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1
Ordinary Differential

Equations of First Order

���������	�
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(i) A differential equation is an equation involving differentials or differential coefficients. Thus

2 1� �
dy

x
dx

…(1)
22

2
2 0
� �
� �� 	

d y dy
y

dxdx
+ + = …(2)

(x + y2 – 3y) dx = (x2 + 3x + y) dy …(3) y = 

dy c

x
dydx
dx

…(4)

33 2
2

3 2
2 . 0

� �
� �� 	

d y d y dy dy
x

dx dxdx dx
+ + = …(5)

3
2 22

2
1 .
� �� � �� �� 	 �� �

dy d y
k

dx dx
+ = …(6)

� �
� �
u u

x y nu
x y
+ = …(7)

2 2

2 2

� �
� �

z z
x y

x y
+ = + …(8)

are all differential equations.
(ii) Differential equations which involve only one independent variable and the differential coefficients

with respect to it are called ordinary differential equations.
Thus equations (1)  to (6)  are all ordinary differential equations.
(iii) Differential equations which involve two or more independent variables and partial derivatives with

respect to them are called partial differential equations.
Thus equations (7) and (8) are partial differential equations.
(iv) The order of a differential equation is the order of the highest order derivative occurring in the

differential equation. (P.T.U., Jan. 2009)
Thus equations (1), (3) and (4) are of first order ; equations (2) and (6) are of the second order while

equation (5) is of the third order.
(v) The degree of a differential equation is the degree of the highest order derivative which occurs in the

differential equation provided the equation has been made free of the radicals and fractions as far as the
derivatives are concerned. (P.T.U., Jan. 2009)

Thus, equations (1), (2), (3) and (5) are of the first degree.

Equation (4) is
2

dy dy
y x c

dx dx
� �� �� �� 	

It is of the second degree.

Equation (6) is   

3 22 2
2

2
1

dy d y
k

dx dx

� � � �� �� � �� � � �� 	 � 	 �� �
It is of the second degree.

3
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(vi) Solution of a Differential Equation.  A solution (or integral) of a differential equation is a relation, free

from derivatives, between the variables which satisfies the given equation.

Thus if  y = f (x) be the solution, then by replacing y and its derivatives with respect to x, the given

differential equation will reduce to an identity.

For example, y = c1 cos x + c2 sin x

is the solution of the differential equation   
2

2
0

d y
y

dx
� �

Since
dy

dx
= 1 2sin cosc x c x� �

2

2

d y

dx
 = 1 2cos sinc x c x y� � � �

2

2

d y
y

dx
�  = 0

The general (or complete) solution of a differential equation is that in which the number of independent

arbitrary constants is equal to the order of the differential equation. (P.T.U., Dec. 2005)

Thus,  y = c1 cos x + c2 sin x (involving two arbitrary constants  c1, c2)  is the general solution of the

differential equation  
2

2
0

d y
y

dx
� �   of second order.

A particular solution of a differential equation is that which is obtained from its general solution by

giving particular values to the arbitrary constants.

For example,  y = c1 ex + c2 e
– x  is the general solution of the differential equation  

2

2
0

d y
y

dx
� � ,  whereas

y = ex– e– x  or   y = ex  are its particular solutions.

The solution of a differential equation of nth order is its particular solution if it contains less than n

arbitrary constants.

A singular solution of a differential equation is that solution which satisfies the equation but cannot be

derived from its general solution.

��� �����
���������	�	��������������	
��������
��	����
�������


�������	������
�������

Let , ,
dy

f x y
dx

� �
� �� 	

 = 0 …(1)

be a differential equation of the first order and first degree.

We know that the direction of a curve at a particular point is determined by drawing a tangent line at that

point,  i.e.,  its slope is given by 
dy

dx
 at that particular point.

Let  A0 (x0 , y0)  be any point in the plane. Let  m0 = 0

0

dy

dx
 be the slope of the curve at A0 derived from (1).

Take a neighbouring point  A1 (x1 , y1) such that the slope of  A0 A1  is  m0. Let  m1 = 1

1

dy

dx
 be the slope of the
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curve at A1 derived from (1). Take a neighbouring point  A2 (x2 , y2)  such
that the slope of  A1 A2  is  m1. Continuing like this, we get a succession
of points. If the points are taken sufficiently close to each other, they
approximate a smooth curve  C :  y = f(x)  which is a solution of (1)
corresponding to the initial point  A0 (x0 ,  y0). Any point on C and the
slope of the tangent at that point satisfy (1). If the moving point starts at
any other point, not on C and moves as before, it will describe another
curve. The equation of each such curve is a particular solution of the
differential equation (1). The equation of the system of all such curves is
the general solution of (1).

���� �����
��	�������������	
��������
��	

Differential equations are formed by elimination of arbitrary constants. To eliminate two arbitrary constants,

we require two more equations besides the given relation, leading us to second order derivatives and hence

a differential equation of the second order. Elimination of n arbitrary constants leads us to nth order derivatives

and hence a differential equation of the nth order.

Let f (x, y, c1, c2, ..., cn) = 0 …(1)

be an equation containing n arbitrary constants c1, c2, ..., cn (sometimes called parameters)

Differentiating (1) w.r.t. x successively n times, we get

f1 (x, y, c1, c2, �, cn, 
dy

dx
) = 0

f2 (x, y, c1, c2, �, cn, 
dy

dx
, 

d y

dx

2

2
) = 0   

�

�

�
��

�

�
�
�

…(2)

and fn (x, y, c1, c2, �, cn, 
dy

dx
, 

d y

dx

2

2 , �, 
d y

dx

n

n
) = 0

Eliminating c1, c2, �, cn from (1) and (2), we get

f (x, y, 
dy

dx
, 

d y

dx

2

2
, �, 

d y

dx

n

n ) = 0

which is required nth order differential equation.

Hence nth order differential equation has exactly n arbitrary constants in its general solution.

����������	
�
����
�

Example 1. Eliminate the constants from the following equations:

(i) y = e x (A cos x + B sin x) …(1)  (P.T.U., June 2003)
(ii) y = cx + c2 (P.T.U., Dec. 2003)
(iii) y = Aex + Be–x + C (P.T.U., May 2004)

and obtain the differential equation.

Sol.  (i) There are two arbitrary constants A and B in equation (1).

Differentiating (1) w.r.t. x,  we have

dy
dx

 = ex (A cos x + B sin x) + ex (– A sin x + B cos x) = y + e x (– A sin x + B cos x) …(2)

O X

Y A 4

A 3

A 2

A 1

A 0
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Differentiating again w.r.t. x,  we have

2

2

d y

dx
 = � � � �Asin Bcos Acos Bsinx xdy dy dy

e x x e x x y y
dx dx dx

� �� � � � � � � � � �� �� 	

[Using  (1)  and (2)]

or
2

2
2 2

d y dy
y

dxdx
� �  = 0, which is the required differential equation.

(ii) y = cx + c2 ...(1)

Equation has only one parameter ‘c’

dy

dx
= c ...(2)

Eliminate c from (1) and (2), we get

y =
2

.
dy dy

x
dx dx

� �� � �� 	

or
2

dy dy
x y

dx dx

� � � �� �� 	
 = 0 ; required differential equation.

(iii) y = Aex + Be–x + C ...(1)
Equation has three arbitrary constants so differentiate (1) thrice

dy

dx
 = Aex – Be–x ...(2)

2

2

d y

dx
 = Aex + Be–x

3

3

d y

dx
 = Aex – Be–x = 

dy

dx
[From (2)]

\ Required differential equation is
3

3

d y

dx
 =

dy

dx
.

Example 2. Find the differential equation of all circles passing through
the origin and having centres on the axis of x.

Sol. The equation of such a circle is  (x – h)2 + y2 = h2

or x2 + y2 – 2hx = 0 …(1)

where  h  is the only arbitrary constant.

Differentiating (1) w.r.t. x,  we have  2x + 2y 
dy

dx
 – 2h = 0

or       h = x + y 
dy

dx

Substituting the value of h  in (1),  we have  x2 + y2 – 2x 
dy

x y
dx

� ��� �� 	
 = 0

or 2 22
dy

xy x y
dx

� �  = 0

which is the required differential equation.

X

h
O

C( , 0)h

Y



ORDINARY DIFFERENTIAL EQUATIONS OF FIRST ORDER 7

Example 3. Form the differential equation of all circles of radius a.

Sol. The equation of any circle of radius a  is  (x – h)2 + ( y – k)2 = a2 …(1)

where  (h,  k), the coordinates of the centre are arbitrary.

Differentiating (1) w.r.t. x,  we have 2 (x – h) + 2 (y – k) 
dy
dx

 = 0

or ( ) ( )
dy

x h y k
dx

� � �  = 0 …(2)

Differentiating again,  we have   1 + (y – k) 
22

2

� �� � �� 	
d y dy

dxdx
 = 0 …(3)

From (3),

2

2

2

1
� �� � �� 	

� � �

dy
dx

y k
d y

dx

and from (2),

2

2

2

1

( )

� �� �
� �	 
� �� � �� � � � �

dy dy

dx dxdy
x h y k

dx d y

dx
Substituting the values of (x – h)  and  ( y – k)  in (1),  we get

2 22 2 2

2 22 2

2 2

1 1
dy dy dy

dx dx dx

d y d y

dx dx

� � � �� � � � � �� � �  �� � � � � �� 	 � 	 � 	 �  �� � � ��
� � � �
� � � �� 	 � 	

 = a2

or

22 2

1 1
dy dy

dx dx

� � � �� � � �� � �  �� � � �� 	 � 	 �  �� � � �
 =

22
2

2

d y
a

dx

� �
� �� 	

 or  

3 22 2
2

2
1+

dy d y
a

dx dx

� � � �� � � �� � � �� 	 � 	 �� �
which is the required differential equation.

Example 4. Find the differential equations of all parabolas whose axes are parallel to y-axis.

(P.T.U., May 2002)

Sol. Equations of the parabolas whose axes are parallel to y-axis is  (x – h)2 = 4a (y – k) …(1)

where  a, h, k  are three parameters.

Differentiating (1) w.r.t. x three times, we get

2 (x – h) = 4a 
dy
dx

or x – h = 2
dy

a
dx

Differentiate again 1 = 2a 
2

2

d y

dx
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Differentiate third time, we get

0 =
3 3

3 3
2 or  0

d y d y
a

dx dx
� (�    a � 0)

Hence differential equation of given parabolas is

             
3

3

d y

dx
 = 0   or   y3 = 0.

�
�������������
��


Eliminate the arbitrary constants and obtain the differential equations :

 1. y = cx + c2  2. y = A + Bx + Cx2  3. y = A cos 2t + B sin 2t

 4. y = Ae3x + Be2x  5. y = Aex + Be– x + C  6. y = ax3 + bx2

 7. xy = Aex + Be– x + x2  8. x = A cos (nt + �)  9. y = ae2x + be– 3x + cex

10. Ax2 + By2 = 1 11. y2 – 2ay + x2 = a2 12. e2y + 2ax ey + a2 = 0

Find the differential equations of:

13. All straight lines in a plane. [Hint: Equation of the lines are y = mx + c]

14. All circles of radius r whose centres lie on the x-axis. [Hint: (x – a)2 + y2 = r2 only a is parameter]

15. All parabolas with x-axis  as the axis and (a, 0) as focus. [Hint: y2 = 4ax]

16. All conics whose axes coincide with the axes of co-ordinates. [Hint: ax2 + by2 = 1]

17. All circle in a plane.

18. All circles in the first quadrant which touch the co-ordinate axes [Hint: (x – a)2 + (y – a)2 = a2]

19. All circles touching the axis of y at the origin and having centres on the x-axis.

[Hint: Same as solved example 2]

20. All parabolas with latus rectum ‘4a’ and axis parallel to the x-axis.

[Hint: (y – k)2 = 4a (x – 4) two parameters h and k]

����
��

1.
2

dy dy
x y

dx dx
� �� �� �� 	

2.
3

3

d y

dx
  = 0 3.

2

2
4 0

d y
y

dt
� �

4.
2

2
5 6 0

d y dy
y

dxdx
� � � 5.

3

3
0

d y dy

dxdx
� � 6.

2
2

2
4 6 0

d y dy
x x y

dxdx
� � �

 7.
2

2
2

2 2 0
d y dy

x x xy
dxdx

� � � � � 8.
2

2
2

0
d x

n x
dt

� �  9.
3

3
7 6 0

d y dy
y

dxdx
� � �

10.
22

2
0

d y dy dy
xy x y

dx dxdx

� �� � �� �� 	
11. � �

2
2 2 22 4 0

dy dy
x y xy x

dx dx
� �� � � �� �� 	

12. � �
2

21 1 0
dy

x
dx

� �� � �� �� 	
13.

2

2
0

d y

dx
� 14.

2
2 21

dy
y r

dx

� �� �� �� 	
 �� � �� �

15. 2
dy

y a
dx

	 16.
22

2

d y dy dy
xy x y

dx dxdx

� �� �� �� 	

17.

22 3 2

3 2
1 3 0

dy d y dy d y

dx dxdx dx

� � � �� � �� � �� �� �� 	 � � 	� �
18. � �

2 2
2 1

dy dy
x y x y

dx dx

� �� � � �� �� � 	 �
 � 
 ��  � � �� �

19. 2 2 2
dy

x y xy
dx

� �  = 0 20.
32

2
2

d y dy
a

dxdx

� �� � �� 	
 = 0.
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���� ����
��	�����������	
��������
��	�����
�������
��������	�

����
�������

All differential equations of the first order and first degree cannot be solved. Only those among them
which belong to (or can be reduced to) one of the following categories can be solved by the standard
methods.

(i) Equations in which variables are separable.

(ii) Differential equation of the form 
dy

dx
 = f (ax + by + c).

(iii) Homogeneous equations. (iv) Linear equations. (v) Exact equations.

��������������������������������

If a differential equation of the first order and first degree can be put in the form where dx and all terms
containing x are at one place, also dy and all terms containing y are at one place, then the variables are said to
be separable.

Thus the general form of such an equation is  f (x) dx + f (y) dy = 0

Integrating, we get  � f (x) dx + � f (y) dy = c  which is the general solution, c being an arbitrary constant.

Note. Any equation of the form  f1 (x) f2 (y) dx + f2 (x) f1 (y) dy = 0 can be expressed in the above form by dividing

throughout by  f2 (x) f2 ( y).

Thus + 11

2 2

( )( )

( ) ( )

yf x
dx dy

f x y

�

�
 = 0  or   f (x)  dx + f (y) dy = 0.

���������������	
��������
��	�����
��������
��

��
� ������!����!�	�

It is a differential equation of the form

dy
dx

 = f(ax + by + c) …(1)

It can be reduced to a form in which the variables are separable by the substitution   ax + by + c = t.

so that +
dy

a b
dx

 = =
1

or
dt dy dt

a
dx dx b dx

� ��
 �� 

� Equation (1) becomes
1 � ��� �� 	

dt
a

b dx
 = ( ) or ( )

dt
f t a b f t

dx
= + .

or
+ ( )

dt

a b f t
 = 2

After integrating both sides,  t is to be replaced by its value.

����������	
�
����
�

Example 1. Solve : 2dy dy
y x a y

dx dx
� �� � �� 	

= + .

Sol.  The given equation can be written as y (1 – ay) – (x + a) 0
dy
dx

�
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or
dx

x a�
 =

(1 )

dy

y ay�

Integrating both sides, we have
+

dx

x a�  = +
1

1

a
dy c

y ay

� �
�� ��� 	� [Partial fractions]

�                      log (x + a) =
log(1 )

log .
ay

y a c
a

� ��
� � ��� �

� log (x + a) – log y + log (1 – ay) = log C,  where  c = log C

�    
( ) (1 )

log
x a ay

y

� �
 = log C   �  (x + a) (1 – ay) = Cy

which is the general solution of the given equation.

Note.  Here  c is replaced by log C to get a neat form of the solution.

Example 2. Solve : 3 ex tan y dx + (1 + ex) sec2 y dy = 0,   given    y = 
4
�

  when  x = 0.

Sol.  The given equation can be written as 
23 sec

0
tan1

x

x

e y
dx dy

ye
� �

�

Integrating,  we have  3 log (1 + ex) + log tan y = log c

� log (1 + ex)3 tan y = log c

�        (1 + ex)3 tan y = c …(1)

which is the general solution of the given equation.

Since  y = 
4

�
  when  x = 0,  we have from (1)

(1 + 1)3 	 1 = c        �   c = 8
� The required particular solution is  (1 + ex)3 tan y = 8.

Example 3. Solve x cos x cos y + sin y 
dy

dx
 = 0. (P.T.U., Dec. 2002)

Sol. x cos x cos y + sin y 
dy

dx
= 0

or x cos x cos y = – sin y 
dy

dx
or x cos x dx = – tan y dy

Integrating both sides,

x x dxcos� = – tan y dy c
�
x sin x – 1 . sin x dx� = log cos y + c

or  x sin x + cos x = log cos y + c.
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Example 4. Solve xy 
dy

dx
 = 1 + x + y + xy. (P.T.U.,  Dec. 2003)

Sol. xy 
dy

dx
= (1 + x) + y (1 + x)

= (1 + x) (1 + y)

y dy

y1�
= 

1� x

x
dx

Integrating both sides,

y

y
dy

1�� = 
1�

�� x

x
dx c

1
1

1
�

�
�
�	



��� y

dy = 
1

1
x

dx c��
�

�
�

��
or y – log (1 + y) = log x + x + c
or x – y + log x (1 + y) = – c = c¢.

Example 5. Solve  (x + y + 1)2 
dy
dx

 = 1.

Sol.  Putting  x + y + 1 = t,  we get 1
dy

dx

  =

dt

dx
 or

dy

dx
 = 1

dt

dx
�

� The given equation becomes 2 1
dt

t
dx

� ��	 
� �
 = 1  or

dt

dx
 =

2

2

1 t

t

�

�  
2

21

t
dt

t�
 = dx

Integrating,  we have
+ 2

1
1

1
dt

t

� �
�	 
� ��  = +dx c dx��    or    t – tan– 1 t = x + c

or (x + y + 1) – tan– 1 (x + y + 1) = x + c

or y = tan– 1 (x + y + 1) + C,  where  C  = c – 1.

Example 6. Solve 
dy

dx
 = sin (x + y). (P.T.U., May 2006)

Sol. Put x + y = t

\ 1 + 
dy

dx
 =

dt

dx

\
dy

dx
 =

dt

dx
 – 1

\ Given equation changes to

1
dt

dx
�  = sin t

dt

dx
 = 1 + sin t

or
1 sin

dt

t�
 = dx
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Integrate both sides,

1 sin

dt

t��  = dx c��
or 2

1 sin

cos

t
dt

t

��  = x + c

or � �2sec tan sect t t dt��  = x + c

or tan t – sec t = x + c

or sin t – 1 = (x + c) cos t
Substitute back the value of t

sin (x + y) – 1 = (x + c) cos (x + y).

�
�������������
��


Solve the following differential equations :

 1. 2 3x ydy
e

dx
+=  2.

dy y

dx x
� (P.T.U., Dec. 2005)

 3. (a) (x + y) (dx – dy) = dx + dy (b) � �2 log 1

sin cos

�
�

x xdy

dx y y y
�

 4. + = = =cot 0 if when 2
4

�dy
x y y x

dx
 5. + =

2

2

1
0

1

�
�

dy y

dx x

 6. 2 21 1 0y x dy x y dx� � � 	  7. 2 2 2 2. 1
y dy

x y x y
x dx

	 � � �

 8. � � � �21 2 1 0y ydy
e x x e

dx
� � � 	  9. sec2 x tan y dx + sec2 y tan x dy = 0 (P.T.U., Dec. 2002)

[Hint: 
2sec

tan

x
dx

x
 = – 

2sec

tan

y
dy

y
Integrate, log tan x = – log tan y + log c \ tan x tan y = c]

10. � �2 2 2 2 0
dy

x yx y xy
dx

� � � 	 11. � �3 21 0x dy x y dx� � 	 ,  if  y = 2  when  x = 1

12. a (x dy + y dx) = xy dy 13. 2x y ydy
e x e

dx
� �= + 14. � �

24 1
dy

x y
dx

� � �

15. � �
2 2dy

x y a
dx

� � 16. sin (x + y) dy = dx 17. cos ( )
dy

x y
dx

� �

[Hint: Consult S.E. 6] (P.T.U., June 2003]

18. sin ( ) cos ( )
dy

x y x y
dx

� � � � 19. tan sin ( ) sin ( )
dy

y x y x y
dx

� � � �

[Hint: tan 2 sin cos
dy

y x y
dx

� ; Integrate tan sec 2sin , sec 2cos ]y y dy xdx c y x c� � � � �� �

20. tan ( ) 1
dy

x y x
dx

� � � . [Hint: Put y – x = t]
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����
��

 1. 3 e2x + 2e– 3y = c  2. y = cx

 3. (a) x + y = c ex – y, (b) y sin y = x2 log x + c  4. x sec y = 2

 5. 2 21 1y x x y c� � � �  6. 2 21 1x y c� � � �  7. � �
3

2 2 22
1 1

3
y x c� � � �

 8. � �21 1ye c x� � �  9. tan x tan y = c 10.
1 1

log
x

c
y x y

� �
� � �� �� 	

11. y3 = 4 (x3 + 1) 12. y = a log (xy) + c 13.
3

3
y x x

e e c� � �

14. 4x + y + 1 = 2 tan (2x + c) 15. x + y = a tan 
y c

a

�� �
� �� 	

16. tan (x + y) – sec (x + y) = y + c

17. x + c = tan
2

x y�� �
� �� 	

18. log 1 tan
2

x y
x c

� ��� �� � �� � �� 	� �
19. 2 cos x + sec y = c

20. log sin ( y – x) = 
2

2

x
c� .

����� ����	
�
��� ����
�
������ 
�������� ���� ��� �������

 A differential equation of the form  
1

2

( , )

( , )

f x ydy
dx f x y

� …(1)

is called a homogeneous differential equation if  f1 (x,  y)  and  f2 (x,  y)  are homogeneous functions of the same

degree in x and y.

If  f1 (x,  y)  and   f2 (x,  y)  are homogeneous functions of degree r in x and y,  then

f1 (x,  y) = xr f1 � �
� �� 	

y

x
  and  f2 (x,  y) = xr f2 

� �
� �� 	

y

x

� Equation (1) reduces to  
1

2

F

y
dy yx

ydx x
x

� �� � �� 	 � �� � � �� 	� �� � �� 	

…(2)

Putting       . ., so that   
y dy dv

v i e y vx v x
x dx dx
� � � 


Equation (2)  becomes       v + x 
dv
dx

 = F (v)

Separating the variables,  
F( )

dv dx

v v x
�

�

Integrating, we get the solution in terms of v and x. Replacing v by 
y
x

,  we get the required solution.
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����������	
�
����
�

Example 1.  Solve : (i) x dy – y dx = 2 2x + y dx , (P.T.U., June 2003)

(ii) (3x2y - y3)dx - (2x2y - xy2)dy = 0. (P.T.U., May 2007)

Sol. (i) The given equation can be written as   
2 2y x ydy

dx x
� �

� …(1)

The numerator and denominator on RHS of (1) are homogeneous functions of degree one.

Putting  y = vx,  so that                          � �
dy dv

v x
dx dx

Equation (1) becomes                  2 21 or 1
dv dv

v x v v x v
dx dx

� � � � � �

Separating the variables,               
21

dv dx
xv

�
�

Integrating both sides   � �2log 1 log logv v x c
 
 � 
  � � �1 2

2

1
= cosh = log 1

1

� 
 


� dv v v v

v

or                                    � �2log 1v v
 
 = log (cx) or 21v v cx� � �

or                                          
2

2
1

y y
cx

x x
� � � � �� �� �

�

y
v

x

or                                 y  + 2 2x y� = cx2

which is the required solution.

(ii)
dy

dx
 = 

3

2

2 3

2 2

xy y

x y xy

�
�

 =
3

2

2

2

3

3

2

2

y

x

y

x
y

x

y

x

�

�

Put 
y

x
 = v \ y = vx; 

dy

dx
 = v + x 

dv

dx

\ v + x 
dv

dx
 = 

3

2

2 3

2

v v

v v

�
�

 =
3

2

2v v

v

�
�

\ x
dv

dx
 = 

3

2

2v v

v
v

�
�

�  =
3 2

2 2

2 2v v v v

v

v

v

� � 

�

�
�

\
2 � v

v
dv  =

1

x
dx

Integrate both sides :

2
1

v
dv��

�


��  =

1

x
dx c��
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or 2 log | v | - v = log | x | + c

or 2 log | v | - log | x | = v + c

or log v2 - log x = v + c

or log 
v

x

2

 = v + c or log 
y

x x

2

2 .
 =

y

x
c�

or
y

x

2

3  = 
�y

c
xe  = .

y
c xe e  = Ae

y

x ,  where A = ec

\ y2 = Ax3 e
y

x .

Example 2. Solve : 2y y
x tan y sec

x x
� ��� �� 	

dx + x sec2 .
y

dy 0
x

� (P.T.U., Dec. 2003)

Sol.  The given equation can be written as

2

2 2

sec tan tan

sec sec

y y y
y xdy yx x x

y ydx xx
x x

�
� � � ...(1)

Putting                  
y

x
 = v i.e., y = vx so that 

dy

dx
 = v + 

dv
x

dx

Equation (1) becomes          
2

2

tan sec
or 0

tansec

dv v v dx
v x v dv

dx v xv
� � �� �

Integrating, we get log tan v + log x = log c

or                                    log (x tan v) = log c or x tan v = c

or                                           tan
y

x c
x
�

y
v

x
� �� �� �
�

which is the required solution.

Example 3. Find the general solution of the differential equation (2xy + x2) y¢ = 3y2 + 2xy.
(P.T.U., May 2006)

Sol. Given equation is (2xy + x2) y¢ = 3y2 + 2xy

or
dy

dx
 =

2

2

3 2

2

y xy

xy x

�

�
 = 

2

3 2

2 . 1

y y

x x
y

x

� � � ��� � � �� 	 � 	

�
, which is homogeneous equation of order 2.

Put
y

x
 = v \ y = vx ;

dy

dx
 = v + x 

dv

dx

\
dv

v x
dx


  =
23 2

2 1

v v

v

�
�

or
dv

x
dx

 =
23 2

2 1

v v
v

v

�
�

�

or x 
dv

dx
 =

2

2 1

v v

v

�
�

or
� �

2 1

1

v

v v






 dv =
1

dx
x

Integrate both sides,

� �
2 1

1

v
dv

v v




�  =

1
logdx c

x

�
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or
1 1

1
dv

v v

� �
�� ��� 	�  = log x + log c (By partial fractions)

or log v + log (v + 1) – log x = log c or log 
� �1v v

x

�
 = log c

or v (v + 1) = cx or 1
y y

x x
� ��� �� 	

 = cx

or y (y + x) = cx3.

Example 4. Solve: (1 + ex/y) dx + ex/y 
x

1 dy
y

� �
�� �� 	

 = 0. (P.T.U., Dec. 2006)

Sol. (1 + ex/y) dx + ex/y 1
x

dy
y

� �
�� �� 	

 = 0

or
dx

dy
= 

/

/

1

1

x y

x y

x
e

y

e

� �
�� �� 	

�
�

, which is homogeneous equation in 
x

y
 form

\ Put
x

y
= v i.e., x = vy \

dx

dy
 = 

dv
v y

dy
�

dv
v y

dy
� = 

� �1

1

v

v

e v

e

�
�



or y 

dv

dy
 = 

� �1

1

v

v

e v
v

e

�
� �




or y 
dv

dy
= 
� �
1

v

v

e v

e

� 




or

1 v

v

e
dv

v e

�
�

 = 
1

dy
y

�

Integrate both sides,
log (v + ev) = – log y + log c

\ log (v + ev) y = log c
\  (v + ev)y = c

\ /x yx
y e

y

� �
�� �� 	

= c or x + yex/y = c.

�
�������������
��


Solve the following differential equations :

1. (x + y)dx + (y – x)dy = 0 (P.T.U., May 2004, 2011) 2. x
2

2
dy y

xy
dx x

� �

3. (x2 – y2)dx = 2xydy 4. (y2 – 2xy)dx = (x2 – 2xy)dy 5. x ( x – y) 
dy
dx

= y( x + y )

6. � � 0� � �xy x dy y dx 7. (y2 + 2xy)dx + (2x2 + 3xy)dy = 0 8. x2y dx – (x3 + y3)dy = 0

9. (x2 + 2y2)dx – xy dy = 0, given that y = 0 when x = 1 10. (log log )
dy

x y y x
dx

� �

11. 2cos
dy y

x y x
dx x

� � 12. sin
dy y y
dx x x

� �
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13. cos sin sin cos 0
� � � �� � � �� � � �� 	 � 	

y y y y dy
x y y y x x

x x x x dx
14. ( 1 + ex/y) dx + ex/y 1 0

� �
� �� �� 	

x
dy

y

15. yex/y dx = (xex/y + y) dy 16. xy log 2 2 log 0.
� �� � � �� � �� � � � �� 	 � 	� �

x x
dx y x dy

y y

����
��

1. log (x2 + y2) = 2tan–1 y
c

x
� 2. cx = ex/y 3. x (x2 –3y2) = c

4. xy ( x – y) = c 5. log
x x

c
y y
� � 6. 2 log

x
y c

y
� �

7. xy2 (x + y) = c 8. y = 

2

33

x

yce 9. x2 +y2 = cx4

10. y = xe1 + cx 11. tan log ( )
y

cx
x

� 12. y = 2x tan–1 (cx)

13. xy cos
y

c
x

� 14. x + y ex/y = c 15. ex/y = log y + c

16. log y –
2

2 2log 1 .
4

� �� �� �� 	
x y

c
xy

��"������
��	������������
��������	���������

A differential equation of the form 
dy ax by c

dx a x b y c

� �
�

� �� � �
...(1)

can be reduced to the homogeneous form as follows :

Case I. When                      �
' '

a b

a b
(P.T.U., Dec. 2002)

Putting                                   x = X + h, y  = Y + k (h, k are constants)

so that                                 dx = dX, dy = dY

Equation (1) becomes   
Y (X ) (Y )

X ' (X ) '(Y ) '

d a h b k c

d a h b k c

� � �
�

� � � �
�

   

         
X Y ( )

'X 'Y ( ' ' ')

a b ah bk c

a b a h b k c

� � � �
�

� � � �
...(2)

Choose h and k such that (2) becomes homogeneous.

This requires ah + bk + c = 0  and  a¢h + b¢k + c¢ = 0

so that  
1

or ,
h k bc b c ca c a

h k
bc b c ca c a ab a b ab a b ab a b

� �� � � �
� � � �

� � � � �� � � � � � � � � �

Since                           0
a b

ab a b
a' b'

� � � �� �  so that h, k are finite.

� Equation (2) becomes 
Y X Y

X 'X 'Y

�
�

�
d a b

d a b

which is homogeneous in X, Y and can be solved by putting Y = vX.
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Case II.  When , 0
a b

= ab' a'b =
a' b'

�  and the above method fails

Now,                
1a b

a b m
� �

� �
 (say) so that a¢ = ma, b¢ = mb

Equation (1) becomes 
( )

( )
( )

dy ax by c
f ax by

dx m ax by c

� �
� � �

� � �
which can be solved by putting ax + by = t.

����������	
�
����
�

Example 1. Solve : (3y – 7x +7)dx + (7y – 3x + 3) dy = 0.

Sol. The given equation can be written as 
3 7 7

Here
7 3 3 ' '

dy y x a b

dx y x a b

� � � �� � � �� � � �
...(1)

Putting   x = X + h,   y = Y + k so that dx = dX,  dy = dY (h,  k  are constants)

Equation (1) becomes
Y 3(Y ) 7(X ) 7 3Y 7X ( 7 3 7)

X 7(Y ) 3(X ) 3 7Y 3X ( 3 7 3)

d k h h k

d k h h k

� � � � � � � � �
� � � �

� � � � � � � � � …(2)

Now, choosing,  h, k  such that  – 7h + 3k + 7 = 0  and  – 3h + 7k + 3 = 0

Solving these equations  h = 1,  k = 0.

With these values of h,  k equation (2) reduces to   
Y 3Y 7X

X 7Y 3X

d

d

�
� �

�
…(3)

Putting Y = vX  so that            
Y

X
X X

d dv
v

d d
� 


Equation (3) becomes       v + X 
23 X 7X 7 3 7 7

or X
X 7 X 3X X 7 3 7 3

� � �
� � � � �

� � �
dv v dv v v

v
d v d v v

Separating the variables  
2

7 3 X 2 5 X
7 or 7

X 1 1 X1

v d d
dv dv

v vv

� � �� � �� �� 	� ��
Integrating       – 2 log (1 – v) – 5 log (1 + v) = 7 log X + c

or 7 log X + 2 log (1 – v) + 5 log (1 + v) = – c

or                             log [X7 (1 – v)2 (1 + v)5] = – c  or   X7 
2 5

Y Y
1 1

X X
ce�

� � � �� � �� � � �� 	 � 	

or             (X – Y)2 (X + Y)5 = C,   where  C = e– c …(4)

Putting              X = x – h = x – 1,  Y = y – k = y

Equation (4) becomes  (x – y – 1)2 (x + y – 1)5 = C, which is the required solution.

Example 2. Solve : (3y + 2x + 4) dx – (4x + 6y + 5) dy = 0. (P.T.U., May 2011)

Sol. The given equation can be written as  
(2 3 ) 4

2(2 3 ) 5

dy x y

dx x y

� �
�

� �
…(1)

Here,
a b

a b
�

� �

Putting 2x + 3y = t   so that     2 + 3 
dy dt

dx dx
�
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or                                                 
1

2
3

dy dt

dx dx
� �� �� �� 	

Equation (1) becomes           
1 4

2
3 2 5

dt t

dx t

�� �� �� �� 	 �

or                                                
3 12 7 22

2
2 5 2 5

dt t t

dx t t

� �
� � �

� �

Separating the variables       
2 5 2 9 1

or
7 22 7 7 7 22

t
dt dx dt dx

t t

� � �� � � �� �� 	� �

Integrating both sides  2 9
log (7 22)

7 49
t t x c� � � �

or                                       14 t – 9 log (7t + 22) = 49x + 49c

Putting  t = 2x + 3y,  we have   14 (2x + 3y) – 9 log (14x + 21y + 22) = 49x + 49c

or                21x – 42y + 9log (14x + 21y + 22) = – 49c

or                7 (x – 2y) + 3 log (14x + 21y + 22) = C
49

where C
3

c
� �� �� �� 	

which is the required solution.

�
�������������
��


Solve the following differential equations :

1. =
+ 2

4

dy y x

dx y x

�
� �

2.
2 3

2 3

dy x y

dx x y

� �
�

� �

3.
2 3 1

0
3 4 1

dy x y

dx x y

� �
� �

� �
4. (x + 2y + 3) dx – (2x – y + 1) dy = 0

5. � �2 2 5 3
dy

x y x y
dx

� � � � � 6.
6 4 3

3 2 1

dy x y

dx x y

� �
�

� �

7. (2x + y + 1) dx + (4x + 2y – 1) dy = 0 8. (x + y) (dx – dy) = dx + dy.

����
��

1. x2 + 2xy – y2 – 4x + 8y = C 2. (x – y)3 = C (x + y – 2)

3. x2 + 3xy + 2y2 + x – y = C 4. log [(x + 1)2 + ( y + 1)2] = 
1 1

4tan C
1

y

x
� �

�
�

5. x – 2y + log (x – y + 2) = C 6. 2x – y = log (3x – 2y + 3) + C

7. x + 2y + log (2x + y – 1) = C 8. x – y = log (x + y) + C.

��#�� �$��
��������	
��������
��	� (P.T.U., Jan. 2009)

Definition : A differential equation obtained from its primitive directly by differentiation, without any
operation of multiplication, elimination or reduction etc. is said to be an exact differential equation.

Thus a differential equation of the form  M (x,  y) dx + N (x,  y) dy = 0  is an exact differential equation if it can
be obtained directly by differentiating the equation  u (x,  y) = C which is its primitive  i.e.,  if  du = M dx + N dy.
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��%�� 
������

The necessary and sufficient condition for the differential equation  Mdx + Ndy = 0  to be exact is

M N
=

y x

� �

� �
. (P.T.U., 2002, Jan. 2010, Dec. 2012, May 2014)

Proof. The condition is necessary

The equation  Mdx + Ndy = 0  will be exact, if  du = Mdx + Ndy

But du = 
u u

dx dy
x y

� �
�

� �

� Mdx + Ndy = 
u u

dx dy
x y

� �
�

� �
Equating coefficients of dx and dy,  we get

       M = 
u

x

�
�

and N =
u

y

�
�

�
M�
�y

= 
2�

� �
u

y x
and

N�
�x

 =
2�

� �
u

x y

But
2�

� �
u

y x
= 

2�
� �

u

x y

�
M�
�y

= N�
�x

which is the necessary condition of exactness.

The condition is sufficient.

Let  u = 
constant

M
y

dx�

�
�
�
u

x
= 

2 M
M and

u

y x y

� �
�

� � �

But
2�

� �
u

y x
= 

2 M N
and

u

x y y x

� � �
�

� � � �

�                                        N�
�x

 = 
2u u

x y x y

� �� � �
� � �� � � � � 	

Integrating both sides w.r.t. x  treating y as constant,  we have  N = ( )
u

f y
y

�
�

�

� Mdx + Ndy = ( )
u u

dx f y dy
x y

� �� �
� �� �� �� �

M , N ( )
u u

f y
x y

� �� �
� � � �� �� �

�

= ( ) ( ) ( )
� �� � � �� � � � � � �� � � �� �� 	

u u
dx dy f y dy du f y dy d u f y dy

x y

which shows that  Mdx + Ndy  is an exact differential and hence  Mdx + Ndy = 0  is an exact differential

equation.

Note.  Since Mdx + Ndy = d [u + �f (y) dy]

�  Mdx + Ndy = 0    fi   d [u + � f(y) dy] = 0
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Integrating  u + ( )f y dy� = c

But u = 

constant

M and ( ) terms of N not containing 
y

dx f y x� =

Hence the solution of Mdx + Ndy = 0 is   � �
constant

M terms of  N not containing .
y

dx x dy = c�� �

����������	
�
����
�

Example 1. Solve the initial value problem ex (cos y dx – sin y dy) = 0 ; y (0) = 0. (P.T.U., May 2008)
Sol. ex cos y dx – ex sin y dy = 0

Compare it with M dx + N dy = 0
M = ex cos y, N = – ex sin y

M

y

�
�

= – ex sin y ; 
N

x

�
�

 = – ex sin y

M

y

�
�

= 
N

x

�
�

\ Given equation is exact and its solution is 
constant

M�
y

dx + � �terms of N not containing� x dy  = c

or
constant

cos� x

y

e y dx  + 0 �� dy = c

or cos y ◊ ex = c …(1)
Given y (0) = 0, i.e., y = 0 when x = 0
Substituting in (1), we get 1 = c
\ Solution of the given equation is

ex cos y = 1

Example 2. Solve : (x2 – ay) dx = (ax – y2) dy. (P.T.U., 2005)

Sol. (x2 – ay) dx – (ax – y2) dy = 0 …(1)

Compare it with     Mdx + Ndy = 0

M = x2 – ay,    N = – ax + y2

  
M

y

�
�

= – a, 
N�

� �
�

a
x

M

y

�
�

= N

x

�
�

� (1) is exact differential equation. Therefore, its solution is

� �M terms of N not containing  �� �
y

dx x dy c�

or               � � + =2 2–� �
y

x ay dx y dy c

or                 
3 3

3 3
� � �

x y
ayx c

or x3 + y3 – 3axy = c
, where  c
 = 3c.
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Example 3. Solve : (sec x tan x tan y – ex) dx + sec x sec2 y dy = 0. (P.T.U., Dec. 2005)

Sol. (sec x tan x tan y – ex) dx + sec x sec2 y dy = 0 …(1)

Compare it with M dx + N dy = 0
M = sec x tan x tan y – ex and N = sec x sec2 y

\
M

y

�
�

 = sec x tan x sec2 y

N

x

�
�

 = sec x tan x sec2 y

M

y

�
�

 =
N

x

�
�

\ Equation (1) is exact.
\ Its solution is

� �
constant

sec tan tan x

y

x x y e dx�� + � �terms of N not containing x dy c��

� �tan sec tan 0xy x x e dx dy� �� � = c

\ tan y (sec x) – ex = c.

Example 4. For what value of k, the differential equation 

kx x

y y x
1 e dx e 1 dy

y

� � � �� �� � �� 	 � �� 	
 = 0 is exact?

(P.T.U., May 2010)

Sol.  Given differential equation is

1 1

kx x

y y x
e dx e dy

y

� � � �� �� � �� 	 � �� 	
 = 0 …(1)

Compare it with Mdx + Ndy = 0

M = 1

kx

ye� N = 1

x

y x
e

y

� ��� �� 	

(1) will be exact if
M

y

�
�

 = N

x

�
�

i.e., 1

kx

ye
y

� �� � ��� 	
�

 = 1

x

y x
e

x y

� �� � �� ��� �� �� � 	� �� �

or
2

kx

y kx
e

y

�� �
� �� 	

 =
1 1

1

x x

y yx
e e

y y y

� � � �� � �� � � �� 	 � 	
 = 

2

1 1
x

y x
e

y yy

� �� �� �� 	
 = 

2

x

y x
e

y

� ��� �� 	

or

kx

yk e  =

x

ye , which holds when k = 1

\ For k = 1, (1) is an exact differential equation.
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Example 5. Under what conditions on a, b, c, d, the differential equation (a sinh x cos y + b cosh x sin y)
dx + (c sinh x cos y + d cosh x sin y) dy = 0 is exact? (P.T.U., May 2012)

Sol. Given differential equation is
(a sinh x cos y + b cosh x sin y) dx + (c sinh x cos y + d cosh x sin y) dy = 0 …(1)

Compare it with M dx + N dy = 0

M = a sinh x cos y + b cosh x sin y

N = c sinh x cos y + d cosh x sin y

M

y

�
�

 = – a sinh x sin y + b cosh x cos y

  
N

x

�
�

 = c cosh x cos y + d sinh x sin y

Equation (1) will be exact

if
M

y

�
�

 =
N

x

�
�

i.e., – a sinh x sin y + b cosh x cos y
= c cosh x cos y + d sinh x sin y

which holds when

– a = d and b = c i.e.,  a = – d and b = c.

�
�������������
��


Solve the following differential equations:

1. (a) (x2 – 4xy – 2y2) dx + (y2 – 4xy – 2x2) dy = 0  (b) (5x4 + 3x2y2 – 2xy3) dx + (2x3y – 3x2y2 – 5y4) dy = 0

2. (3x2 + 6xy2) dx + (6x2 y + 4y3) dy = 0 (P.T.U., May 2009)

3. (x2 + y2 – a2) xdx + (x2 – y2 – b2) ydy = 0  4. 1 1 0
x x
y yx

e dx e dy
y

� � � �
 
 � �	 
 � �	 

5. (y cos x + 1) dx + sin xdy = 0  6. (sec x tan x tan y – ex) dx + sec x sec2 ydy = 0

7. yexy dx + (xexy + 2y) dy = 0  8.
2 22 3 24 2 3 0xy xyy e x dx xye y dy� 	 � 	� � � �
 � 
 �

9. (2xy cos x2 – 2xy + 1) dx + (sin x2 – x2) dy = 0 10. (sin x cos y + e2x) dx + (cos x sin y + tan y) dy = 0

11. � �
1

1 cos log sin 0
� �� �� � � � � � �� �� 	� �
y y dx x x x y dy

x
12.

cos sin
0

sin cos

dy y x y y

dx x x y x

� �
� �

� �
(P.T.U., May 2011)

13.
2 2

0
xdy y dx

xdy y dx
x y

�
� � �

�

14. [cos x tan y + cos (x + y)] dx + [sin x sec2 y + cos (x + y)] dy = 0.

����
��

 1. (a) x3 – 6x2 y – 6xy2 + y3 = c (b) x5 + x3y2 – x2y3 – y3 = c

2. x3 + 3x2 y2 + y4 = c 3. x4 + 2x2 y2 – 2a2 x2 – y4 – 2b2 y2 = c

4. x + yex/y = c 5. y sin x + x = c

6. sec x tan y – ex = c 7. exy + y2 = c

8.
2 4 3xye x y c� � �  9. y sin x2 – x2 y + x = c
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10. – cos x cos y + 21
log sec

2
xe y c� � 11. y (x + log x) + x cos y = c

12. y sin x + (sin y + y) x = c 13. xy + 1tan� �
y

c
x

+ =–1The given equation is  ( ) tan 0.
� �� �
 �� �� 	� �

y
d xy d

x
Hint:

14. sin x tan y + sin (x + y) = c

��&� ����
��	������������
���$��
�����
��	�

Integrating factor
Differential equations which are not exact can sometimes be made exact after multiplying by a suitable

factor (a function of x or y or both) called the integrating factor.

For example, consider the equation  y dx – x dy = 0 …(1)

Here,     M = y  and  N = – x

M N

y x

� �
�

� �
, therefore the equation is not exact.

(i) Multiplying the equation by  
2

1

y
, it becomes  

2

y dx x dy

y

�
 = 0  or   

x
d

y

� �
� �� 	

 = 0  which is exact.

(ii) Multiplying the equation by  
2

1

x
,  it becomes  

2

y dx x dy

x

�
= 0 or   

y
d

x
� �
� �� 	

 = 0  which is exact.

(iii) Multiplying the equation by  
1

xy
, it becomes  

dx dy

x y
� = 0  or  d (log x – log y) = 0  which is exact.

�
2 2

1 1 1
, and

xyy x
  are integrating factors of (1).

Note. If a differential equation has one integrating factor, it has an infinite number of integrating factors.

�������� ����� ������ ��� ���
�����

In a number of problems, a little analysis helps to find the integrating factor. The following differentials

are useful in selecting a suitable integrating factor.

(i) ( )y dx x dy d xy
 � (ii)
2

x dy y dx y
d

xx

� � �� � �� 	

(iii)
2

y dx x dy x
d

yy

� ��
� � �� 	

(iv) 1
2 2

tan
x dy y dx y

d
xx y

�� � �� � �	 



(v) log
x dy y dx y

d
xy x

� �� � ��  �� �� 	� �
(vi) � �log ( )

y dx x dy
d xy

xy

�
�

(vii) � �2 2
2 2

1
log

2

x dy y dy
d x y

x y


 � � 
� �
 � �
(viii)  

2 2

1
log

2

x dy y dx x y
d

x yx y

� �� �
� � ��� 	�
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����������	
�
����
�

Example 1.  Solve: y(2xy + ex)dx – exdy = 0. (P.T.U., May 2014)
Sol. y(2xy + ex)dx – exdy = 0

or 2xy2dx + yex dx – exdy = 0 ...(1)

Since 2x dx = 21
( )

2
d x

\ The term 2xy2 dx should not involve y2

\ It suggests that 
2

1

y
 is the I.F.

\ Multiplying (1) by  
2

1

y
,  we get

2x dx + 
2

x xy e dx e dy

y

�
 = 0

or 21
( )

2

xe
d x d

y

� �
� � �� 	

 = 0

or 21

2

xe
d x

y

� �
�� �� 	

 = 0

Integrating; 21

2

xe
x c

y

 � , which is the required solution.

Example 2. Find the integrating factor of the differential equation (y – 1)dx – xdy = 0 and hence
solve it. (P.T.U., May 2006)

Sol. Given equation is

(y – 1)dx – xdy = 0  …(1)

Compare it with M dx + N dy = 0

M = y – 1, N = – x

M

y

�
�

 = 1, 
N

x

�
�

 = – 1 ; 
M

y

�
�

 π 
N

x

�
�

\ Equation (1) is not exact.
\ Write (1) as y dx – x dy = dx

Multiply it by 
2

1

x
, we get

2

�ydx xdy

x
 =

2

1
dx

x

or d 
y

x
� ��� �� 	

 =
1

d
x

� ��� �� 	
…(2)

\ Factor 
1

2x
 makes the equation (1) exact differential equation

\
2

1

x
 is the I.F.

Integrate (2) ;
y

x

�
 =

1
c

x
� 


or y = 1 – cx is the required solution.
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Example 3. Solve : =– –2 2xdy ydx x x y dx . (P.T.U., Jan. 2009)

Sol.  The given equation is  xdy – ydx = 
2 2

2

2
1 or

1

�
� �� �� �	 
 � �� � �	 


x dy y dx
y xx dx dx
x y

x

or 1sin
y

d dx
x

�� � �� �� 	
,  which is exact.

Integrating,  we get   1sin
y

x c
x

� � 
    or   y = x sin (x + c), which is the required solution.

��&���� �����������������	���������
��	

If  Mdx + Ndy = 0  is a homogeneous equation in x and y,  then 
1

M Nx y�
 is an I.F. provided  Mx + Ny � 0.

Proof. If  
1

M Nx y�   is an integrating factor of  Mdx + Ndy = 0 …(1)

Then 
M N

M N M N
dx dy

x y x y
�

� �
 = 0  is an exact equation.

�
M N

M N M Ny x y x x y

� � � �� �
� �  �� � � �� � � �

� �

� �

� �

2 2

M M N N M NM N M N M N N M

(M N )M N

x y x y x y x y
y y y x x x

x yx y

� � � � � � �� 
 � 
 
 
 � 
 
� � � �� � � � � �� � � ��




 = 0

or Mx 
M M M N N N M N

+ N – M – MN – M – M – N + NM + N + N = 0y x y x y x y
y y y y x x x x

� � � � � � � �
� � � � � � � �

or
M N N M

N – M – M + N = 0y y x x
y y x x

� � � �
� � � �

or N 
M M N N

Mx y x y
x y x y

� � � �� � � �
� � �� � � �

� � � �� � � �
 = 0 …(2)

Now �  M, N are homogeneous functions of x and y of order n therefore, we have

M M N N
M and Nx y n x y n

x y x y

� � � �
� � � �

� � � �
 (By Euler’s theorem of homogeneous partial

differential equations)

� From (2)  N ◊ n M – M ◊ n N = 0  i.e.,  0 = 0,  which is true.

Hence  
1

M Nx y�
 is the I.F. of (1)

Case of failure.  When  Mx + Ny = 0   �  N = 
M

�
x

y

From (1)  
M

M �
x dy

dx
y

 = 0  or  
dx dy
x y

� ; Integrate  log x = log y + log c \ x = cy

Note.  If  Mx + Ny  consists of only one term, use the above method of I.F. otherwise, proceed by putting  y = vx.
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Another Method.  Consider Mdx + Ndy  
1

(M N ) (M – N ) –
2

� �� � � �
� � � �� 	
 � 
 ��  � � �

dx dy dx dy
x y x y

x y x y

Divide by Mx  + Ny ( 0)�

M N 1 M N
(log | | log

M N 2 M N

� �� �
� �� 	

� �� 	� �

dx dy x y x
d xy d

x y x y y

Now,
M – N

M – N

M N M N
�

� �

x
x y y

xx y
y

 �   M, N are homogeneous functions of x and y

� They can also be expressed in the form 
x
y

.

�               
M N

M N

� ��
� � � �� 	 


x y x

x y y

� ���������� � �
M N 1

log | | log
M N 2

� �� �� �� � �� �� �� �� �� 	 
 � � �� �� �

dx dy x x
d xy d

x y y y

which is an exact derivative

Hence 
1

M N�x y
�is the I.F.

Example 4. Solve: (x2 y – 2xy2) dx – (x3 – 3 x2 y) dy = 0. (P.T.U., Dec. 2003, Dec. 2010)

Sol.  The given equation is homogeneous in x and y with  M = x2 y – 2xy2  and  N = – x3 + 3x2 y

Now,      Mx + Ny = x3 y – 2x2 y2 – x2 y + 3x2 y2 = x2 y2 � 0

� I.F. = 
2 2

1 1
M Nx y x y

�
�

Multiplying throughout by  
2 2

1

x y
,  the given equation becomes  

2

1 2 3� �� �
� � �
 �
 ��  � 

x
dx

y x yy
dy = 0, which

is exact. The solution is  + =
constant

1 2 3

y

dx dy c
y x y

� �
�
 �� � �

or – 2log 3log� �
x

x y c
y

.

��������	�
��
���������	����
�����
������
�
�����������

�
����������

(P.T.U.,  Dec. 2004)

Let the given differential equation be of the form

M dx + N dy = 0, where M = y f1(xy), N = x f2(xy) …(1)

1

M N�x y
  will be the I.F of (1) if   

M N
0

M N M N
dx dy

x y x y
� �

� �
  is an exact equation

�

M N

M N M Ny x y x x y

� � � �� �
� �  �� � � �� � � �
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i.e.,
2 2

M M N N M N(M N ) M N (M N ) N M

(M N ) (M N )

x y x y x y x y
y y y x x x

x y x y

� �� � � � � �� �� � � � � � � � �  �� � � � � �� � � ��
� �

 = 0

or Mx 
M M M N N N M N

N M MN M M N NM N N 0y x y x y x y
y y y y x x x x

� � � � � � � �
� � � � � � � � � �

� � � � � � � �

or
M N N M

N M M N 2MN 0
� � � �

� � � � � �
� � � �

y y x x
y y x x

or
M M N N

N M 2MN 0x y x y
x y x y

� � � �� � � �� � � � �� �  �� � � �� �� �
…(2)

�              M = y f1 (xy)

�           1
M

( ).y f xy y
x

� ��
�

         1 1
M

( ) .1 ( ).f xy y f xy x
y

� �� �
�

� 2 2
1 1 1

M M
x y xy f y f xy f

x y

� �
� � � �� �

� �

or 1
M M

Mx y f y
x y

� �
� � � � �

� �

Similarly, N = x f2 (xy)

2 2
N

( ) ( )
� �� � �
�

f xy x f xy y
x

2
N

( )
� �� �
�

x f xy x
y

2 2
2 2 2

N N
x y x f x y f x y f

x y

� � � �� � � �
� �

= x f2 = f2 (xy) x = M

� From (2),   N (– M) – M (N) + 2 MN = 0

or – 2 MN + 2MN = 0   �  0 = 0  which is true.  Hence  
1

M Nx y�
  is the I.F. of (1)

Case of failure.  I.F. fails when  Mx – Ny = 0   i.e.,   N = 
Mx
y

� From (1), Mdx + 
Mx

dy
y

= 0

or
dx dy
x y
� = 0

Integrating both sides  log x + log y = c1

or log (xy) = c1  or  xy = c

If Mdx + Ndy = 0  is of the form  f1 (xy) y dx + f2 (xy) x dy = 0, then  
1

M – Nx y
  is an I.F.  provided

     Mx – Ny�� 0.

Example 5. Solve : y (xy + 2x2 y2) dx + x (xy – x2 y2) dy = 0.

Sol.  The given equation is of the form  y f1 (xy) dx + x f2 (xy) dy = 0

Here   M = xy2 + 2x2 y3  and  N = x2 y – x3 y2

Now,  Mx – Ny = x2 y2 + 2x3 y3 – x2 y2 + x3 y3 = 3x3 y3 � 0

� I.F. = 
3 3

1 1

M N 3x y x y
�

�
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Multiplying throughout by  
3 3

1

3x y
,  the given equation becomes

2 2

1 2 1 1
0

3 33 3
dx dy

x yx y xy

� � � �
� � � �� � � �� 	� 	

which is exact. The solution is  
2

constant

1 2 1

3 33
y

dx dy c
x yx y

� �
� �� �

� 	� � � �

or
1 2 1

log log
3 3 3

x y c
xy

� � � �

or      
1

2log log Cx y
xy

� � � � ,  where  C = 3c.

��&�)������������
�������
��	������!�	�� (

(i) If  

M N

N

y x
� �

�
� �

  is a function of x only,  say  f (x),  then  ( )� f x dxe   is an I.F.

(ii) If  

N M

M

x y
� �

�
� �

  is a function of y only, we say  g (y),  then  ( )� g y dye  is an I.F.

Proof. (ii) Mdx + Ndy = 0 …(1)

If

N M

M

x y

� �
�

� �
  = g (y)  i.e.,  a function of y alone then  ( )� g y dye   is an I.F. of (1).

Now,  ( )� g y dye   will be  I.F. of (1)

If     M ( ) ( )N 0g y dy g y dye dx e dy� �� �   is exact

i.e.,                             � � � �( ) ( )M Ng y dy g y dye e
y x

� �� �
�

� �

         M ( ) ( ) ( )M N
. ( )� � �� �

� �
� �

g y dy g y dy g y dye g y e e
y x

or                                       Mg (y) = 
N M

x y

� �
�

� �

or                               

N M

( )
M

x y
g y

� �
�

� �
� , which is true

Hence  ( )g y dye�   is the I.F. of  (1).
Students can easily prove (i) part themselves.

Example 6.  Solve: � �� �
32 1 x 2xy e dx x y dy 0= . (P.T.U., Dec. 2003, May 2011)

Sol.  Here              M = xy2 – 
31 xe   and  N = – x2 y

2

M N
2 ( 2 ) 4

N

xy xyy x

xx y

� �
�

� �� �
� � �

�
, which is a function of x only.
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�               I.F. = 
4

4log
4

1dx xxe e
x

�� �� �

Multiplying throughout by  
4

1

x
,  we have  

3
2

1
3 4 2

1
0

� �
� � �� �� 	

xy y
e dx dy

x x x

which is exact. The solution is   =
3

2
1

3 4

constant

1
0.x

y

y
e dx dy c

x x

� �
� �� �� 	� �

or = = =
3

2 2
1

2 4 2 3

1 3 1 1
– – or – , where

3 32 2
� �� �x ty y

e dx c e dt c t
x x x x 4

3
� � �dt dx

x

or                         
2

2

1

32
ty

e c
x

� � �    or    
3

2
1

2

3
2 Cxy

e
x

� � � ,  where  C = 6c.

Example 7. Find the general solution of the differential equation
(3x2y3ey + y3 + y2) dx + (x3y3 ey – xy) dy = 0 …(1) (P.T.U., May 2012, Dec. 2013)

Sol. Given differential equation is (3x2y3e y + y3 + y2) dx + (x3y3ey – xy) dy = 0
compare it with Mdx + Ndy = 0

M = 3x2y3 ey + y3 + y2

N = x3y3ey – xy

M�
�y

 = 3x2 (y3ey + 3y2ey) + 3y2 + 2y

N�
�x

 = 3x2 y3ey – y

M�
�y

 π
N�
�x

 \ Given differential equation is not exact

 

N M

M

x y

� �
�

� �
 =

2 3 2 3 2 2 2

2 3 3 2

3 3 9 3 2

3

� � � � �
� �

y y y

y

x y e y x y e x y e y y

x y e y y

=
2 2 2

2 2 2

3(3 ) 3

(3 )

y

y

x y e y y

yy x y e y y

� � � �
�

� �
which is a function of y only

\ I.F =
3

3
3 log log

3

1��
�� � �

� dy
y yye e e

y

Multiply (1) by 
3

1

y

2 3
2

1
3 1 0

� �� �

 
 
 � �	 
	 
� � � �

y y x
x e dx x e dy

y y
is an exact equation

Its solution is  2

constant

1
3 1 0.y

y

x e dx dy
y

� �

 
 
	 
� �� �  = c

3 � �y x
x e x

y
 = c

Example 8.  Find the integrating factor of the differential equation (5x3 + 12x2 + 6y2)dx + 6xy dy = 0
which will make it exact. Hence solve the equation. (P.T.U., Dec. 2013)
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Sol.  Differential equation is (5x3 + 12x2 + 6y2)dx + 6xydy = 0 ...(1)

Compare it with Mdx + Ndy = 0

M = 5x3 + 12x2+ 6y2; N = 6xy

 
M

y

�
�

 = 12y ; 
N

x

�
�

 = 6y

M

y

�
�

 π
N

x

�
�

\ Equation is not exact

M N

N
y x

� �
�

� �
 =

12 6 6 1
( )

6 6
y y y

f x
xy xy x
�

� � � , which is a function of x only.

� I.F. = of (1) is 

1
logdx xxe e x

� � �
\ Multiply (1) by x

(5x4 + 12x3 + 6y2x)dx + 6x2y dy = 0 is an exact equation
\ Its solution is

� �4 3 25 12 6 0
y

x x y x dx dy�� �� � = c

or
5 4 2

25
12 6

5 4 2

x x x
y� �  = c

or x5 + 3x4 + 3x2y2 = c

������� 	�
���
�����������	����
�����
��������������	�����
�	�����

��	�����	������	������������������������������
�������������� !"#$�"$#�

The above form of the equation has I.F. xhyk, where h, k can be obtained by after multiplication of the given
equation by xhyk and the equation becomes exact. Apply the conditions of exactness, comparing the coefficients
of the corresponding terms, we will get two linear equations in h, k which will give us the values of h, k.

Example 9.  Solve : (2x2y2 + y) dx + (3x – x3 y) dy = 0.
Sol.  The equation can be written as  2 (x2y2dx – x3ydy) + (y dx + 3xdy) = 0

or                                                     x2y (2ydx – xdy) + x0 y0 (y dx + 3xdy) = 0
which is of the form xayb (mydx + nxdy) + xcyd (pydx + qxdy) = 0. Therefore, it has an I.F. of the form  xh yk.

Multiplying the given equation by  xh yk,  we have
(2xh + 2 yk + 2 + xh yk + 1) dx + (3xh + 1 yk – xh + 3 yk + 1) dy = 0

For this equation to be exact, we must have

M N

y x

� �
�

� �
   i.e.,   2(k + 2) xh + 2 yk + 1 + (k + 1) xh yk = 3 (h + 1) xh yk – (h + 3) xh + 2 yk + 1

which holds when   2 (k + 2) = – (h + 3)   and  k + 1 = 3 (h + 1)
i.e., when   h + 2k + 7 = 0  and  3h – k + 2 = 0

Solving these equation,  we have  h = 
11 19

– , –
7 7

k �

� I.F. = 
11 19
7 7x y

� �

Multiplying the given equation by  
11 19

7 7x y
� �

,  we have
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3 5 11 12 4 19 10 12
7 7 7 7 7 7 7 72 3 0x y x y dx x y x y dy

� � � � � �� � � �

 
 � �� 	 � 	


 � 
 �

which is exact. The solution is   
3 5 11 12

7 7 7 7

constant

2
y

x y x y dx c
� � �� �

�� �
� 	� �

or
10 5 4 12 10 5 4 12
7 7 7 7 7 7 7 77 7

or 4 5 C
5 4

x y x y c x y x y
� � � � � �

� � � �

where  C = 
20
7

 c.

Note.  The values of h and k can also be determined from the relations
1 1 1 1

and
� � � � � � � �

� �
a h b k c h d k

m n p q
.

Example 10. Solve: (2y2 + 4x2y) dx + (4xy + 3x3) dy = 0. (P.T.U., May 2011)
Sol. Given equation is
(2y2 + 4x2y) dx + (4xy + 3x3) dy = 0 …(1)
The equation in not exact
\ Rewrite the equation in the form:

 x2 (4y dx + 3x dy) + y(2y dx + 4x dy) = 0 …(2)

which is of the form

xa yb (my dx + nx dy) + xc yd (py dx + qx dy) = 0

Let xh yk be the I.F. of (1)

\ (2xh yk + 2 + 4xh + 2 yk + 1)dx + (4xh + 1 yk + 1 + 3xh + 3 yk) dy = 0

is an exact equation

\
M�
�y

 = 
N�
�x

i.e., � �2 2 12 4h k h kx y x y
y

� � ��
�

�
= � �1 1 34 3h k h kx y x y

x
� � ��

�
�

or  2xh (k + 2)yk + 1 + 4xh + 2 (k + 1)yk = 4 (h + 1) xh yk + 1 + 3(h + 3)xh + 2 yk

which holds when 2(k + 2) = 4(h  + 1)

and 4(k + 1) = 3(h  + 3)
i.e., k + 2 = 2h  + 2 or 2h = k
and 4k = 3h + 5 or 8h – 3h = 5

\ h = 1, k = 2

\ xy2 is the I.F. of (1)

Multiply (1) by xy2, we get

(2xy4 + 4x3y3)dx + (4x2 y3 + 3x4 y2)dx = 0

which is an exact solution

\ Its solution is � �4 3 32 4 0 C� � �� �
y

xy x y dx dy

or x2y4 + x4y3 = C is the solution of the given equation.
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�
�������������
��


Solve the following differential equations :

1. x dy – y dx = (x2 + y2) dx (P.T.U., Jan. 2010) 2. y dx – xdy + 3x2y2
3xe dx = 0 (P.T.U., Dec. 2013)

[Hint: I.F. = 2 2

1

x y�
] [Hint: I.F. = 2

1

y
]

 3. (1 + xy) y dx + (1 – xy) x dy = 0 4. x dy – y dx = xy2 dx

 5. 2 2 0

x x

y yxye y dx x e dy
� �
� �� 	 
� � 6. x2 y dx – (x3 + y3) dy = 0

 7. (3xy2 – y3) dx – (2x2 y – xy2) dy = 0  8. (x2 y2 + xy + 1) y dx + (x2 y2 – xy + 1) x dy = 0
(P.T.U., May 2010, Dec. 2012)

 9. y (2xy + 1) dx + x (1 + 2xy – x3y3) dy = 0 10. (x2 + y2 + 2x) dx + 2y dy = 0 (P.T.U., Dec. 2012)

11. (x2 + y2 + 1) dx – 2xy dy = 0 12. � �
3 2

21
0

3 2 4

y x
y dx x xy dy

� �
� � � � �� �

� 	

13. (y4 + 2y) dx + (xy3 + 2y4 – 4x) dy = 0 14. (3xy – 2ay2) dx + (x2 – 2axy) dy = 0

15. y dx – xdy + log x dx = 0 16. (xy2 + 2x2 y3) dx + (x2 y – x3 y2) dy = 0

17. (2x2 y – 3y4) dx + (3x3 + 2xy3) dy = 0. 18. (xy3 + y) dx + 2(x2y2 + x + y4) dy = 0.

����
��

 1. y = x tan (x + c)  2.
32

xx
e c

y
+ =  3.

1
log

x
c

xy y
� � �

 4.
2

2

x x
c

y
� �  5. log

x

ye x c� 
  6. log y – 
3

33

x
c

y



 7. 3 log x – 2 log y + 
y

x
 = c  8. xy + log 

1x
c

y xy
� �  9.

2 2 3 3

1 1
log

3
y c

x y x y
� � 


10. ex (x2 + y2 ) = c 11. x – 
2 1y

c
x x

	 
 12. x4 y + x4 y3 + x6 = c

13. 2
2

2
y x y c

y
� + = 14. x2 (ay2 – xy) = c 15. cx + y log x + 1 = 0

16.
1

2log logx y c
xy

� � � � 17.
36 24 10 15
13 13 13 135 12x y x y c

� � �
� 
 . 18.

2 4 6
2

2 3

x y y
xy c�+ =

���(� �������	
��������
��	�����
�������
��������	���������������

So far, we have discussed differential equations of the first order and first degree. Now we shall study

differential equations of the first order and degree higher than the first. For convenience, we denote  
dy
dx

 by p.

A differential equation of the first order and nth degree is of the form

pn + P1 p
n – 1 + P2 pn – 2 + ……… + Pn = 0 …(1)

where  P1 , P2 , ………, Pn  are functions of x and y.
Since it is a differential equation of the first order, its general solution will contain only one arbitrary

constant.
In the various cases which follow, the problem is reduced to that of solving one or more equations of the

first order and first degree.
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����� ����
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Resolving the left hand side of (1) into n linear factors, we have
[p – f1 (x, y)] [p – f2 (x, y)], ………, [p – fn (x, y)] = 0

which is equivalent to   p – f1 (x,  y) = 0,  p – f2 (x, y) = 0,  ……… ,  p – fn (x,  y) = 0
Each of these equations is of the first order and first degree and can be solved by the methods already

discussed.
If the solutions of the above n component equations are

F1 (x, y, c) = 0,   F2 (x, y, c) = 0,   ……… , Fn (x, y, c) = 0
then the general solution of (1) is given by  F1 (x,  y, c).  F2 (x, y, c) ……… Fn (x, y, c) = 0.

����������	
�
����
�

Example 1. Solve : 
dy dx x y

dx dy y x
� � � . (P.T.U., May 2014)

Sol.  
dy dx x y

dx dy y x
� � �

1
p

p
�  =

2 2x y

xy

�
, where p = 

dy

dx
2 2 2( )xyp x y p xy� � �  = 0

p =
2 2 2 2 2 2 2( ) ( ) 4

2

x y x y x y

xy

�  � 


=
2 2 2 2( ) ( )

2

x y x y

xy

�  


\ p =
22

2

x

xy
; p =

22

2

y

xy
�

or p =
x

y
; p =

y

x
�

dy

dx
 =

x

y
;

dy

dx
 =

y

x
�

ydy = xdx ;
1

dy
y

 =
1

dx
x

�

Integrating both sides
2

2

y
 =

2

2

x
c� ; log y = – log x + c

or y2 – x2 – 2c = 0  or log xy = c or xy = ec

� The general solution of given equation is  (y2 – x2 – 2c) (xy – ec) = 0.

Example 2. Solve: p (p + y) = x (x + y). (P.T.U., May 2007)
Sol. p2 + py = x2 + xy  ...(1)

or  p2 + py – (x2 + xy) = 0, which is quadratic in p
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\ p = 
� �2 24

2

y y x xy�  
 

 = 

� �
2

2

2

y y x�  �

\ p = 
2

2

y y x� � �

or p = x

or
dy

dx
= x

Integrating both sides,

y  =
2

2

x
c�

or  
2

2

x
y c� �  = 0 ...(2)

and p = 
2

2

y y x� � �

or p = – y – x

or
dy

dx
= – y – x

or 
dy

y x
dx


 � �

which is linear equation in y

Its I.F. = 1 dx xe e
� ��

\ Its solution is

y ex = � �xe x dx c� �� = – xxe dx c��
or y ex = – (x – 1) ex + c [Integrating by parts]

or y = – (x – 1) + ce–x.

or y + x – 1 – ce–x = 0 ...(3)

Combining (2) and (3), general solution is

� �
2

1
2

xx
y c y x ce�

� �
� � 
 � �� �	 


 = 0.

Note. 
dy

dx
 = – (x + y) can also be solved by putting x + y = t, but that is a lengthy solution.

Example 3. Solve : p2 + 2py cot x = y2. (P.T.U., Jan. 2009, Dec. 2012)
Sol.  The given equation can be written as (p + y cot x)2 = y2 (1 + cot2 x)

or p + y cot x = � y cosec x
� The component equations are

p = y (– cot x + cosec x) …(1)
and p = y (– cot x – cosec x) …(2)

From (1),
dy
dx

= y (– cot x – cosec x)
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or
dy
y

 = (– cot x + cosec x) dx

Integrating log y  = – log sin x + log tan 
2
x

+ log c

=
tan

2log
sin

x
c

x

or y  =
2

tan
2

2sin cos 2cos
2 2 2

x
c c

x x x
�

or 2cos
2

x
y = C, where C = 

2

c

From (2),
dy

dx
 = ( cot cosec )y x x� �

or
dy

y
= ( cot cosec )x x dx� �

Integrating log y = – log sin x – log tan 
2
x

+  log c  = log
sin tan

2

c
x

x

or y = 2

2
or sin C

22sin
2

c x
y

x
�

� The general solution of the given equation is 2 2cos C sin C 0
2 2

x x
y y

� � � �� � �� � � �� 	 � 	

�
�������������
��


Solve the following equations :

1. p2 – 7p + 12 = 0 (P.T.U., Dec. 2006) 2. � �
2

2 2 0
dy dy

xy x y xy
dx dx

� � �� �� 	
+ + =

[Hint: Solve p = 3, p = 4]

3. yp2 + (x – y) p – x = 0 4.
2

2 23 2 0
dy dy

x xy y
dx dx

� � � � �� �� 	
(P.T.U., Dec. 2011)

5.
dy dx x y

dx dy y x
� � � 6. p2 – 2p sinh x – 1 = 0

7. xy p2 + p (3x2 – 2y2) – 6xy = 0 8. 4y2 p2 + 2pxy (3x + 1) + 3x3 = 0.

[Hint: Quadratic in p and values of p are 
2 3

,
y x

x y
� ]

����
��

1. ( y – 4x – c) ( y – 3x – c) = 0 2. (y2 – x2 – c) ( y – cx) = 0
3. ( y – x – c) (x2 + y2 – c) = 0 4. (xy – c) (x2 y – c) = 0
5. (xy – c) (x2 – y2 – c) = 0 6. ( y – ex – c) ( y – e– x – c) = 0

7. (y – cx2) (y2 + 3x2 – c) = 0 8. � �2 3 2 21

2
y x c y x c

� �� � � �� �� 	
 = 0.
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If the equation is solvable for y,  we can express y explicitly in terms of x and p. Thus, the equations of this
type can be put as  y = f (x,  p) …(1)

Differentiating (1)  w.r.t. x,  we get   F , ,
� �� � � �� 	

dy dp
p x p

dx dx
…(2)

Equation (2) is a differential equation of first order in p and x.
Suppose the solution of (2) is  f (x, p, c) = 0 …(3)
Now, elimination of p from (1) and (3) gives the required solution.
If p cannot be easily eliminated, then we solve equations (1) and (3) for x and y  to get

x = f1 (p,  c),  y = f2 (p,  c)
These two relations together constitute the solution of the given equation with p as parameter.

����������	
�
����
�

Example 1.  Solve : y + px = x4 p2.
Sol.  Given equation is   y = – px + x4 p2 …(1)

Differentiating both sides w.r.t. x,

3 2 44 2
dy dp dp

p p x x p x p
dx dx dx

� � � � � �

or 2p + +32 2
dp dp

x p x p x
dx dx

� �� � �� 	
= 0    or   � �+ 32 1 2

dp
p x px

dx
� � �� �� 	

 = 0

Discarding the factor  (1 – 2px3),  we have  2p + x 0 or 2 0
dp dp dx

dx p x
� � �

Integrating  log p + 2 log x = log c   or   log px2 = log c   or   px2 = c

or                             p = 2

c

x
.

Putting this value of p in (1),  we have  y = 2c
c

x
� � , which is the required solution.

Example 2. Solve : y = 2px – p2.
Sol.  The given equation is  y = 2px – p2 …(1)

Differentiating both sides  w.r.t. x,   2 2 2
dy dp dp

p x p
dx dx dx

� 
 �

or 2 2 2
dp dp

p p x p
dx dx

� � �

or p + (2x – 2p) 0 or 2 2 0
dp dx

p x p
dx dp

� � � �

or                              
2

2
dx

x
dp p

� � …(2)

which is a linear equation.

                                           I.F. = 

2
2log 2

dp
ppe e p� �

�

� The solution of (2) is             x (I.F.) = + = +2 22(I.F.) or 2dp c xp p dp c� �
or                                          2 3 22 2

or
3 3

xp p c x p cp�� 
 � 
 …(3)

p cannot be easily eliminated from (1) and (3)

� Putting the value of x in (1),  we have  y = 2 22
2

3
p p cp p�� �� �� �� 	
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or                                                 y = 2 11
2

3
p c p�
 …(4)

Equations (3) and (4) together constitute the general solution of (1).

�
�������������
��


Solve the following equations :

1. xp2 – 2yp + ax = 0 (P.T.U., May 2011) 2. y – 2px = tan– 1 (xp2) (P.T.U., May 2010)

3. 16x2 + 2p2 y – p3x = 0 4. y = x + 2 tan– 1 p
5. y = 3x + log p 6. x – yp = ap2.

7.
4

2 2 0
dy dy

x x y
dx dx

� � �� �� 	
� � 8. 3x4p2 – px – y = 0 (P.T.U., May 2010)

[Hint: See S.E. 1]

����
��

1. 2y = cx2 + 
a
c

2. 12 tany cx c�� �

3. 16 + 2c2 y – c3 x2 = 0 4. x = 1

2

1
log tan

1

p
p

p

��
�

�
+ c, y = 1

2

1
log tan

1

��
� �

�

p
p c

p

5. y = 3x + log 
3

3

1 xce	
6. � � � �1 1

2 2

1
sin , sin

1 1

p
x c a p y c a p ap

p p

� �� � � � �
� �

7. y = 2 2c cx� 8. y = 23
c

c
x

	 .

����������
��	���������������x

If the equation is solvable for x,  we can express x explicitly in terms of y and p. Thus, the equations of this
type can be put as  x = f (y,  p) …(1)

Differentiating (1)  w.r.t. y,  we get   
1

F , ,
� �

� � � �� 	
dx dp

y p
dy p dy

…(2)

Equation (2) is a differential equation of first order in p and y.
Suppose the solution of (2) is f (y, p, c) = 0 …(3)
Now, elimination of p from (1) and (3) gives the required solution.
If p cannot be easily eliminated, then we solve equations (1) and (3) for x and y to get

x = f1 (p, c),  y = f2 (p, c)
These two relations together constitute the solution of the given equation with p as parameter.

����������	
�
����
�

Example 1. Solve: y = 2px + p2y (P.T.U., Dec. 2012)
Sol. Given differential equation is

y = 2px + p2y …(1)
Solving for x, we have

x =
2 2

y py

p
�

Differentiate w.r.t., y
dx

dy
 =

2

1
1 1

1
2 2

� �
� �

� � 
� �	 


dp
p y

dpdy
p y

dyp
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1

p
 =

2

1

2 2 22

y dp p y dp

p dy dyp
� � �

2

1

2 2 22

p y dp y dp

p dy dyp
� � � = 0

2

2

1 1
1

p dp
y

p dyp

� �


 
� �� 	

 = 0

2 2

2

1 1p p dp
y

p dyp

� �
�  = 0

or
21

1
p y dp

p p dy

� ��
�� �

� �
 = 0

Discarding the factor 
21 p

p



, we have

1
y dp

p dy
�  = 0

or
dp

p
 =

dy

y
�

Integrating both sides
log p = – log y + log c

or py = c …(2)
Eliminate p from (1) and (2)

y =
2

2
2 � �

c c
x y

y y

or y =
22cx c

y y



or y2 = 2cx + c2 ; required solution.

Example 2. Solve : 
2

p
p tan x

1 p

� �

 �� �
� 	

.

Sol.  Solving for x,  we have   x = tan– 1
21

p
p

p
�

�
…(1)

Differentiating both sides  w.r.t. y,   
� �

� �

2 2

2 22

1 21 1

1 1


 �

 
 � 
 �


 


p pdx dp dp

dy p dy dyp p

or        
� �

� � � �

2 2

2 22 2

2 1 21 2
or

1 1

p p dp p
dy dp

p dyp p

� �
� �

� �

Integrating   2

1

1
y c

p
� �

�
…(2)

Equations (1) and (2) together constitute the general solution.

�
�������������
��


Solve the following equations:

1. y = 3px + 6p2 y2 2. y = 2px + y2 p3

3. p3 – 4xyp + 8y2 = 0 4. y2 log y = xyp + p2.
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����
��

1. y3 = 3cx + 6c2 2. y2 = 2cx + c3

3. 64y = c (c – 4x)2 4. log y = cx + c2.

�������������
4������
��	 (P.T.U., May 2007, Jan. 2009)

An equation of the form    y = px + f (p) …(1)
is known as Clairaut’s equation.

Differentiating (1) w.r.t. x,  we get  p = p + ( )
dp dp

x f p
dx dx


 �    or   � �( ) 0
dp

x f p
dx


 
�

Discarding the factor  � �( ) , we have   0
dp

x f p
dx

� ��

Integrating  p = c
Putting        p = c in (1),  the required solution is y = cx + f (c)
Thus, the solution of Clairaut’s equation is obtained by writing c for p.

����������	
�
����
�

Example 1. Solve the following equations :

(i) p = log (px – y) or 
dy dy

log x y
dx dx

� �� �� �� 	
(P.T.U., Dec. 2005, 2011, 2013)

(ii) sin px cos y = cos px sin y + p. (P.T.U., Dec. 2006)
Sol. (i) p = log (px – y)

or ep = px – y or y = px – ep, which is Clairaut’s equation where f (p) = – ep

\ Its solution is obtained by putting p = c
\ solution is y = cx – ec.

(ii) sin px cos y = cos px sin y + p
or  sin px cos y – cos px sin y = p
or  sin (px – y) = p

or  px – y = sin–1 p
or  y = px – sin–1 p, which is Clairaut’s form

\ Its solution is (put p = c) y = cx – sin–1 c.

Note.  Many differential equations can be reduced to Clairaut’s form by suitably changing the variables.

Example 2. Solve: e4x (p – 1) + e2y p2 = 0.
Sol.  [In problems involving  elx and emy,  put  X = ekx and  Y = eky,  where  k  is the H.C.F. of l and m].

Put   X = e2x         and    Y = e2y

so that dX = 2e2x dx and   dY = 2e2y dy

�    p = 
2

2

Y X Y
P, where   P

X Y X

x

y

dy e d d

dx d de
� � �

The given equation becomes  
2

2 2
2

X X
X P 1 Y P 0

Y Y

� �� 
 � 
� �� 	

or XP – Y + P2 = 0   or   Y = PX + P2, which is of Clairaut’s form
� Its solution is  Y = cX + c2  and hence  e2y = ce2x + c2.
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Example 3. Solve : (px – y) (py + x) = 2p. (P.T.U., Jan. 2009, May 2009)
Sol.  Put X = x2        and      Y = y2

so that             dX = 2x dx  and   dY = 2y dy

� p = 
Y X Y

P, where  P
X XY

dy x d d

dx y d d

 
 


The given equation becomes  
X X X

P . X Y P . Y X 2 P
Y Y Y

� � � �
� 
 
� � � �� 	 � 	

or (PX – Y) (P + 1) = 2P   or   PX – Y = 
2P

P 1


or             Y = PX – 
2P

P 1�
, which is of Clairaut’s form.

� Its solution is  Y = 2 22 2
X and hence   

1 1

c c
c y cx

c c
� � �

� �
.

Example 4. Solve: (x2 + y2) (1 + p)2 = 2(x + y) (1 + p) (x + y p) – (x + yp)2. (P.T.U., May 2011)
Sol. Given equation can be written as:

x2 + y2 =
� � � �

2
2

1 1

� � � ��
� � �� �� 	

x y x py x py

p p
…(1) Y =

2
P P

2X
2 2

� �� � �� 	

Put X =  x + y, Y = x2 + y2

and Let  P = 
Y Y X

X
/d d d

d dx dx
� or Y =

2P
PX

4
� , which is Clairaut’s differential

equation

\ P = 
2 2 2( )

11

� �
�

��

dy
x y x pydx

dy p
dx

        \ Its solution is  Y = 
2C

CX
4

�

Substituting in (1)   or x2 + y2  = 
2C

CX
4

�

�
�������������
��


Solve the following equations :

1.
a

y xp
p

� � 2. (a) y = px + 2 2 2a p b�

(b) (y – px) (p – 1) = p

3. p = log (px – y) 4. p = sin ( y – px) (P.T.U., May 2007)

[Hint: See Example 1 (ii)]

5. p2 (x2 – 1) – 2pxy + y2 – 1 = 0 6. e3x (p – 1) + p3 e2 y = 0

7. x2 ( y – px) = yp2 8. ( y + px)2 = x2 p.

[Hint: Put x2 = X, y2 = Y] [Hint: Put xy = v]
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�������

1. y = cx + 
a

c
2. (a) y = cx + 2 2 2a c b� ,  (b) y = 

1
�

�
c

cx
c

3. y = cx – ec 4. y = cx + sin– 1 c
5. ( y – cx)2 = 1 + c2 6. ey = cex + c2

7. y2 = cx2 + c2 8. xy = cx – c2.

����� ����	�
��	�������	�
�����	�����������	
�������
��	

A differential equation is said to be Leibnitz’s linear or simply linear if the dependent variable and its
derivatives occur only in the first degree and are not multiplied together.

(P.T.U.,  June 2003, May 2005, 2007)

The general form of a linear differential equation of the first order is  P Q� �
dy

y
dx

...(1)

where P and Q are functions of x only or may be constants.

����� �����
����	�����������	
�������
��	� + P = Q
dy

y
dx

(P.T.U., Dec. 2006 )

To solve it, we multiply both sides by P� dxe , we get

� �P P Pdx dxdy
e y e

dx
� �� = PQ dxe�

or � �P dxd
y e

dx
� = PQ dxe�

Integrating both sides, we have Pdxy e� = PQ dxe dx c� ��
which is the required solution.

Note 1.  In the general form of a linear differential equation, the coefficient of  
dy
dx

 is unity.

The equation R 
dy

dx
 + Sy = T,  where R, S and T are functions of x only or constants, must be divided by R to bring

it to the general linear form.

Note 2.  The factor 
P dxe �  on multiplying by which the LHS of (1) becomes the differential coefficient of a single

function is called the integrating factor (briefly written as I.F.) of (1).

Thus  I.F. = P dxe �  and the solution is  y (I.F.) = Q(I.F.) +dx c� .

Note 3.  Sometimes a differential equation takes linear form if we regard x as dependent variable and y as independent

variable. The equation can then be put as P Q
dx

x
dy

� � , where P, Q are functions of y only or constants.

The integrating factor in this case is  
P dye �  and the solution is  x  (I.F.) = Q (I.F.) dy c�� .

Note 4.  log ( )f xe  = f (x).
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�		
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Example 1.  Solve : x � � � �– –� �2 2 3dy
1 x 2x 1 y x

dx
.

Sol.  Dividing by x (1 – x2)  to make the coefficient of 
dy
dx

 unity, the given equation becomes

� �

2 2

22

2 1

11

dy x x
y

dx xx x

�
� �

��

Comparing it with  P Q
dy

y
dx

� � ,  we have  P = 
� �

2 2

22

2 1
, Q

11

x x

xx x

�
�

��

Now, P =
22 1 1 1 1

(1 ) (1 ) 2(1 ) 2(1 )

x

x x x x x x

�
� � � �

� � � �
 by partial fractions

    P dx�  = � � � �
1 1

2 2
1 1

log log (1 ) log (1 ) log 1 1
2 2

� �
� � � � � � � � �� 	


 �
� � � � � � � �x x x x x x

= � �
1

2 2
2

1
log 1 log

1

� �
� 	� � �
� 	 �
 �

�

�

x x
x x

I.F. =
2

1
log

P 1

2

1

1

dx x xe e
x x

�� �
�

�

Thus the solution is

y (I.F.) =

� �

2

2 32 2
2 2

1 1
Q(I.F.) or . =

11 1
1

� � � � �
�� � �

� � �� � �

�� �
�

x x
dx c y dx c dx c

xx x x x
x

= � � � � � �+ = +
3 1

2 22 2
1

1 2 1
2

x x dx c x c
� �

� � � �� � � �( ) ( )nf x f x dx�  = 
� �

1
( )

( 1)
1

n
f x

n
n

�

 �
�

or y = 21x cx x� � .

