ResearchGate

See discussions, stats, and author profiles for this publication at:

The Fast Fourier Transform in Hardware: A
Tutorial Based on an FPGA Implementation

Article - March 2013

CITATION READS
1 12,422
1 author:

-~
“ Orban Microwave Products

44 PUBLICATIONS 130 CITATIONS

SEE PROFILE

Some of the authors of this publication are also working on these related projects:

it LaRa: Doppler Transponder for Precision Martian LOD measurements

poject Reluctance coilguns and linear motors

All content following this page was uploaded by on 20 May 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/235995761_The_Fast_Fourier_Transform_in_Hardware_A_Tutorial_Based_on_an_FPGA_Implementation?enrichId=rgreq-7a19d1e9edfaf67019ec649f9d77939d-XXX&enrichSource=Y292ZXJQYWdlOzIzNTk5NTc2MTtBUzo5ODgxODU1NzIxODgyNEAxNDAwNTcxNTg4Nzk4&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/235995761_The_Fast_Fourier_Transform_in_Hardware_A_Tutorial_Based_on_an_FPGA_Implementation?enrichId=rgreq-7a19d1e9edfaf67019ec649f9d77939d-XXX&enrichSource=Y292ZXJQYWdlOzIzNTk5NTc2MTtBUzo5ODgxODU1NzIxODgyNEAxNDAwNTcxNTg4Nzk4&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/LaRa-Doppler-Transponder-for-Precision-Martian-LOD-measurements?enrichId=rgreq-7a19d1e9edfaf67019ec649f9d77939d-XXX&enrichSource=Y292ZXJQYWdlOzIzNTk5NTc2MTtBUzo5ODgxODU1NzIxODgyNEAxNDAwNTcxNTg4Nzk4&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Reluctance-coilguns-and-linear-motors?enrichId=rgreq-7a19d1e9edfaf67019ec649f9d77939d-XXX&enrichSource=Y292ZXJQYWdlOzIzNTk5NTc2MTtBUzo5ODgxODU1NzIxODgyNEAxNDAwNTcxNTg4Nzk4&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-7a19d1e9edfaf67019ec649f9d77939d-XXX&enrichSource=Y292ZXJQYWdlOzIzNTk5NTc2MTtBUzo5ODgxODU1NzIxODgyNEAxNDAwNTcxNTg4Nzk4&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/George_Slade?enrichId=rgreq-7a19d1e9edfaf67019ec649f9d77939d-XXX&enrichSource=Y292ZXJQYWdlOzIzNTk5NTc2MTtBUzo5ODgxODU1NzIxODgyNEAxNDAwNTcxNTg4Nzk4&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/George_Slade?enrichId=rgreq-7a19d1e9edfaf67019ec649f9d77939d-XXX&enrichSource=Y292ZXJQYWdlOzIzNTk5NTc2MTtBUzo5ODgxODU1NzIxODgyNEAxNDAwNTcxNTg4Nzk4&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/George_Slade?enrichId=rgreq-7a19d1e9edfaf67019ec649f9d77939d-XXX&enrichSource=Y292ZXJQYWdlOzIzNTk5NTc2MTtBUzo5ODgxODU1NzIxODgyNEAxNDAwNTcxNTg4Nzk4&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/George_Slade?enrichId=rgreq-7a19d1e9edfaf67019ec649f9d77939d-XXX&enrichSource=Y292ZXJQYWdlOzIzNTk5NTc2MTtBUzo5ODgxODU1NzIxODgyNEAxNDAwNTcxNTg4Nzk4&el=1_x_10&_esc=publicationCoverPdf

The Fast Fourier Transform in Hardware: A

Tutorial Based on an FPGA Implementation

G. William Slade

Abstract

In digital signal processing (DSP), the fast fourier transf (FFT) is one of the most fundamental and useful
system building block available to the designer. Whereasstiitware version of the FFT is readily implemented,
the FFT in hardware (i.e. in digital logic, field programmalgate arrays, etc.) is useful for high-speed real-
time processing, but is somewhat less straightforwardsinnitplementation. The software version is generally
constrained to execute instructions serially (one at a)tiamel is therefore severely constrained by the processor
instruction throughput. The hardware FFT performs manyoprocessing tasks in parallel, hence can achieve
order-of-magnitude throughput improvements over soféwaFTs executed in DSP microprocessors. However
straightforward the FFT algorithm, when implementing th€l'Fn hardware, one needs to make use of a number
of not-so-obvious tricks to keep the size and speed of thie log a useful, practical scale. We do not present
this document as an exhaustive study of the hardware fotreesform. On the other hand, we hope thet reader
comes away with an understanding on how to construct a basiaqyseful FFT calculator that can be the basis
for deeper study as well as future improvements and optiiiza

In this article, we focus on the Cooley-Tukey Radix-2 FFToaidhm [6], which is highly efficient, is the
easiest to implement and is widely used in practice. We wetiee mathematical basis of the algorithm and its
software implementation before launching into the desioripof the various system blocks needed to implement
the hardware version of the FFT. We then describe how the BFRmstantiated in a field programmable gate
array (FPGA) and used in a real system. It is hoped that byirrgatlis document, the reader will have a good
grasp on how to implement a hardware FFT of any power-of-t&® and can add his own custom improvements

and modifications.

I. INTRODUCTION
A. The DFT: Discrete Fourier Transform

The DFT is a linear transformation of the vectgy (the time domain signal samples) to the veckyy, (the

set of coefficients of component sinusoids of time domainadigusing
N-—1
Xm = Z Tpw"™, (1)
n=0

where N is the size of the vectorsy = ¢2™/V are the “roots-of-unity” (twiddle factors), anti< m < N. A
brute-force summation requires on the ordedf operations to compute. This rapidly becomes intractible as

the number of samples becomes large. A very useful stragetyy iecursively split the summation like this:

N/2—1 N/2—1
Xm = Z xnwnm + me/2 Z xn+N/2wnma (2)
n=0 n=0

Author can be reached &fll.slade@ieee.org

March 21, 2013 DRAFT

or, like this:
N/2—-1 N/2—-1

X = E Topw?™™ 4 w™ E $2n+1w2nm. €))
n=0 n=0

We see immediately that in both cases, that any DFT can berootesd from the sum of two smaller DFTSs.
This implies that we can attack the problem using the “dixddd conquer” approach. The summation is applied
recursively to ever-smaller groups of sample data progidia with an algorithm whose computational cost is
proportional toN log, IV; a substantial savings in effort! As a result, we must workhwiector sizes that are
powers-of-two. (In reality, it is not much of a drawback if Wgad” unused samples with zeros.)

We note that there are different ways to partition the surionat We have shown two of the most popular
methods in (2) and (3). The expression in (2) represents dheakbed decimation-in-frequency (DIF) split,
whereas (3) is the decimation in time (DIT) split. It is theTDform of the FFT that we concentrate on in this
paper.

It is worth mentioning that other splits and ordering methedist. The Winograd algorithm, for example,
uses a special ordering to reduce the need for complex ricétijons [1], [2]. Other algorithms rely on the
Chinese Remainder Theorem (Prime-factor algorithm [4f)e Tyclic Convolution Method [3] can also handle
prime or nearly prime vector sizes. Yet another elegank tfar carrying out the Fourier transform if the
Chirp-z algorithm [5]. These methods each have their adwped and disadvantages. The mathematical basis
of these alternative methods is often very elegant, but thertng methods are usually not so obvious to the
beginner wishing to implement a Fourier transform on hisfi@GA demo board. Moreover, it is difficult to
beat the simplicity and speed of the power-of-two divide-apnquer methods. For this reason, we focus on
the Cooley-Tukey method and refer any interested readettsetpapers in the list of references.

