problem of thin shell analysis, the displacement and stress resultants may be defined with respect

to meridional directions u N Ms, , θ� �  and circumferential directions w N Ms, ,θ� � . Thus the strain vector is

given by

� z zM

�
y y

Md i
v Nyd i

w Nz

u Nx � x xM

x

z

Axis of rotation

w

r

u

�

N�

Ns

Ms

M�



Analysis of Shells 305

ε

ε
ε

∂
∂

φ φ
∂
∂

φ

θ

θ

� �
� �

=

�

�
��

�
�
�

	



��

�
�
�

=
+

−

−

�

�

�
�
��

�

�
�
�
�

	




�
�
��

�

�
�
�
�

u

sk

k

u

s
w u

w

s

r

dw

ds

cos sin

sin

2

2 ...(16.1)

and stress resultant is given by
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For a straight edged element, suitable for the analysis of conical shells [B] matrix can be assembled easily

and stiffness matrix B D B
T�  dV can be assembled. For curved shells one has to ensure common tangent

between adjacent elements which needs C1—continuity elements. Using isoparametric concept axi-symmetric
shells have been analyzed [Jones etal. (6), Stricklin (7)]. After getting nodal displacement, the stresses at
required points are obtained. Gallagher [8] lists the following difficulties in the development of such shell
elements:

1. For assembling [D] matrix suitable shell theory is to be used, but there are a number of shell
theories.

2. It is difficult to achieve inter element compatibility as seen in plate elements.
3. Describing the geometry using given element data is difficult.

4. The satisfaction of rigid body modes of behaviour is acute.

 �
��	'
����
���#��"

Another approach for shell analysis is to use three dimensional solid elements. One can think of using 4 noded
tetrahedron, 8 noded hexahedron or 20 noded curved solid elements for the analysis of shells. To take care of
bending behaviour more than one layer of elements are to be used across the thickness. However this approach
for shell analysis is found not satisfactory because of the following reasons:

(i) As the thickness reduces the strain normal to the mid surface is associated with very large stiffness
coefficients and hence the equations become ill conditioned

(ii) These elements carry too many degrees of freedom making the computation uneconomic.

(�
������%�"�'
��	'
���#��"�

In 1970 Ahmad etal. [9] introduced the concept of degenerating 3-D-elements to 2-D-elements for finite
element analysis while using 3D- elastic theory. For example, a 3-D brick element is reduced to shell element
by deleting the intermediate nodes in the thickness direction and then by projecting the nodes on each surface
to the mid surface as shown in Fig. 16.6. Similarly 20 noded solid element may be degenerated to 8 noded
element on the mid surface which is also shown in Fig. 16.6. However the nodes on the 2 outer surfaces
corresponding to each mid-surface nodes are defined so as to keep the analysis in 3-D. The theory is developed
with the following assumptions:
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(i) The normal stresses and strain in the direction of thickness is zero i.e. σ εzz zz= =0 0,
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(ii) The normal to mid surface may not remain normal after deformation, but remains straight (as
used in Mindlin plate theory).

Hence the strain energy associated with stresses perpendicular to the middle surface are neglected but
due to assumption (ii), the shear strain energy is to be considered.

The elements need only C0 continuity. This simplifies the analysis. However the problem of shear locking
is associated; particularly when the shell is thin. This is to be overcome by using reduced integration technique
as explained in using Timoshemko beam element and Mindlin plate element. The author guided M.Tech
thesis [10 – 13] in this field at K.R.E.C. surathkal, reference [11] being jointly with Dr. Pratap G of NAL,
Bangalore,
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Finite element formulation for 4 noded degenerated quadrilateral is presented below. On the same line one
can extend it to the FEM formulation for 8 noded degenerated shell elements also.