Example 2.  Solve : 
2 xe y dx

1
dyx x

�� �
� �� �

� �
.

Sol.  The given equation can be written as      
2

+
xdy y e

dx x x
�

�

Comparing it with  + P
dy

y
dx

 = Q, we have  P = 
1

x
,  Q = 

2 xe

x

�

I.F. =

1/21
P 21/2

xdx
dx xxe e e e� � � �

�

� The solution is y (I.F.) =
2

2 2Q(I.F.) + or . +
x

x xe
dx c y e e dx c

x
�� �

�
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or           2 xy e  =
1

2 + 2 +x dx c x c��
�

Example 3.  Solve : � � � �2 11 y dx tan y x dy�� � � . (P.T.U., Dec. 2011, 2013)

Sol.  The given equation can be written as   � �2 11 tan
dx

y x y
dy

�� � �

Dividing by (1 + y2),  we get   
1

2 2

tan

1 1

dx x y

dy y y

�

� �
� �

which is of the form              
dx
dy  + Px = Q

Here P =
1

2 2

1 tan
, Q

1 1

�

�
� �

y

y y

I.F. =
12

1
P tan1 ��

�� � �
dy

dy yye e e

� The solution is  x (I.F.) = Q(I.F.) +dy c�

or     
1tan yxe

�

 =
1

1
tan

2

tan
+

1
y ty

e dy c t e dt c
y

�
�

� �
�� � ,  where  t = tan– 1 y

= � �
11 tan1 . tan 1t t t t yt e e dt c t e e c y e c

��� � � � � � � ��
or x = tan– 1 y – 1 + 

1tan .�� yc e

������
�����	����

Solve the following differential equations :

 1. 3+ 3
dy y

x
dx x

� �  2. x log 2log
dy

x y x
dx

� �

 3. � � � �
21 1xdy

x y e x
dx

� � � �  4. � �2 21 2
dy

x xy x
dx

� � �

 5. 2cos tan
dy

x y x
dx

� � 6. � �3 2 21 6 1
dy

x x y x
dx

� � � �

 7. cot cos
dy

y x x
dx

� � 8. � �
12 tan1 xdy

x y e
dx

�

� � �

 9. cot 4 cosec , if 0 when
2

dy
y x x x y x

dx

�
� � � � 10. coscot 5 , if 4 when

2
xdy

y x e y x
dx

�
� � � � �

11. sintan 3 xdy
y x e

dx
�� � ,  if  y = 4  when  x = 0 12. � �2 21 2 1

dy
x xy x x

dx
� � � �

13. xdy
x y e xy

dx
� � � 14. � �

12 tan1 0y dy
y x e

dx

��� �� � � �� �

15. e– y sec2 y dy = dx + x dy  16. � �32
dy

x y y
dx

� �
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17. � �2 2y yy e dx y xe dy� � 18.
2 log

dy y

dx y y y x
�

� �

19. 2 23 2 1
dy

x x xy
dx

� � � 20. � �2 11 siny dx y x dy�� � � .

21. 1
dy

x y y
dx

� �� � �	 
� � (P.T.U., May 2012)

[Hint: 
1 1

; P
dy x dy

y y
dx x x dx

�
� � � = Q form]

�������

 1. 10 xy = 2x5 – 15x2 + c  2. y log x = (log x)2 + c

 3. y = (x + 1) (ex + c)  4. y (x2 + 1) = 
3

3

x
c�

 5. y = tan x – 1 + c e– tan x  6. � �
3 4 6231

3 4 6

x x x
y x y c� � � � � �

 7. 21
sin sin

2
y x x c� �  8.

1 1tan 2 tan2 x xy e e c
� �

� �

 9.
2

2sin 2
2

y x x
�

� � 10. cossin 5 9xy x e� �

11. sincos 7 3 xy x e�� � 12. � �2 21 1y x c x� � � �

13.
1

2
x xxy e ce�� � 14. � �

1tan 1tanyx e y c
�� �� �

15. x ey = tan y + c 16. x + y3 + cy

17. x = y2 (c – e– y) 18. log
c

x y y
y

� �

19. y = 1 2x x cx� �� � 20.
11 sinsin 1 yx y ce

�� �� � � .

21. (xy – 1) ex = c

����� ����
��	�����������
��
��� �	��������� ����� !""#�$� �%!&'# �(

(P.T.U., May 2007, Jan 2009)

(a) An equation of the form   � �P Q ndy
y y

dx
…(1)

where P and Q are functions of x only or constants is known as Bernoulli’s equation. Though not linear, it
can be made linear.

Dividing both sides of (1) by  yn,  we have  1P Qn ndy
y y

dx
� �� � …(2)

Putting      y1 – n = z   so that    (1 – n) y– n 
dy dz

dx dx
�



46 A TEXTBOOK OF ENGINEERING MATHEMATICS

or
1

1
n dy dz

y
dx n dx

� �
�

Equation (2) becomes  
1

P Q or (1 )P (1 )Q
1

dz dz
z n z n

n dx dx
� � � � � �

�
which is a linear differential equation with z as the dependent variable.

(b) General equation reducible to linear form is  f �(y) � �P ( ) Q
dy

f y
dx

…(1)

where P and Q are functions of x only or constants.

Putting f (y) = z  so that    ( )
dy dz

f y
dx dx

��

Equation (1) becomes    P Q
dz

z
dx

� � , which is linear.

�		
�������������	��

Example 1. Solve the following differential equations:

(i) +
dy

x y
dx

 = x3y6 (P.T.U., May 2007, 2011)

(ii) y¢ + y = y2 (P.T.U., May 2008)

(iii) � �/� �
32 1 x 2xy e dx x y dy  = 0. (P.T.U., Dec. 2012)

Sol. (i) 
dy

x + y
dx

 = x3y6

Dividing by xy6, we get

6 51dy
y y

dx x
� ��  = x2 …(1)

Put y–5 = z so that

65
dy

y
dx

��  =
dz
dx

Equation (1) becomes

1 1

5

dz
z

dx x
� �  = x2

or
5dz

z
dx x

�  = – 5 x2

which is linear in z, where P  = 25
, Q 5x

x
� � �

I.F.  =
5 5

5

15
log

5 log x xdx xx xe e e
� �� �� �� ��

\ Solution in z is

z (I.F.) = Q I.F. dx c� ��

5
1

z
x

�  = 2
5

1
5x dx c

x
� � ��  = 35 x dx c�� ��  = 

2

2

5
5

2 2

x
c c

x

�

� � � �
�
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Substituting the value of z, we get

5 5

1 1

y x
�  =

2

5

2
c

x
�

or
5

1

y
 =

3
55

2
�

x
cx

(ii) y¢ + y = y2

or
dy

y
dx

�  =  y2

Divide by y2; 2 1dy
y

dx y
� �  = 1 ...(1)

Put
1
y

 = 2

1 dy dz
z

dx dxy
� � �

Substituting in (1);
dz

z
dx

� � = 1 or 1� � �
dz

z
dx

which is linear differential equation in z
where P = – 1, Q = – 1

I.F. = 1dx xe e
� �� �

Solution in z is z (I.F.) = Q (I.F.) dx c� ��
or z e– x = ( 1) x xe dx c e c� �� � � ��
or z = 1 + cex

Substituting the value of z ; 
1
y

 =1 + cex

or y =
1

1 xce�

(iii)
3

1
2 xxy e

� �
� ��� �  dx – x2 y dy = 0

or
3

1
2 2 xdy

x y xy e
dx

� �  = 0

or 2 2dy
x y xy

dx
�  =

3
1

� xe

or 21dy
y y

dx x
�  =

3
1

2

1 xe
x

�

Put y2 = z; 2y 
dy

dx
 =

dz

dx

1 1
2

dz
z

dx x
�  =

1

2

1 xe
x

�
�
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or
2dz

z
dx x

�  =
3

1

2

2
xe

x
�

which is linear differential equation in z, where P = 
3

1

2

2 2
, Q xe

x x
� � �

I.F. =
2

2
2 log log

2

1dx x xxe e e
x

�
�

�� � ��

Solution in z is;  z (I.F.) = Q (I.F.) +�� dx c

or
2

1
z

x

� �
	 
� �

 =
3

1

2 2

1 2
� �
	 
� �
� �� xe dx c

x x
 = 

3
1

4

1
2 xe dx c

x
� ��

Put 
3

1

x
 = t \

4
3�

dx
x

 = dt

\
2

1
z

x
�  = ( 2)

3
t dt

e c� �
��  = 

3
1

2 2
3 3

t xe c e c� � �

or
2

2

y

x
 =

3 3

1 1
2 2 22

or 3 2
3

x xe c y x e cx� � �

Example 2. Solve : � �2 dy
xy 1 xy 1

dx
� � . (P.T.U., May 2009)

Sol.  The given equation can be written as   3 2– �
dx

yx y x
dy

Dividing by  x2,  we have   2 1 3dx
x y x y

dy
� �� � …(1)

Putting    x– 1 = z  so that   2 2or
dx dz dx dz

x x
dy dy dy dy

� �� � � �

Equation (1) becomes  3dz
yz y

dy
� � �

or 3dz
yz y

dy
� � � , which is linear in z.

          I.F. = 
21

2� �
yy dy

e e

� The solution is  z (I.F.) = � �3 I.F.� �� y dy c

or
21

2.
y

z e  =  
21

3 2
y

y e dy c� ��

or   
21

2.
y

z e = 
21

2 22 1
. – 2 , where   

2
� � � � �� �� � � �

y ty e y dy c te dt c t y

or    
21

2.
y

z e = � �2 1 2t t t tt e e dt c t e e c� �� � � � � � � �� 	
 ��� � � � �  = 
21

22 1
2 1

2

y
e y c

� �� � �� �� 	
� � �
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or              z = 
21

2 21
2 1

2

y
y c e


� �
 
 �� �� 	

or          
1
x

= 
21

2 22
y

y c e
�

� � .
1� ��� �� 	

� z
x

Example 3.  Solve : 3 2dy
x sin 2y x cos y

dx
� � . (P.T.U., May 2002)

Sol.  Dividing by cos2 y,  we have  2 3
2

2sin cos
sec

cos

dy y y
y x x

dx y
� �

or 2 3sec 2 tan
dy

y x y x
dx

� � …(1)

Putting tan y = z  so that    2sec
dy dz

y
dx dx

�

Equation (1) becomes  32
dz

xz x
dx

� � , which is linear in z.

I.F. = 
22
;

x dx xe e��

� The solution is z .
2 2 23 2. .x x xe x e dx c x e x dx c� � � �� �

= 21
, where

2
� �� �

tt e dt c t x

= � � � �
221 1

1 1
2 2

� � � � �� � �
t xt e c x e c

or z  = � �
221

1
2

xx c e�� �

or tan y = � �
221

1
2

� � �

� �
xx c e . (�   z = tan y)

Example 4. Solve : e y y�= ex (ex – e y). (P.T.U., May 2004)
Sol. e y y�  = e x (e x – e y) …(1)
Put e y  = z

Differentiating w.r.t.  x             y dy
e

dx
 =

dz

dx

i.e., ye y �  =
dz

dx
…(2)

Substituting in (1)

dz

dx
 = 2 .x xe e z�

or .xdz
e z

dx
�  =  2xe , which is a linear differential equation in z.

I.F. =
x xe dx ee e��
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Solution is .
xez e  = 2 .

xx ee e dx c� �

Put ex  = t �      ex dx = dt

� z . 
xee = �� �

tt e dt c  Integrate by parts

= (t – 1) et + c

� .
xy ee e  = � � � �1 or 1� � � � �� �

x xx e e x ye e c e e e c  .

Example 5. Solve : (2x log x – xy) dy = – 2y dx. (P.T.U., Dec. 2004)

Sol. 2x log x – xy = – 2y 
dx

dy

or 2y 
dx

dy
 – y . x + 2x log x = 0

or
dx

dy
 – 

1
log

2

x
x x

y
�  = 0

Divide by x;
1 1
x

dy

dx y
x� log  =

1

2

Put log x = z \
1

x

dx

dy
 =

dz

dy

or
dz

dy y
z�

1
 =

1

2
, which is linear differential equation in z.

I.F. =
1
y

dy
e�  = elog y = y

\ Solution is z . y = y dy c.
1

2
��  = 

y
c

2

4
�

or y log x =
y

c
2

4
� .

Example 6. Solve :
dy

tan xy
dx

�  = – y2 sec2 x. (P.T.U., Dec. 2004)

Sol. tan .
dy

x y
dx

�  = – y2 sec2 x

Divide by y2 ; 
2

1 1
tan

dy
x

dx yy
�  = – sec2 x

Put
1

y
 = z \ – 

2

1 dy

dxy
 = 

dz

dx

\ – 
dz

dx
 – tan x ◊ z = – sec2 x

or tan� 
dz

x z
dx

 = sec2 x

which is linear differential equation in z
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I.F. =
tan x dx

e�  = log cos logsec secx xe e x
 � �

\ Its solution is

z sec x = 2sec . secx x dx c��  = 3sec x dx c�� …(1)

Let I = 3sec x dx�  = 2sec secx x dx�  Integrate by parts

= � � � �sec tan sec tan tanx x x x x dx� �
= � �2sec tan sec sec 1x x x x dx� ��
= sec tan I + secx x x dx� �

\ 2I = sec x tan x + log (sec x + tan x)

\ I = � �
1

sec tan log sec tan
2

x x x x� �� �� �

Substituting in equation (1),

z . sec x =
1

2
 [sec x tan x + log (sec x + tan x)] + c

Substitute the value of z,

1
sec x

y
 =

1

2
 [sec x tan x + log (sec x + tan x)] + c.

������
�����	����

Solve the following differential equations :

1.
2

2
2

dy y y

dx x x
� � 2.

31
2 2 3

xdy
x y y e

dx

�

� �

3. (a) (x3 y2 + xy) dx = dy (b)
3dy

y xy
dx

� �   (P.T.U., May 2012)

4. (a) 1y xdy
e e

dx
� � �� �� �

(P.T.U., May 2002) (b) � �1 1 2 ydy
x e

dx
�� � �

[Hint: Put ey = z] [Hint: Divide by (x + 1)e– y and Put ey = z]

5.
tan

(1 ) sec
1

xdy y
x e y

dx x
� � �

�
6. 3tan cos

dy
y x y x

dx
� �

7.
21

dy x
y x y

dx x
� �

�
 8. � �2

2

loglog y ydy y y

dx x x
� �

9. � �2cos 1 sin cos
dy

y x y x x
dx

� � � ,  given that  y = 2  when  x = 0.

10. � �2 x xy xy e dx e dy� � 11. 2tan tan cos cos
dy

y x y x
dx

� �
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�������

1. 1
x

c x
y
� � 2.

31
3( )

x
y c x e� �

3. (a) 
21

2 21
2

x
x ce

y

�
� � � � (b) 2

2

1 1

2
xx ce

y
� � �

 4. (a) 
1 2
2

x y xe e c� � � (b) ( 1) 2yx e x c� � �

 5. sin y = (1 + x) (ex + c) 6. 2 2 32
cos 2sin sin

3
x y c x x

� � � �� �� �

7. � � � �
1

2 2 41
1 1

3
y x c x� � � � � 8.

2

1 1

log 2
c

x y x
� �

9. 2 (tan x + sec x) = y (2 sin x + 1) 10. � �2xe y c x� �

11. sec y = (c + sin x) cos x.

������������������

1. Ordinary Differential Equation: Differential equations which involve only one independent variable and the
differential co-efficients w.r.t. it are called ordinary differential equations.

2. Order and Degree of a Differential Equations: The order of a differential equation is the order of the highest
order derivative occurring in the differential equation. The degree of a differential equation is the degree of the
highest order derivative which occurs in the differential equation.

3. The general solution, the particular and the singular solution of a differential equation.

The general solution of a differential equation is that in which the number of independent arbitrary constants is
equal to the order of differential equation.

The particular solution of a differential equation is that which is obtained from the general solution by giving
particular values to the arbitrary constants.

The singular solution of a differential equation is that which satisfies the equation but cannot be derived from its
general solution.

 4. Solution of differential equations of first order and first degree.

(a) Variable separable form: Put dx and all the terms containing x on one side, also dy and all the terms
containing y on other side and integrate.

(b) If 
dy

dx
 = – f (ax + by + c), f then put ax + by + c = t equation will be changed to variable separable form.

5. Homogeneous Differential Equation: A differential equation of the form 1

1

( , )

( , )

dy f x y

dx g x y
�  is called a homogeneous

differential equation if f1(x, y) and g1(x, y) are homogeneous functions of the same degree in x and y. To solve

homogeneous differential equation put or
y x

x y
 = v, equation will be changed to variable separable form.

6. For solution of the differential equation of the form 
dy ax by c

dx a x b y c

� �
�

� �� � �

Case I. If  
a b

a b
�

� �
, put x = X + h, y = Y + k such that ah + bk + c = 0, a¢h + b¢k + c¢ = 0, equation will change to

homogeneous form, then put 
Y

= V
X

 and in the end change X, Y to x, y.

Case II. If 
a b

a b
�

� �
 then put ax + by = t differential equation is changed to variable separable form.



ORDINARY DIFFERENTIAL EQUATIONS OF FIRST ORDER 53

7. Exact Differential Equation: A differential equation obtained from its primitive directly by differentiation,
without any operation of multiplication, elimination or reduction, etc., is called an exact differential equations.

8. Necessary and Sufficient Condition for the Exactness of a Differential Equation: The necessary and suffi-

cient conditions for the exactness of Mdx + Ndy = 0 is 
M N� �

�
� �y x

 and the solution is

constant

M

y

dx �� � �terms of N not containing x�  dy = c.

9. Integrating Factor: If a differential equation is  not exact but can be made exact after multiplying by a suitable
function of (x or y or both) then that function is called integrating factor (I.F.). If a differential equation has one  I.F.,
it has an infinite number of integrating factors.

10. The I.F. of Mdx + Ndy = 0 are

(a) If Mdx + Ndy = 0 is homogeneous differential equation then I.F. = 
1

M N�x y
 provided Mx + Ny π 0.

If Mx + Ny = 0, then equation can be reduced to variable separable from by putting N = 
M

�
x

y

(b) If Mdx + Ndy = 0 is of the form y f1 (xy) dx + xf2 (xy) dy = 0, then I.F. = 
1

M N�x y
 provided Mx – Ny π 0.

If Mx – Ny = 0, then it reduces to variable separable form.

(c) If Mdx + Ndy = 0; 

M N

N

� �
�

� �y x
 is a function of x say f (x) then I.F. = 

( )f x dx
e�  and if 

N M

M

� ��
� �x y

 is a function

of y say g(y), then I.F. = 
( )g y dy

e�
(d ) I.F. of the differential equation of the form xa yb (mydx + nxdy) + xcyd (pydx + qxdy) = 0 is xh yk, where h, k are

so chosen that when multiplied with the given equation, changes the equation to exact equation.

11. If the differential equation is of first order and higher degree then to solve the equation replace 
dy

dx
 by p

(a) If equation is solvable for p then find different values of p i.e., 
dy

dx
 and integrate each separately (all solutions

having one arbitrary constant only) multiply all the factors formed by different solutions. That is the solution
of the given differential equation.

(b) If equation is solvable for y: Express y as a function of x and p i.e., y = f (x, p) then differentiate w.r.t. x, equation
will reduce to differential equation of first order in x and p. Solve and eliminate p with the help of given
equation.

(c) If equation is solvable for x: Express x as a function of y and p i.e., x = f (y, p); then differentiate w.r.t. y, then
equation will reduce to first order equation is y and p. Solve and eliminate p.

12. Clairaut’s Equation: An equation of the form y = px + f (p) is known as Clairaut’s equation.

Its solution is y = cx + f (c) i.e., replace p by an arbitrary constant c.

 13. Leibnitz’s Linear Equation: A differential equation is said to the linear if the dependent variable and its deriva-
tives occur only in the first degree and are not multiplied together.

The general form of linear differential equation is 
dy

dx
+ Py = Q, where P, Q are functions of x or constants.

Solution of linear differential equation is y (I.F.) = Q� (I.F.) dx + c, where I.F. = 
P� dx

e
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Similar method for 
dy

dx
 + Px = Q, where P, Q are functions of y or constant.

14. Bernoulli’s Form: Any equation of the form 
dy

dx
 + Py = Qyn, where P, Q are functions of x only is called

Bernoulli’s equation. To solve it, divide by yn and put y1–n = z j; it will reduce to linear equation in x and z whose
solution is

z I.F. = Q I.F. ,dx c��  where I.F. = 
P� dx

e

Replace z by y1– n

15. Differential equation f ¢(y) 
dy

dx
 + Pf (y) = Q can be reduced to linear differential equation by putting f (y) = z.

����������������
�������

1. Distinguish between order and degree of a differential equation. (P.T.U., Jan. 2010)

[Hint: See art. 1.1 (iv, v)]

2. Define complete solution of a differential equation.

Or

When a solution of a differential equation is called its general solution. (P.T.U., Dec. 2005)

[Hint: See art 1.1 (vi)]

3. How will you form a differential equation whose solution contains n parameters ? What will be the order of that

differential equation ?

4. Verify that y = 
a

cx
c

�  and y2 = 4ax both are solutions of the same differential equation;

y = 
dy dx

x a
dx dy

� .

5. Define a singular solution of a differential equation.

[Hint: Consult art. 1.1 (vi)]

6. Show that y = x e2x is a solution of 
dy

dx
 = 

1
2y

x
� ��� �� 	

.

7. Obtain the differential equations from the following equations:

(i) y = Cx + C – C2

(ii) y = A cos mx + B sin mx, where m is fixed ; A, B are parameters.

(iii) y = Aex + Be–x + C (P.T.U., May 2004)

(iv) y = ex (A cos x + B sin x) (P.T.U., June 2003)

(v) y = cx + c2 (P.T.U., Dec. 2003)

[Hint: See S.E. 1 (i, ii, iii) art. 1.3]

8. Find the differential equation of all circles passing through the origin and having centres on x-axis.

[Hint: See S.E. 2 art. 1.3]

9. Find the differential equation of all parabolas whose axes are parallel to y-axis. (P.T.U., May 2002)

[Hint: See S.E. 4 art. 1.3]
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10. Solve the following differential equations:

(i) � � � �21 2 1y ydy
e x x e

dx
� � �  = 0 (ii)

2

2
1

1

dy y

dx x

�
�

�
 = 0

(iii)
dy

xy
dx

 = 1 + x + y + xy [Hint: See S.E. 4 art. 1.4] (P.T.U., Dec. 2003)

(iv) (1 + x3) dy – x2y dx = 0

(v) cos cos sin
dy

x x y y
dx

�  = 0 [Hint: See S.E. 3 art. 1.4]   (P.T.U., May 2003)

(vi) � �tan
dy

x y x
dx

� �  = 1 [Hint: Put y – x = t]

(vii) sec2 x tan y dx + sec2 y tan x dy = 0 [Hint: Separate variables and integrate]

(viii)
dy

dx
 = 

y

x
(P.T.U., Dec. 2005) (ix) (y + x) dy = (y – x) dx (P.T.U., May 2011)

11. Explain briefly how to solve the differential equation:

(i) 
dy

dx
 = 

1 1 1

ax by c

a x b y c

� �
� �

, where 
1 1

a b

a b
 (P.T.U., May 2003)

(ii) 
dy

dx
 = 

1 1 1

ax by c

a x b y c

� �
� �

, where 
1

a

a
 = 

1

b

b

12. (i) What is an exact differential equation? Check the exactness of the equation (3x2 + 2ey) dx + (2xey + 3y2) dy = 0.

(P.T.U., Jan. 2009, May 2010)

(ii) State necessary and sufficient conditions for the differential equation M dx + N dy = 0 to be exact.

(P.T.U., Jan. 2009, May 2014)

(iii) Under what conditions on a, b, c and d, the differential equations

(a sinh x cos y + b cosh x sin y) dx + (c sinh x cos y + d cosh x sin y) dy = 0 is exact? (P.T.U., May 2012)

[Hint: See S.E. 5 art. 1.8]

13. Solve the following differential equations:

(i) (x2 – ay) dx = (ax – y2) dy [Hint: See S.E. 2 art. 1.8] (P.T.U., May 2005)

(ii) (y cos x + 1) dx + sin x dy = 0

(iii)
cos sin

0
sin cos

� �
� �

� �
dy y x y y

dx x x y x
(P.T.U., May 2011)

14. (a) Define integrating factor of a differential equation and find I.F. of (y – 1) dx – x dy = 0. (P.T.U., May 2006)

[Hint: See S.E. 2 art. 1.9(a)]

(b) Solve y(2xy + ex)dx – exdy = 0 [Hint: See S.E. 1 art. 1.9(a)] (P.T.U., May 2014)

15. Find I.F. of the following differential equations:

(i) y dx – x dy + 3x2y2 ex3

 dx = 0 (P.T.U., Dec. 2003)

(ii) (x2 + y2 + x) dx + xy dy = 0. [Hint: 

M N
1

N

y x

x

� �
�

� � � ; I.F. = 
1

dx
xe x�� ]

(iii) (x2y – 2xy2)dx – (x3 – 3x2y) dy = 0 [Hint: See S.E. 4 art. 1.9(b)] (P.T.U., Dec. 2003)
(iv) y(xy + 2x2y2)dx + x(xy – x2y2)dy = 0 [Hint: See S.E. 5 art. 1.9(c)]

(v) (xy2 – e1/x2
)dx – x2ydy = 0  [Hint: See S.E. 6 art. 1.9(d)]
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(vi) (3x2y3ey + y3 + y2)dx + (x3y3ey – xy)dy = 0 [Hint: See S.E. 7 art. 1.9(d)]

(vii) (5x3 + 12x2 + 6y2)dx + 6xy dy = 0 [Hint: See S.E. 8 art. 1.9(d)] (P.T.U., Dec. 2013)

16. (a) Define Clairaut’s equation and write its solution. (P.T.U., May 2007, 2012)

(b) Find the general solution of the equation y = xy¢ + y¢2. What is the name of this type of equation?

(P.T.U., Dec. 2013)

17. Solve the following differential equations:

(i) y = 2px + p2y [Hint: See S.E. 1 art. 1.13] (P.T.U., Dec. 2012)

(ii)
dy dx x y

dx dy y x
� � �  [Hint: See S.E. 1 art. 1.11] (P.T.U., May 2014)

(iii) p = log (px – y) [Hint: See S.E. 1(i) art. 1.14] (P.T.U., Dec. 2005, 2011)

(iv) sin px cos y = cos px sin y + p. [Hint: See S.E. 1(ii) art. 1.14] (P.T.U., May 2007)

(v) p = sin (y – px). [Hint: Same as (iv) part] (P.T.U., May 2011)

(vi) (y – px) (p – 1) = p [Hint: Clairaut’s form]

18. (i) For the differential equation of the type yf(xy) dx + xg(xy) dy = 0, the I.F. is 
� � � �

1

xy f xy g xy� ��� �
. Justify it.

  (P.T.U., Dec. 2004)
(ii) For the differential equation M dx + N dy = 0 ; where M, N are homogeneous functions of x and y, the I.F. is

1

M Nx y�
 (Mx + Ny π 0). Justify it.

Also reduce (x2y – 2xy2) dx – (x3 – 3x2y)dy = 0 to exact differential equation. (P.T.U., Dec. 2009)

[Hint: See S.E. 1 art. 1.9(b)]

(iii) For the differential equation Mdx + Ndy = 0 if 

M N

N

	 	�
	 	y x

 = f (x), then 
� �f x dx

e
  is the I.F. justify it.

(iv) For the differential equation Mdx + Ndy = 0 if 

N M

M

x y
� �

�
� �

 = g (y), then e
g y dy� ��  is the I.F. justify it.

19. For what value of k, the differential equation 1 1

kx x

y y x
e dx e dy

y

� � � � �� � �� �  �� �
 = 0 is exact. (P.T.U., May 2010)

[Hint: See Solved  Example 5 art. 1.8]

20. Define Leibnitz’s linear differential equation of first order. Also give an example. (P.T.U., May 2005, 2007)
[Hint: See Art. 1.15]

21. Solve 
dy

dx
 + Py = Q, where P, Q are functions of x or constants. (P.T.U., June 2003, Dec. 2006)

[Hint: See Art. 1.16]
22. Define Bernoulli’s linear differential equation and write its standard form.  (P.T.U., May 2007, Jan. 2009)

[Hint: See Art. 1.17(a)]

23. How will you reduce f ¢(y) P ( ) Q
dy

f y
dx

� � to linear differential equation where, P, Q are function of x or constant?

[Hint: See Art. 1.17(b)]
24. Solve the following differential equations:

(i) (x + 1) 
2( 1)xdy

y e x
dx

� � � (ii)
2

22
dy y y

dx x x
� � (P.T.U., May 2007)

(iii) 3 6dy
x y x y

dx
� �  (P.T.U., May 2011)

[Hint: See S.E. 1(i) art. 1.17]
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(iv) (x + 1) 1 2 ydy
e

dx
�� � [Hint: Divide by (x + 1)e–y; 

1 2
; put

1 1
y y ydy

e e e t
dx x x

� � �
� �

]

(v) y¢ + y = y2 (P.T.U., May 2008)

[Hint: See S.E. 1(ii) art. 1.17]

(vi) (1 + y2) dx = (tan– 1y – x)dy (P.T.U., Dec. 2011)

[Hint: See S.E. 3 art. 1.16]

(vii) 3dy
y xy

dx
� � (P.T.U., May 2012)

�������

3. By differentiating the equation n times and then eliminating n parameters from n + 1 equations. (One is given
equation and remaining n are the differential equations obtained by differentiating given equation n times)

7. (i) y = � �
2

1
dy dy

x
dx dx

� �� � � �� 	
(ii) y2 + m2y = 0 (iii) y3 = y1

(iv) y2 – 2y1 + 2y = 0 (v) y = x
2

dy dy

dx dx
� �� � �� 	

8.   2 2 2
dy

x y xy
dx

� �  = 0 9. y3 = 0

10. (i) (1 + ey) = A (1 + x2) (ii) y x x y1 12� � � �  = c
(iii) y = x + log [x (1 + y)] + c (iv) y3 = 4 (x3 + 1)

(v) x sin x + cos x = log (cos y) + c (vi) log sin (y – x) = 
x2

2
 + c

(vii) tan x tan y = c (viii) y = cx

(ix) log (x2 + y2) = 12 tan� �
y

c
x

12. (i) Exact equation (iii) a = – d, b = c
13. (i) x3 + y3 – 3axy = c (ii) y sin x + x = c (iii) y sin x + (sin y + y) x = c 

14. (a)
1
2x

(b) 21

2

ye
x c

y
� �

15. (i)
1
2y

(ii) x (iii) 2 2

1

x y

(iv) 3 3

1

3x y
(v) 4

1

x
(vi) 3

1

y

(vii) x.
16. (b) y = px + p2, Clairaut’s equation
17. (i) y2 = 2cx + c2 (ii) (y2 – x2 – 2c) (xy – ec) = 0 (iii) y = cx – ec

(iv) y = cx – sin– 1 c. (v) y = cx + sin– 1 c. (vi)
1

c
y cx

c
� �

�

18. � � � �2log 3log 0
x

d d x d y
y

� �
� � �� �� 	

 or 2 3log log
x

d x y
y

� �
� �� �� 	

 = 0

24. (i) y = (x + 1) (ex + c) (ii) 1
x

c x
y
� � (iii)

5

1 5

2y
�  x3 + cx5

(iv) (x + 1)ey = 2x + c (v) y = 
1

1 xce�
(vi)

11 tantan 1
�� �� � � yx y ce

(vii) 2
2

1 1

2
xx ce

y
� � �
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2
Linear Ordinary Differential

Equations of Second and Higher Order

��������	
	�	�


A linear differential equation of nth order is that in which the dependent variable and its derivatives occur
only in the first degree and are not multiplied together. Thus, the general linear differential equation of the nth

order is of the form 
1 2

1 2 11 2
P P P P

n n n

n nn n n

d y d y d y dy
y

dxdx dx dx

� �

�� �� � � � �� = X, where  P1,  P2,  ……, Pn – 1 ,  Pn  and

X are functions of x only.

A linear differential equation with constant coefficients is of the form

1 2

1 2 11 2
X

n n n

n nn n n

d y d y d y dy
a a a a y

dxdx dx dx

� �

�� �� � � � � �� …(1)

where  a1,  a2, …… , an – 1, an  are constants and X is either a constant or a function of x only.

First of all we discuss solution of linear differential equation with constant coefficients.

�������������������

The part  
d

dx
 of the symbol  

dy

dx
 may be regarded as an operator such that when it operates on y, the result

is the derivative of y.

Similarly,  
2 3

2 3
, , ,

n

n

d d d

dx dx dx
�   may be regarded as operators.

For brevity, we write   
2

2
2

D, D , , D
n

n
n

d d d

dx dx dx
� � ��

Thus, the symbol D is a differential operator or simply an operator.
Written in symbolic form, equation (1) becomes  (Dn + a1 Dn – 1 + a2 Dn – 2 + …… + an – 1 D + an) y = X

or              f (D) y = X

where         f (D) = 1 2
1 1 1D D D ....... Dn n n

n na a a a� �
�� � � � �

i.e., f (D)  is a polynomial in D.
The operator D can be treated as an algebraic quantity.

i.e., D (u + v) = Du + Dv
D (lu) = l Du
Dp Dq u = Dp + q u
Dp Dq u = Dq Dp u

The polynomial  f (D) can be factorised by ordinary rules of algebra and the factors may be written in any
order.
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����� �������

Theorem 1.  If  y = y1 ,  y = y2 ,  ……… , y = yn  are n linearly independent solutions of the differential
equation

(Dn + a1 D
n – 1 + a2 D

n – 2 + …… + an) y = 0 …(i)
then  u = c1 y1 + c2 y2 + ……… + cn yn  is also its solution, where  c1 , c2 , ……… , cn  are arbitrary constants.

Proof. Since  y = y1 ,  y = y2 ,  ……,  y = yn  are solution of equation (i).

   

1 2
1 1 1 2 1 1

1 2
2 1 2 2 2 2

1 2
1 2

D D D 0

D D D 0

D D D 0

n n n
n

n n n
n

n n n
n n n n n

y a y a y a y

y a y a y a y

y a y a y a y

� �

� �

� �

�� � � � � �
�

� � � � � �
�
	
�
�
�� � � � � 


�

�

� � � � �

� � � � �

�

…(ii)

Now,   Dn u + a1 Dn – 1 u + a2 Dn – 2 u + …… + an u

= Dn (c1 y1 + c2 y2 + …… + cn yn)  + a1 Dn – 1 (c1 y1 + c2 y2 + …… + cn yn)

+ a2 Dn – 2 (c1 y1 + c2 y2 + …… + cn yn)  + …     …      …    … + an (c1 y1 + c2 y2 + … + cn yn)

= c1 (D
n y1 + a1 D

n – 1 y1 + a2 D
n – 2 y1 + … + an y1)  + c2 (D

n y2 + a1 D
n – 1 y2 + a2 D

n – 2 yn + … + an y2)

   +    …           …       …     …    + cn (Dn yn + a1 D
n – 1 yn + a2 D

n – 2 yn + … + an yn)

= c1 (0) + c2 (0) + … + cn (0) [  �   of  (ii)]

= 0

which shows that  u = c1 y1 + c2 y2 + …… + cn yn  is also the solution of equation (i).

Since this solution contains n arbitrary constants, it is the general or complete solution of equation (i).

Theorem 2.  If y = u is the complete solution of the equation f (D) y = 0  and y = v  is a particular solution

(containing no arbitrary constants) of the equation f (D) y = X,  then the complete solution of the equation

f (D) y = X  is   y = u + v.

Proof. Since  y = u  is the complete solution of the equation  f (D) y = 0 …(i)

� f (D) u = 0 …(ii)

Also,        y = v  is a particular solution of the equation  f (D) y = X …(iii)

� f (D) v = X …(iv)

Adding (ii)  and (iv),  we have   f (D) (u + v) = X

Thus  y = u + v  satisfies the equation (iii),  hence it is the complete solution (C.S.) because it contains n

arbitrary constants.

The part  y = u is called the complementary function (C.F.) and the part  y = v  is called the particular
integral (P.I.) of the equation (iii). (P.T.U., Jan. 2010)

� The complete solution of equation (iii), is  y = C.F. + P.I.
Thus in order to solve the equation (iii), we first find the C.F.  i.e., the C.S.  of equation (i) and then the P.I.

i.e., a particular solution of equation (iii).

��������	�	���������	�
�������

Consider the differential equation  (Dn + a1 Dn – 1 + a2 Dn – 2 + ……… + an) y = 0 …(i)

Let  y = emx  be a solution of (i),  then  Dy = m emx,  D2y = m2 emx , …… , Dn – 2 y = mn – 2 emx

Dn – 1 y = mn – 1 emx ,  Dn y = mn emx
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Substituting the values of  y,  Dy,  D2y,  ………  ,  Dny  in (i),  we get
(mn + a1 m

n – 1 + a2 m
n – 2 + ……+ an) emx = 0

or mn + a1 m
n – 1 + a2 mn – 2 + … + an = 0,  since  emx � 0 …(ii)

Thus  y = emx  will be a solution of equation (i) if m satisfies equation (ii).
Equation (ii) is called the auxiliary equation for the differential equation (i).
Replacing m by D in (ii),  we get  Dn + a1 Dn – 1 + a 

2 D
n – 2 + …… + an = 0 …(iii)

Equation (ii) gives the same values of m as equation (iii) gives of D. In practice, we take equation (iii) as
the auxiliary equation which is obtained by equating to zero the symbolic co-efficient of y in equation (i).

Definition. The equation obtained by equating to zero the symbolic coefficient of y is called the auxiliary
equation, briefly written as A.E.

���������������	
�	
��������������
�������
��	�


Consider the equation  (Dn + a1 D
n – 1 + a2 Dn – 2 + …… + an) y = 0 …(i)

where all the ai’s are constant.

Its auxiliary equation is   Dn + a1 Dn – 1 + a2 Dn – 2 + …… + an = 0 …(ii)
Let  D = m1 , m2 , m3, …… , mn  be the roots of the A.E. The solution of equation (i)  depends upon the nature

of roots of the A.E. The following cases arise :
Case I.  If all the roots of the A.E. are real and distinct, then equation (ii) is equivalent is

(D – m1) (D – m2) …… (D – mn) = 0 …(iii)
Equation (iii)  will be satisfied by the solutions of the equations

       (D – m1) y = 0,  (D – m2) y = 0,  ……, (D – mn) y = 0

Now, consider the equation  (D – m1) y = 0,  i.e.,   1 0
dy

m y
dx

� �

It is a linear equation and I.F. = 1 1m dx m xe e
� �� �

� Its solution is   1 1 1
1 1. 0 . orm x m x m xy e e dx c y c e� �� � ��

Similarly, the solution of  (D – m2) y = 0  is  y = c2 e
m 2x

 .........................................................................

The solution of  (D – mn) y = 0 is m x
ny c e n�

Hence the complete solution of equation (i) is

y = c1 1 2
2

m x m x m x
ne c e c e n� � �� …(iv)

Case II.  If two roots of the A.E. are equal,  let  m1 = m2

The solution obtained in equation (iv) becomes

y = (c1 + c2) 3 31 1
3 3

m x m xm x m xm x m x
n ne c e c e n c e c e c e n� � � � � � �� �

It contains  (n – 1) arbitrary constants and is, therefore, not the complete solution of equation (i).
The part of the complete solution corresponding to the repeated root is the complete solution of

(D – m1) (D – m1) y = 0

Putting  (D – m1) y = v,  it becomes  (D – m1) v = 0   i.e.,   1 0
dv

m v
dx

� �

As in case I, its solution is  v = 1
1

m xc e
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� (D – m1) y = 1 1
1 1 1orm x m xdy

c e m y c e
dx

� �

which is a linear equation and I.F. = 1m xe�

� Its solution is   y . 1 1 1
1 2 1 2.m x m x m xe c e e dx c c x c� �� � � ��

or y = (c1 x + c2) 1m xe
Thus, the complete solution of equation (i) is

y = (c1 x + c2) 31
3

m xm x m x
ne c e c e n� � ��

If, however, three roots of the A.E. are equal, say  m1 = m2 = m3,  then proceeding as above, the solution
becomes

y = � � 1 42
1 2 3 4

m xm x m x n
nc x c x c e c e c e� � � � ��

Case III.  If two roots of the A.E. are imaginary,
Let m1 = a + i b    and  m2 = a – i b ���in a real equation imaginary roots occur in conjugate pair)
The solution obtained in equation (iv) becomes

y = � � � � 3
1 2 3

��  �� � � � ��
ni x i x m x m x

nc e c e c e c e

= � � 3
1 2 3

�  � � � � ��
nm x m xx i x i x

ne c e c e c e c e

= � � � �1 2cos sin cos sin� � �� � � � � � �� �
xe c x i x c x i x  + 3

3
nm x m x

nc e c e� ��

By Euler's Theorem,  cos sin�� �� �� �	 
�
ie i

= � � � � 3
1 2 1 2 3cos sin� � �� � � � � � � �� � �

nm x m xx
ne c c x i c c x c e c e

= � � 3
1 2 3C cos C sin� � � � � ��

nm x m xax
ne x x c e c e

[Taking   c1 + c2 = C1 ,   i (c1 – c2) = C2]
Case IV.  If two pairs of imaginary roots be equal
Let m1 = m2 = a + i b   and   m3 = m4 = a – i b
Then by case II, the complete solution is

y = � � � � 5
1 2 3 4 5cos sin nm x m xx

ne c x c x c x c x c e c e� � �� � � � � � � �� � � .

����������	
�
����
�

Example 1. Solve: 9y¢¢¢ + 3y¢¢ – 5y¢ + y = 0. (P.T.U., May 2008)
Sol.  Symbolic form of given equation is

(9D3 + 3D2 – 5D + 1) y = 0
A.E. is 9D3 + 3D2 – 5D + 1 = 0

or (D + 1) (3D – 1)2 = 0

or D = – 1, 
1 1

,
3 3

\ C.S is y = � �
1

3
1 2 3

xxc e c c x e� � � .

Example 2.  Solve : .
4

4

d x
4x 0

dt
� �

Sol.  Given equation in symbolic form is  (D4 + 4) x = 0,  where  D = 
d
dt
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Its A.E. is D4 + 4 = 0 or (D4 + 4D2 + 4) – 4D2 = 0
or (D2 + 2)2 – (2D)2 = 0 or (D2 + 2D + 2) (D2 – 2D + 2) = 0

whence D =
2 4 2 4

and
2 2

� � � � �
   i.e.,  D = – 1 	 i  and  1 	 i

Hence the C.S. is x = e– t (c1 cos t + c2 sin t) + et (c3 cos t + c4 sin t).

Example 3.  If  ( )
2

2
d x g

x a 0
bdt

� � � ;  (a > 0,  b > 0,  g > 0)  and  x = a,   
dx

0
dt

�   when  t = 0 , show that

x = a + (a – a) cos 
g

t
b

. (P.T.U., May 2002)

Sol.
2

2
( )

d x g
x a

bdt
� � = 0

Put  x – a = y �
2

2

d x

dt
= 

2

2

d y

dt

�
2

2

d y g
y

bdt
� = 0 A.E. is   2 0

g
m

b
� � � m2 = –

g

b
   (–ve)

� m = 
g

i
b

� ; � y = 1 2cos sin
g g

c t c t
b b

�

 x – a = 1 2cos sin
g g

c t c t
b b

�

when x = a,  t = 0; a – a = c1

� x – a = (a – a) 2cos sin
g g

t c t
b b

�

�
dx

dt
= 2( ) sin cos

g g g g
a t c t

b b b b
� � � �

t = 0,  0
dx
dt

� � 0 = 2
g

c
b     �    c2 = 0

� x – a = (a – a) cos
g

t
b

Hence, x = a + (a – a) cos 
g

t
b

.

�
�������������
��

Solve the following differential equations :

 1.
2

2
3 4 0

d y dy
y

dxdx
� � � 2.

2

2
( ) 0

d y dy
a b aby

dxdx
� � � �

 3.
2

2
4 0

d y dy
y

dxdx
� � � 4.

2

2
6 9 0

d x dx
x

dtdt
� � �

 5.
3 2

3 2
3 3 0

d y d y dy
y

dxdx dx
� � � � 6.

3

3
0

d y
y

dx
� � (P.T.U., May 2012)
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7.
3 2

3 2
6 11 6 0

d y d y dy
y

dxdx dx
� � � �  8.

4 2

4 2
5 4 0

d y d y
y

dx dx
� � �

9.
4 2

4 2
8 16 0

d y d y
y

dx dx
� � � (P.T.U., Dec. 2010)  10. � � � �

3 22 2D 1 D D 1 0y� � � �� � �

11.
2

2
3 2 0

d y dx
x

dtdt
� � � ,  given that when  t = 0,  x = 0  and  0

dx

dt
�

12.
2

2
4 29

d y dy
y

dxdx
� �  = 0,  given that when  x = 0,  y = 0  and  15

dy

dx
�

13. If  
4

4
4

d x
m x

dt
� ,  show that  x = c1 cos mt + c2 sin mt + c3 cosh mt + c4 sinh mt.

����
��

 1. y = c1 e4x + c2 e– x  2. y = c1 e– ax + c2 e– bx

 3. � � � �2 3 2 3
1 2

x x
y c e c e

� �
� �  4. x = (c1 + c2 t) e– 3t

 5. y = (c1 + c2 x + c3 x2) ex  6. 2
1 2 3

3 3
cos sin

2 2

x
xy c e e c x c x� � �

� � �� �
� �

7. y = c1 e– x + c2 e– 2x + c3 e– 3x  8. y = c1 ex + c2 e– x + c3 e2x + c4 e– 2x

 9. y = (c1 + c2 x) cos 2x + (c3 + c4 x) sin 2x

 10. � � � � � � � �
1

2 2 2
1 2 3 4 5 6 7 8 9 10

3 3
cos sin cos sin

2 2

� � �
� � � � � � � � � �� �

� �� �

x
y c c x c x x c c x c x x e c c x x c c x x

11. x = 0 12. y = 3e– 2x sin 5x.

���������	
 �������������
(
1
D)f

Definition:  
1

X
(D)f

 is that function of x, free from arbitrary constants, which when operated upon by

f (D) gives X.

Thus,
1

(D) X X
(D)

f
f

� �
�� 	

� 


� f (D)  and  
1
(D)f

  are inverse operators.

Theorem 1.  
1

X
f (D)

 is the particular integral of  f (D) y = X.

Proof. The given equation is   f (D) y = X …(1)

Putting y = 
1

X
(D)f

 in (1),  we have   
1

(D) X X
(D)

f
f

� �
�� 	

� 

 or  X = X

which is true.

�         y = 
1

X
(D)f

  is a solution of (1).

Since it contains no arbitrary constants, it is the particular integral of  f (D) y = X.
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Theorem 2.  Prove that : 	
1

X = X dx
D

. (P.T.U., May 2002)

Proof. Let
1

X
D

y�

Operating both sides by D,  we have  
1

D X D or X
D

� � � �� �� �
dy

y
dx

Integrating both sides w.r.t. x

y = X ,dx	
no arbitrary constant being added since  y = 

1
X

D
 contains no arbitrary constant.

�
1

X
D

 = X dx� .

Theorem 3.  Prove that : 
��

� 	ax ax1
X e X e dx

D a
.

Proof. Let
1

X
D

y
a

�
�

Operating on both sides by  (D – a),  (D – a) 
1

X (D )
D

� � � �� �� ��
a y

a

or X = . ., X� � �
dy dy

ay i e ay
dx dx

which is a linear equation and I.F. = 
� ��� adx axe e

� Its solution is  ye– ax = X �� axe dx , no constant being added

 or               y = X ��ax axe e dx

Hence,
1

X X
D

��
� �ax axe e dx

a
.

��!������������	
�	
����������	������	
������ (P.T.U., Dec. 2004)

Consider the differential equation,  (Dn + a1 D
n – 1 + a2 Dn – 2 + … + an – 1

 D + an) y = X
It can be written as f (D) y = X, where f(D) = Dn

 + a1 D
n – 1 + a2 D

n – 2 + … + an – 1 D + an

� P.I. =
1

X
(D)f

Case I.  When X = eax

Since D eax = a eax

D2 eax = a2 eax

     …………………
  …………………

Dn – 1 eax = an – 1 eax

Dn eax = an eax

� f (D)eax = (Dn + a1 Dn – 1 + a2 D
n – 2 + � + an – 1

 D + an) e
ax

= (an + a1 a
n – 1 + a2 a

n – 2 + ��+ an – 1
 a + an) eax

= f (a) eax.

Operating on both sides by  
1
(D)f

.
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              � � � �1 1 1
(D) ( ) or ( )

(D) (D) (D)
ax ax ax axf e f a e e f a e

f f f
� �

Dividing both sides by  f (a),   
1 1
( ) (D)

ax axe e
f a f

� ,  provided  f (a) � 0

Hence,                     
1 1
(D) ( )

ax axe e
f f a

� ,  provided  f (a) � 0.

Case of failure.  If  f (a) = 0, the above method fails.
Since  f (a) = 0,  D = a  is a root of A.E.  f (D) � 0
� D – a  is a factor of  f (D).
Let   f (D) = (D – a) f (D),  where   f (a) π 0 …(i)

Then  
1 1 1 1 1 1

.
(D) (D ) (D) D (D) D ( )

� � � �
�  �  �  

ax ax ax axe e e e
f a a a a

= 
1 1 1

( ) D – ( )
ax ax ax axe e e e dx

a a a
�� � �

  � [By Theorem 3]

= 
1 1

1
( ) ( )

� �
  �ax axe dx x e

a a
…(ii)

Differentiating both sides of (i) w.r.t. D,  we have  f 
(D) = (D – a) f
 (D) + f (D)
� f 
(a) = f (a)

� From (ii),  we have   
1 1

(D) ( )
� �

!
ax axe x e

f f a
, provide  f 
(a) � 0

If f¢ (a) = 0,  then  21 1

(D) ( )
ax axe x e

f f a
� �

��
, provided  f 

 (a) � 0

and so on.
Example 1. Find the P.I. of  (D3 – 3D2 + 4) y = e2x.

Sol.             P.I. = 2
3 2

1

D 3D 4� �
xe .

The denominator vanishes when D is replaced by 2. It is a case of failure.
We multiply the numerator by x and differentiate the denominator w.r.t. D.

�               P.I.= 2
2

1

3D 6D



�
xx e

It is again a case of failure. We multiply the numerator by x and differentiate the denominator w.r.t. D.

�              P.I. = 
2

2 2 2 2 21 1

6D 6 6(2) 6 6
� � � �

� �
x x xx

x e x e e .

Case II.   When X = sin (ax + b)   or  cos (ax + b) (P.T.U., Dec. 2005)
D sin (ax + b) = a cos (ax + b)

D2 sin (ax + b) = (– a2) sin (ax + b)
D3 sin (ax + b) = – a3 cos (ax + b)
D4 sin (ax + b) = a4 sin (ax + b)

or (D2)2 sin (ax + b) = (– a2)2 sin (ax + b)
.....................................................................
.....................................................................

In general,   (D2)n sin (ax + b) = (– a2)n sin (ax + b)
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�       f (D2) sin (ax + b)

= [(D2)n + a1 (D2)n – 1 + a2 (D2)n – 2 + ...... + an – 1 (D2) + an] sin (ax + b)

= [(– a2)n + a1 (– a2)n – 1 + a2 (– a2)n – 2 + ...... + an – 1 (– a2) + an] sin (ax + b)

= f (– a2) sin (ax + b)

Operating on both sides by 
� �2

1
,

Df

� �
� �

� �
� �2 2

2 2

1 1
D sin ( ) = sin ( )

D D
� � � �� � �	 
 	 
f ax b f a ax b

f f

or                            sin (ax + b) = � �
� �

2
2

1
sin ( )

D
� �f a ax b

f
.

Dividing both sides by  f (– a2 ),

 
� � � �

22

1 1
sin ( ) sin ( )

D
� � �

�
ax b ax b

f a f
, provided  f (– a2) � 0

Hence     
� � � �

� �
2 2

1 1
sin ( ) sin

D
� � �

�
ax b ax b

f f a
, provided  f (– a2) � 0

Similarly,  
� � � �2 2

1 1
cos ( ) cos ( )

D
� � �

�
ax b ax b

f f a
, provided  f (– a2) � 0

Case of failure.  If   f (– a2) = 0,  the above method fails.
Since cos (ax + b) + i sin (ax + b) = ei (ax + b) | Euler’s Theorem

�
� �

� �
� �

( )
2 2

1 1
cos ( ) sin ( )

D D

�� � � � i ax bax b i ax b e
f f

[If we replace D by   ia,   f (D2) = f (– a2) = 0,  so that it is a case of failure]

= 
� � � �

� �( )
2 2

1 1
. cos( ) sin ( )

D D

�� � � � �
! !

i ax bx e x ax b i ax b
f f

Equating real parts    
� � � �

� �
2 2

1 1
cos ( ) cos

D D
� � � �

!
ax b x ax b

f f
, provided  f 
(– a2) � 0

Equating imaginary parts   
� � � �2 2

1 1
sin ( ) sin ( )

D D
� � � �

!
ax b x ax b

f f
, provided  f 
(– a2) � 0

If  f 
(– a2) = 0,  then
� � � �

2
2 2

1 1
sin ( ) sin ( )

D D
� � � �

!!
ax b x ax b

f f
, provided  f �(– a2) � 0

� � � �
2

2 2

1 1
cos ( ) cos ( )

D D
� � � �

!!
ax b x ax b

f f
, provided  f �(– a2) � 0

and so on.

Example 2. Find the P.I. of y y 4 y 4 y� � ���� �� �  = sin 3x. (P.T.U., May 2008)

Sol. Given equation in symbolic form is

(D3 – D2 + 4D – 4) y = sin 3x
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P.I. = 
3 2

1
sin 3

D – D + 4D – 4
x

= 
1

sin 3
– 9D + 9 + 4D – 4

x [��Put D2 = – 9]

= 
1

sin 3
5D + 5�

x  = 
� �

1
sin 3

5 1 D�
x

= 
� �2

1 D
sin 3

5 1 – D

�
x  = 

� �
1 D

sin 3
5 1 + 9

�
x [� Putting D2 = – 9]

= � �
1

sin 3 D sin 3
50

� ��� �x x  = � �
1

sin 3 3 cos 3
50

�x x

Case III. When  X = xm,  m being a positive integer

Here                        P.I. = 
1
(D)

mx
f

Take out the lowest degree term from f(D) to make the first term unity (so that Binomial Theorem for a
negative index is applicable).

The remaining factor will be of the form  1 + f (D)   or   1 – f (D)
Take this factor in the numerator. It takes the form  [1 + f (D)]–1   or  [1 – f (D)]–1

Expand it in ascending powers of D as far as the term containing  Dm,  since  Dm + 1 (xm) = 0,  Dm + 2 (xm) = 0
and so on.

Operate on xm  term by term.
Example 3.  Find the P.I. of  (D2 + 5D + 4) y = x2 + 7x + 9.

Sol. P.I. = � � � �2 2
2 2

1 1
7 9 7 9

D 5D 4 5D D
4 1

4 4

� � � � �
� �� �
� �� �� �

x x x x

= � � � �
1 22 2 2

2 21 5D D 1 5D D 5D D
1 7 9 1 7 9

4 4 4 4 4 4 4 4

� � �� �� � � � � �� �� � � � � � � � � � � �� �� � � � � �� �� � � � � �� �	 
 	 

�x x x x

= � � � �
2 2 2

2 21 5D D 25D 1 5D 21D
1 7 9 1 7 9

4 4 4 16 4 4 16

� � � �
� � � � � � � � � �� � � �� � � �

� �x x x x

= � � � � � �2 2 2 21 5 21
7 9 D 7 9 D 7 9

4 4 16
� �� � � � � � � �� �	 


x x x x x x

= � � � �2 21 5 21 1 9 23
7 9 2 7 (2)

4 4 16 4 2 8
� � � �� � � � � � � �� �� � � �	 


x x x x x .

Case IV.  When  X = eax V,  where  V is a function of x
Let u  be a function of x,  then by successive differentiation, we have

D (eax u) = eax Du + a eax u = eax (D + a) u
D2 (eax u) = D [eax (D + a) u] = eax (D2 + aD) u + aeax (D + a) u

= eax (D2 + 2aD + a2) u = eax (D + a)2 u

Similarly, D3 (eax u) = eax (D + a)3 u
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In general,    Dn (eax u) = eax (D + a)n u
� f (D) (eax u) = eax f (D + a) u

Operating on both sides by 
1
(D)f

,

� �1
(D)

(D)
axf e u

f
� �
	 
 = 

1
(D )

(D)
axe f a u

f
� ��	 


� eax u = 
1

(D )
(D)

axe f a u
f

� ��	 


Now, let f (D + a) u = V,   i.e.,   u = 
1

V
(D )f a�

…(i)

� From (i),  we have  eax � �
1 1

V V
(D ) (D)

axe
f a f

�
�

or                   � �1 1
V V

(D) (D )
�

�
ax axe e

f f a
.

Thus,  eax  which is on the right of  
1

(D)f
  may be taken out to the left provided D is replaced by D + a.

Example 4.  Find the P.I. of (D2 – 4D + 3) y = ex cos 2x.

Sol.  P.I. = 
� �

2 2

1 1
cos 2 cos 2

D 4D 3 D 1 4(D 1) 3
�

� � � � � �
x xe x e x

= 
2 2

1 1
cos 2 cos 2

D 2D 2 2D
�

� � �
x xe x e x [Putting  D2 = – 22]

= 
1 1 1 2 D

cos 2 cos 2
2 2 D 2 (2 D)(2 D)

�
� � �

� � �
x xe x e x

= 
� �2 2

1 2 D 1 2 D
cos 2 cos 2

2 24 D 4 2

� �
� � �

� � �
x xe x e x

= � � � � � �
1 1 1

2cos 2 D cos 2 2 cos 2 2sin 2 cos 2 sin 2 .
16 16 8

� � � � � � � �x x xe x x e x x e x x

Case V.  When  X is any other function of x.
Resolve  f (D) into linear factors.
Let f (D) = (D – m1) (D – m2) ……… (D – mn) X

Then P.I. = 
� �� � � �1 2

1 1
X X

(D) D D D nf m m m
�

� � ��

= 1 2

1 2 2

AA A
X

D D D

� �
� � �� �� � �� �

�
n

m m m
(By Partial fractions)

= 1 2
1 2

1 1 1
A X A X A X

D D D
� � �

� � �
� n

nm m m

= 1 1 2 2
1 2A X A X A X �� �� � �  �

n nm x m xm x m x m x m x
ne e dx e e dx e e dx

See solved example 11 (art. 2.8)
1

X X
D

�� �
�� ��	 
��

mx mxe e dx
m

.
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Example 5. Find the particular solution of  y¢¢ + a2y = sec ax. (P.T.U., Dec. 2002, May 2012, Dec. 2013)

Sol. Particular solution of y¢¢ + a2y = sec ax

=
2 2

1
sec

D �
ax

a

=
1

sec
(D ) (D )� �

ax
ia ia

=

1 1
2 2 sec

D D

� �
� �

�� 	
� �� �

� �� 


ai ai ax
ia ia

(By Partial fraction)

=
1 1 1

sec sec
2 D D

� �
�� 	

� �� 

ax ax

ai ia ia

= � �1
sec sec

2
� ��� �iax iax iax iaxe e ax dx e e ax dx

ai

= � �1
(cos sin ) sec (cos sin ) sec

2
�� � �� �iax iaxe ax i ax ax dx e ax i ax ax dx

ai

= � �1
(1 tan ) (1 tan )

2
�� � �� �iax iaxe i ax dx e i ax dx

ai

=
1 log cos log cos

2
�� �� � � �� � �� 	� � � �� � � �� 


iax iaxax ax
e x i e x i

ai a a

= � �
1

( ) log cos
2

� �� �� � �� 	
� 


iax iax iax iaxi
x e e ax e e

ai a

=
1

2 sin log cos 2 cos
2

� �� � �� 	
� 


i
x i ax ax ax

ai a

=
1 cos

sin log cos
� ��� 	
� 


ax
x ax ax

a a

��"��#��$	
������������ �����������	�


� �

�� �� � � ��

1 2

1 2 11 2
X

n n n

n nn n n

d y d y d y dy
a a a a y

dxdx dx dx

Step 1.  Write the equation in symbolic form

(Dn + a1 Dn – 1 + a2 D
n – 2 + …………… + an – 1

 D + an) y = X

Step 2.  Solve the auxiliary equation

Dn + a1 Dn – 1 + a2 D
n – 2 + …………… + an – 1

  D + an = 0



70 A TEXTBOOK OF ENGINEERING MATHEMATICS

Step 3.  Write the complementary function with the help of following table.

Roots of the A.E. C.F.

1. If roots are real and distinct say 31 2
1 2 3� � �m xm x m xc e c e c e ……

m1, m2, m3

2. If two real roots are equal say C.F. = (c1 + c2 x) emx + 3
3

m x
c e  + ……

m1 = m2 = m

3. If three roots are equal  m1 = m2 = m3 = m C.F. = (c1 + c2 x + c3 x2) emx + 4
4

m x
c e  + ……

4. If roots are a pair of imaginary C.F. =  eax (c1 cos b x + c2 sin bx)

 (non-repeated) numbers (say) a ± i b.
5. If pair of imaginary roots is repeated C.F. = eax {(c1 + c2 x) cos bx + (c3 + c4 x) sin bx}

twice,  i.e.,  a ± i b,   a ± i b.

Step 4.  Find the particular integral  i.e.,  P.I. = 1 2
1 2

1

D D Dn n n
na a a� �� � � ��

 X  with the help of

following rules.
Functions Particular Integrals

1. When X = eax  then   P.I. = 
(D)

axe

f
  Put   D = a

= 
( )

axe

f a
, provided  f (a) � 0.

In case  f (a) = 0  then multiply by x and differentiate the denominator w.r.t. D and continue this process
untill denominator ceases to be zero on putting  D = a.

2. When  X = sin (ax + b)  P.I. = 
� �2

1

D�
  sin (ax + b)   or  cos (ax + b) Put D2 = –a2

or cos (ax + b)

=
2

1
sin ( )

( )
�

 �
ax b

a
  or  cos (ax + b) provided 2( ) 0a � "

In case of failure apply to above mentioned rule of (1) case.
3. When  X = xm  then P.I. = [f (D)]– 1 xm   expand  f (D) By binomial theorem up to Dm  and

   then operate on xm.

4. When  X = eax V, P.I. = 
1

V
(D )�

axe
f a

5. If X is any other function of x, then P.I. = 
1

X
(D)f

. Resolve  1
(D)f

  into partial fractions and operate

each partial fraction on X.

6. Remember  
1 1

X X and X X
D D

�� �
�� �ax axdx e e dx

a

Step 5. Then write the C.S. which is  C.S. = C.F. + P.I.

or    cos (ax + b)
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Example 1. Solve : (D2 + D + 1)y = (1 + sin x)2. (P.T.U., May 2007)
Sol. (D2 + D + 1) y = (1 + sin x)2

A.E. is D2 + D + 1 = 0 \ D = 
1 1 4 1 3

2 2 2

� � �
� � � i

C.F. = 2
1 2

3 3
cos sin

2 2

� � �
�� �

� �	 


x

e c x c x

P.I. = � �
2

2

1
1 sin

D D 1
�

� �
x  = � �2

2

1
1 2sin sin

D D 1
� �

� �
x x

=
2

1 1 cos 2
1 2sin

2D D 1

�� �� �� 	
� � � 


x
x  =

2

1 3 1
2sin cos 2

2 2D D 1

� �� �� 	
� � � 


x x

= 0.
2 2 2

3 1 1 1 1
. 2 sin cos 2

2 2D D 1 D D 1 D D 1
xe x x� � �

� � � � � �
(Put D = 0) (Put D2 = - 1) (Put D2 = - 4)

=
3 1 1 1

1 2 sin cos 2
2 D 2 D 3

x x� � � �
�

 = � � 2

3 1 D 3
2 cos cos 2

2 2 D 9

�
� � �

�
x x

=
3 1 D 3

2 cos cos 2
2 2 13

�
� �

�
x x  = � �

3 1
2 cos 2 sin 2 3 cos 2

2 26
� � � �x x x

=
3 1 3

2 cos sin 2 cos 2
2 13 26
� � �x x x

C.S. is y = 2
1 2

3 3
cos sin

2 2

x

e c x c x
� � �

�� �
	 


 + 
3

2 cos
2

x�
1 3

sin 2 cos 2
13 26

x x� � .

Example 2. Solve : (D – 2)2 y = 8 (e2x + sin 2x + x2). (P.T.U., May 2009)
Sol. A.E. is  (D – 2)2 = 0 \ D = 2, 2

  C.F. = (c1 + c2 x) e2x

P.I. = � �2 2
2

1
8 sin 2

(D 2)
xe x x� �� �	 
�

 = 2 2
2 2 2

1 1 1
8 sin 2

(D 2) (D 2) (D 2)
xe x x

� �
� �� �

� � �� �� �

Now,   2
2

1

(D 2)
xe

�
 Put D = 2; case of failure

= 21

2(D 2)
�

�
xx e | Put D = 2. Case of failure

= 2 21

2
xx e�  = 

2
2

2
xx

e

2

1
sin 2

(D 2)
x

�
 =

2 2

1 1
sin 2 sin 2

D 4D 4 2 4D 4
x x�

� � � � �
[� Putting  D2 = – 22]
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=
1 1 1 cos 2 1

sin 2 sin 2 cos 2
4D 4 4 2 8

x
x x dx x

� �� � � � � � �� �� �	

� �

2
2

1

D 2
x

�
 =

2
2 2 2

2 2

1 1 1 D
1

4 2(2 D) D
4 1

2

x x x
�

� �
� � �� �� �� � ��� �� �

=
2

21 D ( 2) ( 3) D
1 2

4 2 2 2
x

� �� �� � � �� � �� �� � � �� � � �� �� �
�

= 2 2 21 3 1 3
1 D D 2

4 4 4 2
x x x

� � � �� � � � � �� �� � � �	 

�

�     P.I. = 
2

2 21 1 3
8 cos 2 2

2 8 4 2
xx

e x x x
� �� �� � � �� �� �� �� �	 


 = 4x2 e2x + cos 2x + 2x2 + 4x + 3

Hence the C.S. is         y = (c1 + c2 x) e2x + 4x2 e2x + cos 2x + 2x2 + 4x + 3.

Example 3. Solve : (D + 2) (D – 1)2 y = e– 2x + 2 sinh x.
Sol. A.E. is  (D + 2) (D – 1)2 = 0 \ D = – 2, 1, 1

C.F. = c1 e– 2x + (c2 + c3 x) ex

P.I. = � �2
2

1
2sinh

(D 2)(D 1)
xe x� �

� �

= � �2
2

1

(D 2) (D 1)
x x xe e e� �� �

� �
sinh

2

�� ��
�� �

� �	 

�

x xe e
x

Now, 2
2

1

(D 2) (D 1)
xe�

� �
 = 2 2

2 2

1 1 1 1

D 2 D 2(D 1) ( 2 1)
x xe e� �� � � �

�� � � �� �� � �� � � �� � � �

= – 21 1

9 D 2



�
xe

Put D = 2
Case of failure

�

= 2 21 1

9 1 9
x xx

x e e� �
 �

2

1

(D 2) (D 1)
xe

� �
 =

2 2

1 1 1 1

D 2 1 2(D 1) (D 1)
x xe e

� � � ��� � � �� �� �� � � �

=
2

1 1

3 (D 1)
xe


�
Put D = 1
Case of failure

=
1 1

3 2(D 1)
xx e�

�
Put D = 1
Case of failure

=  2 21 1 1

3 2 6
x xx e x e� � �

2

1

(D 2) (D 1)
xe�

� �
 =

2

1 1

4( 1 2) ( 1 1)
x xe e� ��

� � � �
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� P.I. =
2

– 2 –1

9 6 4
� �x x xx x

e e e

Hence the C.S. is y = c1 e– 2x + (c2 + c3 x) ex + 
2

– 2 –1

9 6 4
� �x x xx x

e e e .

Example 4. Solve : 
4

4

d y

dx
 – y = cos x cosh x. (P.T.U., May 2007, 2011)

Sol.  Given equation in symbolic form is  (D4 – 1) y = cos x cosh x
A.E. is   D4 – 1 = 0   or   (D2 – 1) (D2 + 1) = 0 \ D = 	 1,  	 i

C.F. = c1 ex + c2 e– x + e0x (c3 cos x + c4 sin x)
= c1 ex + c2 e– x + c3 cos x + c4 sin x

P.I. = 
4 4

1 1
cos cosh cos

2D 1 D 1

x xe e
x x x

�� ��
� � �� � � �

= 
4 4

1 1 1
cos cos

2 D 1 D 1
x xe x e x�� ��� �� �	 


 = 
4 4

1 1 1
cos cos

2 (D 1) 1 (D 1) 1
x xe x e x�� �

�� �
� � � �� �� �

= 
4 3 2 4 3 2

1 1 1
cos cos

2 D 4D 6D 4D D 4D 6D 4D
x xe x e x�� ��� �� � � � � �	 


Put 2D – 1�

= 
� � � � � �

2 2

1 1 1
cos cos

2 ( 1) 4D( 1) 6( 1) 4D1 4D 1 6 1 4 D

x xe x e x�
� �
� ��
� �� � � � � �� � � � � �	 


= 
1 1 1 1 1

cos cos cos cosh cos
2 5 5 5 2 5

x x
x x e e

e x e x x x x
�

� � �� � �
� � � � �� � � �� � � �	 


Hence the C.S. is  y = c1 ex + c2 e– x + c3 cos x + c4 sin x – 
1

cos cosh
5

x x .

Example 5. Solve: 
2

2

d y
4 y

dx
�  = x sin 2x. (P.T.U., Dec. 2002)

Sol. S.F. of given equation is

(D2 + 4) y = x sin 2x

A.E. is D2 + 4 = 0 \ D = ± 2i

C.F. is e0.x (cos 2x + i sin 2x) = cos 2x + i sin 2x

P.I. = 2

1
sin 2

D 4
x x

�
 = Imaginary part of 2

2

1

D 4
i xxe

�

= Imaginary part of 
� �

2
2

1

D + 2 4

i xe x
i �

= Imaginary part of 2
2

1

D 4 D – 4 + 4
i xe x

i�
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= Imaginary part of 2
2

1

D
4 D 1+

4 D

i xe x

i
i

� �
� �
� �	 


= Imaginary part of 
12 D

1
4 D 4

i xe i
x

i

�� �
�� �	 


= Imaginary part of 
2 1 D

1
4 D 4

i xi e i
x

� � �
 �� �� �

= Imaginary part of 
2 1

4 D 4

i xi e i
x

� � �
 
 �� �� �

= Imaginary part of 
� � 2cos 2 sin 2

4 2 4

i x i x x ix� �� �

 �� �� �

= – 
2

cos 2 sin 2
8 16

x x
x x�

C.S. is y = C.F. + P.I.

= 
2

1 2cos 2 sin 2 cos 2 sin 2
8 16

x x
c x c x x x� � � .

Example 6. Solve : 
2

x
2

d y dy
– 2 y xe sin x

dxdx
� � .

(P.T.U., Dec. 2003, Jan. 2010, Dec. 2010, May 2011, Dec. 2012)

Sol. Given equation in symbolic form is  (D2 – 2D + 1) y = x ex sin x

A.E. is  D2 – 2D + 1 = 0   or  (D – 1)2 = 0 \ D = 1, 1
C.F. = (c1 + c2 x) ex

P.I. = 
2 2

1 1
. sin . sin

(D 1) (D 1 1)
x xe x x e x x�

� � �

= 
2

1 1
sin sin

DD
x xe x x e x x dx� �

Integrating by parts = � �
1 1

( cos ) 1( cos ) cos sin
D D

x xe x x x dx e x x x� � �� �� ��� � � � �

= � �( cos sin ) sin 1 .sin cosx xe x x x dx e x x x dx x� �� � � � � �� 		 	
= � � � �– sin – cos – cos – sin 2cos� �x xe x x x x e x x x

Hence the C.S. is y = (c1 + c2 x) ex – ex (x sin x + 2 cos x).

Example 7. Solve : 
2

2

d y dy
2 + y

dxdx
�  = ex sin x. (P.T.U., May 2006, Dec. 2011)

Sol.
2

2
2

d y dy
y

dxdx
� �  = ex sin x

S.F. is (D2 – 2D + 1) y = ex sin x
A.E. is m2 – 2m + 1 = 0 i.e., m = 1, 1.

C.F. is (c1 + c2x) ex
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P.I. = 2

1
sin

D 2D 1
xe x

� �
 = 
� �

2

1
sin

D – 1

xe x

=
� �

2

1
sin

D + 1 – 1

xe x  = 
2

1
. sin

D
xe x

Put D2 = – 1

=
sin

sin
1

x xx
e e x� �

�

\ C.S. is y = C.F. + P.I.

y = (c1 + c2x) ex – ex sin x = ex [c1 + c2x – sin x].

Example 8. Solve the differential equation  (D4 + D2 + 1) y = 
x

2 3
e cos x

2

� � �
� �� �

. (P.T.U., May 2004)

Sol. (D4 + D2 + 1) y = 2 3
cos

2

� � �
� �� �

x

e x

A.E. is   m4 + m2 + 1 = 0

m2 = 
1 1 4 1 3

2 2 2
i

� � �
� � �

m2 = 
2 2

cos sin
3 3

i
# #

   and cos 

2 2
sin

3 3
i

# #
�

i.e., m2 = 
2

cis
3

�
and

2
cis

3

�� ��� �� �

when m2 = cis 
2

3

#

then m = 

1

22
cis 2

3
k

� � �� �� �� �� �� �� 	

m = 

2
2 +

3cis , 0, 1
2

k
k

�
�

�

m = 
2 8 4

cis , cis cis , cis
6 6 3 3

# # # #
�

i.e., two values of m corresponding to 
4 1 3 1 3

cis , cis are ,
3 3 2 2 2 2

i i
� �

� � �

Other two values are obtained by changing  i  to – i.
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� Four values of m  are  
1 3 1 3

,
2 2 2 2

i i� � �

C.F. = 
1 1

2 2
1 2 3 4

3 3 3 3
cos sin cos sin

2 2 2 2

�� � � �
� � �� � � �� � � �

x x
e c x c x e c x c x

P.I. = 2
4 2

1 3
cos

2D D 1

� � �
� �� � � �

x

e x

= 2
4 2

1 3
cos

21 1
D D 1

2 2

�  �
� �� � �  �� 
 � 
� � � �� � � �

x

e x [Using art. 2.7 Case IV]

= 2

4 3 2

1 3
cos

5 3 21 2D 2D D D
2 2 16

�  �
� �� �� 
 � 


x

e x

Put D2 = 
3

4
�

= 2 1
9 3 15 3 21

D D
16 2 8 2 16

x

e
�


 � � 


3
cos

2
x

 �
� �� �

= 
–

2
1

0

x

e
3

cos
2

x
� �
� �� �

      i.e., case of failure

= 2

3 2

3
cos

3 24D 6D 5D
2

x
x

e x
�  �

� �� �� 
 �

Put D2 = 
3

4
�

 = 2 3
cos

9 3 23D 5D
2 2

�  �
� �� �� 
 
 �

x
x

e x

= 2 2
2

1 3 2D 3 3
cos cos

2D 3 2 24D 9

� �� � �
�� �� �� �

x x

x e x x e x

= 
2

2
(2D 3) 3 3 3 3

cos . 2. sin 3cos
12 2 12 2 2 2

�
� � �� � � �� � �� 	

� � �� 


x
x

x e
x e x x x
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= 
2 3 3

3 sin 3cos
12 2 2

�
� �

�� �
� �� 	

x

x e
x x

 C.S. is  y = C.F. + P.I.

y = 2 2
1 2 3 4

3 3 3 3
cos sin cos sin

2 2 2 2

�� � � �
� � �� � � �� � � �

x x

e c x c x e c x c x

2 3 3
. 3 sin 3cos

12 2 2

�
� �

� �� �
� �� 	

x

x e
x x .

Example 9. Solve : (D2 – 6D + 13) y = 8e3x sin 4x + 2x. (P.T.U., Dec. 2005)

Sol. A.E. is D2 – 6D + 13 = 0

D = 
6 36 12

2

� �
 = 3 ± 2i

C.F. = e3x (c1 cos 2x + c2 sin 2x)

P.I. = 
1

D 6D 132 � �
 (8e3x sin 4x + 2x)

= 8 
1

D 6D 132 � �
 e3x sin 4x + 

1

D 6D 132 � �
 2x

= 8e3x 
1

D 3 6 D 3 13
2� � � �� � � �

 sin 4x + 
1

D 6D 132 � �
e

xlog 2

= 8e3x 
1

D 42 �
 sin 4x + 

1

D 6D 132 � �
 ex log 2

(Put D2 = – 16) (Put D = log 2)

= 8e3x . 
1

16 4� �
 sin 4x + 

� �
2

1

log 2 6 log 2 13� �
 ex log 2

= 
8

12

3e x

�
 sin 4x + 

1

2 6 2 13
2

2
log log� � � �

x

C.S. is y = e3x (c1 cos 2x + c2 sin 2x) – 
2

3
4

1

2 6 2 13
23

2
e xx xsin

log log
�

� �� �
.

Example 10. Solve : (D2 + 2D + 2) y = e–x sec x. (P.T.U., Dec. 2002)

Sol. A.E. is D2 + 2D + 2 = 0

D = 
� � �2 4 8

2
 = 

� �2 2

2

i
 = – 1 ± i

C.F. = e–x [c1 cos x + c2 sin x]
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P.I. = 
2

1

D 2D 2
 

 e–x sec x = e–x 

� � � �
2

1

D 1 2 D 1 2� � � �
 sec x

= e–x 
2

1

D 1

 sec x = e–x 

� � � �
1

sec
D + D –

x
i i

= 

1 1
2 2

sec
D – D +

x i i
e x

i i
�

� �
� �
� ��
� �
� �� 	

[By Partial fractions]

= 
1 1

sec
2 D – D +

xe
x

i i i

� � �
�� �

� 	

Now,
1

D – i
xsec = e e x dxix ix�� sec  = � �

1
cos sin

cos
ixe x i x dx

x
��

= � �1 tanixe i x dx��  = � �log cosixe x i x�

Similarly,
1

sec
D +

x
i

= e–ix [x – i log cos x]

\ P.I. = 
2

xe

i

�

 [eix (x + i log cos x) – e–ix (x – i log cos x)]

= 
2

xe

i

�

 [x (eix – e–ix) + i log cos x (eix + e–ix)]

= 
2

xe

i

�

 [x ◊ 2i sin x + i log cos x ◊ 2 cos x] = e–x (x sin x + cos x log cos x)

C.S. is y = e–x [c1 cos x + c2 sin x + x sin x + cos x log cos x].

Example 11. Solve : 
2

2

d y dy
+ 3 + 2 y

dxdx
 = 

xee . (P.T.U., Dec. 2003, 2012)

Sol. 
2

2
3 2

d y dy
y

dxdx
� �  = 

xee

S.F. is (D2 + 3D + 2) y = 
xee

A.E. is m2 + 3m + 2 = 0 \ m = – 1, – 2

C.F. is c1 e–x + c2 e–2x

P.I. =
� � � �2

1 1

D + 1 D + 2D 3D + 2

x xe ee e�



=
1 1

D + 1 D + 2

xee
� �

�� �
� 	

[By Partial fractions]
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=
1 1

D + 1 D + 2

x xe ee e�

= 2 2.
x xx x e x x ee e e dx e e e dx� ��  � 

1
X

D – a
 = Xax axe e dx�

Put ex = t \ ex dx = dt

= 2x t x te e dt e t e dt� ��   = e–x et – e–2x (t – 1) et

= e–x eex

 – e–2x (ex – 1) 
xee

= eex

 [e–x – e–x + e–2x] = e–2x 
xee .

Example 12. Solve : (D2 – 4D + 4) y = 8x2 e2x sin 2x. (P.T.U., May 2002)

Sol. (D2 – 4D + 4) y = 8x2 e2x sin 2x

A.E. is m2 – 4m + 4 = 0 or (m – 2)2 = 0 \ m = 2, 2

\ C.F. = (c1 + c2x) e2x

P.I. = 2 2
2

1
8 sin 2

D 4D + 4
xx e x

�
 = 
� �

2 2
2

1
8 sin 2

D 2

xx e x
�

  =
� �

2 2
2

1
8 . sin 2

D + 2 2

xe x x
� �
� �
� ��� �

 = 2 2
2

1
8 . sin 2

D
xe x x

= 2 21
8 sin 2

D
xe x x dx� �  Integrate by parts

= � � � �2 21 cos 2 sin 2 cos 2
8 2 2

D 2 4 8
x x x x

e x x
� �� � � � � �� � � � � �� 	� � � � � �� � � � � �� 


= 
2

2 1 cos 2 sin 2 cos 2
8

D 2 2 4
x x x x x x

e
� �� �� � � �� �
� �� �

= 2 2 cos 2
4 cos 2 sin 2

2
x x

e x x x x dx
� �� � �� �� �	  Integrate by parts

= � � � � � �2 2 sin 2 cos 2 sin 2 cos 2 sin 2 sin 2
4 2 2 1

2 4 8 2 4 4
x x x x x x x

e x x x
� �
 ��  �  �  �  � � � � 
 � 
 � � � 
� �� �� � � � � � � � � �� � � � � � � � � �� �� �� �

= 2 2 sin 2 sin 2 sin 2
2 sin 2 cos 2 cos 2

2 2 2
x x x x

e x x x x x x
� �� � � � � �� �� �

= 2 2 3
2 sin 2 2 cos 2 sin 2

2
xe x x x x x
� �� � �� �� �

= – e2x [(2x2 – 3) sin 2x + 4x cos 2x]

C.S. is y = (c1 + c2 x) e2x – e2x [(2x2 – 3) sin 2x + 4x cos 2x].
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Example 13. Solve : (D3 + 2D2 + D) y = x2 ex + sin2 x. (P.T.U., June 2003)
Sol. A.E. is m3 + 2m2 + m = 0

 m (m2 + 2m + 1) = 0 or m (m + 1)2 = 0 or m = 0, – 1, – 1

C.F. = c1 e0x + (c2 + c3 x) e–x = c1 + (c2 + c3 x) e–x

P.I. = � �2 2
3 2

1
sin

D 2D D
xx e x



 

 = 

2
3 2

1 1 cos 2

2D 2D D
x x

x e
�� ��� �� �� �

= 2
3 2 3 2 3 2

1 1 1 1 1
cos 2

2 2D 2D D D 2D D D 2D D
xx e x

� � � �� �� � � �� � � �� � � � � �

=
� � � � � �

2 0.
3 2 3 2 3 2

1 1 1 1 1
. . cos 2

2 2D 2D D D 2D DD + 1 2 D + 1 D + 1

x xe x e x� �
� � � �� �

(Put D = 0; Case of failure) (Put D2 = - 4)

= 2 0.
3 2 2

1 1 1 1
. cos 2

2 2 4D – 8 + DD 5D 8D + 4 3D 4D + 1
x xx

e x e x
 �
�
 
 


(Put D = 0)

=

12 3
28D + 5D D 1 1

1 . cos 2
4 4 2 2 3D + 8

xe x
x x

�
� �



 
 
� �
� �� �

=
� �

22 3 2 3
2

2

8D + 5D D 8D + 5D D 3D – 8
1 cos 2

4 4 4 2 2 9D 64

xe x
x x

� �� �� �� �� � � �� �� �� � �� �

=
� �

2
2 28D 5D 3D – 8

1 4D cos 2
4 4 4 2 2 36 64

xe x
x x

� �
� � � � �� �

� �� �� �

= � � � � � �2 8 11 1
2 2 3 2 sin 2 8 cos 2

4 4 4 2 200
� � � �� � � � � �� � � �� �

xe x
x x x x

= 2 11 3 cos 2
4 sin 2

4 2 2 100 25
� �� � � � �� �� �

xe x x
x x x

C.S. y = c1 + (c2 + c3 x) e–x + 2 11 3
4 sin 2

4 2 2 100
� �� 
 
 
� �� �

xe x
x x x  + 

cos 2

25

x

which is the required solution.

�
�������������
��


Solve the following differential equations :

 1.
3

3
3 5 xd y

y e
dx

� � � 2. � �
2 2

2
4 1 xd y

y e
dx

� � �

 3.
2

2
4 5 2cosh

d y dy
y x

dxdx
� � � � 4. (a) 

2

2
2 5 sin 3

d y dy
y x

dxdx
� � �

(b) (D2 + a2) y = sin ax (P.T.U., May 2009)

 5.
3 2

3 2
sin 2

d y d y dy
y x

dxdx dx
� � � � 6.

3
2

3
sin3 cos

2

d y x
y x

dx
� � �
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 7. � �2D 4D 3 sin3 cos2y x x� � � (P.T.U., Jan. 2009)

 8. (D2 – 3D + 2) y = 6e– 3x + sin 2x  9.
2

2
4 sin 2xd y

y e x
dx

� � �

10.
3 2

2
3 2

2 4 sin 2xd y d y dy
e x

dxdx dx
� � � � 11.

2
2

2
4

d y
y x

dx
� �

12.
3 2

2
3 2

6 1
d y d y dy

x
dxdx dx

� � � � 13.
2

2
2

2 4
d y dy

x x
dxdx

� � � �

14.
2

2 3
2

cosh 2xd y
y e x x

dx
� � � � 15. � �2D 3D 2 2 cos

2
x x

y e� � � (P.T.U., Dec. 2003)

 2 2 2

1 1 1
P.I. 2 cos 2 2 cos

2 2D 3D 2 (D + 1) 3(D +1) + 2 D D

� �
� � �� �

� � � �� �� �
x x xx x

e e eHint:

16.
2

3
2

3 2 sin 2xd y dy
y xe x

dxdx
� � � � 17.

4

4
cosxd y

y e x
dx

� �

18. (D2 – 2D) y = ex sin x 19. (D2 + 4D + 8) y = 12 e– 2x sin x sin 3x

20.
2

2 3
2

2 cos2x xd y
y x e e x

dx
� � � 21.

2

2 cosec
d y

y x
dx

� �

22. (D – 1)2 (D + 1)2 y = 2sin
2

xx
e x� � 23.