Let us consider the DFT acting on a vector of size 8 to illustfeow the algorithm is formed. We write out

the summations fo,,, expanding the powers af in matrix form:

Xo [1 1 1 1 1 1 1 1] To
X1 1 w w? w wt w W W’ T
X, 1 w2 w* wb w® w0 w2 4 Lo
X3 1 wd Wb w® w2 w® wd ! T3
X, - 1wt w® w2 wl'® w20 w4 w28 T4 (4)
X5 1 w® w0 wld w20 w2 w30 35 s
X 1 wb w!'2 w'® w24 w30 w36 2 6
X 1w’ w4 w2l w2 W w2 w0 T

Now, let us reorder the matrix according to the DIT split in), (8eparating the even and odd index samples,

March 21, 2013 DRAFT

viz.: _ _
Xo 1 1 1 1 1 1 1 1 Zo
X, 1 w? wt W w w W W To
X2 1 w4 ’LUS ,w12 w2 ’LU6 wlO w14 24
X3 1 U)G w12 wlS w3 w9 w15 w21 T6
X4 - 1 w8 wlﬁ ,w24 w4 w12 w20 w28 x (5)
X5 1 ,w10 w20 ,w30 w5 w15 ,w25 w35 T3
Xﬁ 1 ,w12 w24 ,w36 wG w18 ,w30 w42 T5
X7 1 w14 w28 w42 w7 w21 w35 w49 7
Let us do the same reordering confined to each 4x4 block td:yiel
Xo [1 1 1 1 1 1 1 1] To
X1 1 Al w?r Wt w W |t W T4
X 1 w® | wr w?|w w®]| w w T2
X3 1 w12 w6 wlS w3 w15 w9 w21 Z6
X4 - 1 w16 w8 w24 w4 wQO w12 w28 x1 (6)
X5 1 ,w20 wlO ,w30 w5 w25 ,w15 w35 Ts
Xﬁ 1 ,w24 w12 ,w36 w6 w30 ,w18 w42 T3
X7 1 w28 w14 w42 w7 w35 w21 w49 x7

We are now closing in on the point where the FFT “magic” beginsappen. We now invoke the symmetries

in the powers ofw, the roots-of-unity. Namely,

w' = w"TVE N =8k=0,1,2,--- (7)

P — 7wn+N/2 (8)

wVE = 1. 9

We now rewrite (6) as

Xo 1 1 1 1 1 1 1 1 Zo
X3 1 -1 w? —w? w o —w w? —wd T4
X, 1 1 -1 =1 w w|-w? —w? T2
X3 1 —1| —w? w? w? —w? w o —w g

= (10)
X4 1 1 1 1 -1 -1 -1 -1 1
X5 1 -1 w? —w? | —w w | —w3 w? 5
X6 1 1 -1 —1| —w? —w? w? w? T3
X7 1 1| —w? w? | —w? w? | —w w T

After this rearrangement, we notice that we do not need allptwers ofw up to 7. We need store only

March 21, 2013 DRAFT

TABLE |

ILLUSTRATION OF THE BIT-REVERSED INDICES

Index | binary | Bit reversed index| binary
0 000 0 000
1 001 4 100
2 010 2 010
3 011 6 110
4 100 1 001
5 101 5 101
6 110 3 011
7 111 7 111

those up to 3, because of the sign symmetryvofFurthermore, the DFT of a two point data set is simply

Xo _ 1 1 o - (11)
X, 1 -1 T
Taking a close look at the ordering if the vector, we notice that if we represent the indices as binary
numbers, they correspond to thé reversedrepresentation of the original indices. Table | shows hoig th
works for our 8 sample example.
So, now we know that the DIT algorithm consists of a bit-reabmpermutation of the input data indices
followed by a recursive transformation. The recursive san{3) can be represented as a sequence of matrix
transformations, viz.:

(X) = [As][Ar][Ao][P](2), (12)

where[P] is matrix representation of the bit-reversal permutatibthe original data vectofx). It is easy to

see thaf Ay] is the first transformation:

[1 10 00 OO0 O]
1 -1 0 00 OO0 O
0 01 10 00 O
(Ag] = o 01 -10 00 O (13)
0 00 01 1 0 O
o 00 01 -1 0 O
0 00 00 01 1
o 00 00 01 -1

If we use the same atomic two-point transform prototype arheao-by-two matrix and apply the necessary

March 21, 2013 DRAFT

delay ofw?, we can get the four-by-four transform blocks usiaf]:

[1 0 1 0 0 O 0 0]
01 0 w00 0 0
1 0 -1 000 O 0
0 1 0 —w? 0 0 0 0
[A1] = (14)
0 0 0 01 0 1 0
00 0 001 0 w
0 0 0 01 0 -1 0
0 0 0 0 0 1 0 —w?
Now, the same technique to the ;‘our-by-four blocks to gerettze 8 by 8_matrix:
[1 0 0 0 1 0 0 0]
01 00 0 w 0 0
0010 O 0 w? 0
Ay] = 0001 o0 0 0w (15)
1 0 0 0 -1 0 0 0
01 00 0 —w 0 0
0010 O 0 —w? 0
00 01 0 0 0 —wd

In fact, at any level (from 0 to 2 in our present case), we can definga x 2/*! matrix template:
[T] = (16)

where[Q)] = diag(w?, w™N/2"" 2 N2 3N/2 Ly and (1] is a2l x 2! identity matrix block. With this
template, we can explicitly generate each level of the foans Interestingly, this approach demonstrates that
the FFT is nothing more than a special form of matrix factmtign.

Each of the partial transforms corresponds to a level &ith complex multiply-adds. The full transform
require2N log, N multiply-add cycles. The graph in Fig. 1 illustrates theadédw; moving toward each vertex
indicating the fetch-multiply-add-store operations. Tiaph provides us with a processing template. The input
data must be in bit-reversed order. Output data will appearaitural order. The full transform requires

1) an address generator,

2) a “butterfly” operator to do the complex multiply/add,

3) a memory and

4) roots-of-unity (twiddle factor) generator.

The address generator provides the locations for the fetchstéore operations to and from memory. The
butterfly operator is the heart of the FFT. It provides theursive two-point transforms (the multiply-adds)

that are built up to construct the complete transform. Thenorg is needed to store the intermediate results
as the transform runs. The twiddle factor generator can Bedan a simple look-up table (used here) or, to

save memory, computed on the fly using CORDIC [9].

March 21, 2013 DRAFT

X(0)

X(1)

X(2)

X@3)

X(4)

X(5)

X(6)

X(7)

Fig. 1. Signal flow graph for 8 point FFT.

Il. SOFTWARE TRANSFORM

The software transform is constructed in a straightforwaeshner by first doing the permutation of the input
data and then carrying out the butterfly operations.

Most normal CPUs and high level computer languages have notwalirectly perform the bit-swapped
reordering of the data, so a fairly cumbersome integer raetic sorting trick is used (from [6]) to do the
permutation.