Fig. 16.7 shows the typical four noded degenerated quadrilateral shell element. x,y,z are the global
coordinates and ξ η ζ, ,  are the natural coordinates. ξ = 0  represents the mid surface. ξ = 1 represents
outer surface of the shell and ξ = −1  represents the inner surface. For defining geometry as well as
displacement, the shape functions for quadrilateral elements are

�	��
���, �����
	����������������
������
��	��������������
�

Ni i iξ η ξξ ηη,� � � �� �= + +
1

4
1 1 ...(16.3)

If l
3i
, m

3i
 and n

3i
 are the unit normal vector at i and x

i
, y

i
, z

i
 are the global coordinates of the middle surface

node i, then the global coordinates of any point in the element at distance ζ  on normal are given by

�

�y

�x

�z

� � 1

� � 0

� � 	 1




�

h4

h3

h2

h1z
y

x
�



308 Finite Element Analysis

x

y

z

N

x

y

z

h
l

m

n
i

i

i

i

i

i
i

i

i

�
��

��

	

�

��
=

�
��

��

	

�

��
+

�
��

��

	

�

��



�

�
�
�

�

�

�
�
�−

∑ ξ η ζ,� �
1

4 3

3

3
2

...(16.4)

��-��
�	%�-"	��
���	���

 The determination of the direction cosines is the important process in the finite element analysis of shell

structures. At any point having the coordinates ξ η,� �  on the middle surface, an orthogonal set of local

coordinates ′ ′ ′x y z, ,  are constructed ′ ′e e1 2,  be the tangents to the middle surface. From vector algebra, we

know that the cross product of two vectors gives a vector oriented normal to the plane given by the two

vectors, we also know that unit vector is obtained by dividing the vector by scalar length. Hence ′ ′e e1 2,  and

′e3  can be found from the following relations:
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1
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2
 can be obtained from equation 16.3. Now the direction cosines of the new local coordinates

′ ′ ′x y z, ,  with respect to global axes x, y, z are given by
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Let u, v, w be displacement of a point having its local coordinate; u
i, 
v

i, 
w

i, 
be the displacement of corresponding

mid surface which is having local coordinates ξ η,  (ref. Fig. 16.8)
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Let u v wi i i
* * *, ,  be the relative displacement along x, y, z directions due to rotation of normal at node i. i.e.

θ θ θxi yi zi, ,  about the global axes. Then
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If ′ ′ ′α α α1 2 3i i i, ,  are the normal rotations at ‘i’ about axes ′ ′ ′x y z, ,  with the shell assumption of straight

normal to middle surface remain straight even after deformation, ′α 3i  becomes zero.
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in which ′ ′ ′u v wi i i, ,  are displacements along axes ′ ′ ′x y z, ,  respectively.

If the direction cosines between global and local axes are l
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             w n u n vi i i i i
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The rotation α 1i  and α 2i  are given by the relation,
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From equation 16.11, 16.10 and 16.12 we get,
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Substituting equation 16.13 in equation 16.9 we get
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Assuming the component of strain normal to the middle surface of the shell element is zero, the strain
components along the local axes of the shell element are given by,
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For the convenience, the strain matrix is split into two matrices ′ ′ε εm sand  as
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The stress components corresponding to these strain components are defined by the matrix,
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          = D ε1� � = D B δ� � ...(16.19)

where [D] is the constitute matrix of size 5 × 5, given by
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The factor α  included in the last two shear terms is taken as 
5

6
 and its purpose is to improve shear

displacement approximation as explained in Timoshenko beam theory and Mindlin’s plate theory.

The constitutive matrix [D] can be split into
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and    D
E

s =
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To establish the transformation of derivatives from local to global system we need the Jacobian matrix, which
is given by
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Jacobian [J] is given by,
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The general relation between strain and displacement is given by,

ε δ� � � �= B

[B] matrix is defined in terms of the displacement derivatives with respect to the local Cartesian coordinates

′ ′ ′x y z, ,  by equation 16.15. Now we require two sets of transformations before the stiffness matrix can be

assembled with respect to the coordinates ξ η ζ, , .

Firstly, the derivatives with respect to the global x, y, z directions are obtained by using the matrix
relation
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The derivatives 
∂
∂ξ

∂
∂η

u v
, ...  etc. are obtained using the equation 16.14.

Secondly the direction cosines of the local axes are to be established. Then the global derivatives of
displacements u, v, w are transformed to the local derivatives of the local orthogonal displacements by a
standard operation,
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Making use of the equations 16.6 and 16.27 all the derivatives necessary to compute ′ε� �  of equation

16.15 can be obtained. After simplifying, the equation 16.16 and 16.17, we get.
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where B mi1  and B si1  are strain-displacement matrices formed by considering only the in plane displacements

′ ′ ′u v w, ,  and B B B Bmi si mi si2 2 3 3, , ,  are strain displacement matrices formed by considering only

relations ′ ′ ′θ θ θxi yi zi, , . By orthogonality condition, the strain displacement matrix B mi2  will be zero. The

other terms are given by
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where ′′ = + +B l J m J n J3 13 3 23 3 33
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ζ
ζ
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s
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si si sii
e