2

2
4 sinh� �

d y
y x x

dx
(P.T.U., May 2012)

24. (D2 – 1) y = x sin x + (1 + x2) ex 25.
2

2
4 4tan 2

d y
y x

dx
� �

����
��

 1.
1

2
1 2 3

3 3 5
cos sin 3

2 2 2

xx xy c e e c x c x e� 	 

� � � � �� � �

 2. 2 2 2
1 2

1 2 1

4 3 4
x x x xy c e c e e xe�� � � � �

 3. � �2
1 2

1 1
cos sin

10 2
x x xy e c x c x e e� �� � � �

 4. (a) � � � �1 2
1

cos2 sin 2 3cos3 2sin 3
26

xy e c x c x x x� � � �

(b) 1 2
cos

cos sin
2

x ax
y c ax c ax

a
� � �

 5. � �1 2 3
1

cos sin 2cos2 sin 2
15

xy c e c x c x x x�� � � � �

 6. � �
1

2
1 2 3

3 3 1 1 1
cos sin sin3 27cos3 (cos sin )

2 2 730 2 4

x
xy c e e c x c x x x x x� � �

� � � � � � � �� �� �

 7. 3
1 2

1 1
(10cos5 11sin5 ) (sin 2cos )

884 20
x xy c e c e x x x x� � � � � �

 8. 2 3
1 2

3 1
(3cos2 sin 2 )

10 20
x x xy c e c e e x x�� � � � �

 9. 1 2
1

cos2 sin 2 cos2
5 4

x x
y c x c x e x� � � �

10. � � � �2
1 2 3

1
cos 3 sin 3 sin 2

8
x xy c e c x c x e x� � � � �



82 A TEXTBOOK OF ENGINEERING MATHEMATICS

11.
2 2 2

1 2
1 1

4 2
x xy c e c e x� 	 
� � � �� � �

12.
2

3 2 3
1 2 3

1 25

18 2 6
x x x

y c c e c e x x� 	 

� � � � � �� � �

13.
3

1 2 4
3

x x
y c c e x�� � � �

14. 2 3
1 2

1 1
cos sin cosh 2 6

5 5
xy c x c x e x x x� � � � � �

15. 2
1 2

8
2sin cos

5 2 2
x x x x x

y c e c e e
	 
� � � �� � �

16. 2 3
1 2

1 1
(2 3) (3cos2 sin 2 )

4 20
x x xy c e c e e x x x� � � � � �

17. 1 2 3 4
1

cos sin cos
5

x x xy c e c e c x c x e x�� � � � �

18. 2
1 2

1
sin

2
x xy c c e e x� � �

19. � � � �2 2
1 2

1
cos2 sin 2 3 sin 2 cos4

2
x xy e c x c x e x x x� �� � � �

20. � �
3

2
1 2

12 50
cos 2 sin 2 4sin 2 cos 2

11 11 121 17

x xe e
y c x c x x x x x

� �� � � � � � �� �� �

21. 1 2cos sin sin log sin cosy c x c x x x x x� � � �

22. � � � �
2

1 2 3 4
1 1

cos
2 8 8

x x xx
y c c x e c c x e x e x�� � � � � � � �

23. 2 2
1 2

2
sinh cosh

3 9
x x x

c e c e x x�� � �

24. � � � �2
1 2

1 1
sin cos 2 3 9

2 12
x x xy c e c e x x x xe x x�� � � � � � �

25. y = c1 cos 2x + c2 sin 2x – cos 2x log (sec 2x + tan 2x).

��%������������ ��	��	�
������������������	
����	� (P.T.U., May 2004)

Consider the linear equation of second order with constant coefficients
2

1 22
X

d y dy
a a y

dxdx
� � � …(1)

Let its C.F. be  y = c1 y1 + c2 y2 so that  y1  and  y2  satisfy the equation

2

1 22
0

d y dy
a a y

dxdx
� � � …(2)

Now, let us assume that the P.I. of (1) is  y = uy1 + vy2, where u and v  are unknown functions of x. …(3)
Differentiating (3) w.r.t. x,  we have   y¢ = uy1¢ + v y2¢ + u¢ y1 + v¢y2 = uy1¢ + vy2¢ …(4)

assuming that  u, v  satisfy the equation   u¢ y1 + v¢ y2 = 0 …(5)
Differentiating (4) w.r.t. x,  we have   y¢¢ = uy1¢¢ + u¢ y1¢ + vy2¢¢ + v¢ y2¢
Substituting the values of  y,  y¢  and  y¢¢  in (1),  we get

(uy1¢¢ + u¢ y1¢ + vy2¢¢ + v¢ y2¢) + a1 (uy1¢ + vy2¢) + a2 (uy1 + vy1) = X
or u (y1¢¢ + a1 y1¢ + a2 y1) + v (y2¢¢ + a1 y2¢ + a2 y2) + u¢ y1¢ + v¢ y2¢ = X
or u¢ y1¢ + v¢ y2¢ = X Since  y1  and  y2  satisfy (2). …(6)
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Solving (5) and (6),  we get u¢ = 
2 1 2 2

2 1 2

0 X

W

y y y y

X y y y
$ � �

� � �

and v¢ = 
1 1 2 1

1 1 2

0 X

WX

y y y y

y y y
$ �

� � �

where W = 
1 2

1 2

y y

y y! !
 is called the Wronskian of  y1 ,  y2.

Integrating u = 2 1X X
,

W W

y y
dx v dx� �� �

Substituting in (3),  the P.I. is known.
Note 1.  As the solution is obtained by varying the arbitrary constants c1, c2 of the C.F., the method is known as
variation of parameters.

Note 2.  Method of variation of parameters is to be used if instructed to do so.

����������	
�
����
�

Example 1. Find the general solution of the equation y¢¢ + 16y = 32 sec 2x ; using method of variation of
parameters. (P.T.U., May 2008, 2010)

Sol. Given equation in symbolic form is (D2 + 16) y = 32 sec 2x

A.E. is D2 + 16 = 0 \ D = ± 4i
C.F. is y = c

1
 cos 4x + c

2
 sin 4x

Here y
1

= cos 4x, y
2
 = sin 4x, X = 32 sec 2x

W = 1 2

1 2

cos 4 sin 4

4 sin 4 4 cos 4

y y x x

y y x x
�

! ! �
 = 4

P.I. = uy
1
 + vy

2
 where u = – 2 X

W

y
�  dx and v = 1 X

W

y
�

\ P.I. = – 
sin 4 32 sec 2 cos 4 32 sec 2

cos 4 sin 4
4 4

x x x x
x dx x dx

� �
�� �

= –
21 2 cos 2 1

8 cos 4 2 sin 2 cos 2 8 sin 4
cos 2 cos 2

x
x x x dx x dx

x x

�
� �� �

= � �16 cos 4 sin 2 8 sin 4 2 cos 2 sec 2x x dx x x x dx� � �� �
= 

� �log sec 2 tan 2cos 2 2 sin 2
16 cos 4 8 sin 4

2 2 2

x xx x
x x

� �
� �� � 
 �� �� �� � � �� �
= 8 cos 4x cos 2x + 8 sin 4x sin 2x – 4 sin 4x log (sec 2x + tan 2x)
= 8 cos (4x – 2x) – 4 sin 4x log (sec 2x + tan 2x)
= 8 cos 2x – 4 sin 4x log (sec 2x + tan 2x)

\ C.S. is y = C.F. + P.I.
= c

1
 cos 4x + c

2
 sin 4x + 8 cos 2x – 4 sin 4x log (sec 2x + tan 2x).

Example 2. Solve: y¢¢  – 6y¢ + 9y = 
3x

2

e

x
 by variation of parameter method.

(P.T.U., May 2010, 2012, Dec. 2012, 2013)
Sol. Equation in the symbolic form is

(D2 – 6D + 9) y =
3

2

xe

x
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A.E. is D2 – 6D + 9 = 0 i.e., (D – 3)2 = 0 i.e., D = 3, 3
C.F. = (c1 + c2 x) e3x = c1 e

3x + c2 x e3x = c1 y1 + c2 y2, where y1 = e3x, y2 = x e3x

and X =
3

2

xe

x

W = 1 2

1 2

y y

y y! !
 = 

� �

3 3

3 33 1 3

x x

x x

e x e

e x e

 = e6x

P.I. = uy1 + vy2, where u = – 2 X

W

y
dx�  and v = 1 X

W

y
dx�

\ P.I. = – e3x 
3 3 3 3

3
6 2 6 2

x x x x
x

x x

x e e e e
dx x e dx

e x e x

� �
�

� �� �  = – 3 3
2

1 1x xe dx x e dx
x x


� �

= � �3 3 31
log 1 logx x xe x x e e x

x

� �� � � � � �� �� �

C.S. is y = (c1 + c2 x)2 e3x – e3x (1 + log x)

= e3x [c1 + c2 x – 1 – log x] = e3x [(c1 – 1) + c2 x – log x]

= e3x � � �c c x x1 2 log , where �c1  = c1 – 1 is the required solution.

Example 3. Solve by method of variation of parameters the differential equation

2
x

2

d y dy
3 2y sin ( e )

dxdx
� � � . (P.T.U., May 2012)

Sol. Equation in symbolic form is

(D2 + 3D + 2)y = sin ex

A.E. is D2 + 3D + 2 = 0
(D + 1) (D + 2) = 0

D = – 1, D = – 2
C.F. = c1 e

–x + c2 e
–2x

= c1 y1 + c2 y2

where y1 = e–x, y2 = e–2x, X = sin ex

W =
2

1 2

2
1 2 2

x x

x x

y y e e

y y e e

� �

� �
�

! ! � �
= –2e–3x + e–3x = – e–3x

P.I. = uy1 + vy2, where u = 2X

W

y
dx� �  and v = 1X

W

y
dx�

\ P.I. =
2

2
3 3

sin sinx x x x
x x

x x

e e e e
e dx e dx

e e

� �
� �

� �� �
� �� �

= 2 2sin sinx x x x x xe e e dx e e e dx� ��� �
Put  ex = t \ ex dx = dt

= 2sin sinx xe t dt e t t dt� ��� �
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= � � � �2cos ( cos ) (1) (sin )x xe t e t t t� �� � � �

= � �2cos cos sinx x x x x xe e e e e e� �� 
 


= 2cos cos sinx x x x x xe e e e e e� � �� � �

= 2 sinx xe e�

C.S. is y = 2 2
1 2 sinx x x xc e c e e e� � �� �

Example 4. Solve the differential equation (D2 + 1)y = cosec x cot x. (P.T.U., May 2011)
Sol. Given differential equation is

(D2 + 1)y = cosec x cot x
A.E. is D2 + 1 = 0 \ D = ± i

C.F. = c
1
 cos x + c

2
 sin x = c

1
 y

1
 + c

2
 y

2

where y1 = cos x, y2 = sin x
and X = cosec x cot x

W = 1 2

1 2

y y

y y! !
 = 

cos sin
1

sin cos
�

�
x x

x x

P.I. = uy
1
 + vy

2

where u = 2 X

W
� � y

dx  and v = 1 X

W�
y

dx

\ u = – 
sin . cosec cot

1�
x x x

dx  =  – cot log sin� �� x dx x

v =
cos . cosec cot

1�
x x x

dx  = 2 2cot (cosec 1)� �� �x dx x dx

= – cot x – x = – (cot x + x)
\ P.I. = {log |sin x|} cos x – (cot x + x) sin x

 C.S. is y = C1 cos x + C2 sin x + {log |sin x|} cos x – cot x sin x – x sin x
= C

1
 cos x + C

2
 sin x + {log |sin x|} cos x – cos x – x sin x

= (C
1
 – 1) cos x + C

2
 sin x + {log | sin x|} cos x – x sin x

= 1C�  cos x + C
2
 sin x + {log | sin x |} cos x – x sin x

where 1C �  = C
1
 – 1

�
�������������
��


Solve by the method of variation of parameters :

1.
2

2
cosec

d y
y x

dx
� � 2.

2

2
4 tan 2

d y
y x

dx
� � (P.T.U., Dec. 2010)

3.
2

2
4 sec2

d y
y x

dx
� � (P.T.U., May 2004) 4.

2
2

2
4 4 sec 2� �

d y
y x

dx
(P.T.U., Jan. 2009)

[Hint: Consult S.E. 1]

5.
2

2
sin

d y
y x x

dx
� � 6. y¢¢ – 2y¢ + 2y = ex tan x.

7.
2

2 sec
d y

y x
dx

� � (P.T.U., Dec. 2003, 2005)
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����
��

1. y = c1 cos x + c2 sin x – x cos x + sin x log sin x

2. y = c1 cos 2x + c2 sin 2x – 
1

cos 2 log (sec 2 tan 2 )
4

�x x x

3. y = c1 cos 2x + c2 sin 2x + 
1

4
 cos 2x log cos 2x + 

2

x
 sin 2x

4. y = c1 cos 2x + c2 sin 2x – 1 + sin 2x log (sec 2x + tan 2x)

5.
2

1 2cos sin sin cos
2 4

x x
y c x c x x x� � � �

6. � �1 2cos sin cos log(sec tan )x xy e c x c x e x x x� � � �

7. y = c1 cos x + c2 sin x + cos x log cos x + x sin x

����	�
�����	
�����	�����
�	��������	�
�#	��� ��	�&�����'���	�	�
�

���(�����������������

Consider a linear equation of second order with variable coefficients
2

2
P Q R

d y dy
y

dxdx
� �  = S, where P, Q, R, S are functions of x …(1)

writing D for 
d

dx
, (1) becomes

PD2y + QDy + Ry = S

or  (PD2 + QD + R)y = S …(2)

Sometimes it will be possible to factorise the left hand side into two linear operators acting on y. In such a
case the equation is integrated in two stages we illustrate the method by the following examples.

Important Remarks. Note that the factors are non-commutative as these involve functions of x directly.
Hence care should be taken while using the factorised operators in the correct order

e.g., (D – 1) (xD + 1) π (xD + 1) (D – 1)

(D – 1) (xD + 1) = D (xD + 1) – xD – 1

= D (xD) + D – xD – 1

= xD2 + 1D + D – xD – 1

= xD2 + (2 – x) D – 1

But (xD + 1) (D – 1) = xD (D – 1) + D – 1

= xD2 – xD + D – 1

= xD2 + (1 – x) D –1

π (D – 1) (xD + 1)

Example 1. Solve: ( )
2

2
d y dy

x x 2 2y
dxdx

� � �  = x3.

Sol. In symbolic form equation is

[xD2 + (x – 2) D – 2] y = x3 …(1)
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Now, xD2 + (x – 2) D – 2 = xD2 + xD – 2D – 2

= xD (D + 1) – 2 (D + 1)

= (xD – 2) (D + 1)

\ (1) becomes (xD – 2) (D + 1) y = x3 …(2)

Let (D + 1) y = v …(3)

\ (2) becomes (xD – 2) v = x3

or 2
dv

x v
dx

�  = x3

or
2dv

v
dx x

�  = x2 …(4)

which is a linear equation in x and v

Its I.F. =
2

2
2 log 2 log 2

2

1dx x xxe e e x
x

�� � �� � � ��

\ Solution of (4) is
2

1
v

x
�  = 2

12

1
Cx dx

x

�

= x + C1

\ v = x3 + C1x2

Substituting the value of v in (3)

(D + 1) y = x3 + C1x2

dy
y

dx

  = x3 + C1x2; again a linear differential equation

I.F. =
1 dx

e�  = ex

\ Solution in y ex = 3 2
1 2( C ) Cxe x x dx� ��

Integrate by parts (Chain rule)

\ y ex = (x3 + C1x2) (ex) – (3x2 + 2C1x) (ex) + (6x + 2C1) ex – (6) ex + C2

\ y = x3 + C1x2 – 3x2 – 2C1x + 6x + 2C1 – 6 + C2 e– x

= x3 + (C1 – 3) x2 – 2 (C1 – 3) x + 2 (C1 – 3) + C2 e– x

or y = x3 + C¢ x2 – 2C¢ x + 2C¢ + C2 e– x , where C1 – 3 = C¢

Example 2. Factorise the operator on the LHS of [(x + 2) D2 – (2x + 5) D + 2] y = (x + 1) ex and hence
solve.

Sol. (x + 2) D2 – (2x + 5) D + 2 = (x + 2) D2 – (2x + 4 + 1) D + 2

= (x + 2) D2 – 2 (x + 2) D – (D – 2)

= (x + 2) D (D – 2) – (D – 2)

= [(x + 2) D – 1] [D – 2]

\ Given equation is

[(x + 2) D – 1] [D – 2] y = (x + 1) ex …(1)

Let (D – 2) y = v …(2)

\ (1) becomes [(x + 2) D – 1] v = (x + 1) ex …(3)

or ( 2)
dv

x v
dx

� �  = (x + 1) ex



88 A TEXTBOOK OF ENGINEERING MATHEMATICS

or
1

2

dv
v

dx x
�

�
 =

1

2
xx

e
x

�
�

…(4)

which is a linear differential equation

I.F. =
1

1
log ( 2) log ( 2) 12 1

( 2)
2

dx
x xxe e e x

x

��
� � � �� � � � � �

�

�

\ Solution of (4) is

1

2
v

x
�

�
 = 1

1 1
C

2 2
xx

e dx
x x

�
� �

� ��  = 12

1
C

( 2)
xx

e dx
x

�
�

��

= 12

2 1
C

( 2)
xx

e dx
x

� �
�

��  = 12

1 1
C

2 ( 2)
xe dx

x x

� �
� �� �

� �� �	 
�
= 1

1
C

2
xe

x
�

�
� �Using ( ) ( ) ( )x xf x f x e dx f x e� �� ��� �� ��

i.e., v = ex + C1 (x + 2)

From (2), (D – 2) y = ex + C1 (x + 2)

or 2
dy

y
dx

�  = ex + C1 (x + 2), which is again linear in x and y

I.F. = e– 2x

Solution is y e –2x = 2
1 1 2( C 2C ) Cx xe e x dx� � � ��

= � �2 2
1 1 2C 2C Cx x xe x e e dx� � �� � ��

=
2 2 2

1 1 22
C (1) 2C C

1 2 2( 2)

x x x xe e e e
x

� � � �� � �
� � � �� �� �� � ��� �� �� �

= 2 2 21
1 1 2

C1
C C C

2 4
x x x xe x e e e� � � �� � � � �

\ y = 21
1 2

C 5
C C

2 4
x xe x e

� �
� � � � �� �� �

= 21
2

C
(2 5) C

4
x xe x e� � � �

Example 3. Solve: 3x2 y≤ + (2 – 6x2) y¢ – 4y = 0.
Sol. Symbolic form of the given equation is

[3x2 D2 + (2 – 6x2) D – 4] y = 0 …(1)
Now, 3x2D2 + (2 – 6x2) D – 4 = (3x2 D2 – 6x2 D) + (2D – 4)

= 3x2 D (D – 2) + 2 (D – 2)

= (3x2 D + 2) (D – 2)
\ (1) is (3x2 D + 2) (D – 2) y = 0 …(2)
Let (D – 2) y = v …(3)

\ From (2) (3x2 D + 2) v = 0

or 23 2
dv

x v
dx

�  = 0
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Separate the variables

1
dv

v
 =

2
2

3
dx

x
�

Integrate both sides,

log v =
1

1
2

C
3 1

x�
� �

�

or log v = 1
2

C
3x

�

or v = 1 1

2 2
C C3 3

1 1C , where Cx xe e e e� �� �

Substitute the value of v in (3)

(D – 2) y =
2

3
1C xe

or 2
dy

y
dx

�  =
2

3
1C xe , which is a linear differential equation

\ I.F. =
2dx

e
��  = e– 2x

Solution is y e– 2x =
2

2 3
1 2.C Cx xe e dx� ��

or y e– 2x =
2

2 3
1 2C . Cx xe e dx� ��

or y =
2

2 2 23
1 2C . Cx x xxe e e dx e� ��

�
�������������
��


Solve the following equations:

1. y≤ + (1 – x) y¢ – y = ex 2. xy≤ + (x – 1) y¢ – y = x2

3. [(x + 3) D2 – (2x + 7) D + 2] y = (x + 3)2 ex 4. x2y≤ + y¢ – (1 + x2) y = e– x

[Hint: [(x + 3) D – 1] [D – 2] y = (x + 3)2 ex]

5. (x + 1) y≤ + (x – 1) y¢ – 2y = 0 6. xy≤ + (x – 1) y¢ – y = 0

����
��

1. y = 1 2
1

C C logx x x xe e dx e e x
x

� � �� 2. y = C1 (x – 1) + C2 e– x + x2

3. y = C1 e2x + C2 (2x + 7) – ex (x + 4) 4. y = 
1

2

1 2
1

C C
2

x
x x xxe e dx e e

� � �� ��
5. y = C1 (x2 + 1) + C2 e– x 6. y = C1 (x – 1) + C2 e– x
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������������)�������
�����	
���������	�
 (P.T.U., Dec. 2004)

An equation of the form 
1 2

1 2
1 2 11 2

........... Xn
n n n

n n
n nn n n

d y d d y dy
x a x a x a x a y

dxdx dx dx

� �
� �

�� �� � � � � � …(1)

where ai’ s are constant and X is a function of x, is called Cauchy ’s homogeneous linear equation.
Such equation can be reduced to linear differential equations with constant coefficients by the substitution

x = ez i.e., z = log x.

so that
dy

dx
= 

1dy dz dy

dz dx dz x
� � �  or 

dy
x

dx
 = D

dy
y

dz
� , where D = 

d

dz

2

2

d y

dx
= 

2

2 2

1 1 1d dy dy d y dz

dx x dz dz x dxx dz

 �� � � � � �� �� �

= 
2

2 2 2

1 1dy d y

dzx x dz
� �

1� ��� �� �
�

dz

dx x

or
2

2
2

d y
x

dx
= 

2
2

2
D D D(D 1)� � � � �

d y dy
y y y

dzdz

Similarly,
3

3
3

d y
x

dx
= D (D – 1) (D – 2)y  and so on.

Substituting these values in equation (1), we get a linear differential equation with constant coefficients,
which can be solved by the methods already discussed.

����������	
�
����
�

Example 1. Obtain the general solution of the equation 
2

2
2

d y dy
2x + x 6y = 0

dxdx
� . (P.T.U., Dec. 2013)

Sol. 
2

2
2

2 6
d y dy

x x y
dxdx

� � = 0 ...(1)

It is Cauchy’s homogeneous linear differential equation
Put x = ez \ z =  log x

x 
dy

dx
 = Dy; x2 

2

2

d y

dx
 = D (D – 1) y, where D = 

d
dz

Equation (1) becomes
2D (D – 1) y + Dy – 6y = 0

or (2D2 – D – 6) y = 0
A.E. is 2D2 – D – 6 = 0

(D – 2) (2D + 3) = 0

i.e., D = 2, D = 
3

2
�

Solution is y = c1 e
2z + c2 

3
2

z
e

�
 = c1x

2 + c2x–3/2.

Example 2. Solve  
3 2

3 2
3 2

d y d y
x + 2x + 2y

dx dx
 = 

1
10 x +

x
� �
� �� �

. (P.T.U., June 2003, May 2009, Dec. 2012)

Sol. Given equation is Cauchy’s homogeneous linear equation

Put x = ez      i.e., z = log x



LINEAR ORDINARY DIFFERENTIAL EQUATIONS OF SECOND AND HIGHER ORDER 91

so that
dy

x
dx

= Dy,
2

2
2

D(D –1)�
d y

x y
dx

3
3

3
d y

x
dx

= D (D – 1)(D – 2)y,  where D = 
d
dz

Substituting these values in the given equation, it reduces to

[D (D – 1) (D – 2) + 2D (D – 1) + 2]y = 10(ez + e–z)

or                                     (D3 – D2 + 2) y = 10(ez  + e–z)

which is a linear equation with constant coefficients.

Its A.E. is D3 – D2 + 2 = 0    or    (D + 1) (D2 – 2D + 2) = 0

� D = 
2 4 8

1, 1, 1
2

i
� �

� � � �

� C.F. = c1e–z + ez (c2 cos z + c3 sin z) = 1c
x

x
� [c2 cos (log x) + c3 sin (log x)]

P.I. = 
3 2 3 2 3 2

1 1 1
10 ( ) 10

D D 2 D D 2 D D 2
� �� �� � �� �� �� � � � � �

z z z ze e e e

= 
3 2 2 2

1 1 1 1
10 . 10 .

21 1 2 3D 2D 3( 1) 2( 1)
� � � �� � �� � � �� �� � � � � �� �

z z z ze z e e z e

= 
2

5 2 5 log�� � �z ze ze x x
x

Hence the C.S. is y = 1
2 3

2
cos(log ) sin(log ) 5 log .� � � �� �� �

c
x c x c x x x

x x

Example 3. Solve the differential equation 
2

2

d y 1 dy

x dxdx
�  = 

2

12 log x

x
. (P.T.U., Dec. 2005)

Sol.
2

2

1d y dy

x dxdx
� = 

2

12 log x

x
Multiply by x2 ;

2
2

2

d y dy
x x

dxdx
� = 12 log x, which is Cauchy’s homogeneous linear equation.

Put x = ez \ z = log x

dy
x

dx
= Dy ; 

2
2

2

d y
x

dx
 = D (D – 1) y, we get

D (D – 1) y + Dy = 12z

D2 y = 12z

A.E. is D2 = 0 \ D = 0, 0

C.F. = c
1
 + c

2
 z

P.I. = 
2

1

D
 (12z) = 12 ◊ 

21

D 2

z �
� �� �

 = 
3

312 2
6

z
z� �

C.S. is y = C.F. + P.I.
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= c
1
 + c

2
 z + 2z3

y = c
1
 + c

2
 log x + 2 (log x)3.

Example 4. Solve: 
2

2
2

d y dy
x 3x + y

dxdx
�  = 

� �sin log x + 1
log x

x
.

Sol. Given equation is Cauchy’s homogeneous linear equation

\ Put x = ez \ z = log x ; x 
dy

dx
 = Dy, x2 

2

2

d y

dx
 = D2y, where D = 

d

dz

\ [D (D – 1) – 3D + 1] y = z 
� �sin 1

z

z

e

�

or [D2 – 4D + 1] y = e–z z (sin z + 1)

A.E. is D2 – 4D + 1 = 0 i.e., D = 
4 16 4

2

� �
 = 2 3�

\ C.F. = c1 � � � �2 3 2 3
2

z z
e c e

� �
�  = 2 3 2 3

1 2c x c x� ��

P.I. = � �2

1
sin 1

D 4D + 1
ze z z� �

�
 = 

� � � �
2

1

D – 1 4 D – 1 1

ze�

� �
 z (1 + sin z)

= 2 2

1 1
sin

D 6D + 6 D 6D + 6
ze z z z� � �� ��� 	

� �� �� 

= e–z [I1 + I2] …(1)

where I1 = 2

1

D 6D 6� �
 z = 

121 D
1 D

6 6

�
� �
� �� �

� �	 

 z = 

21 D
1 D

6 6

� �
� �� �

� �	 

 z

=
1

6
 [z + 1]

I2 = 2

1

D 6D 6� �
 z sin z

We know that
� �

� �
1

V
D

x
f

 =
� �

� �
1

V + D V
D D

d
x f

f d

� �
� �
	 


[Note this P.I.]

= z 2 2

1 1
sin sin

DD 6D + 6 D 6D + 6

d
z z

d

� �
� � �� �� �

Put D2 = – 1

= z 

� �
22

1 2D – 6
sin sin

5 6D D 6D + 6
z z�

� �

= z 

� �
2 22

5 6D 2D – 6
sin sin

25 – 36D D 6D + 6
z z

�
�

�
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Put D2 = – 1

= z 
� � � �

� �
2

5 6D 2D – 6
sin sin

61 5 – 6D
z z

�
�

= z � �2

5 sin 6 cos 1
2 cos 6 sin

61 25 36D 60D

z z
z z

�
� �

� �
Put D2 = – 1

= � � � �
1

5 sin 6 cos 2 cos 6 sin
61 11 60D

z
z z z z� � �

�

= � � � �2

11 60D
5 sin 6 cos 2 cos 6 sin

61 121 – 3600D

z
z z z z

�
� � �

Put D2 = – 1

= � � � �
11 60D

5 sin 6 cos 2 cos 6 sin
61 3721

z
z z z z

�
� � �

= � � � �
1

5 sin 6 cos 22 cos 66 sin 120 sin 360 cos
61 3721

z
z z z z z z� � � � �

= � � � �
1

5 sin 6 cos 54 sin 382 cos
61 3721

z
z z z z� � �

\ From (1),

P.I. = � � � �
1 2

5 sin 6 cos 27 sin 191 cos
6 61 3721

z z z
e z z z z� �� �� � � �� �	 


= � � � � � �� �
� �

� � � �� �2

1 1 log 2
log 1 5 sin log 6 cos log 27 sin log 191 cos log

6 61 61

x
x x x x x

x

� �
� �� � � � �
� �	 


C.S. is y = � �2 3 2 3
1 2

1
1 log

6
c x c x x

x
� �� � � + � � � �� �

1
log 5 sin log 6 cos log

61
� �	 x x x

x

� � � �� �
2

27 sin log 191 cos log
61

�� � �

x x

Example 5. Solve :
2

2
2

d y dy
x + x + y = log x sin (log x)

dxdx
. (P.T.U., Dec. 2003, Jan 2010)

Sol. Given equation is a Cauchy’s homogeneous linear equation.

Put x = ez i.e., z = log x so that D ,
dy

x y
dx

�  
2

2
2

D(D 1)
d y

x y
dx

� �

where D =
d
dz .

Substituting these values in the given equation, it reduces to [D(D – 1) + D + 1] y = z sin  z
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or (D2 + 1) y = z sin z

Its A.E. is D2 + 1 = 0    so that    D = 	 i
C.F. = c1 cos z + c2 sin z = c1 cos (log x) + c2 sin (log x)

P.I. = 2 2

1 1
sin Imaginary part of 

D 1 D 1
izz z ze�

� �

= I.P. of 2 2

1 1
I.P. of

(D ) 1 D 2 D
iz ize z e z

i i
�

� � �

= I.P. of 
1

D
2 D 1 + 

2

ize z
i

i
 �
� �� �

 = I.P. of 
1

D
2 D 1

2

ize z
i

i
 ��� �� �

= I.P. of 
1

1 1 D
1

2 D 2

�� �
�� �� �

iz i
e z

i
 = I.P. of 

1 1 D
1 .....

2 D 2
� �� �� �� �

iz i
e z

i

= I.P. of 
1 1

2 D 2
� ��� �� �

iz i
e z

i
= I.P. of 

1

2 2
� ��� �� ��iz i

e z dz
i

= I.P. of  
2

2 2 2

� �
� �� �� �

izi z i
e z = I.P. of 2

4 4
� �� �� �� �

iz i z
e z

= I.P. of (cos z + i sin z)
2

2 cos sin
4 4 4 4

 �� � � � �� �� �
i z z z

z z z

= 21 1
(log ) cos (log ) log sin (log ).

4 4
� �x x x x

Hence the C.S. is y = c1 cos (log x) + c2 sin (log x) 21 1
(log ) cos (log ) log sin (log )

4 4
� �x x x x .

Example 6. Solve : x
d y

dx
3x

dy

dx
y2

2

2 � � = 
1

1 x
2�� �

. (P.T.U., Dec. 2002)

Sol. Given equation is Cauchy’s homogeneous linear equation

Put x = ez \  z = log x, x dy

dx
 = 

dy

dz
 = Dy

x2 d y

dx

2

2
= D (D – 1) y, where D = 

d

dz

Substituting the values in given equation

[D (D – 1) + 3D + 1] y = 
1

1
2

� ez� �

(D2 + 2D + 1) y = 
1

1
2

� ez� �
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A.E. is D2 + 2D + 1 = 0, i.e., (D + 1)2 = 0 \ D = – 1, – 1

C.F. = (c1 + c2 z) e–z

P.I. = 
1 1

1
2 2

D + 1� � � �
.

� ez
 = 

1 1 1

1
2D + 1 D + 1

.
�

�
�	


	

�
�	

	ez� �

= 
� �

2

1 1
.

D +1 1

z z

z
e e dz

e

�

� �
� �
� �
� ��
	 


� 1
By using X = X

D –
ax axe e dx

a
��

= 
1

1
2

D + 1
e e e dzz z z� �

��
��

�
��� � �  = � � � �

21
1

D + 1
z z ze e e dz

��� �� � �� �� ��

= � �
� �

1
11

1
D +1 1

z
z

e
e

�

�

� �
�� �

�� ��� �
	 


� � � �
� �

1

By using = ; 1 
1

n
n f z

f z f z dz n
n

�
� �	 
� � ! " �	 
 ��

= 
1

1D + 1

e

e

z

z

�

�

�
��

�
��

= e e
e

e
dzz z

z

z
�

�

�� .
1

 = e
dz

e
z

z
�

�� 1
Put ez = t \ ez dz = dt \ dz = 

1

t
dt

P.I. = e
t t

dtz�

�� 1

1� �

= e
t t

dtz� �
�

�
��

�
	
� 1 1

1
� �By Partial fractions

= e t tz� � �log log 1� �  = e
t

t
z�

�
log

1
 = e

e

e
z

z

z
�

�
log

1

C.S. is y = (c1 + c2 z) e–z + e–z log 
e

e

z

z1�
 = (c1 + c2 log x) 

1

x
 + 

1

x
 log 

x

x1�

= 
1

11 2x
c c x

x

x
� �

�
�
��

�
��

log log

Example 7. Solve : u = r 3d du
r ar

dr dr

� � �� �� �
.

Sol. u = r r
d u

dr

du

dr
ar

2

2
3�

�
�
	


�
� �
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or r
d u

dr
r

du

dr
u2

2

2 � � = – ar3, which is Cauchy’s homogeneous linear equation in u and r

Put r = ez and Let D = 
d

dz
\ (D (D – 1) + D – 1) u = – a e3z

or (D2 – 1) u = – a e3z

A.E. is D2 – 1 = 0 [ � D = – 1, 1]
C.F. = c1 ez + c2 e

–z

P.I. = 
1

D 12 �
 (– a e3z) = 

� a e z3

8
| By putting D = 3

C.S. is u = c1 e
z + c2 e–z – 

a e z3

8
 = c1 r + 

c

r

a
r2 3

8
– .

Example 8. Solve: x2y¢¢ – 4xy¢ + 8y = 4x3 + 2 sin (log x). (P.T.U., May 2006)

Sol. 
2

2
2

4 8
d y dy

x x y
dxdx

� �  = 4x3 + 2 sin (log x)

which is Cauchy’s homogeneous linear = x
Put x = ez i.e., z = log x

dy
x

dx
 = Dy, 

2
2

2

d y
x

dx
 = D (D – 1) y

\ D (D – 1) y – 4Dy + 8y = 4e3z + 2 sin z
(D2 – 5D + 8) y = 4e3z + 2 sin z

A.E. is D2 – 5D + 8 = 0 \ D = 
5 7

2 2
i�

C.F. =
5

2
1 2

7 7
cos sin

2 2

� �
�� �

� �	 


z
e c z c z

P.I. = � �3
2

1
4 2 sin

D 5D 8
�

� �
ze z

= 4 3
2 2

1 1
2 sin

D 5D 8 D 5D + 8
ze z�

� � �
     (Put D = 3) (Put D2 = – 1)

= 31 1
4 . 2 . sin

2 5D + 7
ze z�

�
 = 2e3z – 2 2

5D + 7
sin

25D 49
z

�

= 2e3z – 2 
5D + 7

sin
– 74

z = 2e3z + � �
1

5 cos 7 sin
37

z z�

C.S. y =
5

2 3
1 2

7 7 5 7
cos sin 2 cos sin

2 2 37 37

� �
� � � �� �

	 


z ze c z c z e z z

\ y = � � � �
5

32
1 2

7 7 5 7
cos log sin log 2 cos log sin log

2 2 37 37

� �� � � �
� �� � � �� � � �
� �� � � �	 


x c x c x x x x .
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������ ����
���)� �	
���������	�
 (P.T.U., May 2007, Dec. 2005)

An equation of the form

1
1

1 11
( ) ( ) ..... ( )

n n
n n

n nn n

d y d dy
a bx a a bx a a bx a y

dxdx dx

�
�

��� � � � � � �  = X …(1)

where ai’s are constants and X is a function x, is called Legendre’s linear equation.
Such equations can be reduced to linear differential equations with constant coefficients, by the substitutions

             a + bx = ez      i.e.,  z = log (a + bx)    so that .
dy dy dz b dy
dx dz dx a bx dz

� �
�

or ( )
dy

a bx
dx

� =  D
dy

b b y
dz

� , where D = 
d
dz

2

2
d y

dx
= 

2 2

2 2
. .

( )

� � � � �� �� �� ��
d b dy b dy b d y dy

dx a bx dz dz a bx dxa bx dz

= 
� �

2 2 2 2

2 2 2 2
.

( )

� �
� � � �� �� �� � ��

b dy b d y b b d y dy

dz a bx a bx dza bx dz dza bx

or
2

2
2

( )�
d y

a bx
dx

=  b2 (D2y – Dy) = b2 D (D – 1) y

Similarly, 
3

3
3

( )
d y

a bx
dx

�   = b3 D (D – 1) (D – 2) y.

Substituting these values in equation (1), we get a linear differential equation with constant coefficient
which can be solved by the methods already discussed.

Example 9. Solve : ( ) ( )
2

2 2
2

d y dy
3x+2 +3 3x+2 36y = 3x +4x+1

dxdx
� .

Sol. Given equation is a Legendre’s linear equation.

Put 3x + 2 = ez     i.e.,    z = log (3x + 2) so that (3 2) 3D
dy

x y
dx

� � .

2
2

2
(3 2)

d y
x

dx
� = 32 D (D – 1)y,   where D = 

d
dz

.

Substituting these values in the given equation, it reduces to

[32 D(D – 1) + 3.3D – 36]y = 

2
2 2

3 4 1
3 3

 �  �� �
� �� � � �� � � �

z ze e

or 9(D2 – 4)y = 21 1

3 3
ze �  or (D2 – 4)y = 21

( 1)
27

ze �

which is a linear equation with constant coefficients.

Its A.E. is D2 – 4 = 0 � D = 	 2

C.F. = 2 2 2
1 2 1 2(3 2) (3 2)z zc e c e c x c x� �� � � � �
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P.I. = � �2 2 0
2 2 2

1 1 1 1 1
. 1

27 27D 4 D 4 D 4

� �� � �� �� � �	 

z z ze e e

= 2 0 21 1 1 1 1
.

27 2D 0 4 27 2 4

� � � �� � �� � � �� 	 
	 

	z z zz

z e e e dz

= � �2 2 21 1 1 1
1 [(3 2) log(3 2) 1]

27 4 4 108 108
z zz

e ze x x
� �� � � � � � �� �	 


Hence the C.S. is y = c1 (3x + 2)2 + c2 (3x + 2)–2 + 21
[(3 2) log(3 2) 1].

108
x x� � �

Example 10. Solve : � � � �
2

2

2

d y dy
1+ x + 1+ x + y

dxdx
= sin [2 log (1 + x)].

(P.T.U., Dec. 2006, 2012, 2013, May 2012, 2014 )
Sol. Given equation is Legendre’s linear equation
\ Put 1 + x = ez \ z = log (1 + x)

� �1
dy

x
dx

�  = Dy, � �
2

2

2
1�

d y
x

dx
 = D (D – 1) y, where D = 

d

dz

\ D (D – 1) y + Dy + y = sin (2z)
or (D2 + 1) y = sin 2z

which is linear differential equation with constant coefficients
A.E. is D2 + 1 = 0 \ D = ± i

C.F. = c1 cos z + c2 sin z

P.I. =
1

1
2

D2 �
sin z

Put D2 = – 4

\ P.I. = – 
1

3
2sin z

C.S. is y = c1 cos z + c2 sin z – 
1

3
 sin 2z

Put z = log (1 + x)

\ y = c1 cos [log (1 + x)] + c2 sin [log (1 + x)] – 
1

3
 sin [2 log (1 + x)].

�
�������������
��


Solve the following equations:

1.
2

2
2

4 2 0
d y dy

x x y
dxdx

� � � (P.T.U., May 2006) 2.
2

2 2
2

1
2

d y
x y x

xdx
� � �

3. (i) 
2

2 2
2

2 20 ( 1)
d y dy

x x y x
dxdx

� � � � 4.
3 2

2
3 2

4 6 4
d y d y dy

x x
dxdx dx

� � �

(ii) 
2

2
2

9 25 50
d y dy

x x y
dxdx

� � � [Hint : Multiply throughout by x]

5. (i) 
3 2

4 3 2
3 2

2 1
d y d y dy

x x x xy
dxdx dx

� � � � (ii)
2

2 2
2

4 6
d y dy

x x y x
dxdx

� � �

6. The radial displacement u in a rotating disc at a distance r from the axis is given by 
2

2 3
2

0
d u du

r r u kr
drdr

� � � � ,

where k is a constant. Solve the equation under the conditions u = 0 when r = 0, u = 0 when r = a.
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7.
2

2 log
d y dy

x x y x
dx dx

� � � (P.T.U., May 2009) 8.
2

2
2

2 log
d y dy

x x y x x
dxdx

� � � (P.T.U., May 2010)

9.
2

2 3
2

2 12 log
d y dy

x x y x x
dxdx

� � � 10.
2

2 2
2

2 4 2log
d y dy

x x y x x
dxdx

� � � �

11.
2

2
2

3 5 sin (log )
d y dy

x x y x
dxdx

� � � 12.
3 2

3 2
3 2

3 8 65cos (log )
d y d y dy

x x x y x
dxdx dx

� � � �

13.
2

2 2
2

3 5 sin (log )
d y dy

x x y x x
dxdx

� � � 14.
2

2
2

sin(log ) 1
3 log

d y dy x
x x y x

dx xdx

�
� � �

15.
2

2 2
2

3 = log
d y dy

x x y x x
dxdx

� � 16.
2

2
2

(1 ) (1 ) 4cos log (1 )
d y dy

x x y x
dxdx

� � � � � �

17.
2

2 2
2

(1 2 ) 6(1 2 ) 16 8(1 2 )
d y dy

x x y x
dxdx

� � � � � � 18.
2

2
2

(2 3) 2(2 3) 12 6
d y dy

x x y x
dxdx

� � � � �� � � .

(P.T.U., Dec. 2013)

����
��

1. y = 1 2 2

1 1
c c

x x
� 2. y = 2 22

1
1 1

log
3

c
c x x x

x x
� �� � �� �� �

3. (i) y = 
2

4 5
1 2

1

14 9 20

x x
c x c x�� � � � (ii) y = x–4 [c1 cos (3 log x) + c2 sin (3 log x) + 2

4. y = 3 4
1 2 3

2

3
c c x c x x� � �

5. (i) y = 1
1 2 3

1
( log ) log

4
c c x x c x x

x
�� � � (ii) y = 2 2 2

1 2 logc x c x x x� �

6. u = 2 2( )
8

kr
a r� 7. y = (c1 + c2 log x)x + log x + 2

8. y = 1 2[ cos (log ) sin(log ) logx c x c x x x� � 9. y = 
2

3 4
1 2 log (7 log 2)

98

x
c x c x x x�� � �

10. y = 
2

1 4
1 2

1 3
log

6 2 8

x
c x c x x� � � � �

11. y = 
2

1 2
1

[ cos (log ) sin(log )] [sin (log ) cos(log )]
8

x c x c x x x� � �

12. y = 2
1 2 3( cos 3 log ) sin ( 3log ) 8cos (log ) sin (log )c x x c x c x x x� � � � �

13. y = 2 2
1 2

1
[ cos (log ) sin (log )] log cos (log )

2
x c x c x x x x� �

14. y = 
2 3 2 3

1 2
1

61
c x c x

x
� �� �

� � � �
2 1

log 5sin (log ) 6cos (log ) 21sin(log ) 191cos (log ) (1 log )
61 6

x x x x x x
x

� �� � � � �� �� �

15.
2

3 2
1

2
= log

3 3

c x
y c x x

x
� �� � �� �� �

16. y = c1 cos [log (1 + x) ] + c2 sin [log (1 + x)] + 2 log (1 + x) + sin [log (1 + x)]

17. y = (1 + 2x)2 [c1 + c2 log (1 + 2x) + {log (1 + 2x)}2]

18. y = c1 (2x + 3)–1 + c2 (2x + 3)3 
3

(2 3) 3
4

x� � � .
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������	�����
�����	
���������	�
�#	�����
��
�������	�	�
�

Now, we discuss differential equations in which there is one independent variable and two or more than
two dependent variables. Such equations are called simultaneous linear equations. To solve such equations
completely, we must have as many simultaneous equations as the number of dependent variables. Here, we
shall consider simultaneous linear equations with constant coefficients only.

Let x, y be the two dependent variables and t the independent variable. Consider the simultaneous equations

f1(D) x + f2(D) y = T1 …(1) f1(D)x + f2 (D)y = T2 …(2)

where D = 
d
dt

 and T1, T2 are functions of t.

To eliminate y, operating on both sides of (1) by f2 (D) and on both sides of  (2) by f2 (D) and subtracting,

we get [f1(D) f2(D) – f1(D) f2(D)] x = f2 (D)T1 – f2 (D) T2 or f(D) x = T

which is a linear equation in x and t and can be solved by the methods already discussed, substituting the value
of x in either (1) or (2), we get the value of y.

Note. We can also eliminate x to get a linear equation in y and t.

����������	
�
����
�

Example 1. Solve: 
dx

5x 2 y t
dt

� � � , 
dy

2x y 0
dt

� � �  given that x = y = 0 when t = 0 .

(P.T.U., May 2010, Dec. 2012, 2013)

Sol. Writing D for 
d

dt
, the given equations become

(D + 5)x – 2y = t …(1)

(D + 1)y + 2x = 0 …(2)

To eliminate y; operate on both sides of (1) by (D + 1) and (2) by 2 and add

(D + 5) (D + 1)x + 4x = (D + 1)t

(D2 + 6D + 9)x = 1 + t

(D + 3)2x = 1 + t

A.E. is (D + 3)2 = 0 \ D = – 3, – 3

\ C.F. = (C1 + C2t) e–3t

P.I. =
2

1
(1 )

(D 3)
t�

�

= 0
2 2

1 1

(D 3) (D 3)
te t�

� �

=
2

1 1 D
1

9 9 3
t

�
� �� �� �� �

=
1 1 2

1 D
9 9 3

t
� �� �� �� �

=
1 1 2

9 9 3
t
� �� �� �� �
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=
1 1 2 1

9 9 27 27 9

t
t� � � �

\ x = � � 3
1 2

1
C C

27 9
t t

t e�� � � …(3)

dx

dt
 = 3 3

1 2 2
1

3(C C ) C
9

t tt e e� �� � � �

= 3
1 2 2

1
3C (C 3C )

9
te t� � � � �� �	 


Substituting the values of x and 
dx

dt
 in (1)

3 3
1 2 2 1 2

1 1
( 3C C 3C ) 5 (C C ) 2

9 27 9
t t t

e t t e t y� �� �� � � � � � � � � �� 	
� 


…(4)

Put  x = 0, y = 0, t = 0 in (3) and (4)

From (3) 0 = 1
1

C
27

� ; 1
1

C
27

� �

From (4) 2
1 1 1 1

C 5 0
9 9 27 27

� �� � � � � �� �� �

\ C2 =
2

9
�

\ From (3) x = 31 2 1

27 9 27 9
t t

t e�
� �� � � �� �� �

= � �31
(1 6 ) 1 3

27
tt e t�� � � �

From (4) 2y = 3 31 2 2 1 1 2 1
5

9 9 3 9 27 9 27 9
t tt t

e t e t� �� �� � � �� � � � � � � � �	 
� � � �� � � �	 


= � �
3 1 5 5

3 18 5 30
27 9 27 9

te t
t t t

�

� � � � � � � �

=
3 1

( 8 12 ) (8 15 27 )
27 27

te
t t t

�

� � � � �

y =
3 1

( 4 6 ) (4 6 )
27 27

te
t t

�

� � � �

=
32 2

(2 3 ) (2 3 )
27 27

te
t t

��
� � �

Hence, x = 31 1
(1 6 ) (1 3 )

27 27
tt e t�� � � �

y = 32 2
(2 3 ) (2 3 )

27 27
tt e t�� � � �

Example 2. Solve : 
dx

+ 2 y
dt

 = et  and  
dy

2x
dt

� = e – t.

Sol. 2
dx

y
dt

�  = et …(1)

2
dy

x
dt

�  = e–t …(2)
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To eliminate y, differentiate (1) w.r.t. t
2

2
2

d x dy

dtdt
�  = et

From (2),
dy

dt
 = 2x + e–t

\
2

2
4 2 td x

x e
dt

�� �  = et

2

2
4

d x
x

dt
�  = et – 2e–t

which is linear differential equation with constant coefficients.

Its S.F. is (D2 + 4) x = et – 2e–t where D =
d

dt
A.E. is D2 + 4 = 0 \ D = ± 2i
C.F. = c1 cos 2t + c2 sin 2t

P.I. = � �2

1
2

D 4
t te e��

�
 = 2 2

1 1
2

D 4 D 4
t te e��

� �
(Put D = 1) (Put D = – 1)

=
1 2

5 5
t te e��

\ C.S. is x = c1 cos 2t + c2 sin 2t + 
1 2

5 5
t te e��

dx

dt
 = – 2c1 sin 2t + 2c2 cos 2t + 

1 2

5 5
t te e��

From (1), 2y = 2c1 sin 2t – 2c2 cos 2t – 
1 2

5 5
t t te e e�� �

\ y = c1 sin 2t – c2 cos 2t + 
2 1

5 5
t te e��

Hence, x = c1 cos 2t + c2 sin 2t + 
1

5
 et – 

2

5
 e–t

and y = c1 sin 2t – c2 cos 2t + 
2

5
 et – 

1

5
 e–t is the required solution.

Example 3. Solve the system of equations
 (2D – 4) y1 + (3D + 5)y2 = 3t + 2

(D – 2) y1 + (D + 1) y2 = t. (P.T.U., Jan 2008)
Sol. (2D – 4)y1 + (3D + 5)y2 = 3t + 2 …(1)

(D – 2)y1 + (D + 1)y2 = t …(2)
Multiply (2) by 2 and subtract from (1)

(D + 3)y2 = t + 2

or 2
23�

dy
y

dt
 = t + 2, which is linear differential equation in t.
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Its I.F. =
3 3dt te e� �

Its solution is y2e3t = 3
1( 2) tt e dt c� ��

Integrating by parts

=
3 3

1( 2) (1)
3 9

t te e
t c� � � �

\ y2 = 3 3
1 1

2 1 3 5
3 9 9

� �� �
� � � �t tt t

c e c e

Substituting the value of y2 in (2), we get

3
1 1

3 5
(D 2) (D 1)

9
��� �� � � �� �� �

tt
y c e  = t

or 3 3
1 1 1

1 3 5
(D 2) 3

3 9
t tt

y c e c e� ��� �� � � � �� �� �
 = t

or 3
1 1

8 3
(D 2) 2

9
tt

y c e�
�� �� � �� �� �

 = t

or (D – 2)y1 = 3
1

8 1
2

9 3
tt t c e�� � �

or 1
12

dy
y

dt
�  = 3

1
2 8

2
3 9

tt c e�� �

which is linear differential equation in t
Its I.F. = e–2t

Its solution is y1e–2t = 2 3
1 2

2 8
2

3 9
t te t c e dt c� �� �� � �� �� �	

= 2 2 5
1 2

2 8
2

3 9
t t tte dt e dt c e dt c� � �� � �� � �

=
2 2 2 5

1 2
2 8

1 2
3 2 4 9 2 5

t t t te e e e
t c c

� � � �� �� �
� � � �� �� 	� � �
 �� �� �

= 2 2 2 5
1 2

1 4 2
3 6 9 5

t t t tt
e e e c e c� � � �� � � � �

= 2 2 5
1 2

5 2
3 18 5

t t tt
e e c e c� � �� � � �

\ y1 = 3 2
1 2

5 2
3 18 5

t tt
c e c e� 
� 
 � 


Hence, y1 = 3 2
1 2

1 5 2
3 18 5

�� � � �t tt c e c e

y2 = 3
1

3 5
9

tt
c e�

�
� .

Example 4. Solve : 
2

2
2

d x
+ 4x + 5y = t

dt
 and  

2

2

d y
+ 5x + 4y

dt
= t + 1.

Sol. Writing D for 
d
dt

, the given equations becomes (D2 + 4) x + 5y  = t2 …(1)
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and 5x + (D2  + 4)y = t + 1 …(2)

To eliminate y, operating on both sides of (1) by (D2 + 4) and on both sides of (2) by 5 and subtracting,

we get [(D2 + 4)2 – 25] x = (D2 + 4) t2 – 5 (t + 1)

or (D4 + 8D2 – 9)x = 2 + 4t2 – 5t – 5

or (D4 + 8D2 – 9) x = 4t2 – 5t – 3

Its A.E. is D4 + 8D2 – 9 = 0

or (D2 + 9) (D2 – 1) = 0     �    D = ± 1 ± 3i

C.F. = c1et + c2e–t + c3 cos 3t + c4 sin 3t

P.I. = 2 2
4 2 2 4

1 1
(4 5 3) (4 5 3)

D 8D 9 8D D
9 1

9 9

t t t t� � � � �
� �� �

� � �� �� �

= 

1
2 4

21 8D D
1 (4 5 3)

9 9 9
t t

�
� � �

� � � � �� �� �� �� �� �

= 
2 4

21 8D D
1 ..... (4 5 3)

9 9 9
t t

� � �
� � � � � �� �� �� �� �� �

= 2 21 8 1 37
4 5 3 (8) 4 5

9 9 9 9
t t t t

�  � �� � � � � � � �� �� � � �� �

� x = 2
1 2 3 4

4 5 37
cos3 sin 3

9 9 81
t tc e c e c t c t t t�� � � � � �

Now,
dx

dt
= 1 2 3 4

8 5
3 sin 3 3 cos3

9 9
t tc e c e c t c t t�� � � � �

2

2

d x

dt
= 1 2 3 4

8
9 cos3 9 sin 3

9
t tc e c e c t c t�� � � �

Substituting the values of x and 
2

2

d x

dt
 in (1), we have from (1) 5y = t2 – 4x – 

2

2

d x

dt

� 5y = 2
1 2 3 44 4 4 cos3 4 sin 3t tt c e c e c t c t�� � � �

2
1 2 3 4

169 20 148
9 cos3 9 sin 3

9 9 81 9
t tt t c e c e c t c t� %

� � � � � � � �

� y = 2
1 2 3 4

1 25 20 220
5 5 5 cos3 5 sin3

5 9 9 81
t tc e c e c t c t t t�� � � � � � � �� �� �

Hence, x = 2
1 2 3 4

1 37
cos3 sin3 4 5

9 9
t tc e c e c t c t t t� � �� � � � � �� �� �

y = 2
1 2 3 4

1 44
cos3 sin 3 5 4 .

2 9
t tc e c e c t c t t t� � �� � � � � � �� �� �

Example 5. Solve the simultaneous equations : t 
dx

y
dt
�  = 0, 

dy
t x

dt
�  = 0 given x(1) = 1, y(–1) = 0.

Sol. The given equations are  
dx

t y
dt

�  = 0 …(1)

dy
t x

dt
� = 0 …(2)
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Differentiating (1) w.r.t. t, we have

                              
2

2

d x dx dy
t

dt dtdt
� � = 0

Multiplying throughout by t

2
2

2

d x dx dy
t t t

dt dtdt
� � = 0

or
2

2
2

d x dx
t t x

dtdt
� � = 0  …(3) [Using (2)]

which is Cauchy’s homogeneous linear equation.

Putting t = eu i.e., u = log t, so that D
d d

t
dt du

� � , equation (3) becomes

[D(D – 1) + D – 1] x = 0      or     (D2 – 1) x = 0

Its A.E. is D2 – 1 = 0   whence D = ± 1

� x = c1e
u + c2e

–u  = 2
1

c
c t

t
� …(4)

From (1), y = 2 2
1 12

c cdx
t t c c t

dt tt

� �� � � � � � �� �� �
…(5)

Since x (1) = 1, �   from (4), we have     1 = c1 + c2

Also, y (– 1)  = 0 �   from (5), we have     0 = c1 – c2

Solving c1 =  2
1

2
c �

Hence, x = 
1 1 1 1

,
2 2

t y t
t t

� � � �� � � �� � � �� � � �
.

Example 6. Solve the following simultaneous equations : 
dx

dt
 = ,

dy
2y 2z

dt
� , 

dz
2x

dt
� .

Sol. The given equations are

dx

dt
= 2y …(1) dy

dt
 = 2z …(2)

dz

dt
 = 2x …(3)

Differentiating (1) w.r.t. t,       
2

2

d x

dt
 = 2 2(2 )

dy
z

dt
� [Using (2)]

Differentiating again w.r.t. t, 
3

3

d x

dt
 = 4 4(2 )

dz
x

dt
�      or    (D3 – 8)x = 0

where D  = 
d

dt
Its A.E. is D3 – 8 = 0    or (D – 2) (D2 + 2D + 4) = 0

whence D = 
2 2 3

2,
2

i� �
  or     D = 2, 1 3i� �

� x = � �2
1 2 3cos 3t tc e c e t c�� � (See note at the end of the questions)
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From (1), y = 
1

2

dx

dt

= � � � �2
1 2 3 2 3

1
2 cos 3 3 sin 3

2
t t tc e c e t c c e t c� �� �� � � �� �

� � � �2
1 2 3 3

1 3
cos 3 sin 3

2 2
t tc e c e t c t c� � �

� � � � � �� �
� �

= � � � �2
1 2 3 3

2� ��
cos cos 3 sin sin 3

3 3
t tc e c e t c t c� � � � � �� �� �

| 
2 1

cos
3 2

#
�� �  and 

2 3
sin

3 2

�
�

= 
2

1 2 3
2�

cos 3
3

t tc e c e t c� � �� � �� �� �

From (2), z = 
1

2

dy

dt

= 2
1 2 3 2 3

1 2� ��
2 cos 3 3 sin 3

2 3 3
t t tc e c e t c c e t c� �� � � � �
� � � � � �� � � �� �� � � �� �

= 2
1 2 3 3

2� �� �� ��
cos cos 3 sin sin 3

3 3 3 3
t tc e c e t c t c� � � � � �� � � � � �� � � �� �� � � �� �

= 2
3 2 3

4�
cos 3 .

3
t tc e c e t c� � �� � � �� 	
 �

Note.  c1 cos bx + c2 sin bx  can be replaced by c1 cos (bx – c2) or  c1 cos (bx + c2) or c1 sin (bx – c2)  or  c1 sin (bx + c2).

�
�������������
��


Solve the following simultaneous equations :

1. 5 , 4 .
dx dy

x y y x
dt dt

� � � � (P.T.U., May 2014)

2. sin , cot
dx dy

y t x t
dt dt

� � � � ; given that x = 2 and y = 0 when t = 0.

3. 4 3 , 2 5 .t
dx dy

x y t x y e
dt dt

� � � � � � (P.T.U., May 2010)

4. (D + 1) x + ( 2D + 1) y = et,  (D – 1) x + (D + 1) y  = 1.

5. 22 3 0, 3 2 2 tdx dy
x y x y e

dt dt
� � � � � � .  6. (D – 1) x + Dy = 2t + 1,  (2D + 1) x + 2Dy  = t.

7.
2 2

2 23 4 0, 0
d x d y

x y x y
dt dt

� � � � � � .  8.
2

2 2 2 , 4 3 .
d x dy dx dx

x t y
dt dt dtdt

� � � � � .

9.
2

2 2 sin , 3 0
d y dy dx

y t x y
dt dtdt

� � � � � � .

10. A mechanical system with two degrees of freedom satisfies the equations  
2

22 3 4,
d x dy

dtdt
� �  

2

22 3 0
d y dx

dtdt
� � .

Obtained expressions for x and y is terms of t, given , , ,
dx dy

x y
dt dt

  all vanish at t = 0.

11.
2 2

2 2sin , cos
d x d y

y t x t
dt dt

� � � � .
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����
��

 1. x = (c1 + c2 t)e3t , y = e3t (–2c1 + c2 – 2c2t)

 2. x = et  + e–t, y  = e–1 – et + sin t

 3. 2 7
1 2

5 31 1

14 196 8
t t tx c e c e t e� �� � � � � ; 2 7

1 2
2 1 9 5

3 7 98 24
t t ty c e c e t e� �� � � � � �

 4. x = 1 2
1

1 ,
2

t at bte ac e bc e� � � �� �  y = 1 2
1

2
at btc e c e� � , where a = 

1 1
(3 17), (3 17)

2 2
b� � �

 5. x = 5 2
1 2

6

7
t t tc e c e e�� � ,  y = 5 2

2 1
8

7
t t tc e c e e� � �

 6. x = 22 1 4
,

3 2 3
t y t t c� � � � �

 7. x = � � � �1 2 3 4 1 2 4 3
1 1

, (1 ) (1 )
2 2

t t t tc c t e c c t e y c c t e c t c e� �� � � � � � � � � �� � � � � �

 8. x = 3/2 32
1 2 3 2 1 3

1
( ) , [ (3 ) ]

6
t t t tc c t e c e t y c t c e c e� �� � � � � � �

 9. x = 2
1 2 3

3 3
3 (cos 2sin )

2 10
t t t tc e c e c e e t t� �� � � � ; y = 2

1 2
1

(cos 3sin )
10

t tc e c e t t�� � �

10. x = 
8 3 4 8 3

1 cos , sin
9 2 3 9 3

t t
y t

� �� � �� �� �

11. x = 1 2 3 4cos sin (sin cos )
4

t t t
c e c e c t c t t t�� � � � �

y = 1 2 3 4
1

cos sin (2 )(sin cos ).
4

t tc e c e c t c t t t t�� � � � � � �

�
	�
�������
������
�

1. Linear Differential of nth Order: A linear differential equation of nth order is that in which the dependent
variable and its derivatives occur only in the first degree and are not multiplied together. It is of the form

1 2

1 21 2
P P ... P

n n n

nn n n

d y d y d y
y

dx dx dx

� �

� �� � �  = X, where P1, P2, ..., Pn, X are functions of x only

If P1, P2, ..., Pn and all constants, then it is known as linear differential equation with constant coefficients.

2. If y = y1, y = y2, ..., y = yn are n linearly independent solutions of (Dn + a1Dn – 1 + a2Dn – 2 + ...+ an Dn) y = 0, where

D stands for 
d

dx
, then u = c1y1 + c2y2 + ... + cnyn is also its solution (called general solution).

3. If y = u is a general solution of f(D) y = 0 and y = v is a particular solution of f (D) y = X, then y = u + v is the complete
solution of f (D) y = X.

4. Auxiliary Equation: In f(D) y = X, f (D) = 0 is called A.E. i.e., A.E. is Dn + a1Dn – 1 + a2Dn – 2 ... an = 0.

5. Rules to find Complementary Functions of (Dn + a1Dn – 1 + a2Dn – 2 + ... + an – 1 D + an) y = X:

(i) If the roots of the A.E. equation are real and distincts (say) m1, m2, m3, then

C.F. = c1 em1x + c2 em2x + c3 em3x ...

(ii) If two roots are equal (say) m1 = m2 = m, then C.F. = (c1 + c2x) emx + c3 em3x + ...

(iii) If three roots are equal (say) m1 = m2 = m3 = m, C.F. = (c1 + c2x + c3x2) emx + c4 em4x + ... and so on

(iv) If roots are a pair of imaginary numbers (non repeated) a ± ib, C.F. = eax (c1 cos bx + c2 sin bx)

(v) If pair of imaginary roots is repeated twice i.e., a ± ib, a ± ib, C.F. = eax {(c1 + c2x) cos bx + (c3 + c4x) sin bx}

6. Rule to find out Particular Integral i.e., to find P.I. = 
1

(D)f
 X, where f(D) = Dn + a1Dn – 1 + a2Dn – 2 + ... an
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(i) When X = eax, then P.I. = 
( )

axe

f a
 provided f(a) π 0

If f(a) = 0 then multiply numerator by x and differential f(D) w.r.t. D and continue this process until f(D)
ceases to be zero at D = a.

(ii) When X = sin (ax + b) or cos (ax + b), then P.I. = 
2

1
sin ( )

( )
ax b

a
�

� �
 or cos (ax + b) provided f(– a2) π 0

In case f(– a2) = 0. Apply the same rule as discussed in (i).

(iii) When X = xm then P.I. = [f (D)]– 1 xm; expand f (D) by Binomial theorem upto Dm and then operate on xm

(iv) When X = eax V; P.I. = 
1

V.
(D )

axe
f a�

(v) If X is any other function of x, then P.I. = 
1

X.
(D)f

 Resolve 
1

(D)f
 into partial fractions and operate each

partial fraction on X.

(vi) Always remember 
1

X
D

 = X dx�  and 
1

X
D a�

 = eax Xa xe dx�� .

7. Method of Variation of Parameter: To find solution of 
2

1 22

d y dy
a a y

dxdx
� �  = X by method of variation of

parameter.

Let C.F. = c1y1 + c2y2

P.I. = uy1 + vy2

where u = – 2 X
,

W

y
dx�  v = 1 X

W

y
dy�

where W = 1 2

1 2

y y

y y! !
 (called Wronskian of y1, y2)

C.S. = C.F. + P.I.

8. Operator Method: To find solution of 
2

2
P Q R

d y dy
y

dxdx
� �  = S, where P, Q, R, S are functions of x, write equation

in symbolic form i.e., (PD2 + QD + R) y = S. Factorise PD2 + QD + R into two linear factors and integrate in two
stages. Always remember that the factors are non-commutative.

9. Cauchy’s Homogeneous Equation: An equation of the form 
1 2

1 2
1 21 2

n n n
n n n

n n n

d y d y d y
x a x a x

dx dx dx

� �
� �

� �� � ��

1n n
dy

a x a y
dx

�� �  = X

where a’s are constant and X is a function of x is called Cauchy’s Homogeneous equation. To solve this equation put

x = ez and replace 
dy

dx
 = Dy. Here D stand for 

d

dz
, 

2

2

d y

dx
= D(D – 1) y; 

3

3

d y

dx
 = D(D – 1) (D – 2) y and so on.

Equation will change to linear equation with constant coefficients.



LINEAR ORDINARY DIFFERENTIAL EQUATIONS OF SECOND AND HIGHER ORDER 109

10. Legendre’s Linear Equation: An equation of the form

1 2
1 2

1 2 11 2
( ) ( ) ( ) ... ( )

n n n
n n n

n nn n n

d y d y d y dy
a bx a a bx a a bx a a bx a y

dxdx dx dx

� �
� �

�� �� � � � � � � � �  = X

To solve it put a + bx = ez and replace (a + bx) 
dy

dx
 = bDy, where D = 

d

dz

(a + bx)2 
2

2

d y

dx
 = b2D (D – 1) y

(a + bx)3 
3

3

d y

dx
 = b3D (D – 1) (D – 2) y

Again equation will change to linear differential equation with constant coefficients.

11. Simultaneous Linear Equations with Constant Coefficients: Consider the two simultaneous equations as
f1(D)x + f2(D)y + T1 and f1(D)x + f2(D)y = T2

where D = 
d

dt
 and T1, T2 and functions of t. First eliminate y from the two equations, the equations will become

linear differential equation with constant coefficients in x and t and can be solved. Put the value of x in any one of
the two equations and get the value of y.

����������
�����
���
������

1. (a) What do you understand by complementary function? Explain. (P.T.U., Jan. 2010)

(b) If y = u is the complete solution of the equation f (D) y = 0 and y = v is a particular solution of the equation
f (D) y = X, then the complete solution of the equation f (D) y = X is y = u + v.

2. Define Auxiliary Equation of a linear differential equation.

3. What is the solution of the differential equation corresponding to roots of the A.E. if

(i) roots are all real and distinct?

(ii) roots are imaginary and distinct?

4. Solve the following differential equations :

(i) � �
2

2

d y dy
a b aby

dxdx
� � �  = 0

[Hint : A.E. is D2 + (a + b) D + ab = 0 \ D = – a, D = – b \ y = c1 e–ax + c2 e–bx]

(ii) 9y¢¢¢ + 3y¢¢ – 5y¢ + y = 0 [Hint : S.E. 1 art. 2.5]  (P.T.U., May 2008)

(iii)
2

2
2

d y dy
y

dxdx
� �  = ex sin x. [Hint : S.E. 7 art. 2.8] (P.T.U., June 2003, May 2006, Dec. 2011)

(iv)
4 2

4 2
2

d y d y
y

dx dx
� �  = 0. [Hint : A.E. is (D2 + 1)2 = 0,  D = ± i, ± i] (P.T.U., Dec. 2010)

(v)
3

3
0

d y
y

dx
� � (P.T.U., May 2012)

(vi) y¢¢ + 2y¢ + 2y = 0 (P.T.U., Dec. 2013)
5. Find particular solutions of the following differential equations :

(i)
2

2
3 2

d y dy
y

dxdx
� �  = eex

[Hint : S.E. 11 art. 2.8] (P.T.U., Dec. 2003)

(ii) (D2 – 2D + 4) y = ex sin x

(iii) (D2 – 3D + 2) y = 2ex cos 
2

x
. (P.T.U., Dec. 2003)
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(iv) (D3 – 3D2 + 4) y = e2x. [Hint : S.E. 1 art. 2.7]
(v) y¢¢¢ – y¢¢ + 4y¢ – 4y = sin 3x [Hint : S.E. 2 art. 2.7] (P.T.U., May 2008)
(vi) (D2 + a2)y = sin ax (P.T.U., May 2009)

(vii)
3

3 4 sin 2
d y dy

x
dxdx

� � (P.T.U., Dec. 2012)

(viii) (D – 2)2y = sin 2x (P.T.U., May 2014)
6. Explain method of variation of parameters to find P.I. of a differential equation. (P.T.U., May 2004)
7. Explain briefly the method of operator for finding solution of a linear differential equation.
8. Solve xy≤ + (x – 1) y¢ – y = 0 by operator method.
9. Define Cauchy’s homogeneous linear differential equation and give one example. (P.T.U., Dec. 2004)

10. Solve the following differential equations :

(i)
2

2
2 4 2

d y dy
x x y

dxdx
� �  = 0 (P.T.U., May 2006)

(ii)
2

2
22 – 6 0

d y dy
x x y

dxdx
� � [Hint : S.E. 1 art. 2.11] (P.T.U., Dec. 2013)

(iii) 2

2
2 2

d y
x y

dx
�  = 

2 1
x

x
� .

11. Define Legendre’s linear equation and give one example. (P.T.U., Dec. 2005, May 2007)

12. Solve the following simultaneous linear differential equations :

(i) 2
dx

y
dt

�  = et ; 2
dy

x
dt

�  = e–t [Hint : S.E. 2 art. 2.13]

(ii)
dx

dt
 = – 2x + y ; 

dy

dt
 = – 4x + 3y + 10 cos t. (P.T.U., Dec. 2002)

����
��

4. (i) y = c1 e
–ax + c2 e

–bx (ii) y = 
� � � �2 3 2 3

1 2
x x

c e c e
� ��

(iii) y = (c1 + c2x) ex – ex sin x (iv) y = (c
1
 + c

2
x) cos x + (c

3
 + c

4
x) sin x

(v) 2
1 2 3

3 3
cos sin

2 2

x
xy c e e c x c x� � �

� � �� �	 

(vi) y = e–x (c1 cos x + c2 sin x)

5. (i) e–2x 
xee (ii)

1
sin

2
xe x

(iii)
8

cos 2 sin
5 2 2

x x x
e

� �� �� � �
(iv)

2
2

6
xx

e

(v) � �
1

sin 3 3 cos 3
50

x x� (vi) cos
2

x
ax

a
�

(vii) sin 2
8

x
x� (viii)

cos 2
8

x

8. y = c
1
 (x – 1) + c

2
 e– x

10. (i) y = 1 2
2

cc

x x
� (ii) y = 3/2

1 2
2c x c x��

(iii) y = 1
2 22 1 1

log
3

c
c x x x

x x
� �� � �� �	 


12. (i) x = 1 2
1 2

cos 2 sin 2
5 5

ttc t c t e e�� � � (ii) x = c1 e2t + c2 e–2t – sin t – 3 cos t

y = 1 2
2 1

sin 2 cos 2
5 5

ttc t c t e e�� � � y = 4c1 e2t – 3c
2
 e–t – 7 cos t + sin t.
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3
Application of Ordinary

Differential Equations

����� ���	
����
�

In this chapter we shall study those physical problems which deal with the linear differential equations of
first and higher order with constant coefficients. Such equations play a dominant role in unifying the theory of
electrical and mechanical oscillatory system, simple harmonic motion, deflection of beam, simple pendulum and
population models.

We shall begin by explaining the phenomenon of simple harmonic motion, then electric circuits, then
simple pendulum then Deflection of Beam, and Population Models.

��������������	�
����
��
�� ��������

A particle is said to execute simple harmonic motion if it moves in a straight line such that its acceleration
is always directed towards a fixed point in the line and is proportional to the distance of the particle from the
fixed point.

O P A
x

a

m
2
x

Let O be the fixed point in the line A�A. Let P be the position of the particle at any time t,  where
OP = x.

Since the acceleration is always directed towards O,  i.e., the acceleration is in the direction opposite to

that in which x increases, the equation of motion of the particle is    
2

2
2 � ��

d x
x

dt

or (D2 + m2) x = 0,     where   D = 
d
dt

…(1)

It is a linear differential equation with constant coefficients.
Its A.E. is    D2 + m2 = 0  so that  D = ± im
� The solution of (1) is   x = c1 cos mt + c2 sin mt …(2)

Velocity of particle at P = 
dx
dt

 = – c1 m sin mt + c2 m cos mt …(3)

If the particle starts from rest at A, where  OA = a , then from (2),    (at  t = 0,   x = a) ; c1 = a

and from (3),    at 0, 0
� �� �� �	 


dx
t

dt
; c2 = 0

� x = a cos mt …(4)

and
dx

dt
= sin� � �a t …(5)
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= 
2

2
2

1 cos 1� � � � � � � �
x

a t a
a

cos
� �� �� �	 


�
x

t
a

= 2 2�� �a x . …(6)

Equation (4) gives the displacement of the particle from the fixed point O at any time t.

Equation (6) gives the velocity of the particle at any time t, when its displacement from the fixed point O is x.

Equation (6) also shows that the velocity is directed towards O and decreases as x increases.

Now, equations (4) and (5) remain unaltered when t is replaced by  t + 
2�
�

,  i.e.,  when t is increased by

2�
�

 showing thereby that the particle occupies the same position and has the same velocity after a time 
2�
�

.

The quantity 
2�
�

, usually denoted by T, is called the periodic time  i.e.,  the time of complete oscillation.

Nature of Motion.  At A,  x = a  and  v = 0.  Since acceleration is directed towards O, the particle moves

towards O. The acceleration gradually decreases and vanishes at O, when the particle has acquired maximum

velocity. Thus the particle moves further towards A� under retardation and comes at rest to A�, where

OA� = OA. It moves back towards O under acceleration and acquires maximum velocity at O. Thus the particle

moves further towards A under retardation and comes to rest at A. It retraces its path and goes on oscillating

between A at A�. The point O is called the centre of motion or the mean position. The maximum distance a

which the particle covers on either side of the mean position is called the amplitude of the motion.

The number of complete oscillations per second is called the frequency of motion. If n is the frequency,

then n = 
1 �

=
T 2�

.

����������	
�
����
�

Example 1.  If the displacement of a particle in a straight line is given by x = a cos mt + b sin mt, then

show that it describes S.H.M. with an amplitude 2 2a + b . (P.T.U., Dec. 2013)

Sol. x = a cos mt + b sin mt  …(1)

dx

dt
 = – a m sin mt + b m cos mt …(2)

2

2

d x

dt
 = – a m2 cos mt – b m2 sin mt

= – m2 (a cos mt + b sin mt)
= – m2 x

\ Motion is simple harmonic
Let A be the amplitude of S.H.M.

then when x = A, v = 0 i.e., 
dx

dt
 = 0

\ From (2) – am sin mt + b m cos mt = 0

\ tan mt =
b

a
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sin mt =
2 2

b

a b�
; cos mt = 

2 2

a

a b�

From (1) A =
2 2

2 2

2 2 2 2 2 2

a b a b
a b a b

a b a b a b

�
 �  � � �

� � �

Example 2.  A particle is executing simple harmonic motion with amplitude 20 cm and time 4 seconds.

Find the time required by the particle in passing between points which are at distances 15 cm and 5 cm from

the centre of force and are on the same side of it.

Sol.  Here a = 20 cm , T = 4 seconds

Since T =
2�
�

� m =
2

�

Let  t1 and  t2 seconds be the times when the particle is at distances 15 cm and 5 cm respectively from the

centre of force.

Using x = a cos mt,  we have    15 = 20 cos 
2

�
 t1

or t1 = 12 3
cos

4
�

�
  and   5 = 20 cos 22

�
t   or    t2 = 12 1

cos
4

�

�

  Required time = t2 – t1 = 1 12 1 3
cos cos

4 4
� �� ��� �	 
�

 = 0�38 sec.

Example 3.  A particle moving in a straight line with S.H.M. has velocities v1 and v2 when its distances

from the centre are x1 and x2 respectively. Show that the period of motion is 
2 2
1 2
2 2
2 1

x – x
2

v – v
� .

Sol.  The velocity v of the particle when it is at a distance x from the mean position is given by

  v2 = m2 (a2 – x2) , where  a is the amplitude.

� v1
2 = m2 (a2 – x1

2)                …(1)                 and        v2
2 = m2 (a2 – x2

2) …(2)

Subtracting (1) from (2),  we get   v2
2 – v1

2 = m2 (x1
2 – x2

2)    or     m2 = 
2 2
2 1
2 2
1 2

v v

x x

�
�

Periodic time  = 
2 2
1 2
2 2
2 1

2
2

x x

v v

��
� �

� �
.

Example 4. At the end of three successive seconds, the distances of a point moving with S.H.M. from its

mean position are  x1, x2 , x3  respectively. Show that the time of a complete oscillation is

�

–1 1 3

2

2

x + x
cos

2x

� �
� �	 


. (P.T.U., Dec. 2011)

Sol.  Let the moving point be at distances  x1 , x2 , x3  from the mean position at the end of  t, t + 1,  t + 2

seconds respectively.

Using x  = a cos mt ,    we have   x1 = a cos mt …(1)

x2 = a cos m (t + 1) …(2)

x3 = a cos m (t + 2) …(3)
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Adding (1) and (3),  we get  x1 + x3 = a [cos m (t + 2) + cos mt]

= a . 2 cos 
( 2) ( 2)

cos
2 2

� � �� � � � �t t t t

= 2a cos m (t + 1) cos m = 2x2 cos m [Using (2)]

� ����m = 1 1 3

2

cos
2

� � ��
� �	 


x x

x

Hence the time of a complete oscillation = 
1 1 3

2

2 2

cos
2

�

� �
�

� � ��
	 
� �

x x

x

.

Example 5. A particle of mass m executes simple harmonic motion in the line joining the points A and B
on a smooth table and is connected with these points by elastic strings whose tensions in equilibrium are
each T. If l and l¢ be the extensions of the strings beyond their natural lengths find the time of an oscillation.

(P.T.U., May 2013)

Sol.  Let OA, OB be the two elastic strings with extensions l and l¢ and a particle of mass m is attached at O.

Let a be the natural length of the string OA and b be that of OB

Let P be the position of the particle at any time t

Let OP = x

OA = a + l, ; OB = b + l¢

AP = a + l – x ; BP = b + l¢ + x

When particle is at P let tension in the string AP be T1 and that in BP be T2

Then by Hook’s Law:

Tension = 
� ������	
�

natural length



Let l1 be the modulus of elasticity in the string AP and l2 be that of in string BP

Then T1 = 1(AP )a

a

� �

T2 = 2 (BP )b

b

� �

\ T1 = 1 2
2( ); T ( )a l x a b l x b

a b

 
� � � � � � � �

or T1= 1 2
2( ); T ( )l x l x

a b

 
� � � �

Since tensions are the only horizontal forces acting on the particle,

\ Equation of motion is  m 
2

2

d x

dt
 = T1 – T2

= 1 2( ) ( )l x l x
a b

� �
� � � � ...(1)
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In equilibrium position, tension in each string is T

\ T = 1 l

a

�
   and  T = 2 l

b

� �

\ 1

a

�
 =

T

l
     ;  2

b

�
 = 

T

l �
Substitude in (1)

2

2

d x
m

dt
 =

T T
( ) ( )l x l x

l l
� � � �

�

=
T T

T – Tx x
l l

� �
�

=
1 1

T x
l l

� �� �� �	 
�

or
2

2

d x

dt
 =

T 1 1
x

m l l
� �� �� �	 
�

which shows S.H.M
\  Time of oscillation

=
2

T 1 1
m l l

�

� ��� �	 
�

=
2

1 1
T

m

l l

�

� ��� �	 
�

.

�
�������������
��


1. (a) A particle is executing S.H.M. with amplitude 5 metres and time 4 seconds. Find the time required by the
particle in passing between points which are at distances 4 and 2 metres from the centre of force and are on the
same side of it.
(b) A particle executing S.H.M. of amplitude 5 cm has a speed of 8 cm/sec when at a distance of 3 cm from the
centre of the path. Find the period of motion of the particle. (P.T.U., Dec. 2013)

2. A particle of mass 4 gm vibrates through one centimetre on each side of the middle point of its making 330
complete vibrations per minute. Assuming its motion to be S.H.M. show that the maximum force upon the
particle is 484 p2 dynes.

3. A point executing S.H.M. passes through two points A and B, 2 metres apart, with the same velocity having
occupied 4 seconds is passing from A to B. After another 4 seconds, it returns to B. Find the period and amplitude.

4. A particle of mass of 4 gm executing S.H.M. has velocities 8 cm/sec and 6 cm/sec respectively when it is at
distances 3 cm and 4 cm from the centre of its path. Find its period and amplitude. Find also the force acting
on the particle when it is a distance 1 cm from the centre.

5. At the end of three successive seconds, the distances of a point moving with S.H.M. from its mean position,

measured in the same direction are 1, 5, 5. Show that the period of complete oscillation is 
2�
�

, where  cos q = 
3

5
.

6. A particle is performing S.H.M. of period T about a centre O and it passes through the position P (OP = b) with

velocity v in the direction OP. Prove that the time which elapses before its return to P is  1T T
tan

2
� � �
� 	
 �� �

v

b
.
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7. A particle moves with S.H.M. in a straight line. In the first second starting from rest, it travels a distance ‘a’ and

in the next second it travels a distance ‘b’ in the same direction. Prove that the amplitude of motion is  
22

3

a

a b�
.

8. An elastic string of natural length 2a and modulus l is stretched between two points A and B distant 4a apart
on a smooth horizontal table. A particle of mass m is attached to the middle of the string. Show that it can

vibrate in line AB with period 
2�
�

,  where  w2 = 
2�
am

.

9. An elastic string of natural length 2l can just support a certain weight when it is stretched till its whole length
is 3l. One end of the string is now attached to a point on a smooth horizontal table and the same weight is
attached to the other end. Prove that if the weight is pulled to any distance and then let go, the string will

become slack again after a time 
2

�
�
l

.

10. In case of a stretched elastic horizontal string which has one end fixed and a particle of mass m attached to the
other end. Find the equation of motion of the particle given that l is the natural length of the string and e is its
elongation due to a weight mg. Also find the displacement of the particle when  initially s = s

o
, v = 0.

����
��

1. (a) 0�33 seconds (b) p 3. 16 sec,  2  m 4. p sec, 5 cm, 16 dynes

10.
2

2 ;
d s g gl

s
e edt

�   s = ( ) coso
g

s l t l
e

� �
� �� �� �

.

�������������
��
�������	�������������
����
�����	���	����

We shall consider circuits made up of
(i) Three passive elements – Resistance, Inductance, Capacitance

(ii) An active element – Voltage source which may be a battery or a generator
For the knowledge of the students we give a brief introduction of all those elements

(i) Resistive circuit. It is an electrical circuit in which a resistor and a source of electricity (e.m.f.) are
connected in series. For example when we switch-off an electrical appliance a current ‘i’ will flow
through the resistor and hence there will be a voltage drop across the resistor i.e., the electrical
potential at the two ends of the resistor will be different as some sort of cut will be dissipated
through the air. The voltage drop across the resistor is proportional to instantaneous current ‘i’
\ Vr = Ri, where R, the constant of proportionality is called Resistance of Resistor.

(ii) Inductive circuit. It is the circuit consisting of an electric source and an inductor.

In inductive circuit, the voltage drop across the inductor is proportional to the instantaneous time
rate of change of current ‘i’

\ VI = L
di

dt
, where L, the constant of proportionality is called Inductance of the Inductor.

(iii) Capacitative circuit. It is the circuit consisting of a source of electrical energy and a capacitor C,
which is a device that stores energy.

In capacitative circuit, the voltage drop across the capacitor is proportional to the instantaneous
electric charge Q on the capacitor

\ Vc = 
1

Q
C

, where C, the constant of proportionality is called capacitance.
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��� �����	�����
��������������������
������	���	����

From (3.2) we conclude four most important basic relations between the elements of electric circuits.

(i) i = 
Q

or Q =
d

idt
dt �

(ii) The potential voltage drop across the resistance R is Ri

(iii) The potential voltage drop across the induction L is L
di

dt

(iv) The potential voltage drop across the capacitance C is 
Q

.
C

���������
�������������������
	��������������
������	���	����

+ i –

R

+ i –L,

–iC, +

+i–E,
Battery E constant

+i–

Generator, E Variable

i

Q

Symbol UnitElementS. No.

coulomb

ampere (A)

henry (H)

farad (F)

volt (V)

Quantity of electricity

Current

Resistance

Induction

Capacitance

Voltage or Electromotive

force (e.m.f.)

1.

2.

3.

4.

5.

6.

7. It is any closed path formed by

passing through two or more

.elements in series

8. Nodes

Loop

Nodes are the  terminals of any

of these elements.

ohm ( )W

����� �	��
��!������

Kirchhoff’s Laws play an important role in the formation of differential equations for an electrical circuit
which states as follows :

(i) The algebraic sum of the voltage drops around any closed circuit is equal to the resultant
electromotive force in the circuit. This law is known as Voltage Law.

(ii) The algebraic sum of the currents flowing into (or from) any node is zero. This law is known as
Circuit Law.

��"�������	�������������
��
���������	���	���������	����
�������#

��"�� 	������������������ ��������� �	$����	�����	����

Consider a circuit containing resistance R and inductance L in series with a voltage source (battery) E.