Require: x, + data N + # data points > Initialize variables

procedure PERMUTE(N, X)

141
forn=1— N do > Step through each data index.
if n > then
Swap x, < T; > Use swaps to sort data into bit-reversed address order.
end if
m < N/2
while m > 2 && i > m do > Compute the new offset for the swap.
1 1—m
m <—m/2
end while
i< 1+m
end for

end procedure

Many digital signal processors simplify the reordering lither having an explicit bit-reversal instruction or

March 21, 2013 DRAFT

a bit-reversed addressing mode that is specifically incuddacilitate the construction of FFT algorithms. Of
course, a hardware FFT constructed in an FPGA easily pebititeversed addressing by just reversing the
physical connections of the data address bus lines.

After the input data is properly ordered, the butterfly ofieres are executed on pairs of data samples,
stepping sequentially through each of the, N levels. This is the Danielson-Lanczos algorithm [6]. The
twiddle-factorsw,,, contain half of theN “roots of unity”.

procedure DANIELSONLANCZOS(X, W, N)

M=1 > Set first level of “butterflies.”
while N > M do
Istep +— M <« 1 > The “stride” of the butterfly computations.
for m=1— M do > Step through each block of butterflies and do twiddle faetor

for i = m — N step Istep do

j—i+M > Indexi = sum “wing”, j = difference “wing.”
Temp — W * X > The start of the butterfly operation; twiddle factor muliggaltion.
Zj T — Temp > Difference wing of butterfly
i — 2 + Temp > Sum wing of butterfly
end for
end for
M <+ Istep > Onto next level!
end while

end procedure

We test this algorithm by performing the FFT on a square wayeas of magnitude 1 and two full periods,
as shown in Figure 2.

The FFT is carried out on a 32-sample test case using 64-hitldgrecision and the real and imaginary
components are plotted in Figure 3. Since the input signadat the FFT output will have a a real component
that displays even symmetry and the imaginary componehtoeilodd. Since the input signal exhibits nearly
odd symmetry, the imaginary component of the transform #adininate. However, the input signal has a tiny
bit of even symmetry (the sampl&¥, = 1, which is by definition even), so there will also be a smalll rea

component to the fourier transform. The figure confirms this.

March 21, 2013 DRAFT

Signal level

0 5 10 15 20 25 30 35
Sample #
Fig. 2. Input data to 32 point FFT.
25 L) L) L) L) L) L]
f f : : : Real —=—
20 [SR R oo mag e 1
T S S A S H -]
) e R I R e TR

@ S R I T LI I I ST A W IRIEIIEH SRR SR

>

g ASVAS /\ /\ /\ /\ /\ /\

= OFed--%4d---ped--ed . bod -Hpod--b9--6549--0----

c

=) ‘

(9] N R e e e e T S -
8 1 T O g .
N1 Y .
57 0 T .
_25 Il Il Il Il Il Il

0 5 10 15 20 25 30 35

Sample #

Fig. 3. 32 point FFT output data. Note that the proper symigeetire present and the coefficients are scaled by 32 in thim@er (using
Gnu Octave fft function [10]).

March 21, 2013 DRAFT

IIl. THE FFTIN HARDWARE

When constructing the FFT in hardware, there are a numbegoifisant differences to consider with respect
to the software FFT. First and foremost is the fact the a hardWwFT can have many processes going on in
parallel, whereas the software FFT (generally) steps tiivaa single instruction at a time. For this reason,
hardware FFT processors can have throughputs orders ofitudgs above those of sequential CPUs. This
parallel activity means careful thought needs to go inteeliiing and timing so data is processed in time for
the next stage to receive it. Other differences include tttensive use of integer arithmetic instead of the
usual double precision floating-point and being aware ofotten limited resources available for mathematical
functions in FPGA hardware.

In this case study, we implement a 32 point FFT in hardwareguéil bit signed integer input data. Signed
integer arithmatic is used throughout the processor. Thim istark contrast to the use of double precision
floating point arithmetic in the software version of the FFiTtlhe previous section. We choose a 32 point FFT
in order to show clearly the patterns that one would use tegee longer FFTs without having to cope with
long streams of data that would obscure what we wish to shawhéend, we show the results from a larger
working implementation in FPGA (a 1024 point FFT with 12 biidth).

A typical hardware FFT processor might be defined as in Figure

Read Mem Select

Address 1A
Address 1B
BFU->Mem Data A
BFU->Mem Data B

Start

Address
FET Done Generation
Unit

Mem 1 WR

Twiddle Mem 2 WR

Address
Y

Twiddle factor
ROM

Twiddle
factors

Address 2A
o
Address 2B

Butterfly

; BFU->Mem Data A
Unit

BFU->Mem Data B

Mem->BFU Data B

Mem->BFU Data A

Fig. 4. Top level block diagram of hardware FFT processorteNbe system blocks listed previously: address generataterfly unit,
memory and twiddle table.

The Address Generation Unit (AGU) controls the generatiosdresses for reading and writing the memory
contents to and from the Butterfly Processing Unit (BFU). H&U also generates signals that control writes
to memory as well as which memory bank is read. The readematk that two blocks of two-port RAM are
used in this system. All data busses shown represent condgliextransfer (double bit widths to accomodate
both real and imaginary values). We read from one RAM blogkcess through the BFU and write to the

other RAM block. The main reason for this lies in the fact that have only two read and write ports on the

March 21, 2013 DRAFT

FPGA RAM function. The practical need for pipelining the pegsing operations precludes the possibility of
doing simultaneous writes and reads for each butterfly d¢ijperaMore will be presented on this later. This
“ping-pong” memory scheme is a simple way to keep track ofgheressing level of our data and given the
capacity of modern FPGAs, poses few resource problems fos Efp to2'© — 24 in length. Larger FFTs
(length22° or more) can always use large external memories, if needeché®d two memory banks to perform
“ping-pong” reads and writes, because of the pipeline detmd the inability to simultaneously read and write
to four different addresses in a single memory bank. The FBGIR in functions usually allow a dual port

RAM with ports shown in Figure 5.

3 RAMLOZ24by 24 i
- | data af23..0] E q al23..0 =
- | address al9..0 g :r- i
| wren_a i ,.') o
o = W
- | data_b{23..0] I‘* | Q q M23..0] =
- | address h[g..0] E H i
- | wren_b v
= H
= clock
= s ALTO a
:i:::::i::iiﬁﬁix—"c'-"""":ZZ::ZZ:Z

Fig. 5. Synchronous dual port ram as instantiated in FPGAy @vo addresses at a time can be presented to the memory.

The BFU performs a special 2-point FFT on the data pairs 8pdddy the AGU. The atomic operation is
schematically shown in Figure 61 and B are the inputs from the previous level! and B’ are the outputs

after performing the butterfly operation.

A

Fig. 6. Description of the BFU operation.

Let us step through the transformation process, descritiirgaction of the various hardware functions.
Memory 1 (the top block) is loaded with the data samples tadéesformed (in bit-reversed address order) and

the Start signal is triggered. Thé&'F'T" Done signal goes low and the AGU starts cycling through the Memory

March 21, 2013 DRAFT

10

1 addresses and the twiddle factor addresses as the BFUspiogeipeline begins to fill. After a number of
clock cycles, data begins to appear at the output of the BHw&. AGU begins to generate write cycles to
Memory 2 (the bottom block) and the processed data is writteMemory 2. When the AGU reaches the end
of the data buffer, the read address counter stops while tite address counter continues until the BFU pipeline
has completely flushed out. Once the output data is completeften, the “level counter” increments and the
read address counter and twiddle factor address countardbegincrement in an appropriately permuted order
that depends on the level counter value. With this, the wpobeess repeats until the level counter indicates
that we have completed the full transform. When this happtwsE' F'T' Done signal is asserted, the BFU
pipeline is flushed and the whole FFT processor goes into aistkatie. The results of the transform can now
be read out and new data samples can be written into the mefoeyStart line is triggered and the next

batch of data is transformed.