B B

B B B
1 3

1 2 31

4

...(16.37)

Where    δ θ θ θ� �e

T
i i i xi yi ziu v w= ...(16.38)
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As usual stiffness matrix is given by

k B D B dV
T= � ...(16.39)

It is convenient to split stiffness matrix into two parts

[k]
m
 – contribution due to bending and membrane effect

[k]
s
 – contribution due to transverse shear

i.e.,       k k k
m s

= +

            = +
==

∑∑ k kij m ij s
Ji 1

4

1

4

...(16.40)

where k B D B dVij m mi
T

m mi= � ...(16.41)

and   k B D B dVji s si
T

m si= � ...(16.42)

In natural coordinates form, the above equations will be,

k B D B Jij m mi
T

m mi=
−−−
���
1

1

1

1

1

1

∂ξ ∂η ∂ζ ...(16.43)

k B D B Jij s si
T

s si=
−−−
���
1

1

1

1

1

1

∂ξ ∂η ∂ζ ...(16.44)

Where | J | is the determinant of the Jacobian matrix. To be consistent with the shell assumption instead

of J ξ η ζ, ,� �  we can take it as J ξ η, , 0� � .

The size of each sub matrix in equation 16.43 and 16.44 is 6 × 6. Hence

k k

k k k k

k k k k

k k k k

k k k k

m s
or =
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11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

...(16.45)

A 2 × 2 Gaussian integration is used to evaluate [k]
m
. To avoid shear locking effect one point Gaussian

integration is used to evaluate [k]
s
.

�3$	&����"
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For a shell the major loads are vertical gravity loads, uniform vertical pressure and uniform normal surface



316 Finite Element Analysis

pressures. The equivalent nodal loads for these can be found by variational principle as shown below:

(i) Gravity Load:

F
N

Ji
i� � =

�

�

�
�
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�

�
�
��
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1

1

...(16.46)

where ρ  is unit weight of the material of the shell.

(ii) Uniform Vertical Pressure: If intensity of this load is P
v
 on top surface of the shell, then

          F p
N

h N m

h N l

J ai v
i

i i i

i i i
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∂ξ ∂η ...(16.47)

Where a
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(iii) Uniform Normal Surface Pressure: If p
n
 is the uniformly distributed normal surface pressure, applied at

top surface, then due to this load equivalent nodal forces are,
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...(16.49)

In any problem global stiffness matrix [k] and right hand side (load) vector [F] are assembled after
calculating them element by element and then placing them in global system. The standard procedure is
followed in solving the simultaneous equations after imposing the boundary conditions and in calculating the
required stress resultants.

The above procedure may be extended to 8 noded degenerated shell elements also.
Using degenerated shell elements lot of studies have been carried out and satisfactory performance is

reported. 4 Noded elements approximate the curved surface by straight edges. Hence to get better results we
need more elements. 8 noded degenerated shell elements approximate curved surface by quadratic curve.
Since most of the shell surface are having quadratic surfaces, 8 noded shell elements are used commonly.
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1. List and sketch the various flat elements used in the analysis of shells mentioning the nodal degrees
of freedom in each element.

2. Explain briefly the various factors to be considered in the development of curved shell elements.

3. Explain with neat sketch the various three dimensional elements used in the analysis of shells.
4. Write short notes on the following shell elements

(i) Facet elements

(ii) Curved elements
(iii) Solid elements
(iv) Degenerated elements.

����������
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The finite element formulation discussed so far was based on the following assumptions:
(i) Stress-strain relation is linear and

(ii) Strain displacement relation is also linear.

It resulted into stiffness equation k Fδ� � =  in which [k] and {F}were independent of displacement

δ� � . Hence after forming the stiffness equation we could get required displacements by solving the set of

linear equations only once.
In engineering we come across many problems in which stress strain and strain displacement relations

are not liner. As the computer facility is increasing, the researchers are taking up rigorous analysis of structures
incorporating actual stress strains curves and changes in geometry due to loading. In 1993 International
Association of shells and spatial structures, conducted an international seminar on Non-linear analysis at
Tokyo[1] in which the author also published a paper [2]. In all 68 papers were presented in the conference. In
this chapter different types of non-linearities encountered are discussed first and the methods of solving them
presented later.