Let i be the current flowing in the circuit at any time t. Then by Kirchhoff’s voltage Law we have
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R L
di

i
dt

�  = E [i.e., sum of voltage drops across R and L is E]

or
R
L

di
i

dt
� =

E
L

…(1)

which is linear differential equation of first order in i

i.e., of the type P Q� �
dy

y
dx

Its I.F. = 
R R
L L�	 dt t

e e

� Solution is
R
L

t
ie = 

R

LE

L

t
e dt c��

R
L

t
ie = 

R
TE

.
L R

L

�

t
e

c

or
R
L

t
ie = 

R
LE

R
�

t
e c

or i = 
R

L
E

R

t
ce

�
� …(2)

Initially if there is no current in the circuit i.e., i = 0 when t = 0

Then 0 = 
E

 + 
R

c [From (2)]

� c  = 
E

R
�

� (2) becomes i = 
R

L
E

1
R

�� �
� ��
� �� �

t
e ,  which shows that i increases with t and when t 	 
 ; i 	 

E
R

 i.e., i attains

the maximum value 
E
R

.

����������	
�
����
�

Example 1. A constant electromotive force E volts is applied to a circuit containing a constant resistance
R ohms in series and a constant inductance L henries. If the initial current is zero, show that the current
builds up to half its theoretical maximum in (L log 2)/R seconds.

Sol. Let i be the current in the circuit  at any time t.

By Kirchhoff’s law, we have :  L R E
di

i
dt

� �  or 
R E
L L

di
i

dt
� � …(1)

which is Leibnit’s linear differential equation, I.F. = 
R R

L L�
�

t
dt

e e

� The solution of equation (1) is i (I.F.) = 
E

l� (I.F.) dt + c

or
R
L
t

ie = 
R R

L LE E L
.

L L R

t t

e dt c e c� � �	
or i = 

R

L
E

R

t

ce
�

� …(2)

i L

E
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Initially, when t = 0, i = 0 so that c = 
E

R
�

Thus (2) becomes, i = 
R
LE

1
R

�
 �
�	 


� �

t

e …(3)

This equation gives the current in the circuit at any time t.

Clearly, i increases with t and attains the maximum value 
E
R

.

Let the current in the circuit be half its theoretical maximum after a time T seconds. Then

1 E
.

2 R
= 

RT
LE

1
R

�
 �
�	 


� �
e or

RT

L
1

2

�
�e or

RT

L
�  = 

1
log log 2

2
� �

� T = (L log 2)/R.

Example 2. The initial value problem governing the current ‘i’ flowing in series R.L. circuit when a

voltage v (t) = t is applied is given by iR + L 
di

dt
 = t ; t ≥ 0 ; i (0) = 0, where R, L are constants. Find the current

i (t) at time t. (P.T.U., May 2006)

Sol. Given equation is iR + L 
di

dt
 = t ; t ≥ 0 ; i (0) = 0

or
di

dt
i� R

L
 =

1

L
t , which is a linear differential equation in i

\ I.F. =
R
L

dt
e�  = 

R
L

t
e

Its solution is ie tR
L  =

R
L

1

L
t

e t dt c��
=

R

L
1

L
t

t e dt c�� (Integrate it by parts)

= � �
R R
L L

2

2

1 L L
1

L R R
t t

t e e c
� �� �� � � �� �� � � �	 
 	 
� �� �

 = 
R

L
2

L

R R
tt

e c
� �� �� �	 


\ i =
R
L

2

1 L

R R
tt c e�� �

Given i = 0 when t = 0 \ c = 
L

R2

\ i =
R
L

2 2

1 L L

R R R
tt e�� �

=
R
L

2

1 L
1

R R
tt e�� �� �� �	 


.

Example 3. The equations of electromotive force in terms of current i for an electrical circuit having

resistance R and a condenser of capacity C, in series, is E = 
i

Ri dt
C

�� . Find the current i at any time t,

when E = E0  sin wt. (P.T.U., Dec. 2006)
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Sol. The given equation can be written as R
C

i
i dt� �  = E0 sin wt

Differentiating both sides w.r.t. t, we have R
C

di i
dt

�  = wE0 cos wt

or RC
di i
dt

� = 0E
cos

R

�
�t …(1)

which is Leibnitz’s linear equation.

I.F. = 
1

RC RC��
t

dt
e e

� The solution of equation (1) is

RC

t

ie = 0 0RC RCE E
cos . cos

R R

� �
� � �� �

t t

t e dt e t dt

= 
RC

10

2
2

E
. cos tan

1R 1
RCRC

�

� �
� �� �

� � �� �
� � � ��� 	 
� �	 


t

e
t k

2 2
cos

ax
ax e

e bx dx
a b

�
��

��� ��  � � 1

2 2
cos sin cos tan�

�� ��� � �� �	 
�� �

axe b
a bx b bx bx

aa b

= 0 RC
2 2 2

CE
cos( )

1 R C

�
� � � �

� �

t

e t k , where tan f = RCw

or i = 0 RC
2 2 2

CE
cos( )

1 R C

t

t ke
��

� � � �
� �

which gives the current at any time t.

Example 4. Solve the equation 
di

L Ri
dt

� = E0 sin wt, where L, R and E0  are constants and discuss the

case when t increases indefinitely. (P.T.U., May 2007)

Sol. L R
di

i
dt

�  = E0 sin wt …(1)

R

L
�

di
i

dt
 = 0E

sin
L

�t , which is linear differential equation of first order in ‘i’

I.F. =
R R

L L�� dt t
e e .

Its solution is

R

L
t

ie =
R

0L
E

. sin C
L

� ��
t

e t dt

R

L
t

ie  =  
R

0 L
E

sin C
L

� ��
t

e t dt
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=

R

L
0

2
2

2

E R
. sin cos C

L LR

L

� �� �� � �� �� ���

t
e

t t    2 2
sin

ax
ax e

e bx dx
a b

�
��� � �sin cosa bx b bx�

=

R

L
0

2 2 2

E L R
sin cos C

LR L

t
e

t t
� �� � � � �� �� � � �

\ i =
R

0 L
2 2 2

E L R
sin cos C

LR L

t
t t e

�� �� � � � �� �� � � �

Let
R
L

 = a cos f� sin=� �a

Squaring and adding

a2 = 
2

2
2

R

L
� �

Dividing, we get

tan f L

R
=

�

� i = � �
R

0 L
2 2 2

E L
. cos sin sin cos C

R L

�
� � � � � �

� �

t
a t a t e

= 
R

0 L
2 2 2

E L
. sin ( ) C

R L
+

+

�
� � �

�

t
a t e

= 
R2 2 2

10 L
2 2 2 2

E L R L L
. sin tan C

RR L L

+
+

+

��� �� �� �� �
� �  

t
t e

i = 
R

10 L
2 2 2

E L
sin tan C

RR L
+

+

�� �� �� �� �
�  �

t
t e

Now, when t increases indefinitely i.e., t Æ •

Then 
R

L
t

e
�

 Æ 0�     i = 10

2 2 2

E L
sin tan .

RR L
t

�

� �� �� �� �� 	�

�
�������������
��


1. When a resistance R ohms is connected in series with an inductance L henries, an e.m.f. of E volts, the current i

amperes at time t is given L R
di

i
dt

�  = E. If E = 10 sin t volts and i = 0, when t = 0, find i as a function of t.

2. A voltage E �ate  is applied at t = 0 to a circuit containing inductance L and resistance R. Show that the current

at any time t is 
R

LE

R L

t
ate e

a

��� �
�� �� � �

.
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3. When a switch is closed in a circuit containing a battery E, a resistance R and an inductance L, the current i

builds up at rate given by L R
di

i
dt

�  = E. Find i as a function of t. How long will it be, before the current has

reached one-half its maximum value if E = 6 volts, R = 100 ohms and L = 0.1 henry ?
4. Show that the differential equation for the current i in an electrical circuit containing an inductance L and a

resistance R in series and acted on by an electromotive force E sin wt satisfies the equation. L R E
di

i
dt

� � sin wt.

Find the value of the current at any time t, if initially there is no current in the circuit. (P.T.U., May 2006)

[Hint : Consult example 4; in the result put i = 0 when t = 0, get C =
2 2 2

E sin

R L

�

	 

when f = tan–1 L

R



]

5. Solve the equation L R 200
di

i
dt

� �  cos 300 t, when R = 100, L = 0.05 and find i given that i = 0 when t = 0.

What value does i approach after a long time?

6. A resistance R in series with inductance L is shunted by an equal resistance R with capacity C. An alternating

e.m.f. sin pt produces currents i1 and i2 in the two branches. If initially there is no current, determine i1 and i2
from the equations :

1
1L R E sin 

di
i pt

dt

 �  and 2 2R E cos

C

i di
p pt

dt

 �

Verify that if R2C = L, the total current i1 + i2 will be 
E

sin
R

pt .

����
��

1. i  = 
R

L
2 2

10
(R sin Lcos L

L  + R

t

t t e
�

� 
  3.  0·0006931 sec

4. i = 
R
L

2 2 2

E
sin( ) sin

R L

�� 
� �� � � 
 �
� �
� � �

t

t e , where f  = 1 ��tan
R

�

5. i = � � 20040 800 40
20 cos 300 3 sin 300 ;

409 409 409
tt t e�	 �

6. i1 = � �
2

2 2 2

E
R sin L cos

R + L
�pt p pt

p
; i2 = � �2 2 2

EC
cos RC sin

1 R





p

pt p pt
p c

.

��%�&��������	�������������
��
���������	����
������
	���	���

��%�&���
�������#� � �����������������������������#��#����

��%�&���	��������� ������	����

Consider an electrical circuit containing an inductance L and capacitance C.

Let q be the electrical charge on the condenser plate and i be the current in the

circuit at any time t. The voltage drop across L and C being L
di
dt

 and 
C
q

respectively and since there is no applied e.m.f. in the circuit, we have by

Kirchhoff’s Law,

C

L
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L
C

di q
dt

� = 0 …(1)

Since i = 
dq
dt

,  equation (1) becomes   
2

2
L

C
d q q

dt
�  = 0   or    

2

2 LC
d q q

dt
�  = 0

Writing w2 = 
1

LC
, it becomes    

2
2

2 	

d q

q
dt

= 0 …(2)

Equation (2) is of simple harmonic form. It represents free electrical oscillations of the current having

period 
2 2

2 LC
1

LC

� �
� � �

�
.

\ Solution of (2) is obtained as follows:

It is a linear differential equation with constant coefficients

\ Its symbolic form is (D2 + w2) q = 0

A.E. is D2 + w2 = 0 or D = ± iw

\ Solution of (2) is

q = c1 cos wt + c2 sin wt = 1 2
1 1

cos sin
LC LC

c t c t	

This solution can also be put into the form

q = A cos (wt + B) = 
1

A cos B
LC

t
� �

�	 

� �

where c1, c2 or A, B can be determined from initial conditions of the problem.

��%�'��������	�������������
��
����������	����������������(�
��)*

Consider an electrical circuit containing an inductance L and capacitance C. Let q be the electrical charge

on the condenser plate and i be the current in the circuit at any time t. The voltage drops across L and C being

L and
C

di q
dt

  respectively and since  e.m.f. = k cos nt   �   by Kirchhoff’s Law

L
C

di q
dt

� = k cos nt

Since i = 
dq
dt

   �    
2

2
L

C
d q q

dt
�  = k cos nt

or         
2

2

1

LC

d q
q

dt
	  = cos

L

k
nt

Writing w2 = 
1

LC
  and  E = 

L
k

,  we have

2
2

2
E cos	
 �

d q
q nt

dt
, which is a linear differential equation with constant coefficients …(1)

S.F. is (D2 + w2) q = E cos nt

C

k ntcos
L
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A.E. D2 + w2 = 0 \ D = ± wi

C.F. = c1 cos wt + c2 sin wt

P.I. =
2 2

1
E cos

D
nt

� �
…(2)

Put D2 = – n2

= 2 2
2 2

1
E cos whennt n

n
� !

� �

Case (i) When w2 π n2

\ Solution of (1) is

q = c1 cos wt + c2 sin wt + 
2 2

1

n� �
 E cos nt

c1 cos wt + c2 sin wt can be put into the form A cos (wt + B)

\ q = A cos (wt + B) + 
2 2

E

n� �
 cos nt

Substituting the values of w and E

q =
2

A cos B cos
1LC L

LC

t k
nt

n

� �
	 	� � � �	 
 �� �	 


= 2

C
A cos B cos

LC 1 LC

� �
	 	� �

�	 


t k
nt

n

Case (ii) When w2 = n2

P.I. = E cos
2D

t
t
 [i.e., in (2) multiply numerator by t and differentiate the

denominator w.r.t. D]

= E cos
2

t
t dt
� = 

sin E
E sin

2 2

t t t
t



� 



 

\ C.S. of (1) is

q = 1 2
E

cos sin sin
2

t
c t c t t
 	 
 	 





= 1 2
E

cos sin
2

t
c t c t

� �
 	 	 
� �	 


which can again be reduced to the form

= r sin (wt + f) by putting c1 = r sin f 2
E

2

t
c

� �	� �	 


 = r cos f

where r = 2 1
1 2

2

E
, tan

E2
2

ct
c c

t
c

"
� �	 	 � �� �	 

 	




.
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��+�&��������	�������������
��
������	������	�����	�����
�������#

��+�&��� ������
�$��������������	��������� ����	���	���������

��+�&�����#��#����������� (P.T.U., Dec 2006, May 2007)

L.C.R. Circuit : Consider the discharge of a condenser C through an inductance L and the resistance R.

Let q be the charge and i the current in the circuit at any time t. The voltage drop across L, C and R are

respectively. L , , R
C

di q
i

dt
, which are same as L 

2

2 , and R =
C

d q q dq dq
i

dt dtdt
�

� By Kirchhoff’s Law, we have

2

2
L R

C
d q dq q

dtdt
� �  = 0   or   

2

2

R 1
L LC

d q dq
q

dtdt
� �  = 0

Writing    
2

2 2
2

R 1
2 and , it becomes   2 0

L LC
� �
 	 	
 �

d q dq
p p q

dtdt
…(1)

which is a linear differential equation with constant coefficients
S.F. is (D2 + 2pD + w2) q = 0

A.E. is D2 + 2pD + w2 = 0

D =
2 22 4 4

2

p p� # � 

 = 2 2p p� # �


(1) If p2 > w2, then solution is

q =
� � � �2 2 2 2

1 2

p p t p p t
c e c e

� � � � � � � �
�

=
2 2 2 2

1 2
p t p tpte c e c e� � � � �� � �	� �� �

=

2 2

2 2

R 1 R 1
R

LC LC4L 4L
2L

1 2

t t
t

e c e c e

� � � �
� � � �� 	 � 	� � 	 � 	
 � 
 �

� �
� �

	� �� �

q =

2 21 4L 1 4LR R R
2L C 2L C2L

1 2

� � � �
� � �� 	 � 	� 
 � 
 �

� �
� �	� �

t tt
e c e c e

If p2 < w2, then D = 2 2� # 
 �p i p  = a ± ib type

a = – p, b = 2 2p
 �

\ Solution is

q = � � � �2 2 2 2
1 2cos cospte c p t c p t� � � � � � �� �� �

=
R

2 22L
1 2

1 4L 1 4L
cos R sin R

2L C 2L C

t
e c t c t
� � � � � �

� � �� �	 
 	 
� � � �� �� �
It p2 = w2, then both roots of (1) are equal and each = – p

C

R L
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Then solution is

q = (c1 + c2t) e– pt = (c1 + c2t) 
R

2L
t

e
�

��+�'��������	�������������
��
�����	���	����������������(�
��)*

Consider an electrical circuit consisting of induction L, capacitance C and resistance R, which contains an
alternating e.m.f. k cos nt.

Let q be the charge and i the current in the circuit at any time t. The voltage drop across L, C and R are

respectively L , , R
C

di q
i

dt
, which are same as 

2

2
L , , R

C

d q q dq

dtdt
 as i = 

dq

dt

By Kirchhoff’s Law we have

L R
C

di q
i

dt
� �  = k cos nt …(1)

or
2

2
L R

C

d q dq q

dtdt
	 	  = k cos nt

or
2

2

R

L LC

d q dq q

dtdt
	 	  =

cos

L

k nt

Writing
R

L
 = 2p, 

1

LC
 = 2 and E

L
� �

k

2
2

2
2

d q dq
p q

dtdt
	 	 
  = E cos nt …(2)

which is a linear differential equation with constant coefficients

S.F. is (D2 + 2pD + w2) q = E cos nt

A.E. is D2 + 2pD + w2 = 0

\ D =
2 2

2 22 4 4

2

p p
p p

� # � 

� � # �


C.F. =
� � � �2 2 2 2

1 1

p p t p p t
c e c e

� � � � � � � �
�  if p2 > w2

or C.F. =
� � � �2 2 2 2

2 2
1 2 if

p t p tpte c e c e p
� � � � �� � 

� $ �� �
� �� �

or  C.F. = 2 2 2 2 2 2
1 2cos sin if� � �
 � 	 
 � %
� �� �

pte c p t c p t p

or C.F. =  (c1 + c2t) e– pt if p2 = w2 …(3)

P.I. = 2 2

1
E cos

D 2 D
nt

p	 	 

Put  D2 = – n2

=
2 2

1
E cos

2 D
nt

n p� 	 	 

 = 

2 2

1
E cos

2 D ( )
nt

p n	 
 �

k ntcos

C R L
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=
2 2

2 2 2 2 2

2 D ( )
E cos

4 D ( )

p n
nt

p n

� 
 �
� 
 �

Put  D2 = – n2

=
2 2

2 2 2 2 2

2 D (cos ) ( ) cos
E

4 ( )

p nt n nt

p n n

� 
 �
� � 
 �

= 
2 2

2 2 2 2 2

2 sin ( ) cos
E

4 ( )

pn nt n nt

p n n

� � � �
� � � � �� �

=
2 2

2 2 2 2 2

2 sin ( ) cos
E

4 ( )

	 
 �
	 
 �

pn nt n nt

p n n

For simplification put 2pn = r sin f and w2 – n2 = r cos f

\  r2 = 4p2n2 + (w2 – n2)2 and tan f = 2 2

2 pn

n
 �

\  P.I. =
2

sin sin cos cos
E

r nt r nt

r

� � �
 = � �

E
cos nt

r
� �

= 1
2 22 2 2 2 2

E 2
cos tan

4 ( )

pn
nt

np n n

�� �
�� �
 �	 
	 
 �

…(4)

\ Solution of (1) is

q = C.F. + P.I.

Substitute the value of C.F. and P.I. from (3) and (4) respectively.

����������	
�
����
�

Example 1. The voltage V and the current i at a distance x from the sending end of the transmission line

satisfy the equations 
dV

dx
�  = 

di
Ai ;

dx

�
 = BV, where A, B are constants. If V = V0 at the sending end

(x = 0) and V = 0 at the receiving end (x = l), then show that V = 
� �� ��& &

� �
& &�  

0

sinh n l x
V

sinh n l
, where n2 = AB.

(P.T.U., May 2010)

Sol.  Given equations are

Vd

dx
�  = A ;

di
i

dx
�  = BV

fi i =
2

2

1 V

A
�

d

dx

1 V

A

d d

dx dx
� �' � �� �	 


 = BV

or
2

2

1 V

A

d

dx
 =

2

2

V
BV or ABV

d

dx
�  = 0

or
2

2
2

V
V

d
n

dx
�  = 0 (given AB = n2)

which is a linear differential equation with constant coefficients
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\ Its Auxiliary equation is

D2 – n2 = 0 \ D = ± n

Its solution is V = c1enx + c2e– nx ...(1)

When x = 0, V = V0, then from (1) V0 = c1 + c2

When x = l, V = 0, then 0 = c1enl + c2e– nl

Solve the equations for c1 and c2, we get

c1 = 0V nl

nl nl

e

e e

�

��
�

, c2 = 0V nl

nl nl

e

e e��

= 0V

2 sinh

�

�
nle

nl
= 0V

2 sinh

nle

nl

Substituting the values of c1 and c2 in (1)

V = 0V
. .

2 sinh
� �� �� 	� �

nx nl nx nle e e e
nl

 = 
� � � �0V

2 sinh
� � �� �� 	� �� �

n l x n l x
e e

nl

=
� � � �0V

2 sinh
� � �� ��� �� �

n l x n l x
e e

nl
 = � �0V

2 sinh
2 sinh

�n l x
nl

Hence V =
� �0V sinh

.
sinh

n l x

nl

�

Example 2. Show that the frequency of free vibrations in a closed electrical circuit with inductance L

and capacity C in series is  
�

30

LC
 per minute. (P.T.U., Dec. 2001, May 2010)

Sol.  Let  i  be the current and q  the charge in the condenser plate at any time t. The voltage drops across

L and C are 
2

2
L L and

C
di d q q
dt dt

�   respectively

Since there is no e.m.f. in the circuit   �   by Kirchhoff’s Law

2 2

2 2

1
L 0 or

C LC
d q q d q

dt dt
� � �  q = 0

Writing 21

LC
��   we have    

2 2
2 2

2 2
0 or�� � � ��

d q d q
q q

dt dt

It represents oscillatory current with period  T = 
2 2

2 LC
1

LC

� �
� � �

�

� Frequency  = 
1
T

 per second = 
60

2 LC�
 per minute = 

30

LC�
 per minute.
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Example 3. An electric circuit consists of an inductance of 0�1 henry, a resistance of 20 ohms and a

condenser of capacitance 25 micro-farads. Find the charge q and the current i at any time t, given that at

t = 0,  q = 0�05 coulomb,  i = 
dq
dt

= 0  when  t = 0.

Sol. The differential equation for the circuit can be written as  
2

2
L R

C
d q dq q

dtdt
� �  = 0

or
2

2 6
0.1 20

25 10

d q dq q

dtdt �� �
(

 = 0 [  �   1 micro-farad = 10–6  farads]

or          
2

2
200

d q dq
dtdt

�  + 400,000 q = 0 …(1) �� 7

1 10000000

2525 10� �
�

 = 400,000

Its A.E. is               D2 + 200D + 400,000 = 0

                
200 1560000200 40000 1600000

D
2 2

� # �� # �
� �

= 
200 200 39

100 100 39
2

� #
� � #

i
i

� Its solution is  q = � � � �100
1 2cos 100 39 sin 100 39� � ��� �

te c t c t …(2)

Differentiating w.r.t. t,  we have  � � � �100
1 2100 cos 100 39 sin 100 39� � 	� � �
 �

tdq
e c t c t

dt

+ � � � �100
1 2100 39 sin 100 39 100 39 cos 100 39� � �� �� �

te c t c t …(3)

Since                  q = 0�05   when  t = 0,    �    From (2),   c1 = 0�05

Also,                0
dq
dt

�   when  t = 0,   �    From (3),  0 = – 100 c1 + 2100 39 c

or                        c2 = 1 0.05
0.008

39 39

c
� �

Hence                     q = � �100 0.05cos(624.5 ) 0.008sin (624.5 )te t t� �

and                   i = � � � �100
1 2 1 2100 39 cos (624.5 ) 39 sin (624.5 )� � 	� � � � �
 �

tdq
e c c t c c t

dt

 = 1000.32 sin (624.5 )te t�� . � �2 139 �� c c

Example 4. Solve the differential equation  
di 1

L i dt
dt C

� �  = 0, which means that self inductance and

capacitance in a circuit neutralize each other. Determine the constants in such a way that  i0  is the

maximum current and i = 0   when t = 0. (P.T.U., Dec. 2011)

Sol.
1

L
C

di
i dt

dt
� �  = 0
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Differentiate  
2

2
L

C
d i i

dt
�  = 0   or      

2

2 LC
d i i

dt
�  = 0

which is linear differential equation with constant coefficients

�      A.E. is 2 1
D 0

LC
� �      

1
D

LC
) � #i

  Its solution is

                  i = 1 2
1 1

cos sin
LC LC

c t c t�

When                    t = 0,  i = 0   fi  c1 = 0   �   i = 2

1
sin

LC
c t …(1)

Now, Max value of  i = i0. Also 
1

sin
LC

t  has max value 1

�                  i0 = c2   �    From (1)  solution is  i = i0 
1

sin
LC

t .

Example 5. An uncharged condenser of capacity C is charged by applying an e.m.f. E 
t

sin
LC

,

through leads of self-inductance L and negligible resistance. Prove that at time t, the charge on one of the

plates is 
� �

�� �
� �

EC t t t
sin cos

2 LC LC LC
.

Sol.  Let q  be the charge on the condenser at any time t. The differential equation for the circuit is

         
2

2

1
L E sin

C LC

d q q

dt
� � …(1)

Its A.E. is   2 1
LD

C
�  = 0   or    D2 = 

1

LC
�  so that  D = 

LC

i
#

C.F. = 1 2cos sin
LC LC

t t
c c�

and P.I. = 
2

1
E sin

1 LCLD
C

t

�

Put D2 = – 
1

LC
 ; Case of failure

� P.I. = 
1 E

E . sin LC cos
2LD 2LLC LC

� �
� �� �	 


t t t
t  = 

E C
cos

2 L LC
�

t t

� The complete solution of (1) is  q = 1 2
E C

cos sin cos
2 LLC LC LC

t t t t
c c� � …(2)

Initially, when t = 0,  q = 0   �   c1 = 0

Differentiating (2) w.r.t. t
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                          1 2 E C
sin cos cos sin

2 LLC LC LC LC LC LC LC

� �
� � � � �� �

� �

c cdq t t t t t

dt

Initially,                   0
dq

i
dt

� �   when  t = 0

�      2 E C
0

2 LLC

c
� �    or    c2 = 

EC
2

.

Substituting the values of c1 and c2 in equation (2), the charge q on the condenser plate, at any time t, is

given by  q = 
EC E C EC

sin cos or  sin cos
2 2 L 2LC LC LC LC LC

� �
� � �� �

� �

t t t t t t
q .

Example 6. In an L-C-R circuit, the charge q on a plate of the condenser is given by

2

2

d q dq q
L R

dt Cdt
� �  = E sin wt, where i = 

dq
dt

. The circuit is turned to resonance so that

w 2 =
1

LC
.  If  R2 < 

4L
C

 ;     q = 0 = i.

when t = 0,  show that  2

2

Rt

LE R
q cos t e cos pt sin pt

R Lp

�� 	� 
� �� � � � �� �� � �� �
 �

and 21 �� 	
� �� � �
� �
 �

Rt

LE
i sin t e sin pt

R p LC
, where  p2 = 

2

2

1 R
–

LC 4L
. (P.T.U., Jan. 2010, Dec. 2013)

Sol.  The given differential equation is   
2

2
L R

C
d q dq q

dtdt
� �  = E sin wt

or 2 1
LD RD Esin

C
� �� � � �� �	 


q t ,  where  D = 
d
dt

…(1)

Its A.E. is   LD2 + RD + 
1
C

 = 0  so that   

2 24L 4L
R R R R

C CD
2L 2L

� # � � # �
� �

i
, since R2 < 

4L
C

= 
2

2

R 1 R R

2L LC 2L4L

�
� # � �i  ± ip,  since  

2

2

1 R

LC 4L
�  = p2

Its C.F. = � �
R

2L
1 2cos sin

t

e c pt c pt
�

�

and P.I. = 
2

1
1

LD RD
C

� �

 E sin wt

= 
2

1 E 1
E  . sin . sin

1 R D
L RD

C

t t� � �
� � � �

,  since  w2 = 
1

LC
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= 
E

R
�

�
 cos wt

� The complete solution of equation (1) is

    q = � �
R
2L

1 2

E
cos sin cos

R

t

e c pt c pt t
�

� � �
�

…(2)

Initially, when  t = 0,  q = 0   �    c1 = 
E

R�
Differentiating (2) w.r.t. t

� � � �
R R

2L 2L
1 2 1 2

R E
sin cos cos sin sin

2L R

� �
� � � � � � �

t t
dq

e pc pt pc pt e c pt c pt t
dt

Initially, when  t = 0,  
dq
dt

 = i = 0

� pc2 – 1 2

R R E E
0 or .

2L 2 L R 2 L
c c

p p
� � �

� �

Substituting the values of c1 and c2 in equation (2),  we get

q =
R

2L E E E
cos sin cos

R 2 L R

� � �
� � �� �� � �	 


t

e pt pt t
p

or q =
R
2LE R

cos cos sin
R 2L

�� 	� 
� �� � � �� �� � �� �
 �

t

t e pt pt
p

…(3)

Differentiating (3) w.r.t. t

   
R R

2L 2LE R R R
sin cos sin sin cos

R 2L 2L 2L

� �� �� � � �� �� � � � � � � �� �� � 	 
� 	 
� �� �

t t
dq

t e pt pt e p pt pt
dt p

or       
R R2 2 2 2
2L 2L

2 2

E R E R 4L
= sin sin sin . sin

R R4L 4L

� �� 	 � 	�  �
� � � �� � � � � � � �� �� �� �� � � �
 � 
 �

t t
p

i t e p pt t e pt
p p

=
R 2 2 2
2L

2

E 1 R 4L 1
sin sin , since

R LC LC4L

t
p

t e pt
p

�� 	 �
� �� � �

�� �
 �

=
R
2LE LC

sin . sin
R LC

�� 	
� �� �
� �
 �

t

t e pt
p

,  since  w2 = 
1

LC

or i  =
R
2LE 1

sin sin
R LC

�� 	
� �� �
� �
 �

t

t e pt
p

.



APPLICATION OF ORDINARY DIFFERENTIAL EQUATIONS 133

Example 7.  A constant E (e.m.f.) at c = 0  is applied to a circuit consisting of an inductance L, resistance

R and capacitance C in series. The initial values of the current and the charge being zero, find the current

at any time t, if  CR2 < 4L. Show that the amplitudes of the successive vibrations are in geometrical

progression.

Sol.  The differential equation for the circuit is

      
2

2
L R

C
d q dq q

dtdt
� �  = E

S.F. is  2 1
LD RD

C
� �� �� �	 


 q = E

A.E. is   LD2 + RD + 
1
C

 = 0   �   D = 

2 4L
R R

C
2L

� # �

Given  R2 < 
4L
C

   � D =  – 
2

2

R 1 R

2L LC 4L
# �i

D =
R

2L
� � i p , where   p2 = 

2

2

1 R

LC 4L
�

C.F. =
R
2L

1 2cos sin
t

e c pt c pt
�

� ��� �

P.I = 0.

2 2

1 1
E E

1 1
LD RD LD RD

C C

�
� � � �

te   put  t = 0

= 0E
EC

1
C

� �te

� C.S. is q =
R

2L
1 2cos sin EC

�
� �� �� �

t

e c pt c pt

Now, when t = 0,  q = 0   �  0 = c1 + EC

� c1 = – EC

� q =
R

2L
2ECcos sin EC

�
� � �� �� �

t
e pt c pt

Now,  i = 
R R

2L 2L
2

R
EC sin cos

2L

� �
� � �� �� �

t tdq
e p pt c p pt e

dt
[ – EC cos pt + c2 sin pt]

When  t = 0,   i = 0

� 0 = 2
R

EC
2L

c p�    �    c2 = 
REC

2Lp
�
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� i = 
R R
2L 2L

REC R REC
E C sin cos E cos sin

2L 2L 2LP
t t

e p pt pt e pt pt
� �� � � �� � � �� � � �� � � �

i = 
R 2
2L

2

REC REC R EC
EC sin cos cos sin

2L 2L 4L

t
e p pt pt pt pt

p

� � 	
� � �� �


 �

i = 
R R2 2
2L 2L

2 2

R EC R
EC sin sin EC sin

4L 4L

t t
e p pt pt e p pt

p p

� �� 	 � 	
� � �� � � �


 � 
 �

= 
R2 2 2
2L

2

4L R
EC sin

4L

tp
e pt

p

��

Substituting the values of  p2

= 
R2

2 2 2L
2 2

EC 1 R
4L R sin

LC4L 4L

t
e pt

p

� �� �
� � �� �� �� 	� �� �

 = 
R

2L
2

EC 4L
sin

C4L

t
e pt

p

�� �
� �� �

� i = 
R

2LE
sin

L

t
e pt

p

�
, where amplitude of successive vibration is given by  

R

2LE

L

t
e

p

�
, which

decreases as t increases.

� Amplitudes are   
R R R

2 3
2L 2L 2L

E E E

LP LP LP
e e e
� � � � �

� � ��

which forms a G.P. series.

Example 8.  An e.m.f. E sin pt is applied at t = 0 to a circuit containing a capacitance C and inductance L.

The current i satisfies the equation 
di 1

L i dt
dt C

� �  = E sin pt. If  p2 = 
1

LC
 and initially the current i and the

charge q are zero, show that the current at time t is 
Et

sin pt
2L

,  where  i = 
dq
dt

.

(P.T.U., Dec. 2003, 2012, 2013, May 2012 )

Sol.      
1

L Esin
C

� ��di
i dt pt

dt

Substituting the value of  �
dq

i
dt

     
2

2

L 1
Esin

C
� ��

d q dq
dt pt

dtdt

or         
2

2

1
L Esin

C
� �

d q
q pt

dt

S.F.  is 2 1
LD

C
� ��� �	 


q = E sin pt
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A.E. is LD2 + 
1
C

= 0   �   D = ± 
1

LC
i  = ± i p, where   p = 

1

LC

C.F. = c1 cos pt + c2 sin pt

P.I. = 
2

1
E sin

1
LD

C

pt
�

   Put  D2 = – p2

= 
2

1
1

L
C

p� �
 E sin pt = 2

ECsin

1 LC

pt

p�
     But   p2 = 

1
LC

� Case of failure

� P.I. = E sin
2LD

t
pt [Multiply by t and differentiate the denominator]

= E cos E cos
.

2L 2L
t pt t pt

p p
�

� �

� C.S. is  q = c1 cos pt + c2 sin pt – 
E cos

2 L
t pt

p

When t = 0,  q = 0   �   0 = c1

� q = c2 sin pt – 
E cos

2L
t pt

p

i = � �2
E

cos sin cos
2L

dq
c p pt t p pt pt

dt p
� � � �

t = 0,  i = 0

� 0 = c2 p – 
E

2Lp
   �     c2 = 

2

E

2Lp

� i = 2

E E E
cos sin cos

2 2L2L

t
p pt pt pt

p pp
� �

� i = 
E

sin
2

t
pt

p
.

Example 9. In an L-C-R circuit, the charge q on a plate of a condenser is given by  
2

2

d q dq q
L R

dt Cdt
� �

= E sin pt. The circuit is turned to resonance so that  2 1
p

LC
� .  If initially the current i and the charge q

be zero, show that, for small values of 
R
L

, the current in the circuit at time t is given by  
Et
2L

 sin pt.

(P.T.U., May 2010)

Sol.  Given differential equation is
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2

2
L R

C
d q dq q

dtdt
� � = E sin pt

S.F. is  2 1
LD RD

C
� �� �� �	 


q  = E sin pt

A.E. is  LD2 + RD + 
1
C

 = 0

� D = 
2

2

2

4L
R R

R R 1C
2L 2L LC4L

� � �
� � � �

D = 
R 1

2L LC
� # �    �     

R
L

  is small    �     
2

2

R

L
  is neglected

= 
R

2L
� # i p    �     p2 = 

1
LC

� C.F. = 
R

2L
1 2cos sin

t
e c pt c pt
�

�� �� �

P.I. = 
2

1
1

LD RD
C

� �

 E sin pt    Put   D2 = – p2

= 
2

1
1

L RD
C

p� � �
 E sin pt

= 
1 1 E cos

E sin E sin .
1 1 RD RL RD

LC C

pt
pt pt

p

�
� �

� � �

C.S. is  q = � �
R

2L
1 2

E
cos sin cos

R

t
e c pt c pt pt

p

�
� �

Now, 
R 2
2L

R 1 R
= 1

2L 2! 2L

� � � � �� � � �� � � �	 
 	 

t

e t t  + …….. 2 31 1
Using 1

2 3
xe x x x�� �� � � � � *� �� �

��

= 
R

1
2L

t�          �      
R
L

  is small

�      q = � �1 2
R E

1 cos sin cos
2L R

t c pt c pt pt
p

� �� � �� �	 


When  t = 0,  q = 0   �    0 = c1 – 
E
Rp    �     c1 =

E
Rp

�    q = 2
R E E

1 cos sin cos
2L R R

t pt c pt pt
p p

� �� �� � �� � � �	 
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     i = 2 2
R E R E E

1 sin cos cos sin sin
2L R 2L R R

dq
t p pt c p pt pt c pt pt

p pdt
�

� � � �� �� � � � � �� � � � � �	 
 	 
 	 


t = 0, i = 0 � 0 = 2
E

2L
c p

p
� i.e., c2 = 2

E

2L p

�     i = 
2

R E E R E E E
1 sin cos cos sin sin

2L R 2L 2L R R2L

� �� �� �� � � � � � � �� �	 
  �� � � �
t pt pt pt pt pt

p p p

= 
2

E E E ER E
sin cos sin cos cos

R 2L 2L 2L4L

t t
pt pt pt pt pt

p pp
� � � � � – 2 2

ER E
sin sin

R4L
pt pt

p
�

= 2 2 2

E ER ER
sin cos sin

2L 4L 4L

t t
pt pt pt

p p
� �

= 
E

sin
2L

t
pt      �      

R
L

  is small

Hence   i = 
E
2L

t
 sin pt.

�
�������������
��


1. The differential equation for a circuit in which self inductance and capacitance neutralize each other is 
2

2
L

C
d i i

dt
�  = 0.

Find the current i as a function of t, given that I is the maximum current and i = 0  when t = 0. (P.T.U., Dec. 2011)

[Hint: Consult S.E. 4]

2. A condenser of capacity C discharged through an inductance L and resistance R in series and the charge q at time

t satisfies the equation 
40

log log10
4

�  = 0. Given that  L = 0�25 henries, R = 250 ohms , C = 2 ¥ 10–6 farads and

that when t = 0, charge q is 0�002 coulombs and the current 
dq
dt

 = 0,  obtain the value of q in terms of t.

3. If an e.m.f. E sin wt  is applied to a circuit containing a resistance R, an inductance L and a condenser of capacity C,

the charge on the condenser at time t satisfies the equation 
40

log log10
4

� = E sin wt. If R = 2 LC ,  solve the

differential equation for q.

4. A circuit consists of an inductance L and condenser of capacity C in series. An alternating e.m.f. E sin nt is

applied to the circuit at time t = 0,  the initial current and the charge on the condenser being zero. Prove that the

current at time t is  i = 
� �2 2

E

L

n

n � �
 (cos wt – cos nt,  where  CLw2 = 1). Prove also that if  n = w, the current

at time  t is  
E sin

2L
t t�

.

5. An alternating e.m.f. E sin pt is applied to circuit at t = 0. Given the equation for the current i as

2

2
L R

C
d i di i

dtdt
� �  = p E cos pt,  find the current i when

(i) CR2  > 4L                (ii)   CR2 < 4L.
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����
��

1. i = I sin 
1

LC
2. q = e– 500 t (0�002 cos 1323 t + 0�0008 sin 1323 t)

3. q = � �
� �

� �

2R
2L

1 2 22

1 CL sin 2 LC cos
EC

1 CL

t t t
c c t e

�
� �� � � � �� �� � � �
� �� �� �

5. (i)  i = Ae– at cosh (bt + g)

(ii)  i = A e– at cos (bt + g) + 
E

cos sin ( )
R

pt� � � , where

a = 
2R R 1

,
2L 2L CL

� � � �� + � � �� �� � �� �

f = 
2

1 1 CL
tan

CRP
p� � ��

� �
	 


.

���,����������������� (P.T.U., May 2005)

If a heavy particle is attached to one end of a light inextensible
string, the other end of which is fixed, and oscillates under gravity in
a vertical plane, then the system is called a simple pendulum.

Let O be the fixed point, l the length of the string and m, the
mass of the bob (heavy mass). Let P be the position of the bob at any
time t. Let arc AP = s and �AOP = q,  where OA is the vertical line
through O.

The forces acting on the bob are:

(i) its weight mg acting vertically downward

(ii) the tension T in the string.

The components of weight along and perpendicular to the path of motion are mg sin q and mg cos q
respectively. The component mg cos q is balanced by the tension in the string.

� The equation of motion of the bob along the tangent is  m 
2

2

d s

dt
 = – mg sin q

or
2

2

( )�d l

dt
= – g sin q ( �   s = lq)

or                        
2 3

2
sin .......

3!

� �� �
� � � � � � � � � � �� �	 


d g g g

l l ldt
  to a first approx.

or          
2

2
2

0
�
�� � �

d

dt
,   where  w2 = 

g
l

Its A.E. is  D2 + w2 = 0,   whence  D = ± iw.

� Its solution is  q = c1 cos wt + c2 sin wt

or q = 1 2cos sin
g g

c t c t
l l

�

B
P

T

O

l

D

s

A

mg sin q

mg

mg cos q

q

q
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The motion of the bob is simple harmonic and the time of an oscillation is  
2

2
�
� �

�
l

g
.

The motion of the bob from one extreme position B to the other extreme position B� is called a beat or a
swing.

� The time of one beat = 
1
2

 (time of one oscillation) = p 
l
g .

A simple pendulum which beats once every second is called a second’s pendulum. Thus a second’s
pendulum beats 86400 times a day, the number of seconds in 24 hours.

Since the time for one beat in a second’s pendulum is 1 second, taking  g = 981 cm/sec2,  we have

1 = 2

981
or

981
� �

�
l

l   = 99.4 cm

Hence the length of a second’s pendulum is  99.4 cm.

������#����
	��
���
�������

Let a simple pendulum of length l make n beats in a time t,  so that

t = �
l

n
g

   or   n = 
�
t g

l

Taking logs,        
1

log log
2

� �� �� �	 
�
t

n  ◊ (log g – log l)

Taking differentials on both sides, we get   
1

2

� �
� �� �	 


dn dg dl

n g l
  or   dn = 

2

� �
�� �	 


n dg dl

g l

which is the change in the number of beats.

If only g changes,  l remaining constant, then  .
2

�
n dg

dn
g

(�   dl = 0)

If only l changes,  g remaining constant,  then  .
2

� �
n dl

dn
l

.

����������	
�
����
�

Example 1. Find how many seconds a clock would lose per day, if the length of its pendulum were
increased in the ratio  900 : 901?

Sol.  Let l  be the original length and l + dl,  the increased length of the pendulum, then

                    
900

901
�

�
l

l dl
   or    

901

900

�
�

l dl

l

�                           
901 1

1
900 900

� � �
dl

l

Let  n  be the number of beats per day, then  n = 86400.

If dn  is the change in the number of beats, then  dn = 
86400 1

.
2 2 900

� � � (
n dl

l
 = – 48.
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Since  dn is negative, the clock will lose 48 seconds per day.

Example 2. A pendulum oscillating seconds at one place is taken to another place where it loses
2 seconds per day. Compare the accelerations due to gravity at the two places. (P.T.U., Jan. 2009)

Sol. Let g be the acceleration due to gravity of the pendulum which beats once every second at one place
and g + dg be the acceleration when pendulum loses 2 seconds per day at another place

\ n = 86400 seconds only and dn = – 2

We know
dn
n

 =
1
2

dg
g

\
2

2
86400

� (  =
dg
g

\
g

dg
 =

21600
1

�

g
g dg�

 =
21600 21600

21600 1 21599
�

�
� �

Hence the required ratio of the accelerations due to gravity at the two places is 21600 : 21599.

Example 3. A pendulum of length l hangs against a wall inclined at an angle q to the horizontal. Show

that the time of complete oscillation is 
l

2
g sin

�
�

.

Sol.  Let the position of the bob of mass m, at any time t,  be P and O be the point of suspension so that
OP = l  and  �AOP = a,  where  OA is the line of greatest slope through O.

�

O

�

l

A

s

m
g

si
n

si
n

�

�

mg sin �

P

T
�

m
g

sin
�

�

mg

�

�

2
P

mg sin � �cos

The component of weight of the bob along the plane is mg sin q. The equation of motion of the bob along

the tangent at P is  
2

2

d s
m

dt
 = – mg sin q sin a.

                 
2 3

2

( )
sin

3!

� �, ,
� � � , � �� �	 


�

d l
g

dt

or                      
2

2
sin .� � � �

d a
l g

dt
  to a first approx.

or                       
2 2

2
2 2

sin
or

d g d

ldt dt

� � �
� �  � � �� � ,   where   w2 = 

sin�g

l

� The motion of the bob is simple harmonic and the time of one oscillation = 
2

2
sin

�
� �

� �
l

g
.
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1. A pendulum gains 10 seconds at one place and is taken to another place where it loses 10 seconds per day.
Compare the accelerations due to gravity at the two places.

2. A clock with a second’s pendulum is gaining 2 minutes a day. Prove that the length of the pendulum must be
increased by 0�28 cm to make it go correctly.

3. Calculate the number of beats lost per day by a second’s pendulum when the length of the string is increased

by 
1

10,000  of itself.

4. If a pendulum clock loses 9 minutes per week, find in mm, what change is required in the length of the
pendulum in order that the clock may keep correct time ?

5. A clock is taken from one place on the earth’s surface to another. If the value of g is thus increased by one per
cent, find what increase must be made in the length of the pendulum in order that the clock may keep correct
time?

6. A pendulum whose length is l makes m oscillations in 24 hours. When its length is slightly altered, it makes

m + n oscillations in 24 hours. Show that the diminution in length is 
2nl
m

 nearly.

7. A second’s pendulum was too long on a day by a quantity k, it was then over corrected next day so as to become

too short by k. Prove that the number of minutes gained in these two days is 1080 
2

2

k

l
, where  l is the true length

of the pendulum.

8. A pendulum of length l has one end of the string fastened to a peg on a smooth plane inclined to horizon to an angle q.
With the string and the weight on the plane, its time of oscillation is t seconds. If the pendulum of length l�

oscillates in one second when suspended vertically, prove that q = 1
2

sin
l

l t
� � �

� �� ��
.

9. If l1  be the length of an imperfectly adjusted second’s pendulum which gains n seconds in one hour and l2, the
length of one which loses n seconds in one hour, at the same place, show that the true length of second’s pendulum

is  1 2

1 2 1 2

4

2

l l

l l l l� �
.

10. A simple pendulum has a period T. When the string is lengthened by a small fraction 
1
n

 of its length, the period

becomes T�. Show that approximately 
� �2 T T1

Tn
��

� .

11. A simple pendulum of length l is oscillating through a small angle q in a medium in which the resistance is
proportional to the velocity. Find the differential equation of its motion. Discuss the motion and find the period
of oscillation. [Hint: Consult art. 5.3 (ii) for oscillating motion]

12. The differential equation of a simple pendulum is  
2

2
0 02

F sin
d x

x nt
dt

� � � ,  where  w0  and F0  are constants. If

initially  x = 0,  
dx
dt

 = 0,  determine the motion when  w0 = n.
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����
��

1. 4321 : 4319 2. 1�7 mm 5. 1%

11.
2

2
2

d d
p

dtdt

� �
�  + wq = 0,  where  2p = ,

g
m l
�

� � .

Motion is oscillatory when  p < w  and period = 
2 2

2

p

�

� �

12. x = � �0
2

F
sin cos

2
nt nt nt

n
� .

����� �������
��
�������

Consider a uniform beam as made up of fibres running lengthwise.
When the beam is deflected, the fibres in some region are elongated
and those in some region are contracted. In between these two, there
is a region of the beam where the fibres are neither compressed nor
stretched. This region is called the neutral surface of the beam and the
curve of any particular fibre in this surface is called the elastic curve or
deflection curve of the beam. The line in which any plane section of the
beam cuts the neutral surface is called the neutral axis of that section.

Consider a cross-section of the beam cutting the elastic curve in P
and the neutral surface in the line AB, the neutral axis of this section.

P

A

O Elastic curve

y

x

B

(x, y)

It is well-known from the mechanics of structure that the forces above and below the neutral surface
acting in opposite directions have a tendency to restore the beam to its original position ; creating an interval

bending moment M given by 
EI
R

,

where E = modulus of elasticity of the material of the beam

I = moment of inertia of the cross-section of the beam about the neutral axis AB

R = radius of curvature of the elastic curve at P (x,  y).

Now,                            

3
2 2

2

2

1

R

dy

dx

d y

dx

� �� ��� �� �	 
� �� ��

S TR E TC H E D  F IB R E

E LA S T IC  C U R V E

C O M PR E S S E D  F IB R E

X

Y
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If the deflection (slope) of the beam is small, 
2

� �
� �	 


dy

dx
 is very small and can be neglected, so that

R = 
2

2

1

d y

dx

Thus, M = 
2

2
EI

d y

dx
. . .(1)

which is the differential equation of the elastic curve.

Note 1.  The moment M with respect to AB of all external forces acting on either of the two segments into which

the beam is separated by the cross-section is independent of the segment considered.

Note 2.  The amount M is the algebraic sum of the moments of the external forces acting on the segment of the beam

about the line AB. The upward forces give positive moments and the downward forces give negative moments.

�������
����	��
�����
��

The general solution of the differential equation (1) will contain
two arbitrary constants which, in any particular problem, are to be
determined from the boundary (or end) conditions given below :

(i) End freely supported.  At the freely supported end O,
there is no deflection of the beam, so that  y = 0. Also there is no

bending moment at this end, so that  
2

2

d y

dx
 = 0.

(ii) End fixed horizontally. At the end fixed horizontally, the
deflection and the slope of the beam are zero.

� y = 0   and   
dy
dx

 = 0.

(iii) End perfectly free.  At the free end A in the above figure,
there is no bending moment or shear force, so that

      
2 3

2 3
0 and     �

d y d y

dx dx
 = 0.

����������	
�
����
�

Example 1. The deflection of a strut of length l with one end (x = 0) built in and the other supported and

subjected to end thrust P, satisfies the equation  ( )
2 2

2
2

d y a R
a y 1 x

Pdx
� � � .  Prove that the deflection curve is

� �� � � �� �	 

R sin ax

y l cos ax l x
P a

, where al = tan al.

Sol.  The given equation is   
2 2

2
2

R
( )

P
� � �

d y a
a y l x

dx

x P ( )x , yO

Y

X

y

P ( )x , y

Y

X

A

O
y
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or (D2 + a2) y = 
2R

( )
P

�
a

l x …(1)

Its A.E. is     D2 + a2 = 0   so that  D =  ia
� C.F. = c1 cos ax + c2 sin ax  and

 P.I.  = 
2

2 2

1 R
( )

PD
�

�
a

l x
a

 =
12 2

22
2

2

R 1 R D
( ) 1 ( )

P PD
1

a
l x l x

a
a

a

�
� �

� � � � �� �� � 	 

�� �	 


 = 
2

2

R D R
1 ....... ( ) ( )

P P
l x l x

a

� �
� � � � �� �	 


� The complete solution of (1) is  y = c1 cos ax + c2 sin ax + 
R
P

 (l – x) …(2)

Differentiating (2) w.r.t. x         1 2
R

sin cos
P

� � � �
dy

ac ax ac ax
dx

…(3)

Since the end O is build in, y = 0 and
dy
dx

= 0  at x = 0

� From (2), 0 = c1 + 
R
P
l

fi c1 =
R

P
�

l

From (3), 0 = ac2 – 
R
P

fi c2 =
R
Pa

Substituting the values of  c1 and c2 in (2),  we have  y = 
R sin

cos
P

� �� � �� �	 

ax

l ax l x
a

…(4)

which is the equation of the deflection curve.
Also, at the end A, y = 0  when  x = l.

� From (4), 0 = 
R sin

cos
P

� ��� �	 

al

l al
a

or
sin al

a
 = l cos al   �    al = tan al.

Example 2. A light horizontal strut AB of length l is freely pinned at A and B and is under the action of
equal and opposite compressive forces P at each of its ends and carries a load W at its centre.

Prove that the deflection at the centre is  
W 1 nl l

tan
2P n 2 2

� ��� �	 

,  where  n2 = 

P
EI

.

Sol.  At each end there is a vertical reaction 
W
2

. At any point Q (x, y) of the beam, the internal bending

moment is EI 
2

2

d y

dx
 and this must be equal to the moment of external forces taken to the left (or right) of the

section QQ�.

� The differential equation for the elastic curve of the beam is EI 
2

2

W
P

2
� � �

d y
x y

dx
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or  
2

2

P W

EI 2EI

d y
y x

dx
� � �

or  
2 2

2
2

W

2P

d y n
n y x

dx
� � � …(1)   2P

EI
n

� ��� �	 

�

Its A.E. is  D2 + n2 = 0  so that  D = ± in.

� C.F. = c1 cos nx + c2 sin nx   and

P.I. = 

12 2 2

2 2 22
2

2

1 W W 1 W D
. 1

2P 2P 2PD D
1

n n
x x x

n n
n

n

�
� � � �
� � � � � �� � � �� �� 	 
 	 


�� �	 


= 
2

2

W D W
1 ......

2P 2P

x
x

n

� �
� � � � �� �	 


� The complete solution of (1) is  y = c1 cos nx + c2 sin nx – 
W
2P

x …(2)

Differentiating (2) w.r.t. x ;    1 2
W

sin cos
2P

dy
nc nx nc nx

dx
� � � � …(3)

At the end A, x = 0,    y = 0, from (2),    c1 = 0

� At x = 
2
l

,
dy
dx

= 0.

� From (3), 0 = 2

W
cos

2 2P
nl

nc � (  �    c1 = 0)

or c2 = 
W

2P cos
2
nl

n

Substituting the values of c1 and c2 in (2),  we have

                    y = 
W W W sin

sin or
2P 2P

2P cos cos
2 2

nx
nx x y x

nl nl
n n

� �
� �� � �� �
� �	 


Deflection at the centre = 
sinW W 12at tan

2 2P 2 2P 2 2cos
2

nl
l l nl l

y x
nl nn

� �
� �� � � �� � � � �� � � �� �	 
 	 
� �	 


.

�
�������������
��


1. Find the equation of the elastic curve and its maximum deflection for the horizontal, simply supported,
uniform beam of length 2l metres, having uniformly distributed load w kg/metre.

2. A horizontal strut of length l is clamped horizontally at one end and carries a vertical load W at the other end.

If the horizontal thrust be P, prove that the deflect on at the free end is 
W

(tan )
P

nl nl
n

� ,  where  n2 = 
P
EI

.

W
2

W
2

P

A

x Q�

Q
( )x, y

W

y

Y

B

P
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3. A long uniform strut of length l is clamped at one end, the other end being free. If a thrust P be applied at the
free end, at a distance ‘a’ from the neutral axis, prove that the deflection at the free end is a (sec nl – 1),  where

n2 = 
P
EI

.

4. A horizontal tie-rod is freely pinned at each end. It carries a uniform load w kg per unit length and has a
horizontal pull P. Find the central deflection and the maximum bending moment, taking the origin at one of its
ends.

5.  A horizontal tie-rod of length 2l with concentrated load W at the centre and ends freely hinged, satisfies the

differential equation 
2

2

W
EI P

2
d y

y
dx

� �  x. With conditions  x = 0,  y = 0  and  x = l, 
dy
dx

 = 0,  prove that the

deflection d and the bending moment M at the centre (x = l) are given by d = 
W

2Pn
 (nl – tanh nl)  and  M = 

W
2n

�

tanh nl,  where  n2 EI = P.

6. A light horizontal strut of length l is clamped at one end carries a vertical load W at the free end. If the horizontal

thrust at the free is P, show that the strut satisfies the differential equation EI 
2

2
( )P W( )

d y
y l x

dx
� - � � � ,

where  y is the displacement of a point at a distance x from the fixed end and d the deflection at the free end.

Prove that the deflection at the free end is given by  
W
Pn

 (tan nl – nl),  where  n2EI = P.

����
��

1. y = � �
4

3 4 3 5
4 8 ;

24EI 24EI
w wl

lx x l x� � .           4.  
2

2 2
sech 1 ; sech 1

2 8P 2P

w al wl w al

a a

� � � �� � �� � � �	 
 	 

.

������
�����
��
������

The fundamental principles involved in the problems of heat conduction are:
(a) Heat flows from a higher temperature to the lower temperature.
(b) The quantity of heat in a body is proportional to its mass and temperature.
(c) The rate of heat flow across an area is proportional to the area and to the rate of change of temperature

with respect to its distance normal to the area.
Thus if Q (cal/sec) be the quantity of heat that flows across a slab of area A (cm2) and thickness dx in one

second, with faces at temperatures T and T + dT, then by principle (3) ; Q =
T

– A
d

k
dx

, where k is the coefficient

of thermal conductivity and depends upon the material of the body.

����������	
�
����
�

Example 1. A pipe 20 cm in diameter contains steam at 150°C and is protected with a covering 5 cm

thick for which k = 0·0025. If the temperature of the outer surface of the covering is 40°C find the temperature

half-way through the covering under steady state conditions.

Sol. Let Q cal/sec be the constant quantity of heat flowing out radially through a surface of the pipe

having radius x cm and length 1 cm. Then area of this cylindrical surface A = 2px sq cm.
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Then Q = 
T T

KA K . 2� � � �
d d

x
dx dx

or dT = 
– Q

2 K�
dx

x

Integrating both sides ; T = 
Q

log C
2 K

� �
� e x given T = 150° when x = 10 cm.

� 150 = 
Q

log 10 C
2 K

� �
� e …(1)

when T = 40, x = 15 we have

40 = 
Q

log 15 C
2 K

� �
� e …(2)

Subtracting  (2) from (1)

110 = � �
Q

. log 10 log 15
2 K e e� �
�

= 
Q 15 Q

log log 1.5
2 K 10 2 Ke e�
� �

…(3)

Let T = T1      when     x = 12.5

� T1 = 
Q

log 12.5 C
2 K

� �
� e …(4)

Subtracting (1) from (4)

  T1 – 150 = � �Q
. log 12.5 log 10

2 K e e�
�

� �

= 
110 12.5

log
10log 1.5

e
e

� [From (3)]

= 
log 1.25

110
log 1.5

e

e

�

� T1 = 
log 1.25

150 110 89.5 C
log 1.5

e

e

� � . .

Example 2. A long hallow pipe has an inner diameter of 10 cm and outer diameter of 20 cm. The inner
surface  is kept at 200°C and the outer surface at 50°C. The thermal conductivity is 0.12. How mach heat is
lost per minute from a portion of the pipe 20 metres long ? Find the temperature at a distance x = 7.5 cm from
the centre of pipe.

Sol. Here the isothermal surfaces are cylinders, the axis of each one
of them is the axis of the pipe. Consider one such cylinder of radius x cm
length 1 cm. The surface area of this cylinder is A = 2px sq cm.
Let Q cal/sec be quantity of heat flowing across this surface, then

Q = 
T T

A .2� � � �
d d

k k x
dx dx

or dT = 
Q

.
2

�
�

dx

k x

5
x

200°C

10

Q

50°C

dx

40°C 5cm

x
10

150°C

8x

direction of flow

dx
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Integrating, we have T = 
Q

log
2

� �
� e x c

k
…(1)

Since T = 200, when x = 5

� 200 = 
Q

log 5
2

� �
� e c

k
…(2)

Also, T = 50, when x = 10

� 50 = 
Q

log 10
2

�
� e c

k
…(3)

Subtracting (3) from (2), we have

150 = � �
Q

log 10 log 5
2

�
� e ek

or 150 = 
Q

log 2
2� ek

…(4)

� Q = 
2 150 300 0.12

163 cal/sec
log 2 log 2e e

k� ( � (
� �  (given k = 0.12)

Hence the heat lost per minute through 20 metre length of the pipe

= 60 ¥ 2000Q = 120000 ¥ 163 = 1956000 cal.   1 min = 60 seconds

Now, let T = t, when x = 7.5 and 20 m = 2000 cm.

From (1), t = 
Q

log 7.5
2

� �
� e c

k
…(5)

Subtracting (2) from (5), t – 200 = � �
Q

log 7.5 log 5
2

� �
� e ek

or t – 200 = 
Q

log 1.5
2

�
� ek

…(6)

Dividing (6) by (4), we have 
log 1.5200

150 log 2
e

e

t �
� �

or t = 200 – 150 ¥ 0.58 = 113

� When x = 7.5 cm, T = 113° C.

����������
�!������
��

���#

Newton’s law of cooling states that the temperature of a body changes at a rate which is proportional to

the difference in temperature between that of the surrounding medium and that of the body itself.

If T0 be the temperature of the surroundings and T that of the body at anytime t, then

Td

dt
= – k(T – T0), where k is the constant of proportionality.

Example 3. If the temperature of the air is 30°C and the substance cools from 100°C to 70°C in

15 minutes. Find when the temperature will be 40°C.
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Sol. Let the unit of time be minute and T the temperature of the substance of any instant t. Then by

Newton’s Law of cooling we have 
Td

dt
 = – k (T – 30)

or
T

T 30�

d
 = – k dt

Integrate log (T – 30) = – kt + C …(1)

Initially when t = 0, T = 100

� log 70 = C

Substituting the value of C in (1)

log (T – 30) = – kt + log 70 …(2)

Also, when t = 15, T = 70°

� log 40 = – 15k  + log 70

� 15 k = log 70 – log 40

Subtracting the value of k in (2)

log (T – 30) = � �– log 70 – log 40 log 70
15

�
t

� When   T = 40, we have

log 10 =
70

log log 70
15 40

� �
t

or
7

log
15 4

t
 = log 70 – log 10 = log 7

� t = 10

10

log 7log7
15 15 15(3.48) 52.20

7 7
log log

4 4

� � �

Hence temperature will be 40°C after 52.2 minutes.

Example 4. A body originally at 80°C cools down to 60°C in 20 minutes, the temperature of air being

40°C. What will be the temperature of  the body after 40 minutes from the original?

Sol.  Let T be the temperature of the body at any time t then by Newton’s Law of cooling

Td

dt
 = – k (T – 40)

or
T

T 40�
d

 = – kdt ; Integrate both sides

log (T – 40) = – kt + C …(1)
Initially when  t = 0, T = 80
� log 40  = C
Substituting the value  C in (1)

log (T – 40) = – kt + log 40 …(2)
when t = 20, T = 60°

�    From (2), log 20 = – 20 k + log 40
� 20 k = log 40 – log 20 = log 2

k =
1

log 2
20
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� From (2), log (T – 40) =
1

log 2. log 40
20

t� �

Now, when t = 40 min

log (T – 40) =
1

log 2 .40 log 40
20

� �

= – 2 log 2 + log 40 = – log 4 + log 40

=
40

log log10
4

�

� T – 40 = 10  � T = 50°C.

�
�������������
��


1. Calculate the amount of heat passing through 1 sq cm of a refrigerator wall, if the thickness of the wall is 6 cm and
the temperature inside the refrigerator is 0°C while outside it is 2°C. Assume k = 0.0002.

2. A pipe 10 cm in diameter contains steam at 100°C. It is covered with asbestos, 5 cm thick, for which k = 0.0006
and the outside surface is at 30°C. Find the amount of heat lost per hour from a metre long pipe.

3. A steam pipe 20 cm in diameter contains steam at 150°C and  is covered by a layer of insulation 5 cm thick. The
outside temperature is kept at 60°C. By how much should the thickness of the covering be increased in order
that the rate of heat loss should be decreased by 25% ?

4. Newton’s law of cooling states that the temperature of an object changes at a rate proportional to the difference
of a temperature between the object and the surroundings. Supposing water at a temperature 100°C cools to
80°C in 10 minutes,  in a room maintained at a temperature of 30°C, find when the temperature of water will
become 40°C. [Hint : Consult example 3]

5. Water at temperature 100°C cools in 10 minutes to 80°C in a room of temperature 25°C. Find (i) the temperature
of water after 20 minutes, (ii) the time when the temperature is 40°C.

6. If the air is maintained at 30°C and the temperature of the body cools from 80°C to 60°C in 12 minutes. Find
the temperature of the  body after 24 minutes.

����
��

1. 0.000667 cal/sec 2. 140000 cal/hr 3. 2.16 cm

4. 57.9 minutes 5. (i)  65.5°C    (ii)  51.9 minutes 6. 48°C.

������	����
��#	
����
	�����

If the rate of change of a quantity y is proportional to the quantity present at any instant, then we have the

following differential equation : 
dy

ky
dt

�

If k is positive, the problem is one of growth and if k is negative, the problem is one of decay.

Example 1. Uranium disintegrates at a rate proportional to the amount present at any instant. If M1 and
M2 gm of uranium are present at times T1 and T2 respectively, show that the half-life of uranium is

( )2 1

1

2

T T log 2

M
log

M

�
� �
� �	 


.

Sol. Let M gm of uranium be present at any time t. Then the equation of disintegration of uranium is

Md
dt = – kM, where k is a constant.
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or
M
M

d
= – k dt

Integrating, log M = – kt + c …(1)

Initially, when t = 0, M = M0 (say)

� From (1), c = log M0

Substituting the value of c in (1), we have log M = log M0 – kt

or kt = log M0 – log M …(2)

Now, when t = T1, M = M1 and when t = T2, M = M2

� From (2), we have kT1 = log M0 – log M1 …(3)

and kT2 = log M0 – log M2 …(4)

Subtracting (3) from (4), we get k(T2 – T1) = log M1 – log M2 or k = 

1

2

2 1

M
log

M

T T�

Let T be the half-life of uranium i.e., when  t  = T, M = 0
1

M
2

.

� From (2), we get kT = log M0 – 0M
log log 2

2
�

� T = 2 1

1

2

(T T ) log 2log 2
.

M
log

M

k

�
�

� �
� �	 
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The problems of chemical reactions and solutions are especially important to chemical engineers. These

problems can be well explained through the following example:

Example 2. A tank contains 5000 litres of fresh water. Salt water which contains 100 gm of salt per litre

flows into it at the rate of 10 litres per minute and the mixture kept uniform by stirring, runs out at the same

rate. When will the tank contain 200000 gm of salt ?

How long will it take for the quantity of salt in the tank to increase from 150000 gm to 250000 gm ?

Sol. Let Q gm be the quantity of salt present in the tank at time t, then 
Qd

dt
 is the rate at which the salt

content is changing and 
Qd

dt
 = rate of salt entering the tank-rate of salt leaving the tank.

Now, the rate at which the salt increases due to the inflow = 100 � 10 = 1000 gm/min.

Let C gm be the concentration of salt at time t.

The rate at which the salt content decreases due to the outflow = C � 10 = 10 C gm/min

Since the rate of inflow is the same as the rate of outflow, there is no change in the volume of water at any

instant.
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� C = 
Q

5000

The rate of decrease of salt content = 
Q Q

10 gm/min
5000 500

� � .

�
Qd

dt
= 

Q Q 500000 Q
1000 or =

500 500

�
�

d

dt

or
Q

500000 Q

d

�
= 

500
dt

Integrating, – log (500000 – Q) = 
500

t
c� ...(1)

Initially, when t = 0, Q = 0

� c = – log 500000

From (1), we have
500

t
= log 500000 – log (500000 – Q)

or t = 
500000

500log
500000 Q�

...(2)

Let t = T, when Q = 200000

From (2), T = 
500000 5

500log 500log
300000 3

� �� � �	 
e

= 10
5

500 2.303log 500 2.303 0.2219
3

� �( � ( (� �	 


= 255.5 minutes = 4 hours 15.52 minutes.

Let t = T1, when Q = 150000 and t = T2, when Q = 250000

From (2), we have T1 = 
500000 10

500log 500log
350000 7

�

T2 = 
500000

500log 500log 2
250000

�

� Required time = T2 – T1 = 
10 7

500 log 2 log 500log
7 5e

� � � �� �� � � �	 
 	 


= 500 ¥ 2.303 log 10 1.4 = 500 ¥ 2.303 ¥ 0.1461

= 168.23 minutes = 2 hours 48.23 minutes.

Example 3. A tank contains 100 litres of fresh water. Two litres of brine, each containing 1 gm of

dissolved salt, run into the tank per minute, and the mixture kept uniform by stirring runs out at the rate of

1 litre per minute. Find the amount of salt present when the tank contains 150 litres of brine.

Sol. Let Q gm be the quantity of salt present in the brine at time t, then 
Qd

dt
 is the rate at which the salt

content is changing.
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The rate at which the salt content increases due to the inflow = 2 � 1 = 2 gm/min.

Let C gm be the concentration of brine at time t.

The rate at which the salt content decreases due to the outflow = C � 1 = C gm/min

�
Qd

dt
=  2 – C …(1)

Now, the initial volume of liquid is 100 litres. In one minute, 2 litres of brine enter the tank and 1 litre of

brine leaves the tank so that the volume of liquid in the tank increase at the rate of (2 – 1) = 1 litre/min.

 The volume of liquid at time t is (100 + t)  litres containing Q gm of salt.

� C = 
Q

100 t�

From (1), we have 
Qd

dt
 = 2 – 

Q
100 t�

 or  
Qd

dt
 + 

Q
100 t�

 = 2 …(2)

which is a linear equation in Q and t.

I.F. = log(100 )100 100��
� � �

�
dt

tte e t

� The solution of (2) is Q (100 + t) = 2 (100 )t dt c� ��

or (100 + t) Q  = 
2

2 100
2

t
t c

� �
� �� �	 


…(3)

Initially, when t = 0, Q = 0 so that c = 0

� From (3) Q = 

2

2 100
2

100

t
t

t

� �
�� �	 

�

…(4)

Now, if V is the volume of liquid at time t, then V = 100 + t

� When               V = 150 litres, t = 150 – 100 = 50 minutes

and salt content Q  = 

2(50)
2 100 50

2
83.3 gm

100 50
�

� �
( �� �

� �
�

.

�
�������������
��


1. The number N of bacteria in a culture grew at a rate proportional to N. The value of N was initially 100 and

increased to 332 in one hour. What was the value of N after 
1

1
2

 hours ?

2. In a culture of yeast, at each instant, the time rate change of active ferment is proportional to the amount present.
If the active ferment doubles in two hours, how much can be expected at the end of 8 hours at the same rate of
growth. Find also, how much time will elapse, before the active ferment grows to eight times its initial value.

3. Radium decomposes at a rate proportional to the amount present. If p per cent of the original amount disappears
in l year, how much will remain at the end of 2l years ?
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4. If 30% of a radioactive substance disappeared in 10 days, how long will it take for 90% of it to disappear.

5. Under certain conditions cane-sugar in water is converted into dextrose at a rate which is proportional to the
amount unconverted at any time. If of 75 gm at time t = 0, 8 gm are converted during the first 30 minutes, find the

amount converted in 
1

1
2

 hours.

6. In a certain chemical reaction, the rate of conversion of a substance at time t is proportional to the quantity of
substance still untransformed at that instant. The amount of substance remaining untransformed at the end of one
hour and at the end of four hours are 60 gm and 21 gm respectively. How many grams of substance were present
initially ?

7. A tank contains 1000 litres of fresh water. Salt water which contains 150 gm of salt per litre runs into it at the rate
of 5 litres per minute and well stirred mixture runs out of it at the same rate. When will the tank contain 5000 gm
of salf ?

8. A tank is initially filled with 100 litres of salt solution containing 1 gm of salt per litre. Fresh brine containing
2 gm of salt per litre runs into the tank at the rate of 5 litres  per minute and the mixture, assumed to be kept
uniform by stirring, runs out at the same rate. Find the amount of salt in the tank at any time, and determine how
long it will take for this amount to reach 150 gm.

9. A tank contains 100 litres of an aqueous solution containing 10 kg of salt. Water is entering the tank at the rate of
3 litres per minute and the well stirred mixture runs out at 2 litres per minute. How much salt will the tank contain

at the end of one hour ? After what time will the amount of salt in the tank be 625 gm?

����
��

1. 604.9 2.  16 times the original, 6 hours

3.
2

10
10

p� ��� �	 

4.  64.5 days 5. 21.5 gm

6. 85 gm 7.  6.77 minutes 8. 20100 2
t

e
�� �

� ��
� �� �

; 13.9 minutes

9. 3.6 kg ; 5 hours.

�
	�
�������
������
�

1. Simple Harmonic Motion: A particle is said to execute simple harmonic motion if it moves in a straight line such
that its acceleration is always directed towards a fixed point in the line and is proportional to the distance of the

particle from the fixed point. The differential equation of  S.H.M. is 
2

2

d x

dt
 = – mx. Displacement of the particle from

the fixed point at any time t is x = a cos mt. Velocity of the particle at that point is v = 2 2�� �a x

Period of motion = 
2�
�

 and frequency of motion is n = 
1

T 2

�
�

�
2. Basic Relations between Elements of Electric Circuits:

(i) i = 
Q

or Q
d

i dt
dt

� �
(ii) The potential voltage drop across the resistance, R = Ri

(iii) The potential voltage drop across the inductance, L = L
di

dt

(iv) The potential voltage drop across the capacitance, C = 
Q

C
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3. Kirchhoff’s Laws:
(i) The algebraic sum of the voltage drops around any closed circuit is equal to the resultant electromotive force

in the circuit. This law is known as Voltage Law.

(ii) The algebraic sum of the currents flowing into (or from) any node is zero. This law is known as Circuit Law.

4. Differential Equation of an R, L Series Circuit is 
R E

L L

di
i

dt

 �  and its solution is i = 

R
LE

1
R

t
e
�� 

 ��
 �
� �

.

5. Differential Equation of an L, C Circuit is L
C

di q

dt

  = 0 when there is no e.m.f. and its solution is

q = A cos (wt + B), where w = 
1

LC

6. Differential Equation of an L, C Circuit with e.m.f. k cos nt is

L
C



di q

dt
 = k cos nt and its solution is

q =
2

C
A cos B cos

LC 1 LC

� �

 
� �

�� �

t k
nt

n

when
1

LC
 π n2

and when
1

LC
 = n2, then solution is

q = r sin (wt + f), where w = 
1

LC
;

r =
2

2
1 2

E
C C ,

2

t� �� �� �	 
�
 tan f = 1

2

C
E

C
2

t�
�

 and E = 
L

k
.

7. Differential Equation of L.C.R. Circuit is 
2

2
L R

C

d q dq q

dtdt
� �  = 0 when there is no e.m.f. and its solution is

q =

2 24L 4LR 1 1R R
C C2L 2L 2L

1 2C C
t tt

e e e

� � � �
� �� 	 � 	� �
 � 
 �

� �
� �

�� �
� �
� �

 when 2 4L
R

C
�

when R2 <
4L

C
, then solution is

q =
R

2 22L
1 2

4L1 4L 1
C cos R C sin R

2L C 2L C

t
e t t
� � �� �� �

� �� � �� �� �� �	 
 	 
� �

when R2 =
4L

C
, then solution is

q = � �
R
2L

1 2C C
t

t e
�

�

8. Differential Equation of L.C.R. Circuit with e.m.f. k cos nt is

2

2
L R

C

d q dq q

dtdt
� �  = k cos nt and its solution is

q =
2 2 2 2

1 2C Cp t p tpte e e� � � � �� � �
�� �

� �
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� �
1 2 2

2 222 2 2 2

E 2
cos tan ,

4

pn
nt n

n
p n n

�� �
� � � �� �

� �	 
� � �
 and p2 > w2

or q = 2 2 2 2
1 2C cos C sinpte p t p t� � � � 
 � � �� �

� �
1

2 222 2 2 2

E 2
cos tan

4

pn
nt

n
p n n

�� �
� �� �

� �	 
� � �
 when p2 < w2 and w2 ± n2

9. Simple Pendulum: If a heavy particle is attached to one end of a light inextensible string, the other end of which
is fixed, and oscillates under gravity in a vertical plane, then the system is called a simple pendulum. The differential

equation of the simple pendulum is 
2

2

Qd

dt
 = Q

g

l
� , where l is the length of the string

Time of oscillation = 2
l

g
�

10. Gain or Loss of Beats: If a simple pendulum of length l makes n beats in a time t, then change in number of beats
is given by

dn

n
 =

2

n dg dl

g l

� �
�� �	 


If only g changes, l remains constant, then dn = ,
2

n dg

g
 there is gain in number of beats. If only l changes,

g remains constant, then dn = ,
n dl

g l
�  there is loss in number of beats.

11. Deflection of Beam: (Read art. 3.12)
12. Conduction of Heat: If Q (cal/sec) be the quantity of heat that flows across a slab of area A (cm2) and thickness

dx in one second with faces at temperatures T and T + dT, then Q = 
T

A
d

k
dx

� , where k is the coefficient of thermal

conductivity and depends upon the material of the body.
13. Newton’s Law of Cooling: It states that the temperature of a body changes at a rate which is proportional to the

difference in temperature between that of the surrounding medium and that of the body itself i.e., if T0 is the

temperature of the surroundings, and T that of the body at any time t, then 
Td

dt
 = – k(T – T0), where k is the

constant of proportionality.
14. Rate of Growth or Decay: If the rate of change of a quantity y is proportional to the quantity present at any instant

then  
dy

dt
 = ky

If k is positive, then problem is one of growth.

If k is negative, then problem is one of decay.

����������
�����
���
������

1. (a) Define simple harmonic motion. Give one example.

(b)  If the displacement of a particle in a straight line is given by x = a cos mt + b sin mt, then show that it

describes S.H.M. with an amplitude 2 2 .a b
 (P.T.U., Dec. 2013)

[Hint:  S.E. 1 art 3.2]
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2. A particle moving in a straight line with S.H.M. has velocities v1 and v2 when its distances from the centre are x1 and

x2 respectively. Show that the period of motion is 
2 2
1 2
2 2
2 1

2
x x

v v

�
�

�
.

[Hint : S.E. 2 art. 3.2]

3. Find differential equation of S.H.M. given by x = A cos (nt + a) ; n is constant. (P.T.U., May 2007)

[Hint : � �A sin
dx

n nt
dt

� � 
 �  ; � �
2

2
2

A cos
d x

n nt
dt

� � � �  = - n2x which is S.H.M.]

4. What is differential equation of R.L. series circuit ? Find its solution.
5. The initial value problem governing the current i, flowing in a series R-L circuit when a sinusoidal voltage

v (t) = sin wt is applied is given by iR + L 
di

dt
 = sin wt, t ≥ 0 i (0) = 0 ; find the current �i .

[Hint : Consult S.E. 4 art. 3.7 find the value of C by putting i = 0 when t = 0] (P.T.U., May 2006, Dec. 2006)
6. Show that the frequency of free vibration in a closed electrical circuit with inductance L and capacity C in series

is 
30

LC�
 per minute. [Hint : See S.E. 2 art. 3.9] (P.T.U., May 2010)

7. Solve the differential equation 
1

L 
 �
di

i dt
dt c

 = 0, which means that self inductance and capacitance in a circuit

neutralize each other. Determine the constants in such a way that i0 is the maximum current and i = 0 when t = 0

 [Hint: S.E. 4 art 3.9] (P.T.U., Dec. 2011)
8. Define differential equation of L-R-C circuit. (P.T.U., May 2007)
9. A simple pendulum of length l is oscillating through a small angle q in a medium in which the resistance is

proportional to the velocity. Find the differential equation of motion. Discuss the motion and find period of
oscillation.

10. Discuss the motion of a simple pendulum and find the period of oscillation.
11. A clock with a second’s pendulum is gaining 2 minutes a day. Prove that the length of the pendulum must be

increased by 0.28 cm to make it accurate.
12. How many seconds a clock would loose per day, if the length of the pendulum were increased in the ratio 900 : 901?

[Hint : S.E. 1 art. 3.10]
13. A pendulum oscillating seconds at one place is taken to another place where it loses 2 seconds per day. Compare the

accelerations due to gravity at the two places. (P.T.U., Jan. 2009)
[Hint : Consult S.E. 2 art. 3.11]

14. Explain Newton’s law of cooling. Write its differential equation.

����
��

1. (a) 
2

2

d x

dt
 = – 

g
x

e
3.

2
2

2

d x
n x

dt
� �

5. i = 
R
L

2 2 2

L R
cos sin

LL R
twe t t�� �� � � � �� �

� � �  

7. 0
1

sin
LC

i i t�

9.
2

2 2 2

2
2 0,where 2 = , motion is oscillary when < and period

d d g
p p p

dt m ldt p

� � � �
� � �� � � � � �

� �

10. 2
l
g

� 12. 48 seconds

13. 21600 : 21599.
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4
Linear Algebra

��������	�
������	
��

A set of mn numbers (real or complex) arranged in a rectangular array having m rows (horizontal lines) and
n columns (vertical lines), the numbers being enclosed by brackets [ ] or ( ) is called m � n matrix  (read as “m
and n” matrix). An m � n is usually written as

A = [aij] = 

11 12 13 1

21 22 23 2

31 32 33 3

41 42 43 4

1 2 3

...

...

...

...

...

� �
� �
� �
� �
� �
� �
� � � � �� �

� �� � � � �
� �
� �� �

n

n

n

n

m m m mn

a a a a

a a a a

a a a a

a a a a

a a a a

. Here each element has two suffixes. The first suffix indicates

the row and second suffix indicates the column in which element lies.
(i) Square Matrix : A matrix in which number of rows is equal to the number of columns is called a square

matrix.
(ii) Multiplication of a Matrix by a Scalar : When each element of a matrix A (say) is multiplied by a

scalar k (say), then k A is defined as multiplication of A by a scalar k.
(iii) Matrix Multiplication : Two matrices A and B are said to be conformable for the product AB if

number of columns of A is equal to the number of rows of B.
Thus if A = [aij]m � n  and B  = [bjk]n � p, where 1 �i � m , 1 � j � n, 1 � k �� p . Then AB is defined

as the matrix C = [cik]m � p.
where cik = ai1 b1k + ai2b2k  + ai3b3k + ..........+ ain bnk.

= 
1

n

ij jk

j

a b
	



(iv) Properties of Matrix Multiplication :
(a) Matrix multiplication is not commutative in general i.e., AB � BA
(b) Matrix multiplication is associative i.e., A (BC) = (AB)C.
(c) Matrix multiplication is distributive w.r.t. matrix addition i.e., A (B + C) = AB + AC
(d) If A, I are square matrices of the same order, then AI = IA = A
(e) If A is a square matrix of order n, then A�A=A2; A�A�A=A3; ..........; A�A�A�..........��

(m times) =Am

(v) Transpose of a Matrix : Given a matrix A, then matrix obtained from A by changing its rows into
columns and columns into rows is called the transpose  of A and is denoted by A' or At.

(vi) Properties of Transpose of Matrix :
(a) (A')'  = A,
(b) (A + B)' = A' + B',
(c) (A B)' = B' A' known as Reversal Law of transposes.
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(vii) (a) Symmetric Matrix : A square matrix is said to symmetric if A' = A i.e., if A = [aij], then aij = aji  ∀ i, j
         (b) Skew Symmetric Matrix : A square matrix is said to be skew symmetric if A' = – A i.e., if A = [aij],
then aij = – aji ∀  i, j and when i = j, then aii = 0 for all values of i.

          Thus in a skew symmetric  matrix all diagonal elements are zero.

(viii) Involutory Matrix : A square matrix A is said to be involutory if A2 = I

(ix) Adjoint of a Square Matrix : The adjoint of a square matrix is the transpose of the matrix obtained by
replacing each element of A by its co-factors in |A|

A (Adj A) = (Adj A) A = |A| In ; n being the order of matrix A

(x) Singular and Non-Singular Matrices : A square matrix is said to be singular if |A| = 0 and non-
singular if |A| � 0.

(xi) (a) Inverse of a Square Matrix : Let A be a square matrix of order n. If there exists another matrix B
of the same order such that AB = BA = I, then matrix A is said to be invertible and B is called inverse of A.
Inverse of A is denoted by A–1. Thus, B = A–1 and A A–1 = A–1 A = I. From (xv) we see that A (Adj A) = |A| I

� A–1 = 
Adj A

|A|
.

(b) The inverse of a square matrix, if it exists, is unique.

(c) The necessary and sufficient condition for a square matrix A to posses inverse is that |A| � 0
i.e., A is non-singular.

(d) If A is invertible, then so is A–1 and (A–1)–1 = A

(xii) Reversal Law of Inverses : If A and B are two non-singular matrices of the same order, then
(AB)–1 = B–1 A–1.

(xiii) Reversal Law of Adjoints : If A, B are two square matrices of the same order, then Adj (AB) = (Adj B)

(Adj A).

����� ������	���	�������	
���� �������	
���� (P.T.U., Dec. 2004)

Let A = [aij] be any matrix of order m ¥ n i.e., 1 £ i £ m, 1 £ j £ n, then anyone of the following operations
on the matrix is called an elementary transformation (or E-operation).

(i) Interchange of two rows or columns.

The interchange of ith and jth rows is denoted by Rij.

The interchange of ith and jth columns is denoted by Cij.

(ii) Multiplication of (each element of) a row or column by a non-zero number k.

The multiplication of ith row by k is denoted by kRi.

The multiplication of ith column by k is denoted by kCi.

(iii) Addition of k times the elements of a row (column) to the corresponding elements of another row
(or column), k � 0.

The addition of k times the jth row to the ith row is denoted by Ri + kRj.

The addition of k times the jth column to the ith column is denoted by Ci + kCj.

If a matrix B is obtained from a matrix A by one or more E-operations, then B is said to be equivalent to A.

Two equivalent matrices A and B are written as A ~ B.
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����� ������	�����	
���

The matrix obtained from a unit matrix I by subjecting it to one of the E-operations is called an elementary
matrix.

For example, let I =  

1 0 0

0 1 0

0 0 1

� �
� �
� �
� �� �

(i) Operating R23 or C23 on I, we get the same elementary matrix 

1 0 0

0 0 1

0 1 0

� �
� �
� �
� �� �

.

It is denoted by E23. Thus, the E-matrix obtained by either of the operations Rij or Cij on I is denoted by Eij.

(ii) Operating 5R2 or 5C2 on I, we get the same elementary matrix 

1 0 0

0 5 0

0 0 1

� �
� �
� �
� �� �

.

It is denoted by 5E2. Thus, the E-matrix obtained by either of the operations kRi or kCi is denoted by kEi.

(iii) Operating R2 + 4R3 on I, we get the elementary matrix 

1 0 0

0 1 4

0 0 1

� �
� �
� �
� �� �

.

It is denoted by E23 (4). Thus, the E-matrix obtained by the operation Ri + kRj is denoted by Eij (k).

(iv) Operating C2 + 4C3 in I,  we get the elementary matrix 

1 0 0

0 1 0

0 4 1

� �
� �
� �
� �� �

, which is the transpose of

1 0 0

0 1 4

0 0 1

� �
� �
� �
� �� �

 = E23(4) and is, therefore, denoted by E'23 (4). Thus, the E-matrix obtained by the operation

Ci + kCj is denoted by Eij'(k).

���� 	���������
���	����������	��������	����������	
���������	
���

���������

(a) Any E-row operation on the product of two matrices is equivalent to the same E-row operation on
the prefactor.