A. The butterfly processor
The BFU is a straightforward implementation of the mathécaatoperation seen in Figure 6. Its block

diagram is seen in Figure 7

Complex adder
1-clock latency

Delay pipeline: 4 clock cycles

A r— A
2x[15..0] + 2x[15..0]
+
2x[30..15]
Complex multiplier
4—clock latency +
2x[31..0] -
2x[15..0] 2x[30..15] 2x[15..0]

Complex adder
2x[15..0] 1-clock latency

w
(twiddle factor)

Fig. 7. Block diagram of the hardware implementation of tl&JBNote the timing latencies that are present in the praiciicplementation
that the conceptual version does not include. Output dgteaap 5 clock cycles after data is presented on the inpuebuss

In the practical implementation of the BFU, we need to ineldide effects of finite time latencies needed to
perform the multiplications and additions. Thearm contains no multiplication and needs a four clock delay
to align the data at the adders to properly generateAhand B’ sums. Notice that although we use 11 bit
signed real and imaginary data on the input, the BFU inputardut data consist of two data busses (real and
imaginary) that are 16 bits wid&he BFU needs 5 extra bits to accommodate “bit growth” that ocurs as
the FFT processor cycles through the butterfly levelsThis is critical to preserving precision, since we are
doing all computations using signed integer arithmetictb&t end of the FFT, we can always prune the lowest
order bits to reduce the bit width on the output. (An altekr@amethod would be to perform bit truncation and
rounding after each FFT level, but the loss of precisionighdly worse than accomodating growth with extra

bits and a bit of extra latency can be expected as well.)

March 21, 2013 DRAFT

11

Note also that the multiplication of 16 bit numbers produB2sbit products. Signed integer multiplication
also has the interesting property of producing redundagt bits in the product ([7] as long as we are not
multiplying two maximum magnitude negative numbers). Henge route bits [30..15] from the multiplier to
the adders, in effect performing a left-shift on the data,bitherwise the magnitude will not be correct.

Making the full FFT system work requires properly accougtiar the inherent pipeline latency of the BFU.
Pipelining is an indispensible tool that permits high spdeagital processing at the cost of adding latency to
the output. By breaking up complicated tasks (like complantiplication) into smaller chunks, we avoid the
problem of uneven delays in combinatorial logic potenyiapoiling the data. All data is guaranteed to be

present on the output after a well defined number of clockesyokgardless of the input conditions.

B. Review of integer number system

All high level microprocessors found in personal computease built in floating point processing units
that greatly facilitate arithmetic operations on 32 and @4wide floating point numbers. This simplifies the
implementation of fast numerical methods, rescaling i®matice and the data is in a “human friendly” form
(scientific notation). When implementing fast digital sijprocessing algorithms in hardware, floating point
numbers have several disadvantages.

« Large word width occupies many memory cells.

« Arithmetic operations on floating point numbers are muchenmymplex than on fixed point or integer

numbers. Many logic cells are required.

« Speed and or latency is degraded because of extra complexity

« Since digitized signals have fixed word width, floating paiffiers no processing advantage other than

being easy for humans to recognize.

In this paper, we use 16-bit fixed point signed fractionathanietic. Numbers are represented as
x = s.d1ady13d12d11d10dydgdrdedsdsdzdadr dy (17)

wheres is the sign bit andl represents the mantissa bits for each power of 2 using thal @sucomplement
signed number system.

Unlike the usual floating point system, there is no rescaliveg takes place after performing an operation.
Adding two 16 bit numbers produces a 17 bit result, wherealtiplication of two 16 bit numbers yields a 32
bit result. The designer must take care that overflows or ilosles do not occur during processing. This means
that word widths must be appropriately chosen and scaliogn@ing, word truncation) must be appropriately

used to keep numbers within the required limits so that nigaksignificance is maximized.

C. The address generation unit

This is the most challenging part of the FFT processor. Wel neegenerate addresses for the reading and
writing of data RAM, retrieve twiddle factors and generateatevsignals for the data RAM. Furthermore, we
need to keep track of which butterfly we are executing as weilvhich FFT level we are working on. Let us

start with the sweep through the butterfly operations.

March 21, 2013 DRAFT

12

A classic short early paper on hardware FFT implementaBdistiows us an elegant strategy for generating
the addresses of the pairs of data points for the butterflyatipa. A straightforward stepping through the
butterfly pairs is hinted at by the software FFT. They go asisuc

Iteration leveli | Butterfly address pairg —

Level 0 {0,1} {2,3} {4,5} {6,7} {8,9} ---
Level 1: {0,2} {1,3} {4,6} {5,7} {8,10} ---
Level 2: {0,4} {1,5} {2,6} {3,7} {8,12} ---
Level 3: {0,8} {1,9} {2,10} {3,11} {4,12} ---

for implementing a radix-2 DIT FFT.

It turns out that by reordering the butterfly pairs, as such:

Iteration leveli | Butterfly address pairg —

Level 0 {0,1} {2,3} {4,5} {6,7} {8,9} ---
Level 1: {0,2} {4,6} {8,10} {12,14} {16,18} ---
Level 2: {0,4} {8,12} {16,20} {24,28} {1,3} ---
Level 3: {0,8} {1,9} {2,10} {3,11} {4,12} ---

produces a simple function between the pair inditgsand the pair address€sn,n} and does not change

the final result. It is a simple process to verify that eachressl pair is given in terms of the indices by
m = Rotates(2j,1) (18)
n = Rotates(25 +1,1) (19)

whereRotatey (x, y) indicates a circular left shift oV bit word x by y bits.

The twiddle factor addresses are found by masking outNhe 1 — ¢ least significant bits ofj. For the
length 32 FFT, the twiddle factor table is given Table II.

We can get an idea of how the FFT processor works by implemgmiie AGU and BFU as a C program
shippet using integer arithmetic.

On entering this program, the arraiita, and Data; contain the real and imaginary parts of the samples
in bit-reversed order. The arraysl'w, andTw; contain the lookup table of twiddle factors. Since this cale
run on a personal computer, the integer bit size is 32 bistdad of the 16 bits we use in our example). This
causes no problems because we just limit our input data td1hat size and use the required sign extension
on the bits we choose to ignore.

The outerfor loop steps through the levelsand the secondor loop steps through each butterfly index pair

within the level. Lines 6-9 generate the addresses by filsgus left-shift to perform an integer multiply-by-2

March 21, 2013 DRAFT

13

TABLE Il

TABLE OF TWIDDLE FACTORS GIVEN AS FLOATING POINT DECIMAL AND16-BIT HEXADECIMAL SIGNED INTEGERS.