���� �������������������

Various non-linear problems in finite element analysis may be grouped into the following three categories,
the basis being the sources of non-linearities:

1. Material Non-Linearity Problems
2. Geometric Non-Linearity Problems and
3. Both material and Geometric Non-linearity Problems.

�� �
�	��
��������	
�������� 	!�

The stress-strain relation for the material i.e. the constitutive law may not be linear and may be some times
time-dependent too. For example, for concrete actual stress strain curve is as shown in Fig. 17.1. Even for
steel, if one is interested to study the actual behaviour of the structure beyond yielding, the stress strain
relation is non-linear. Hence Young’s Modulus depends upon the deformation. Apart from these basic non-
linear relations, there are time dependent complex constitutive relations like plasticity, creep which make the
problem non-linear. In soil mechanics problems, almost all soils need consideration of plasticity.
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In many problems strains – displacement relations are not linear. They need consideration of actual strain
displacement relations (equation 2.5) rather than the linear strain displacement (equation 2.6). Large deflection
problems like the analysis of tension structures and post buckling studies of beams, plates and shells also fall
under this category.
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If the large deflection, post buckling studies, etc. involve non-linear constitutive laws, then we need to study
both material and geometric non-linearity effect simultaneously.
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As explained earlier material non-linearity is due to non-linear constitutive matrix [D]. The material properties
are to be evaluated experimentally. For many materials non-linear stress strain curves have been obtained
experimentally by conducting uniaxial tests. These results are enough to carry out non linear analysis of
homogeneous materials. For any material, if non-linear analysis is to be carried out, experimental results are
necessary to find non-linear relations of all the terms in general constitutive matrix. This has become a major
constraint in achieving non-linear solutions for all materials. In this article only non-linear analysis for isotropic
materials is explained which can be easily extended to other materials also if the non-linear material properties
are known.

Consider a material with typical non-linear stress strain and corresponding load deformation curve as
shown in Fig. 17.3. When a structure is loaded stresses are different at different points. Hence Young’s
Modulus is different from point to point. For finite element analysis a single value is assumed for an element
and element to element the value may be different. Since stiffness matrix is assembled element by element,
the procedure of accounting non-linearity is explained below for a element stiffness matrix. For simplicity the
letter ‘e’ is dropped from all notations. The following three methods are available in literature for handling
material non-linear problems:

1. Incremental procedure
2. Iterative procedure and
3. Mixed procedure

"�#�����&
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In this method load is applied in a number of equal increments. It may be in 8 to 10 increments. More the
increments better is the solution. For each incremented load the stiffness equation is assembled and incremented

displacements are found. Fig. 17.4 shows the procedure. At the time of considering ith increment load ∆ Fi ,

we are at point A on the load deflection curve. At this stage we know the stress level corresponding to i-1th
iteration. Corresponding to this stress level, we can pickup material properties and assemble the stiffness

matrix [k
i – 1

]. Usually tangent modulus is considered. Incremented load ∆ Fi , can be written as

Lo
ad

Extension

S
tr

es
s

Strain



Non Linear Analysis 321

k Fi i i− =1 ∆ ∆δ� � � � ...(17.1)
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Solving the above linear equation we get the incremented deflections ∆δ i . Then we reach the next point

B, at which

δ δ δi j

j

i

= +
=
∑0

1

∆  and ...(17.2)

          F F Fi j

j

i

= +
−

∑0
1

∆ ...(17.3)

In the above equations δ0  and F
0
 correspond to initial deflections and loads. Usually these values are

zero in many problems. Thus with piecewise linearization of the material property we move from one point to
another point till full load is considered.

Midpoint Runge-Kutta Incremental Procedure

The above basic incremental scheme may be improved to get better results by using midpoint Runge-Kutta
incremental procedure. This scheme is shown in Fig. 17.5. In this, point A corresponds to the end of (i-1)th
incremental stage. We are seeking solution for ith incremental load ∆Fi . In basic scheme we reach point B and
select displacements corresponding to ′B  as displacement. In mid point Runge-Kutta method we first pick

up point C which correspond to increment load 
∆Fi

2
 by basic scheme. Corresponding to the stress level at

this point material properties are picked up and stiffness matrix ki − 1
2

 is found. Then we go back to point A

and calculate incremental displacement for the load ∆Fi  using stiffness matrix ki − 1
2

. This leads to point E
and displacements corresponding to ′E . From the scheme it may be easily seen that result obtained is better.
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However it involves additional computational effort to find ki − 1
2

. This scheme is better than having the load

increment and using basic method which would have given point D and ′D  as the solution.
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This procedure is developed on the concept of finding load corresponding to initial strains. Hence let us see
how to calculate initial load corresponding to initial stress in a material.