If the E-row operation is denoted by R, then R (AB) = R(A) ◊ B
(b) Any E-column operation on the product of two matrices is equivalent to the same E-column operation

on the post-factor.
If the E-column operation is denoted by C, then C(AB) = A ◊ C(B)
(c) Every E-row operation on a matrix is equivalent to pre-multiplication by the corresponding

E-matrix.
Thus the effect of E-row operation Rij on A = Eij ◊ A
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The effect of E-row operation kRi on A = kEi ◊ A
The effect of E-row operation Ri + kRj on A = Eij (k) ◊ A
(d) Every E-column operation on a matrix is equivalent to post-multiplication by the corresponding E-matrix.
Thus, the effect of E-column operation Cij on A = A ◊ Eij
The effect of E-column operation kCi on A = A . (kEi)
The effect of E-column operation Ci + kCj on A = A ◊ Eij¢ (k).

����� 
� ���������	
��!��������	
������"#$$�%&'(")��*+,&(�

The elementary row transformations which reduce a square matrix A to the unit matrix, when applied
to the unit matrix, gives the inverse matrix A–1.

Let A be a non-singular square matrix. Then A = IA
Apply suitable E-row operations to A on the left hand side so that A is reduced to I.
Simultaneously, apply the same E-row operations to the prefactor I on right hand side. Let I reduce to B,

so that I = BA
Post-multiplying by A–1, we get

IA–1 = BAA–1    � A–1 = B(AA–1) = BI = B
� B = A–1.
Note. In practice, to find the inverse of A by E-row operations, we write A and I side by side and the same

operations are performed on both. As soon as A is reduced to I, I will reduce to A–1.

��-� ��.
���/���	����/������0/�����	
��	����/�
	���	
�� I�!�
������	���	�������	
������&'��&)1*)2*)3*��*�3")��&)$2(*'�"��"+'24��

&5��'(*'��6��

(i) If in the first column, the principal element (i.e., a
11

) is not  ‘one’ but ‘one’ is present some where else in
the first column then first of all make ‘one’ as principal element (by applying row transformations R

ij
).

(ii) Operate R
1
 on R

2
, R

3
, R

4
 to make elements of C

1
 all zero except first element.

(iii) Then operate R
2
 on R

3
, R

4
 to make elements of C

2
 all zero except first and second elements. Similarly,

operate R
3
 on R

4
  to make elements of C

3
 all  zero except 1st, 2nd and 3rd.

(iv) Reduce each diagonal element to element ‘one’.
Then reverse process starts :

(v) Operate R
4
 on R

1
, R

2
, R

3
 to make all elements of C

4
 zero except last.

(vi) Then operate R
3
 on R

1
, and R

2
 to make all elements of C

3
 zero except last but one. Similarly operate R

2
 on

R
1
 to make all elements of C

2
 zero except last but second and the matrix is reduced to unit matrix.

Note. We can apply the above rule to any square matrix of any order.

����������	
�
����
�

Example 1. If  A =

1 0 0

1 0 1

0 1 0

� �
� �
� �
� �� �

, then show that

An = An – 2 + A2 – I for n ≥ 3. Hence find A50. (P.T.U., Jan. 2008)

Sol. A =

1 0 0

1 0 1

0 1 0

� �
� �
� �
� �� �
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We will use induction method to prove An = An – 2 + A2 – I for n ≥ 3
\ for n = 3 we will prove A3 = A + A2 – I

Now, A2 =

1 0 0 1 0 0

1 0 1 1 0 1

0 1 0 0 1 0

� � � �
� � � �
� � � �
� � � �� � � �

 = 

1 0 0

1 1 0

1 0 1

� �
� �
� �
� �� �

A3 =

1 0 0 1 0 0

1 1 0 1 0 1

1 0 1 0 1 0

� � � �
� � � �
� � � �
� � � �� � � �

 = 

1 0 0

2 0 1

1 1 0

� �
� �
� �
� �� �

Now, A + A2 – I =

1 0 0 1 0 0 1 0 0

1 0 1 1 1 0 0 1 0

0 1 0 1 0 1 0 0 1

� � � � � �
� � � � � �� �� � � � � �
� � � � � �� � � � � �

= 3

1 0 0

2 0 1 = A

1 1 0

� �
� �
� �
� �� �

\ A3 = A + A2 – I …(1)
\ Result is true for n = 3
Let us assume that the result is true for n = k

i.e., Ak = Ak – 2 + A2 – I …(2)
To prove result is true for n = k + 1 i.e., to prove

Ak + 1 = Ak – 1 + A2 – I
Now, Ak + 1 = Ak ◊ A = (Ak – 2 + A2 – I) A [Using (2)]

= Ak – 1 + A3 – A
\ Ak + 1 = Ak – 1 + A2 – I [Using (1)]
Hence the result is true for n = k + 1, so the result is true for all values of n ≥ 3
Now, A50 = A48 + A2 – I, [Using (2)]

or A50 – A48 = A2 – I
or A48(A2 – I) = (A2 – I)
or A48(A2 – I) = I(A2 – I)

\ A48 = I

\ A50 = A48 ◊ A2 = IA2 = A2 = 

1 0 0

1 1 0

1 0 1

� �
� �
� �
� �� �

.

Example 2. Reduce the following matrix to upper triangular form : 

1 2 3

2 5 7

3 1 2

� �
� �
� �
� �� �

.

Sol. (Upper triangular matrix) If in a square matrix, all the elements below the principal diagonal are zero,
the matrix is called upper triangular.

1 2 3

2 5 7

3 1 2

� �
� �
� �
� �� �

~ 

1 2 3

0 1 1

0 5 7

� �
� �
� �
� �� �� �

 by operations 2 1

3 1

R 2R

R 3R

�

�
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 ~

1 2 3

0 1 1

0 0 2

� �
� �
� �
� ��� �

 by operation R3 + 5R2

which is the upper triangular form of the given matrix.

Example 3. Use Gauss-Jordan method to find inverse of the following matrices :

(i)

1 1 3

1 3 3

2 4 4

� �
� ��� �
� �� � �� �

(P.T.U., Dec. 2010)      (ii)   

2 –6 –2 –3

5 –13 –4 –7

–1 4 1 2

0 1 0 1

� �
� �
� �
� �
� �
� �

.

Sol. (i)  Let A = 

1 1 3

1 3 3

2 4 4

� �
� ��� �
� �� � �� �

Consider A = IA

i.e.,

1 1 3

1 3 3

2 4 4

� �
� ��� �
� �� � �� �

 =

1 0 0

0 1 0 A

0 0 1

� �
� �
� �
� �� �

To reduce LHS to a unit matrix

Operate R2 – R1, R3 + 2R1

1 1 3

0 2 6

0 2 2

� �
� ��� �
� ��� �

=

1 0 0

1 1 0 A

2 0 1

� �
� ��� �
� �� �

Operate R3 + R2

1 1 3

0 2 6

0 0 4

� �
� ��� �
� ��� �

 =

1 0 0

1 1 0 A

1 1 1

� �
� ��� �
� �� �

Operate 2 3
1 1

R , R
2 4

�  � �� � � �� � � �

1 1 3

0 1 3

0 0 1

� �
� ��� �
� �� �

 =

1 0 0

1 1
0

2 2
1 1 1

4 4 4

� �
� �
� ��
� �
� �
� �� � �
� �

A

Operate R1 – 3R3, R2 + 3R3

1 1 0

0 1 0

0 0 1

� �
� �
� �
� �� �

 =

7 3 3

4 4 4
5 1 3

A
4 4 4
1 1 1

4 4 4

� �
� �
� �
� �� � �� �
� �
� �� � �
� �� �
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Operate R1 – R2

1 0 0

0 1 0

0 0 1

� �
� �
� �
� �� �

 =

3
3 1

2
5 1 3

A
4 4 4
1 1 1

4 4 4

� �
� �
� �
� �� � �� �
� �
� �� � �
� �� �

� I = BA, where

B =

3
3 1

2
5 1 3
4 4 4
1 1 1
4 4 4

� �
� �
� �
� �� � �
� �
� �� � �� �� �

Hence, A–1 =

3
3 1

2
5 1 3
4 4 4
1 1 1
4 4 4

� �
� �
� �
� �� � �
� �
� �� � �� �� �

(ii) Let     A =

2 6 2 3

5 13 4 7

1 4 1 2

0 1 0 1

� � �� �
� �� � �� �
� ��
� �
� �

 =  

1 0 0 0

0 1 0 0
A

0 0 1 0

0 0 0 1

� �
� �
� �
� �
� �
� �

Operate R13, then R23 ;

1 4 1 2

2 6 2 3

5 13 4 7

0 1 0 1

�� �
� �� � �� �
� �� � �
� �
� �

 = 

0 0 1 0

1 0 0 0
A

0 1 0 0

0 0 0 1

� �
� �
� �
� �
� �
� �

Operate R2 + 2R1, R3 + 5R1;

1 4 1 2

0 2 0 1

0 7 1 3

0 1 0 1

�� �
� �
� �
� �
� �
� �

 = 

0 0 1 0

1 0 2 0
A

0 1 5 0

0 0 0 1

� �
� �
� �
� �
� �
� �

Operate R1 (–1), R2 
1

2
� 
� �� �

 ;

1 4 1 2

1
0 1 0

2
0 7 1 3

0 1 0 1

� � �� �
� �
� �
� �
� �
� �
� �� �

 = 

0 0 1 0

1
0 1 0

A2
0 1 5 0

0 0 0 1

�� �
� �
� �
� �
� �
� �
� �� �

Operate R3 – 7R2, R4 – R2 ;

1 4 1 2

1
0 1 0

2
1

0 0 1
2
1

0 0 0
2

� � �� �
� �
� �
� �
� �
� ��
� �
� �
� �
� �

 = 

0 0 1 0

1
0 1 0

2
A7

1 2 0
2
1

0 1 1
2

�� �
� �
� �
� �
� �
� �� �
� �
� �
� �� �
� �
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Operate R4 (2) ;

1 4 1 2

1
0 1 0

2
1

0 0 1
2

0 0 0 1

� � �� �
� �
� �
� �
� �
� ��
� �
� �� �

 = 

0 0 1 0

1
0 1 0

2 A
7

1 2 0
2
1 0 2 2

�� �
� �
� �
� �
� �
� �� �
� �
� �� �� �

Operate R1 + 2R4, R2 4 3 4
1 1

– R , R R
2 2

� ;

1 4 1 0

0 1 0 0

0 0 1 0

0 0 0 1

� �� �
� �
� �
� �
� �
� �

 = 

2 0 5 4

1 0 2 1
A

4 1 3 1

1 0 2 2

� �� �
� ��� �
� �� �
� �
� �� �

Operate R1 + R3 ;

1 4 0 0

0 1 0 0

0 0 1 0

0 0 0 1

�� �
� �
� �
� �
� �
� �

 = 

6 1 8 5

1 0 2 1
A

4 1 3 1

1 0 2 2

� �� �
� ��� �
� �� �
� �
� �� �

Operate R1 + 4R2 ;

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

� �
� �
� �
� �
� �
� �

= 

2 1 0 1

1 0 2 1
A

4 1 3 1

1 0 2 2

�� �
� ��� �
� �� �
� �
� �� �

� I = BA and B = A–1 = 

2 1 0 1

1 0 2 1

4 1 3 1

1 0 2 2

�� �
� ��� �
� �� �
� �
� �� �

��7�������������������	
�

Any non-zero matrix Am�n can be reduced to anyone of the following forms by performing elementary
(row, column or both) transformations :

(i)   Ir (ii)   [Ir   0]           (iii)  
I

0
r� �

� �
� �

              (iv) 
I 0

0 0
r� �

� �
� �

, where Ir is a unit matrix of order r

All those forms are known as Normal forms of the matrix

Note. The form 
I 0

0 0
r� �

� �
� �

 is called First Canonical Form of A.

��8�����������	
�������������6��9��
���	����0/�����	
���������

0����������������������	
 �����/���	��	���0�
��
��	��������

����
�
� :

: :

� �
� �
� �

Method :  Write A = IAI
Reduce the matrix A on the LHS to normal form by performing elementary row and  column transformations.
Every row transformation on A must be accompanied by the same row transformation on the prefactor on
RHS.
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Every column transformation on A must be accompanied by the same column transformation on the post-
factor on RHS.

Hence, A = IAI will transform to I = PAQ
Note. A–1 = QP ��� P (AQ) = I  ��AQ  = P–1 or (AQ)-1 = P  i.e., Q–1 A–1 = P ����   A–1 = QP.

��;����.��������	
� (P.T.U., May 2007, 2008, 2011, Dec. 2010)

Let A be any m � n matrix. It has square sub-matrices of different orders. The determinants of these
square sub-matrices are called minors of A. If all minors of order (r + 1) are zero but there is at least one non-
zero minor of order r, then r is called the rank of A. Symbolically, rank of A = r is written as rrrrr(A) = r.

From the definition of the rank of a matrix A, it follows that :

(i) If A is a null matrix, then r(A) = 0

[� every minor of A has zero value.]

(ii) If A is not a null matrix, then r(A) 	 1.

(iii) If A is non-singular n � n matrix, then r(A) = n

[� |A| � 0 is largest minor of A.]

If In is the n � n unit matrix, then |In|  = 1 � 0 � r(In) = n.

(iv) If A is an m � n matrix, then r(A) � minimum of m and n.

(v) If all minors of order r are equal to zero, then r(A) < r.

To determine the rank of a matrix A, we adopt the following different methods :

��������.
���/���	����	��
���	�����.��������	
�

Method I :  Start with the highest order minor (or minors) of A. Let their order be r. If anyone of them is non-
zero, then r(A) = r.

If all of them are zero, start with minors of next lower order (r – 1) and continue this process till you get a
non-zero minor. The order of that minor is the rank of A.

This method usually involves a lot of computational work since we have to evaluate several determinants.
Method II : Reduce the matrix to the upper triangular form of the matrix by elementary row transformations,

then number of non-zero  rows of triangular matrix is equal to rank of the matrix.

Method III : Reduce the matrix to the normal form 
I 0

0 0
r� �

� �
� �

 by performing elementary transformations

(row and column both), then r is the rank of the matrix. [� rth order minor |Ir| = 1 π 0 and each (r + 1)th
order minor = 0]

����������	
������	�����.��������	
�

(i) Elementary transformations of a matrix do not alter the rank of the matrix.

(ii) r(A
) = r(A) ; r(Aq) = r(A)

(iii) r(A) = number of non-zero rows in upper triangular form of the matrix A.

Example 4. If A is a non-zero column matrix and B is a non-zero row matrix, then r (AB) = 1.

Sol. Let A be a non-zero column matrix
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Let A =

a

a

am m

1

2

1

�

�

�

�
�
�
�

�

�

�
�
�
�

�

 and B be a non-zero row matrix

Let B = 1 2 nb b b� �� �� 1 ¥ n, where at least one of a’s and at least one of b’s is non-zero
Now AB will be a matrix of order m ¥ n

\ AB =

a

a

am

1

2

�

�

�

�
�
�
�

�

�

�
�
�
�

 1 2 nb b b� �� ��  = 

1 1 1 2 1

2 1 2 2 2

1 2

n

n

m m mn

a b a b a b

a b a b a b

a b a b a

� �
� �
� �
� �
� �
� �
� �� �

�

�

� � � �

� � � �

�

 = b1b2 ��bn 

1 1 1

2 2 2

m m m

a a a

a a a

a a a

� �
� �
� �
� �
� �
� �
� �� �

�

�

� � �

� � �

�

AB has at least one element non-zero and all minors of order ≥ 2 are zero because all lines are identical

\ r (AB) = 1.

Example 5. Find the rank of the following matrices:

(i)   A = 

1 4 5

2 6 8

3 7 22

� �
� �
� �
� �� �

(P.T.U., Dec. 2004) (ii) Diag. matrix  [–1    0    1    0    0    4].

Sol.  (i) Let A = 

1 4 5

2 6 8

3 7 22

� �
� �
� �
� �� �

A is of order 3 ¥ 3 \ r�(A) £ 3
Reduce the matrix to triangular form

Operate R2 – 2R1, R3 – 3R1, A ~

1 4 5

0 2 2

0 5 7

� �
� �� �� �
� ��� �

Operate 2
1

R
2

� �� �� �
 ~

1 4 5

0 1 1

0 5 7

� �
� �
� �
� ��� �

Operate R3 + 5R1 ~

1 4 5

0 1 1

0 0 12

� �
� �
� �
� �� �

Now, minor of order 3 = 

1 4 5

0 1 1

0 0 12

 = 12 π 0

\ r (A) = 3



LINEAR ALGEBRA 171

(ii) Let A = diag. matrix [–1   0   1   0   0   4]

= 

1 0 0 0 0 0
0 0 0 0 0 0

0 0 1 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 4

�� �
� �
� �
� �
� �
� �
� �
� �� �

, which is a square matrix of order 6 � 6 ������ r (A) � 6

Also, it is a diagonal matrix so triangular matrix ��r(A) = Number of non-zero rows of triangular  matrix = 3

hence r(A) = 3.

Example 6. Reduce the following matrices to normal form and find their ranks.

(i) 

 0 1 3 1

1 0 1 1

3 1 0 2

1 1 2 0

� �� �
� �
� �
� �
� ��� �

 (P.T.U., May 2012, Dec. 2012) (ii)

2 3 1 1

1 1 2 4

3 1 3 2

6 3 0 7

� �� �
� �� � �� �
� ��
� �

�� �

(P.T.U., May 2007)

Sol. (i) Let A = 

0 1 3 1

1 0 1 1

3 1 0 2

1 1 2 0

� �� �
� �
� �
� �
� �

�� �

Operate R12 ; ~  

1 0 1 1

0 1 3 1

3 1 0 2

1 1 2 0

� �
� �� �� �
� �
� �

�� �

Operate  R3 – 3R1, R4 – R1 ; ~

1 0 1 1

0 1 3 1

0 1 3 1

0 1 3 1

� �
� �� �� �
� �� �
� �

� �� �

Operate R3 – R2, R4 – R2 ; ~

1 0 1 1

0 1 3 1

0 0 0 0

0 0 0 0

� �
� �� �� �
� �
� �
� �

Operate C3 – C1, C4 – C1 ; ~

1 0 0 0

0 1 3 1

0 0 0 0

0 0 0 0

� �
� �� �� �
� �
� �
� �

Operate C3 + 3C2, C4 + C2 ; ~

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

� �
� �
� �
� �
� �
� �



172 A TEXTBOOK OF ENGINEERING MATHEMATICS

=
2 2 2 2

2 2 2 2

I O

O O

� �

� �

� �
� �
� �� 	

which is the required normal form and r(A) = 2

(ii) Let A = 

2 3 1 1

1 1 2 4
3 1 3 2

6 3 0 7

� �� �
� �� � �� �

�� �
� ��� �

Operate R12 ; ~

1 1 2 4

2 3 1 1
3 1 3 2

6 3 0 7

� � �� �
� �� �� �

�� �
� ��� �

Operate R2 – 2R1, R3 – 3R1, R4 – 6R1 ; ~

1 1 2 4
0 5 3 7

0 4 9 10
0 9 12 17

� � �� �
� �
� �
� �
� �� �

Operate C2 + C1, C3 + 2C1, C4 + 4C1 ; ~

1 0 0 0

0 5 3 7
0 4 9 10

0 9 12 17

� �
� �
� �
� �
� �
� �

[Now to change 5 to 1, instead of operating by R2 
1

5
� 
� �� �

, operate R2 – R3 and similarly to change 9 (in 2nd

column) to 1 operate R4 – 2R3]

Operate R2 – R3, R4 – 2R3 ; ~

1 0 0 0

0 1 6 3
0 4 9 10

0 1 6 3

� �
� �� �� �
� �
� �� �� �

Operate R3 – 4R2, R4 – R2 ; ~

1 0 0 0

0 1 6 3
0 0 33 22

0 0 0 0

� �
� �� �� �
� �
� �
� �

Operate C3 + 6C2, C4 + 3C2 ; ~

1 0 0 0

0 1 0 0
0 0 33 22

0 0 0 0

� �
� �
� �
� �
� �
� �

Operate 3
1

C
33

� 
� �� �

, 4
1

C
22

� 
� �� �

 ; ~

1 0 0 0

0 1 0 0
0 0 1 1

0 0 0 0

� �
� �
� �
� �
� �
� �
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Operate C4 – C3 ; ~

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

� �
� �
� �
� �
� �
� �

 ~ 
3 3 3 1 3

1 3 1 1

I O I 0
O O 0 0

�

� �

� �

� � � �
� � � �

� �� �� �

which is the required normal form and rank of A = 3.

Example 7. Reduce the following matrix to normal form and hence find its rank 

1 0 2 1

0 1 2 1

1 1 4 0

2 2 8 0

� �
� ��� �

�� �
� ��� �

.

(P.T.U., May 2004)

Sol. Let A =

1 0 2 1

0 1 2 1
1 1 4 0

2 2 8 0

� �
� ��� �

�� �
� ��� �

Operate  R3 – R1, R4 + 2R1 ; ~

1 0 2 1

0 1 2 1
0 1 2 1

0 2 12 2

� �
� ��� �

� �� �
� �
� �

Operate C3 – 2C1, C4 – C1 ; ~

1 0 0 0

0 1 2 1
0 1 2 1

0 2 12 2

� �
� ��� �

� �� �
� �
� �

Operate R3 + R2, R4 – 2R2 ; ~

1 0 0 0

0 1 2 1
0 0 0 0

0 0 16 0

� �
� ��� �
� �
� �
� �

Operate C3 + 2C2, C4 – C2 ; ~

1 0 0 0

0 1 0 0
0 0 0 0

0 0 16 0

� �
� �
� �
� �
� �
� �

Operate R34 ; ~

1 0 0 0

0 1 0 0
0 0 16 0

0 0 0 0

� �
� �
� �
� �
� �
� �

Operate 3
1

R
16
� 
� �� �

 ; ~

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

� �
� �
� �
� �
� �
� �

 = 3 3 1

3 1 1 1

I O

O O
�

� �

� �
� �
� �� �

 = 3I 0

0 0
� �
� �
� �

, which is the required normal form and r(A) = 3.
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Example 8.  For a matrix A = 

1 1 2

1 2 3

0 1 1

� �
� �
� �
� �� �� �

, find non-singular matrices P and Q such that PAQ is in

the normal form. Also find A–1 (if it exists). (P.T.U., Dec. 2013)
Sol. Consider A = IAI

1 1 2

1 2 3

0 1 1

� �
� �
� �
� �� �� �

 =

1 0 0 1 0 0

0 1 0 A 0 1 0

0 0 1 0 0 1

� � � �
� � � �
� � � �
� � � �� � � �

Operate R
2
 – R

1
; (Subjecting prefactor the same operation)

1 1 2

0 1 1

0 1 1

� �
� �
� �
� �� �� �

 =

1 0 0 1 0 0

1 1 0 A 0 1 0

0 0 1 0 0 1

� � � �
� � � ��� � � �
� � � �� � � �

Operate C
2
 – C

1
, C

3
 – 2C

1
; (Subjecting post-factor the same operation)

1 0 0

0 1 1

0 1 1

� �
� �
� �
� �� �� �

 =

1 0 0 1 1 – 2

1 1 0 A 0 1 0

0 0 1 0 0 1

�� � � �
� � � ��� � � �
� � � �� � � �

Operate R
3
 + R

2
; (Subjecting same operation on prefactor)

1 0 0

0 1 1

0 0 0

� �
� �
� �
� �� �

 =

1 0 0 1 1 2

1 1 0 A 0 1 0

1 1 1 0 0 1

� �� � � �
� � � ��� � � �
� � � ��� � � �

Operate C
3
 – C

2
; (Subjecting same operation on post-factor)

1 0 0

0 1 0

0 0 0

� �
� �
� �
� �
� �

 =

1 0 0 1 1 1

1 1 0 A 0 1 1

1 1 1 0 0 1

� �� � � �
� � � �� �� � � �
� � � ��� � � �

2
2 1

1 2 1 1

I O

O O

�

� �

� �
� �
� �
� �� �

 = PAQ, where P = 

1 0 0

1 1 0

1 1 1

� �
� ��� �
� ��� �

, Q = 

1 1 1

0 1 1

0 0 1

� �� �
� ��� �
� �� �

.

r (A) = 2 \ A is singular and A–1 does not exist.

�
�������������
��


1. (a) Reduce to triangular form 
3 4 5
9 1 4
5 3 1

� �� �
� ��
� �
�� �

.

(b) If A = 

2 0 0 1 2 3

0 2 0 , B = 0 1 3 , find AB

0 0 2 0 0 2

� � � �
� � � �
� � � �
� � � �� � � �

. (P.T.U., May 2009)
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2. Use Gauss-Jordan method to find the inverse of the following:

(i)
2 0 1
5 1 0
0 1 3

�� �
� �
� �
� �

(ii)
2 1 1
0 2 1
5 2 3

�� �
� �
� �

�� �

(iii)
8 4 3
2 1 1
1 2 1

� �
� �
� �
� �

(iv)

1 3 3
1 4 3
1 3 4

� �
� �
� �
� �

(P.T.U., May 2012, Dec. 2013)

(v)

2 4 3 2
3 6 5 2
2 5 2 3
4 5 14 14

� �
� �
� ��� �
� �� �

(vi)

2 1 1 2
1 3 2 3
1 2 1 1
2 3 1 4

�� �
� ��
� �� �� �
� �� �� �

.

3. Find rank of the following matrices:

(i)    
2 1 0 5
0 3 1 4

�� �
� �� �

(ii)
1 1 0
2 3 0
3 3 1

�� �
� ��
� �

�� �
(P.T.U., Dec. 2013)

(iii)  
2 4 3 2
3 2 1 4
6 1 7 2

�� �
� �� � �
� �

�� �
(iv)

2 5 3 3
2 3 3 4
3 6 3 2
4 12 0 8

� �
� �
� �
� �
� �� �

(v)   
1 2 1
1 0 2
2 1 3

� �
� ��
� �
� �

(P.T.U., June 2003) (vi)

1 3 4 5

1 2 6 7

1 5 0 10

� �
� �
� �
� �� �

(vii)  

1 1 1

2 3 4

3 2 3

�� �
� ��� �
� ��� �

(P.T.U., May 2009) (viii)

1 2 1
3 1 0
2 1 1

�� �
� �
� �

�� �
(P.T.U., Dec. 2011)

4. Reduce the following matrices to normal form and hence find their ranks:

(i)   
2 2 2
1 2 1
3 4 3

� �
� �
� �
� �

(ii)
3 1 2
6 2 4
3 1 2

�� �
� ��
� �
�� �

(P.T.U., Dec. 2010)

(iii)  
1 2 3 4
2 1 4 3
3 0 5 10

� �
� �
� �

�� �

(iv)

6 1 3 8
4 2 6 1

10 3 9 7
16 4 12 15

� �
� ��
� �
� �
� �� �

(v)   
2 2 2
1 2 1
3 4 3

� �
� �
� �
� �

 (P.T.U., May 2012) (vi)

8 1 3 6
0 3 2 2
8 1 3 4

� �
� �
� �
� � �� �

(P.T.U., Dec. 2012)

5. If A = 
3 3 4
2 3 4
0 1 1

�� �
� ��
� �

�� �

; find two non-singular matrices P and Q such that PAQ = I. Hence find A–1.

[Hint: r(A) = 3 \ A–1 exists = QP]
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6. For a matrix A = 

1 1 1

1 1 1

3 1 1

� �� �
� �
� �
� �� �

, find non-singular matrices P and Q such that PAQ is in the normal form. Also

find A–1 (if it exists). (P.T.U., Dec. 2003)

����
��

1. (a) 

3 4 5 3 0 0
0 13 11 ; 9 13 0
0 0 1 15 29 11

Upper triangular Lower triangular

�� � � �
� � � �� �
� � � �

�� � � �
(b) 16

2. (i)
3 1 1

15 6 5
5 2 2

�� �
� �� �
� �

�� �
(ii)

8 1 3
5 1 2

10 1 4

� �� �
� ��
� �

� �� �

(iii)

1 2 1
3 3 3
1 5 2
3 3 3
1 4 0

� �� �� �
� �
� ��
� �
�� �� �

(iv)
7 3 3
1 1 0
1 0 1

� �

�

� �
� �
� �
�� �

(v)

23 29 64 18
1 10 12 26 7
25 1 2 6 2

2 2 3 1

� � �� �
� ��
� ��� �
� ��� �

(vi)

2 5 7 1

5 1 5 21
18 7 5 11 10

1 2 10 5

� �
� �
� �
� �
� �
� �� �

�
� �

�
� �

3. (i) 2 (ii) 2 (iii) 3 (iv) 4 (v) 3 (vi) 3 (vii) 2 (viii) 2

4. (i)
2 2 1

1 2 1 1

I O

O O

�

� �

� �
� �
� �� �

 ;  rank = 2 (ii) 2
1 0 0

I 0
0 1 0 ; 2

0 0
0 0 0

� �
� � � �

� � �� � � �
� �� �

� �

(iii) [I3 � O3�1] ; �r = 3 (iv)
2 2 2

2 2 2 2

I O
; 2

O O
�

� �

� �
� �� �

� �� �

(v)
2 2 1

1 2 1 1

I O
; 2

O O
�

� �

� �
� 	� 	

� 	
 �
(vi)

3 3 3 1I O ; 3� �
� � � 	
 �

5. P = 

1 1 0

0 0 1

2 3 3

�� �
� 	
� 	
� 	� �
 �

; Q = 

1 0 0

0 1 1

0 0 1

� �
� 	�� 	
� 	
 �

; A–1 = 

1 1 0

2 3 4

2 3 3

�� �
� 	� �� 	
� 	� �
 �

.

6. P = 1 1
2 2

1 0 0

0

1 2 1

� �
� �
�� �
� �� �� �

; Q = 

1 1 0

0 1 1

0 0 1

� �
� 	�� 	
� 	
 �

; A–1 does not exist as r(A) = 2.

����������
�	������������/	
�������
��������!�
���0/�	
���

Proof. Consider the system of equations 
1 1 1 1

2 2 2 2

3 3 3 3

a x b y c z d

a x b y c z d

a x b y c z d

� � 	 �
�� � 	 �
�� � 	 �

 (3 equations in 3 unknowns)
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In matrix notation, these equations can be written as

1 1 1

2 2 2

3 3 3

a x b y c z

a x b y c z

a x b y c z

� �� �
� �� �� �
� �� �� �

= 
1

2

3

d

d

d

� �
� �
� �
� �� �

 or 
1 1 1 1

2 2 2 2

3 3 3 3

a b c x d

a b c y d

a b c z d

� � � �� �
� � � �� � 	� � � �� �
� � � �� �� �� � � �

or AX = B

where A = 
1 1 1

2 2 2

3 3 3

a b c

a b c

a b c

� �
� �
� �
� �� �

 is called the coefficient matrix, X = 

x

y

z

� �
� �
� �
� �� �

 is the column matrix of unknowns

 B = 
1

2

3

d

d

d

� �
� �
� �
� �� �

 is the column of constants.

If d1 = d2 = d3 = 0, then B= O and the matrix equation AX = B reduce to AX = O.
Such a system of equation is called a system of homogeneous linear equation.
If at least one of d1, d2, d3 is non-zero, then B � O.
Such a system of equation is called a system of non-homogeneous linear equation.

Solving the matrix equation AX = B means finding X, i.e., finding a column matrix 

�� �
� ��� �
� ��� �

 such that

X = 
x
y
z

� �
� �
� �
� �

 = 

� �
� ��
� �
�� �

. Then x = a, y = b , z = g.

The matrix equation AX = B need not always have a solution. It may have no solution or a unique solution
or an infinite number of solutions.

(a) Consistent Equations : A system of equations having one or more solutions is called a consistent
system of equations.

(b) Inconsistent Equations : A system of equations having no solutions is called an inconsistent system
of equations.

(c) State the conditions in terms of rank of the coefficient matrix and rank of the augmented matrix for
a unique solution; no solution ; infinite number of solutions of a system of linear equations.

(P.T.U., May 2005, Dec. 2010)
For a system of non-homogeneous linear equation AX = B.
(i) if r [A � B] � r(A), the system is inconsistent.
(ii) if r [A � B] = r(A) = number of the unknowns, the system has a unique solution.
(iii) if r [A � B] = r(A) < number of unknowns, the system has an infinite number of solutions.
The matrix [A � B] in which the elements of A and B are written side by side is called the augmented matrix.
For a system of homogeneous linear equations AX = O.
(i) X = O is always a solution. This solution in which each unknown has the value zero is called the Null
Solution or the Trivial Solution. Thus a homogeneous system is always consistent.
(ii) if r(A) = number of unknown, the system has only the trivial solution.
(iii) if r(A) < number of unknown, the system has an infinite number of non-trivial solutions.
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����� 
����
���������
��/�����	
�9�	����	�����	
���0/�	
��������!

����� ������/�
0/�����/	
��

The given equation is AX = B …(1)

� A is a non-singular matrix, � A–1 exists.

Pre-multiplying both sides of (1) by A–1, we get

A–1 (AX) = A–1 B          or  (A–1 A) X = A–1B

or IX = A–1 B          or  X = A–1 B
which is the required unique solution (since A–1 is unique).
Another Method to find the solution of AX = B:

Write the augmented matrix [A � B].  By E-row operations on A and B, reduce A to a diagonal matrix thus
getting

[A � B] ~ 
1 1

2 2

3 3

0 0

0 0

0 0

p q

p q

p q

� �
� �
� �
� �� �

�

�

�

Then p1x  = q1,    p2y = q2,   p3z = q3 gives the solution of AX = B.

����������	
�
����
�

Example 1. Solve the system of equations :
                5x + 3y + 7z = 4,        3x + 26y + 2z = 9,       7x + 2y + 11z = 5

with the help of matrix inversion. (P.T.U., Dec. 2004, May 2007, Jan. 2010, May 2014)
Sol. In matrix notation, the given system of equations can be written as

AX = B …(1)

where A = 

5 3 7

3 26 2

7 2 11

� �
� �
� �
� �� �

, X = 

x

y

z

� �
� �
� �
� �� �

, B = 

4

9

5

� �
� �
� �
� �� �

Let A = 

5 3 7

3 26 2

7 2 11

� �
� �
� �
� �� �

|A| = 

5 3 7
26 2 3 2 3 26

3 26 2 5 – 3 7
2 11 7 11 7 2

7 2 11

	 �

= 5 (286 – 4) – 3 (33 – 14) + 7 (6 – 182) = 1410 – 57 – 1232 = 121 � 0
fi A is non-singular � A–1 exists and the unique solution of (1) is

X = A–1 B …(2)
Now co-factors of the elements of | A | are as follows:

 A1 = 
26 2

282,
2 11

	  A2 = 
3 7

2 11
�  = –19, A3 = 

3 7
26 2

 = – 176

B1 = 
3 2

19,
7 11

	 �  B2 = 
5 7

6,
7 11

	 B3 = 
5 7

11
3 2

� 	

C1 = 
3 26

176,
7 2

	 � C2 = – 
5 3

11,
7 2

	 C3 = 
5 3

121
3 26

�
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� adj A = transpose of 
1 1 1

2 2 2

3 3 3

A B C

A B C

A B C

� �
� �
� �
� �� �

 = 
1 2 3

1 2 3

1 2 3

A A A 282 19 176

B B B 19 6 11

C C C 176 11 121

� �� � � �
� � � �	 �� � � �
� � � ��� �� �

A–1 =  

282 19 176
1 1

adj A 19 6 11
| A | 121

176 11 121

� �� �
� �	 �� �
� ��� �

From (2), X = A–1 B 

282 19 176 4 282(4) 19(9) 176(5)
1 1

19 6 11 9 19(4) 6(9) 11(5)
121 121

176 11 121 5 176(4) 11(9) 121(5)

� � � �� � � � � �
� � � � � �	 � 	 � � �� � � � � �
� � � � � �� � � �� � � � � �

�

x

y

z

� �
� �
� �
� �� �

 = 

77
7

12177 11
1 33

33 3
121 121

110 0
0

121

� �
� �� �
� �� � � �
� �� � � �	 	 � �� � � �
� �� � � �� � � �� � � �� �� �

Hence, x = 
7 3

, , 0
11 11

y z� � .

Example 2. Use the rank method to test the consistency of the system of equations 4x – y = 12,
–x – 5y – 2z = 0, – 2y + 4z = – 8. (P.T.U., Dec. 2012)

Sol. In matrix notation, the given equations can be written as

AX = B

where A =

4 1 0

1 5 2

0 2 4

�� �
� �� � �� �
� ��� �

, X = 

x

y

z

� �
� �
� �
� �� �

, B = 

12

0

8

� �
� �
� �
� ��� �

Augmented matrix [A � B] =

4 1 0 12

1 5 2 0

0 2 4 8

�� �
� �� � �� �
� �� �� �

�

�

�

Operate R12 ; ~

1 5 2 0

4 1 0 12

0 2 4 8

� � �� �
� ��� �
� �� �� �

�

�

�

Operate R2 + 4R1 ; ~

1 5 2 0

0 21 8 12

0 2 4 8

� � �� �
� �� �� �
� �� �� �

�

�

�

Operate 1 2 3
1 1

R ( 1), R , R
21 2

�  � � � �� � � �� � � �
;

~

1 5 2 0

8 4
0 1

21 7
0 1 2 4

� �
� �
� ��
� �
� ��� �

�

�

�
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Operate R3 – R2; ~

1 5 2 0

8 4
0 1

21 7
50 32

0 0
21 7

� �
� �
� ��
� �
� �
� ��
� �

�

�

�

Operate 3
21

R
50

� �� �� �
; ~

1 5 2 0

8 4
0 1

21 7
48

0 0 1
25

� �
� �
� ��
� �
� �
� ��
� �

�

�

�

Operate 2
8

R
21

�  R3, R1 – 2R3 ; ~

96
1 5 0

25
4

0 1 0
25
48

0 0 1
25

� �
� �
� �
� �
� �
� �
� ��
� �� �

�

�

�

Operate R1 – 5R2; ~

76
1 0 0

25
4

0 1 0
25
48

0 0 1
25

� �
� �
� �
� �
� �
� �
� ��
� �� �

�

�

�

\ r(A) = 3 = r(A � B) = number of unknowns

\ The given system of equations is consistent and have a unique solution

Hence the solution is x =
76 4 48

, ,
25 25 25

y z	 	 �

Example 3. For what values of l and m do the system of equations : x + y + z = 6,  x+ 2y + 3z = 10,
x + 2y + lz = m have (i) no solution, (ii) unique solution, (iii) more than one solution ?

(P.T.U., Dec. 2002, May 2010)

Sol. In matrix notation, the given system of the equations can be written as

AX = B

where A = 

1 1 1 6

1 2 3 , X , B 10

1 2

x

y

z

� � � � � �
� � � � � �	 	� � � � � �
� � � � � �� �� � � � � �

Augmented matrix [A � B]

= 2 1 3 1

1 1 1 6

1 2 3 10 Operating  R R ,R R

1 2

� �
� � � �� �
� �� �� �

�

�

�
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1 2 3 2

1 1 1 6

~ 0 1 2 4 Operating  R R , R R

0 1 1 6

� �
� � � �� �
� �� � � �� �

�

�

�

1 0 1 2

~ 0 1 2 4

0 0 3 10

�� �
� �
� �
� �� � ��� �

�

�

�

Case I. If l = 3, m � 10

r(A) = 2, r(A � B) = 3

� r(A) � r(A � B)

� The system has no solution.

Case II. If l � 3, m may have any value

r(A) = r(A � B) = 3 = number of the unknowns

�  System has unique solution.

Case III. If l = 3, m = 10

r(A) = r(A � B) = 2 < number of the unknowns

�  The system has an infinite number  of solution.

Example 4. (a) Solve the equations x1 + 3x2 + 2x3 = 0, 2x1 – x2 +3x3 = 0, 3x1 – 5x2 + 4x3 = 0, x1 + 17x2 +
4x3 = 0.

(b) Find the real value of l for which the system of equations x + 2y + 3z = lx, 3x + y + 2z = ly,
2x + 3y + z = lz have non-trivial solution. (P.T.U., May 2010, Dec. 2012)

Sol. (a) In matrix notation, the given system of equations can be written as

AX = O

where  A = 
1

2

3

1 3 2

2 1 3
, X

3 5 4

1 17 4

x

x

x

� �
� �� �� � �� � 	 � �� �� � �� � � �

� �

Operating R2 – 2R1, R3 – 3R1, R4 – R1  A 

1 3 2
0 7 1

~
0 14 2
0 14 2

� �
� �� �
� �

� �� �
� �� �

Operating R3 - 2R2, R4 + 2R2

1 3 2

0 7 1
~

0 0 0

0 0 0

� �
� �� �� �
� �
� �
� �� �

Operating R1 + 2R2

1 11 0

0 7 1
~

0 0 0

0 0 0

�� �
� �� �� �
� �
� �
� �

r(A) = 2 < number of unknowns

fi The system has an infinite number of non-trivial solutions given by
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x1 – 11x2 = 0, –7x2 – x3 = 0
i.e., x1 = 11k, x2 = k, x3 = – 7k, where k is any number.

Different values of k give different solutions.
(b) Given equations are

x + 2y + 3z = lx
3x + y + 2z = ly
2x + 3y + z = lz

or (1 – l)x + 2y + 3z = 0
3x + (1 – l)y + 2z = 0
2x + 3y + (1 – l)z = 0

These equations are homogeneous in x, y, z and will have a non-trivial solution if r(A) < 3 (the number of
unknowns)
i.e., determinant of order 3 = 0

i.e.,

1 2 3

3 1 2

2 3 1

� �
� �

� �
 = 0

or � � � � � � � �
2

1 1 6 2 3 1 4 3 9 2 1� � � � � �� � � � � � � � � � � � �� � � �� �� �
 = 0

or (1 – l)3 – 6 + 6l – 6 + 6l + 8 + 27 – 6 + 6l = 0
or 1 – 3l + 3l2 – l3 + 18l + 17 = 0
or l3 – 3l2 –15l – 18 = 0
or (l – 6) (l2 + 3l + 3) = 0

\ either l = 6 or l2 + 3l + 3 = 0

or l =
3 9 12 3 3

=
2 2

� � � � � i

\ The only real value of l is 6.
Example 5. Discuss the consistency of the following system of equations. Find the solution if consistent :

(i) x + y + z = 4
2x + 5y – 2z = 3

(ii) 5x + 3y + 7z = 4
3x + 26y + 2z = 9
7x + 2y + 10z = 5. (P.T.U., May 2005)

Sol. (i) x + y + z = 4
2x + 5y – 2z = 3,  which can be written as

AX = B, where A = 
1 1 1

2 5 2

� �
� ��� �

 and B = 
4

3

� �
� �
� �

  X = 

x

y

z

� �
� �
� �
� �� �

Consider augmented matrix [A � B]

=
1 1 1 4

2 5 2 3

� �
� ��� �

�

�

Operating R2 - 2R1
1 1 1 4

~
0 3 4 5� �

� �
� �
� �

�

�
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Operating R2 
1

3
� 
� �� �

1 1 1 4
~ 4 5

0 1
3 3

� �
� �� �� �
� �� �

�

�

Operating R1 - R2 ~  

7 17
1 0

3 3
4 5

0 1
3 3

� �
� �
� �

� �� �
� �� �

�

�

r(A) = 2 ; r(A : B) = 2
r(A) = r(A � B) < number of unknowns

� Given system of equations are consistent and have infinite number of solutions given by

7
3

x z� = 
17
3

4
–

3
y z = 

5

3
�

Take  z  = k we have x = 
17 7 4 5

,
3 3

� �
	

k k
y

Hence solutions is    x = 
17 7 4 5

, ,
3 3

� �
	 	

k k
y z k , where k is any arbitrary constant.

(ii) Given equations can be put into the form AX = B

where A =

5 3 7

3 26 2

7 2 10

� �
� �
� �
� �� �

, X = 

x

y

z

� �
� �
� �
� �� �

, B = 

4

9

5

� �
� �
� �
� �� �

.

Consider augmented matrix

[A � B] =

5 3 7 4

3 26 2 9

7 2 10 5

� �
� �
� �
� �� �

�

�

�

Operating R
2
 – 

3

5
 R

1
, R

3
 – 

7

5
 R

1

~

5 3 7 4

121 11 33
0

5 5 5
11 1 3

0
5 5 5

� �
� �
� ��
� �
� �
� �� �
� �

�

�

�

Operate R
3
 + 

1

11
 R

2
 ; ~

5 3 7 4

121 11 33
0

5 5 5
0 0 0 0

� �
� �
� ��
� �
� �
� �

�

�

�

Operate R
2
 

5

11
� 
� �� �

~

5 3 7 4

0 11 1 3

0 0 0 0

� �
� ��� �
� �� �

�

�

�
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r (A) = 2, r (A : B) = 2
r (A) = r (A � B) = 2 < Number of unknowns

\ Given equations are consistent and have infinite number of solutions given by
5x + 3y + 7z = 4

11y – z = 3

Let z = k ; y = 
3

11

k �
\ x =

� �3 3
4 7

11
5

k
k

�
� �

= 
7 16

11

k�

Hence solution is x =
7 16

11

k�
, y = 

3

11

k 

, z = k.

Example 6. For what value of k, the equations x + y + z = 1, 2x + y + 4z = k, 4x + y + 10z = k2 have a
solution and solve them completely in each case? (P.T.U., Dec. 2005)

Sol. x + y + z = 1
2x + y + 4z = k

4x + y + 10z = k2

which can be put into matrix form AX = B

where A =

1 1 1

2 1 4

4 1 10

� �
� �
� �
� �� �

, X = 

x

y

z

� �
� �
� �
� �� �

, B = 
2

1

k

k

� �
� �
� �
� �
� �

Consider the augmented matrix

[A �  B] =  
2

1 1 1 1

2 1 4

4 1 10

k

k

� �
� �
� �
� �
� �

�

�

�

Operate R
2
 – 2R

1
, R

3
 – 4R

1
; ~  

2

1 1 1 1

0 1 2 2

0 3 6 4

k

k

� �
� �

� �� �
� �� �� �

�

�

�

Operate R
3
 – 3R

2
 ; ~

2

1 1 1 1

0 1 2 2

0 0 0 3 2

� �
� �

� �� �
� �� �� �

�

�

�

k

k k

r (A) = 2 < number of unknowns
\ System of equations cannot have a unique solution.
These will have an infinite number of solution only if r (A : B) = r (A) = 2, which is only possible if

k2 – 3k + 2 = 0 i.e., k = 1 or k = 2.

when k = 1; the augmented matrix = 

1 1 1 1

0 1 2 1

0 0 0 0

� �
� �� �� �
� �� �

�

�

�

\ Equations are x + y + z = 1
– y + 2z = –1



LINEAR ALGEBRA 185

Let z = l, y = 1 + 2l, x = – 3l, where l is an arbitrary constant

when k = 2 ; Augmented matrix = 

1 1 1 1

0 1 2 0

0 0 0 0

� �
� ��� �
� �� �

�

�

�

Equations are x + y + z = 1 and – y + 2z = 0.
Take z = l¢, y = 2l¢, x = 1 – 3l¢

where l¢ is any arbitrary constant.
Example 7. Find the values of a and b for which the equations x + ay + z = 3; x + 2y + 2z = b,

x + 5y + 3z = 9 are consistent. When will these equations have a unique solution? (P.T.U., Dec. 2003)
Sol. Given equations are

x + ay + z = 3
x + 2y + 2z = b
x + 5y + 3z = 9.

The matrix equation is AX = B, where

A =

1 1

1 2 2

1 5 3

a� �
� �
� �
� �� �

, B = 

3

9

b

� �
� �
� �
� �� �

, X = 

x

y

z

� �
� �
� �
� �� �

Augmented matrix is 

1 1 3

1 2 2

1 5 3 9

a

b

� �
� �
� �
� �� �

�

�

�

Operate R
2
 – R

1
, R

3
 – R

1
 ~

1 1 3

0 2 1 3

0 5 2 6

a

a b

a

� �
� �� �� �
� ��� �

�

�

�

Operate R
3
 – 2

5
R

2

a

a

�
�

 ~

� �
5 5
2 2

1 1 3

0 2 1 3

0 0 2 6 3a a
a a

a

a b

b
� �
� �

� �
� �
� �� �
� �
� �� � �� �

�

�

�

~

� �
1 5

2 2

1 1 3

0 2 1 3

0 0 6 3a a
a a

a

a b

b
� � �
� �

� �
� �
� �� �
� �
� �� �� �

�

�

�

Case I. If 
1

2

a

a

� �
�

 = 0 and 6 – � �
5

3
2

a
b

a

�
�

�
 = 0

Then a = – 1 \ b = 6 i.e., a = – 1, b = 6
r (A) = r (A : B) = 2 < number of unknowns
\ Given equations have infinite number of solutions given by augmented matrix

     

1 1 1 3

0 3 1 3

0 0 0 0

�� �
� �
� �
� �� �

�

�

�

Equations are x – y + z = 3

3y + z = 3
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Let z = k ; y = 
3

3

k�
 \ x = 

3
3

3

k
k

�
� �  = 4 – 

4

3
k

\ x = 4 – 
4

3
k , y = 

3

3

k�
, z = k is the solution.

Case II. If a = – 1, but b π 6
Then r (A) = 2, but r (A : B) = 3
r (A) π r (A : B) \ Equations are inconsistent, i.e., having no solution.
Case III. If a π – 1, b can have any value, then r (A) = 3 = r (A : B)
\ Given equations have a unique solution which is given by the equation.

x + ay + z = 3
(2 – a) y + z = b – 3

� �1

2

a
z

a

� �
�

 = � �
5

6 3
2

a
b

a

�
� �

�

\ z =
� �

� � � �5 32
6

1 2

a ba

a a

� �� �� � �
�� �

� � �� � �
 = 

� � � � � �

� �

6 2 5 3

1

a a b

a

� � � �
� �

y = � �
� � � � � �

� �
6 2 5 31

3
2 1

a a b
b

a a

� �� � � �
� �� �

� � �� �� �

=
� � � �

� � � � � � � � � �
1

3 1 6 2 5 3
2 1

b a a a b
a a

� 	� � � � � � �
 �� �

\ y =
� �2 6

1

b

a

�
�

 ; x = 
� � � �5 3 6

1

a b

a

� �
�

.

�
�������������
��


1. Write the following equations in matrix form AX = B and solve for X by finding A–1.

(i) 2x – 2y + z = 1 (ii) 2x1 – x2 + x3 = 4

x + 2y + 2z = 2 x1 + x2 + x3 = 1

2x + y – 2z = 7 x1 – 3x2 – 2x3 = 2

2. Using the loop current method on a circuit, the following equations were obtained :

7i1 – 4i2  = 12, – 4i1 + 12i2 – 6i3 = 0, 6i2 + 14i3 = 0.

By matrix method, solve for i1, i2 and i3
3. Solve the following system of equations by matrix method :

(i) x + y + z = 8, x – y + 2z = 6, 3x + 5y – 7z = 14

(ii) x + y + z = 6, x – y + 2z = 5, 3x+ y + z = 8

(iii) x + 2y + 3z = 1, 2x + 3y + 2z = 2, 3x + 3y + 4z = 1.

(iv) 3x + 3y + 2z = 1, x + 2y = 4, 10y + 3z = – 2, 2x – 3y – z = 5

4. Show that the equations x + 2y – z = 3, 3x – y + 2z = 1, 2x – 2y + 3z = 2, x – y + z = – 1 are consistent and solve them.

5. Test for consistency the equations 2x – 3y + 7z = 5, 3x + y – 3z = 13, 2x + 19 y – 47z  = 32.

(P.T.U., May 2012, Dec. 2012)
6. Solve the equations x + 3y + 2z = 0,  2x – y + 3z = 0, 3x – 5y + 4z = 0, x + 17y + 4z = 0.

7. (a) For what values of a and b do the equations x + 2y + 3z = 6, x + 3y + 5z = 9, 2x + 5y + az = b  have

(i) no solution, (ii) a unique solution, (iii) more than one solution ?

(b) For what value of k the system of equations x + y + z = 2, x + 2y + z = – 2, x + y + (k – 5)z = k has no solution ?
(P.T.U., May 2012)
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8. (a) Find the value of k so that the equations x + y + 3z = 0, 4x + 3y + kz = 0, 2x + y + 2z = 0 have a non-trivial solution.

(b) For what values of l do the equations ax + by = lx and cx + dy = ly have a solution other than x = 0, y = 0.
(P.T.U., May 2003)

9. Show that the equations 3x + 4y + 5z = a, 4x + 5y + 6z = b, 5x + 6y + 7z = c do not have a solution unless
a + c = 2b. (P.T.U., Dec. 2011)

10. Investigate the value of l and m so that the equations 2x + 3y + 5z = 9, 7x + 3y – 2z = 8, 2x + 3y + lz = m have
(i) no solution, (ii) a unique solution, and (iii) an infinite number of solution.

11. Determine the value of l for which the following set of equations may possess non-trivial solution.

3x1 + x2 – lx3 = 0, 4x1 – 2x2 – 3x3 = 0, 2lx1+ 4x2 + lx3 = 0. For each permissible value of l, determine the general
solution.

12. Investigate for consistency of the following equations and if possible find the solutions.

4x – 2y + 6z = 8,  x + y – 3z = – 1, 15x – 3y + 9z = 21. (P.T.U., Jan. 2009)

13. Show that if l π – 5, the system of equations 3x – y + 4z = 3, x + 2y – 3z = – 2, 6x + 5y + lz = – 3 have a unique
solution. If �l = – 5, show that the equations are consistent. Determine the solutions in each case.

14. Show that the equations 2x + 6y + 11 = 0, 6x + 20y – 6z + 3 = 0, 6y – 18z + 1 = 0 are not consistent.

[Hint: To prove r[A : B] π r(A)] (P.T.U., Dec. 2003)

15. Solve the system of equations 2x1 + x2 + 2x3 + x4 = 6; 6x1 – 6x2 + 6x3 + 12x4 = 36

4x1 + 3x2 + 3x3 – 3x4 = – 1; 2x1 + 2x2 – x3 + x4 = 10.

����
��

1. (i) x = 2, y = 1, z = – 1 (ii) x1 =1, x2 = – 1, x3 = 1 2. i1 = 2 3
396 24 72

, ,
175 25 175

� �i i

3. (i) x = 5, y = 
5 4

,
3 3

z 	 (ii) x = 1, y = 2, z = 3 (iii) x = 
3 8 2

, ,
7 7 7

� � � �y z

(iv) x = 2, y = 1, z = – 4

4. x = – 1, y = 4, z = 4 5. Inconsistent 6. x = 11k, y = k, z = – 7k, where k is arbitrary

7. (a) (i) a = 8, b π 15 (ii) a π 8, b may have any value (iii) a = 8, b = 15

(b) k = 6

8. (a) k = 8, (b) l = a, b = 0, l = d, c = 0

10. (i) l = 5, m π 9 (ii) l π 5, m arbitrary (iii) l = 5, l = 9

11. l = 1, – 9 for l = 1 solution is x = k, y = – k, z = 2k. For l = – 9 solution is x = 3k, y = 9k, z = – 2k

12. Consistent: x = 1, y = 3k – 2, z = k, where k is arbitrary

13. l π – 5, x = 
4 9 4 – 5 13 – 9

, = – , = 0 ; = – 5, = , = , =
7 7 7 7

�
k k

y z x y z k , where k is arbitrary

15. x1 = 2, x2 = 1, x3 = – 1, x4 = 3.

������ ��	��

Any ordered n-tuple of numbers is called an n-vector. By an ordered n-tuple, we mean a set consisting of n
numbers in which the place of each number is fixed. If x

1
, x

2
, ........., x

n
 be any n numbers then the ordered n-tuple

X = (x
1
, x

2
,.........., x

n
) is called an n-vector. Thus the co-ordinates of a point in space can be represented by a

3-vector (x, y, z). Similarly (1, 0, 2, – 1) and (2, 7, 5, – 3) are 4-vectors. The n numbers x
1
, x

2
,........, x

n
 are called the

components  of the n-vector X = (x
1
, x

2
,....., x

n
) . A vector may be written either as a row vector or as a column vector.

If A be a matrix of order m × n, then each row of A will be an n-vector and each column of A will be an m-vector. A vector
whose components are all zero is called a zero vector and is denoted by O. Thus O = (0, 0, 0, ...., 0).



188 A TEXTBOOK OF ENGINEERING MATHEMATICS

Let X =  (x1, x2,.........., xn) and Y = (y1, y2,.........., yn) be two vectors.
Then X = Y if and only if their corresponding components are equal.

i.e., If xi = yi for i = 1, 2, .........., n

If k be a scalar, then  kX = (kx1, kx2, .........., kxn).

������ �
��������������������
���� 
��������������� ��	��

(P.T.U., May 2004, 2006, Jan. 2009)

A set of r, n-tuple vectors X1, X2, ..........,Xr is said to be linearly dependent if there exists r scalars
(numbers) k1, k2, .........., kr not all zero, such that

k1X1  + k2 X2 + ..... + krXr = O
A set of r, n-tuple vectors X1, X2, .........., Xr is said to be linearly independent if every relation of the type

k1X1  + k2 X2 + ..... + krXr = O implies k1 = k2 = ..... = kr = 0
Note. If a set of vectors is linearly dependent, then at least one member of the set can be expressed as a linear

combination of the remaining vectors.

Example 1. Show that the vectors x1 = (1, 2, 4),  x2 = (2, – 1, 3), x3 = ( 0, 1, 2) and x4 = (– 3, 7, 2) are linearly
dependent and find the relation between them.

Sol. Consider the matrix equation

k1 x1 + k2 x2 + k3 x3 + k4 x4 = 0
i.e., k1 (1, 2, 4) + k2 (2, –1, 3) + k3 (0, 1, 2) + k4 (– 3, 7, 2) = 0

i.e., k1 + 2k2 + 0·k3 – 3k4 = 0

2k1 – k2 + k3 + 7k4 = 0

4k1 + 3k2 + 2k3 + 2k4 = 0

which is a system of homogeneous linear equations and can be put in the form AX = 0.

i.e.,

1

2

3

4

1 2 0 3

2 1 1 7

4 3 2 2

k

k

k

k

� �
�� � � �

� � � ��� � � �
� � � �� �

� �

 =

0

0

0

� �
� �
� �
� �� �

Operate R2 – 2R1, R3 – 4R1;

1

2

3

4

1 2 0 3

0 5 1 13

0 5 2 14

k

k

k

k

� �
�� � � �

� � � ��� � � �
� �� � �� �

� �

= 

0

0

0

� �
� �
� �
� �� �

Operate R3 – R2;

1

2

3

4

1 2 0 3

0 5 1 13

0 0 1 1

k

k

k

k

� �
�� � � �

� � � ��� � � �
� � � �� �

� �

=  

0

0

0

� �
� �
� �
� �� �

� k1 + 2k2 – 3k4 = 0 …(i)

–5k2 + k3  + 13k4 = 0 …(ii)

k3 + k4 = 0 …(iii)

� k4 = – k3
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From (ii), 5k2 = k3 – 13k3 = – 12k3 � k2 = 3
12

5
� k

From (i), k1 = + 3k4 – 2k2 3 3 3
24 9

3
5 5

� � � �k k k

Let k3 = t

� k1 = 2 3 4
9 12

, , ,
5 5

	 � 	 	 �t k t k t k t

� Given vectors are L.D. and the relation between them is 1 2 3 4
9 12

0
5 5

� � � �t x t x tx tx

or 9x1 – 12x2 + 5x3 – 5x4 = 0.
Example 2. Show that the column vectors of the matrix

A = 1 2 3
2 1 2�

�
��

�
��
 are linearly dependent. (P.T.U., Dec. 2002)

Sol. Let X1 = 
1

2�
�

�
�
�

�
� , X2 = 

2

1
�

�
�
�

�
� , X3 = 

3

2
�

�
�
�

�
�

Consider the matrix equation
k1 X1 + k2 X2 + k3 X3 = 0

k1 
1
2�

�

�
�
�

�
�  + k2 

2

1

�

�
�
�

�
�  + k3 

3

2

�

�
�
�

�
�  = 0

i.e., k1 + 2k2 + 3k3 = 0
– 2k1 + k2 + 2k3 = 0

1 2 3

2 1 2

1

2

3

�
�

�
�

�

�
�

�

�

�
�
�

�

�

�
�
�

k

k

k

 = 0

Operate R2 + 2R1 ;
1 2 3

0 5 8

1

2

3

�

�
�

�

�
�

�

�

�
�
�

�

�

�
�
�

k

k

k

 = 0

or k1 + 2k2 + 3k3 = 0
5k2 + 8k3 = 0

\ k2 = – 
8

5
 k3 ; k1 = 

16

5
 k3 – 3k3 = 

1

5
 k3

Let k3 = l π 0

\ k1 =
1

5
 l, k2 = – 

8

5
 l, k3 = l

\ Given column vectors are L.D.
Example 3. Determine whether the vectors (3, 2, 4)t, (1, 0, 2)t, (1, – 1, – 1)t are linearly dependent or not.

(where ‘t’ denotes transpose) (P.T.U., May 2006)

Sol. Let  X
1
 = (3, 2, 4)t = 

3

2

4

� �
� �
� �
� �� �

, X
2
 = (1, 0, 2)t = 

1

0

2

� �
� �
� �
� �� �

, X
3
 = (1, – 1, – 1)t = 

� �
� ��� �
� ��� �

�

�

�
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Consider k1 X1 + k2 X2 + k3 X3 = 0

i.e., k1 

3

2

4

� �
� �
� �
� �� �

 + k2 

1

0

2

� �
� �
� �
� �� �

 + k3 

1

1

1

� �
� ��� �
� ��� �

 = 0

or 3k1 + k2 + k3 = 0
2k1 + 0.k2 – k3 = 0
4k1 + 2k2 – k3 = 0

or
1

2

3

3 1 1

2 0 1

4 2 1

k

k

k

� �� �
� �� �� � �� �
� �� ��� � � �

 =

0

0

0

� �
� �
� �
� �� �

Operate R1 – R2 ;
1

2

3

1 1 2

2 0 1

4 2 1

k

k

k

� �� �
� �� �� � �� �
� �� ��� � � �

 =

0

0

0

� �
� �
� �
� �� �

Operate R2 – 2R1, R3 – 4R1;

1

2

3

1 1 2

0 2 5

0 2 9

k

k

k

� �� �
� �� �� � � �� �
� �� �� �� � � �

 =

0

0

0

� �
� �
� �
� �� �

Operate R3 – R2;

1

2

3

1 1 2

0 2 5

0 0 4

k

k

k

� �� �
� �� �� � � �� �
� �� ��� � � �

 =  

0

0

0

� �
� �
� �
� �� �

\

1 2 3

2 3

3

2 0

2 5 0

4 0

k k k

k k

k

� � � �
�� � � �
�� � �

fi k3 = 0, k2 = 0, k1 = 0

\ Given vectors are not linearly dependent. These are linearly independent.

���-�� �
����	�������	
��� (P.T.U., May 2014)

Let a point P(x, y) in a plane transform to the point P' (x', y') under reflection in the co-ordinate axes, or reflection
in the line y = x tan q or rotation of OP through an angle q about the origin or rotation of axes, through an angle q
etc. Then the co-ordinates of P' can be expressed in terms of those of P by the linear relations of the form

   1 1

2 2

'

'

x a x b y

y a x b y

� � �
�� � �

which in matrix notation is 
'

'

x

y

� �
� �
� �

 = 1 1

2 2

    or   X' = AX
a b x

a b y

� � � �
� � � �

� �� �
such transformations are called linear transformation in two dimensions.

Similarly, relations of the form

1 1 1

2 2 2

3 3 3

'

'

'

� � �

� � �

� � �

x a x b y c z

y a x b y c z

z a x b y c z
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which in matrix notation is 

x

y

z

!� �
� �!� �
� �!� �

 = 
1 1 1

2 2 2

3 3 3

a b c x

a b c y

a b c z

� � � �
� � � �
� � � �
� � � �� �� �

   or    X' = AX gives a linear transformation

(x, y, z) Æ (x',  y', z' ) in three dimensions.

In general, the relation Y = AX, where Y = 

1

2

n

y

y

y

� �
� �
� �
� �
� �
� �

�
, A = 

11 12 1 1

21 22 2 2

1 2

...

...
, X

............................

...

n

n

nn n nn

a a a x

a a a x

xa a a

� � � �
� � � �
� � � ��� � � �
� � � �

� �� � � �� �

�

defines a linear transformation which carries any vector X into another vector Y over the matrix A which is
called the linear operator of the transformation.

This transformation is called linear because Y1 = AX1 and Y2 = AX2 implies aY1 + bY2 = A(aX1 + bX2) for
all values of a and b.

Thus, if X = 
2

3

� �
� ��� �

 and A = 
1 1

2 3

�� �
� �
� �

, then Y = 1

2

1 1 2 5

2 3 3 5

y

y

�� � � � � � � �
� �� � � � � � � �� �� � � � � �� �

so that (2, -3) Æ (5, –5) under the transformation defined by A.

If the transformation matrix  A is non-singular, i.e.,  if | A | π 0, then the linear transformation is called non-
singular or regular.

If the transformation matrix A is singular, i.e., if | A | = 0, then the linear transformation is also called singular.

For a non-singular transformation  Y = AX, since A is non-singular, A–1 exists and we can write the inverse
transformation, which carries the vector Y back into the vector X, as X =A–1 Y.

Note. If a transformation from (x1, x2,.........., xn) to (y1, y2,.........., yn) is given by Y = AX and another transformation
from (y1, y2,.........., yn) to (z1, z2,.........., zn) is given by Z = BY, then the transformation from (x1, x2,.........., xn) to
(z1, z2,.........., zn)  is given by Z = BY = B (AX) = (BA)X.

���7���	��������	�������	
�� (P.T.U., Dec. 2012)

The linear transformation  Y = AX, where

Y = 

1

2

n

y

y

y

� �
� �
� �
� �
� �
� �

�
,  A = 

11 12 1

21 22 2

1 2

...

...

..........................

...

n

n

n n nn

a a a

a a a

a a a

� �
� �
� �
� �
� �
� �

, X = 

1

2

n

x

x

x

� �
� �
� �
� �
� �
� �

�

is said to be orthogonal if it transforms 2 2 2
1 2 ........ ny y y� � �  into 2 2 2

1 2 ........ nx x x� � � .

���8�"����	����������	
� (P.T.U., Jan. 2009)

The matrix A of the above transformation is called an orthogonal matrix.

Now, X' X = 

1

2 2 2 2
1 2 1 2..... .....n n

n

x

x
x x x x x x

x

� �
� �
� � � � � �� �� � � �
� �
� �

�
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and similarly Y' Y = 2 2 2
1 2 ..... ny y y� � � .

� If Y = AX is an orthogonal transformation, then

X' X = 2 2 2
1 2 ..... nx x x� � �  = 2 2 2

1 2 ..... ny y y� � � .

= Y' Y = (AX)' (AX) = (X'A') (AX)
= X' (A' A)X [� (AB)' = B'A']

which holds only when A'A = I or when A'A = A–1A

or when A' = A–1 [� A–1A =1]

Hence a real square matrix A is said to be orthogonal if AA' =A' A = I

Also,  for an orthogonal matrix A, A' = A–1.

���8�<�������	
����������	����������	
�

(i) The transpose of an orthogonal matrix is orthogonal.
Proof. Let A be an orthogonal matrix

� AA' = I = A'A

Taking transpose of both sides of AA' = I

(AA')' = I' or (A')' A' = I i.e., product of A' and its transpose i.e., (A')' = I

\ A' is an orthogonal matrix.

(ii) The inverse of an orthogonal matrix is orthogonal

Proof. Let A be an orthogonal matrix � AA' = I

Take inverse of both sides (AA')–1 = I–1

or (A')–1 A–1 = I or (A–1)' (A–1) = I

i.e., Product of A–1 and its transpose i.e., (A–1)' is I

� A–1 is orthogonal.

(iii) If A is an orthogonal matrix, then | A | = ± 1
Proof. A is an orthogonal matrix

� AA' = I

Take determinant of both sides

|AA'| = | I |  or |A| |A'| = 1 [� | I | = 1]

i.e., |A|2 = 1 [� |A'| = | A |]

i.e., | A | = ± 1

Note. An orthogonal matrix A is called proper or improper according as | A | = 1 or – 1.

(iv) The product of two orthogonal matrices of the same order is orthogonal
Proof. Let A, B be two orthogonal matrices of the same order so that

AA' = BB' = I
Now, (AB) (AB)' = (AB) (B'A') = A (BB') A'

= A (I) A' = (AI) A' = AA' = I
� AB is also an orthogonal matrix.
Example 1. Let T be the transformation from R1 to R3 defined by T(x) = (x, x2, x3). Is T linear or not?

(P.T.U., May 2010)
Sol. Given T(x) = (x, x2, x3)
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T(x1) = (x1, x1
2, x1

3)

T(x2) = (x2, x2
2, x2

3)

aT(x1) + bT(x2) = a(x1, x1
2, x1

3) + b(x2, x2
2, x2

3)
= (ax1 + bx2, ax1

2 + bx2
2, ax1

3 + bx2
3)

Now, T (ax1 + bx2) = [(ax1 + bx2), (ax1 + bx2)2, (ax1 + bx2)3]
π (ax1 + bx2, ax1

2 + bx2
2, ax1

3 + bx2
3)

\ aT(x1) + bT(x2) π T(ax1 + bx2)
\ T is not linear
Example 2. Show that the transformation  y1 = x1 + 2x2 + 5x3; y2 = – x2 + 2x3; y3 = 2x1 + 4x2 + 11x3 is

regular. Write down the inverse transformation. (P.T.U., May 2011)

Sol. The given transformation in the matrix form is Y = AX, where

A =

1 2 5

0 1 2

2 4 11

� �
� ��� �
� �� �

; X = 
1

2

3

� �
� �
� �
� �� �

x

x

x

; Y = 
1

2

3

� �
� �
� �
� �� �

y

y

y

|A| =

1 2 5

0 1 2

2 4 11

�

= 1 (–11 – 8) + 2 (4 + 5)
= – 19 + 18 = – 1 π 0

\ Matrix A is non-singular.
Hence given transformation is non-singular or regular.
The inverse transformation of Y = AX is X = A–1Y
To find A–1

Consider A = IA

1 2 5

0 1 2

2 4 11

� �
� ��� �
� �� �

 =

1 0 0

0 1 0 A

0 0 1

� �
� �
� �
� �� �

Operate R
3
 – 2R

1
;

1 2 5

0 1 2

0 0 1

� �
� ��� �
� �� �

 =

1 0 0

0 1 0 A

2 0 1

� �
� �
� �
� ��� �

Operate R
1
 – 5R

3
, R

2
 – 2R

3
;

1 2 0

0 1 0

0 0 1

� �
� ��� �
� �� �

 =

11 0 5

4 1 2 A

2 0 1

�� �
� ��� �
� ��� �

Operate R
1
 + 2R

2
;

1 0 0

0 1 0

0 0 1

� �
� ��� �
� �� �

 =

19 2 9

4 1 2 A

2 0 1

�� �
� ��� �
� ��� �
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Operate R
2
(–1)

1 0 0

0 1 0

0 0 1

� �
� �
� �
� �� �

 =

19 2 9

4 1 2 A

2 0 1

�� �
� �� �� �
� ��� �

I = B A, where B = 

19 2 9

4 1 2

2 0 1

�� �
� �� �� �
� ��� �

\ A–1 = B

\ X =

19 2 9

4 1 2 Y

2 0 1

�� �
� �� �� �
� ��� �

\
1

2

3

� �
� �
� �
� �� �

x

x

x

 =
1

2

3

19 2 9

4 1 2

2 0 1

� � �� �
� �� �� � � �� �
� �� ��� � � �

y

y

y
x1 = 19y1 + 2y2 – 9y3
x2 = – 4y1 – y2 + 2y3
x3 = – 2y1 + y3

Example 3. (a) Prove that the following matrix is orthogonal
1 2 2

1
2 1 2

3
2 2 1

� �
� ��� �
� ��� �

. (P.T.U., May 2007)

(b) Find the values of a, b, c if the matrix

A = 
0 2b c
a b c
a b c

� 	
 ��
 �

�
 �
 is orthogonal. (P.T.U., May 2009)

Sol. (a) Denoting the given matrix by A, we have

A' = 

1 2 2
1

2 1 2
3

2 2 1

� �
� ��� �
� ��� �

Now, AA' = 

1 2 2 1 2 2
1 1

2 1 2 2 1 2
3 3

2 2 1 2 2 1

� � � �
� � � �� � �� � � �
� � � �� �� � � �

= 

9 0 0 1 0 0
1

0 9 0 0 1 0 I
9

0 0 9 0 0 1

� � � �
� � � �� �� � � �
� � � �� � � �

Since AA' = I, A is an orthogonal matrix.

(b) Matrix A will be orthogonal if AA¢ =  I

i.e.,
0 2 0

2
� 	 � 	
 �  �� �
 �  �

� �
 � 
 �

b c a a
a b c b b b
a b c c c c

 =
1 0 0
0 1 0
0 0 1

� 	
 �
 �

 �

or

2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

4 2 2

2

2

� 	� � � �
 �

� � � � � �
 �
� � � � � � �
 �

b c b c b c

b c a b c a b c

b c a b c a b c

 =
1 0 0
0 1 0
0 0 1

� 	
 �
 �

 �
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or 4b2 + c2 = 1 and 2b2 – c2 = 0
a2 + b2 + c2 = 1 a2 – b2 – c2 = 0

Solving c2 = 2b2 \ 4b2 + 2b2 = 1 or b2 =
1
6

or b =
1

6
�

\ c2 =
1 1

2 =
6 3

" \ c =
1

3
�

a2 = b2 + c2 = 
1 1 1

=
6 3 2
� \ a =

1

2
�

Hence, a =
1 1 1

, = , =
2 6 3

� � �b c .

�
�������������
��


1. Are the following vectors linearly dependent ? If so, find a relation between them.

(i) x1 = (1, 2, 1), x2 = (2, 1, 4), x3 = (4, 5, 6),  x4 = (1, 8, – 3) (P.T.U., Jan. 2010)

(ii) x1 = (2, –1, 4), x2 = (0, 1, 2), x3 = (6, –1, 16),  x4 = (4, 0, 12)

(iii) x1 = (2, – 1, 3, 2), x2 = (1, 3, 4, 2), x3 = (3, – 5, 2, 2)

(iv) x1 = (2, 3, 1, –1), x2 = (2, 3, 1, –2), x3 = (4, 6, 2, 1)

(v) x1 = (2, 2, 1)t, x2 = (1, 3, 1)t, x3 = (1, 2, 2)t, where ‘t’ stands for transpose. [Hint: See S.E. 3]

(vi) x1 = (1, 1, 1), x2 = (1, – 1, 1), x3 = (3, – 1, 3) (P.T.U., Dec. 2012)

2. For what value(s) of k, do the set of vectors (k, 1, 1), (0, 1, 1), (k, 0, k) in R3 are linearly independent?

(P.T.U., May 2010, 2012)

3. (a) Show that the transformation y1 = x1 – x2 + x3, y2 = 3x1 – x2 + 2x3,  y3 = 2x1 – 2x2 + 3x3 is non-singular. Find

the inverse transformation.

(b) Show that the transformation y1 = 2x1 + x2 + x3; y2 = x1 + x2 + 2x3; y3 = x1 – 2x3 is regular. Write down the

inverse transformation.

4. Represent each of the transformation x1 = 3y1 + 2y2,  y1 = z1 + 2z2, x2 = – y1 + 4y2 and y2 = 3z1 by the use of

matrices and find the composite transformation which expresses x1, x2 in terms of z1, z2.

5. A transformation from the variables x1, x2, x3 to y1, y2, y3 is given by Y = AX, and another transformation from

y1, y2, y3 to z1, z2, z3 is given by Z = BY, where A = 
2 1 0 1 1 1
0 1 2 , B 1 2 3
1 2 1 1 3 5

� � � �
� � � �� �
� � � �
�� � � �

. Obtain the transformation

from x1, x2, x3 to z1, z2, z3.

6. Which of the following matrices are orthogonal?

(i)
8 4 1

1
1 4 8

9
4 7 4

�� �
 	�
 	

 �

(ii)  
2 3 1
4 3 1
3 1 9

�� �
 	
 	
�
 �

. (P.T.U., Jan. 2009)

7. Prove that the following matrix is orthogonal:
2 1 2
3 3 3
2 2 1
3 3 3
1 2 2
3 3 3

� ��� �
� �
� �
� �
� ��� �� �

(P.T.U., May 2011)
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����
��

1. (i) Yes ; x3 = 2x1 + x2 and x4 = 5x1 – 2x2 (ii)   Yes ; x3 = 3x1 + 2x2 and x4 = 2x1 + x2
(iii) Yes ; 2x1 – x2 – x3 = 0 (iv)   Yes ; 5x1 – 3x2 – x3 = 0

(v) No; L.I. (vi) No; L.I.

2. For all non-zero values of k

3. (a) 1 1 2 3 2 1 2 3 3 1 3
1 1

( ), ( 5 ), 4 2
2 2

� � � � � � � � � �x y y y x y y y x y y

(b) x1 = 2y1 – 2y2 – y3, x2 = – 4y1 + 5y2 + 3y3, x3 = y1 – y2 – y3

4. 1 1

2 2

9 6

11 2

� � � �� �
�� � � �� ��� �� � � �

x z

x z
5.   Z = (BA) X, where BA = 

1 4 1

1 9 1

3 14 1

�� �
 	� � 	
 	� �
 �

6. (i) Orthogonal (ii) Not orthogonal.

���;������������	
���

If all the elements of a matrix are real numbers, then it is called a real matrix  or a matrix over R. On the

other hand, if at least one element of a matrix is a complex number a + ib, where a, b are real and i = –1 ,  then
the matrix is called a complex matrix.

�����"������%/��	���������	
�

The matrix obtained by replacing the elements of a complex matrix A by the corresponding conjugate
complex numbers is called the conjugate of the matrix A and is denoted by A .

Thus, if A = 
2 3 7

5 1

i i

i

� �� �
� ��� �

, then A = 
2 3 7

5 1

i i

i

�� �
� ��� �

.

�����<������%/��	��	���������������	
�

It is easy to see the conjugate of the transpose of  A i.e., (A�) and the transpose conjugate of A i.e., (A)!
are equal. Each of them is denoted by A# .

Thus (A )! = (A) ' A#� .

���������
	
��������.������
	
�����	
� (P.T.U., May 2002, 2007, Dec. 2010)

A square matrix A is said to be Hermitian if Aqqqqq =A. i.e., if A = [a
ij
], then ija  = a

ji
 " i, j and when i = j, then

iia  = a
ii
 fi a

ii
 is purely real i.e., all diagonal elements of a Hermitian matrix are purely real while every other

element is the conjugate complex of the element in the transposed position.

For example, A = 

5 2 3

2 3 1

3 1 0

� �� �
� �� � �� �
� ��� �

i i

i i

i i

 is a Hermitian matrix.

A square matrix A is said to be Skew Hermitian if Aq = – A i.e., if A = [aij], then ija  = – aji " i, j and

when i = j, then iia  = – a
ii
 i.e., if a

ii
 = a + ib, then iia  = a – ib and iia  = – a

ii

fi a – ib = – (a + ib) fi a = 0
\ a

ii
 is either purely imaginary or zero.
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In a Skew Hermitian matrix, the diagonal elements are zero or purely imaginary number  of the form ib,
where b is real. Every other element is the negative of the conjugate complex of the element in the transposed
position.

For example, B = 

3 1 7

1 0 2

7 2

i i

i i

i i

�� �
� �� � � �� �
� �� � �� �

 is a Skew Hermitian matrix.

Note. The following result hold :

(i) (A) A� (ii) A + B A B	  (iii) A A� 	 � (iv) AB AB	

(v) (Aq)q = A (vi) (A + B)q = Aq + Bq (vii)  ( A) Aq ql = l (viii) (AB)q = BqAq.

�����"���/�
	�����	
�

A complex square matrix A is said to unitary if Aq A = I
or we can say (A') A = I

Taking conjugate of both sides A' A  = I
Incase of real matrices : If A is a real matrix there A  = A , then A will be unitary if A' A  = I � A'A = I which

clearly shows that A is also an orthogonal matrix.
Hence every orthogonal matrix is unitary.

��������� 	
�	�
���� ��� �� ����
�� ��
��

(i) Determinant of a unitary matrix is of modulus unity
Proof. Let A be a unitary matrix

Then AAq = I

Taking determinant of both sides |AAq| = | I |

or |A| | A' | = 1 or |A| | A | = 1 [� |A'| = |A|]

or |A2| = 1 hence the result.

(ii) The product of two unitary matrices of the same order is unitary
Proof. Let A, B be two unitary matrices �  AAq  = AqA = I and BBq= Bq B = I

Now, (AB) (AB)q = AB (BqAq) = A(BBq) Aq = (AI) Aq��Aq���

Hence AB is unitary matrix.

(iii) The inverse of a unitary matrix is unitary (P.T.U., May 2012)
Proof. Let A be a unitary matrix  � AAq = Aq A = 1

AAq = I

Take inverse of both sides (AAq)–1 = I or (Aq)–1.  A–1 = I

or (A–1)q (A–1) = I���� A–1 is also unitary.

����������	
�
����
�

Example 1. If A = 
2+i 3 1+3i

5 i 4 2i

�� �
� �� �� �

, verify that AqA is a Hermitian matrix.

Sol. A' = 

2 5

3

1 3 4 2

i

i

i i

� �� �
� �
� �
� �� � �� �
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Aq = 

2 5

(A ) 3

1 3 4 2

i

i

i i

� �� �
� �� �! � �
� �� � �� �

� AqA = 

2 5
2 3 1 3

3
5 4 2

1 3 4 2

i
i i

i
i i

i i

� �� �
� � �� �� �� � �� � � �� �� �� � �� �

= 

30 6 8 19 17

6 8 10 5 5 B(say)

19 17 5 5 30

i i

i i

i i

� � �� �
� �� � � �� �
� �� � � �� �

Now, B' = 

30 6 8 19 17

6 8 10 5 5

19 17 5 5 30

i i

i i

i i

� � �� �
� �� � �� �
� �� � � �� �

Bq = 

30 6 8 19 17

(B ) 6 8 10 5 5 B

19 17 5 5 30

i i

i i

i i

� � �� �
� �� � � � �! � �
� �� � � �� �

fi B (= AqA) is a Hermitian matrix.

Example 2. If A and B are Hermitian, show that AB – BA is Skew Hermitian.

Sol. A and B are Hermitian. fi Aq = A and Bq= B

Now,  (AB – BA)q = (AB)q  – (BA)q

= BqAq – Aq�Bq = BA – AB = – (AB – BA)

� AB – BA is Skew Hermitian.

Example 3. (a) If A is a Skew Hermitian matrix, then show that iA is Hermitian.

(b) If A is Hermitian, then Aq A is also Hermitian.  (P.T.U., May 2007)
Sol. (a) A is a Skew Hermitian matrix fi Aq = – A

Now, (iA)q = A ( )( A) Ai i i# � � � �

� iA is a Hermitian matrix.

(b) A is a Hermitian Matrix \ Aq = A

AqA will be Hermitian if (Aq A)q = Aq A

Now, (Aq A)q = Aq(Aq)q = Aq ◊ A

Hence Aq A is Hermitian

Example 4. If N = 
0 1+ 2i

1+ 2i 0

� �
� ��� �

, obtain the matrix (I – N) (I +N)–1, and show that it is unitary.

Sol. I – N = 
1 0 0 1 2 1 1 2

0 1 1 2 0 1 2 1

i i

i i

� � �� � � � � �
� �� � � � � �� � �� � � � � �

I + N =  
1 0 0 1 2 1 1 2

0 1 1 2 0 1 2 1

i i

i i

� �� � � � � �
� �� � � � � �� � � �� � � � � �

I + N = 21 1 2
1 (4 1) 6

1 2 1

i
i

i

�
� � � �

� �
\ I + N is non-singular and (I + N)–1 exists

adj (I + N) = 
1 1 2

1 2 1

i

i

� �� �
� ��� �
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(I + N)–1 = 
1 1 21 1

adj (I N)
1 2 1| I N | 6

i

i

� �� �
� � � ��� 	 


� (I – N) (I + N)-1 = 
1 1 2 1 1 21

1 2 1 1 2 16

i i

i i

� � � �� � � �
� � � �� �	 
 	 


= 
4 2 41

A (say)
2 4 46

i

i

� � �� �
�� �� �	 


A' = 4 2 41

2 4 46

i

i

� �� �
� �� � �	 


(A)' = 
4 2 41

A
2 4 46

i

i

� �
�

� � �

� � �
� �
	 


      AqA
4 2 4 4 2 4 36 0 1 01 1 1

I.
2 4 4 2 4 4 0 36 0 16 6 36

i i

i i

� � � � �� � � � � � � �
� � � �� � � � � � � �� � � � �	 
 	 
 	 
 	 


A = (I – N) (I + N)–1 is unitary.

Example 5. Prove that every Hermitian matrix can be written as A + iB, where A is real and symmetric and
B is real and skew-symmetric.

Sol. Let P be any Hermitian matrix.
Then Pq = P

Consider, P =
P P P – P

2 2
i

i

�
�  = A + iB, where

A =
P P

2

�
, B = 

P P

2i

�

To prove A and B are real.

We know that z = x + iy \ z  = x – iy, then 
2

z z�
 = 2x (real)

and
2

z z

i

�
 =

2

2

iy

i
 = y (real)

Similarly,
P + P

2
 is a real matrix and 

P – P

2i
 is also real

\ A, B are real.
To prove A is symmetric

A¢ =
P P

2

� ��
� �
� �

 = 
P P P + P

2 2

�� � �
�  = A (� Pq = P)

\ A is symmetric.

Similarly, B¢ = P P

2

� ��
� �
� �i

 = 
�P P

2i

��
 = 

P P

2i

��
 = –

P P

2i

� �
 = – B \ B is skew-symmetric.

��������	�
�������

1. If  A = 

1 2 5 3

2 7 5

5 3 5 2

i i

i i

i i

� � �� �
� ��� �
� �� �� 	

, show that A is a Hermitian matrix and iA is a Skew-Hermitian matrix.

(P.T.U., May 2009, Jan. 2010)
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2. If A is any square matrix, prove that A + Aq, AAq, AqA are all Hermitian and A – Aq is Skew-Hermitian.

3. If A, B are Hermitian or skew-Hermitian, then so is A + B.

4. Show that the matrix Bq AB is Hermitian or Skew-Hermitian according as A is Hermitian or

skew-Hermitian.