Addressk | cos(2mk/32) | cos(2wk/32) | sin(2wk/32) | sin(2wk/32)
float 16-bit integer float 16-bit integer

0 1.0000e+00 Ox7fff 0 0

1 9.8079e-01 0x7d89 1.9509e-01 0x1859

2 9.2388e-01 0x7641 3.8268e-01 0x30fb

3 8.3147e-01 Ox6a6d 5.5557e-01 0x471c

4 7.0711e-01 0x5a82 7.0711e-01 0x5a82

5 5.5557e-01 0x471c 8.3147e-01 Ox6a6d

6 3.8268e-01 0x30fb 9.2388e-01 0x7641

7 1.9509e-01 0x18f9 9.8079e-01 0x7d89

8 0 0x0 1.0e+00 Oxfff

9 -1.9509e-01 Oxe707 9.8079e-01 0x7d89
10 -3.8268e-01 0xcf05 9.2388e-01 0x7641
11 -5.5557e-01 0xb8e4 8.3147e-01 Ox6a6d
12 -7.0711e-01 Oxa57e 7.0711e-01 0x5a82
13 -8.3147e-01 0x9593 5.5557e-01 0x471c
14 | -9.2388e-01 0x89bf 3.8268e-01 0x30fb
15 | -9.8079e-01 0x8277 1.9509e-01 0x1859

to produce the first index. We then add ‘1’ to the first indexuleso get the second. To generate the actual
data addresses, we need to perform a circular shift. Theve & instruction for doing circular shifts explicitly,
so we need to invent a way to do this. Lines 8 and 9 use a conirinaf left and right logical shifts to
simulate the rotate operation over the 5 bit address. We dpptly a masking operation to zero out bits [31:5]
in the integer word (otherwise we will generate segmentafitwilts). The variablega and jb now contain the
addresses of thd and B butterfly values.

The twiddle factor address is computed using a right shift m@asking operation on thgindex as outlined
by [8]. This data is then used to perform the butterfly operatin the integer data set. Let us take a look at the
sequencing of the data addresses and the twiddle factoessdr generated with this code. We have verified
the method and Table IV gives us the address sequences thetpget from our hardware generator.

The full address generator unit (AGU) is shown in Figure 8.

Triggering theStart FFT line sets the synchronous SR latch (third flip-flop from thetdoo left) and
asserts th&'lear Hold signal to reset all storage elements to a predictable “Gédta two clock cycles. After
two clock cyclesClear Hold goes low and the address counter (top left blue block) beginsount at the
system clock rate. The output of the address counter is Wwagtt to give the shift-left-by-1 so we have the
multiply-by-2 for the even indices and multiply-by-2 plu€dr the odd ones. These values are fed through the
rotate-left blocks (where the amount of the rotate is deiteech by the level counter, now at zero). The red
clock delay blocks are needed to synchronize the data pa#siough the arms where no pipelined arithmetic
operation is needed; i.e., so all addresses are lined ugepyde send to the data RAM blocks.

The twiddle factor look-up table address is computed diyefcom the memory counter output. The value

March 21, 2013 DRAFT

© 0O N o o b~ W N B

11
12
13
14
15
16
17
18
19
20
21
22
23

LISTING OFAGU AND BFU IN C WITH INTEGER ARITHMETIC

for(i = 0; i < 5; i++)

{

I/l Level

of FFT

for(j = 0; j < 16; j++) // Butterfly

{

/+ Generate addresses for data and twiddles/
left

ja = j << 1;
jb = ja + 1;

/I Multiply by 2 using

TABLE 1lI

index

ja = ((ja<< i) | (ja> (5 —1))) & 0x1f;
jb = ((jb << i) | (jb > (5 — 1))) & Ox1f ;

TwAddr = ((0 xfffffffo >> i) & Oxf) & j;

/x Do the butterfly operation on the data /
tempr = ((Datar[jb] * Tw.r[TwAddr]) / 32768)

— ((Data.i[jb] * Tw.i[TwAddr]) /32768);

tempi = ((Datar[jb] % Tw_.i[TwAddr]) / 32768)

+ ((Datai[jb] x Tw.r[TwAddr]) / 32768);

Datar[jb] = Data.r[ja] — temp.r
Datai[jb] = Data-i[ja] — temp.i

Datar[ja] += temp.r;

Datai[ja] += temp.i;

THE SEQUENCE OF ADDRESSES GENERATED USING THE COUNT AND ROTRTECHNIQUE.

/1 Twiddle

/!l Address A; 5 bit
/!l Address B;

TABLE IV

shift.

/1
/1
/1
/1

addresses

circular

14

left shift

implemented using C statements

Divide by 32768 (2°15)
does a 16-bit

on the product

data .

Index j Level 0 Level 1 Level 2 Level 3 Level 4
i ja|jbfjaljp]|ljalib]jalipb] ja]ib
0 0 1 4 0| 8 0 | 16
1 2 3 4 6 12 16 | 24 1 17
2 4 5 10 || 16 | 20 1 9 2 18
3 6 7 12 | 14 || 24 | 28 || 17 | 25 3 19
4 8 9 16 | 18 5 2 10 4 | 20
5 10 | 11 || 20 | 22 13 || 18 | 26 5|21
6 12 | 13 || 24 | 26 || 17 | 21 3 11 6 | 22
7 14 | 15| 28 | 30 || 25 | 29 || 19 | 27 7 23
8 16 | 17 3 2 6 4 12 8 | 24
9 18 | 19 10 | 14 || 20 | 28 9 25
10 20| 21 11 || 18 | 22 5 13 || 10| 26
11 22 1 23 || 13| 15| 26 | 30 || 21| 29 || 11 | 27
12 24 |1 25 || 17 | 19 3 7 6 14 || 12 | 28
13 26 | 27 || 21| 23 || 11| 15 22 | 30 || 13| 29
14 28129 || 25| 27 || 19 | 23 7 15| 14| 30
15 30|31 29|31 27|31} 23|31} 15| 31

March 21, 2013

right arithmetic shift

DRAFT

15

is the logical AND of the 4-bit counter output and the twiddbask generator. (The twiddle mask generator is
a right-shift register that fills up with “1”s as the level auar is incremented.)

When the address counter overflows at 15, it triggers a delay@ement of the level counter and sets the
hold-counter trigger flip-flop. This holds the address ceuir a cleared state until the hold counter times out.
The purpose of this is to allow the BFU and RAM write pipelineglush out before we go to the next level in
the FFT. In this way we prevent data reads on the next levarbefll data from the previous level is properly
written to data RAM.

When both the address counter and the level counter overilevknow we have finished the FFT and we
can stop. The'F'T Done line is asserted and the processing stops. At this point weead in new data and
read out the FFT data. We then retrigger $vart FF'T line and the whole process repeats itself.

Simulations (to be presented in detail later) verify theradd pattern is correct.

D. The data memory structure

In order to do anything useful, we need to be able to store #ta de wish to transform and hold the
intermediate values as we step through the FFT levels. Tdidoate design a random access memory block.
In reality, there are four blocks, as seen in Figure 9.

Perhaps it is easiest to step through the various input atglibuariables as a list.

« Inputs:

LoadDataWrite
This signal, when pulled high, enables writing of new datéh® memory as well as reading out
the results of the previously executed transform.
BankOWrite EN
Enable writes to Bank 0 memory block. Note that reads areyawpmssible from any memory
block.
Bank1WriteEN
Enable writes to Bank 1 memory block.
Data_real in[15..0]
Real part of input data. Data is 16 bits wide.
Data_imag-in[15..0]
Real part of input data.
RW AddrEN
This signal to the address MUXs switches betw&end Addr[4..0] andWrite Addr[15..0] inputs.
BankReadSelect
Select line that controls source of data reads to be fed t@Hé. Memory blocks toggle back-
and-forth between levels and this line is needed to allowtdiggling to take place.
LoadDataAddr[4..0]
When memory is filled with new data, the data is written to tHdrasses given on these 5 lines.

Data at the addresses presented on these lines is also ouatplitreal and H;mayg.