Let ∈ 0  be initial strain and ∈  the final strain (ref. Fig. 17.6). Hence elastic strain is given by

"�#�����.
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ε ε εe� � � � � �= − 0 ...(17.3)

Let ∆δ  be the virtual displacement vector. Then

∆ ∆ε δ= B � � ...(17.4)

and stresses are,

σ ε ε ε� � � � � � � �� �= = −D De
0 ...(17.5)

∴  Work done by internal stresses,

∆ε σ� �� T
dV

 = −� ∆δ ε ε� � � � � �� �T T
B D dV0

 = − ��∆δ ε ε� � � � � �� 	T T T
B D B D dV0

= − ��∆δ δ ε� � � � � �� 	T T T
B D B B D dV0 ...(17.6)

work done by external loads

= ∆δ� � � �T
F ...(17.7)

Equating work done by internal stresses to work done by external loads we get,

B C B dV F B D dV
T Tδ ε� � � �� �− + 0

i.e., k F Fδ� � = + 0

where        F B D dV
T

0 0= � ε� � ...(17.8)

This term may be called as load corresponding to initial strain. This concept of finding initial load
corresponding to initial strain is used in iterative procedure as explained below:

Let F
0
 be initial load and δ0  be initial strain. Total load to be applied be F (ref. Fig. 17.7)

Using tangent modulus initial value of material can be found and stiffness matrix k
o
 assembled. Let the

displacement obtained for full loading F be ∆ ∆δ δ1 1.  is obtained by the stiffness equation

k F0 1∆δ� � � �= ...(17.9)

In the scheme shown in Fig. 17.7 it corresponding to the finding A
1

∴ = +δ δ δ1 0 1∆ ...(17.10)

Using equation 17.8, we can find the equivalent load F
e1

 corresponding to displacement δ1 , as

F B D B D Be
T T

1 1 1= = �� ε δ� � � � ...(17.11)
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Then we find difference between total load and F
e1

 calculated. Corresponding to F
e1

 we get the point B
1
.

The unbalanced force is F-F
e1

. At point B tangent modulus may be obtained from material property and
calculation may be made with [k

1
] stiffness, to reach point A

2
 for the applied load F-F

e1
. Then find the equivalent

load F
e2

 corresponding to δ δ δ2 0
1

2

= +
=
∑∆
i

. The procedure is repeated till unbalanced force is negligible.

A modified iterative procedure by Oden [3], is shown schematically in Fig. 17.8. In this method throughout
stiffness matrix k

0
 is used. This may take more iterations to reach final value, but surely there is considerable

saving in time since the repeated calculation of stiffness matrix is avoided.
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The mixture of iterative and incremental produce may be used to get better accuracy. In this method total load
is divided into a number of incremental load. For each load increment, iterative procedure is employed to get
the displacement. By this method accuracy is improved at the cost of computation time.

���+ ����)�����"�$����������������������������

So far we analysed the structures assuming that there is no appreciable change in the geometry of the structure
after loading. Hence the transformation matrix used to connect local and global values remained constant
throughout and the following relations could be used:

       δ δg
T

L
 � � �= ...(17.12)

k L k Lg
T

e
 � � �=  and ...(17.13)

       F L Fg
T

e
 � � �= ...(17.14)

where, subscript g refers to global values and l refers to local values. [L] is the rotation (transformation)
matrix.