5. Prove that 
1 11
1 12

i i

i i

� � �� �
� �� �	 


 is a unitary matrix. (P.T.U., Jan. 2009)

6. If A is a Hermitian matrix, then show that iA is a skew-Hermitian matrix.

7. Show that every square matrix is uniquely expressible as the sum of a Hermitian and a Skew-Hermitian matrix.

[Hint: (i) Let A = 
A A A A

P Q
2 2

� �� �
� � � , prove Pq = P and Qq= – Q (ii) to prove uniqueness : Let A = R + S

where Rq = R, Sq = – S to prove R = P, S = Q]

��������	
	���
�������	�������	
	���
����
������
�����

�������	�������
	������	��	�
�

If A is square matrix of order n, we can form the matrix A – lI, where l is a scalar and I is the unit matrix of
order n. The determinant of this matrix equated to zero, i.e.,

|A – lI| = 

11 12 1

21 22 2

1 2

n

n

n n nn

a a a

a a a

a a a

� �

� �

� �

�

�

� � � �

� � � �

�

 = 0 is called the characteristics equation of A.

On expanding the determinant, the characteristic equation can be written as a polynomial equation of
degree n in l of the form (–1 )n ln +k1 ln –1 + k2 l

n–2 + .......... + kn = 0.

The roots of this equation are called the characteristic roots or latent roots or eigen-values of A.

(P.T.U., Jan. 2009, May 2014)

Note. The sum of the eigen-values of a matrix A is equal to trace of A.

[The trace of a square matrix is the sum of its diagonal elements].

����������������
� (P.T.U., Jan. 2009, May 2014)

Consider the linear transformation Y = AX …(1)

which transforms the column vector X into the column vector Y. In practice, we are often required to find those
vectors X which transform into scalar multiples of themselves.

Let X be such a vector which transforms into lX (l being a non-zero scalar) by the transformation (1).

Then Y = lX …(2)

From (1) and (2), AX = lX fi AX – lIX = O fi (A – lI) X = O …(3)

This matrix equation gives n homogeneous linear equations

11 1 12 2 1

21 1 22 2 2

1 1 2 2

( ) ..... 0

( ) ..... 0

...................................................................................

..... ( ) 0

n n

n n

n n nn n

a l x a x a x

a x a l x a x

a x a x a l x

� � � � � �
�� � � � � �
�
�

� � � � � �


...(4)

These equations will have a non-trivial solution only if the coefficient matrix | A – lI | is singular
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i.e., if |A – lI| = 0 ...(5)

This is the characteristic equation of the matrix A and has n roots which are the eigen-values of A.
Corresponding to each root of (5), the homogeneous system (3) has a non-zero solution

X = 

1

2

n

x

x

x

� �
� �
� �
� �
� �
� �	 


�
, which is called an eigen vector or latent vector.

Note. If X is a solution of (3), then so is kX, where k is an arbitrary constant. Thus, the eigen vector corresponding
to an eigen-value is not unique.

����� �
���
�������������	�����	�������������
� (P.T.U., May 2008)

If l is an eigen value of A and X be its corresponding eigen vector then we have the following properties:
(i) al is an eigen value of aA and the corresponding eigen vector remains the same.

AX = l X fi a (AX) = a (lX) fi (aA) X = (al) X
\ al is an eigen value of aA and eigen vector is X.

(ii) lm is an eigen value of Am and corresponding eigen vector remains the same (P.T.U., Dec. 2004)
AX = lX fi A (AX) = A (lX) fi (AA) X = l (AX)

 \ A2X = l (lX) = l2X fi l2 is an eigen value of A2

and eigen vector is X.
Pre-multiply successively m times by A, we get the result.

(iii) l – k is an eigen-value of A – kI and corresponding eigen vector is X.
AX = lX fi AX – kIX = lX – kIX
or (A – kI) X = (l – k) X fi l – k is the eigen vector of A – kI and eigen vector is X.

(iv)
1



 is an eigen value of A–1 (if it exists) and the corresponding eigen vector is X.

(P.T.U., May 2005)
 AX = lX ; Pre-multiply by A–1

1A�  (AX) = A–1 (lX) fi (A–1 A) X = l (A–1 X)

or IX = l (A–1 X) or A–1 X = 
1

X
�

\
1

�
is an eigen value of A–1 and eigen vector is X.

(v)
1

k� �
 is an eigen value of (A – kI)–1 and corresponding eigen vector is X

AX = lX fi (A – kI) X = (l – k) X
Pre-multiply by (A – kI)–1, we get

X = (A – kI)–1 (l – k) X

Divide by l – k, we get
1

X
k� �

 = (A – kI)–1 X

\ (A – kI)–1 X = 
1

X
 �
� �� �� �k

\
1

k� �
 is an eigen value of (A – kI)–1 and the eigen vector is X.

(vi)
A

�
 is an eigen value of adj A. (P.T.U., Dec. 2003)

AX = lX ; Pre-multiply both sides by adj A
(adj A) (AX) = (adj A) lX
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fi [(adj A) A] X = l [(adj A) X]
fi | A | X = l [(adj A) X] |� A (adj A) = (adj A) A = | A | I|

fi (adj A) X = 
A

X
� �
� ��	 


fi 
A

�
 is an eigen value of adj A and eigen vector is X.

(vii) A and AT have the same eigen values
� eigen values of A are given by | A – lI | = 0
We know that | A | = | AT |
\ | A – lI | = | (A – lI)T | = | AT – (lI)T | = | AT – lI |
\ eigen values of A and AT are same.

(viii) For a real matrix A, if a + ib is an eigen value, then its conjugate a – ib is also an eigen value of A.
Since eigen values of A are given by its characteristic equation | A – lI | = 0 and if A is real, then characteristic

equation is also a real polynomial equation and in a real polynomial equation, imaginary roots always occur in
conjugate pairs. If a + ib is an eigen value, then a – ib is also an eigen value.

����	�������������

Example 1. (i) Find the eigen values and eigen vectors of the matrix A = 
1 2

5 4

�� �
� ��	 


.

(ii) Find the eigen values of the matrix 

1 2 2

0 4 2

0 0 7

� �
� ��� �
� �	 


. (P.T.U., Dec. 2006)

Sol. (i) The characteristic equation of the given matrix is

| A – l�I |  = 0 or        
1 2

0
5 4

�� �
�

� ��
or (1 – l) (4 – l) – 10 = 0 or       l2 – 5l – 6 = 0

or (l – 6) (l + 1) = 0 �      l = 6, – 1.

Thus, the eigen values of A are 6, – 1

Corresponding to l = 6, the eigen vectors are given by (A – 6I) X = O

or 1

2

1 6 2

5 4 6

x

x

� � � �� �
� �� �� �	 
 	 


 = O or       1

2

5 2
O

5 2

x

x

� � � �� �
�� �� �� �	 
 	 


we get only one independent equation – 5x1 – 2x2 = 0

�
1 2

2 – 5
�

x x
 gives the eigen vector (2, – 5)

Corresponding to l = – 1, the eigen vectors are given by 1

2

2 2
O

5 5

x

x

� � �� �
�� �� ��	 
 	 


We get only one independent equation 2x1 – 2x2 = 0.

� x1 = x2 gives the eigen  vector (1, 1).
(ii) The characteristic equation of the given matrix is | A – lI | = 0

i.e.,

1 2 2

0 4 2

0 0 7

� �
� � �

� �
 = 0, expand w.r.t. 1st column, we get



LINEAR ALGEBRA 203

(1 – l) (– 4 – l) (7 – l) = 0, i.e., l = 1, l = – 4, l = 7.
Hence the eigen values are – 4, 1, 7.
Example 2. Find the eigen values and eigen vectors of the following matrices:

(i) 

2 2 3

2 1 6

1 2 0

� �� �
� ��� �
� �� �	 


 (P.T.U., May 2012) (ii)  
1 1 3

1 5 1

3 1 1

� �
� �
� �
� �	 


. (P.T.U., Dec. 2012, 2013)

Sol. (i) The characteristic equation of the given matrix is |A – lI| = 0

or
2 2 3

2 1 6
1 2

� � � �
� � �

� � ��
= 0

or (– 2 –�l) [– l (1 – l) – 12] – 2 [–2l – 6 ] – 3 [– 4 + 1 ( 1+ l) = 0
or l3 + l2 – 21 l – 45 = 0

By trial, l = – 3 satisfies it.
� (l + 3) (l2 – 2l – 15) = 0 fi (l + 3) (l + 3) (l – 5) = 0 fi l = – 3, – 3, 5
Thus, the eigen values of A are – 3, – 3, 5.
Corresponding to  l = – 3, eigen vectors are given by

(A + 3I) X = O or       
1

2

3

1 2 3

2 4 6 O

1 2 3

x

x

x

� � �� �
� �� �� �� �� �
� �� �� �	 
 	 


We get only one independent equation x1 + 2x2 – 3x3 = 0
Choosing x2  = 0, we have x1 – 3x3 = 0

�
31 2

3 0 1
xx x

� �  giving the eigen vector (3, 0, 1)

Choosing x3 = 0, we have x1 + 2x2 = 0

�
31 2

2 –1 0
� �

xx x
 giving the eigen vector (2, –1, 0)

Any other eigen vector corresponding to l = – 3 will be a linear combination of these two.

Corresponding to l = 5, the eigen vectors are given by 
1

2

3

7 2 3

2 4 6

1 2 5

x

x

x

� �� �� �
� �� �� � � �� �
� �� �� � �	 
 	 


 = O

fi – 7x1 + 2x2 – 3x3 = 0
2x1 – 4x2  – 6x3 = 0
–x1 – 2x2 – 5x3 = 0

From first two equations, we have 31 2

12 12 6 42 28 4
� �

� � � � �
xx x

or 31 2

1 2 1
� �

�
xx x

 giving the eigen vector (1, 2, – 1).

(ii) The characteristic equation of the given matrix is | A – lI | = 0

or

1 � � �

1 5 � �

3 1 1 �

�
�

�
 = 0

or (l – l){(5 – l) (1 – l) – 1} – 1{1 – l – 3} + 3 {1 – 15 + 3l} = 0
or (1 – l) {4 – 6l + l2} + l + 2 – 42 + 9l = 0
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or 4 – 10l + 7l2 – l3 + 10l – 40 = 0
or l3 – 7l2 + 36 = 0
or (l + 2) (l2 – 9l + 18) = 0
or (l + 2) (l – 6) (l – 3) = 0

\ l = – 2, 3, 6

Thus the eigen values of A are – 2, 3, 6
Corresponding to l = –2, eigen vectors are given by (A + 2I) X = 0

or
1

2

3

3 1 3

1 7 1

3 1 3

x

x

x

� �� �
� �� �
� �� �
� �� �	 
 	 


 = 0

We get two independent equations
3x1 + x2 + 3x3 = 0
x1 + 7x2 + x3 = 0

1

20

x

�
 = 2

0

x
 = 3

20

x

1

1

x

�
 = 32

0 1

xx
�

\ Eigen vector corresponding to  l = – 2 is 

1

0

1

�� �
� �
� �
� �	 


Eigen vector corresponding to l = 3 is given by 
1

2

3

2 1 3

1 2 1

3 1 2

x

x

x

� � �� �
� �� �
� �� �
� �� ��	 
 	 


 = 0

– 2x1 + x2 + 3x3 = 0
x1 + 2x2 + x3 = 0

3x1 + x2 – 2x3  = 0

From first two equations 1

5

x

�
 = 32

5 5

xx
�
�

or 1

1

x
 = 32

1 1

xx
�

�

It satisfies third equation

\ Eigen vector corresponding to  l = 3 is 

1

1

1

� �
� ��� �
� �	 


Eigen vector corresponding to l = 6 is given by 
1

2

3

5 1 3

1 1 1

3 1 5

x

x

x

� � �� �
� �� �� � �� �
� �� ��	 
 	 


 = 0

– 5x1 + x2 + 3x3 = 0
x1 – x2 + x3 = 0

3x1 + x2 – 5x3 = 0
From first two equations

1

4

x
 = 32

8 4

xx
�
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or 1

1

x
 = 32

2 1

xx
�

The values of x1, x2, x3 satisfy third equation

\ Eigen vector corresponding to l = 6 is 

1

2

1

� �
� �
� �
� �	 


Hence the eigen vectors are  

1 1 1

0 , 1 , 2

1 1 1

�� � � � � �
� � � � � ��� � � � � �
� � � � � �	 
 	 
 	 


Example 3. If l is an eigen value of the matrix A, then prove that g(l) is an eigen value of g(A), where
g is polynomial. (P.T.U., May 2010)

Sol. Given l is an eigen value of matrix A
\ There exists a non zero vector X such that

AX = lX …(1)

Now, A(AX) = A(lX) fi A2X = l(AX)
A(lX) fi A2X = l(lX)
A(lX) fi A2X = l2X …(2)

\ l2 is an eigen value of matrix A2

Again A(A2X) = A(l2X)
fi A3X = l2(AX) = l2(lX) = l3X …(3)

\ l3 is an eigen value of matrix A3

Continue this process we can prove that
AnX = lnX i.e., ln is an eigen value of An …(4)

As g is a polynomial
Let g(l) = a0 + a1l + a2l2 + ... anln

fi g(A) = a0I + a1A + a2A2 + ... anAn

g(A)X = [a0I + a1A + a2A2 + ... anAn]X
= a0(IX) + a1(AX) + a2(A2X) + ... an(AnX)
= a0X + a1(lX) + a2(l2X) + ... an(lnX) [By using (1), (2), (3), (4)]

\ g(A)X = (a0 + a1l + a2l2 + ... anln)X
i.e., g(A)X = g(l)X

fi g(l) is an eigen value of g(A).
Example 4. Show that eigen values of a Skew Hermitian matrix are either zero or purely imaginary.

(P.T.U., Dec. 2012, 2013)
Sol. Let A be a Skew Hermitian matrix

\ Aq = – Â …(1)
Let l be an eigen value of A, then there exists a non-zero vector X such that

AX = lX

(AX)q = (lX)q or Xq Aq = �  Xq

or – XqA = �  Xq [By using (1)]
Post multiply both sides by X

– (XqA) X = � �X��  X

or – Xq (AX) = �  (XqX)
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– Xq (lX) = �  (XqX)

or – l (XqX) = �  (XqX) fi �  = – l

fi l + � = 0
Now if l = a + ib

then � = a – ib

l + � = 0 fi a + ib + a – ib = 0 or a = 0
i.e., l = ib, i.e., l is purely imaginary.

Hence either eigen values are zero or purely imaginary.

�������	������	����������
��

(P.T.U., May 2004, 2006, 2007, Jan. 2009, May 2011)

Every square matrix satisfies its characteristic equation.

i.e., if the characteristic equation of the nth order square matrix A is
|A – lI| = (– 1)n ln + k1ln – 1  + k2 ln – 2 + ��+ kn = 0 …(1)

then (–1)n An + k1An – 1  + k2A
n – 2 + ��+ knI = O …(2)

Let P = adj (A –l�I)
Since the elements of A – lI  are at most of first degree in l, the elements of P = adj (A –�lI) are  polynomials

in l�of degree (n – 1) or less. We can, therefore, split up P into a number of matrices each containing the same
power of  l�and write

P = 1 2 2
1 2 2 1P P P Pn n

n n
� �

� �
� � �� � � �� l + Pn

Also, we know that if M is a square matrix, then M (adj M) = |M| � I
� (A – lI) P = |A – lI| � I
By (1) and (2), we have
(A – lI) (P1l

n – 1 + P2l
n – 2 + � + Pn

 
–

 
2 l

2 + Pn
 
–

 
1l + Pn) = [(– 1)n ln  + k1l

n – 1 + kil
n – 2 + � + kn - 2l

2

+ kn
 
–

 
1l + kn] I

Equating coefficients of like powers of l on both sides, we have
– P1 = (– 1)n I [� IP1 = P1]

AP1 – P2 = k1 I
AP2 – P3 = k2 I

          ...........................
APn – 2 – Pn – 1 = kn – 2 I

APn – 1 - Pn = kn - 1 I
APn = kn I

Pre-multiplying these equations by An, An – 1, An – 2,.........., A2, A, I respectively and adding, we get
O = (– 1)n  An + k1 An – 1 + k2An  – 2 + � + kn - 2 A

2 + kn – 1 A + kn I terms on the LHS Cancel in pairs
or (–1)nAn + k1 An – 1 + k2 A

n – 2 + ��+ kn – 1A + knI = O …(3)

which proves the theorem.
Note 1. Multiplying (3) by A–1, we have (– 1)n An – 1 + k1

 An – 2 + � + kn – 1
 I +  knA

–1 = O

� A–1 = – 1 – 2
1 – 1

1
– [(–1) A A I]n n n

n
n

k k
k

� � ��

Thus Cayley Hamilton theorem gives another method for computing the inverse of a matrix. Since this method express
the inverse of a matrix of order n in terms of (n – 1) powers of A, it is most suitable for computing inverses of large matrices.

Note 2. If m be a positive integer such that m > n, then multiplying (3) by  Am – n, we get
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(–1)n Am  + k1 A
m–1 + k2 A

m–2 + ..........+ kn–1 Am–n+1 + kn Am–n = O

showing that any positive integral power Am (m > n) of A is linearly expressible in terms of those of lower degree.

Example 5. Verify Cayley Hamilton Theorem for the following matrices and find A–1 in each case

(i) 

1 1 3

1 3 3

2 4 4

� �
� ��� �
� �� � �	 


(P.T.U., May 2014) (ii) 
3 2 4
4 3 2
2 4 3

� �
� 	
� 	

 �

. (P.T.U., Dec. 2006)

Sol. (i) Let A = 

1 1 3

1 3 3

2 4 4

� �
� ��� �
� �� � �	 


Characteristic equation of A is
| A – lI| = 0

or

1 1 3

1 3 3

2 4 4

� �� �
� �� � �� �
� �� � � � �	 


 = 0

or (1 – l) {– (3 – l) (4 + l) – 12} – 1{– 4 – l– 6} + 3 {– 4 + 2(3 – l)} = 0
(1 – l) (l2 + l – 24) + l + 10 + 6 – 6l = 0

or l3 – 20l + 8 = 0
To verify Cayley Hamilton Theorem, we have to show that A3 – 20 A + 8I = 0

A2 = 

1 1 3 1 1 3

1 3 3 1 3 3

2 4 4 2 4 4

� � � �
� � � �� �� � � �
� � � �� � � � � �	 
 	 


= 

4 8 12

10 22 6

2 2 22

� � �� �
� �
� �
� �	 


A3 = 

4 8 12 1 1 3

10 22 6 1 3 3

2 2 22 2 4 4

� � �� � � �
� 	 � 	�� 	 � 	
� 	 � 	� � �
 � 
 �

= 

12 20 60

20 52 60

40 80 88

� �
� 	�� 	
� 	� � �
 �

A3 – 20 A + 8 I = 

12 20 60 1 1 3 1 0 0

20 52 60 20 1 3 3 8 0 1 0

40 80 88 2 4 4 0 0 1

� � � � � �
� � � � � �� � � �� � � � � �
� � � � � �� � � � � �	 
 	 
 	 


= 

0 0 0

0 0 0 O

0 0 0

� �
� � �� �
� �	 


\ A3 – 20 A + 8 I = 0

Operate both sides by 1A�

A2 – 20 I = – 8 1A�

\ 8 1A�  =  

4 8 12 20 0 0

10 22 6 0 20 0

2 2 22 0 0 20

� � � �
� � � �� � � �� � � �
� � � �� � �� � � �
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= 

24 8 12

10 2 6

2 2 2

� 	
� 	� � �� 	
� 	� � �
 �

1A�  = 

3
2

5 31
4 4 4

1 1 1
4 4 4

3 1� �
� �
� �� � �
� �
� �� � �� �

(ii) Let A = 
3 2 4
4 3 2
2 4 3

� 	
� 	
� 	

 �

Characteristic equation of A is | A – lI | = 0

or
3 2 4

4 3 2
2 4 3

� 

� 


� 

 = 0 or (3 - l) {(3 - l)2 - 8} - 2{12 - 4l - 4} + 4{16 - 6 + 2l} = 0

or l3 – 9l2 + 3l – 27 = 0

To verify Cayley Hamilton Theorem, we have to prove

A3 – 9A2 + 3A – 27I = 0

A2 = 
3 2 4 3 2 4 25 28 28
4 3 2 4 3 2 28 25 28
2 4 3 2 4 3 28 28 25

� 	 � 	 � 	
� 	 � 	 � 	�
� 	 � 	 � 	

 � 
 � 
 �

A3 = 
25 28 28 3 2 4 243 246 240
28 25 28 4 3 2 240 243 246
28 28 25 2 4 3 246 240 243

� 	 � 	 � 	
� 	 � 	 � 	�
� 	 � 	 � 	

 � 
 � 
 �

A3 – 9A2 + 3A – 27I = 
243 246 240 25 28 28 3 2 4 1 0 0
240 243 246 9 28 25 28 3 4 3 2 27 0 1 0
246 240 243 28 28 25 2 4 3 0 0 1

� 	 � 	 � 	 � 	
� 	 � 	 � 	 � 	� � �
� 	 � 	 � 	 � 	

 � 
 � 
 � 
 �

= 

0 0 0

0 0 0

0 0 0

� �
� �
� �
� �	 


 = O

Hence theorem is verified.
A3 – 9A2 + 3A – 27I = 0

Operate both sides with A–1

A2 – 9A + 3I = 27A–1

\  27A–1 = 

25 28 28 3 2 4 1 0 0

28 25 28 9 4 3 2 3 0 1 0

28 28 25 2 4 3 0 0 1

� � � � � �
� � � � � �� �� � � � � �
� � � � � �	 
 	 
 	 


= 

1 10 8

8 1 10

10 8 1

�� �
� ��� �
� ��	 


A–1 = 

1 10 8
1

8 1 10
27

10 8 1

�� �
� ��� �
� ��	 
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Example 6. If A = 
32

3 5

� �
� �
	 


, then use Cayley Hamilton Theorem to find the matrix represented by A5.

Sol. Characteristic equation of A is
| A – lI | = 0

i.e.,
2 3

53

� �
� � = 0 or l2 –7l + 1 = 0

By Cayley Hamilton Theorem A2 – 7A + I = 0
\ A2 = 7A – I . . .(1)

A4 = 49A2 – 14A + I
= 49 (7A – I) – 14A + I [Using (1)]
= 329A – 48I

A5 = A4 ◊ A = (329A – 48I) A
= 329A2 – 48A = 329 (7A – I) – 48A = 2255A – 329I

= 2255 3 02 1329
3 5 0 1

� � � �
�� � � �

	 
 	 

 = 4181 6765

6765 10946

� �
� �
	 


.

Example 7. Verify Cayley Hamilton Theorem for the matrix A = 

� �
� �
� �
� �	 


1 2 3

2 4 5

3 5 6

 and hence find

B = A8 – 11A7 – 4A6 + A5 + A4 – 11A3 – 3A2 + 2A + I; also find A–1 and A4. (P.T.U., May 2011)
Sol.  The characteristic equation of A is

|A – l I| = 0; 

1 � � �

2 4 � �

3 5 6 �

�
�

�
 = 0

or (1 – l) {(4 – l) (6 – l) – 25} – 2 {2(6 – l) – 15} + 3{10 – 3 (4 – l)} = 0
or l3 – 11l2 – 4l + 1 = 0 …(1)

Cayley Hamilton Theorem is verified if A satisfies the characteristic equation i.e., (1)
\  A3 – 11A2 – 4A + I = 0 …(2)

Now, A2 =

1 2 3 1 2 3

2 4 5 2 4 5

3 5 6 3 5 6

� � � �
� � � �
� � � �
� � � �	 
 	 


i.e., A2 =

14 25 31

25 45 56

31 56 70

� �
� �
� �
� �	 


A3 =

14 25 31 1 2 3

25 45 56 2 4 5

31 56 70 3 5 6

� � � �
� � � �
� � � �
� � � �	 
 	 


=

157 283 353

283 510 636

353 636 793

� �
� �
� �
� �	 
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Verification:  

157 283 353

283 510 636

353 636 793

� �
� �
� �
� �	 


  –11 

14 25 31

25 45 56

31 56 70

� �
� �
� �
� �	 


 

1 2 3 1 0 0

4 2 4 5 0 1 0

3 5 6 0 0 1

� � � �
� � � �� �� � � �
� � � �	 
 	 


=

0 0 0

0 0 0

0 0 0

� �
� �
� �
� �	 


 = O

\ Cayley Hamilton Theorem is satisfied.
Now, B = A5 (A3 – 11A2 – 4A + I) + A (A3 – 11A2 – 4A + I) + A2 + A + I

= A5◊0 + A◊0 + A2 + A + I [Using (2)]

= A2 + A + I

=

14 25 31 1 2 3 1 0 0

25 45 56 2 4 5 0 1 0

31 56 70 3 5 6 0 0 1

� � � � � �
� � � � � �� �� � � � � �
� � � � � �	 
 	 
 	 


 = 

16 27 34

27 50 61

34 61 77

� �
� �
� �
� �	 


From (2), A–1 = –A2 + 11A + 4I

\ A–1 = – 

14 25 31 1 2 3 1 0 0

25 45 56 11 2 4 5 4 0 1 0

31 56 70 3 5 6 0 0 1

� � � � � �
� � � � � �� �� � � � � �
� � � � � �	 
 	 
 	 


 = 

1 3 2

3 3 1

2 1 0

�� �
� �� �� �
� ��	 


 From (2), A4 = 11A3 + 4A2 – A

=

157 283 353 14 25 31 1 2 3

11 283 510 636 4 25 45 56 2 4 5

353 636 793 31 56 70 3 5 6

� � � � � �
� � � � � �� �� � � � � �
� � � � � �	 
 	 
 	 


\ A4 =

1782 3211 4004

3211 5786 7215

4004 7215 8997

� �
� �
� �
� �	 


.

Example 8. Using Cayley Hamilton Theorem find the inverse of 

4 3 1

2 1 2

1 2 1

� �
� ��� �
� �	 


. (P.T.U., Dec. 2012)

Sol. Let  A = 

4 3 1

2 1 2

1 2 1

� �
� ��� �
� �	 


Characteristics equation of A is |A – lI| = 0

or

4 � � �

2 1 � �

1 2 1 �

�
� �

�
 = 0

or (4 – l) {(1 – l)2 + 4} – 3{2(1 – l) + 2} + 1{4 – 1 + l} = 0
or (4 – l) (5 – 2l + l2) – 3 (4 – 2l) + (3 + l) = 0
or 20 – 13l + 6l2 – l3 – 12 + 6l + 3 + l = 0
or l3 – 6l2 + 6l – 11 = 0

By Cayley Hamilton Theorem
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A3 – 6A2 + 6A – 11 I = 0
or 11 I = A3 – 6A2 + 6A

Operate both sides by A–1

11A–1 = A2 – 6A + 6 I

A2 =

4 3 1 4 3 1

2 1 2 2 1 2

1 2 1 1 2 1

� � � �
� � � �� �� � � �
� � � �	 
 	 


=

23 17 1

8 3 2

9 7 2

�� �
� ��� �
� ��	 


\ 11A–1 =

23 17 1 4 3 1 6 0 0

8 3 2 6 2 1 2 0 6 0

9 7 2 1 2 1 0 0 6

�� � � � � �
� � � � � �� � � �� � � � � �
� � � � � ��	 
 	 
 	 


=

5 1 7

4 3 10

3 5 2

� �� �
� ��� �
� �� �	 


\ A–1 =

5 1 7
1

4 3 10
11

3 5 2

� �� �
� ��� �
� �� �	 


��������	�
�������

1. Find the eigen values and eigen vectors of the matrix 
5 4

1 2

� �
� �
	 


.

2. Find the eigen values and eigen vectors of the matrices

(i)

8 6 2

6 7 4

2 4 3

�� �
� �� �� �
� ��� 	

(P.T.U., June 2003, Jan. 2010) (ii)

6 2 2

2 3 1

2 1 3

�� �
� �� �� �
� ��� 	

(P.T.U., Dec. 2013)

(iii)

2 0 1

0 2 0

1 0 2

� �
� �
� �
� �� 	

(iv)

2 1 1

1 2 1

0 0 1

� �
� �
� �
� �� 	

(v)  

3 1 4

0 2 0

0 0 5

� �
� �
� �
� �� 	

(vi) 

1 0 1

1 2 1

2 2 3

�� �
� �
� �
� �� 	

 (P.T.U., May 2006) (vii)

8 8 2

4 3 2

3 4 1

� �� �
� �� �� �
� ��� 	

(P.T.U., May 2012)

3. Prove that the characteristic roots of a diagonal matrix are the diagonal elements of the matrix.

4. Show that 0 is a characteristic root of a matrix if and only if the matrix is singular.

5. Show that if l is a characteristic root of the matrix A, then l + k is a characteristic root of the matrix A + kI.

6. If l1, l2,........., ln are the given values of a matrix A, then Am has the eigen values l1
m, l2

m, ........., ln
m (m being

a positive integer).

7. Show that eigen values of a Hamilton matrix are real.

8. Find the characteristic equation of the matrix A = 

1 3 7

4 2 3

1 2 1

� �
� �
� �
� �� 	

. Show that the equation is satisfied by A and

hence obtain the inverse of the given matrix.
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9. Find the characteristic equation of the matrix A = 

1 2 3

2 1 4

3 1 1

� �
� ��� �
� ��� 	

. Show that the equation is satisfied by A.

10. If A = 
1 2

2 1

� �
� ��	 


 use Cayley Hamilton Theorem to find A8. [Hint: A2 = 5I] (P.T.U., Dec. 2003, May 2010)

11. Using Cayley Hamilton Theorem, find the inverse of

(i)
1 4

2 3

� �
� �
	 


 (P.T.U., Dec. 2013) (ii) 

7 1 3

6 1 4

2 4 8

�� �
� �
� �
� �� 	

(iii)

2 1 1

1 2 1

1 1 2

�� �
� �� �� �
� ��� 	

(P.T.U., Dec. 2005, Jan. 2009)

(iv)

1 2 0

1 1 2

1 2 1

� �
� ��� �
� �� 	

 (P.T.U., May 2010) (v)

2 5 3

3 1 2

1 2 1

� �
� �
� �
� �� 	

(P.T.U., Dec. 2005)

(vi)

2 3 1

3 1 2

1 2 3

� 	
� 	
� 	
� 	
 �

(P.T.U., May 2006)

12. Find the characteristic equation of matrix A = 

2 1 1

0 1 0

1 1 2

� �
� �
� �
� �� 	

 and hence find the matrix represented by A8 – 5A7

+ 7A6 – 3A5 + A4 – 5A3 + 8A2 – 2A + I.

�����	�

1. 1, 6 ; (1, – 1), (1, 4)

2. (i) 0, 3, 15 ; (1, 2, 2), (2, 1 , –2) (2, –2, 1) (ii) 2, 2, 8 ; (1, 0, –2), (1, 2, 0), (2, –1, 1)

(iii) 1, 2, 3 ; (1, 0, 1), (1, 0, –1), (0, 1, 0) (iv) 1, 1, 3 ; (1, –2, 1) (1, 1, 0)

(v) 2, 3, 5 ; (1, –1, 0), (1, 0, 0), (2, 0, 1) (vi) 1, 2, 3 ; (1, – 1, 0), (– 2, 1, 2), (1, –1, – 2)

(vii) 1, 2, 3 ; (4, 3, 2), (3, 2, 1), (2, 1, 1)

8. l3 – 4l2 – 20l – 35 = 0, 

4 11 5
1

1 6 25
35

6 1 10

� �� �
� �� �� �
� �� �� 	

9. 3 2 18 40 0�� � � � � � 10. 625I

11. (i)   

3 4

5 5
2 1

5 5

� 	�� 	
� 	
� 	�� 	
 �

 (ii) 

2 2 9

65 13 130
21 5 3

65 13 130
2 3 2

13 13 13

� ��� �
� �
� �� �� �
� �
� ��� �� 	

(iii)

3 1 1
1

1 3 1
4

1 1 3

�� �
� �
� �
� ��� 	

(iv)

3 2 4
1

3 1 2
3

3 0 3

� �� �
� ��� �
� ��� 	

(v)

3 1 7
1

1 1 5
4

5 1 13

�� �
� �� �� �
� ��� 	

(vi) 

1 7 5
1

7 5 1
18

5 1 7

�� 	
� 	�� 	
� 	�
 �

12. l3 – 5l2 + 7l – 3 = 0; 

8 5 5

0 3 0

5 5 8

� �
� �
� �
� �� 	

.
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��� � �	���	�!	"����	�
���

A matrix A is said to be diagonalizable if there exists an invertible matrix B. Such that B–1 AB = D, where D
is a diagonal matrix and the diagonal elements of D are the eigen values of A.

Theorem. A square matrix A of order n is diagonalizable if and only if it has n linearly independent eigen
vectors.

Proof. Let X
1
, X

2
, ......, Xn be n linearly independent eigen vectors corresponding to the eigen values l

1
, l

2
,

......, l
n
 (not necessarily distinct) of matrix A

\ AX
1

= l
1
 X

1
, AX

2
 = l

2
 X

2
, ......, AX

n
 = l

n
 X

n

Let B = [X
1
, X

2
, ......., X

n
] and D = Diag. [l

1
, l

2
, ......., l

n
] formed by eigen values of A.

then AB = A [X
1
, X

2
, ......., X

n
] = [AX

1
, AX

2
, ......., AX

n
]

= [l
1
 X

1
, l

2
 X

2
, ......., l

n
 X

n
]

= [X
1
 X

2
, ......, X

n
] Diag [l

1
 l

2
, ......, l

n
]

AB = BD ... (1)

Since columns of B and L.I. \ p(B) = n \ B is invertible
Pre-multiply both sides by B–1

\ B–1 AB = (B–1 B) D = D
\ The matrix B, formed by eigen vectors of A, reduces the matrix A to its diagonal form.

Post multiply (1) by B–1

A (BB–1) = BDB–1 or A = BDB–1.
Note 1. The matrix B which diagonalizes A is called the Modal Matrix of A, obtained by grouping the eigen values of

A into a square matrix and matrix D is called Spectral Matrix of A.

Note 2. We have A = BDB–1

\ A2 = A ◊ A = (BDB–1) (BDB–1) = BD (B–1 B) DB–1

= B (DID) B–1 = BD2 B–1

Repeating this process m times, we get

Am = BDm B–1 (m, a +ve integer).

\ If A is diagonalizable so is Am.

Note 3. If D is a diagonal matrix of order n and

D = 

1

2

3

0 0 0

0 0 0

0 0 0

0 0 0 n

�� �
� ��� �
� ��
� �
� �
� ��� 	

��

��

��

� � � �

��

, then Dm = 

1

2

3

0 0 0

0 0 0

0 0 0

0 0 0

� ��
� �
� ��
� �
� ��
� �
� �
� ��	 


��

��

��

� � � �

��

m

m

m

m
n

\ Am = BDm B–1

Similarly if Q (D) is a polynomial in D, then

Q (D) = 

� �
� �

� �

� �

1

2

3

Q 0 0 0

0 Q 0 0

0 0 Q 0

0 0 0 Q n

� ��
� �

�� �
� ��
� �
� �
� ��� 	

��

��

��

� � � �

��

\ Q (A) = B [Q(D)]B–1
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����������	
�
����
�

Example 1. Show that the matrix A = 

�� �
� ��� �
� �� �

3 1 1

2 1 2

0 1 2

 is diagonalizable. Hence find P such that P–1 AP

is a diagonal matrix, then obtain the matrix B = A2 + 5A + 3I. (P.T.U., May 2008, 2012)
Sol. Characteristic equation of A is

| A – lI | = 

3 11
2 1 2

20 1

� 	 �
� � 	

� 	
 = l3 – 6l2 + 11l – 6 = 0

or l = 1, 2, 3.
Since the matrix has three distinct eigen values
\ It has three linearly independent eigen values and hence A is diagonalizable.
The eigen vector corresponding to l = 1 is given by

(A – lI) X= 
1

1

1

2 1 1 0

2 0 2 0

0 1 1 0

x

y

z

� � �� � � �
� �� � � �� 
� �� � � �
� �� � � �� � � �� �

i.e., 2x
1
 + y

1
 – z

1
= 0 ; – 2x

1
 + 2z

1
 = 0 and y

1
 + z

1
 = 0

which gives the solution.
x

1
= 1, y

1
 = – 1, z

1
 = 1

The eigen vector corresponding to l = 2 is

(A – 2I) X = 
1

1

1

1 1 1 0

2 1 2 0

0 1 0 0

x

y

z

� � �� � � �
� �� � � �� � 
� �� � � �
� �� � � �� � � �� �

i.e., x
1
 + y

1
 – z

1
= 0

– 2x
1
 – y

1
 + 2z

1
= 0

y
1

= 0
which gives the solution

x
1

= 1, y
1
 = 0, z

1
 = 1.

Eigen vector corresponding to l = 3 is given by

(A – 3I) X = 
1

1

1

0 1 1 0

2 2 2 0

0 1 1 0

x

y

z

� � �� � � �
� �� � � �� � 
� �� � � �
� �� � � ��� � � �� �

i.e., y
1
 – z

1
= 0

– 2x
1
 – 2y

1
 + 2z

1
= 0

y
1
 – z

1
= 0

which gives the solution
x

1
= 0, y

1
 = 1, z

1
 = 0.

\ This modal matrix P = [X
1
, X

2
, X

3
]

= 

1 1 0

1 0 1

1 1 1

� �
� ��� �
� �� �
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Now, P–1 = 

1 1 1
Adj. P 1

2 1 1
P 1

1 0 1

� �� �
� �
 �� �
� ��� �

\ P–1 AP = 

1 1 1 3 1 1 1 1 0

2 1 1 2 1 2 1 0 1

1 0 1 0 1 2 1 1 1

� � �� � � � � �
� � � � � �� � �� � � � � �
� � � � � ��� � � � � �

= 

1 0 0

0 2 0

0 0 3

� �
� �
� �
� �� �

 = diag [1, 2, 3]

Hence A is diagonalizable and its diagonal form matrix contains the eigen values only as its diagonal
elements.

Now to obtain B = A2 + 5A + 3I we use Q (A) = P [Q (D)]P–1 [Art. 4.27  Note 3]
D = diag (1, 2, 3)

D2 = diag (1, 4, 9)
A2 + 5A + 3I = P (D2 + 5D + 3I) P–1

D2 + 5D + 3I = 

1 0 0 5 0 0 3 0 0

0 4 9 0 10 0 0 3 0

0 0 9 0 0 15 0 0 3

� � � � � �
� � � � � �� �� � � � � �
� � � � � �� � � � � �

= 

9 0 0

0 17 0

0 0 27

� �
� �
� �
� �� �

\ B = A2 + 5A + 3I = 

1 1 0 9 0 0 1 1 1

1 0 1 0 17 0 2 1 1

1 1 1 0 0 27 1 0 1

� �� � � � � �
� � � � � �� �� � � � � �
� � � � � ��� � � � � �

= 

25 8 8

18 9 18

2 8 19

�� �
� ��� �
� ��� �

Example 2. Find a matrix P which transforms the matrix 

1 1 3

1 5 1

3 1 1

� �
� �
� �
� �� �

 into a diagonal form.

(P.T.U., Dec. 2003)

Sol. Let A =  

1 1 3

1 5 1

3 1 1

� �
� �
� �
� �� �

Characteristic equation of A is | A – lI | = 0

i.e.,

1 1 3

1 5 1

3 1 1

� 	
� 	

� 	
= 0 or l3 – 7l2 + 36 = 0

or (l + 2) (l2 – 9l + 18) = 0
or (l + 2) (l – 3) (l – 6) = 0 i.e., l = – 2, 3, 6 are the eigen values.

When l = – 2; eigen vectors are given by
3x

1
 + y

1
 + 3z

1
= 0
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x
1
 + 7y

1
 + z

1
= 0

3x
1
 + y

1
 + 3z

1
= 0

Solving first and second equations (3rd is same as first)

1

20

x

�
= 1 1

0 20

y z
� \ X

1
 = k (– 1, 0, 1)

When l = 3; eigen vectors are given by
2x

1
 + y

1
 + 3z

1
= 0

x
1
 + 2y

1
 + z

1
= 0

3x
1
 + y

1
 – 2z

1
= 0

Solving first and second equations :

1

5�
x

= 1 1

5 5

y z


�

\ X
2
 = k (– 1, 1, – 1)

When l = 6; eigen vectors are given by
– 5x

1
 + y

1
 + 3z

1
= 0

x
1
 – y

1
 + z

1
= 0

3x
1
 + y

1
 – 5z

1
= 0

Solving first and second equations

1

4

x
= 1 1

8 4

y z
� \ X

3
 = k (1, 2, 1).

Modal matrix P = 1 2 3

1 1 1

X X X 0 1 2

1 1 1

� �� �
� �
� �� � � �
� ��� �

P–1 = 

3 2 1 3 0 3
Adj. P 1 1

0 2 2 2 2 2
P 6 6

3 2 1 1 2 1

� �� � � �
� � � � �
 � � 
 � �� � � �

� � � �� � � � �� � � �
\ Required diagonal form D = P–1 AP

= – 

3 0 3 1 1 3 1 1 1
1

2 2 2 1 5 1 0 1 2
6

1 2 1 3 1 1 1 1 1

� � �� � � � � �
� � � � � ��� � � � � �
� � � � � �� � � �� � � � � �

= 

12 0 0
1

0 18 0
6

0 0 36

� �
� �� �� �
� ��� �

= 

2 0 0

0 3 0

0 0 6

�� �
� �
� �
� �� �

, which is formed by the eigen values of A.

Example 3. Diagonalize the matrix 

2 2 3

2 1 6

1 2 0

� �� �
� ��� �
� �� �� �

 and obtain its Modal Matrix.

Sol. Let A = 

2 2 3

2 1 6

1 2 0

� �� �
� ��� �
� �� �� �
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Characteristic equation of A is | A – lI | = 0 i.e., 

2 2 3

2 1 6

1 2

� � 	 �
� 	 �

� � � 	
 = 0

or (– 2  –  l) [–  l (1   – l)  – 12] – 2 [ – 2l – 6]  – 3 [–  4 + 1 – l] = 0
or – (2 + l) (l2 – l – 12) + 4 (l + 3) + 3 (l + 3) = 0
or – (2 + l) (l + 3) (l – 4) + 7 (l + 3) = 0
or (l + 3) (– l2 + 2l + 8 + 7) = 0
or – (l + 3) (l + 3) (l – 5) = 0

\ l = – 3, – 3, 5.
Characteristic vectors corresponding to l = – 3 are

1

2

3

1 2 3

2 4 6

1 2 3

x

x

x

� � �� �
� �� �� � �� �
� �� �� �� � � �

 = 0

Operating R
2
 – 2R

1
, R

3
 + R

1
, we get

1

2

3

1 2 3

0 0 0

0 0 0

x

x

x

� � �� �
� �� �
� �� �
� �� �� � � �

 = 0

\ x
1
 + 2x

2
 – 3x

3
 = 0

\ x
1
 = – 2x

2
 + 3x

3
x

2
 = 1◊x

2
 + 0◊x

3
x

3
 = 0◊x

2
 + 1◊x

3

\

1

2

3

x

x

x

� �
� �
� �
� �� �

 = 2 3

2 3

1 0

0 1

x x

�� � � �
� � � ��� � � �
� � � �� � � �

\ Eigen vectors are X
1 
= (– 2, 1, 0) and X

2
 = (3, 0, 1).

Characteristic vector corresponding to l = 5 is

1

2

3

7 2 3

2 4 6

1 2 5

x

x

x

� � � �� �
� �� �� � � �� �
� �� �� � �� � � �

= 0

or
1

2

3

1 2 5

7 2 3

2 4 6

x

x

x

� � � � �� �
� �� �� � � �� �
� �� �� �� � � �

 = 0 by operating R
32

 and R
21

Operate R
2
 – 7R

1
, R

3
 + 2R

1
, we get

1

2

3

1 2 5

0 16 32

0 8 16

x

x

x

� � � � �� �
� �� �
� �� �
� �� �� �� � � �

= 0

Operating R
3
 + 2

1
R

2
, we get

1

2

3

1 2 5

0 16 32

0 0 0

x

x

x

� � � � �� �
� �� �
� �� �
� �� �� � � �

=  0

\ – x
1
 – 2x

2
 – 5x

3
  = 0

16x
2
 + 32x

3
 = 0
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or x
1
 + 2x

2
 + 5x

3 
= 0

x
2
 + 2x

3
 = 0

or x
1 
= – x

3
x

2
 = – 2x

3

\

1

2

3

x

x

x

� �
� �
� �
� �� �

 =
3

3 3

3

1

2 2

1

x

x x

x

�� � � �
� � � �� 
 �� � � �
� � � ��� �� �

\ Eigen vector X3 = (1, 2, – 1)

\ Modal Matrix P =

2 3 1

1 0 2

0 1 1

�� �
� �
� �
� ��� �

 ; | P | = 8

P–1 =

2 4 6
Adj. P 1

1 2 5
P 8

1 2 3

�� �
� �
 � �
� ��� �

Now Diagonal Matrix D = P–1 AP

=

2 4 6 2 2 3
1

1 2 5 2 1 6
8

1 2 3 1 2 0

� �� � � �
� � � ��� � � �
� � � �� � �� � � �

 

2 3 1

1 0 2

0 1 1

�� �
� �
� �
� ��� �

=

24 0 0 3 0 0
1

0 24 0 0 3 0
8

0 0 40 0 0 5

� �� � � �
� � � �� 
 �� � � �
� � � �� � � �

=
1

2

3

0 0

0 0

0 0

	� �
� �	� �
� �	� �

 i.e., the diagonal matrix formed by eigen values of A.

Example 4. Diagonalize A = 

1 6 1

1 2 0

0 0 3

� �
� �
� �
� �� �

 and hence find A8.  Find the Modal Matrix. (P.T.U., May 2011)

Sol. The characteristic equation of  A is |A – lI| = 0

i.e.,

1 6 1

1 2 0

0 0 3

� 	
� 	

� 	
 = 0

Expand the determinant w.r.t. R3
(3 – l){(1 – l) (2 – l  – 6} = 0

or (3 – l) {(l2 – 3l – 4} = 0
or (3 – l) (l – 4) (l + 1)} = 0

\ Eigen values are l = – 1, 3, 4
For l = –1; the eigen vector is given by

1

2

3

2 6 1

1 3 0

0 0 4

x

x

x

� �� �
� �� �
� �� �
� �� �� � � �

= O

or 2x1 + 6x2 + x3= 0
x1 + 3x2 = 0

4x3 = 0
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\ x3 = 0, x1 = – 3x2

\ X1 =

3

1

0

�� �
� �
� �
� �� �

For l = 3; eigen vector is given by

1

2

3

2 6 1

1 1 0

0 0 0

x

x

x

� � �� �
� �� �� � �� �
� �� �� � � �

 = O

or – 2x1 + 6x2 + x3 = 0
x1 – x2 = 0

\ x2 = x1 and x3 = – 4x1

\ X2 =

1

1

4

� �
� �
� �
� ��� �

For l = 4; eigen vector is

� �� ��
� �� �� � �� �
� �� ��� 	 � 	

�

�

�

�

�

�

� � �

� � �

� � �

 = O

\ – 3x1 + 6x2 + x3 = 0
x1 – 2x2 = 0

– x3 = 0
x1 = 2x2

\ x3 = 0, x1 = 2x2

\ X3 =

2

1

0

� �
� �
� �
� �� �

Thus the Modal Matrix P is

P =

3 1 2

1 1 1

0 4 0

�� �
� �
� �
� ��� �

P–1 =
Adj P

|P|

| P | =

3 1 2

1 1 1

0 4 0

�

�
Expand w.r.t. R3, we get | P | = – 20

Adj  P =

4 0 4

8 0 12

1 5 4

�� �� �
� �� �� �
� �� �� �

\ P–1 =

4 8 1
1

0 0 5
20

4 12 4

� �� �
� �� � �
� �� � �� �
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=

4 8 1
1

0 0 5
20

4 12 4

�� �
� ��� �
� �� �

Now the diagonal matrix D is given by

D = P–1 AP = 

4 8 1 1 6 1
1

0 0 5 1 2 0
20

4 12 4 0 0 3

�� � � �
� � � ��� � � �
� � � �� � � �

3 1 2

1 1 1

0 4 0

�� �
� �
� �
� ��� �

=

4 8 1 3 1 2
1

0 0 15 1 1 1
20

16 48 16 0 4 0

� � �� � � �
� � � ��� � � �
� � � ��� � � �

=

20 0 0 1 0 0
1

0 60 0 0 3 0
20

0 0 80 0 0 4

� �� � � �
� � � �
� � � �
� � � �� � � �

The diagonal matrix formed by eigen values of A
To find A8; A = PDP–1

\ A8 = PD8 P–1

=

3 1 2 1 0 0
1

1 1 1 0 6561 0
20

0 4 0 0 0 65536

�� � � �
� � � �
� � � �
� � � ��� � � �

4 8 1

0 0 5

4 12 4

�� �
� ��� �
� �� �

=

3 6561 131072
1

1 6561 65536
20

0 26244 0

�� �
� �
� �
� ��� �

4 8 1

0 0 5

4 12 4

�� �
� ��� �
� �� �

=

524300 1572840 491480
1

262140 786440 229340
20

0 0 131220

� �
� �
� �
� �� �

A8 =

26215 78642 24574

13107 39322 11467

0 0 6561

� �
� �
� �
� �� �

.

��������	�
���	������ (P.T.U., May 2007)

Let A and B be square matrices of the same order. The matrix A is said to be similar to B if there exists an
invertible matrix P such that A =  P–1  BP or PA = BP

Post multiply both sides by P–1, we have
PAP–1 = B(PP–1) = BI = B � B = PAP–1

� A is similar to B if and only if B is similar to A. The matrix P is called the similarity matrix.

����������������������	�������������������������������������������� �!� "��� ��
�����������#� �$�����%��������&�'����� ���#� �$�������&���������(� "� #���
��#� �$����� lllll�� ��� � )*+�'� ��� � � ��#� � $������ �&� ,� ������(� "� #� ��� ���
��#� �$�����lllll��-�����)� ������������.�	����/

Proof.�� B is similar to A and P is similarity matrix. ����   AP  = PB  or P–1AP  = B
Let l be the eigen value and X be the corresponding eigen vector of A
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� AX = lX …(1)
Now, B – lI = P–1 AP – lI = P–1 AP – P–1 (lIP) = P–1 (A – lI) P
\ | B – lI | = | P–1 (A –lI) P | = | P–1 | | A – lI | | P |

= | A – lI | | P–1 P| = | A – lI | | I |
= | A – lI |

\ Similar matrices have same characteristic polynomials.
Pre-multiply (1) both sides by an invertible matrix P–1.

� P–1 (AX) = 1 1P ( X) P X� �	 
 	
Let X = PY �������    P–1(�PY)  =  lP–1 (PY)

or (P–1AP)Y = l (P–1P) Y
or BY = lY, where B = P–1AP …(2)

� B has the same eigen value l as that of A which shows that eigen values of similar matrices are same.
� Similar matrices have the same characteristic equation and hence the same eigen values.
Now, from (2) Y is an eigen vector of B corresponding to l, the eigen value of B.
� Eigen vector of B = Y = P–1X
Hence, the result.
Note 1. Converse of the above theorem is not always true i.e., two matrices which have the same characteristic

equation need not always be similar.
Note 2. If A is similar to B, B is similar to C, then A is similar to C

Let there be two invertible matrices P and Q.
Such that A = P–1 BP  and  B = Q–1 CQ
Thus, A = P–1 (Q–1 CQ) P = (P–1 Q–1) C (QP) = (QP)–1 C (QP)
� A = R–1CR, where R = QP

Hence A is similar to C.

��01�����2�������.�� "���&&���� ���� "���� �&���� �����-�"��������	����/�����
3���������������4��#� ���	����/������������������&����������������$��������&��
� ���"����������&���
� ����.� � "�(� "� ��$������

Proof.�Necessary Condition : A is similar to a diagonal matrix D(say) � there exists a non-singular matrix
P such that P–1AP = D = diag (l1, l2,..........., ln)

� AP = PD
Let P = [C1, C2,.........., Cn]
�        A [C1, C2,.........., Cn] = [C1, C2,.........., Cn] Diag [l1, l2,........., ln]
� AC1 = l1C1 ; A C2  = l2 C2 ; A C3  = l3 C3,.........., A Cn = ln Cn

which shows that C1, C2,.........., Cn are n characteristic vectors corresponding to eigen values l1, l2,........., ln
of A. As C1, C2,.........., Cn are columns of a non-singular matrix � they form a L.I. set of vectors.

Sufficient Conditions : Let C1, C2,.........., Cn be n L.I. set of n characteristic vectors and let l1, l2,........., ln
be the corresponding characteristic roots.

We have AC 1 = l1C1, A C2 =  l2C2,..........., ACn = lnCn …(1)
If we take P = [C1, C2,.........., Cn]
Then system (1) is equivalent to AP = PD …(2)

where D = Diag [l1, l2,.........., ln]
Also matrix P is non-singular as its columns are L.I. � P–1 exists and we may write (2) as

P–1AP = D
Hence A is similar to D.
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Example 5. Examine whether A is similar to B, where

(i) A = 
5 5

2 0

� �
� ��� �

 and B = 
1 2

3 4

� �
� ��� �

       (ii)   A = 
1 0

0 1

� �
� �
� �

 and B = 
1 1

0 1

� �
� �
� �

 . (P.T.U., May 2010)

Sol. We know that A will be similar to B if there exists a non-singular matrix P such that A = P–1 BP or
PA = BP

Let P = 
a b

c d

� �
� �
� �

(i) PA = BP fi =
5 5 1 2

2 0 3 4

a b a b

c d c d
� � � � � � � �
� � � � � � � �� �� � � � � � � �

or
5 2 5

5 2 5

a b a

c d c

�� �
� ��� �

 = 
2 2

3 4 3 4

a c b d

a c b d

� �
� �� �� �

+ +

+ +
� 5a – 2b = a + 2c 5a = b + 2d

5c – 2d = – 3a + 4c 5c = – 3b + 4d
or 4a = 2b + 2c i.e., 2a = b + c

3a = – c + 2d i.e., 3a = – c + 2d
or equations are 2a – b  – c + 0.d = 0

3a + 0.b + c – 2d = 0
  5a – b  + 0.c – 2d = 0
0.a + 3b + 5c  – 4d = 0

which is a set of homogeneous equation

�

2 1 1 0

3 0 1 2

5 1 0 2

0 3 5 4

a

b

c

d

� �� � � �
� � � ��� � � �
� � � �� �
� � � �

�� � � �� � � �

 = 0 or 

1 2 1 0

0 3 1 2

1 5 0 2

3 0 5 4

a

b

c

d

� �� � � �
� � � ��� � � �
� � � �� �
� � � �

�� � � �� � � �

 = 0 by operating C12

Operate R3 – R1, R4 + 3R1; 

1 2 1 0

0 3 1 2

0 3 1 2

0 6 2 4

a

b

c

d

� �� � � �
� � � ��� � � �
� � � ��
� � � �

�� � � �� � � �

 = 0

Operate R3 – R2, R4 – 2R2 ; 

1 2 1 0

0 3 1 2

0 0 0 0

0 0 0 0

a

b

c

d

� �� � � �
� � � ��� � � �
� � � �
� � � �
� � � �� � � �

 = 0

� – a  + 2b – c = 0

  3b + c – 2d = 0

� If a = 1, b = 1, we get c = 1 and d = 2

� P  = 
1 1

1 2

� �
� �
� �

, which is non-singular

Hence A, B are similar

(ii)
1 0

0 1

a b

c d

� � � �
� � � �
� � � �

 = 
1 1

0 1

a b

c d

� � � �
� � � �
� � � �

or
a b

c d

� �
� �
� �

 = 
a c b d

c d

� �
� �
� �

+ +

� a = a + c fi c = 0
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b = b + d fi d = 0

� P = =
0 0

a b a b

c d

� � � �
� � � �
� � � �

, which is a singular matrix

� A, B are not similar matrices.

Example 6. Examine which of the following matrices are similar to diagonal matrices

(i)

8 6 2

6 7 4

2 4 3

�� �
� �� �� �
� ��� �

(ii)

2 3 4

0 2 1

0 0 1

� �
� ��� �
� �� �

.

Sol. (i) Characteristic equation of A = 

8 6 2

6 7 4

2 4 3

�� �
� �� �� �
� ��� �

 is |�lI – A | = 0

i.e.,
8 6 2

6 7 4
2 4 3

	 � �
	 �

� 	 �
 = 0 i.e., l3 – 18l2 + 45l = 0;       l = 0, 3, 15

Characteristic vectors corresponding to  l = 0 is given by (lI – A)X = 0 Put l = 0
8 6 2

6 7 4

2 4 3

x

y

z

� �� � � �
� � � ��� � � �
� � � �� �� � � �

 = 0

Operate R
13

2 4 3

6 7 4

8 6 2

x

y

z

� �� � � �
� � � ��� � � �
� � � �� �� � � �

 = 0

Operate R
2
 + 3R

1
, R

3
 – 4R

1

2 4 3
0 5 5
0 10 10

x
y
z

� �� � � �
� � � ��
� � � �

�� � � �

 = 0 ;

Operate R
3
 + 2R

2
;

2 4 3

0 5 5

0 0 0

x

y

z

� �� � � �
� � � ��� � � �
� � � �� � � �

 = 0

or – 2x+ 4y – 3z = 0
5y – 5z = 0

� y = z, x = 
2

z

� X = 

1 1
2

2 X 2
2 2

2 2

z
x

z z
y z
z z

� �
� � � � � �� �
� � � � � �� � � � � � � �� �
� � � � � �� �� � � � � �� �

= = =

� We may take single L.I. solution 

1

2

2

� �
� �
� �
� �� �

Similarly for l = 3;

5 6 2

6 4 + 4

2 4 0

x

y

z

� � � �
� � � �
� � � �
� � � �� � � �

� �

�

�

 = 0
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Operate R13;

2 4 0

6 4 4

5 6 2

x

y

z

� � � �
� � � �
� � � �
� � � �� � � �

�

�

� �

 = 0

Operate 1 2
1 1

R , R
2 2

� � � ��� � � �� � � �
;

1 2 0

3 2 2

5 6 2

x

y

z

� � � �
� � � �
� � � �
� � � �� � � �

�

�

� �

 = 0

Operate R2 – 3R1,  R3 + 5R1;
1 2 0

0 4 2

0 4 2

x

y

z

� � � �
� � � �
� � � �
� � � �� � � �

�

� �

 = 0

Operate R3 + R2;

1 2 0

0 4 2

0 0 0

x

y

z

� � � �
� � � �
� � � �
� � � �� � � �

�

 = 0

i.e., x – 2y = 0 or x = 2y

4y + 2z = 0        z = – 2y

� X = 

x

y

z

� �
� �
� �
� �� �

 = 
2

2

y
y

y

� �
� �
� �
�� �

 =
2
1
2

y
� �
� �
� �
�� �

� Eigen vector corresponding to l = 3 is 

2

1

2

� �
� �
� �
� ��� ��

For  l = 15     

7 6 2

6 8 4

2 4 12

x

y

z

� � � �
� � � �
� � � �
� � � �� � � �

�

�

 = 0 or 

1 2 6

3 4 2

7 6 2

x

y

z

� � � �
� � � �
� � � �
� � � �� � � �

�

�

= 0 by operating 3 2 13
1 1

R ; R ; R
2 2

� � � �
� � � �� � � �

Operate R2 + 3R1, R3 + 7R1; 

1 2 6

0 10 20

0 20 40

x

y

z

�� � � �
� � � �
� � � �
� � � �� � � �

 = 0

Operate R3 – 2R2, 2
1

R
10
� �
� �� �

; 

1 2 6

0 1 2

0 0 0

x

y

z

�� � � �
� � � �
� � � �
� � � �� � � �

 = 0

� ���������������– x + 2y + 6z = 0,  y + 2z = 0

� y = – 2z,   x = 2z �  X  = = =

2 2

2 2

1

� � � � � �
� � � � � �� �� � � � � �
� � � � � �� � � � � �

x z

y z z

z z

Eigen vector corresponding  to l = 15 is  

2

2

1

� �
� ��� �
� �� �

� Set of  L.I. characteristic vectors is
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P = 

1 2 2

2 1 2

2 2 1

� �
� ��� �
� ��� �

Now, P–1 = -
3 6 6

1
6 3 6

27
6 6 3

� � �� �
� �� �� �
� �� �� �

1 Adj P
P

| P |


 �
� � �
�

�

�

= 
1

9

1 2 2

2 1 2

2 2 1

� �
� ��� �
� ��� �

P–1AP = =

1 2 2 8 6 2 1 2 2 0 0 0

2 1 2 6 7 4 2 1 2 0 3 0

2 2 1 2 4 3 2 2 1 0 0 15

�� � � � � � � �
� � � � � � � �� � � �� � � � � � � �
� � � � � � � �� � �� � � � � � � �

= diag (0, 3, 15) i.e., diagonal matrix formed by eigen values
Hence A is similar to diagonal matrix.

(ii) A = 

2 3 4

0 2 1

0 0 1

� �
� ��� �
� �� �

Characteristic roots of A are |�lI – A| = 0

2 3 4
0 2 1

0 0 1

	 � � �
� 	

	 �
 = 0    or    (l – 2)2 (l – 1) = 0

l = 1, 2, 2

Eigen vector corresponding to l = 1 is 

1 3 4

0 1 1

0 0 0

x

y

z

� � �� � � �
� � � ��� � � �
� � � �� � � �

 = 0

i.e., - x - 3y - 4z = 0
– y + z = 0

� y = z, x = – 3y - 4z = - 7z

� X = = =

7 7

1

1

� �� � � � � �
� � � � � �
� � � � � �
� � � � � �� � � � � �

x z

y z z

z z

� Single eigen vector corresponding to l = 1 is 

7

1

1

� �
� �
� �
� �� �

�

For l = 2,

0 3 4

0 0 1

0 0 1

x

y

z

� �� � � �
� � � �
� � � �
� � � �� � � �

 = 0

– 3y – 4z = 0
z = 0

� y = 0



226 A TEXTBOOK OF ENGINEERING MATHEMATICS

� X = = =

1

0 0

0 0

� � � � � �
� � � � � �
� � � � � �
� � � � � �� � � � � �

x x

y x

z

� Corresponding to l = 2, we get only one vector 

1

0

0

� �
� �
� �
� �� �

As there are only two L.I. eigen vectors corresponding to three eigen values.
� There does not exist any non-singular matrix P.
Hence A is not similar to diagonal matrix.
Example 7. Prove that if A is similar to a diagonal matrix, then A' is similar to A.
Sol. Let A be similar to diagonal matrix D, then there exists a non-singular matrix P such that

P–1AP = D
or A = PDP–1

A' = (PDP–1)' = (P–1)' D'P' = (P¢)–1 DP¢ (�  D is a  diagonal matrix \ D' = D)
fi A' is similar to D
fi D is similar to A'
Now A is similar to D ; D is similar to A'
fi A is similar to A'

i.e., A' is similar to A.
Example 8. Show that the rank of every matrix similar to A is the same as that of A.
Sol. Let B be similar to A. Then there exists a non-singular matrix P such that

B = P–1AP
Now, rank of B = rank of (P–1AP)

= rank of A
� We know that rank of a matrix does not change on multiplication by a non-singular matrix.
Hence rank of B = rank of A.

��0+� 	55�
���
��62��,�7��2��8�����������$��6����6����)624�29

6�4�::���2��8������������66��6:��6	���)����
�	������

Before discussing these relations, we first give some definitions.
(a) Inner Product of two Vectors : We consider the vector space Vn (C) of n-tuples over the field C of

complex numbers.
Let X, Y be any two members of Vn (C) written as column vectors then the scalar XqY is called inner

product of vectors X and Y.

Thus if X = 

1

2 ,

n

x

x

x

� �
� �
� �
� �
� �
� �� �

�
 Y = 

1

2

n

y

y

y

� �
� �
� �
� �
� �
� �� �

�

Then XqY = 

1

2
1 2 1 1 2 2,..........,, .........n n n

n

y

y
x x x x y x y x y

y

� �
� �
� � � �� � � �� � � �� �
� �
� �

�
= + , which is a single element matrix

Hence inner product of X and Y is 1 1 2 2 ...... n nx y x y x y� � � .
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Note 1.  XqY � XYq ; infact one side is complex conjugate of other side.
Note 2. In case vectors are real, then we have  XqY  = X'Y = XY' = XYq

�  inner product concides.
Hence inner product of two real n-tuple vectors is

x1y1  + x2y2 +..........+ xn yn
(b) Length of a Vector : The positive square root of the inner product XqX is called length of X . Thus

the length of an n-vector with components x1,  x2, .........., xn is positive square root of 1 1 2 2 3 3..... n nx x x x x x x x� � ,
which is always positive except when X = 0 and when X = 0, then length is also zero.

In case of real vectors length of the vector = x1
2 + x2

2, .........., xn
2.

(c) Normal Vector: A vector whose length is 1, is called a normal vector.
(d) Orthogonal Vectors: A vector X is said to be orthogonal to a vector Y, if the inner product of X and

Y is 0 i.e., XqY  = 0 ¤ XYq = 0
i.e., 1 1 2 2...... n nx y x y x y�  = 0
or 1 1 2 2...... n nx y x y x y�  = 0

In case of real vectors the condition of orthogonality becomes x1y1 + x2y2 +.........+xnyn = 0.
(e) Condition for a Linear Transformation X = PY to Preserve length is that PqqqqqP = I :
[Lengths of the vectors preserved means length of vector X = length of vector Y]
We have X = PY
fi Xq = (PY)q = Yq�Pq

� XqX = (YqPq) (PY)
= Yq(PqP) Y

Given PqP  = I �   XqX = YqY
� Length of the vectors is preseved.
(f ) Every Unitary Transformation X = PY Preserves Inner Products:
� X = PY is unitary transformation
� P is a unitary matrix � PPq = I
If X1 = PY1

and X2 = PY2, then   2X�  = � �2 2PY Y P
� � ��

�    2 1X X� = � � � �2 1 2 1 2 1Y P (PY ) Y P P Y Y IY� � � � �
 

or 2 1X X� = 2 1Y Y�

Hence inner product is preserved.

��0�� �6
5	2�$��6���6:���52���;�	���'�����26�	�
��24�6�86962�

�2�)����

Proof. Let P = [X1, X2,........, Xn]  be a unitary matrix (where X1, X2 ,........., Xn represent columns of P)

PqP = 

1

2
1 2

X

X
[X ,X ,........,X ]

X

n

n

�

�

�

� �
� �
� �
� �
� �
� �
� �

�

= 

1 1 1 2 1

2 1 2 2 2

1 2

X X X X .......... X X

X X X X .......... X X

...................................................

...................................................

X X X X .......... X X

n

n

n n n n

� � �

� � �

� � �

� �
� �
� �
� �
� �
� �
� �
� �� �
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Now, P qP = I fi =

1 1 1 2 1

2 1 2 2 2

1 2

X X X X .......... X X I 0 ..

X X X X .......... X X

...................................................

...................................................

X X X X .......... X X

� ��

� � �

� � �

� �
� �
� �
� �
� �
� �
� �
� �� �

n

n

n n n n

........ 0

0 I .......... 0

............................

............................

0 0 0 ....... I

� �
� �
� �
� �
� �
� �
� �� �

fi 1 1X X� = = =2 2 3 3X X X X ,........., X X I� � �
n n

whereas all other sub matrices are zero matrices
i.e., X X�i j = 0 i π j

= I i = j

which shows that column vectors X1, X2 ,........, Xn of P are normal � �= =X X 1 ;� �� i j i j and orthogonal

� �=X X 0 ;� �� i j i j

Cor. Similarity we can prove that  the row vectors of a unitary matrix are also normal and orthogonal in

pairs we will write P = 

1

2

Y

Y

Yn

�

� �
� �
� �
� �
� �
� �� �

 and employ PPq = I.

��00!�%��6�8626�	�
��;��	�6:�$��6��

A set  of normal vectors which are orthogonal in pairs is called an orthonormal set.

��00!3%���$��;�6�8626�	�
����6:�$��6��� ���
�2���
;� �24�)�24�2

Proof. Let X1, X2 ,......., Xk  be the set of orthonormal vectors of n-tuple
Consider the relation. a1X1 + a2 X2 +.........+ akXk = 0

Pre-multiply by 1X� , we get

� � � � � � � �1 1 1 2 2 3 1 3X X X X X X ......... X Xk ka a a a� � � �
� �� �+ +  = 0

fi � �1 1 1X X�a = 0 [� the  set is that of orthogonal vectors]

fi a1I = 0 [� set of vectors is normal]
fi a1 = 0

Similarly, by pre-multiplying by 2 3X , X ,.......,X� � �
k  successively, we get a2 = 0, a3= 0,........., ak = 0 hence

the set is linearly independent.

��0�� �2;�76��8�����������$��6����6����)624�29�6�76�4���2�

�8������������66��6:���8��	���2�	���'�����6�86962�


Proof. Let X1, X2 be any two characteristic vectors corresponding to two distinct characteristic roots
l1 and l2 respectively of a Hermitian matrix

� AX1 = l1X1 1 2,	 	  being real scalars …(1)
AX2 = l2X2 …(2)

Pre-multiply (1) by 2X�  and (2) by 1X�  we have
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2 1X AX� = 1 2 1X X�	 …(3)

1 2X AX� = 2 1 2X X�	 …(4)
Take conjugate transpose of (3)

1 2X A X� � = 1 2X X��	 i.e.,  1 2X AX�  = 1 1 2X X�	 [�    A is Hermitian �    Aq = A]

or 1 1 2X X�	 =  1 2 1 2 2X (AX ) X ( X )� � 	= �    of (2)

� 1 1 2X X�	 = 2 1 2X X�	

or � �� �1 2 1 2X X�	 � 	  = 0 but l1 – l2 π 0 � l1, l2  are distinct

� 1 2X X� = 0 fi  X1, X2 are orthogonal vectors.
Cor. Any two characteristic vectors corresponding to two distinct characteristic roots of a real symmetric

matrix are orthogonal.

��0<� �2;�76��8�����������$��6����6����)624�29�6�76�4���2�

�8������������66��6:���52���;�	���'�����6�86962�


(P.T.U., May 2004)

Proof. Let X1, X2 be two characteristic vectors corresponding to two distinct characteristic roots l1 and l2
� AX1 = l1X1, where A is a unitary matrix  ���  AqA = I …(1)

AX2 = l2X2  …(2)
Take conjugate transpose of (2)

(AX2)
q = (l2 X2)

q  or 2X A� �  = 2 2X�	 …(3)

From (1) and (3) by multiplication

� �2 1X A (AX )� � = � �� �l2 2 1 1X X�	

or � �2 1X A A X� � = � �2 1 2 1X X�	 	

or � �2 1X IX�  = � �2 1 2 1X X�	 	 (� A is unitary matrix)

or 2 1X X�  = � �2 1 2 1X X�	 	

or � �2 1 2 1X X�
� 	 	  = 0 …(4)

Since in a unitary matrix modulus of each of the characteristic roots is unity ��� 2 �	 	  = 1

� From (4), � �2 2 2 1 2 1X X�	 	 � 	 	  = 0

or � �2 2 1 2 1X X�	 	 � 	  = 0

Now,                � �2 2 1	 	 �	 π 0 � ����l1,  l2  are distinct
 \ �l2 - l1 ��0 also l2 π�0

�            2 1X X� = 0

Hence X1, X2 are orthogonal.

�
�������������
��


1. Diagonalize the following matrices and obtain the modal matrix in each case

(i) 

1 1 2

0 2 1

0 0 3

�� �
� ��� �
� ��� �

(ii)

9 1 9

3 1 3

7 1 7

� �� �
� ��� �
� �� �� �



230 A TEXTBOOK OF ENGINEERING MATHEMATICS

2. Show that the following matrices are similar to diagonal matrices. Also find the transforming matrices and the

diagonal matrices

(i)  

6 2 2

2 3 1

2 1 3

�� �
� �� �� �
� ��� �

     (ii)

9 4 4

8 3 4

16 8 7

�� �
� ��� �
� ��� �

3. Show that the following matrices are not similar to diagonal matrices

(i) 

2 1 1

2 2 1

1 1 1

�� �
� ��� �
� ��� �

(ii)

1 0 0 1

1 2 1 0

1 3 2 1

0 5 3 1

�� �
� �
� �
� ��
� �

�� �� �

4. If A and B are non-singular matrices of order n, show that the matrices AB and BA are similar.
5. Prove that every orthogonal set of vectors is linearly independent.
6. Prove that any two characteristic vectors corresponding to two distinct characteristic roots of a real symmetric

matrix are orthogonal.
7. Show that characteristic vectors corresponding to different characteristic roots of a normal matrix are orthogonal.
8. If X is characteristic vector of a normal matrix A corresponding to characteristic root l, then X is also a

characteristic vector of Aq� the corresponding characteristic root being l.

�������

1. (i)

1 1 1
0 1 2
0 0 2

� �
� ��
� �

�� �

(ii)

0 1 4
1 0 1
1 1 3

� �
� �
� �
� � �� �

2. (i) P =

1 1 2

0 2 1

2 0 1

�� �
� ��� �
� �� �

, D = 

2 0 0

0 2 0

0 0 8

� �
� �
� �
� �� �

(ii) P = 

1 1 1

1 1 1

1 1 2

� �
� �
� �
� ��� �

, D = 

1 0 0

0 1 0

0 0 0

�� �
� ��� �
� �� �

.

��������	
�	�������

Definition. A homogeneous polynomial of second degree in any number of variables is called a quadratic
form. For example,

(i) ax2 + 2hxy + by2 (ii)  ax2 + by2 + cz2 + 2hxy + 2gyz + 2fzx and

(iii) ax2 + by2 + cz2 + dw2 + 2hxy + 2gyz + 2fzx + 2lxw + 2myw + 2nzw

are quadratic forms in two, three and four variables.

In n-variables x1, x2,.........., xn, the general quadratic form is 
1 1

n n

ij i j

j i

b x x
	 	


 , where bij � bji

In the expansion, the coefficient of xixj = (bij + bji).

Suppose 2aij = bij + bji, where aij = aji and aii = bii.

�

1 1

n n

ij i j

j i

b x x
	 	


 = 

1 1

n n

ij i j

j i

a x x
	 	


 , where aij = � �1

2 ij jib b� .

Hence every quadratic form can be written as 
1 1

n n

ij i j

j i

a x x
	 	


 = X¢AX, so that the matrix A is always

symmetric, where A = [aij] and X = [x1 x2 ... xn].
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Now, writing the above examples of quadratic forms in matrix form, we get

(i) ax2
 + 2hxy + by2 = [ ]

a h x
x y

h b y

� � � �
� � � �
� � � �

(ii) ax2 + by2 + cz2 + 2hxy + 2gyz + 2fzx = [ ]

a h f x

x y z h b g y

f g c z

� � � �
� � � �
� � � �
� � � �� � � �

and (iii) ax2 + by2 + cz2 + dw2 + 2hxy + 2gyz + 2fzx + 2lxw + 2myw + 2nzw

= [x   y   z   w] 

a h f l x

h b g m y

f g c n z

l m n d w

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

.

Example. Find a real symmetric matrix C such that Q = X¢CX equals : (x1 + x2)2 – x3
2.
(P.T.U., Dec. 2002)

Sol. Q = X¢CX = 2 2 2 2 2
1 2 3 1 2 3 1 2( ) 2x x x x x x x x� � 	 � � �

= x x x

x

x

x
1 2 3

1

2

3

1 1 0

1 1 0

0 0 1�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

\ C =

1 1 0

1 1 0

0 0 1�

�

�

�
�
�

�

�

�
�
�

, which is a real symmetric matrix.

���������	����	������	�������	���	
�	�������

Let X¢ AX be a quadratic form in n-variables and let X = PY …(1)
(where P is a non-singular matrix) be the non-singular transformation.
From (1), X¢ = (PY)¢ = Y¢P¢ and hence

X¢AX = Y¢P¢APY = Y¢(PAP)Y = Y¢BY …(2)
where B = P¢AP. Therefore Y¢BY is also a quadratic form in n-variables. Hence it is a linear transformation  of
the quadratic form X¢AX under the linear transformation X = PY and B = P¢AP.

Note. (i) Here B¢ = (P¢AP)¢ = P¢AP = B (ii) r(B) = r(A).

� A and B are congruent matrices.

�������	����	������

If a real quadratic form be expressed as a sum or difference of the squares of new variables by means of
any real non-singular linear transformation, then the later quadratic expression is called a canonical form of
the given quadratic form.

i.e., if the quadratic form X'AX = 
1 1

n n

ij i j

j i

a x x
	 	


  can be reduced to the quadratic form

Y' BY = 2

1

n

i i

i

y
	

�
  by a non-singular linear transformation X = PY, then
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Y' BY is called the canonical form of the given one.

� If B = P'AP = diag (l1, l2,........., ln), then X'AX = Y'BY = 2

1

n

i i

j

y
	

�
 .

Note. (i) Here some of li (eigen values) may be positive or negative or zero.
(ii) A quadratic form is said to be real if the elements of the symmetric matrix are real.

(iii) If r(A) = r, then the quadratic form X¢AX will contain only r terms.

�������
���	�
����	��������������	
�	�������

The number p of positive terms in the canonical form is called the index of the quadratic form.
(The number of positive terms) – (The number of negative terms) i.e., p – (r – p) = 2p – r is called signature

of  the quadratic form, where r(A) = r.

������
�����������
������	�
� �
��������	����	
�	��������

Let X' AX be a real quadratic form in n-variables x1, x2,........., xn with rank r and index p. Then we say that
the quadratic form is

(i) Positive definite if r = n, p = r (ii) negative definite if r = n, p = 0
(iii) Positive semi-definite if r < n , p = r and (iv) negative semi-definite if r < n, p = 0

If the canonical form has both positive and negative terms, the quadratic form is said to be indefinite.
Note. If X'AX is positive definite, then | A | > 0.

�������	 ��������	������	
�	�������

The index of a real quadratic form is invariant under real non-singular transformations.

���!� �	��	���"�������
���� ��
������ ��� 	� ��	
�	��� ����� ��

���!� 
	���	�� ����

Let the quadratic form be in three variables x, y, z.

Step 1. Reduce the quadratic form to X¢AX and find matrix A, where X = 

x

y

z

� �
� �
� �
� �� �

Step 2. In the quadratic form i.e., in Q collect all the terms of x and express them as a perfect square in x, y, z by
adding or subtracting the terms of y and z.

Step 3. In the next group collect all terms of y and express them as a perfect square by adding or
subtracting the terms of z. Now only terms of z2 will be left which will  form 3rd group.

Step 4. Equating terms on the R.H.S. to 2 2 2
1 1 2 2 3 3y y y	 	 	� �  and write down the values of y1, y2, y3 in

terms of x, y, z.
Step 5. Then express x, y, z in terms of y1, y2, y3 and the linear transformation X = PY is known where P will

be formed by coefficients of y1, y2, y3 and Y = 
1

2

3

y

y

y

� �
� �
� �
� �� �
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Step 6. Then Q will be transformed to the diagonal matrix 
1

2

3

0 0

0 0

0 0

�� �
� �

�� �
� ��� �

, which will be same as P'AP.

�		
�������������	��

Example 1. Reduce 3x2 + 3z2 + 4xy + 8xz + 8yz into canonical form.
Sol. The given quadratic form can be written as X¢ AX, where X¢ = [x, y, z]� and the symmetric matrix

A = 

3 2 4

2 0 4

4 4 3

� �
� �
� �
� �� �

.

Let us reduce A into diagonal matrix. We know that A = I3 AI3

i.e.,

3 2 4

2 0 4

4 4 3

� �
� �
� �
� �� �

= 

1 0 0 3 2 4 1 0 0

0 1 0 2 0 4 0 1 0

0 0 1 4 4 3 0 0 1

� � � � � �
� � � � � �
� � � � � �
� � � � � �� � � � � �

Operating 2 1
2

R R
3

� , 3 1
4

R R
3

�  on A and prefactor on RHS, we get

3 2 4

4 4
0

3 3
4 7

0
3 3

� �
� �
� ��
� �
� �
� ��
� �

 = 

1 0 0
1 0 0

2
1 0 A 0 1 0

3
0 0 1

4
0 1

3

� �
� �

� �� �
� �� �� � �� �
� �� � � �

� ��
� �� �

Operating 2 1
2

C C
3

� , 3 1
4

C C
3

�  on A and the post-factor on RHS, we get

3 0 0
4 4

0
3 3
4 7

0
3 3

� �
� �
� �
� ��
� �
� �

�� �
� �

 = 

2 4
1

1 0 0 3 3
2

1 0 A 0 01
3
4

0 1 0 0 1
3

� �� � � �� �� �
� �� �
� �� ��
� �� �
� �� �

� � �� �
� � � �

Operating R3 + R2 on LHS and prefactor on RHS

3 0 0

4 4
0

3 3
0 0 1

� �
� �
� ��
� �
� ��� �

 = 

2 41 0 0 1
3 3

2
1 0 A 0 1 0

3
0 0 12 1 1

� �
� � � �� �
� � � �
� �� � �
� � � �
� �� � �� �

� �
Operating C3 + C2 on LHS and post-factor on RHS

3 0 0

4
0 0

3
0 0 1

� �
� �
� ��
� �
� ��� �

 = 

21 0 0 1 2
3

2
1 0 A 0 1 1

3
0 0 12 1 1

� �
� � � �� �
� � � �
� �� � �
� � � �
� �� � �� �

� �

or Diag 
4

3, , 1
3

 �
� �� �� �

 = P¢AP



234 A TEXTBOOK OF ENGINEERING MATHEMATICS

� The canonical form of the given quadratic form is

Y' (P'AP)Y = 
1

2 2 2
1 2 3 2 1 2 3

3

3 0 0

4 4
, , 0 0 3

3 3
0 0 1

y

y y y y y y y

y

� �
� �� �
� �� �� 	 � �� �� � � �� �
� �� � � ��� �

.

Here r(A) = 3, index = 1, signature = 1 – ( 2) = – 1.

Note 1. In this problem the non-singular transformation which reduces the given quadratic form into the canonical

form is X = PY i.e., 

x

y

z

� �
� �
� �
� �� �

 = 
1

2

3

2
1 2

3
0 1 1

0 0 1

y

y

y

� �
� �� � � �

� � � �
� � � �
� � � �� � � �

.

Note 2. The above example can also be questioned as ‘Diagonalize’ the quadratic form 3x2 + 3z2 + 4xy + 8xz + 8yz
by linear transformations and write the linear transformation.

Or

Reduce the quadratic form 3x2 + 3z2 + 4xy + 8xz + 8yz into the sum of  squares.

Example 2. Reduce the quadratic form x2 – 4y2 + 6z2 + 2xy – 4xz + 2w2 – 6zw into sum of squares.
Sol. The matrix form of the given quadratic is X'AX, where X = (x, y, z, w)'

and A = 

1 1 2 0

1 4 0 0

2 0 6 3

0 0 3 2

�� �
� ��� �
� �� �
� �

�� �

Let us reduce A to the diagonal matrix. We know that A = I4 AI4.
1 1 2 0

1 4 0 0

2 0 6 3

0 0 3 2

�

�

� �

�

� �
� �
� �
� �
� �
� �

 = 

1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0
A

0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

Operating R2 – R1, R3 + 2R1, also on prefactor on RHS
1 1 2 0

0 5 2 0

0 2 2 3

0 0 3 2

�

�

�

�

� �
� �
� �
� �
� �
� �

 =  

1 0 0 0 1 0 0 0

1 1 0 0 0 1 0 0
A

2 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1

�

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

Operating C2 – C1, C3 + 2C1, also on post-factor on RHS
1 0 0 0

0 5 2 0

0 2 2 3

0 0 3 2

�

�

�

� �
� �
� �
� �
� �
� �

= 

1 0 0 0 1 1 2 0

1 1 0 0 0 1 0 0
A

2 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1

�

�

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

Operating 3 2
2

R R
5

� , also on prefactor on RHS

1 0 0 0

0 5 2 0

14
0 0 3

5
0 0 3 2

�

�

�

� �
� �
� �
� �
� �
� �
� �

 = 

1 0 0 0
1 1 2 0

1 1 0 0
0 1 0 0

A8 2
0 0 1 01 0

5 5
0 0 0 1

0 0 0 1

�
�

� �
� �� �
� �� �
� �� �
� �� �
� �� � � �

� �
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Operating 3 2

2
C C

5
� , also on post-factor on RHS

1 0 0 0

0 5 0 0

14
0 0 3

5
0 0 3 2

�

�

�

� �
� �
� �
� �
� �
� �
� �

 = 

8
1 0 0 0 1 1 0

5
1 1 0 0 2

0 1 0A8 2 51 0
5 5 0 0 1 0
0 0 0 1

0 0 0 1

� �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �

�

�

Operating 4 3
15

R R
14

� , also on prefactor on RHS

1 0 0 0

0 5 0 0

14
0 0 3

5
17

0 0 0
14

�

�

�

� �
� �
� �
� �
� �
� �
� �
� �� �

 = 

1 0 0 0 8
1 1 0

1 1 0 0 5
28 2 0 1 0A1 0
55 5

0 0 1 012 3 15
1

0 0 0 17 7 14

�
�

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �� � � �

Operating 4 3
15

C C
14

� , also on post-factor on RHS
8 12

1 0 0 01 0 0 0 1 1
5 7

1 1 0 00 5 0 0
2 3

0 18 214 A 3 71 00 0 0
5 55 15

0 0 112 3 1517 1410 0 0
7 7 1414 0 0 0 1

� �� �� � � �� �� � � �� �� � � �� �� � � �� �� � � �� �� � � �� �� � � �� �� � � �� � � � � �� �

�
��

�

�

i.e., diag.
14 17

1, 5, ,
5 14

 �
� �� �� �

 = P'AP

� The canonical form of the given quadratic form is

Y¢ (P¢AP)Y = 
14 17

Y'diag 1, 5, , Y
5 14

 �
� �� �� �

= 

1

2
1 2 3 4

3

4

1 0 0 0

0 5 0 0

14
0 0 0

5
17

0 0 0
14

y

y
y y y y

y

y

� �
� � � ��� � � �
� � � �� �� 	 � � � �
� � � �
� � � �� 	�� �� 	

 = 2 2 2 2
1 2 3 4

14 17
5

5 14
y y y y� 
 � , which is the sum of the squares.