March 21, 2013 DRAFT

16

ReadAddr([4..0]

Addresses for data reads @fand H.
Write Addr[4..0]

Addresses for data writes. Must be appropriately delayegirfoper data alignment.
Xr[15..0]

Real part of data to be written to A data block (from BFU-¢Mem)
Xi[15..0]

Imaginary part of data to be written to A block.
Yr[15..0]

Real part of data to be written to B block.
Yi[15..0]

Imaginary part of data to be written to B block.

« Outputs:

G_real

A block real output to BFU.
G_imag

A block imaginary output.
H _real

B block real output.
H_imag

B block imaginary output.

Note that the total latency of the memory system is 4 clockesyérom the time that addresses/data are
presented on the inputs until the data appears on the oufthitsstructure is completely scalable by changing
the address and data widths (and memory sizes) as required.

The top level system block diagram is visible in Figure 10.

Starting from the left of the figure, the twiddle factor ROMntains the look-up table of real and imaginary
values of the required “roots of unity” that are passed toBR&J. The AGU, as described earlier, generates
all twiddle factor and data memory addresses in the propguesece and indicates when the outputs of the
BFU are written to memory. Some delay blocks are needed torerthat memory reads and writes occur at
the correct time. We also see a block indicating the bit Ealepperation on the data address input (when new
data is written to data RAM, it is always stored in bit-reetorder). The two flip-flops at the top right control
the memory bank select. The left flip flop is a delay/edge detewhereas the right flip-flop is toggles the

memory bank on each memory write assertion. We will have aetltbok at this action in the next section.

March 21, 2013 DRAFT

€102 ‘T2 Ydorew

14vya

‘welbelp ayl ul Ae|d aA0LIINO UB| B SUONIBUUOD "XI0]d WalSAS [eqolb e Agq pax3o0[o

‘g b4

KisnouoAfigare siaisibas wys ‘sia1unod ‘sdoj-dijl e 1eyl 810N YNyl Jo uoneuswaldwi arempirey ayl jo welbelp »oo|g

Start FFT

ClearHold

4 bitindex
counter

clk out[3:0]
clr cout

AddressCounter

———|
[4..0] clk

| —<cor

Single clock
elay

Add 1 to din
latency = 1

din

}Jut

[4..0]

ClearHold

)

ClearHold

3 bit level counter
(modulo-5)
clk

clr

4-bit write hold
counter

ClearHold

ClearHold

5 bit Rotate Left
by S

MemA_Address [4..0]

dout [4:0]

5 bit Rotate Left
by S

dout[4:0]

MemB_Address [4..0]

latency = 1

[4..1] AddressCounter

input=1

4~-bit twiddle mask ge
(4 bit right shift)

TwiddleAddress [3..0]
s_in dout[3:0] _@:D——Q

clk

4-bit AND

Memory Write

ClearHold

FFT Done

LT

€T0C ‘T2 Ydolew

l4vda

‘sreubis Jo

Bunnou josupey) siaxajdninw yum abelols Areuibeuwl, pue Jeal, ¥usq 0M] 01Ul UOISIAIP 8yl 810N "welbelp 300|q Alowapy ‘6 "Bi4

BankOWrEN

—E

Bank0_B_WR

LoadDataWrite

Data_real_in[15..0]

LoadDataAddr[4..0] Xr[15..0]

BankO_A_WR

LoadEnable
RWAddrEN

DataA0_r{15..0]

ReadGAddr[4..0]

T
B

0 |

Memory bank 0

real data

AddrAO[4..0]

DataB_r[15..0] |

Addr_BO[4..0]

imaginary data

(-

RWAddrEN

Yr[15..0]
WriteGAddr[4..0]]
ReadHAddr[4..0]
WriteHAddr[4..0]
Xi[15..0]
Yi[15..0]

DataB_r[15..0]

LoadDataAddr[4..0]

LoadEnable
Data_imag_in[15..0]
DataA0_i[15..0]
DataB_i[15..0]

ReadGAddr[4..0]

. —

RWAddreEN

LoadEnable
AddrA1[4..0]

WriteGAddr[4..0]

|-(>

ReadHAddI[4..0]

RWAddrEN

WriteHAddr[4..0]

AddrB1[4..0

Bank1WriteEN M

—E

DataB_i[15..0]

All MUXs are synchronous and
suffer a 1-clock latency.

Memory bank 1

Memory is synchronized to the system clock.

Output suffers a 2 clock latency. If MUX latencies
are included, memory block, from input to output,
suffers a 4—clock delay.

G_real[15..0]

H_real[15..0]

G_imag[15..0]

H_imag[15..0]

BankReadSelect
(0 =bank 0, 1 = bank 1

8T

€T0C ‘T2 Ydolew

l4vda

‘paiidwi SI %20]9 WaISAS “Alowaw

elep pY@ BU) 01Ul SMOJ) erep aziuodysuAs Apadold o) papasu sAejapedid pappe ayr Buimoys welbelp 320|q walsAs |n4 QT B4

Twiddle
factor Tw_addr[3..0]

ROM

I Tw_real

P}
] Tw_imag
Vo

4
Twiddle factor
values

Datainputto _)

Memory Write

MemA_Address

MemB_Addresg

!

WriteGAddr[4..0]

WriteHAddr[4..0]
P4
) =
% 9
o =
ReadGAddr[4..0] 8
ReadHAddr[4..0] -

Xr[15..0]

Xr_del[15..0

Xi[15..0]

Output result

of butterfly BitReversal

operation ® o

P = operation

<
% Data_{real,imag}_in[15..
©
o
=]
©
=]
-

LoadDataWrite

MemBankReadSelect

butterfly il
operation

6T

20

IV. EXAMPLE FFT CALCULATION

In order to demonstrate the correctness of the hardwareemmaitation, we use the input data set shown
in Figure 2. The floating point data set is converted to a fixeihipinteger representation where 19 1023
(or Ox3ff in 16 bit representation) and -2 -1023 (0xfcO1 in 16 bit two’s complement hexidecimal naigji

Thus we get the waveforms in Figure 11

03 Jecot
& \ =
I 1 _|
_Joz Joo_Joa Jos Jor o7l Jos oo Jo= o ool Jog Joe Jwr Jao Jii] Bz 15 fie hs Jiel Jir_Jis Jis Jia b Jic Jig e Jar Joo|
0 [08 glis [04 114 Joc | Jfc 2 0y ia 06 J76 (e [fe JoT [111 09 {9 05 Ji5 [J0d [1d 103 139 Job [Jib 07 {7 JOr Jir [Jg0
07 | J0z®B5 04 05 o6 | o7 Jpe J03 O Job | Joc Jod e Jor a0 [a1 Jiz i3 4 Jis [ae Ji7 Jis 19 Jia | b Jic [4d Jde Jir [o0
|
/'l 1 1
&f et G000
A ¥
L ¥ 1T) i}
J | \
¥ 1
\
| A |
I § \ [5_Jooot /803 [T
I \ 1
i \\ Y03 To7id § il ()
ol Bit reversed count Data

sequence

100 n
[110.:323 ns]

Fig. 11. Waveforms showing sequence of input data.

The signal labeledData Addr is aligned with the data signalBealData and I'magData. The signals
Bank0Addr and Bank1Addr are the bitswapped and non-bitswapped addresses thatrgtftka input to the
memory blocks. Notice the 1-clock delay with respect to thygut addresses. This delay is the latency of the
input address multiplexer.