In cable structures, the deflections are large. Hence change of geometry with loads are not negligible.
There are attempts to study the effect of changes in geometry on structures like shells also. Consider a bar
element shown in Fig. 17.9. The line 1-2 shows initial position. After loading the element takes position

′ − ′1 2 . Hence its inclination to global x-axis changes from θ θ θto + ∆ . Hence the rotation matrix L

changes. Thus L is not constant throughout but it is a function of displacement. We can represent this by

writing L L= δ� � . Hence the stiffness matrix varies with displacements. This type of non-linear problems

may be handled by incremental iterative or mixed method similar to handling material non-linearity problems.
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If the load is incremented from {Fg} to F Fg g+ ∆
 � , the equation 17.14 can be written as

F F L L F Fg g
T

l l
 � 
 � � � � � � �� �+ ∇ = + +∆ ∆

        = + + +L F L F L F L F
T

l
T

l
T

l
T

l� � � � � � � �∆ ∆ ∆ ∆

Neglecting the small quantity of higher order, the above equation will be

F F L F L F L Fg g
T

l
T

l
T

l+ = + +∆ ∆ ∆
 � � � � � � �

since F L Fg
T

l= � � , the above equation reduces to

∆ ∆ ∆F L F L Fg
T

l
T

l
 � � � � �= + ...(17.15)

From the stiffness equation, we know

L F k
T

l g g∆ ∆� � 
 �= δ

∴  Equation 17.15 reduces to

∆ ∆ ∆F k L Fg g g
T

l
 � 
 � � �= +δ ...(17.16)

In the above equation, the term ∆L F
T

e  represents the change in stiffness equation due to change in

the geometry. Let us consider this term further

   ∆ ∆L F F L
T

l l i
i

n

i� � � � � �=
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1
...(17.17)
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1 2

... ...(17.18)

∴ =
=
∑∆ ∆L F F G

T
e e i i g

i

n

� � �  
 �δ
1

Substituting it in equation 17.16, we get

∆ ∆ ∆F k F Gg g g e i i g

i

n


 � 
 � �  
 �= +
=
∑δ δ

1
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    = +
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∑k F Gg g e i i g

i

n

∆ ∆δ δ�  
 �
1

    = +k kg G g∆δ
 � ...(17.19)

where              k F GG e i i

i

n

=
=
∑ � 

1

Since we normally talk about global values in the final analysis, for simplicity we can drop subscript ‘g’
and write equation 17.19 as

∆ ∆F k kG� � � � � �= + δ ...(17.20)

From ith stage, if we want to proceed to i + 1nth stage, the equation 17.20 is

k k FG i i i+ =+ +� � � �∆ ∆δ 1 1 ...(17.21)

Thus to get additional deflections due to geometric non-linearity we need stiffness matrices [k] and [k
G
]

at the beginning of an increment. Hence evaluation effort required is more. However it may be noted that to
find [k

G
] there is no need to evaluate the stiffness matrix afresh. We need only modifications to transformation

matrix [L].
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This method is straight forward. For the initial geometry, the transformation matrix is assembled. Using this
we find,

k L k L
T

l0 0 0= ...(17.22)

           F L F
T

l0 0= ...(17.23)

Then after solving stiffness equation,

k F0 1 0δ� � = ....(17.24)

we get δ  values of 1st stage. Using these displacements, the new coordinates of the nodes are determined. For

the new geometry the above process is repeated to get displacements δ 2  of second stage. The process is

repeated until the displacements no longer change significantly. Though the process is simple, it has limitations
of the iterative techniques i.e. convergence is slow. It is time consuming.

&� ��0	(����%	(*�	

Instead of applying total load in each iteration, if we apply load in the increments and for every incremented
load carryout the iterative procedure, better results may be obtained. It involves lot of computational effort.
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Researchers have attempted some problems, treating them as both material and geometric non-linear problems.
This gives real behaviour of structures under load. Oden [3] has given a generalized mathematical basis for
incremental and iterative procedure and has given a exhaustive list of references on non-linear analysis

3��������

1. Explain the different types of non-linearities encountered in structural analysis
2. Explain incremental procedure to handle material non-linear problems.
3. Explain mid point Runge-Kutta incremental sheme and discuss its advantages and disadvantages

over the incremental procedure.

4. Explain iterative procedure and modified iterative procedure for the analysis of material non-linearity
problems.

5. Explain the iterative procedure of handling geometric non-linearity problems in structural mechanics.
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1. SEIKEN–IASS Symposium on Non-linear Analysis of Shells and Spatial Structures, Tokyo, Japan
Oct 20–22, 1993.

2. Bhavikatti S.S. and Siddamal J.U., Non-linear Analysis of Reinforced Concrete Shells Using
8-Noded Degenerated Shell Element, Proceedings SEIKEN – IASS Symposium on Shells and
Spatial Structures, Tokyo, Japan Oct 20–22, 1993 pp. 315–322.