Example 3. Show that the form 2 2 2
1 2 3 2 3 3 1 1 25x + 26x + 10x + 4x x + 14x x + 6x x is a positive semi-definite

and find a non-zero set of values of x1, x2, x3 which makes the form zero. (P.T.U., Dec. 2002)
Sol. The matrix form of the given quadratic is X¢AX, where

X =

x

x

x

1

2

3

�

�

�
�
�

�

�

�
�
�

 and A = 

5 3 7

3 26 2

7 2 10

�

�

�
�
�

�

�

�
�
�

Let us reduce A to the diagonal form
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\ A = I AI
5 3 7

3 26 2

7 2 10

�

�

�
�
�

�

�

�
�
�

 =

1 0 0

0 1 0

0 0 1

�

�

�
�
�

�

�

�
�
�

 A 

1 0 0

0 1 0

0 0 1

�

�

�
�
�

�

�

�
�
�

[To avoid fractions first of all operate R2 (5), R3 (5), then C2 (5), C3 (5)] Note that row transformations will
effect prefactor and column transformation will affect post-factor on RHS

5 15 35

15 650 50

35 50 250

� �
� �
� �
� �� 	

 =

1 0 0

0 5 0

0 0 5

�

�

�
�
�

�

�

�
�
�
 A 

1 0 0

0 5 0

0 0 5

�

�

�
�
�

�

�

�
�
�

Operate R2 – 3R1 , R3 – 7R1

5 15 35

0 605 55

0 55 5

�

�

�

�

�
�
�

�

�

�
�
�

 =

1 0 0

3 5 0

7 0 5

�

�

�

�

�
�
�

�

�

�
�
�

 A 

1 0 0

0 5 0

0 0 5

�

�

�
�
�

�

�

�
�
�

Operate C2 – 3C1, C3 – 7C1

5 0 0

0 605 55

0 55 5

�

�

�

�

�
�
�

�

�

�
�
�

= 

1 0 0

3 5 0

7 0 5

�

�

�

�

�
�
�

�

�

�
�
�

 A 

1 3 7

0 5 0

0 0 5

� ��

�

�
�
�

�

�

�
�
�

Operate R3 + 
1

11
 R2 , C3 + 

1

11
 C2

5 0 0

0 605 0

0 0 0

�

�

�
�
�

�

�

�
�
�

= 

1 0 0

3 5 0
80
11

5
11

5

�

�

�

�

�
�
�
�

�

�

�
�
�
�

 A 

1 3
80

11

0 5
5

11
0 0 5

� ��

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

\ Diagonal matrix (5, 605, 0) = P¢AP

The quadratic form reduces to the diagonal form 2 2
1 25 605y y�

r (A) = 2 ;
Index p = Number of positive terms in the diagonal form = 2

n = The number of variables in quadratic form = 3
r (A) < 3 and p = r (A)

\ Given quadratic form is positive semi-definite

Now, X = PY gives 

x

x

x

1

2

3

�

�

�
�
�

�

�

�
�
�

 = 

80
1 3

11
5

0 5
11

0 0 5

� �
� �� �

� �
� �
� �
� �
� �

 

y

y

y

1

2

3

�

�

�
�
�

�

�

�
�
�

\ x1 = y1 – 3y2 – 
80

11
 y3

x2 = 5y2 + 
5

11
 y3

x3 = 5y3

Assume, y1 = 0, y2 = 0, y3 = 11, we get
x1 = – 80, x2 = 5, x3 = 55; Clearly this set of values of x1, x2, x3 makes the given form zero.

Example 4. Use Lagrange’s method to diagonalize the quadratic form : 2x2 + 2y2 + 3z2 – 4yz + 2xy – 4xz.

(P.T.U., May 2002)
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Sol. Step I. The given quadratic form is Q = 2x2 + 2y2 + 3z2 – 4yz + 2xy – 4xz, which can be expressed as

X¢AX= � �

2 1 2

1 2 2

2 2 3

x

x y z y

z

�� � � �
� � � ��� � � �
� � � �� �� 	 � 	

, where  A = 

2 1 2

1 2 2

2 2 3

�� �
� ��� �
� �� �� 	

Step II. In Q collect all the terms of x and express them as a perfect square

= 2 (x2 + xy – 2xz) + 2y2 + 3z2 – 4 yz

= 2 [x2 + x (y – 2z)] + 2y2 + 3z2 – 4yz

= 
2 2

2 22 ( 2 )
2 2 3 4

2 2

y z y z
x y z yz

� �� � �� �� � � � �� �� �� �� �� �

= 
2 2 2

2 21 – 4 4
2 – 2 3 – 4 –

2 2

�� �� � �� �
� �

y yz z
x y z y z yz

Step III. Collect the terms of y and express them as a perfect square

= 
2 2

21 3
2 2

2 2

y
x y z yz z

 �� �� � � � �� � � �� �� �

= 2
2

2 2 2 21 3 4 4 2

2 2 3 9 3
x y z y yz z z z

� � � �� � � � � � �� � � �
� � � �

= 
2 2

21 3 2 1
2

2 2 3 3
x y z y z z

� � � �� � � � �� � � �
� � � �

= 2 2 2
1 2 3

3 1
2

2 3
y y y� � , where y1 = 

1

2
x y z� � , y2 = 

2

3
y z� , y3 = z

Step IV. Express x, y, z in terms of y1, y2, y3, we get z = y3 ; y = 2 3
2
3

y y� , x = 1 2 3
1 2
2 3

y y y� �

�     

1 2 3

2 3

3

1 2

2 3
2

3

x y y y

y y y

z y

�
	 � � �

�
�

	 � �
�

	 �
��

Step V. Express these in the matrix form X = PY

where X = 

x

y

z

� �
� �
� �
� �� 	

 ; Y = 
1

2

3

y

y

y

� �
� �
� �
� �� �

 and P = 

1 2
1

2 3
2

0 1
3

0 0 1

� ��� �
� �
� �
� �
� �
� 	

\ The linear transformation is X = PY

Step VI. Reduces the quadratic form Q to the diagonal form.

B = P¢AP = 

1 0 0 1 2
12 1 21 2 31 0 1 2 2 22 0 12 2 32 2 31
0 0 13 3

��

�

� �

� � � �
� � � �� �
� �� � �� �
� � � �� �
� � � � � �� 	
� � � �� 	 � 	
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= 

1 2 2 0 02 1 2 1
2 3 33 0 020 1 20 12

3 11 0 00 0 10 0 33

� � � � � �� �� �� � � �� � � � � �� �� 	� � � �� � � � � �� � � � � �� � � � � �� �� �

= diag. 
3 1

2, ,
2 3

 �
� �� �

Note. Here r(A) = 4, index = 2, signature = 2 – 2 = 0.

��������
����������	����	�������#$���������	����	������	���

Let X¢AX be a given quadratic form. The modal matrix B of A is that matrix whose columns are characteristic
vectors of A. If B represents the orthogonal matrix of A (the normalised modal matrix of A whose column
vectors are pairwise orthogonal), then X = BY will reduce X¢AX to Y¢ diag (l1, l2, ..........��ln) Y, where
 l1, l2,..........,�ln are characteristic values of A.

Note. This method works successfully if the characteristic vectors of A are linearly independent which are pairwise
orthogonal.

Example 5. Reduce 8x2 + 7y2 + 3z2+ 12xy + 4xz – 8yz into canonical form by orthogonal reduction.

Sol. The matrix of the quadratic form is A = 

8 6 2

6 7 4

2 4 3

�� �
� �� �� �
� ��� 	

The characteristic roots of A are given by |A – lI| = 0

i.e.,

8 6 2
6 7 4

2 4 3

� � �

� � � �

� � �

 = 0       or      l (l – 3) (l – 15) = 0

� l = 0, 3, 15
Characteristic vector for l = 0 is given by [A – (0)I] X = 0

i.e., 8x1 – 6x2 + 2x3 = 0
– 6x1 + 7x2 – 4x3 = 0

2x1 – 4x2 + 3x3 = 0

Solving first two, we get 31 2
1 2 2

xx x
	 	  giving the eigen vector X1 = (1, 2, 2)

When l = 3, the corresponding characteristic vector is given by [A – 3I] X = 0
i.e., 5x1 – 6x2 + 2x3 = 0

– 6x1 + 4x2 – 4x3 = 0
2x1 – 4x2 = 0

Solving any two equations, we get X2 = (2, 1, – 2).
Similarly characteristic vector corresponding to l = 15 is X3 = (2, – 2, 1).
Now, X1, X2, X3 are pairwise orthogonal i.e., X1◊X2 = X2◊X3 = X3◊X1 = 0.
� The normalised modal matrix is

B = 31 2

1 2 3

1 2 2

3 3 3
XX X 2 1 2

, ,
|| X || || X || || X || 3 3 3

2 2 1

3 3 3

=

� �
� �
� �

� � � ��� � � �� 	 � �
� ��
� �� 	BB¢ = I
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Now, B is orthogonal matrix and | B |  = – I
i.e., B–1 = B� and B–1 AB = D = diag {3, 0, 15}

i.e.,

1 2 2 1 2 2

3 3 3 3 3 3
2 1 2 2 1 2

A
3 3 3 3 3 3
2 2 1 2 2 1

3 3 3 3 3 3

� � � �
� � � �
� � � �
� � � �� �� � � �
� � � �
� � � �� �
� � � �� 	 � 	

  = 

3 0 0

0 0 0

0 0 15

� �
� �
� �
� �� 	

X'AX = Y'(B–1 AB)Y = Y' DY

= 
1

2 2 2
1 2 3 2 1 2 3

3

3 0 0

, , 0 0 0 3 0. 15

0 0 15

y

y y y y y y y

y

� �� �
� �� � 	 � �� �� 	 � �� �
� �� �� 	 � 	

, which is the required canonical form.

Note. Here the orthogonal transformation is X = BY, rank of the quadratic form = 2 ; index = 2, signature = 2.
It is positive definite.

Example 6. Reduce 6x1
2 + 3x2

2 +3x3
2 – 4x1 x2 – 2x2x3 + 4x3x1 into canonical form.

Sol. The matrix of the quadratic form is A = 

6 2 2

2 3 1

2 1 3

�� �
� �� �� �
� ��� 	

The characteristic values are given by | A – lI | = 0

i.e.,

6 2 2
2 3 1

2 1 3

� 
 �
� � 
 �

� � 

 = 0

or l3 – 12l2 + 36l – 32 = 0, which on solving gives l = 2, 2, 8.
The characteristic vector for l = 2 is given by [A – 2I] X = 0, which reduces to single equation

2x1 – x2 + x3 = 0.

Putting x2 = 0, we get 31

1 2

xx
	
�

 or the vector is [1, 0, – 2]. Again by putting x1 = 0, we get 32
1 1

xx
	  or the

vector is [0, 1, 1].
The vector corresponding to l = 8 is given by [A – 8I] X = 0

i.e.,
1

2

3

2 2 2

2 5 1

2 1 5

x

x

x

� �� �� �
� �� �� � � � �� �
� �� �� �� 	 � 	

= 

0

0

0

� �
� �
� �
� �� 	

or – 2x1 – 2x2 + 2x3 = 0
– 2x1 – 5x2 – x3 = 0

2x1 – x2 – 5x3 = 0
Solving any two of the equations, we get the vector as [2, –1, 1].
Now, X1= [2, –1, 1] ;  X2 =  [0,  1, 1] and X3 = [1, 0, –2]
Here X1, X2, X3 are not pairwise orthogonal
� X1 ◊ X2 = 0 ; X2 ◊ X3 π 0 and X3 ◊ X1 = 0
To get X3 orthogonal to X2 assume a vector [u, v, w] orthogonal to X2 also satisfying

2x1 – x2 + x3 = 0;  i.e.,   2u – v + w = 0 and 0.u  + 1.v + 1.w = 0
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Solving [u, v, w] = [1, 1,–1] = X3 so that X1 ◊ X2 = X2 ◊ X3 = X3 ◊ X1 = 0

� The normalised modal matrix is B = 

2 1
0

6 3
1 1 1

6 2 3
1 1 1

6 2 3

� �
� �
� �
� �
�� �
� �

�� �
� �� �� 	

Now B is orthogonal matrix and | B | = 1

i.e., B¢ = B–1 and B–1 AB = D, where D = 

8 0 0

0 2 0

0 0 2

� �
� �
� �
� �� 	

� X¢AX = Y¢(B–1 AB)Y = Y'DY

= 
1

2 2 2
1 2 3 2 1 2 3

3

8 0 0

0 2 0 8 2 2

0 0 2

y

y y y y y y y

y

� �� �
� �� � 	 � �� �� 	 � �� �
� �� �� 	 � 	

which is the required canonical form.
Note. In the above form rank of the quadratic form is 3, index = 3, signature = 3. It is positive definite.

������
�����	����

1. Write down the matrices of the following quadratic forms:

(i) 2x2 + 3y2 + 6xy (ii) 2x2 + 5y2 – 6z2 – 2xy – yz + 8zx

(iii) x1
2 + 2x2

2 + 3x3
2 + 4x4

2 + 2x1x2 + 4x1x3 – 6x1x4 – 4x2x3 – 8x2x4 + 12x3x4

(iv) x1
2 + 2x1x2 – 4x1x3 + 6x2x3 – 5x2

2 + 4x3
2 (P.T.U., May 2010)

(v) 3x2 + 7y2 – 8z2 – 4yz + 3xz. (P.T.U., Dec. 2011)

2. Write down the quadratic form corresponding to the following matrices:

(i)

2 4 5

4 3 1

5 1 1

� �
� �
� �
� �� �

(ii)

1 1 2 0

1 4 0 0

2 0 6 3

0 0 3 2

�� �
� ��� �
� �� �
� �

�� 	

.

3. Reduce the following quadratic forms to canonical forms or to sum of squares by linear transformation. Write

also the rank, index and signature:

(i) 2x2 + 2y2 + 3z2 + 2xy – 4yz – 4xz (ii) 2 2 2
1 2 3 2 3 1 3 1 212 4 5 4 6 6x x x x x x x x x� � � � �

(iii) 2x2 + 6y2 + 9z2 + 2xy + 8yz + 6xz (iv) x2 + 4y2 + z2 + 4xy + 6yz + 2zx.

4. Reduce the following quadratic forms to canonical forms or to sum of square by orthogonal transformation.

Write also rank, index, signature:

(i) 3x2 + 5y2 + 3z2 – 2xy – 2yz +  2zx (ii) 2 2 2
1 2 3 1 3 1 3 2 32 2 2 2 2 2x x x x x x x x x� � � � �

(iii) 3x2 – 2y2 – z2 – 4xy + 8xz + 12yz (iv) x2 + 3y2 + 3z2 – 2xy.

5. Use Lagranges method to diagonalize the quadratic form 2 2 2
1 2 3 1 2 2 3 3 16 3 3 4 2 4x x x x x x x x x� � � � � .
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�������

1. (i)
2 3

3 3

� �
� �
� 	

(ii)

2 1 4

1
1 5

2
1

4 6
2

�� �
� �
� �� �
� �
� �
� �� �
� �

(iii)

1 1 2 3

1 2 2 4

2 2 3 6

3 4 6 4

�� �
� �� �� �
� �� �
� �
� �� 	

(iv)

1 1 2

1 5 3

2 3 4

�� �
� ��� �
� ��� �

(v)

3
3 0

2
0 7 2

3
2 8

2

� �
� �
� �

�� �
� �
� �� �
� �

.

2. (i) 2x2 + 3y2 + z2 + 8xy + 2yz +10xz (ii) x1
2 – 4x2

2 + 6x3
2 + 2x4

2 + 2x1x2 – 4x1x3 – 6x3x4.

3. (i) 2 2 2
1 2 3

3 1
3

2 3
y y y� � ; Rank = 3, index = 3, Sig. = 3

(ii) 2 2 2
1 2 3

13 49
12

4 13
y y y� � ; Rank  = 3, index = 3, Sig. = 3

(iii) 2 2 2
1 2 3

13
2 7

14
y y y� � ; Rank = 3, index = 1, Sig. = – 1

(iv) 2 2 2
1 2 3y y y� � ; Rank = 3 , index = 3, Sig. = 3.

4. (i) 2 2 2
1 2 32 2 6y y y� �  ; Rank = 3, index = 3 , Sig. = 3

(ii) 2 2 2
1 2 34y y y� �  ; Rank = 3, index  = 3, Sig. = 3

(iii) 2 2 2
2 2 33 6 9y y y� �  ; Rank = 3, index = 2, Sig. = 1

(iv) 2 2 2
1 2 32 4y y y� �  ; Rank = 3, index = 3, Sig. = 3.

5.  diag. 
7 16

6, ,
3 7

 �
� �� �

.

������������������

1. Matrix: A set of mn numbers (real or complex) arranged in a rectangular array having m rows and n columns,
enclosed by brackets [ ] or ( ) is called a m ¥ n matrix.

2. Elementary Transformations: The following operations on a matrix are called elementary transformations:
(a) Interchange of two rows or columns (Rij or Cij)
(b) Multiplication of each element of a row or column by a non-zero number k (kRi or kCi)
(c) Addition of k times the elements of a row (column) to the corresponding elements of another row (column)

(k π 0) (Ri + kRj or Ci + kCj).
3. Elementary Matrix: The matrix obtained from a unit matrix I by subjecting it to one of the E-operations is called

an elementary matrix.
4. Gauss-Jordan Method: It is the method to find inverse of a matrix by E-operations.
5. Normal Form of a Matrix: Any non-zero matrix m ¥ n can be reduced to anyone of the following forms by

performing E-operations (row, column or both)

(i) Ir (ii) I 0r� �� 	 (iii)
I

0
r� �

� �
� 	

(iv)
I 0

0 0
r� �

� �
� 	

where Ir is a unit matrix of order r. All these forms are known as normal forms of the matrix.
6. Rank of a Matrix: Let A be any m ¥ n matrix. If all minors of order (r + 1) are zero but there is at least one non-

zero minor of order r, then r is called the rank of A, and is written as r(A) = r.
7. Consistent, Inconsistent Equations: A system of equations having one or more number of solutions is called a

consistent system of equations. A system of equations having no solution is called inconsistent system of equations.
For a system of non-homogeneous linear equation AX = B
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(i) If r[A : B] π r(A), the system is inconsistent.
(ii) If r[A : B] = r(A) = number of unknowns, the system has a unique solution.
(iii) If r[A : B] = r(A) < number of unknowns, the system has an infinite number of solutions.

The matrix [A : B] is called Augmented Matrix.
For a system of Homogeneous Linear Equations AX = 0.

(i) X = 0 is always a solution; called trivial solution
(ii) If r(A) = number of unknowns, then the system has only the trivial solution
(iii) If r(A) < number of unknowns, in system has an infinite number of non-trivial solutions.

Homogeneous equations are always consistent.
8. Linear Dependence and Linear Independence of Vectors: A set of n-tuple vectors x1, x2, …, xr is said to be:

(i) Linearly dependent if $s r scalar k1, k2, …, kr Not All Zero such that k1x1 + k2x2 + … + kr xr = 0
(ii) Linearly independent if each one of k1, k2, …, kr is zero i.e., k1 = k2 = ...... = kr = 0.

If a set of vectors is linearly dependent then at least one member of the set can be expressed as a linear combination
of the remaining vectors.

9. Linear Transformation: A transformation Y = AX is said to be linear transformation if Y1 = AX1 and Y2 = AX2
fi aY1 + bY2 = A(aX1 + bX2) " a, b
If the transformation matrix A is non-singular, then the linear transformation is called non-singular or regular and if
A is singular then linear transformation is also singular.

10. Orthogonal Transformation: The linear transformation Y = AX is orthogonal transformation if it transforms
y

1
2 + y

2
2 + …+ y

n
2 to x

1
2 + x

2
2 + … + x

n
2.

11. Orthogonal Matrix: A real square matrix A is said to be orthogonal if AA¢ = A¢A = I
For an orthogonal matrix A¢ = A–1

12. Properties of an Orthogonal Matrix:
(i) The transpose of an orthogonal matrix is orthogonal

(ii) The inverse of an orthogonal matrix is orthogonal
(iii) If A is orthogonal matrix then | A | = ± 1
(iv) Product of two orthogonal matrices of the same order is an orthogonal matrix.

13. Hermitian and Skew Hermitian Matrix: A square matrix A is said to be Hermitian if Aq = A. All diagonal
elements of a Hermitian matrix are purely real.
A square matrix A is said to be Skew Hermitian. If Aq = – A. All diagonal elements of a Skew Hermitian Matrix are
zero or purely imaginary of the form ib.

14. Unitary Matrix: A complex matrix A is said to be unitary matrix if AqA = I
15. Properties of a Unitary Matrix:

(i) Determinant of a unitary matrix is of modulus unity
(ii) The product of two unitary matrices of the same order is unitary
(iii) The inverse of a unitary matrix is unitary.

16. Characteristic Equation, Characteristic Roots or Eigen Values, Trace of a Matrix: If A is a square matrix of
order, n is a scalar and I is a unit matrix of order n, then | A – lI | = 0 is called characteristic equation of A. The roots
of the characteristic equation are called characteristic roots or Eigen values of A.
The sum of Eigen values of A is equal to trace of A.

17. Eigen Vectors: Let A be a square matrix of order n, l is a scalar. Consider the linear transformation Y = AX, where X be
such a vector which transforms in lX. Then Y = lX and therefore, we have AX = lX or (A – lI) X = 0 which gives n
homogeneous linear equations and for non-trivial solutions of these linear homogeneous equation we must have |A – lI|
= 0, which gives n eigen values of A. Corresponding to each eigen value (A – lI) X = 0 has a non-zero solution
called eigen vector or latent vector.

18. Cayley Hamilton Theorem: Every square matrix satisfies its characteristic equation.
19. Diagonalizable Matrices: A matrix A is said to be diagonalizable if $s an invertible matrix B such that B–1

AB = D, where D is a diagonal matrix and the diagonal elements of D are the eigen values of A.
Note. A square matrix A is diagonalizable iff it has n linearly independent eigen vectors.

20. Similar Matrices: Let A and B be two square matrices of the same order. The matrix A is said to be similar to matrix
B if $s an invertible matrix P such that PA = BP or A = P–1 BP
Similar matrices have the same characteristic equation.
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21. Column vectors of a unitary matrix are normal and orthogonal.
22. Every orthonormal set of vectors is L.I.
23. Any two characteristic vectors corresponding to two distinct characteristic roots of a Hermitian/unitary matrix are

orthogonal.
24. Quadratic Form: A homogeneous polynomial of second degree in any number of variables is called quadratic form.

Every quadratic form can be expressed in the form X¢ AX, where A is a symmetric matrix.
25. Linear Transformation of a Quadratic form: Let X¢ AX be a quadratic form in n-variables and let X = PY be a

non-singular transformation, then X¢ AX = Y¢BY, where B = P¢ AP. Then Y¢ BY is a linear transformation of the
quadratic form X¢ AX under the linear transformation X = PY. A and B are congruent matrices.

26. Canonical Form: If a real quadratic form X¢ AX be expressed as a sum or difference of the squares of new variables
by means of any real linear transformation then the later quadratic expression is called a canonical form of the given
quadratic form non-singular. If r(A) = r, then quadratic form X¢AX will contain only r terms.

27. Index and Signature of the Quadratic Form: The number p of the positive terms in the canonical form is called
the index of the quadratic form.
The number of positive terms minus number of negative terms is called signature of the quadratic form i.e., signature
= p – (r – p) = 2p – r, where r(A) = r.

28. Definite, Semi-definite and Indefinite Real Quadratic Forms: Let X¢ AX be a real quadratic form then it will be

(i) positive definite if r = n, p = r
(ii) negative definite if r = n, p = 0

(iii) positive semi-definite if r < n, p = r
(iv) negative semi-definite if r < n, p = 0

����������������
�������

1. (a) If A = 
2 0 0 1 2 3
0 2 0 ; B = 0 1 3
0 0 2 0 0 2

� � � �
� � � �
� � � �
� 	 � 	

 prove that | AB | = 16 (P.T.U., May 2009)

(b) Prove by an example that AB can be zero matrix when neither A nor B is zero.
2. Explain elementary transformations on a matrix. (P.T.U., Dec. 2004)
3. What is Gauss Jordan Method of finding inverse of a non-singular matrix? Hence find the inverse of the matrix

1 3 3
1 4 3
1 3 4

� �
� �
� �
� �

(P.T.U., May 2012)

4. Reduce the matrix 
1 0 1
1 2 1
2 2 3

�� �
� �
� �
� 	

 to diagonal form. (P.T.U., Dec. 2012)

5. (a) Define rank of a matrix and give one example. (P.T.U., Dec. 2005, 2006, May 2007, Jan. 2008, May 2011)
(b) What is the rank of a non-singular matrix of order n? (P.T.U., Dec. 2010)

6. Find rank of the following matrices:

(i)
1 3

2 4

� �
� �
� �

 (P.T.U., May 2014) (ii)
1 2 1 2
3 2 1 6
2 4 2 4

� �
� �
� �
� �

(iii)

0 1 3 1
1 0 1 1
3 1 0 2
1 1 2 0

� �� �
� �
� �
� �
� �� �

(P.T.U., Dec. 2012)

(iv)
1 1 1
2 3 4
3 2 3

�� �
� ��
� �

�� �
(P.T.U., May 2009) (v)

1 1 0

2 3 0

3 3 1

�� �
� ��� �
� ��� �

 (P.T.U., Dec. 2013)

(vi)
1 2 1
2 1 0
3 1 1

�� �
� �
� �

�� �
(P.T.U., Dec. 2011)
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7. If A is a non-zero column and B is a non-zero row matrix, show that rank AB = 1.

8. State the conditions in terms of rank of the coefficient matrix and rank of the augmented matrix for a unique solution,
no solution, infinite number of solutions of a system of linear equations. (P.T.U., May 2005, Dec. 2010)

9. (a) For what values of l do the equations ax + by = lx and cx + dy = ly have a solution other than x = 0, y = 0?
[Hint: Consult S.E. 4(b) art. 4.13] (P.T.U., May 2003)

(b) Show that the equations 2x + 6y + 11 = 0; 6x + 20y - 6z + 3 = 0 ; 6y - 18z + 1 = 0 are not-consistent.

[Hint: To prove r(A) = 2, r(A �  B) = 3 as r(A �  B) π r(A) \ equations are inconsistent] (P.T.U., Dec. 2003)

(c) For what value of K, the system of equations x + y + z = 2; x + 2y + z = – 2; x + y + (K – 5)z = K has no
solution?  (P.T.U., May 2012)

10. If A is a non-singular matrix, then the matrix equation AX = B has a unique solution.

11. (a) Define linear dependence and linear independence of vectors and give one example of each.

(P.T.U., May 2004, 2006, Jan. 2009)

(b) Test whether the subset S of R3 is L.I. or L.D., given S = {(1, 0, 1), (1, 1, 0), (–1, 0, –1)}. (P.T.U., May 2010)

(c) Define linear dependence of vectors and determine whether the vectors (3, 2, 4), (1, 0, 2), (1, -1, -1) are linear
dependent or not, where ‘t’ denotes transpose. (P.T.U., May 2006)
[Hint: Consult S.E. 3 art. 4.15]

12. (a) Prove that X
1
 = (1, 1, 1), X

2
 = (1, – 1, 1), X

3
 = (3, – 1, 3) are linearly independent vectors.

(P.T.U., Dec. 2012)

(b) Are these vectors x
1
 = (1, 2, 1), x

2
 = (2, 1, 4), x

3
 = (4, 5, 6), x

4
 = (1, 8, – 3) L.D? (P.T.U., Jan. 2010)

(c) For what value(s) of K do the set of vectors (K, 1, 1), (0, 1, 1), (K, 0, K) in R3 are linearly independent?
(P.T.U., May 2010, 2012)

13. Show that column vectors of the matrix A = 
��

�
�

�

�
�

2 1 2

1 2 3
 are linearly dependent. (P.T.U., May 2003)

[Hint: S.E. 2 art. 4.15]

14. Define an orthogonal transformation. Derive the condition for the linear transformation on Y = AX to be orthogonal.
[Hint: See art 4.17] (P.T.U., May 2012)

15. (a) Define an orthogonal matrix and prove that

A =

2 1 2

3 3 3
2 2 1

3 3 3
1 2 2

3 3 3

� ��� �
� �
� �
� �
� �
� ��� �� �

 is orthogonal. (P.T.U., Jan. 2009, May 2011)

(b) Prove that the matrix 
1
3

1 2 2

2 1 2

2 2 1

�
� �

�

�

�
�
�

�

�

�
�
�

 is orthogonal. (P.T.U., June 2003, May 2007, Jan. 2009)

(c) Find the values of a, b, c if the matrix A = 
0 2b c
a b c
a b c

� �
� ��
� �

�� 	

 is orthogonal. (P.T.U., May. 2009)

[Hint: S.E. 2 art. 4.17]
16. Prove that transpose of an orthogonal matrix is orthogonal.

17. Prove that inverse of an orthogonal matrix is orthogonal.

18. State the properties of an orthogonal matrix.

19. (a) Show that the transformation y
1
 = x

1
 – x

2
 + x

3
 ; y

2
 = 3x

1
 – x

2
 + 2x

3
 and y

3
 = 2x

1
 – 2x

2
 + 3x

3
 is non-singular (regular).

(b) Find the inverse transformation of y
1
 = x

1
 + 2x

2
 + 5x

3
 ; y

2
 = – x

2
 + 2x

3
 and  y

3
 = 2x

1
 + 4x

2
 + 11x

3
. (P.T.U., May 2011)

[Hint: S.E. 2 art. 4.18]
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20. Prove that determinant of an orthogonal matrix is of modulus unity.

21. Define symmetric matrix and prove that inverse of a non-singular matrix is symmetric.

22. Define symmetric and skew symmetric matrix and express a square matrix A as the sum of a symmetric and a skew
symmetric matrix.

23. Define a Hermitian matrix and prove that if A is Hermitian, then Aq A is also Hermitian.

[Hint: S.E. 3(b) art. 4.22] (P.T.U., May 2007, Dec. 2010)
24. (a) Define a skew Hermitian matrix and prove that if A is Hermitian, then iA is skew Hermitian.

(b) Show that if A = 

1 2 5 3

2 7 5

5 3 5 2

� 	 �� �
� ��� �
� �	 �� �

i i

i i

i i

, then iA is skew-Hermitian. (P.T.U., Jan. 2010)

25. (a) Define a unitary matrix and give one example of a unitary matrix.

(b) Show that A = 
1 11
1 12

� � �� �
� �� �� 	

i i

i i
 is unitary. (P.T.U., Jan. 2009)

26. State properties of a unitary matrix.

27. Prove that inverse of a unitary matrix is unitary. (P.T.U., May 2012)
28. Prove that product of two unitary matrices of the same order is again a unitary matrix.

29. Prove that determinant of a unitary matrix is of modulus unity.

30. Define the following :

(i) Characteristic equation of a square matrix

(ii) Characteristic roots or latent roots or eigen values of a matrix (P.T.U., Jan. 2009)
(iii) Eigen vectors of a square matrix. (P.T.U., Jan. 2009)

31. (a) Find eigen values of the matrix 

1 2 3

0 4 2

0 0 7

�
�

�

�
�
�

�

�

�
�
�

. (P.T.U., Dec. 2006)

 (b) Prove that eigen values of a diagonal matrix are given by its diagonal elements.

[Hint: Let A = 11 22 nna a a��� �� 	  ; | A – lI | = 

a

a

ann

11

22

0 0 0

0 0 0

0 0 0

� ��
� ��

��
��

�









�� �� �� ��

�� �� �� ��

��

 = 0

i.e., (a
11

 – l) (a
22

 – l) ...... (a
nn

 – l) = 0 i.e., l = a
11

, a
22

, ......, a
nn

]

32. Show that if l
1
, l

2
, l

3
, ......, l

n
 are the latent roots of the matrix A, then A3 has latent roots. 3 3 3

1 2� � � � � �n�� .

[Hint: S.E. 3 art. 4.25]

33. (a) Show that the eigen values of a Hermitian matrix are real.

(b) Show that eigen values of a Skew Hermitian matrix are either zero or purely imaginarly. (P.T.U., Dec. 2012)
[Hint: S.E. 4 art. 4.25]

34. Prove that matrix A and its transpose A¢ have the same characteristic roots.

[Hint: Characteristic roots of A are | A – lI | = 0 we have | A – lI | = | (A – lI)¢ | = | A¢ – lI¢ | = | A¢ – lI |
\ A and A¢ have same eigen roots]

35. (a) If l is an eigen value of a non-singular matrix A prove the following :

(i) l–1 is an eigen value of A–1 (P.T.U., May 2005)

(ii)
A



 is an eigen value of Adj. A (P.T.U., Dec. 2003)

(iii) l2 is an eigen value of A2. (P.T.U., Dec. 2004)

[Hint: See art. 4.25]
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(b) Write four properties of eigen values (P.T.U., May 2008)
[Hint: See art. 4.25]

36. (a) State Cayley Hamilton Theorem. (P.T.U., Dec. 2003, Jan. 2010, May 2011)

(b) Use Cayley Hamilton Theorem to find A8, where A = 
1 2

2 1�
�

�
�

�

�
� . (P.T.U., Dec. 2003, May 2010)

(c) If A = 
2 3

3 5
�

�
�

�

�
� , then use Cayley Hamilton Theorem to find the matrix represented by A5.

[Hint: S.E. 6 art. 4.26]
37. Verify Cayley Hamilton Theorem for the matrix (P.T.U., Dec. 2013)

1 4

2 3

� �
� �
� 	

. Find inverse of the matrix also.

38. Test whether the following matrices are diagonalizable or not?

(i)

3 1 1

2 1 2

0 1 2

�� �
� ��� �
� �� �

 (P.T.U., May 2012)  (ii) 

1 2 2

0 2 1

1 2 2

� �
� �
� �
� ��� �

(P.T.U., Dec. 2013)

[Hint: S.E. 1 art 4.27]
39. (a) Define similar matrices. (P.T.U., May 2007)

(b) Examine whether the matrix A is similar to matrix B, where A = 
1 0

0 1

� �
� �
� 	

 and B = 
1 1

0 1

� �
� �
� 	

.(P.T.U., May 2010)

[Hint: See Solved Example 4(ii) art 4.30]
40. Prove that if A is similar to a diagonal matrix B, then A¢ is similar to A.

[Hint: See Solved Example 6 Art. 4.30]
41. Show that rank of every matrix similar to A is same as that of A.

[Hint: S.E. 7 art. 4.30]
42. Show that two similar matrices have the same characteristic roots. (P.T.U., May 2003)

[Hint: Let A and B be two similar matrices \ A = P–1 BP;  | A – lI | = | P–1 BP – lI | = | P–1 BP – P–1 lP |
= | P–1 (B – lI) P | = | P–1 | | B – lI | | P | = | B – lI | | P–1 P | = | B – lI | . 1 \ A, B have same characteristic
roots]

43. Define index and signature of the quadratic form.

44. Find a real symmetric matrix such that Q = X¢ CX equals ; x x x1 2
2

3
2� �� 	 .

45. (a) Express the quadratic form x x x x x x x1
2

2
2

3
2

1 2 2 32 2 2 2� � � �  as the product of matrices.

(b) Obtain the symmetric matrix A for the quadratic forms

(i) x
1
2 + 2x

1
x

2
 – 4x

1
x

3
 + 6x

2
x

3
 – 5x

2
2 + 4x2

3
(P.T.U., May 2010)

(ii) 3x2 + 7y2 – 8z2 – 4yz + 3xz. (P.T.U., Dec. 2011)

46. Write down quadratic form corresponding to the matrix 

2 1 4

1
1 5

2
1

4 6
2

� �
� ��
� �
� �� �� �
� �
� �� �
� �� �

.

47. Define orthogonal set of vectors.
[Hint: See art. 4.33(a)]

48. Prove that every orthonormal set of vectors is linearly independent.
[Hint: See art. 4.33(b)]

49. Let T be a transformation from R1 to R3 defined by T(x) = (x, x2, x3). Is T linear or not?

[Hint: See S.E. 1 art. 4.16] (P.T.U., May 2010)
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�������

1. (b) A = 
2 0

1 0
�

�
�

�

�
� , B = 

0 0

1 2
�

�
�

�

�
� 3.

7 3 3

1 1 0

1 0 1

� �� �
� ��� �
� �� �

4.

1 0 0

0 2 0

0 0 3

� �
� �
� �
� �� �

5. (b) n

6. (i) 2 (ii) 2 (iii) 2 (iv) 2 (v) 3 (vi) 2 9. (a) l = a, b = 0 ; l = d, c = 0, (c) K = 6

11. (b) L.D. (c) Not dependent 12. (b) yes (c) for all non-zero values of K

15. (c) a = 
1 1 1

, ,
2 6 3

� � � � �b c 19. (b) x1 = 19y1 + 2y2 – 9y3 ; x2 = – 4y1 – y2 + 2y3; x3 = – 2y1 + y3

31. (a) 1, - 4, 7 36. (b) 625I (c) 
4181 6765

6765 10946
�

�
�

�

�
�

37.

3 4

5 5
2 1

5 5

� ��� �
� �
� ��� �� �

38. (i) diagonalizable (ii) not diagonalizable

39. (b) not similar 44.

1 1 0

1 1 0

0 0 1�

�

�

�
�
�

�

�

�
�
�

45. (a) 
1

1 2 3 2

3

1 1 0

1 2 1

0 1 2

x

x x x x

x

� � �� �
� �� �� �� �� � � �� �
� �� ��� � � �

(b)  (i) 

1 1 2

1 5 3

2 3 4

�� �
� ��� �
� ��� �

 (ii) 

3
3 0

2
0 7 2

3
2 8

2

� �
� �
� �

�� �
� �
� �� �
� �

46. 2x2 + 5y2 – 6z2 – 2xy – yz + 8zx 49. not linear.
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5
Infinite Series

����� ���	�
��

A sequence is a function whose domain is the set N of all natural numbers whereas the range may be any
set S. In other words, a sequence in a set S is a rule which assigns to each natural number a unique element of S.

����� �������	�
��

A real sequence is a function whose domain is the set N of all natural numbers and range a subset of
the set R of real numbers.

Symbolically f : N Æ R or (x : N Æ R or a : N Æ R)
is a real sequence.

Note. If x : N Æ R be a sequence, the image of n Œ N instead of denoting it by x(n), we shall generally denote it

by xn. Thus x1, x2, x3 etc. are the real numbers associated to 1, 2, 3 etc. by this mapping. Also, the sequence x : N Æ R

is denoted by {xn} or (xn).

x1, x2, ...... are called the first, second terms of the sequence. The mth and nth terms xm and xn for m π n are

treated as distinct terms if xm = xn i.e., the terms occurring at different positions are treated as distinct terms even if

they have the same value.

������
�����������	�
��

The set of all distinct terms of a sequence is called its range.
Note. In a sequence {xn}, since n Œ N and N is an infinite set, the number of terms of a sequence is always

infinite. The range of a sequence may be a finite set. e.g., if xn = (– 1)n, then {xn} = {– 1, 1, – 1, 1, ......}

The range of sequence {xn} = {– 1, 1}, which is a finite set.

�������
���
�����	�
��

A sequence {xn} defined by xn = c Œ R " n Œ N is called a constant sequence.
e.g., {xn} ={c, c, c, ......} is a constant sequence with range = {c}.

����� ��	
�����
��	
��	
�������	�
���

Bounded above sequence. A sequence {an} is said to be bounded above if $ a real number K such that
an £ K " n Œ N.

Bounded below sequence. A sequence {an} is said to be bounded below if $ a real number k such that
an ≥ k " n Œ N.

Bounded sequence. A sequence {an} is said to be bounded when it is bounded both above and below.

fi A sequence {an} is bounded if $ two real numbers k and K (k £ K) such that
  k £ an £ K " n Œ N.
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Choosing M = maximum {| k |, | K |}, we can also define a sequence {an} to be bounded if

| an | £ M " n Œ N.

Unbounded sequence. If $ no real number M such that | an | £ M " n Œ N, then the sequence {an} is
said to be unbounded.

For examples (i). Consider the sequence {an} defined by an = 
1

n
 .

Here  {an} = 
1 1 1

, , , ......
1 2 3

� �
� �
� �

�  0 < an £ 1 " n Œ N

\ {an} is bounded.

(ii) Consider the sequence {an} defined by an = 2n – 1

Here  {an} = {1, 2, 22, 23, ......}.

Although an ≥ 1, " n Œ N, $ no real number K such that an £ K.

\ The sequence is unbounded above.

�������
����
���������
������������
�����	�
���

Convergent sequence. A sequence {an} is said to be convergent if Lt
n� 	

 an is finite.

For example, consider the sequence 
2 3

1 1 1 1
, , , ......,

2 2 2 2n
, ......

Here an = 
1

, Lt
2n n� 	

 an = 
1

Lt
2nn� 	

 = 0, which is finite.

fi The sequence {an} is convergent.

Divergent sequence. A sequence {an} is said to be divergent if Lt
n� 	

 an is not finite, i.e., if

  Lt
n�	

 an = + • or – •.

For examples
(i) Consider the sequence {n2}

Here an = n2,  Lt
n� 	

 an = + • fi The sequence {n2} is divergent.

(ii) Consider the sequence {– 2n}.

Here  an = – 2n, Lt
n� 	

 an = Lt
n�	

 (– 2n) = – •

fi The sequence {– 2n} is divergent.
Oscillatory sequence. If a sequence {an} neither converges to a finite number nor diverges to + • or

– •, it is called an oscillatory sequence. Oscillatory sequences are of two types :
(i) A bounded sequence which does not converge is said to oscillate finitely.
For example, consider the sequence {(– 1)n}.
Here     an = (– 1)n

It is a bounded sequence, Lt
n�	

 a2n = Lt
n�	

 (– 1)2n = 1

Lt
n� 	

 a2n+1 = Lt
n�	

 (– 1)2n + 1 = – 1.
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Thus, Lt
n�	

 an does not exist fi the sequence does not converge.

Hence this sequence oscillates finitely.

(ii) An unbounded sequence which does not diverge is said to oscillate infinitely.

For example, consider the sequence {(– 1)n n}.

Here  an = (– 1)n n.

It is an unbounded sequence.

 Lt
n�	

 a2n = Lt
n�	

 (– 1)2n . 2n = Lt
n� 	

 2n = + •

Lt
n� 	

 a2n+1 = Lt
n� 	

 (– 1)2n+1 (2n + 1) = Lt
n�	

 – (2n + 1) = – •.

Thus the sequence does not diverge.

Hence this sequence oscillates infinitely.

Note. When we say Lt
n��

an = l, it means Lt
n��

a2n = Lt
n��

 a2n+1 = l

Similarly,   Lt
n��

an = + • means Lt
n��

a2n = Lt
n��

a2n+1 = + •.

�������
���
������	�
���

(i) A sequence {an} is said to be monotonically increasing if  an + 1 ≥ an " n Œ N.

i.e., if a1 £ a2 £ a3 £ ...... £ an £ an + 1 £ ......

(ii) A sequence {an} is said to be monotonically decreasing if an + 1 £ an " n Œ N.

i.e., if  a1 ≥ a2 ≥ a3 ≥ ...... ≥ an ≥ an + 1 ≥ ......

(iii) A sequence {an} is said to be monotonic if it is either monotonically increasing or monotonically
decreasing.

(iv) A sequence {an} is said to be strictly monotonically increasing if

an + 1 > an " n Œ N.

(v) A sequence {an} is said to be strictly monotonically decreasing if

an + 1 < an " n Œ N.

(vi) A sequence {an} is said to be strictly monotonic if it is either strictly monotonically increasing or
strictly monotonically decreasing.

�������������������	�
��

A sequence {an} is said to approach the limit l (say) when n Æ •, if for each e > 0, $ a +ve integer m
(depending upon e) such that | an – l | < e " n ≥ m.

In symbols, we write Lt
n�	

 an = l.

Note. | an – l | < e  " n ≥ m fi l – e < an < l + e for n = m, m + 1, m + 2, ......
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����� ��� ���
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Let the sequence {an} be convergent. Let it tend to the limit l.
Then given e > 0, $ a +ve integer m, such that

  | an – l | < e " n ≥ m

fi  l – e < an < l + e " n ≥ m.
Let k and K be the least and the greatest of a1, a2, a3, ......, am – 1, l – e, l + e
Then  k £ an £ K " n Œ N,

fi the sequence {an} is bounded.
The converse is not always true i.e., a sequence may be bounded, yet it may not be convergent. e.g.,

Consider an = (–1)n, then the sequence {an} is bounded but not convergent since it does not have a unique
limiting point.

���!����
����
��������
���
������	�
���

Theorem I. The necessary and sufficient condition for the convergence of a monotonic sequence is that
it is bounded.

A monotonic increasing sequence which is bounded above converges.

A monotonic decreasing sequence which is bounded below converges.
Theorem II. If a monotonic increasing sequence is not bounded above, it diverges to + •.
Theorem III. If a monotonic decreasing sequence is not bounded below, it diverges to – •.

Theorem IV.  If  {an}  and  {bn}  are  two convergent sequences, then sequence {an + bn} is also convergent.

Or

If Lt an = A and Lt bn = B, then Lt (an + bn) = A + B.

Theorem V. If {an} and {bn} are two convergent sequences such that Lt an = A and Lt bn = B, then

(i) sequence {anbn} is also convergent and converges to AB.

(ii) sequence n

n

a

b

� �
� �

 
� �

 is also convergent and converges to 
A

B
, (B π 0).

Theorem VI. The sequence {| an |} converges to zero if and only if the sequence {an } converges to zero.

Theorem VII. If a sequence {an } converges to a and an ≥ 0 " n, then a ≥ 0.

Theorem VIII. If an Æ a, bn Æ b and an £ bn " n, then a £ b.

Theorem IX. If an Æ l, bn Æ l, and an £ cn £ bn, " n, then cn Æ l.      (Squeeze Principle)

����������	
�
����
�

Example 1. Give an example of a monotonic increasing sequence which is (i) convergent, (ii) divergent.
(P.T.U., Dec. 2004)

Sol. (i) Consider the sequence 
1 2 3

, , , ......,
2 3 4 1

n

n �
, ......

Since 
1 2 3

2 3 4
� �  < ...... the sequence is monotonic increasing.

 an = 
1

, Lt Lt Lt
11 1 1

n
n n n

n n
a

n n
n

� 	 �	 � 	
 

� � �
 = 1
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which is finite.

\ The sequence is convergent.

(ii) Consider the sequence 1, 2, 3, ......, n, ......
Since 1 < 2 < 3 < ......, the sequence is monotonic increasing,

 an = n, Lt
n�	

 an = Lt
n�	

n = •

\ The sequence diverges to + •.

Example 2. Give an example of a monotonic decreasing sequence which is

(i) convergent, (ii) divergent.

Sol. (i) Consider the sequence 1, 
1 1 1

, , ......,
2 3 n

, ......

Since 1 > 
1 1

2 3
�  > ......, the sequence is monotonic decreasing.

an = 
1 1

, Lt Ltn
n n

a
n n� 	 �	

�  = 0.

\ The sequence converges to 0.

(ii) Consider the sequence – 1, – 2, – 3, ......, – n, ......
Since – 1 > – 2 > – 3 > ......, the sequence is monotonic decreasing.

an = – n, Lt Ltn
n n

a
�	 �	

 (– n) = – •

\ The sequence diverges to – •.

Example 3. Discuss the convergence of the sequence {an} where

(i) an = 
n 1

n

�
(ii) an = 

2

n

n 1�
(iii) an = 1 + 

2 n

1 1 1
......

3 3 3
� � � .

Sol. (i)  an = 
1n

n

�

 an+1 – an = 
2 1 1

1 ( 1)

n n

n n n n

� � �
� 

� �
 < 0 " n

fi  an+1 < an " n

fi {an} is a decreasing sequence.

Also, an = 
1 1

1
n

n n

�
� �  > 1 " n

fi {an} is bounded below by 1,

� {an} is decreasing and bounded below, it is convergent.

Lt n
n

a
� 	

 =
1

Lt 1
n n� 	

� ��� �� �
 = 1.

(ii) an =
2 1

n

n �
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  an+1 – an = 
2 2

2 2 2 2

1 ( 1)( 1) ( 2 2)

( 1) 1 1 ( 2 2)( 1)

n n n n n n n

n n n n n

� � � � � �
� 

� � � � � �

= 
2

2 2

1

( 2 2)( 1)

n n

n n n

� � �
� � �

 < 0 " n fi an+1 < an " n

fi {an} is a decreasing sequence.

Also, an = 2 1

n

n �
 > 0 " n fi {an} is bounded below by 0.

� {an} is decreasing and bounded below, it is convergent.

2

2

1

Lt Lt Lt
11 1

n
n n n

n na
n

n

� 	 �	 � 	
 

� �
 = 0.

(iii)  an = 1 + 2

1 1 1
......

3 3 3n
� � �

= sum of (n + 1) terms of a G.P. whose first term is 1 and common ratio is 1
3

= 
1

1
1 1

3
1

1
3

n�
� ��� �� �

�

(1 )
S

1

n

n
a r

r

�


�

= 1

3 1
1

2 3n�
� ��� �� �

Now,  an+1 = 1 + 2 1

1 1 1 1
......

3 3 3 3n n�� � � �

\  an+1 – an = 1

1

3n�  > 0 " n fi an+1 > an " n

fi {an} is an increasing sequence.

Also, an = 1

3 1 3
1

2 23n�
� �� �� �� �

" n fi {an} is bounded above by 
3

2
.

� {an} is increasing and bounded above, it is convergent.

1

3 1 3
Lt Lt 1

2 23
n nn n

a �� 	 �	

� � � � �� �
.

������ �
��
���������

If {un} is a sequence of real numbers, then the expression u1 + u2 + u3 + ...... + un ......
[i.e., the sum of the terms of the sequence, which are infinite in number] is called an infinite series.

The infinite series u1 + u2 + ...... + un + ...... is usually denoted by 
1

n

n

u
	

�
�  or more briefly, by Sun.
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���������������"������������

If all the terms of the series Sun = u1 + u2 + ...... + un + ...... are positive i.e., if un > 0, " n, then the
series Sun is called a series of positive terms.

����������
���
�������

A series in which the terms are alternate positive and negative is called an alternating series. Thus, the
series S (– 1)n–1 un = u1 – u2 + u3 – u4 + ...... + (– 1)n – 1 un + ......, where un > 0, " n, is an alternating series.

������"�������	��

If Sun = u1 + u2 + u3 + ...... + un + ...... is an infinite series, where the terms may be +ve or –ve, then

Sn = u1 + u2 + ...... + un is called the nth partial sum of Sun. Thus, the nth partial sum of an infinite series
is the sum of its first n terms.

S1, S2, S3, ...... are the first, second, third, ...... partial sums of the series.

Since n Œ N, {Sn} is a sequence called the sequence of partial sums of the infinite series Sun.

\ To every infinite series Sun, there corresponds a sequence {Sn} of its partial sums.

����� ��
����
����������
����
������������
�����
��
��
���������

����� #�$%&'()*+�),� &-� �-,(-(.$��$+($/0 (P.T.U., Dec. 2007)

An infinite series Sun converges, diverges or oscillates (finitely or infinitely) according as the sequence
{Sn} of its partial sums converges, diverges or oscillates (finitely or infinitely).

(i) The series Sun converges (or is said to be convergent) if the sequence {Sn} of its partial sums con-
verges.

Thus, Sun is convergent if Lt
n� 	

Sn = finite.

(ii) The series Sun diverges (or is said to be divergent) if the sequence {Sn} of its partial sums diverges.

Thus, Sun is divergent if Lt
n� 	

Sn = + • or – •

(iii) The series Sun oscillates finitely if the sequence {Sn} of its partial sums oscillates finitely.

Thus, Sun oscillates finitely if {Sn} is bounded and neither converges nor diverges.

(iv) The series Sun oscillates infinitely if the sequence {Sn} of its partial sums oscillates infinitely.

Thus, Sun oscillates infinitely if {Sn} is unbounded and neither converges nor diverges.

Example 4. Discuss the convergence or otherwise of the series

1 1 1 1
......

1.2 2.3 3.4 n( n 1)
� � � �

�
 + ...... to •.

Sol. Here  un = 
1 1 1

( 1) 1n n n n
 �

� �

Putting n = 1, 2, 3, ......, n

u1 = 
1 1

1 2
�
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u2 = 
1 1

2 3
�

u3 = 
1 1

3 4
�

.......................

.......................

un = 
1 1

1n n
�

�

Adding Sn = 1 – 
1

1n �

 Lt
n�	

 Sn = 1 – 0 = 1

fi {Sn} converges to 1 fi Sun converges to 1.
Note. For another method, see solved example 8(iii) art 5.21.

Example 5. Show that the series 12 + 22 + 32 + ...... + n2 + ...... diverges to + •.

Sol. Sn = 12 + 22 + 32 + ..... + n2 = 
( 1)(2 1)

6

n n n� �

 Lt
n�	

 Sn = + •

fi {Sn} diverges to + •
fi The given series diverges to + •.

������
��	����������������������1���1���������������������•••••

(i) Converges if – 1 < x < 1 i.e., | x | < 1 (ii) Diverges if x ≥ 1

(iii) Oscillates finitely if x = – 1

(iv) Oscillates infinitely if x < – 1

Proof. (i) When | x | < 1
Since   | x | < 1, xn Æ 0 as n Æ •

Sn = 1 + x + x2 + ...... to n terms = 
1(1 ) 1

1 1 1

n nx x

x x x

�
 �

� � �

1
Lt S

1n
n x� 	


�

fi the sequence {Sn} is convergent

fi the given series is convergent.
(ii) When x ≥≥≥≥≥ 1

Sub-case I. When  x = 1
  Sn = 1 + 1 + 1 + ...... to n terms = n

  Lt
n�	

 Sn = • fi the sequence {Sn} diverges to •.

fi the given series diverges to •.

Sub-case II. When x > 1, xn Æ • as n Æ •

 Sn = 1 + x + x2 + ...... to n terms = 
1( 1)

1

nx

x

�
�
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Lt
n�	

 Sn = • fi the sequence {Sn} diverges to •

fi the given series diverges to •.

(iii) When              x = – 1

 Sn = 1 – 1 + 1 – 1 + ...... to n terms

 Sn = 1 or 0 according as n is odd or even.

fi  Lt
n� 	

Sn = 1 or 0 fi the sequence {Sn} oscillates finitely.

fi the given series oscillates finitely.

(iv) When          x < – 1
x < – 1 fi – x > 1

Let r = – x, then r > 1

\ rn Æ • as n Æ •

  Sn = 1 + x + x2 + x3 + ...... to n terms = 
1 1 ( )

1 1

n nx r

x r

� � �


� �
[� x = – r]

= 
1

1

nr

r

�
�

or
1

1

nr

r

�
�

 according as n is even or odd

1
Lt S

1n
n r�	

� 	


�  or
1

1 r

� �
�  = – • or + •

fi the sequence {Sn} oscillates infinitely.

fi the given series oscillates infinitely.

������
������ ���
�����
������
����
��������"�����������������

(P.T.U.,  May 2003, 2004, Dec. 2003, 2005, Jan. 2009, May 2011)

If a positive term series Sun is convergent, then 
n
Lt
� 	

un = 0

Proof. Let Sn denote the nth partial sum of the series Sun.
Then Sun is convergent fi {Sn} is convergent

fi Lt
n�	

Sn is finite and unique = s (say). fi Lt
n�	

 Sn–1 = s

Now,  Sn – Sn–1 = un

\    Lt
n� 	

 un = Lt
n�	

 (Sn – Sn–1) = Lt
n� 	

 Sn – Lt
n� 	

 Sn–1 = s – s = 0.

Hence Sun is convergent fi Lt
n��

un = 0.

The converse of the above theorem is not always true, i.e., the nth term may tend to zero as n Æ • even
if the series is not convergent.

For example, the series 1 + 
1 1 1

......
2 3 n
� � �  + ...... diverges, though

1
Lt Ltn

n n
u

n�	 �	
�  = 0.
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Hence Lt
n��

 un = 0 fi Sun may or may not be convergent.

Note. Lt
n��

 un π 0 fi Sun is not convergent.

��������"���������������������2����
�������������������1�•••••

Proof. Let Sun be a positive term series and Sn be its nth partial sum.

Then Sn+1 = u1 + u2 + ...... + un + un+1 = Sn + un+1
fi  Sn+1 – Sn = un+1 > 0 " n [� un > 0  "  n]
fi   Sn+1 > Sn " n
fi {Sn} is a monotonic increasing sequence.

Two cases arise. The sequence {Sn} may be bounded or unbounded above.
Case I. When {Sn} is bounded above.
Since {Sn} is monotonic increasing and bounded above, it is convergent fi Sun is convergent.

Case II. When {Sn} is not bounded above.
Since {Sn} is monotonic increasing and not bounded above, it diverges to + • fi Sun diverges

to + •.
Hence a positive term series either converges or diverges to + •.

Cor. If  un > 0 """"" n and Lt
n��

 un πππππ 0, then the series SSSSSun diverges to + •••••.

Proof.  un > 0 " n fi Sun is a series of +ve terms.
fi Sun either converges or diverges to + •

Since Lt
n� 	

 un π 0 (given)

\ Sun does not converge.
Hence Sun diverges to + •.

����� #&0�� �2��
������ ��
�� �	������
����
�����
� ��� �2�� ��
��3

����� #&0�� ��
�������� "�������� ����������ÂÂÂÂÂ�
�
� ��� �2��� �2�� ���	�
��

�����#&0���4�
�
5��������"�������	��������	
���������

Proof. Necessary Condition. Suppose the sequence {Sn} is bounded above. Since the series Sun is of
positive terms, the sequence {Sn} is monotonically increasing. Since every monotonically increasing sequence
which is bounded above, converges, therefore {Sn} and hence Sun converges.

Sufficient Condition. Suppose Sun converges. Then the sequence {Sn} of its partial sums also con-
verges. Since every convergent sequence is bounded, {Sn} is bounded. In particular, {Sn} is bounded above.

����� #60����	�2 7����
����"�
��"��������
����
�����������

The necessary and sufficient condition for the infinite series 
1

n

n

u
	

�
�  to converge is that given e > 0,

however small, there exists a positive integer p such that | Sn + p – Sn | < � " n ≥ m ; m and p Œ N i.e., | un+1 + un+2
… un + p | < � for n ≥ m, p, m Œ N.
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Necessary Condition. Given 
1

n

n

u
	

�
�  is convergent.

\ Lt
n � 	

 Sn = finite, where {Sn} is the sequence of its partial sums

Let Lt
n � 	

 Sn = l, where l is a finite number.

\ Given � > 0, however small, $s m Œ�N such that | Sn – l | < �/2 " n ≥ m …(1)

If  p Œ�N and n ≥ m, then n + p ≥ m

\ From (1), | Sn+p – l | < 
2

�
" n ≥ m …(2)

Now, | Sn + p – Sn | = | (Sn+p– l) – (Sn – l) |

£ | Sn+p – l | + | Sn– l |

< e/2 + e/2 for n ≥ m, p Œ N

Hence | Sn+p – Sn | < e for n ≥ m, p Œ N.

Sufficient Condition. Given | Sn+p
 – Sn | < e " n ≥ m, p Œ N

In particular | Sm+p – Sm | < e " p Œ N

Now Sm, being the sum of first m terms of the sequence {Sn} and Sm+p differs from Sm by a number < e "
p Œ N.

\ Sm+p cannot be infinite when p Æ � i.e., Lt
p � 	

 Sm+p π �.

\ Lt Sn
n � 	

 π � (replace m + p by n)

Also Lt Sn
n � 	

 and Lt Sn p
n

�
� 	

 have the same value S

Now,  | Sn+p – Sn | < e " p Œ N

fi   Lt Sn p
n

�
� 	

 = Lt Sn
n � 	

 = l (say) " p Œ N

\
1

n

n

u
	

�
�  is convergent.

�����#80� ��������������
�"���������
�������2�
��2���9�������

�������	� �
�
�1��

�
�1�������1��

�1�
�1��

�1�
�1���������

�
��
���

�1�
�1��

�1�
�1���������

�

����� #80� ��
�������������������2�

Proof. Let Sn and sn denote the nth partial sums of the two series.
Then  Sn = u1 + u2 + ...... + un

sn = um + 1 + um + 2 + ...... + un
= (u1 + u2 + ...... + un) – (u1 + u2 + ...... + um)
= Sn – Sm fi sn = Sn – Sm …(1)

Sm being the sum of a finite number of terms of Sun is a fixed finite quantity.
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(i) If Sn Æ a finite limit as n Æ •, then from (1), so does sn.
(ii) If Sn Æ + • as n Æ •, so does sn.

(iii) If Sn Æ – • as n Æ •, so does sn.
(iv) If Sn does not tend to any limit (finite or infinite), so does sn.

fi The sequences {Sn} and {sn} converge or diverge together.
fi The two given series converge or diverge together. Hence the result.
Note. The above theorem shows that the convergence, divergence or oscillation of a series is not affected by

addition or omission of a finite number of its terms.

Example 6. Prove that the series 
n 1

1

n

	

�
�  does not converge (by applying Cauchy’s general principle

of convergence).

Sol. If possible suppose 
1

1

n
n

	

�
�  is convergent.

\ By Cauchy’s general principle of convergence

  | Sn + p – Sn | < e " n ≥ m, p Œ N

Take  e = 
1

2
\ | Sn + p – Sn | < 

1

2
" n ≥ m, p Œ N

Put n = m ; | Sm + p – Sm | < 
1

2
" p Œ N

i.e.,
1 1 1 1

1 2 2m m m p
� � � � �

� � �
" p Œ N

1
Sn n

�
� �� �� �

or  
1 1 1 1

1 2 2m m m p
� � � � �

� � �
" p Œ N

Put p = m, 
1 1 1 1

1 2 2 2
� � � � �

� �m m m
…(1)

But
1 1 1 1 1 1 1

1 2 2 2 2 2
� � � � � � � � �  

� � � �
m

m m m m m m m m m

\  
1 1 1 1

1 2 2 2m m m
� � � � �

� �
…(2)

(2) contradicts (1)
\ Our supposition is wrong
\ Given series does not converge.

Example 7. Prove that the series 
2

n 1

1

n

	

�
�  is convergent (by applying Cauchy’s general principle of

convergence).

Sol. Let Sn = 1 + 
2 2 2

1 1 1

2 3 n
� �� �
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Sn + p = 1 + 
2 2 2 2 2

1 1 1 1 1

2 3 ( 1) ( )n n n p
� � � � � � �

� �

| Sn + p – Sn |  =
2 2 2

1 1 1

( 1) ( 2) ( )n n n p
� � � �

� � �

=
2 2 2

1 1 1

( 1) ( 2) ( )n n n p
� �� �

� � �

<
1 1 1

( 1) ( 1) ( 2) ( 1) ( )n n n n n p n p
� � � �

� � � � � �

<
1 1 1 1 1 1

...
1 1 2 1n n n n n p n p

� � � � � �
� � � � � �� � � � � �� � � � � �� � � � � �

=
1 1

n n p
�

�

<
1

n

\ | Sn + p – Sn | <
1

n

Let us choose m such that m > 
1

�

\ for n ≥ m > 
1

�
, we have 

1

n
 < e

\  | Sn + p – Sn | < e for n ≥ m, p Œ N

\ by Cauchy’s general principle of convergence 
2

1

1

n n

	

�
�  is convergent.

Note. These examples can be proved by applying p series test art. 5.21.

�����#:0� ���ÂÂÂÂÂ�
�
��
��ÂÂÂÂÂ�

�
���
�����������
������"������� ���2�
�ÂÂÂÂÂ#���1���0

�����#:0� ��
���������#��1��0

Proof. Let Un = u1 + u2 + ...... + un

Vn = v1 + v2 + ...... + vn

and Sn = (u1 + v1) + (u2 + v2) + ...... + (un + vn)

Then Sn = (u1 + u2 + ...... + un) + (v1 + v2 + ...... + vn) = Un + Vn.

Since Sun converges to u, Lt
n�	

 Un = u

Svn converges to v, Lt
n� 	

 Vn = v

\ Lt
n� 	

 Sn = Lt
n� 	

 (Un + Vn) = Lt
n�	

 Un + Lt
n�	

 Vn = u + v.

fi S(un + vn) converges to (u + v).
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Test I. (a) If Sun and Svn are series of positive terms and Svn is convergent and there is a positive
constant k such that un £ kvn, " n > m, then Sun is also convergent.

Proof. Let  Un = u1 + u2 + ...... + un and Vn = v1 + v2 + ...... + vn

Now un £ kvn " n > m

fi um + 1 £ kvm + 1

 um + 2 £ kvm + 2

........................

Adding um + 1 + um+2 + ...... + un £ k(vm + 1 + vm + 2 + ...... + vn)

fi  Un – Um £ k (Vn – Vm) " n > m

fi  Un £ kVn + (Um – kVm) " n > m

fi Un £ kVn + k0 " n > m …(1)

where k0 = Um – kVm is a fixed number.

Since Svn is convergent, the sequence {Vn} is convergent and hence bounded above.

\ From (1), the sequence {Un} is bounded above.
� Sun is a series of +ve terms.

\ {Un} is monotonic increasing.

� {Un} is monotonic increasing sequence and is bounded above.

\ It is convergent.

fi Sun is convergent.

Test I. (b) If Sun and Svn are two series of positive terms and Svn is divergent and there is a positive
constant k such that un > kvn, " n > m, then Sun is also divergent.

Proof. Let  Un = u1 + u2 + ...... + un

and Vn = v1 + v2 + ...... + vn

Now, un > kvn " n > m

fi  um + 1 > kvm + 1

um + 2 > kvm + 2

......................

......................

Adding um + 1 + um + 2 + ....... + un > k (vm + 1 + vm + 2 + ...... + vn)

fi Un – Um > k (Vn – Vm) " n > m

fi Un > kVn + (Um – kVm) " n > m

fi Un > kVn + k0 " n > m …(1)

where k0 = Um – kVm is a fixed number.

Since Svn is divergent, the sequence {Vn} is divergent.

fi For each positive real number k1, however large, there exists a +ve integer m¢ such that

Vn > k1 " n > m¢

Let m* = max. {m, m¢}, then Vn > k1 "    n > m*

From (1), Un > kk1 + k0 = K "    n > m*

fi {Un} is divergent

fi Sun is divergent.
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Test II. If Sun and Svn are two positive term series and there exist two positive constants H and K

(independent of n) and a positive integer m such that H < n

n

u

v
 < K """"" n > m, then the two series Sun and Svn

converge or diverge together.

Proof. Since Svn is a series of +ve terms, vn > 0, " n

\   H < n

n

u

v
 < K " n > m

fi   Hvn < un < Kvn " n > m …(1)

Case I. When Svn is convergent

From (1),  un < Kvn " n > m and Svn is convergent.

fi Sun is convergent. [See test I(a)]

Case II. When Svn is divergent

From (1), un > Hvn " n > m and Svn is divergent.

fi Sun is divergent. [See test I(b)]

Case III. When Sun is convergent

From (1),  Hvn < un " n > m

fi  vn < 
1

H
 un " n > m (� H > 0)

Since Sun is convergent \ Svn is convergent. [See test I(a)]

Case IV. When Sun is divergent

From (1), Kvn > un " n > m

fi  vn > 
1

K
 un. " n > m (� K > 0)

Since Sun is divergent \ Svn is divergent. [See test I(b)]

Particular Case of Test II (When m = 0)

If Sun and Svn are two positive term series and there exist two positive constants H and K (independ-

ent of n) such that H < n

n

u

v
 < K " n,

then the two series Sun and Svn converge or diverge together.

Test III. (limit comparison test) Let Sun and Svn be two positive term series.

(i) If Lt n

n n

u

v��

 = l (finite and non-zero), then Sun and Svn both converge or diverge together.

(ii) If Lt n

n n

u

v��

 = 0 and Svn converges, then Sun also converges.

(iii) If Lt n

n n

u

v��

 = ••••• and Svn diverges, then Sun also diverges.

(iv) If Lt n

n n

u

v��

 = ••••• and SSSSS un converges, then Svn also converges. (P.T.U., Dec. 2004)
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Proof. (i) Since un > 0, vn > 0 \ n

n

u

v
 > 0

\ Lt n

n n

u

v� 	
 ≥ 0

But Lt n

n n

u

v� 	
 = l π 0 fi l > 0

Now, Lt n

n n

u

v� 	
 = l

fi Given e > 0, there exists a +ve integer m such that n

n

u
l

v
�  < e " n > m

fi l – e < n

n

u

v
 < l + e " n > m

fi   (l – e) vn < un < (l + e) vn " n > m (� vn > 0)
Choose e > 0 such that l – e > 0.
Let l – e = H, l + e = K, where H, K are > 0

\  Hvn < un < Kvn " n > m …(1)
Case I. When Sun is convergent
From (1),   Hvn < un " n > m

fi  vn < 
1

H
 un " n > m (� H > 0)

Since Sun is convergent, Svn is also convergent.
Case II. When Sun is divergent.

From (1),   Kvn > un " n > m

fi vn > 
1

K
 un " n > m (� K > 0)

Since Sun is divergent, Svn is also divergent.

Case III. When Svn is convergent.
From (1),  un < Kvn " n > m
Since Svn is convergent, Sun is also convergent.

Case IV. When Svn is divergent.
From (1),  un > Hvn " n > m
Since Svn is divergent, Sun is also divergent.

Hence Sun and Svn converge or diverge together.

(ii) Here Lt n

n n

u

v� 	
 = 0

\ Given e > 0, there exists a +ve integer m such that 0n

n

u

v
�  < e " n > m
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fi – e < n

n

u

v
 < e " n > m

fi  un < e vn " n > m (� vn > 0)
Since Svn is convergent, Sun is also convergent.

(iii) Here Lt n

n n

u

v� 	
 = •

\ Given M > 0, however large, $s a +ve integer m such that n

n

u

v
 > M  " n > m

fi  un > Mvn " n > m
Since Svn is divergent, Sun is also divergent.

(iv) Given Lt n

n n

u

v� 	
 = •

\ Given M > 0, however large $s a positive integer m such that n

n

u

v
 > M for n > m

\    un > M vn

or   Mvn < un or vn < 
1

M nu

As M is a large \
1

M
 is small.

Given
1

n

n

u
	

�
�  is convergent

\ By comparison test S vn is also convergent.
Test IV. Let Sun and Svn be two positive term series.

(i) If  
+ 1 +1

n n

n n

u v

u v
� " n > m and Svn is convergent, then Sun is also convergent.

(ii) If 
+ 1 +1

n n

n n

u v

u v
� " n > m and Svn is divergent, then Sun is also divergent.

Proof. (i)
1 1

n n

n n

u v

u v� �
	 " n > m

fi
1 1

2 2

m m

m m

u v

u v
� �

� �
�

2 2

3 3

m m

m m

u v

u v
� �

� �
�

3 3

4 4

m m

m m

u v

u v
� �

� �
�

.......................

.......................

–1 1n n

n n

u v

u v
�	
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Multiplying the corresponding sides of the above inequalities, we have

1m

n

u

u
� > 1m

n

v

v
� " n > m

fi un < 1

1

m

m

u

v
�

�

� �
� �
� �

 vn " n > m

fi un < kvn " n > m,

where k = 1

1

m

m

u

v
�

�
 is a fixed +ve quantity.

Since Svn is convergent, so is Sun.

(ii) Using 1m

n

u

u
�  < 1m

n

v

v
�

" n >  m

and proceeding as in part (i), we have 1 1m m

n n

u v

u v
� �� " n >  m

fi un > 1

1

m

m

u

v
�

�

� �
� �
� �

 vn " n > m

fi un > kvn " n >  m,

where k = 1

1

m

m

u

v
�

�
 is a fixed +ve quantity.

Since Svn is divergent, so is Sun.

����� �
���"���
�������������"����
�;
�9
�����3�������������

����� �2���������
�

�
�

�� <2 "��2���
������������3�����=

The series 
1 1 1 1 1

......
1 2 3p p p p pn n

� � � � ��  + ...... to • converges if p > 1 and diverges if p £ 1.

Proof. Case I. When p > 1
1

1p
 = 1

1 1

2 3p p
�  <

1

1 1 2 1

2 2 2 2p p p p �� � �
1 1

3 2p p
�
� ��� �� �

1 1 1 1

4 5 6 7p p p p
� � �  <

1 1 1 1

4 4 4 4p p p p
� � �

= 1 1 2

4 1 1

4 4 (2 )p p p� �  1 1 1 1
, etc.

5 4 6 4p p p p
�
� �� �� �� �

Similarly, the sum of next eight terms

= 1 1 3

1 1 1 1 1 1 8 1 1
...... ......

8 9 15 8 8 8 8 8 (2 )p p p p p p p p p� �� � � � � � �   

and so on.
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Now,
1
pn

�  =
1 1 1 1

......
1 2 3p p p pn

� � � �  + ......

=
1 1 1 1 1 1 1 1 1 1

......
1 2 3 4 5 6 7 8 9 15p p p p p p p p p p

� � � � � �� � � � � � � � � �� � � � � �� � � � � �  + ......

…(1)

< 1 + 
1 1 2 1 3

1 1 1

2 (2 ) (2 )p p p� � �� �  + ...... …(2)

But (2) is a G.P. whose common ratio = 1

1

2 p�  < 1 (� p > 1)

\ (2) is convergent fi (1) is convergent.

Hence the given series is convergent.

Case II. When p = 1

1 1 1 1 1
1

2 3 4p nn
� � � � �� �  + ......

1 + 
1

2
 = 1 + 

1

2

 
1 1 1 1 2 1

3 4 4 4 4 2
� 	 � � �

 
1 1 1 1 1 1 1 1 4 1

5 6 7 8 8 8 8 8 8 2
� � � 	 � � � � � and so on.

Now,    
1 1 1 1 1

1 ......
2 3 4n n

 � � � � ��  + ......

= 1 + 
1 1 1 1 1 1 1

2 3 4 5 6 7 8
� � � �� � � � � �� � � �� � � �

 + ...... …(1)

> 1 + 
1 1 1

2 2 2
� �  + ...... = 1 + 

1 1 1
......

2 2 2
� �� � � �� �� �

…(2)

But 
1 1 1

......
2 2 2
� � � �  is a G.P. whose common ratio = 1.

\ (2) is divergent. fi (1) is divergent.

Hence the given series is divergent.

Case III. When p < 1

p  <  1 fi n p <  n fi
1 1
p nn
� " n

But the series 
1

n�  is divergent (Case II).

Hence 
1
pn

�  is also divergent.
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Example 8. Examine the convergence of the series:

(i)
2 3 4

3 4 3 4

5 5 5 5
� � �  + ...... to • (ii) 1 + 

2/3 2/3 2/3

1 1 1

4 9 16
� �  + ...... to •

(iii)
1 1 1

...
1.2 2.3 3.4

�� � �

Sol. (i) 
2 3 4

3 4 3 4

5 5 5 5
� � �  + ...... to •

= 
3 2 4

3 3 4 4
...... to ...... to

5 5 5 5

� � � �� � � � � � �� � � �� � � �
 = Sun + Svn (say)

Now, Sun is a G.P. with common ratio = 2

1

5
, which is numerically less than 1,

\ Sun is convergent.

Svn is also a G.P. with common ratio = 2

1

5
, which is numerically less than 1.

\ Svn is convergent.
\ The given series viz. S(un + vn) is also convergent.

(ii) 1 + 
2/3 2/3 2/3

1 1 1

4 9 16
� �  + ...... to • = 1 + 2 2/3 2 2/3 2 2/3

1 1 1

(2 ) (3 ) (4 )
� �  + ...... to •

= 4/3 4/3 4/3 4/3

1 1 1 1

1 2 3 4
� � �  + ...... to • = 4/3

1 1
pn n

�� �  with p = 
4

3
 > 1

\ By p-series test, the given series is convergent.

(iii)
1 1

1

( 1)n

n n

u
n n

	 	

� �

�
�� � \ un = 

1

( 1)n n �
 = 

2

1

1
1n

n
� ��	 
� �

Let vn = 2

1

n

Compare S un with S vn, we have 
1

1
1

n

n

u

v
n


�

.

    
1

Lt Lt
1

1

n

n nn

u

v
n

� 	 � 	


�
 = 1, which is finite and π 0.

\ S un and S vn behave together S vn = S 2

1

n
 is of the form S 

1
pn

, where p = 2 > 1

\ by p-series test S 2

1

n
 converges.

By limit comparison test (art. 5.20 Test III)

S un also converges i.e., S 
1

( 1)n n �
 converges.

Hence 
1 1 1

1.2 2.3 3.4
� �  + … • converges.
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Example 9. Test the convergence of the series : 
1 3 5

1.2.3 2.3.4 3.4.5
� �  + ...... (P.T.U., May 2009)

Sol. Here            un = 
T of 1, 3, 5, ...... 2 1

( + 1)( 2) ( 1)( 2)
n n

n n n n n n

�


� � �
(As 1, 3, 5, ...... form an A.P. with a = 1, d = 2

\ nth term Tn = 1 + (n – 1)2 = 2n – 1)

= 
3

1
2

1 2
1 1

n
n

n
n n

� ��� �� �
� � � �� �� � � �� � � �

 = 
2

1
2

1 2
1 1

n

n
n n

�

� � � �� �� � � �� � � �

Let            vn = 2

1

n
Let us compare Sun with Svn,

1
2

1 2
1 1

n

n

u n
v

n n

�


� � � �� �� � � �� � � �

  

1
2 2

Lt Lt
1 2 (1)(1)

1 1

n

n nn

u n
v

n n

�	 �	

�
 

� � � �� �� � � �� � � �

 = 2, which is finite and π 0.

\ Sun and Svn converge or diverge together.

Since Svn = S 
2

1

n
 is of the form S 

1
pn

 with p = 2 > 1.

\ Svn is convergent fi Sun is convergent.
Example 10. Test the convergence of the following series:

(i) 
p p p

1 1 1

1 3 5
� � � ��� (ii)

p p p

2 3 4

1 2 3
� � � ��� .

Sol. (i) Here            un = 
1 1

(2 1) 1
2

p p
pn

n
n


� � ��� �� �

(� 1, 3, 5, … are in AP and nth term = 1 + (n – 1) 2 = 2n – 1)

Let             vn = 
1
pn

\
1

1
2

n
p

n

u

v

n


� ��� �� �

     
1

Lt
2

n
pn n

u

v� 	
 ,  which is finite and π 0.

\ S un and S vn behave alike
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        S vn = S 
1
pn

, which converges if p > 1 and diverges if p £ 1.

\ Given series converges for p > 1 and diverges for p £ 1

(ii) Here            un = 1

1 1 1
1

p p

n

nn n 

� � � �� �� �

Let            vn = 1

1
pn  ; 

1
1n

n

u

v n
 �

Lt n

n n

u

v� 	
= 1, which is finite and π 0

\ S un and S vn behave alike

        S vn = 1

1
pn 

converges if p – 1 > 1 i.e., p > 2 and diverges if p – 1 £ 1 i.e., p £ 2

\ Given series converges for p > 2 and diverges for p £ 2.

Example 11. Test the convergence of the following series :

(i) 
1 1 1

1 2 2 3 3 4
� �

� � �
 + ...... (ii)

1 2 3 n
......

4 6 8 2( n 1)
� � � �

�
 + ......

(P.T.U., Dec. 2003)

Sol. (i) Here  un = 
1 1

1 1
1 1

n n
n

n


� �� �

� �� �
� �� �

Let us compare Sun with Svn, where vn = 
1

n

         
1

1
1 1

n

n

u

v

n

�
� �

                 
1 1 1

Lt Lt
1 1 21

1 1

n

n nn

u

v

n

� 	 � 	
  

�
� �

, which is finite and π 0.

\ Sun and Svn converge or diverge together.

Since Svn = S 
1/2

1

n
 is of the form S 

1
pn

 with p = 
1

2
 < 1

\ Svn is divergent fi Sun is divergent.

(ii)  Here            un = 
1

12( 1)
2 1

n

n
n


� � ��� �� �
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1 1

Lt Lt
21

2 1
n

n n
u

n

�	 �	
� �

� ��	 
� �

 π 0

fi Sun does not converge.
Since the given series is a series of +ve terms, it either converges or diverges. Since it does not converge,

it must diverge.
Hence the given series is divergent.

Example 12. Test the convergence of 
1 2 3 4

5 7 9 11
� � �  + … �

Sol. Here            un = 
2 3

n

n �

(� 5, 7, 9, 11, … are in A.P. and nth term of A.P. = 5 + (n – 1) 2 = 2n + 3)

= 
3

2

n

n
n

� ��� �� �

 = 
1

3
2n

n
� ��	 
� �

Let             vn = 
1

n
\

1
3

2

n

n

u

v
n

�
�

1
Lt

2
n

n n

u

v� 	
 , which is finite and π 0

\ S un and S vn behave alike

        S vn = 1/2

1

n
, which is p series, where p = 

1

2
 < 1

\ S vn diverges

Hence S un = 
1 2 3

5 7 9
� �  + … � also diverges.

Example 13. Test the convergence of the following series :

(i) 1 + 
2 3 4

2 3 4 5

1 2 3 4

2 3 4 5
� � �  + ...... (ii) S 

2

3

n 1

n 1

�
�

. (P.T.U., May 2006)

Sol. (i) Leaving aside the first term (� Addition or deletion of a finite number of terms does not alter the
nature of the series), we have

           un = 
n n

n 1 n 1 n 1
n 1

n n 1

( n 1) 1 1
n 1 n 1

n n

� � �
�

 
� � � � �� �� � � �� � � �

Take            vn = 
1

n
 .
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1

1 1 1
Lt Lt Lt

11 1 11 1

n
n nn n nn

u

v
nn n

��� �� ��
  �

� �� � � � �� �� �� � � � � �� � � �

= 
1 1

.
1e

1
Lt 1

n

n
e

n� 	

� �� �� 	
 �� � �
 �� �
�

= 
1

e
, which is finite and π 0.

\ Sun and Svn converge or diverge together.

Since Svn = S 
1

n
 is of the form S 

1
pn

 with p = 1

\ Svn is divergent. fi Sun is divergent.

(ii) un =

2
2 2 2

3
3

33

1 11 1
1 1

111 11

n
n n n

nn n
nn

� �� �� �� ��
   

� �� ��� �� �

Let vn =  
1

n

\
n

n

u

v
 =  

2

3

1
1

1
1

n

n

�

�

When n Æ •         
1 0

Lt
1 0

n n

nn n

u u

v v� 	

�
 

�
 = 1, which is finite and non-zero

\ S un  and  S vn both converge or diverge together.

Since, S vn = 
1

1

n
n

	

�
� is of the form 

1

1
p

n n

	

�
�  with p = 1.

\ S vn is divergent

fi S un is also divergent.

Hence
2

3

1

1

n

n

�
��  is divergent series.

Example 14. Discuss the convergence or divergence of the following series:

(i) 
1 1

sin
nn

� (ii) S cot–1 n2.

Sol. (i) Here  un = 

1
sin1 1 1 1

sin
1

n
n nn n

n

  �
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\            un = 
3/2

1 sin 1/
1

n

n
n

� �
� �
� �
� �� �

Let             vn = 3/2

1

n
\

1
sin

1/
n

n

u n
v n

 .

                
1

0

1 1
sin sin

Lt Lt Lt
1 1

sin

n

n nn
n

u n n
v

n n
� 	 � 	 �

   = 1
0

sin
Lt

! �

!
!

 = 1

which is finite and non-zero
\ S un and S vn behave alike

        S vn = 
3/2

1

n
�  is p-series, where p = 3/2 > 1

\ S vn converges

and            hence S un = 
1 1

sin
nn

�  converges.

(ii) Here            un = cot–1 n2 = tan–1 
2

1

n
 = 

1 2

2 2

1 tan 1/
.

1/

n

n n

�

.

Take             vn = 2

1

n
\

1
2

2

1
tan

1/
n

n

u n
v n

�

	 .

1
12

2 20

1
tan

tan 1
Lt Lt Lt where

1/
n

n n hn

u hn h
v hn n

�
�

� 	 � 	 �

� �  � �� �

= 1 π 0, which is finite and non-zero
\ S un and S vn behave alike

        S vn = 
2

1

n
�  is p-series, where p = 2

\ S vn is convergent
So S un = S cot–1 n2 is also convergent.

Example 15. Examine the convergence of the series: 
3 3 3

2 1 3 – 1 4 1

3 1 4 1 5 1

� �
� �

� � �
 + ......

Sol. Here un = 3 3 3
3 5/2

3 3

1 1 1 11 1
1 1

( 2) 1 2 1 2 1
1 1

n
n nn n n

n
n n

n nn n

� �
� � � �� �� � � �

 
� � � �� � � � � �� � � �� � � �� � � �� � � �� � � �� � � �

Take            vn = 5/2

1

n
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3 3

3

1 1
1

1 0 0
Lt Lt

(1 0) 02 1
1

n

n nn

u n n
v

n n

� 	 �	

� �
� �

	 	
� �� �� �� � �

 = 1, which is finite and π 0.

\ Sun and Svn converge or diverge together.

Since Sun = S 
5/2

1

n
 is of the form S 

1
pn

 with p = 
5

2
 > 1.

Svn is convergent. fi Sun is convergent.

Example 16. Examine the convergence of the series:

(i) 4 4n + 1 n 1� �� (P.T.U., Dec. 2012,  May 2012)

(ii) � �33 n 1 n� �� . (P.T.U., May 2007,  Jan. 2010, May 2012)

Sol. (i) Here un = 4 41 1n n� � �

Rationalize  un = 
4 4

4 4

( 1) ( 1)

1 1

n n

n n

� � �

� � �

=
2

4 4

2

1 1
1 1n

n n

� �
� � �� �

� �� �

Let vn = 2

1

n

\ n

n

u

v
 =

4 4

2

1 1
1 1

n n
� � �

Lt n

n n

u

v� 	
 =

4 4

2
Lt

1 1
1 1

n

n n

� 	
� � �

=
2

1
2
	 , which is finite and non-zero

\ un and vn behave alike

Now, Svn = 
2

1

n
�  is a convergent series (by p series test � p = 2 > 1)

\ Sun is also convergent

Hence the given series is a convergent series.

(ii) Here            un = (n3 + 1)1/3 – n = 
1/3

3
3

1
1n

n

� �� ��
 �� � �� �
 – n

= n 
1/3

3

1
1

n

� ��� �� �
 – n = n 

1/3

3

1
1 1

n

� �� �� �
 �� � �
 �� �

= n 
21 1

3 3
3 3

( 1)1 1 1
1 . . ...... 1

3 2 !n n

� �� � �� � � �
 �� � �
 �� �
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= 
3 3 2 3

1 1 1 1 1 1 1
. ...... . ......

3 9 3 9

n

n n n n

� � � �� � �� � � �� 	 � 	

Take            vn = 
2

1

n
.

                
3

1 1 1 1
Lt Lt . ......

3 9 3
n

n nn

u

v n
� 
�

� � � �� �� �
, which is finite and π 0.

\ Sun and Svn converge or diverge together.