The imaginary component of the input data is set to zero; tmdyreal component is non zero, as in the
initial example.

The next figure shows how the FFT is initiated once the all timui data is entered. We first trigger the
CLR input to ensure that the AGU is in a cleared state (althougjeriterally already will be waiting because
any spurious running state will time out quickly on power-apby an initial triggering of a general system
clear just after start up). We then trigger tRéartTransform line, as seen in Figure 12.

The memory read process starts 9 clock cycles after thetsigger is issued. This is the amount of time
needed for the address pipeline to fill.

Once the read process starts, we need to wait until the dagdine fills before we start writing to memaory.
Hence the delay in the memory addresses and write enablal sigRigure 13

Bank 1 write is active indicating that the reads are takirerelfrom Bank 0, being processed by the BFU
and are being written to Bank 1. This continues until all 1&gpare written to Bank 1. The Bank 1 write
enableMemBankWrl goes low and writes are disabled until the next write cyclénisated for the next

level.

March 21, 2013 DRAFT

21

Sy o Sy £ oy & 0y 1 o B i 1S o O o 5y (g 55y 08 o gy I 1 8 i B O e B e D o B 1 N i R 1 gy B By R
{TITIT)
e it
Ji7_Jor_Jif [Jou | Joz_Joa 06 08 0= [0c 0e JA0 iz JiA[[16 18 Jia Jic Jie | Ju0
Jid_Jie Jir | Jon I | 2 Jod_Jne_J08_Joa Joc [Joe Yo iz
| o1 o5 Jibs Jo7 Ifs Jobl [od Jor i Jis fas [z JAs fid i Tjoe
y o703l o5 Jor L03 Job Jad| Jor [Jid
A is
J Toooo i
I | L |
f | Tooon) (il] A |
| L |
| X
l 1 \
<4\ \
7 r I \
A A
J Jooog J [ooo1 Yarie
I J
T/o000 071 Tooan
Assert clear to
put AGU in Initiate FFT
zero state
AGU signalsithat Read addresses Write addresses
it is busy with FFT Start memory writes
calculation to Bank
T T T T T T T T T

lllustration of the transform initiation sequence

Fig. 12.
e
Joz_Joa o5 oo _Joa {6 iz Jia [Jie s lia Jic e [Joo
Tz o4 Joo_1oa Joa Joc [Joe)10 Hz 14 Ji6 [168 (s ¥c He o0 oz
JOT 03 o5 o7 J0§S (Oe[o Jor WA 73 LS Jiz A9 i |
pT_ Y05 Jos Jo7 Jos Job Jodl Jor T Jis [i5 [i7] YA Jb Lid it jo5oa]
| G000
r A J
I i il Y i) KT [Tt G
I | y A
F
/
¥ y 4 E
oo | 7 am 503 oo |
J V4
Tora /l IT To7ia G
Write addresses h
Read addresses Write to Bank 1
““““““ o T P T P T T

lllustration of the first level of computations fdret FFT.

Fig. 13.

The second level of FFT computations starts with the readesdds following the correct modified progres-
sion {0, 2}, {4,6}, {8,a}, ---, seen in Figure 14.

Notice the positioning of the data (output data from the BRlith respect to the write addresses and the
write-enable signal. We see that the timing is correct. Alse see the “ping-pong” memory addressing in
action. We are now reading data from Bank 1 and writing to Bank

This pattern repeats until we reach the last level (level8)en the read address counter times 6Ut, I’ Done
goes high indicated that the computation is complete and#ig pipeline is permitted to flush out (writing
the final results to memory. Figure 15 shows the final resultthay are written to memory, listed in Table V
in fixed point and compared to the floating point result. Theparison with the data generated using floating

DRAFT

March 21, 2013

22

5t I g Ay 5 gy 8) 5 i B U (5 8 gy 0y o e B o B o R U 1 R g g U 8y 5 g S (08 e) Iy g D 1 e O o g (0 g 6 A o i €
B J0c 10 [4 _Jig o105 ()03 Jod N N S 1) B T
Addr 00 d i1 Ji5 [Jid [id
pa_Joe J12__J16 lia 37 {id i Joa Jocl hia Jic
oo e o Joe OF i3 17 Ite Jir Joa
) (FiH
07ie Tooon [O7te
TrE03
[07ie) ()) (GFE)
T T
Y fiid
1
TS T T I T—
{6001 503 oo V4 [b7te Jooon Joo1 Joson T}
y 4 T07id Y0000 I
o000 7 To7e 000 To ET—
We now write to
Bank 0
T T T T T T T T T T T S e T T T T L T e I e T
Fig. 14. lllustration of the second level of computations thee FFT.
point arithmetic in Octave shows a good preservation ofipi@t in the fixed point results.
Ly g B iy U e B gy U0 e 8 gy o i iy 5 e B iy |9 R i g 0 i S S i (0 O R R Ry O B e Iy g I B g D

Level 5 read begin

ooz)05 Joa 15 Tos Jor [J5 0w s o Joc]
| JoT 0z Yo (164 Jo5 o6 07 Jog [108
(I A] IXME TE 7 I8 fig s e Qe Jia Qe jir Lot Jo0
Wiz s a5 Yie Ji7 sl Jis
Joona}

(TN B [T

Jo7fd Toooo i}
Tarar [Xoooo 0010557} frecs 1
(Ui T 00 Xo7id Y0000 K0 7id NO000 I

0000 07fc Jonoo T7cRIoog0 To7rd I0600 Y07 T0000 Jo7

faqgtors AGU signals end

Level 5 write begins
9 of FFT calculation

Level 4 finishes

L R O T A R T A U P U AR
3

3500 s 3800 ns 700 ns 3800 ns 3300 ns 4000 ns 4100 ns

Fig. 15. Final data as it is written to Bank 1 is present in té&dm four waveforms. This data is reproduced ans comparddctave
FFT result in V.