3. Oden J.T, Finite Element Applications in Non-linear Structural Analysis, Symposium on Application
of Finite Element Methods in Civil Engineering, ASCE, Venderbilt University, 1969.
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Finite element analysis involves lot of numerical calculations. Hence it is not a suitable method for hand
calculations. The method is ideally suited for computer applications and has developed along with developments
in computer technology. The development of finite element programs is time consuming. Many universities
and software companies have spent several man hours to develop general purpose finite element analysis
packages. The packages are continuously being updated by incorporating more and more elements and adding
new modules like non-linear analysis, dynamic analysis, optimization techniques. The cost of development of
packages is very high. Hence their cost is high. In 1996, the cost of NASTRAN package was as high as Rs.4.5
lakhs. As the number of users are increasing, the cost of these packages is continuously coming down. Now
the same package with additional features are available at around Rs.1.50 lakhs. In this chapter the list of
standard finite element packages is presented and then the structure of finite element package explained. The
need for pre and post processors is pointed out and a features of these processors is presented. Finally desirable
features of general purpose packages is listed.
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The following are some of the general purpose finite element analysis packages now available in the market.

1. Structural Design Language (Integrated Civil Engineering System, M.I.T, USA) STRUDEL
2. NASA Structural Analysis (U.S. National Aeronautical and Space Administration) NASTRAN.

Now this has split into five separate groups and each group is continuously improving the package.
CSA NASTRAN and MSC NASTRAN are popular in India.

3. Non-linear Incremental Structural Analysis (developed by E Ramm, Institute of Biostatic University
of Stuttgart, W Germany) NISA.

4. Engineering Analysis System (Swanson Analysis System Inc.) ANSYS.
5. Structural Analysis Program (developed by EL. Wilson, University of California, USA) SAP.

Continuous up-gradations of all the packages is going on in the form of

(a) Increasing the variety of elements
(b) Provision for using different types of elements at a time
(c) Addition of dynamic analysis
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(d) Addition of non-linear analysis

(e) Addition of optimizations
(f) Developing more and more users friendly programs (pre and post processors) to handle input data

and output informations.
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The program starts with lot of INPUT information to define the problem. Then the data given is processed and
required result is printed out. Finite Element Analysis Program using a particular element is explained below
and the flow chart is presented.

��(��	��)*�+���*�

The various input required to define a problem may be grouped into the following:
1. Geometric Data:

(a) General information like total number of elements, total number of nodal points, type of
element (number of nodes, degrees of freedom for each node), are to be supplied.

(b) Coordinates of each node to be supplied or generated.
(c) For each element nodal connectivity is to be supplied.

2. Load Data is to be given. It consists of total types of loads and for each load its magnitude, point
of application (coordinate or line or surface of application) etc.

3. Material Properties to be supplied consists of total number of materials used, for each material
required material property like Young’s Moduli, Poisson’s ratio etc. and material number of each
element.

4. Next input required is about total number of boundary conditions and for each boundary condition
specified displacements.

5. Number of Gaussian points to be used and for each Gaussian point weight function and coordinates
in local system should be supplied.


�*������

Data supplied is to be processed to complete the analysis. It starts with initializing global stiffness matrix and
load matrix. Then element loop is entered to assemble element stiffness matrix. Element stiffness matrix is
initialized. When numerical integration is used, there should be Gauss point loop inside the element. Contribution
of each Gauss point to stiffness matrix is to be found. It needs entering shape function subroutine to get shape
function, and shape function derivatives. Assemble Jacobian matrix Jacobian inverse and determinants are
found. [B] matrix is assembled and the then contribution of the Gauss point i.e. B D B J d d

T ξ η  type
terms are found and added to the existing values of element stiffness matrix. When Gauss loop is completed
we get element stiffness matrix. With the help of nodal connectivity details, the position of each value of
element stiffness matrix in global matrix is identified and added to existing value. When element loop is
completed global stiffness matrix is available.

Using load details nodal loads are to be assembled. Usually first nodal values are initialized. Then one by
one load case is taken up to get final load vector {F}.

The next step in processing is to impose the boundary conditions. Penalty method is used to impose the
boundary conditions.



Standard Packages and their Features 331

Now, the stiffness equations are ready. Standard solution package is used to solve the equation to get
nodal variables. Using these nodal variables at Gauss point of each element, strains and stresses are found. If
principal stresses and strains are required they may be assembled. Any other required stress resultant may be
assembled.

