Exception Handling

Exception is a run-time error which arises during
the execution of java program. The term exception
in java stands for an “exceptional event”.

So Exceptions are nothing but some abnormal
and typically an event or conditions that arise
during the execution which may interrupt the
normal flow of program.

An exception can occur for many different
reasons, including the following:

A user has entered invalid data.
A file that needs to be opened cannot be found.

A network connection has been lost in the
middle of communications, or the JVM has run out

of memory.

“If the exception object is not handled properly,
the interpreter will display the error and will
terminate the program.

Now 1f we want to continue the program
with the remaining code, then we should write the part
of the program which generate the error in the try{}
block and catch the errors using catch() block.

Exception turns the direction of normal
flow of the program control and send to the related
catch() block and should display error message for
taking proper action. This process is known as.”
Exception handling

The purpose of exception handling is to detect
and report an exception so that proper action can be
taken and prevent the program which is automatically
terminate or stop the execution because of that
exception.

Java exception handling is managed by using
five keywords: try, catch, throw, throws and finally.

Try: Piece of code of your program that you
want to monitor for exceptions are contained within a
try block. If an exception occurs within the try block,
it 1s thrown.

Catch: Catch block can catch this exception and

handle i1t in some logical manner. :
Neeraj Kumar

Throw: System-generated exceptions are
automatically thrown by the Java run-time system.
Now if we want to manually throw an exception, we
have to use the throw keyword.

Throws: |[If a method is capable of causing an
exception that it does not handle, it must specify this
behavior so that callers of the method can guard
themselves against that exception.

You do this by including a throws clause in the
method’s declaration. Basically it is used for
|IOException. A throws clause lists the types of

: | e

‘ Neeraj Kumar

This 1s necessary for all exceptions, except those
of type Error or RuntimeException, or any of their
subclasses.

All other exceptions that a method can throw
must be declared in the throws clause. If they are not,

a compile-time error will result.

Finally: Any code that absolutely must be executed
before a method returns, 1s put in a finally block.

General form:

try {

h
catch (ExceptionTypel el) {

// exception handler for ExceptionTypel

// block of code to monitor for errors

b
catch (ExceptionType?2 e2) {

// exception handler for ExceptionType?2
b
I wes
finally {
// block of code to be executed before try block

ends

’ Neeraj Kumar

The Exception class has two main subclasses:
(1) IOException or Checked Exceptions class and
(2) RuntimeException or Unchecked Exception class
(1) 10Exception or Checked Exceptions :

Exceptions that must be included in a method’s
throws list if that method can generate one of these

exceptions and does not handle it itself. These are
called checked exceptions.

For example, if a file is to be opened, but the file
cannot be found, an exception occurs.

These exceptions cannot simply be ignored at
the time of compilation.

Java’s Checked Exceptions Defined in java.lang

(2) RuntimeException or Unchecked Exception :

Exceptions need not be included in any method’s
throws list. These are called unchecked exceptions
because the compiler does not check to see if a method
handles or throws these exceptions.

As opposed to checked exceptions, runtime
exceptions are ignored at the time of compilation.

Java’s Unchecked RuntimeException Subclasses

Try And Catch

We have already seen introduction about try and
catch block 1n java exception handling.

Now here is the some examples of try and catch block.

EX:

public class TC_Demo

{
public static void main(String|| args)

{

int a=10; int b=5,c=5; int x,y;

try {
x=a/(b-c);

b

catch(ArithmeticException e){
System.out.printin(" Divide by zero");

b

y=a/(btc);

System.out.printin("y =" +y);

/Output :

Divide by zero

y=1
.

\

Multiple catch blocks :
It is possible to have multiple catch blocks in our

program.
EX :

public class MultiCatch
i

public static void main(String|]| args)

{ / N

int a [] = {5,10}: int b=5; Output .

try {
intx=al|2]/b-all];

} ~

catch(ArithmeticException e) { Al‘ray mdex CIror
Svystem.out.printin("Divide by zero"); y - 2

H

catch(ArrayIndexOutOfBoundsException e) { \
System.out.printin(" Array index error"):

H
catch(ArrayStoreException e) {

Svstem.out.printin("Wrong data type');
} -
int y = a[1]/a[0]; N K
System.out.printin("y =" + y); ee r'a umar
|3 3

class etion3

{

public static void main(String args|])

{

int numl = 100;
int num2 = 50;
int num3 = 50;
int resultl;

try

{

resultl = numl/(num2-num3);
System.out.println("Resultl =" + resultl):

H

catch (Exception e)
{

System.out.printin(" This is mistake. ");
}

catch(ArithmeticException g)

{

System.out.printin(" Division by zero");

/Output :

Array index error
y=2

.

Nested try statements :
The try statement can be nested.

That is, a try statement can be inside a block of
another try.

Each time a try statement 1s entered, its
corresponding catch block has to entered.

The catch statements are operated from
corresponding statement blocks defined by try.

EX :

public class NestedTry
H
public static void main(String args|])
{
int numl = 100:
int num2 = 50;
int num3 = 50;
int resultl:
try {
resultl = numl/(num2-num3);:
System.out.printin("Result]l =" + resultl); Output -
try {
resultl] = numl/(num2-num3);
System.out.printin(" Resultl =" + resultl): s ® "
, This 1s outer catch
catch(ArithmeticException e) K
{

}

H
catch(ArithmeticException g)

{

System.out.printin(" This is outer catch");

. Neeraj Kumar

System.out.printin(" This is inner catch");

Finally

Java supports another statement known as
finally statement that can be used to handle an
exception that is not caught by any of the previous
catch statements.

We can put finally block after the try block or
after the last catch block.

The finally block 1s executed 1n all
circumstances. Even if a try block completes without
problems, the finally block executes.

EX

public class Finally_Demo

{

public static void main(String args|])

{

H

int numl = 100;
int num2 = 50;
int num3 = 50;
int resultl;

try

i
resultl = numl/(num2-num3);
System.out.printin("Resultl =" + resultl);

H

catch(ArithmeticException g)

{

System.out.printin("Division by zero"):

H

finally

{

System.out.println(" This is final'):

H

KOutput :

Division by zero

\Thls 1s final

Throw

We saw that an exception was generated by the
JVM when certain run-time problems occurred.
It 1s also possible for our program to explicitly
generate an exception.

This can be done with a throw statement. Its
form 1s as follows:

Throw object;

Inside a catch block, you can throw the same
exception object that was provided as an argument.

This can be done with the following syntax:

catch(ExceptionType object)

{
b

throw object;

Alternatively, you may create and throw a new
exception object as follows:

Throw new ExceptionType(args);

Throws

If a method i1s capable of causing an exception
that it does not handle,it must specify this behavior so
that callers of the method can guard themselves
against that exception.

You do this by including a throws clause in the
method’s declaration. Basically it is used for
[IOException.

A throws clause lists the types of exceptions that
a method might throw. This i1s necessary for all
exceptions, except those of type Error or
RuntimeException.,or any of their subclasses.

class customexception / Nk
{ Output :
public static void main(String args|])
{
tEv
&= ****No Problem.****
doWork(3); ek Fkkk
i 1 No Problem.
doWork(0); 3 .
} Exception : You are 1in
sateh (NewException .
s on L oepllonie) \NewExceptlon
Svstem.out.printin("Exception : " + e.toS()); —
H
H
static void doWork(int value) throws NewException
{
if (value == 0)
{
throw new NewException():
H
else
H
System.out.printin("****No Problem.***%*");
H

. Neeraj Kumar