March 21, 2013 DRAFT

23

TABLE V
RESULTS OF HARDWAREFFT. DATA IS PRESENTED IN FIXEDPOINT REPRESENTATION AND THE EQUIVALENT FLOATING POINT

REPRESENTATION SCALED TO UNITY

Index | HW FFT (fixed-point) HW FFT (equiv. float) FFT (Octave-float)
real imag real imag real imag
0| Ox0 0x0 0 0 0 0
1| Ox0800 | Ox511b | 6.25x 1072 | 6.34 x 107! | 6.25 x 1072 | 6.35 x 10!
2| oxo0 0x0 0 0 0 0
3 | oxo7fd O0x1a54 | 6.24 x 1072 | 2.05 x 107! | 6.25 x 1072 | 2.06 x 10~!
4| O0x0 0x0 0 0 0 0
5 | Ox07fc 0x0ef2 6.24 x 10~2 1.17 x 1071 | 6.25 x 102 1.17 x 1071
6| O0x0 0x0 0 0 0 0
7 | 0x07fc 0x09bc | 6.24 x 1072 | 7.60 x 1072 | 6.25 x 1072 | 7.61 x 10~2
8| Ox0 0x0 0 0 0 0
9 | 0x07fd 0x068e | 6.24 x 1072 | 5.12x 1072 | 6.25 x 1072 | 5.13 x 10~2
10 | Ox0 0x0 0 0 0 0
11 | 0x07fc 0x0445 | 6.24 x 1072 | 3.34x 1072 | 6.25x 1072 | 3.34 x 1072
12 | 0x0 0x0 0 0 0 0
13 | 0x07fd 0x026d | 6.24x 1072 | 1.90x 1072 | 625 x 1072 | 1.90 x 102
14 | 0x0 0x0 0 0 0 0
15 | 0x07fd 0x00c9 | 6.24 x 102 | 6.13x 1073 | 6.25 x 1072 | 6.16 x 10~3
16 | Ox0 0x0 0 0 0 0
17 | Ox07fe 0xff37 6.24x 1072 | —6.13x 1073 | 6.25 x 1072 | —6.16 x 10~3
18 | 0x0 0x0 0 0 0 0
19 | 0x07fd 0xfd94 6.24x 1072 | —1.90 x 1072 | 6.25 x 1072 | —1.90 x 10~2
20| Ox0 0x0 0 0 0 0
21 | Ox07fe Oxfbbc 6.24 x 1072 | —3.33x 1072 | 6.25 x 1072 | —3.34 x 1072
22| O0Ox0 0x0 0 0 0 0
23 | 0x07fe 0xf972 6.24x 1072 | =5.12x 1072 | 6.25 x 1072 | —5.13 x 10~2
24 | Ox0 0x0 0 0 0 0
25 | 0x07fd 0xf644 6.24x 1072 | —7.60x 1072 | 6.25 x 1072 | —7.61 x 10~2
26 | 0x0 0x0 0 0 0 0
27 | Ox07fe 0xf10f 6.24 x 1072 | —1.17x 107! | 6.25 x 1072 | —1.17 x 10~!
28 | Ox0 0x0 0 0 0 0
29 | 0x0801 0xe5a9 | 6.25 x 1072 | —2.06 x 10~ | 6.25 x 1072 | —2.06 x 10~1
30| O0x0 0x0 0 0 0 0
31 | 0x0805 | Oxaee5 | 6.26 x 1072 | —6.34 x 107! | 6.25 x 1072 | —6.35 x 10~1

V. SUMMARY AND CONCLUSION

As is the case with many technical and scientific problemis, d@ften a good strategy to start off with first
principles and build up the edifice on a good foundation ofarathnding. Consistent with this philosophy,
we review the basics of the FFT starting from the DFT as a titigasformation of a vector containing a set
of sample data. From there, we show how exploiting the symesebf the DFT linear transform produces

the FFT. It is then a short step to assemble a floating-poguaraéhm (like you might run on a PC). We then

March 21, 2013 DRAFT

24

develop a fixed point (integer) algorithm to demonstrate dtdress generation method and to illustrate the
awareness one needs for scaling of the FFT result.

The construction of the FFT in hardware starts off from thaa#heoretical base as the software transform, but
requires a significantly different approach to its impletadgion. In most cases, the software transform is designed
to run on a microprocessor that typically steps through ao$étstructions one by one. The processing is
organized in a serial fashion and is readily described ustaigdard programming languages. The hardware FFT,
in contrast, is usually designed to perform its componeskitavith at least some degree of parallelism. This leads
to a significantly different method of algorithm constrectiwith respect to a microprocessor implementation.

In this document, we describe the construction of the Codlgyey Decimation-In-Time algorithm for
implementation in an FPGA (See Figure 16). A high degree oélfgism is built into the transform such
that arithmetic processing, memory fetches and writes rositnultaneously, thereby speeding up throughput
and reducing processing latency over less parallelizesiores. We do this by breaking all the operations up
into small “chunks” that each perform one small task in a klogcle and pass the result onto the next stage
and retrieving the result of the previous stage. This “atdgfine” or “pipelining” philosophy is indispensible
to processing data at high speed. Throughput can be ordemsaghitude above that of serial instruction

microprocessors.

Fig. 16. Example FPGA platform for implementing FFT. Besidee large FPGA chip in the middle, there are two high spee@€#D

and a pair of high speed DACs for easy data conversion.

Despite all the simulations that we presented in the pregeseéction, there is no substitute for compiling
the design and loading it onto a real FPGA for testing. Thisdigefor an expanded FFT (1024 points, 12
bit data). Using a 1221 Hz 3.0V peak-to-peak square wavergteby a signal generator, we performed a
50ksample/second digitization. 1221Hz is approxima®ly 50000/1024, hence will generate distinct peaks
at frequency points (bins) 25, 75, 125, 175, etc., i.e. the legrmonics. This is beautifully illustrated in the

March 21, 2013 DRAFT

25

results generated by our FPGA FFT in Figure 17.

0.8 T T T T T T T T T
L
0],
0 A O O O
ST W N S

0 o

Amplitude (normalized to 1.5V)

p N i

0 L L
0 5 10 15 20 25 30 35 4 45 50
Frequency (kHz)

Fig. 17. 1221 Hz square wave spectrum generated by FPGA FHEigitized signal. The main peak is at 1221Hz (the 20th birg tre
harmonics roll off as 1/n, at the odd harmonic positions 3685, 8547, - Hz.

The specifications of the system used to generate this pogrmmerated below

« FPGA type: Cyclone Il EP2C20

« Sample rate: 50ksps

o Number of points: 1024 (10 levels)

« Signal amplitude: 1.5V (3V p-p full scale)

« Signal frequency: 1221Hz (= 20 times 5000 / 1024, so signpkars periodic at boundaries)

« Analog to digital word: 12 bit, signed two’s complement

« FFT memory width 24 bit (22-bits needed to fully accomodateglowth)

« System clock rate: 50 MHz

« Conversion speed: approx 100us for 1024 point complex fivamsand 50MHz clock rate.

A hardware FFT opens up a whole range of possibilities foktiege signal processing. Aside from spectral
estimation of real-time signals, complicated filteringkagan be made as simple as “drawing the frequency
response.” Block convolution and correlation is greatipified (and speeded up) with respect to multiply-
and-shift type algorithms. Tasks like carrier acquisiteomd OFDM modulation/demodulation can be carried

out with ease. | leave it up to the reader to dream up othelicgtjgns for this design.

REFERENCES

[1] S. Winograd, “On computing the discrete Fourier transf Math. Comp. 32, pp. 175-199, 1978.

[2] S. Winograd, “On the multiplicative complexity of thesdrete Fourier transformAdv. Math, 32, pp. 83-117, 1979.

[3] N. Brenner and C. M. Rader, “A new principle for fast Fairiransformation,JEEE Acoustics Speech and Sig. Praw. 24, vol.
3, pp. 264-266.

March 21, 2013 DRAFT

26

[4] 1. Good, “The interaction algorithm and practical Faranalysis,”J. R. Statist. Soc. ,Bio. 20. vol. 2, pp. 361-372.

[5] L. R. Rabiner, R. W. Schaefer and C. M. Rader, “The chifpansform algorithm and its applicationgell System Tech. ,Jvol.
48, pp. 1249-1292, 19609.

[6] W. H. Press, S. A. Teukolski, W. T. Vetterling and B. P. fitery, Numerical Recipes in C, The Art of Scientific Computing
Cambridge Univ. Press, 2002.

[7] S. A. Khan, Digital Design of Signal Processing Systems: A Practicapdpch Wiley, Section 2.5.4.4, 2011.

[8] D. Cohen, “Simplified control of FFT hardwarelEEE Trans. Acoustics, Speech, Sig. Prgp. 577-579, Dec. 1976.

[9] CORDIC - http://en.wikipedia.org/wiki/ CORDIC

[10] Gnu Octave - http://www.gnu.org/software/octave/

March 21, 2013 DRAFT

https://www.researchgate.net/publication/235995761