���(��

Various values calculated after the analysis, may be printed out.
The structure of the finite element analysis program is shown by flow chart in Fig. 18.1. The flow chart

is for a single element. Suitable changes are to be made to incorporate various elements and for the calculations
other than static linear analysis.
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A practical problem to be solved by finite element analysis needs hundreds of elements and nodal degree of
freedom may exceed oven 1000. Hence the preparation of data, such as numbering nodes, generating nodal
coordinates, supplying nodal connectivity, load and material information, specifying boundary conditions, is
too lengthy process. It needs considerable efforts and is laborious. If handled manually by looking at INPUT
statements, possibility of errors creeping in are discouraging factors. Hence many softwares have been developed
to handle the data graphically and display it for the verification. Such softwares developed exclusively to
assist in generating finite element analysis INPUT are known as Pre Processors of FEA packages. They use
Graphic User Interfaces (GUI) for the following:

1. Generate finite element mesh.
2. Number the elements automatically.

3. Number the nodes automatically so as to keep band width least.
4. Generate nodal coordinates, using the values supplied at salient points.
5. Develop nodal connectivity details.

6. Display  the standard tables to specify various loads and load informations.
7. Display the tables to specify material numbers and material properties, boundary conditions and

other details.

The provisions are made to select only part of the structure to check the INPUT data and alter if necessary.
HELP commands are available for the users. PRINT commands are also available to print out data for
documentation.

Display III / IV, FEMAP and PATRON are some of the commercially available preprocessor. Upgraded
visions are coming up regularly to make preprocessor as user friendly as possible.

The preprocessors develop data file required by main FEA program, which is known as Processors. The
processors use the data file, analyses and stores the final results.

The output of a FEA consist of nodal displacements, the calculated values of stresses, strains, moments
etc. in each element at all Gauss points. The output values calculated are in all global coordinated directions
and also in principal directions. It is time consuming to go through entire output file before picking up the
required one. Hence the user friendly, Graphic users Interface software have been developed which may be
named as Post Processors.  Normally pre and post processors are clubbed and commercial packages are
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developed. With the help of post processor, making use of various windows users can:

1. Pick up absolute maximum stress resultants
2. Plot the graph of stresses along a selected cross section

3. Plot stress resultant or strain contours.
4. Pick up values for specified element or point.

There is competition among software developers to make pre and post processors as users friendly as
possible.
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The desirable features of a good FEA package are listed below:

1. The package should be supported by an excellent pre and post processor.
2. The element library should incorporate all types of elements like 1D, 2D, 3D elements, plate elements,

shell elements.
3. The package should have a capability to handle different types of loads like concentrated, uniformly

distributed, uniformly varying, internal and external pressures, centrifugal forces, moving loads,
temperatures stresses.

4. It should be possible to impose boundary conditions of all types the user may encounter in his
problems.

5. The limitation on degrees of freedom that can be handled on a specified hardware should be as high
as possible. This is possible if the processor makes use of banded nature and symmetry in stiffness
matrix. Another point where processor can be made efficient is by avoiding repeated calculations

of strains BdV��� �
�  and stresses DBdV��� �

�  which are assembled while assembling the stiffness

matrix. In efficient program these values are written on hard disc element by element while
assembling stiffness matrix and read while assembling strains and stresses.

6. The package should include various features like dynamic analysis, buckling analysis and non-
linear analysis.

7. If design is also incorporated in the package, there should be choice for the user to select required
codal provisions like Indian standard practice, British codes, American codes etc.

8. User may even expect an excellent optimizer in the package.
9. The package should be economical and there should be choice for user to pick up the package to

suit his requirement and budget.

10. For large users multi users network version licenses should be available.

NISA has broughout NISA / CIVIL which is users friendly for civil engineers and gives facility for the
analysis and design of various R.C.C and steel designs. ANSYS has workshop supplement which specializes
on analysis and design of mechanical components. All established software developers are coming out with
latest version of finite element packages with more features and more user friendly versions to suit various users.

.��������

1. Briefly explain the structure of a finite element analysis program.

2. Name some of the standard FEA packages.



334 Finite Element Analysis

3. Write short note on pre and post processors.

4. List the desirable features of FEA packages.
5. Write short note on commercially available FEA packages.
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