Since 
2

1
nv

n
�� �  is of the form 

1
pn

�  with p = 2 > 1

\ Svn is convergent fi Sun is convergent.
Note. Rationalization is effective only when square roots are involved whereas. Binomial Expansion is the general

method.

Example 17. Discuss  the convergence or divergence of the following series:

(i)
1 n 1

log
n n

�� ��� �� 	
 (ii)
1 1 1

log 2 log 3 log n
� ���  + … ��

Sol. (i) un = 
1 1 1 1

log log 1
n

n n n n

� � �� � � �� �� 	

= 2 3 4

1 1 1 1 1

2 3 4n n n n n

� �� �  � ��� �� �

= 2 3 4

1 1 1

2 3 4n n n
�   …… �

= 2 2

1 1 1 1
.

2 3 4nn n

� �� � ���� �
� �

Let vn = 2

1

n
\

2

1 1 1

2 3 4
n

n

u

v n n
� � �  … �

Lt n

n n

u

v
�
= 

1

2
, which is finite and π 0

\ S un and S vn behave alike

S vn = 
2

1

n
�  is p-series where p = 2 > 1

\ S vn converges and so given series S un converges.

(ii) Given series is   
2 2

1

logn

n n

u
n

� �

� �

�� �

\  u
n
 =  

1

log n

We know that       log n < n \
1 1

log n n
�
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\  u
n
 >

1

n
. Take v

n
 = 

1

n

\ u
n
 >  v

n
and S v

n
 = 

1

n�  is of the type 
1
pn

� , where p = 1.

\  S v
n
 divergent

\ By comparison test 5.20 I(b)
S u

n
 is also divergent.

Hence 
2

1

log
n

n

�

�
�  is divergent.

Example 18. Test the convergence or divergence of the following series :

(i) 1 + 
1 1 1

2 ! 3 ! 4 !
� �  + … � (ii)

n 1

1

n !

�

�
� .

Sol. (i) un = 
1

!n

n ! = 1. 2. 3. … n ≥ 1. 2. 2. 2 … (n – 1) times = 2n – 1

\          
1

1 1

! 2nn ��  =  vn (say)

\             un = 
1

!n
 < vn, where vn = 

1

1

2n �

S vn is a G.P. series with common ratio 
1

2
 < 1

\ S vn is convergent
\ By comparison test 5.20 I(a) S un is also convergent

Hence S un = 
1

!n�  is convergent.

(ii) S un = 
1

!n� \ un = 
1

!n

As proved in (i) part 
1

1 1

! 2nn �� \
1

2

1 1

!
2

nn ��

\ un < vn, where vn = 
1

2

1

2
n�

S vn is an infinite G.P. with common ratio 
1

2
 < 1

\ S vn is convergent. Hence S un i.e., 
1

!n
�  is convergent
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��������	�
�������

Test the convergence or divergence of the following series :

1. 2 3 4

1 1 1 1

2 3 2 3
� � �  + ...... to • 2.

1 1 1

1.2 2.3 3.4
� �  + ...... to •

3.
1 1 1

1.4 2.5 3.6
� �  + ...... to • 4.

1 2 3

1.2 3.4 5.6
� �  + ...... to •

5.
1 2 3

1.3 3.5 5.7
� �  + ...... to ••••• (P.T.U., Jan. 2010) 6.

1 1 1

1.2 2.3 3.4
� �  + ...... to •

7.
1

1

(2 1)
n

n

n n

�

�

�
�� 8.

1

1

( 1)p p
n

n n

�

� ��

9.
2 3 4

1 2 3

p p p

q q q
� �  + ...... to • 10.

2
1

1
n

n

n

�

� ��
(p and q are positive numbers)

11.
3

5

2 5

4 1

n

n

�
�� 12.

2

3

1

1

n

n

�

��
13. 2 1n n� �� �� �� (P.T.U., Dec. 2006) 14. 3 31n n� �� �� ��
15. n n4 1 1+ − −�

�
�
�∑ 16.

2 1 3 2 4 3

1 2 3

� � �
� �  + ......

17. ( )n n+ −∑ 13 3� � 18.
1

.
p

n n

n

� ��
�����	�

1. Convergent 2. Convergent 3. Convergent 4. Divergent

5. Divergent 6. Divergent 7. Divergent

8. Convergent for p > 
1

2
, divergent for p £ 

1

2
9. Convergent for q > p + 1, divergent for q £ p + 1

10. Convergent 11. Convergent 12.  Convergent 13. Divergent

14. Convergent 15.  Convergent 16. Convergent 17. Divergent.

18. Convergent for p > 
1

2
, divergent for p £ 

1
.

2

���������	
��
����������
�� (P.T.U., Dec. 2004)

Statement. If Sun is a positive term series, and n

n n 1

u
Lt

u
� �
 = l, then

(i) Sun is convergent if l > 1. (ii) Sun is divergent if l < 1.
Note. If l = 1, the test fails, i.e., no conclusion can be drawn about the convergence or divergence of the series.

The series may converge, it may diverge.
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Proof. Since
1

Lt n

n n

u

u
� �
= l,

\ Given e > 0, however small, there exists a positive integer m such that

1

n

n

u
l

u �
� < e " n ≥ m

fi l – e < 
1

n

n

u

u �
 < l + e " n ≥ m …(1)

Case I. When l > 1, choose e > 0 such that l – e = r > 1

\ for n ≥ m ; 
1

n

n

u

u �
 > l – e = r i.e.,

1

n

n

u

u �
 > r for n ≥ m

Put n = m, m + 1, m + 2, … n – 1 (i.e., n – m terms)

\
1

m

m

u

u �
> r

1

2

m

m

u

u
�

�
> r

2

3

m

m

u

u
�

�
> r

........................

........................

1n

n

u

u
� > r

Multiply these inequalities ; m

n

u

u
> rn–m

\ n

m

u

u
< 

1
n mr � or un < 

1
( )mm

mn m n

u
r u

r r� 	

\ un < k. 
1
nr

" n ≥ m (where k = rm. um)

Let vn = 
1
nr

, where r > 1 \
1

r
< 1

S vn is a geometric series with common ratio < 1
\ S vn is convergent and by comparison test 5.20 I(i)

1
n

n

u
�

�
�  is also convergent.

Case II. When l < 1; choose e > 0 such that l + e = R < 1

\ From (1)
1

n

n

u

u �
< R " n ≥ m
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Put n = m, m + 1, m + 2, … n – 1 and multiply (as in case I)

we get         m

n

u

u
 < Rn – m or un > 

1
(R ) .

R R
mm

mn m n

u
u� 	  = k¢ vn

where k¢ = Rm um and vn = 
1

Rn

S v
n
 =

1

R n� , which is G.P. with common ratio 
1

R
 > 1

\ S vn is divergent.
\ S un is also divergent.

Hence if Sun is a positive term series, and 
1

Lt n

n n

u

u
� �
 = l, then

(i) Sun is convergent if l > 1 (ii) Sun is divergent if l < 1.

����	�������������

Example 1. Discuss the convergence of the following series:

(i) 1 + 
p p p2 3 4

2 ! 3 ! 4 !
� �  + ......, (p > 0)

(ii)
n 1

1 1 1 1
......

2 3 5 2 1�� � � �
�

 + ......

(iii)
2 2 2 2 2 2 2 21 . 2 2 . 3 3 . 4 4 . 5

1! 2 ! 3 ! 4 !
� � �  + ......

Sol. (i) Here            un = 
!

pn

n
1

1
1!

p� �
�� �

� �� 	
�

\         un+1 = 
( 1)

( 1) !

pn

n

�
�

      
1

1

( 1) ! . ( 1) !

! ( 1) ! ( 1) ( 1)

p p p
n

p p p
n

u n n n n n n

u n n n n n �
�

� �
� � �

� � �

= 
1 1

1 1 1
1 1

p

p p
p

n n

n
n n

� �
�

�
� � � �� �� � � �� 	 � 	

              
1

1

Lt Lt
1

1

n
pn nn

u n

u

n

�
� 
��
�

� ��� �� 	

 = • > 1

\ By D’Alembert’s Ratio Test, Sun is convergent.

(ii) Here            un = 1

1

2 1n� �
\ un+1 = 

1

2 1n 



INFINITE SERIES 279

      1
11

11

1 12 1 1
2 1 2 22

112 1 12 1
22

n
n n n

n
n

nn
nn

u

u �
��

��

� �� �� �� 	�
� � � �

� �� ��� �� 	

              
1

1

1
1

2Lt Lt 2
1

1
2

n
n

n nn
n

u

u
� 
��
�

�
� �

�
 = 2 > 1

\ By D’Alembert’s Ratio Test, Sun is convergent.

(iii) Here            un = 
2 2( 1)

!

n n

n

�
\ un+1 = 

2 2( 1) ( 2)

( 1) !

n n

n

� �
�

      
2 2 2

2 2 2
1

( 1) ( 1) ! ( 1)
.

! ( 1) ( 2) ( 2)
n

n

u n n n n n

u n n n n�

� � �
� �

� � �

= 

3

2 2
2

1 11 1
.

2 2
1 1

n
n nn

n
n n

� �� �� 	
 �
�

� � � �� �� 	 � 	
 � 
 �

              
2

1

1
1

Lt Lt .
2

1

n

n nn

u nn
u

n


� 
��

�
�

� ��� 	
 �

 = • > 1

\ By D’Alembert’s Ratio Test, Sun is convergent.

Example 2. Discuss the convergence of the following series:

(i)
2 2.5.8 2.5.8.11

1 1.5.9 1.5.9.13
� �  + … � (ii)

2 2 2
1 1.2 1.2.3.

3 3.5 3.5.7

� � � � � �� �� 	 � 	 � 	
 � 
 � 
 �
 + … �

Sol. (i)            un = 
2.5.8.11 (3 1)

1.5.9.13 (4 3)

n

n

� �
� �

As 2, 5, 8, ... are in A.P.

  its th term = 2 + (  – 1) 3 = 3  – 1.

Also 1, 5, 9, ... are in A.P.

  its th term = 1 + (  – 1) 4 = 4  – 3

n n n

n n n

� �
� 
�
� 

� 

� 
�	 


        un+1 = 
2.5.8.11 (3 1) (3 2)

1.5.9.13 (4 3) (4 1)

n n

n n

� � �
� � �

     
1

4 1

3 2
n

n

u n

u n�

�
�

�

            
1

1
4 4

Lt Lt
2 33

n

n nn

u n
u

n

� 
��

�
� �

�
 > 1

\ By D’Alembert’s Ratio Test S un is convergent.
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(ii)            un = 
2

1.2.3

3.5.7 2 1

n

n

� ��
� 	� �
 �

        un+1 = 
2

1.2.3 ( 1)

3.5.7 (2 1) (2 3)

n n

n n

� �� �
� �� � �� 	

      

2

2

1

3
22 3

11 1

n

n

u n n
u n

n
�

� ��� �� � 	
� � � 	� 	�
 � � 	�
 �

             
1

2
Lt

1
n

n n

u

u
� �
�  = 2 > 1

\ By D’Alembert’s Ratio test S un is convergent

Example 3. Test the convergence of the following series:

(i)
3

n

n a

2 a

�
�� (ii)

n

n

n ! 2

n
�

(iii)
n 1

n

2

3 1

�

�� (iv)
2 2n ( n 1)

n !

� .

Sol. (i) Here            un = 
3

2n

n a

a

�
�

\ un+1 = 
3

1

( 1)

2n

n a

a�

� �
�

      
3 1

3
1

2
.

( 1) 2

n
n

n
n

u n a a

u n a a

�

�

� �
�

� � �

= 

3 1
3 1 13

33
3

33

1 2 1 2 11
2 2. .

11 12 1 11 22

n
n n

n
nn

a a aan
n n

aa aa
n

n nn n

�
� �

� � � � � �� � ��� 	 � 	 � 	
 � 
 � 
 �
�

� � � � � �� � �� � �� 	� �� � � 	� 	 
 � 
 �
 �� �� 	

              
1

1 0 1 0
Lt . 2 .

1 0 1 0
n

n n

u

u
� �

� �
�

� �
 = 2 > 1

\ By D’Alembert’s Ratio Test, Sun is convergent.

(ii) Here            un = 
! 2n

n

n

n
\ un+1 = 

1

1

( 1) ! 2

( 1)

n

n

n

n

�

�
�
�

      
1 1

1
1

! 2 ( 1) 1 ( 1)
. .

2( 1)( 1) !2

n n n
n

n n n
n

u n n n

u nn n n

� �

�
�

� �
� �

��

= 
1 ( 1) 1 1 1 1

. . 1
2 2 2

n nn

n

n n

n nn

� �� � � �� � �� 	 � 	
 � 
 �
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1

1 1
Lt Lt 1

2 2

n
n

n nn

u e

u n
� 
��

� �� � �� 	
 �

Now,               2 < e < 3 fi 1 < 
2

e
 < 

3

2

            
1

Lt
2

n

n n

u e

u
� �
�  > 1 fi Âun is convergent.

(iii) un =
12

3 1

n

n

�

�
; un+1 = 

1

2

3 1

n

n� �

      
1 1 1

1

1
3 3

2 3 1 1 3 1 1 3
12 23 1 2 3 1 3 1
3

n
n n n n

n
n n n

nn
n

u

u

� � �

�

� ��� 	
 �� �
� � � �

� �� � �� 	
 �

            
1

1
3

1 33Lt Lt
12 21
3

n
n

n nn
n

u

u
� 
��

�
� �

�
 > 1

\ By Ratio test S un is convergent.

(iv) un  =
2 2( 1)

!

n n

n

�
, un + 1 = 

2 2( 1) ( 2)

( 1) !

n n

n

� �
�

1�

n

n

u

u
 =

2 2

2 2

( 1) ( 1) !

! ( 1) ( 2)

� �
� �

n n n

n n n

=

2

22

2

1
( 1) ( 1) ( 1)

22( 2) 1

n n
n n n

nn
n

� �
� � � 	

� � � � � � 	� 	�
 �� � 	�
 �

1

Lt 1n

n n

u

u
� �
��  =  • > 1

\ By Ratio test S un is convergent
Example 4. Discuss the convergence of the series :

(i)
2

n 1

n

n 1

�

� 
�  xn  (P.T.U., Dec. 2012) (ii)

n

n 2

x
, x 0

3 n
�

��

(iii)
n

n 1

x

2n !

�

�
� (P.T.U., May 2012) (iv)

n
n 1

n

3 2
x , x 0

3 1
��

�
�� .

Sol. (i) Here            un = 
2 1

n

n 
 xn



282 A TEXTBOOK OF ENGINEERING MATHEMATICS

\        un+1 = 
2

1

( 1) 1

n

n


 

 . xn+1

      
2 2

2
1

2

2 2
1

2 2 1 1 1
. . . .

1 11 1 1 1

n

n

u n n n n n
u n x xn

n n
�

� �
� �

� �
� � � �

             
2

1
2

2 2
1

1 1 1
Lt Lt . .

1 1
1 1

n

n nn

u n n
u x x

n n


� 
��

� �
� �

� �

\ By D’Alembert’s Ratio Test, Sun converges if 
1

x
 > 1 i.e., x < 1

and diverges if 
1

x
 < 1 i.e., x > 1

When x = 1, the Ratio Test fails.

\ for x = 1, un = 2
2

2 2

1 1
.

11 11 1

n n

n nn
n n

� �
�   � �� �

Take vn =

2

1 1
, Lt Lt

1
1

n

n nn

u

vn

n


� 
�
�

�
 = 1, which is finite and π 0.

\ By Comparison Test, Sun and Svn converge or diverge together.

Since 
1

nv
n

�   is of the form 
1
pn

�  with p = 
1

2
 < 1

Svn diverges fi Sun diverges.

Hence the given series Sun converges if x < 1 and diverges if x ≥ 1.

(ii)            un = 23 .

n

n

x

n
 ; un+1 = 

1

1 23 ( 1)

n

n

x

n

�

� �
\

1 2

2 1
1

3 ( 1)
.

3 .

n n
n

n n
n

u x n

u n x

�

�
�

�
�

\       
1

n

n

u

u �
 = 3 

2 2
1 1 1 1

. 3 1 .
n

n x n x

�� � � �� �� 	 � 	
 � 
 �

             
1

3
Lt n

n n

u

u x
� �
� .

\ By ratio test S un converges if 
3

x
 > 1 and diverges i.e., converges for x < 3 and diverges for x > 3

for x = 3,  un = 2 2

3 1

3 .

n

n n n
�
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        S un = 
2

1

n
� , which is of the type 

1
pn

� , where p = 2 > 1

\ S un converges for x = 3

Hence un is convergent for x £ 3 and diverges for x > 3.

(iii)          un = 
2 !

nx

n
, un+1 = 

1

2 ( 1) !

nx

n

�

�

      1
1

(2 2) ! (2 2)(2 1)

2 ! �
�

� � �
� � �

n
n

n
n

u x n n n

u n xx

             
1

(2 2)(2 1)
Lt Lt

� 
��

� �
�n

n nn

u n n

u x
 Æ � > 1

\ By Ratio test S un is convergent.

(iv)          un = 
3 2

3 1

n

n

�
�

 xn–1; un+1 = 
1

1

3 2

3 1

n

n

�

�

�
�

 xn

      
1 1

1
1 1

1

3 2 3 1 1 (3 2)(3 1) 1
. . .

3 1 3 2 (3 1)(3 2)

� �
�

� �
�

� � � �
� �

� � � �

n n n n
nn

n n n n n
n

u
x

u xx

= 

1
1

1
1

2 1
3 1 . 3 1

13 3 .
1 2

3 1 3 1
3 3

n n
n n

n n
n n

x

�
�

�
�

� � � �� �� 	 � 	
 � 
 �
� � � �� �� 	 � 	
 � 
 �

                                
1

1
Lt n

n n

u

u x
� �
� .

\ By Ratio test S un converges for 
1

x
 > 1 i.e., for x < 1  and diverges for x > 1.

for x = 1            un = 

2
1

3 2 3
23 1 1

3

n n

n

n

�
�

�
� �

  Lt
n 
�

un = 1 π 0 \ S un is divergent.

\ S un is convergent for x < 1 and divergent for n ≥ 1.

Example 5. Examine the convergence or divergence of the following series :

 (i)
2 4 61 x x x

2 1 3 2 4 3 5 4
� � �  + ...... (ii)

n 1x

( n 1) n

�

�� . (P.T.U., Dec. 2007)

(P.T.U., Dec. 2002, 2013)

Sol. (i) Here            un = 
2 2

( 1)

nx

n n

�

�
\ un+1 = 

2

( 2) 1

nx

n n 
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2 2

1

2
1( 2) 1 1 1 1

. . 1 .
1( 1) 1

n

n

u n n n
u nn n x x

n
�

�� �
� � �

� �

             
2

1

1
Lt n

n n

u

u x
� �
�

By D’Alembert’s Ratio Test, � un converges if 
2

1

x
 > 1, i.e., x2 < 1

and diverges if 
2

1

x
 < 1 i.e., x2 > 1.

When x2 = 1,            un = 
3/2

1 1

1( 1) 1n n n
n

�
�  � �� �

Take             vn = 3/2

1

n
 ; 

1
; Lt 1

1
1

n n

nn n

u u

v v
n


�
� �

�
, which is finite and π 0

Svn is convergent by p-series test � here p = 3/2 > 1
\ By comparison test Sun is also convergent (� p > 1)
Hence Sun is convergent if x2 £ 1 and divergent if x2 > 1.

(ii) un =
1

( 1)

nx

n n

�

�
 ; un + 1 = 

2

( 2) 1

nx

n n

�

� �

1

n

n

u

u �
 =

2
1

( 2) 1 1 1 1
. 1 .

1( 1) 1

n n n

x n xn n
n

� ��� 	� � 
 �
� �
� �� �� 	
 �

1

Lt n

n n

u

u
� �
 =

1

x

By D, Alembert’s Ratio test S un converges for 
1

1
x
� i.e., x < 1 and diverges for x > 1

when  x = 1, Ratio test fails

\ For x = 1, un = 
3/2

1 1

1( 1) 1n n n
n

�
�  � �� �

 ; Take vn = 
3/2

1

n

\
1

; Lt 1
1

1

n n

nn n

u u

v v
n


�
� �

�
, which is finite and non-zero \ Sun and Svn behave alike Svn is a cgt series

(by p-test ; p > 1) \ By comparison test S un is also convergent. Hence S un converges for x £ 1 and diverges
for x > 1
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Example 6. Discuss the convergence or divergence of the following series:

(i)
2

2 3 4 n
2

3 8 15 n 1
x x x x x

5 10 17 n 1

�
� � � ��� � 

�
�

(ii)
2 3x x x

2 3 3 4 4 5
� � � � �

Sol. (i) un = 
2

2

1

1

n

n

�
�

 xn ; un + 1 = 
2

2

( 1) 1

( 1) 1

n

n

� �
� �

 xn+1

      
2 2

2 2
1

1 ( 1) 1 1
.

1 ( 1) 1
n

n

u n n

u xn n�

� � �
�

� � �

= 

2
22

22

2
2 2

2 2

1 11 11
1

.
1 1 11 1

nn n nn
x

n nn n n

� �  � �� � � �� �� 	�� 	 
 �
 �   � �
� � � �  � ��� 	 � �� �� 	
 � 
 �  � �

= 

2

22

2

2 2

1 11 11
1

. .
1 1 11 1

n nn
x

n n n

� �� �� � 	
 �

� �� � �� 	
 �

           
1

1
Lt n

n n

u

u x
� �
�

\ By Ratio test S un converges if 
1

x
 > 1 i.e., x < 1 and diverges if x > 1

When x = 1, un = 
2

2

1

1

n

n

�
�

             
2

2

1
1

Lt Lt
1

1
n

n n

nu

n


� 
 �

�
�

�
 = 1 π 0

\ S un diverges.
\ S un converges for x < 1 and diverges for x ≥ 1.

(ii)   un = 
( 1) 2

nx

n n 
; un+1 = 

1

( 2) 3

nx

n n

�

� �

                                           
1

1

( 2) 3 2 3 1
.

1 2( 1) 2

n
n

n
n

n nu x n n

u n n xn n x �
�

� � � �
� � �

� �� �

                                        
1

2
1 1 3 / 1 1

Lt Lt .
1 1 2 /1

n

n nn

u nn
u n n x

n

� 
 ��

� �
� �

��
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S un converges for 
1

x
 > 1 i.e., x < 1 and diverges for x > 1.

When x = 1, un = 
1

( 1) 2n n� �
 ; 

1
Lt Lt

( 1) 2
n

n n
u

n n
� 
�
�

� �
 = 0

As S un is a +ve term series and Lt
n

nu
→ ∞

 = 0

\ S un converges. Hence S un converges for x £ 1, diverges for x > 1.

Example 7. Examine the convergence or divergence of the following series :

1 + 
n 1

2 3
n 1

2 6 14 2 2
x x x ......

5 9 17 2 1

�

�
�

� � � �
�

 xn + ...... (x > 0). (P.T.U., Jan. 2009)

Sol. Here, leaving the first term, un = 
1

1

2 2

2 1

n

n

�

�
�
�

 xn

\ un+1 =
2

2

2 2

2 1

n

n

�

�
�
�

xn+1

1�

n

n

u

u
 =

1 2
1 2 1 2

1 2
1 2

1 2

2 1
2 1 2 1

2 2 2 1 1 12 2. . . .
1 22 1 2 2 2 1 2 1

2 2

� �
� � � �

� �
� �

� �

� � � �� �� 	 � 	
 � 
 �� �
�

� � � �� � � �� 	 � 	
 � 
 �

n n
n n n n

n n
n n

n n

x x

1

Lt

� �

n

n n

u

u
 =

2

1 1

1 1
1 1

1 12 2Lt . .
1 1

1 1
2 2

�


�
� �

� �
�

� �

n n

n

n n
x x

\ By D’Alembert’s Ratio Test, � un converges if 
1

x
> 1 i.e., x < 1

and diverges if 
1

x
 < 1 i.e., x > 1.

When x = 1,            un = 

1
1 1

1
1

11

2 12 1 1
2 2 2 2

112 1 12 1
22

�
� �

�
�

��

� �� �� 	
 ��
� �

� �� ��� 	
 �

n
n n n

n
n

nn

Lt
n→ ∞

 un = 1 π 0 fi Sun does not converge. Being a series of +ve terms, it must diverge.

Hence Sun is convergent if x < 1 and divergent if x ≥ 1.

Example 8. Test for convergence the positive term series :

1 + 
1 ( 1)( 2 1) ( 1)( 2 1)( 3 1)

......
1 ( 1)( 2 1) ( 1)( 2 1)( 3 1)

! � ! � ! � ! � ! � ! �� � �
" � " � " � " � " � " �

Sol. Leaving the first term     un = 
( 1)(2 1) ...... ( 1)

( 1)(2 1) ...... ( 1)

n

n

� � � � � �
� � � � � �
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\         un+1 = 
( 1)(2 1) ...... ( 1)[( 1) 1]

( 1)(2 1) ...... ( 1)[( 1) 1]

n n

n n

� � � � � � � � �
� � � � � � � � �

      
1

1 1
1

( 1) 1

1 1( 1) 1
1

n

n

u n n n

u n
n n

�

� �� � �� 	
 �� � �
� �

� � � � �� � �� 	
 �

             
1

1 1
1

Lt Lt
1 1

1

n

n nn

u n n

u
n n


� 
��

� �� � �� 	
 � �
� �

�� �� � �� 	
 �

\ By D’Alembert’s Ratio Test, Sun converges if 
�
�

 > 1 i.e., b > a > 0

and diverges if
�
�

 < 1 i.e., b < a or a > b > 0

When a = b, the Ratio Test fails.

When a = b, un = 1 Lt
n → ∞

un = 1 π 0

fi Sun does not converge. Being a series of +ve terms, it must diverge.

Hence the given series is convergent if b > a > 0 and divergent if a ≥ b > 0.

��������	�
�������

Discuss the convergence of the following series :

1. 1 + 
2 2 22 3 4

2 ! 3! 4!
� �  + ...... to • 2. 1 + 

2 3 4

2 ! 3! 4 !

2 3 4
� �  + ...... to •

3.
2 3

1 2 3

1 2 1 2 1 2
� �

� � �
 + ...... to •

4. (i) 
2 3

2 ! 3! 4 !

3 3 3
� �  + ...... to •  (ii)

2

3n

n
5. (i) 

1

!n� (ii)  
!
n

n

n�

6.
nx

n�  , x > 0 7.
2 1

n

n ��  xn, x > 0

8.
3

1

1

n

n

�

�� . xn, x > 0 9. x + 2x2 + 3x3 + 4x4 + ...... to •

10. 1 + 
2 3

2
......

2 5 10 1

nx x x x

n
� � �

�
 + ...... to • 11.

2 3

1.3 3.5 5.7

x x x
� �  + ...... to •
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�����	�

1. Convergent 2. Convergent 3.  Convergent

4. (i) Divergent (ii) Convergent 5.  (i) Convergent (ii) Convergent

6. Convergent for x < 1, divergent for x ≥ 1 7. Convergent for x < 1, divergent for x ≥ 1

8. Convergent for x < 1, divergent for x ≥ 1 9. Convergent for x < 1, divergent for x ≥ 1

10. Convergent for x £ 1, divergent for x > 1 11. Convergent for x £ 1, divergent for x > 1.

���������
����
�� (P.T.U., May 2007)

Statement. If Sun is a series of positive terms and n

n n 1

u
Lt n 1

u
� �

� �
�� 	
 �

 = l, then the series is convergent if

l > 1 and divergent if l < 1.

Proof. Let us compare the given series Sun with an auxiliary series Svn = S 
1
pn

, which we know converges

if p > 1 and diverges if p £ 1.

Now,        
1

1
1

1

( 1)

pp
n

n
p

v nn
v n

n
�

�� � � � �� �
�

= 
2

1 ( 1) 1
1 1 .

2 !

p
p p p

n n n

�� �� � � �� 	
 �
  + ......

Case I. Let Svn = S 
p

1

n
 be convergent, so that p > 1.

Then Sun will also converge if 
1 1

n n

n n

u v

u v� �
�

or if       
2

1

( 1) 1
1 .

2 !
n

n

u p p p

u n n�

�
� � �  + ......

or if         n 
1

( 1) 1
1 .

2 !
n

n

u p p
p

u n�

� � �
� � �� 	
 �

 + ......

or if             
1

Lt 1n

n n

u
n

u
� �

� �
�� 	
 �

 > p

or if              l > p
But p is itself greater than 1, \ Sun is convergent if l > 1.

Case II. Let Svn be divergent, so that p £ 1.

Then Sun will also diverge if 
1 1

n n

n n

u v

u v� �
�

or if       
2

1

( 1) 1
1 .

2 !
n

n

u p p p

u n n�

�
� � �  + ......

or if         n 
1

( 1) 1
1 .

2 !
n

n

u p p
p

u n�

� � �
� � �� 	
 �

 + ......
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or if               
1

Lt 1n

n n

u
n

u
� �

� �
�� 	
 �

 < p

or if              l < p.

But p itself £ 1. Thus the given series Sun diverges if l < 1. This proves the result.

Note 1. If 
1

Lt 1n

n n

u
n

u
� �

� �
�� 	
 �

 = 1, then Raabe’s test fails.

Note 2. Raabe’s test is used when D’Alembert’s Ratio test fails and when in the ratio test, 
1

n

n

u

u
�

 does not

involve the number e. When 
1

n

n

u

u
�

 involves e, we apply logarithmic test after the ratio test and not Raabe’s test.

������	�����������
�� (P.T.U., May 2007)

Statement. A positive term series Sun converges or diverges according as

 n

n n 1

u
Lt n log

u
� �
 > 1 or < 1.

Proof. Let us compare the given series Sun with an auxiliary series Svn = S 
1
pn

, which we know converges
if p > 1 and diverges if p £ 1.

Now,       
1

( 1) 1
1

pp
n

p
n

v n

v nn�

� � �� � �� 	
 �
 .

Case I. Let Svn be convergent, so that p > 1.

Then Sun will also be convergent if 
1 1

n n

n n

u v

u v� �
�

or if       
1

1
1

p
n

n

u

u n�

� �� �� 	
 �

or if                log 
1

1 1
log 1 log 1

p
n

n

u
p

u n n�

� � � �� � � �� 	 � 	
 � 
 �

or if                log 
2 3

1

1 1 1
......

2 3
n

n

u
p

u n n n�

� �� � � �� �� 	
 

2 3

log (1 ) ......
2 3

x x
x x

� �
� � � � �� �

� �� 	
�

or if            n log 
2

1

1 1
1 ......

2 3
n

n

u
p

u n n�

� �� � � �� �� �

or if   
1

Lt log n

n n

u
n

u
� �
 > p

or if   
1

Lt log n

n n

u
n

u
� �
 > 1 | � p > 1
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Case II. Let Svn be divergent, so that p £ 1.

Then Sun also diverges if
1 1

n n

n n

u v

u v� �
�

or if                log 
1 1

logn n

n n

u v

u v� �
�

or if                log 
1

1 1
log 1 log 1

p
n

n

u
p

u n n�

� � � �� � � �� 	 � 	
 � 
 �

or if                log 
2 3

1

1 1 1
......

2 3
n

n

u
p

u n n n�

� � � � �� �� �

or if            n log 
2

1

1 1
1 ......

2 3
n

n

u
p

u n n�

� �� � � �� �� �

or if   
1

Lt log n

n n

u
n

u
� �
 < p

or if   
1

Lt log n

n n

u
n

u
� �
 < 1 | � p £ 1

Thus the series Sun converges or diverges according as 
1

Lt log n

n n

u
n

u
� �
 > 1 or < 1.

Note 1. The test fails if 
1

Lt log n

n n

u
n

u
� �
 = 1.

Note 2. The test is applied after the failure of Ratio test and generally when in Ratio test, 
1

n

n

u

u �
 involves ‘e’.

�������������
��

Statement. If for the series Sun of positive terms, n

n 1

u

u �
 can be expanded in the form

     n
2

n 1

u 1
1 O

u n n�

# � � � � � �� �

then Sun converges if l > 1 and diverges if l £ 1.

Note. The test never fails as we know that the series diverges for l = 1. Moreover the test is applied after the failure

of ratio test and when it is possible to expand 
1

n

n

u

u �
 in powers of 

1

n
 by Binomial Theorem  or  by  any other  method.

[Binomial theorem is (1 + x)n = 1 + nx + 2( 1)

2 !

n n
x

�
+ ...... •, where | x| < 1]
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����	�������������

Example 1. Discuss the convergence of the series : 
1 1 . 3 1 . 3 . 5

2 2 . 4 2 . 4 .6
� �  + ......

Sol. Here            un = 
1. 3 . 5 ...... (2 1)

2 . 4 . 6. ...... 2

n

n

�
.

\        un+1 = 
1. 3 . 5 ...... (2 1)(2 1)

2 . 4 . 6. ...... (2 )(2 2)

n n

n n

� �
�

\       
1

1. 3 . 5. ...... (2 1) 2 . 4 . 6. ...... 2 (2 2)

2 . 4 . 6 ...... 2 1. 3 . 5 ...... (2 1)(2 1)
n

n

u n n n

u n n n�

� �
� �

� �

= 

1
12 2

12 1 1
2

n n
n

n

��
�

� �
 Æ 1 as n  Æ  •.

\ D’Alembert’s Ratio test fails.

        n 
1

2 2 1
1 1

12 1 2 1 2

n

n

u n n
n

u n n
n

�

� � � ��
� � � � �� � � �� �� 	� 	 �

\
1

1
Lt 1

2
n

n n

u
n

u
� �

� �
� �� �

� 	
 < 1.

\ By Raabe’s test, Sun diverges.
Example 2. Discuss the convergence of the following series :

(i)  
2 2 2 2 2 2

2 2 2 2 2 2

1 1 2 1 3 5

2 2 4 2 4 6

� � �� �
� � �

 + ......

(ii) 1 + 
2 2 2 2 2 2

2 2 2 2 2 2

2 2 4 2 4 6

3 3 5 3 5 7

� � �� �
� � �

 + ...... •. (P.T.U., May 2004)

Sol. (i) Here            un = 
2 2 2 2

2 2 2 2

1 3 5 ...... (2 1)

2 4 6 ...... (2 )

n

n

� � �
� �

and        un+1 = 
2 2 2 2 2

2 2 2 2 2

1 3 5 ...... (2 1) (2 1)

2 4 6 ...... (2 ) (2 2)

n n

n n

� � � �
� � �

\       

2 2
2

2

2 2 2
1 2

1 1
4 1 1

(2 2)

(2 1) 1 1
4 1 1

2 2

n

n

n
u n n n

u n
n

n n
�

� � � �� �� � � �	 
 	 
�
� � �

� � � � �� �� � � �	 
 	 


\             
1

Lt n

n n

u

u
� �
 = 1.

Hence the ratio test fails
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        n 
2

2
1

(2 2)
1 1

(2 1)
n

n

u n
n

u n�

� �� � �
� � �� �� �	 
 �� �� 	

= n 
2 2 2

2 2 2

4 8 4 (4 4 1) (4 3) 4 3

(2 1) (2 1) (2 1)

n n n n n n n
n

n n n

� �� � � � � � �
� �� �

� � �� �� 	

= 
2

3
1

4

1
1

2

n

n

�

� ��� �	 


 Æ 1 as n Æ •

\ Raabe’s test also fails.

Now,       

2

2 22

2 2
1

1
1

(2 2) 1 1
1 1

2(2 1) 1
1

2

n

n

u n n

u n nn

n

�

�

� ��� �	 
� � � � �� � � � �� � � �	 
 	 
� � ��� �	 


= 
2 2 2

2 1 2 3 1 1 3
1 1 ...... 1 1 2

2 44n n nn n n

� � � � � �� � � � � � � � � �� � � � � �	 
 	 
 	 

 + ......

= 1 + 
2 2

1 1 1 1
...... 1 O

4n nn n

� �� � � � � � �	 


Comparing it with       
�

� #
� � � � �� �

�

�

�

� �
�

�
�

�
� �

We have l = 1. Thus by Gauss test, the series Sun diverges.
Note that when D’Alembert ratio test fails, we can directly apply Gauss test.

(ii) Here un =
2 2 2 2

2 2 2 2

2 4 6 ...... (2 )

3 5 7 ...... (2 1)

n

n

� �
� � �

un + 1 =
2 2 2 2 2

2 2 2 2 2

2 4 6 ...... (2 ) (2 2)

3 5 7 ...... (2 1) (2 3)

n n

n n

� � �
� � � �

1

n

n

u

u �
 =

2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2

2 4 6 ...... (2 ) 3 5 7 ..... (2 1) (2 3)

3 5 7 ...... (2 1) 2 4 6 ...... (2 ) (2 2)

. n n n

n n n

� � � � ��
� � � � � �

=

�  � 
 � � � � � � � �

� �
 �  � 

 � � � �� � � �

� � �

�

� �

� �

�

� � �

� �
� �

�� �� � �

�� �� � �
� �

�

1

Lt n

n n

u

u
� �
 =


�

� 
� �� �

� 
� �� �

�

�

�

�

�

�
�

�
�	

�
�

= 1
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\ D’ Alemberts’ Ratio Test cannot be applied
Apply Gauss Test

2 2

2 2
1

3 1 3 9 2 1
1 1 1 1 0

2 4

�

�

 ��  �  �  � � � � � � � � �� �� � � � � � � �� � � � � � � �� �
n

n

u

u n n n nn n

           = 
2 2

2 3 1 1 1
1 0 1 0

n n nn n

� � � �� � � � � �� � � �	 
 	 


Compare it with 
1�

n

n

u

u
 = 

2

1
1 0

n n

� � �� � � �	 


We have l = 1

\ By Gauss test given series is divergent.

Example 3. Discuss the convergence of the series:

x + 
2 2 3 3 4 42 x 3 x 4 x

2 ! 3 ! 4 !
� � � �� � (P.T.U., May 2007, 2008, Dec. 2011)

Sol. Here            un = 
!

n nn x

n
; un+1 = 

1 1( 1)

( 1) !

n nn x

n

� ��
�

\      
1 1

1

( 1) ! 1 1 1
. . .

! ( 1) ( 1) 1
1

n n n
n

n n n n
n

u n x n n

u n x xn x n

n

� �
�

�
� � �

� � � ��� �	 


            
1

1 1 1 1
Lt Lt . .

1
1

n
nn nn

u

u x e x

n


� 
 ��
� �

� �� �� �

�
1

Lt 1
n

n n
�

� ��� �	 

 = e

\ By Ratio test S un converges if 
1

ex
 > 1 or x < 

1

e
 and diverges for x > 

1

e

for x = 
1

e
      

1

1

1
1

n
n

n

u

u

n

�
�
� ��� �	 


. e.

As 
1

n

n

u

u �
 involves e

\ Apply logarithmic test

           n log 
1

n

n

u

u �
 = . log

1
1

n

e
n

n
� ��� �	 


 = n 
1

log log 1
n

e
n

� �� � �� � �� �� �� �� �
 = n 

1
1 log 1n

n

� �� �� �� �� �	 
� �

= n – n2 
2 3 4

1 1 1 1

2 3 4n n n n

� �� � � ���� �
� �

�
�
�

� log (1 + x) = x – 
2 3 4

2 3 4

x x x
� �  + … �

�
�
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= n – n + 
2

1 1 1

2 3 4n n
�   … �

= 
3

1 1 1 1

2 3 4 5n n n
�  �  + … �

        
1

1
Lt

2
n

n n

u
n

u
� �
�  < 1

\  S un diverges for x = 
1

e
.

Hence S un converges for x < 
1

e
 and diverges for x ≥ 

1

e
.

Example 4. Discuss  the  convergence of the series :

2 3 4 51 9 25
x x x x x

2 8 32
� � � � � ���� (P.T.U., May 2012)

Sol. Given series is 2 3 4 51 9 25

2 8 32
x x x x x� � � � � ��

or
2 2 2 2 2

2 3 4 5
1 2 3 4 5

1 2 3 4 5
.......

2 2 2 2 2
x x x x x� � � � � �

\ un =
2

2
n

n

n
x

un + 1 =
� �

2
1

1

1

2
n

n

n
x �

�

�

1

n

n

u

u �
 =

2 1

2

2 1
. .

2 ( 1)

n

n

n

xn

�

�
 = 

2
1

2 . .
1

n

n x

� �
� ��	 


 = 
2

1 2
.

1
1

x

n
� ��� �	 


1

Lt n

n n

u

u
� �
 =

2

x

\ By Ratio test Sun converges for 
2

1
x
�  i.e., for x < 2

and  diverges for x > 2
For x = 2, Ratio test fails

\ For x = 2, 
2

1 1
n

n

u n

u n�

� �
� � ��	 


1

1n

n

u

u �
�  =

2 2 2

2 2

( 1)
1

( 1) ( 1)

n n n

n n

� �
� �

� �

=
2

(2 1) ( 1)

( 1)

n

n

 �


1

1n

n

u
n

u �

� �
�� �

� �� 	
 =

2

(2 1)

( 1)

n n

n


�
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1

Lt 1n

n n

u
n

u
� �

� �
�� �

� �� 	
 =

2

1
2

– Lt 2 1
1

1
n

n

n


�

�
� � �

� ��� �	 

\ By Raabe’s test series diverges

Hence Sun converges for x < 2 and diverges for x ≥ 2.
Example 5. Test for convergence the following series :

 1 + 
2 2 3 3 4 42x 3 x 4 x 5 x

2 ! 3 ! 4 ! 5 !
� � �  + ...... + • (P.T.U., May 2005, 2006)

Sol. Neglecting first term, we have

 un =
( 1)

( 1) !

nn

n

�
�

 xn

un + 1 =
1( 2)

( 2) !

nn

n

��
�

 xn + 1 \
1 1

1

( 1) ( 2) !

( 1) ! ( 2) .

n
nn

n n
n

u n n
x

u n n x� �
�

� �
�

� �

     
1

n

n

u

u �
 =

1

1
1

( 1) ( 2) ( 1) 1 1
. . .

( 2) ( 2) 2
1

n

n n

n n n

n n n n

x x xn n

n

�

� ��� �	 
� � �
� �

� � � ��� �	 


1

Lt n

n n

u

u
� �
 =

.2
2

1 1
1 1

1 1
Lt . Lt .

2 21 1

n n

n n
n n

n n

x x

n n


� 
 �

� � � �� �� � � �	 
 	 

�

� � � ��� � �	 
 � �	 


=
2

1 1
.

e

x exe
� � Lt 1

n

n

a

n
�

� ��� �	 

 = ea

\ By D’Alembert’s Ratio test the given series is convergent if 
1

ex
 > 1 i.e., x < 

1

e
 and divergent if

x > 
1

e

When x = 
1

e
, Ratio test fails

then
1

n

n

u

u �
 =

1
1

2
1

n

n

n

n

� ��� �	 


� ��� �	 


 . e

Since
1

n

n

u

u �
 involves e \ Apply logarithm test

                                         log 
1

n

n

u

u �
 = n log 

1
1

n
� ��� �	 


 – n log 
2

1
n

� ��� �	 

 + log e
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= n 
2 3 4 2 3

1 1 1 1 2 1 4 1 8
...... . ...... 1

2 32 3 4
n

n nn n n n n

� � � �� � � � � � � �� � � �� 	 � 	
 + 1

=
2 3 2 3

1 1 1 2 8 4
1 ...... 2 ......

2 3 4 3n nn n n n

� � � �� � � � � � � � � � � �� � � �� 	 � 	
 + 1

= 2 3

3 7 15

2 3 4n n n
�  – ...... •

n log 
1

n

n

u

u �
 = 2

3 7 15

2 3 4n n
�   – ...... •

  
1

Lt log n

n n

u
n

u
� �
 =

3

2
 > 1

\ Series is convergent

\ By logarithm test the given series is convergent when x £ 
1

e
 and divergent for x > 

1

e
.

Example 6. Test for convergence the series: 
2 3a x ( a 2x ) ( a 3x )

1 ! 2 ! 3 !

� � �
� �  + … ��

Sol.            un = 
( )

!

na nx

n

�
; un+1 = 

1
( 1)

( 1) !

nxa n

n

�
� �� �� 	

�

      

� �

1 1
1 1

( ) 1
( ) ( 1) !

. ( 1)
! [ ( 1) ]

( 1) 1
( 1)

n
n

n
n

n n
n n

a
nx

u a nx n nx
n

u n a n x a
n x

n x

� �
� �

� ��� �	 
� �
� � �

� � � �
� �� ��� 	

= 

.

( 1)
.

1
1

.
( 1)

1
( 1)

nx a

a x

n

n n x a

a x

a
n nx

xn
a

n x

�

� ��� �	 


�
� �
�� ��� 	

= 

/

/( 1)

1

1 1
.

1
1

1
( 1)

a xnx

a

n a xn x

a

a
nx

x
an

n x

�

� �
� �� ��� �� �	 

� �� 	

� � � �� � �� � � �	 
 �� �� ��	 
� �� 	

\            
/

/
1

1 1 1
Lt .

a x
n

a xn n

u e

u e x exe
� �
� � �

1
Lt 1

n

n n
�

� ��� �	 

 = e.
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\ By Ratio test S un converges for 
1

ex
 > 1, i.e., x < 

1

e
 and diverges for x > 

1

e
, where x = 

1

e
;

(as 
1

n

n

u

u �
 involves e \ We apply logarithmic test)

\           n log 
1
.1

1
1

log .
1

1
1

1

n
ae

ae

n
n n

aen ae

ae
u n

n e
u

ae
n

n

�
�

� �
  � ��� �  	 
  � � �
� �  � ��� �  �	 
 � ��	 
  � �

= n log 
1

1
1

.
1

1 1
1

n

n n

ae

n
e

ae
n n

�

� �� �  �� �	 
  
� �
� � � �  � �� �  � �	 
 �	 
� �

= n 
( 1)

1
log 1 log 1 log 1 log

1

nn n
ae ae

e
n n n

��� �� �� � � �  � � � � � �� �� � � � � �	 
 	 
 �	 
  � �

= n 
1

log 1 log 1 ( 1) log 1 1
1

ae ae
n n n

n n n

� �� �� � � �  � � � � � � � �� �� � � � � �	 
 	 
 �	 
  � �

= n 
2 2 3 3

2 3 2 3

1 1 1

2 3 2 3

ae a e a e
n n

n nn n n n

� � �� � � � � ��� � � � �� � � � �	 
 	 
 �

– (n + 1) 
2 2 3 3

2 31 2( 1) 3( 1)

ae a e a e

n n n

��  ��  �� �� �  � � ��

= 
2 2 3 31 1

2 3 2 3

a e a e
n aen

n n

� �� �� � � ��� � � � �� � � �	 
 	 


– nae + 
2 2 3 3

22( 1) 3 ( 1)

na e n a e

n n
�

� �
 + … + n

  
2 2 2 2

1

1 1
Lt log

2 2 2 2
n

n n

u a e a e
n

u
� �
� � � �  < 1 \ S un is divergent at x = 

1

e

\ S un converges for x < 
1

e
 and diverges for x ≥ 

1

e
.

Example 7. Discuss the convergence of the series : 1 + 2 3
2 3 4

x 2 ! 3 ! 4 !
x x

2 3 4 5
    x4 + ......
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Sol. Neglecting the first term, we have

           un = 
!

( 1)n

n

n �
 xn and un+1 = 

1

( 1) !

( 2)n

n

n �

�

�

 ◊ xn+1

\              
1

1

! ( 2) 1
Lt Lt

( 1) !( 1)

n
n

nn nn

u n n

u n xn

�

�� ��
�

�� � �
��

= 

1
1 2

1
1 1

Lt
( 1)1

1

n
n

nn
n

n
n

n x
n

n

�

�

��

� �
�	 
� �

� �

�� �
�	 
� �

= 
2

2 2
1 1

1 1
Lt

1 1
1 1

n

nn

e en n

x e x x

n n

��

� � � �� �	 
 	 
� � � �
� � � �

� � � �� �	 
 	 
� � � �

/

Lt 1 Lt 1

an n a
a

n n

a a
e

n n�� ��

 � �� � � �� �� � � �� �	 
 	 
� �� � � �� �� �� �� �

�

\  By  D’Alembert’s  ratio test,  the series converges if 
e

x
 > 1 or if x < e and diverges if 

e

x
 < 1 or if x > e.

If x = e, the ratio test fails, �

1

Lt n

n n

u

u��
�

 = 1.

Now, when              x = e

      

1

1
1

2
1

1

1
1

n

n
n

n

u n

u e

n

�

�

�

� �
�	 
� �

� �
� �

�	 
� �

 .

Since the expression 
1

n

n

u

u
�

 involves the number e, so we do not apply Raabe’s test but apply logarithmic

test.

\                log 
1

n

n

u

u
�

 = (n + 1) log 
2

1
n

� ��	 
� �
 – (n + 1) log 

1
1

n
� ��	 
� �

 – log e

= (n + 1) 
2 1

log 1 log 1
n n

 �� � � �� � �� �	 
 	 
� � � �� �
 – 1

= (n + 1) 2 3 2 3

2 1 4 1 8 1 1 1
. ...... ......

2 3 2 3n nn n n n

 �� � � �� � � � � � � �	 
 	 
� �� � � �� �
 – 1

= (n + 1) 
2

1 3
......

2n n

 �� �� �� �
 – 1

= 1 – 
2 2

3 1 3 1 3
...... 1

2 22 2n n nn n
� � � � � � �  + ......
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\    1
22

1

1 3 1 3
Lt log Lt – ...... Lt ......

2 2 22
n

n n nn

u
n n

u n nn�� �� ��
�

� 	 
 �
� � � � � � � � �� � � � �� �

 < 1

\ By log test, the series diverges.
Hence the given series Sun converges if x < e and diverges if x ≥ e.
Example 8. Discuss the convergence of the series:

2a a ( a d ) a ( a d ) ( a 2d )
x x

b b ( b d ) b ( b d ) ( b 2d )

� � �
� � � �

� � �
� (a > 0, b > 0, x > 0)

Sol.            un = 
( ) ( 2 ) ( 1 )

( ) ( 2 ) ( 1 )

a a d a d a n d

b b d b d b n d

� � � � �
� � � � �

 xn

       un+1 = 
( ) ( 2 ) ( 1 ) ( )

( ) ( 2 ) ( 1 ) ( )

a a b a d a n d a nd

b b d b d b n d b nd

� � � � � �
� � � � � �

 xn+1

      
1

1
.n

n

u b nd

u a nd x
�

�
�

�

            
1

1 11 1 1
Lt Lt . Lt .

11

n

n n nn

b bnd
u nd nd

aau x x x
nd

ndnd

�� � � � �
�

� �
� �	 
� �

� � �
� �

��	 
� �

.

By Ratio test S un converges if 
1

x
 > 1 i.e., x < 1 and diverges if x > 1.

when x = 1, Ratio test fails

\       
1

1

1
1 1

1

n

n

b
u b and

au nd nd
nd

�

�

� � � � �� � � �	 
 	 
� � � �
�

 = 1 1
b a

nd nd
� � � �� � ��	 
 	 
� � � �

= 1 + 
2

1 1
. 0

b a

d n n

� � �� 	 
� �

By Gauss test, S un converges if 
b a

d

�
 > 1 i.e., b > a + d and diverges  if b £ a + d.

\ S un converges if x > 1 and diverges when x < 1 when x = 1 then Sun converges if b > a + d and
diverges if b £ a + d.

Example 9. Discuss the convergence of the series :

1 + 2( 1 ) ( 1) ( 1)( 2 ) ( 1)( 2 )
x x

1 1 2 ( 1) 1 2 3 ( 1)( 2 )

�� � � � � � � � � � � � � � � � �� �
� � � � � � � � � � � � � � �

 x3 + ......

(P.T.U., Dec. 2003)
Sol. Neglecting the first term,

           un = 
( 1) ...... ( 1) ( 1) ...... ( 1)

1 2 3...... . ( 1) ...... ( – 1)

n n

n n

� � � � � � � � � � � �
� � � � � � �

 ◊ xn

       un+1 = 
( 1) ...... ( 1) ( ) ( 1) ...... ( – 1)( )

1 2 3...... ( 1) ( 1)( 2) ...... ( 1)( )

n n n n

n n n n

� � � � � � � � � � � � � � �
� � � � � � � � � � � � �

 ◊ xn+1
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\       
1

1
1 1

( 1)( ) 1 1
.

( )( )
1 1

n

n

u n n n n

u n n x x
n n

�

�� � � �
� �	 
 	 
� � � �� � �

� � �
� �� � � � � � � �

� �	 
 	 
� � � �

\              
1

1
Lt n

n n

u

u x	

�

� .

\ By D’Alembert’s Ratio test the series Sun converges if 
1

x
 > 1

i.e., if x < 1 and diverges if 
1

x
 < 1 i.e., if x > 1.

If               x = 1, 
1

Lt n

n n

u

u	

�

 = 1 \ Ratio test fails.

Putting              x = 1 in 
1

n

n

u

u
�

 , we have 
1

1
1 1

1 1

n

n

u n n

u
n n

�

�� � � �
� �	 
 	 
� � � �

�
� �� � � �

� �	 
 	 
� � � �

= 
1 1

1
1 1 1 1

n n n n

� �� � �� � � � � � � �� � � �	 
 	 
 	 
 	 
� � � � � � � �
[Expand by Binomial Theorem]

= 
2 2

2 2

1
1 1 1 ...... 1 ......

n n n nn n

� � � �� � � � �� � � �� � � � � � �	 
 	 
 	 
 	 
� � � � � � � �

= 
2 2

2 2 2 2

1
1 1 ......

n n n nn n n n

� �� � � � �� � �� �� � � � � � � �	 
 	 
� � � �

= 1 + 
1

n
 (1 + g – a – b) + O 

2

1

n

� �
	 
� �

.

\ By Gauss test, the series Sun converges if 1 + g – a – b > 1 i.e., if g > a + b and diverges if
1 + g – a – b £ 1 i.e., if g  £ a + b.

Thus the given series converges if x < 1 and diverges if x > 1. If x = 1, then the series converges if
g > a + b and diverges if  g £ a + b.

Example 10. Discuss the convergence of the series 
n !

x ( x 1 ) ( x 2 ) ( x n 1)� � � � �� .

Sol.            un = 
!

( 1) ( 2) ( 1)

n

x x x x n� � � � �

       un+1 = 
( 1) !

( 1) ( 2) ( 1) ( )

n

x x x x n x n

�
� � � � � �

      
1

1

11 1

n

n

x
u x n n

u n
n

�

�
�

� �
�

�
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1

1 /
Lt Lt

1
1

n

n nn

u x n

u
n

	
 	 

�

�
�

�

 = 1

\ Ratio test fails. We apply Gauss test

\      
1

1

1 1
1 1 1 1n

n

u x x

u n n n n

�

�

� � � � � � � �
� � � � � � �� � � � � � � �� � � � � � � �

= 1 + 
2

1 1
O

� � �� 	 
� �
x

n n
 = 1 + (x – 1) . 

2

1 1
O
� �� 	 
� �n n

.

By Gauss test S un converges if x – 1 > 1 and diverges for x – 1 £ 1 i.e., S un converges for x > 2 and
diverges for x £ 2.

Example 11. Verify the series 
4 7 10 ......( 3n 1)

1 2 3 ..... n

� � �
� ��  x n is convergent or divergent.

(P.T.U., Dec. 2006, May 2006)

Sol. Here            un = 
4 7 10 ...... (3 1)

1 2 3 .....

n

n

� � �
� �

 xn

      un + 1 = 
4 7 10 ...... (3 1) (3 4)

1 2 3 ..... . ( 1)

n n

n n

� � � �
� � �

 xn + 1

     
1

1
11 1 1

43 4 3

n

n

u n n
u n x x

n
�

�
�

� � � �
�

�

           
1

1
1 1 1

Lt Lt
4 33

n

n nn

u n
u x x

n
	
 	 


�

�

� � �
�

\ By D’Alembert’s ratio test, series converges if 
1

3x
 > 1

i.e. if x < 
1

3
 and diverges for x > 

1

3
.

When x = 
1

3
 Ratio test fails, so apply Gauss test

     
1

1

1 11 1 1 4
3 3 1 1

4 4 33 3 1
3

n

n

u n n
u n n

n n

�

�

� �
� �	 
� � � � � �� � � � � � �	 
 	 
� � � �� �
� �	 
� �

= 
2 2

1 4 1 1 1
1 1 O 1 O

3 3

� �� � � � � �� � � � � �	 
 	 
 	 
	 
� � � � � �� �n n nn n
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Compare it with      
2

1

1 1
1 . O

�

� �� � � � 	 
� �
n

n

u

u n n

             l = – 
1

3
 < 1 \ Series is divergent.

Hence the given series is convergent for x < 
1

3
 and divergent for x ≥ 

1

3
.

Example 12. Verify the series: 
2 3

21 2 3 4
x x

2 3 4 5

� � � �� � �	 
 	 
� � � �
x3 + … • (x > 0).

Sol.            un = 
1

2

n
n

n

� ��
	 
�� �

 xn (neglecting 1st term)

       un+1 = 
1

2

3

n
n

n

�

� ��

	 

�� �

 xn+1

      
1

1
1

( 1) ( 3) 1
. .

( 2) ( 2)

n n
n

n n
n

u n n

u xn n

�

�

�

� �
�

� �

 = 

1
1

( 3) 3 1
. . .

2( 2)2
1

n

n

n n

n nn

n xn

n

� ��	 
� � � �
��� ��	 
� �

= 

3

3

2 2

2 2

3
11 31 1 1

2
12 2

1 1

n

n

n n

n
n n

x
n

n n

 �
� �� ��� � 	 
� �� �� �	 
� � � �� �� � �

 �  � �� � � �� � � �� �	 
 	 
� � � �� � � �
� � � �� � � �

            
3

2 2
1

1
Lt n

n n

u e e

u xe e	

�

� � �
1

Lt 1
n

n
e

n	


� �� �� �� �
�

= 
1

x
.

By Ratio test S un converges when 
1

x
 > 1 i.e. if x < 1 and diverges if x > 1

When x = 1, Ratio test fails
\ For x = 1

\  
2

2

1 1
1 1

( 1)
Lt Lt Lt Lt

( 2) 2
1 2

1

n n

n

n n nn n n n n

n n n
u

n

n
n

	
 	
 	 
 	


� � � �� �	 
 	 
� � � ��
� � �

� � �  �� � �	 
 � �� � �	 
� �� �
� �� �
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= 
2

1e

ee
�  π 0.

\ for x = 1, as S un is a +ve term series and Lt n
n

u
	


 π 0

\ S un diverges.
\ S un converges for x < 1 and diverges for x ≥ 1.
Note. This question can be done by applying Cauchy’s root test see Example 3 art. 5.26.

Example 13. Discuss for what values of x does the series 
2

2n

x 1

( n !)
x

( 2n ) !




�

�  converge/diverge ?

(P.T.U., May 2002, 2003)

Sol. Here  un = 
2

2( !)

2 !
nn

x
n

, un + 1 = 
2

2 2(( 1) ! )

(2 2) !
nn

x
n

�
�

�

  
2

2
2 2 2 2 2

1

( !) (2 2) ! 1 1 1
. . (2 2) (2 1)

(2 ) ! (( 1) !) ( 1)
nn

n
n

u n n
x n n

u n n x n x�

�

�
� � � �

� �

2 2

1
4 1

2(2 1) 1 12
. .

11 1

n n

n x x
n

� ��	 
� ��
� �

� �

   
2

1

4
Lt n

n n

u

u x	

�

� .

\ By D’ Alembert’s ratio test the series S un converges if 
2

4

x
 > 1 or x2 < 4 or | x | < 2 or – 2 < x < 2

and diverges for x2 > 4 i.e., for either x > 2 or x < – 2.
When x2 = 4 Ratio test fails \ Apply Gauss test

   
1

2
1

1 1 1 1 1 1
4 1 1 . 1 1 0

2 4 2
n

n

u

u n n n n n

�

�

� �� � � � � � � �
� � � � � � �� � � � � � � �� �� � � � � � � �� �

= 1 – 
1

2n
 + 0 

2

1

n

� �
	 
� �

Compare it with   
1

n

n

u

u
�

 = 1 + l . 
1

n
 + 0. 

2

1

n

� �
	 
� �

\ l = – 
1

2
 < 1 \ Given series is divergent for x2 = 4 i.e., x = ± 2

Hence given series converges for x2 < 4 i.e., – 2 < x < 2 and diverges for x2 ≥ 4 i.e., for either x ≥ 2 or x £ – 2.
Example 14. Test the convergence of the series x2 (log 2)q + x3 (log 3)q + x4 (log 4)q + … •.

Sol.  un = xn+1 [log (n + 1)]q

un+1
 = xn+2 [log (n + 2)]q
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1

log ( 1) 1 log ( 1) 1
. .

log ( 2) log (1 1)

q q
n

n

u n n

u n x n x
�

 �  �� �
� �� � � �

� � �� � � �

= 

1
log ( 1) 1

1log ( 1) 1 1
. .

log ( 1)1
log ( 1) 1

1

q q

n
nn

x n x
n

n

�

 �  �� �
� �� � � �	 
�� ��� � � ��� � � �� �

� � � �� �� ��� � � �� �� � � �

= 

1
log ( 1) log 1

1 1
.

log ( 1)

q

n
n

n x

�

 � �
� � �� �� ��� �� �

� ��
� �
� �� �

= 
2 3

1 1 1 1 1
1 .

log ( 1) 1 2( 1) 3 ( 1)

q

n n xn n

�

 �� �
� � � ��� �	 
� � � �� �� �� �

1

1
Lt n

n n

u

u x	

�

� .

By ratio test S un converges if 
1

x
 > 1 or x < 1 diverges if x > 1

When x = 1 ;  un = [log (n + 1)]q

  Lt
n 	


 un = • π 0

S un is a +ve term series and Lt
n 	


 un π 0

\ S un is divergent for x = 1
\ S un is convergent for x < 1

and divergent for x ≥ 1.

��������	�
�������

Discuss the convergence of the following series :

1.
2 2 2 2 2 2

1 1 2 1 2 3

1 1 2 1 2 3

� � �
� �

� � �
 + ...... to • 2.

2 2 2 2 2 2

2 2 2 2 2 2

1 1 5 1 5 9

4 4 8 4 8 12

� � �
� �

� � �
 + ...... to •

3. 1 + 2 33 3 6 3 6 9
7 7 10 7 10 13

x x x
� ��� �

� � �
 + ...... to • 4. 1 + 

2 1 2 4 1 2 4 6 1
1 2 1 3 3 1 3 5 4

� � �� � � � �
� � �

 + ...... to •

(P.T.U., Dec. 2010)

5.
2 2 2 2 2 2

2 2 2 2 2 2

1 1 3 1 3 5

2 2 4 2 4 6
x

� ��� �
� � �

 x2 + ...... to • 6. 1p + 
1 1 3 1 3 5
2 2 4 2 4 6

p pp � � � �� ��� � � �	 
 	 
 	 
� � � � �� � � �
 + ...... to •

7. (a) 
( 1) ( 1)( 2)

( 1) ( 1)( 2)

a a a a a a

b b b b b b

� � �
� �

� � �
 + ...... to • (b) 

1 (1 )(2 )

1 (1 )(2 )

� � � �� ��
� �

� � � � � � �
 + ...... to •

(P.T.U., May 2011)

8. 1 + 21 1 3 1 3 5
2 2 4 2 4 6

x x
� ��

� �
� � �

 x3 + ...... to • (x > 0) 9.
3 5 71 1 3 1 3 5

( 0)
2 2 3 2.4 5 2 4 6 7

x x x x
x

� � �
� � � � � �

� �
�
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10.
2 3 4

1. 2 3 . 4 5 . 6 7 .8

x x x x
� � �  + ...... to • (x > 0) 11.

2 3 4

1. 2 2 . 3 3 . 4 4 . 5

x x x x
� � �  + ...... to •

12.
21. 3 . 5 ...... (2 1)

.
2 . 4 . 6 ...... (2 ) 2

nn x

n n

�� 13.
1. 3 . 5 ...... (2 1)

2 . 4 . 6 ...... 2

p
nn

x
n

� �	

 �
� 

�

14. 1 + 
2 2 2

2 4(1!) (2 !) (3!)
2 ! 4! 6 !

x x� � , then  x6 + ..... to • (x > 0)

[Hint: Neglect 1st term and see solved example 13]

�����	�

1. Divergent 2. Convergent 3.  Convergent for x £ 1, divergent for x > 1

4. Divergent 5. Convergent for x < 1, divergent for x ≥ 1.

6. Convergent for p > 2, divergent for p £ 2

7. (a) Convergent for b > a + 1, divergent for b £ a + 1

(b) Convergent for b > a + 1, divergent for b £ a + 1

8. Convergent for x < 1, divergent for x ≥ 1 9. Converges for x2 £ 1, diverges for x2  > 1

10. Convergent for x £ 1, divergent for x > 1 11. Convergent for x £ 1, divergent for x > 1

12. Convergent for x2 £ 1, divergent for x2 > 1 13. Convergent for x £ 1, p > 2, divergent for x  > 1, p £ 2

14. Convergent for x2 < 4, divergent for x2 ≥ 4.

��������	�
�����������

Statement. If Sun is a positive term series and 
n
Lt
��

 (un)1/n = l, then

(i) Sun is convergent if l < 1 (ii) Sun is divergent if l > 1.

Note. If l = 1, the test fails i.e., no conclusion can be drawn about the convergence or divergence of the series.
The series may converge, it may diverge.

Proof. Since Lt
n ��

 (un)1/n = l,

\ Given e > 0, however small, there exists a +ve integer m such that

          | (un)1/n – l | < e " n ≥ m

fi         l – e < (un)1/n < l + e " n ≥ m

fi            (l – e)n < un < (l + e)n " n ≥ m ...(1)

(i) When l < 1
Choose e > 0 such that             l < l + e < 1

Put l + e = r, then 0 < r < 1

From (1),            un < rn " n ≥ m

Putting n = m, m + 1, m + 2, ......, we get um < rm, um+1 < rm+1, um+2 < rm+2, ...... and so on.

Adding            um + um+1 + um+2 + ...... + < rm + rm+1 + rm+2 + ......

fi each term of the given series Sun after leaving the first (m – 1) terms, (i.e., a finite number of terms)
is less than the corresponding term of a geometric series which is convergent (� its common ratio r < 1).
Hence the given series is also convergent.
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(ii) When l > 1

Choose e > 0 such that       l – e > 1

Put  l – e = R,  then  R > 1

From (1),            un > Rn " n ≥ m

Putting n = m, m + 1, m + 2, ......, we get um > Rm, um+1 > Rm+1, um+2 > Rm+2, ...... and so on.

Adding            um + um+1 + um+2 + ...... > Rm + Rm+1 + Rm+2 + ......

fi each term of the series Sun after leaving the first (m – 1) terms, (i.e., a finite number of terms) is greater
than the corresponding term of a geometric series which is divergent. (� its common ratio R > 1). Hence the
given series is also divergent.

����	�������������

Example 1. Test the convergence of the following series:

(i)

2n
n

n 1

� �
� ��� �� or

2n
1

1
n

�
� ��� �� �� (ii)

n
n 2

1

(log n )

�

�
� (P.T.U., Dec. 2002)

(P.T.U., May 2009, Dec. 2012 )

(iii)
n

n
n n

( n log )

2 n

�� .

Sol. (i) Here            un = 

2

1

n
n

n

� �
� ��� �

\     (un)1/n = 

2 1/ 1
1 1

1
1 1

n
n n n n

n n n

n n n n

�� �  �� � � � �� � � �� � � � � �� �	 
 	 
	 
 	 
� � � � � �� �� � � � � �� �� �

        

1

1/ 11 1
Lt ( ) Lt 1 1

n
n

n
n n

u e
n e

�

�

� � � �

 �� �� � � � �� �	 
� �� �� �
(� e = 2.7)

\ By Cauchy’s Root Test, the given series Sun is convergent.

(ii)            un = 
1

(log )nn

    
1

1
( )

log
n

nu
n

�

           
1

1 1 1
Lt ( ) Lt

log log
n

n
n n

u
n� � ��

� � �
� �

 = 0 < 1

\ By Cauchy’s root test the given series is convergent

Hence S un = 
2

1

(log )n
n n

�

�
�  is convergent.
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(iii)            un = 
( log )

2

n

n n

n n

n

�

    � �
1 log 1 1 log

2 2 2

�
� � �nn

n n n
u

n n

        � �
1 1 1 log 1

Lt Lt
2 2 2� � � �

� � �nn
n n

n
u

n
 – 0

 �  

1
log

Lt Lt
0n n

n n
n� � ��

� = 0 (by L’ Hospital rule)

           � �
1 1

Lt
2� �

�nn
n

u  < 1

\ By Cauchy’s root test S un is convergent.
Example 2. Examine the convergence of the series :

1 2 32 3 4

2 3 4

2 2 3 3 4 4

1 2 31 2 3

� � �
� � � � � �

� � � � �	 
 	 
 	 
� � � � � �
 + ......

or
n 1 n

1 1
1 1

n n

� �� �� � � �
� � �
 	� � � �� � � �
 	
 �

� (P.T.U., Dec. 2013)

Sol. Here            un = 
1

1 1
nn

n n

n n

�
�� �

� �� � �
 	� �� �
 	
 �

    (un)1/n = 

1 11 1
1 1 1 1

1 1
n n

n n

n n n n

� �
� �� � � �

� �� � � � � �� � � � �
 	 
 	� � � � � �� � � � � �
 	 
 	
 � 
 �

= 

1
1 1 1

1 . 1 1
n

n n n

�
 �� � � � � �� � � �� �	 
 	 
 	 
� � � � � �� �� �

        

1

1/ 1 1 1
Lt ( ) Lt 1 1 1

n
n

n
n n

u
n n n

�

� � � �

 �� � � � � �� � � � �� �	 
 	 
 	 
� � � � � �� �� �

= (e.1 – 1)–1 = 
1

1e �
 < 1 (� e = 2.7)

\ By Cauchy’s Root Test, Sun is convergent.
Example 3. Discuss the convergence of the following series:

(i)
2 3

21 2 3 4
x x

2 3 4 5

� � � �� � �	 
 	 
� � � �
 x3 + … � (ii)

3 / 2n
1

1
n

�
� �

�	 
� �� . (P.T.U., May 2008)

Sol. (i) Neglecting first term

           un = 
1

2

n
n

n

� ��
	 
�� �

 xn ; � �
1 1

2

�
�

�
nn

n
u

n
 x.
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 � �
1

1
1

Lt Lt
2

1
� � � �

�
�

�
nn

n n

nu

n

 x = x.

By Cauchy’s root test S un converges for x < 1 and diverges for x > 1
When x = 1, Cauchy’s root test fail

Then  un = 

1
1

1

2 2
1

n

n

n

n n

n

n

� ��	 
� � � ��
�	 
�� � � ��	 
� �

2 2/2

1
1

Lt Lt
2

1

n

n
n n n

en
u

e

n

� � � �

� ��� �� �
� �

� �� ��
 	� �� �
 	
 �

1
Lt 1

n

n
e

n��

� �� �� �� �
�

= 
1

e
 π 0

� S un is +ve term series and Lt
n��

 un π 0

\ for x = 1 ; S un diverges 
\ S un converges for x < 1 and diverges for x ≥ 1.

(ii) un =

3/2

1
1

n

n

�
� �

�	 
� �
 ; � �

1/2

1
1

�� � �
� �	 
� �

n

nnu
n

 = 1/2

1

1
1

n

n

� �
�� �� �

\           � �
1

Lt nn
n

u
� �

 =
1 1

Lt
1

1
nn e

n

� �
�

� �
�� �� �

 < 1

\ S un converges.

��������	�
�������

Discuss the convergence of the following series :

1.
1
nn� 2.

2
(log )n

n

n

n

�

�
� 3.

1
3

n
n

n

�� �
	 
� ��

4.
1

n
nx

n

� 
� ��� �� 5. ( 1)5

nn� � �� 6.
(1 )n

n

nx

n

��

 7.
1

( 1)n n

n

n x

n �

�� .
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�����	�

1. Convergent 2. Convergent 3.  Convergent

4. Convergent for x < 1, divergent for x ≥ 1 5. Convergent

6. Convergent for x < 1, divergent for x ≥ 1 7. Convergent for x < 1, divergent for x ≥ 1.

��������	�
��� ������������ (P.T.U., May 2002, 2014, Dec. 2005, Jan. 2009)

Statement. If for x ≥ 1, f(x) is a non-negative, monotonic decreasing function of x such  that f(n) = un, for

all positive integral values of n, then the series Sun and the integral 
1

f ( x )
�

�  dx converge or diverge

together.
Proof. Let r be a +ve integer. Choose x such that r + 1 ≥ x ≥ r ≥ 1
Since f (x) is a monotonic decreasing function of x.
\   f (r + 1) £ f (x) £ f (r) fi ur+1 £ f (x) £ ur [� f (n) = un, n Œ N]

fi          
1 1 1

1 ( )
� � �

�
� �� � �

r r r

r r
r r r

u dx f x dx u dx

fi          ur+1 
1 1 1

( )
r r r

r
r r r

dx f x dx u dx
� � �

� �� � �

fi           ur+1 
1 11

( )
r r

r

r
r

r r

x f x dx u x
� �

� �  �
� �� � � �

� � � ��
fi         ur+1 £ 

1
( )

r

r
r

f x dx u
�

�� ...(1)

Putting r = 1, 2, 3, ......, n in succession in (1), we have

           u2 £ 
2

1�  f (x) dx £ u1

           u3 £ 
3

2�  f (x) dx £ u2

 ..................................
 ..................................

        un+1 £ 
1n

n

�

�  f (x) dx £ un

Adding the above inequalities, we have

             u2 + u3 + ...... + un+1 £ 
2 3

1 2
( ) ( )f x dx f x dx�� �  + ...... + 

1n

n

�

�  f(x) dx £ u1 + u2 + ...... + un

fi Sn+1 – u1 £ 
1

1

n�

�  f (x) dx £ Sn where Sn = 
1

n

nu�  = u1 + u2 + ...... + un.

Proceeding to the limit as n Æ •

      
1

1 1
1

Lt S Lt ( ) Lt
n

n
n n n

u f x dx
�

�
�� �� ��

� � �� Sn

fi       1 1
1

Lt S ( ) Ltn
n n

u f x dx
�

�
�� ��

� � �� Sn …(2)
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(i) If 
1

( )f x dx
�

�  converges, then 
1

( )f x dx
�

�  = a fixed finite number = I (say).

Then from (2), we have Lt
n��

Sn+1 – u1 £ I

fi                Lt
n��

Sn+1 £ I + u1 = a fixed finite number

fi {Sn} is a convergent sequence
fi the series Sun is convergent.

(ii) If 
1

( )f x dx
�

�  diverges, then 
1

( )f x dx
�

�  = + •

From (2),  
1

Lt S Lt ( )n
n n

f x dx
�

�� ��
� �  = + •

fi {Sn} is a divergent sequence
fi the series Sun is divergent.

Hence Sun and 
1

( )f x dx
�

�  converge or diverge together.

Note. If x ≥ k, then Sun and ( )
k

f x dx
�

�  converge or diverge together.

����	�������������

Example 1. Test for convergence the series : 
2

1

n 1�� .

Sol. Here            un = 
2

1

1n �
 = f (n)

\          f (x) = 
2

1

1x �
For x ≥ 1, f (x) is +ve and monotonic decreasing.
\ Cauchy’s Integral Test is applicable.

Now,           
1

21 1 1

tan( )
2 4 41

dx
xf x dx

x

�� � �     �
� � � � �� �� � �� �  = finite

fi
1

( )f x dx
�

�  converges and hence by Integral Test, Sun also converges.

Example 2. Using integral test discuss the convergence of 
2

n 2

1

n n 1

�

� �
� .

Sol.            un = 
2

1

1n n �
 = f (n)

\          f (x) = 
2

1

1x x �

for x ≥ 2, f (x) is +ve and monotonic decreasing.
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\ Cauchy’s Integral test is applicable.

Now,
22 2

1
( )

1
f x dx

x x

� �
�

�� �  dx ...(1)

Put 2 1x �  = t \ x2 = t2 + 1 ; Differentiate 
2 1

x
dx dt

x
�

�

\               
2 22 11

dx dt dt

x tx x
� �

��
; when x = 2, t = 3 ; when x = •, t = •

\ From (1),
2

( )f x dx
�

�  = 
23

1

1

dt

t t

�
�

��  = 
23

1

( 1)t t

�

��  dt

By partial fraction, let

              
2 2

1 A B C

( 1) 1

t

tt t t

�
� �

� �
\               1 = A (t2 + 1) + t (Bt + C)
Put t = 0 on both sides, we get 1 = A
Comparing coefficients of t2 and t on both sides; 0 = A + B \ B = – 1, 0 = C

\               
2 2

1 1

( 1) 1

t

tt t t
� �

� �

\            
2

( )f x
�

� dx = 
23

1

1

t

t t

� � �
�	 
�� ��  dt = log t – 

1

2
 log (t2 + 1)

3

�

= log 
2

3 3
2

1
log

11 1

t

t
t

� �

�

� �

= log 1 – log 
3 3

log
2 2

� �  = finite

\
2

( )f x
�

�  dx converges and hence S un converges.

Example 3. Show that the series 
p

1

1

n

�

�  converges if p > 1 and diverges if 0 < p £ 1. (P.T.U., Dec. 2011)

Sol. Here             un = 
1
pn

 = f(n)

\          f(x) = 
1
px

For x ≥ 1, f (x) is +ve and monotonic decreasing.
\ Cauchy’s Integral Test is applicable.
Case I. When p π 1

          
1

1 1 1
1

1
( )

1

p
p

p

x
f x dx dx x dx

px

�� �� � �
� � �

� � � 
 	
� �
 	
 �

� � �
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Sub-Case 1. When p > 1, p – 1 is +ve, so that 
11 1

1 1
( )

1 pf x dx
p x

��

�
 �� � � �� � ��

= – 
1 1

[0 1]
1 1p p

� �
� �

 = finite

fi
1

( )f x dx
�

�  converges fi Sun is convergent.

Sub-Case 2. When 0 < p < 1, 1 – p is +ve, so that

 1

1 1

1 1
( )

1 1
pxf x dx

p p

�� �� �
� �
 	
 �� ��  (• – 1) = •

fi
1

( )f x dx
�

�  diverges fi Sun is divergent.

Case II. When p = 1, f (x) = 
1

x

  
1 1 1

1
( ) logf x dx dx x

x

�� �  �
� � � �

� �� �  = • – log 1 = • – 0 = •

fi
1

( )f x dx
�

�  diverges fi Sun is divergent.

Hence Sun converges if p > 1 and diverges if p £ 1.

Example 4. Discuss the convergence of  S
2nne� .

Sol. Here un = 
2nne�  = f (n)

\ f (x) = x
2xe�

For x ≥ 1, f (x) is +ve and monotonic decreasing
\ Cauchy’s Integral Test is applicable.

Now,
1

( )
�

� f x dx  =
2

1

�
�� xxe  dx.

Put x2 = t \  2xdx = dt

=
1

1

1 1
0

2 2 2 2

t
t dt e

e
e e

���
�

� � � �

��  = finite

fi
1

( )f x
�

�  dx converges and hence by Integral Test S un converges.

Example 5. Discuss the convergence of the series : 
p

n 2

1

n(log n)

�

�
� , (p > 0).

Hence show that 
p2

dx
( p 0 )

x(log x )

�
��  converges if and only if p > 1. (P.T.U., Dec. 2004)
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Sol. Here             un = 
1

(log ) pn n
 = f (x) \ f (x) = 

1

(log ) px x

For x ≥ 2, p > 0, f (x) is +ve and monotonic decreasing.

\ By Cauchy’s Integral Test 
2

n

n

u
�

�
�  and 

2
( )f x dx

�

�  converge or diverge together.

Case I. When p π 1

         
1

2 2
2

1 (log )
( ) (log ) .

1

p
p x

f x dx x dx
x p

�� �� �
� � �

� � 
 	
� �
 	
 �

� �
1[ ( )]

[ ( )] ( ) , 1
1

n
n f x

f x f x dx n
n

�

�� �
� ! �"
 	

�
 	
 �
�

Sub-Case 1. When p > 1, p – 1 is +ve, so that 
12

2

1 1
( )

1 (log ) pf x dx
p x

�
�

�

� �
� � 
 	� 
 ��

= – 
1 1

1 1 1
0

1 (log 2) ( 1)(log 2)p pp p� �

� �
� �
 	� �
 �

 = finite

fi
2

( )f x dx
�

�  converges fi
2

n

n

u
�

�
�  converges.

Sub-Case 2. When p < 1, 1 – p is +ve, so that

          1

2
2

1 1
( ) (log )

1 1
pf x dx x

p p

�
�

� �
� �� �

� �� �� �
�  [• – (log 2)1–p] = •

fi
2

( )f x dx
�

�  diverges fi
2

n

n

u
�

�
�  diverges.

Case II. When p = 1,         f (x) = 
1

logx x

         
2 2 2 2

1

( ) log log
log log

dx xf x dx dx x
x x x

�� � �  �
� � � � �

� �� � �

= • – log log 2 = •
( )

log ( )
( )

f x
dx f x

f x
�

 ��
�� �

� ��

fi
2

( )f x dx
�

�  diverges fi
2

n

n

u
�

�
�  diverges.

Hence Sun converges if p > 1 and diverges if 0 < p £ 1.
By Cauchy’s integration test we know that

    
2 (log )p

dx

x x

�

� and
p

2 2

1

(log )
n

n n

u
n n

� �

� �

�� �  converge or diverge together

Since
2

n

n

u
�

�
�  converges for p > 1 as discussed in case I \

2 (log ) p

dx

x x

�

�  also converges for p > 1.
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Example 6. Using the integral test, discuss the convergence of  
p

1

( n log n ) (log log n )
� ; p > 0.

Sol.            un = 
1

( log ) (log log ) pn n n
 = f(n)

\          f (x) = 
1

( log ) (log log ) px x x

Clearly, for x ≥ 2, f (x) is +ve and monotonic decreasing \ Integral test is applicable

\ By Cauchy’s Integral Test 
2

n

n

u
�

�
�  and 

2
( )f x

�

�  dx behave alike

\          
2 2

1
( )

( log ) (log log )p
f x dx

x x x

� �
�� �  dx …(1)

= 
2

1
(log log )

log

�
� � �

	 
� �� px dx
x x

� � �( )
n

f x�  f ¢(x) dx = 
1[ ( )]

1

nf x

n

�

�

= 
1

2

(log log )

1

px

p

�� �

� �

 when p π 1.

Case 1. When p < 1 ; 1 – p > 0, 
2

( )f x
�

�  dx = • – 
1(log log 2)

1

p

p

�

�
 = • = not finite

\ S un diverges for p < 1.
Case 2. When p > 1 ; \ p – 1 is +ve

          
( 1)

12
2 2

(log log ) 1 1
( )

( 1) 1 (log log )

p

p

x
f x dx

p p x

� �� ��

�

# $% %� � � & '
� � � % %( )

�

= – 
1 1

1 1 1 1

1 (log log 2) ( 1) (log log 2)p pp p� �

# $% %� �& '� � �% %( )
 = finite

\ S un converges for p > 1.

Case 3. When p = 1, from (1), 
2

( )f x
�

�  dx = 
2

1
log

log log

x x

x

�

�  dx, which is of the type

         
( )

( )

f x

f x

�
�  dx = log f (x) \

2
( )f x

�

�  dx = log log 
2

log x
�

 = • (not finite)

\ S un diverges.
Hence S un converges for p > 1 and diverges for p £ 1.
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Example 7. Test the convergence of the series 
1

2
n 1

8 tan n

1 n

� �

� �� . (P.T.U., May 2002)

Sol. Here            un = 
1

2

8 tan

1

n

n

�

�
 = f (x)

\         f (x) = 
1

2

8 tan

1

x

x

�

�

Clearly for x ≥ 1 f (x) is +ve and monotonic decreasing
\ Cauchy’s Integral Test is applicable

Now,          
1

1
2 21 1 1

8 tan 1
( ) 8 tan

1 1

x
f x dx dx x dx

x x

�� � �
� � �

� � 	 
� �� �� � �

= 
1 2

1

8 (tan )

2

x
�� 2[ ( )]

( ) ( )
2

f x
f x f x dx� ���

= 4 . {(tan–1 •)2 – (tan–1 1)2} = 4 . 
2 2

2 4

� �� �� � � �� ��� �� � � �� � � �� � !

= 4p2 
1 1

4 16
� ��
 	
 �

 = 4p2 . 
12

16
 = 3p2, which is finite

\ By Cauchy’s Integral Test

1
( )f x dx

�

� and hence S un i.e.,
1

2
1

8 tan

1n

n

n

� �

� ��  converges.

��������	�
�������

Using the integral test, discuss the convergence of the following series :

1.
1

2 3n �� 2.
1

( 1)n n �� 3.
1

n�

4.
2

1

( 1)n �� 5.
3

4

2

3

n

n ��  6.
2 2( 1)

n

n �� .

�����	�

1. Divergent 2. Convergent 3.  Divergent 4. Convergent

5. Divergent 6. Convergent.

��������������������������������������� (P.T.U., Dec. 2007, May 2014)

Statement. The alternating series S(– 1)n–1 un = u1 – u2 + u3 – u4 + ...... (un > 0 " n) converges if

(i) un > un+1 " n (ii)  
n
Lt
��

 un = 0.
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Proof. Let Sn denote the nth partial sum of the series S (– 1)n–1 . un.
         S2n = u1 – u2 + u3 – u4 + u5 – ...... – u2n–2 + u2n–1 – u2n

= u1 – (u2 – u3) – (u4 – u5) ...... – (u2n–2 – u2n–1) – u2n

= u1 – [(u2 – u3) + (u4 – u5) + ...... + (u2n–2 – u2n–1) + u2n]
< u1 [� un > un+1 and un > 0 for all n]

fi The sequence {S2n} is bounded above.
Also       S2n+2 = S2n + u2n+1 – u2n+2

fi             S2n+2 – S2n = u2n+1 – u2n+2 > 0 for all n fi S2n+2 > S2n

fi The sequence {S2n} is monotonically increasing.
Since every monotonically increasing sequence which is bounded above converges, therefore, the

sequence {S2n} converges. Let it converge to S, then Lt
n��

 S2n = S

Now             Lt
n��

 S2n+1 = Lt
n��

 (S2n + u2n+1) = Lt
n��

 S2n + Lt
n��

 u2n+1

= S + 0 [� Lt
n��

 un = 0]

= S

fi The sequences {S2n} and {S2n+1} converge to the same real number S.
\ Given e > 0, there exist positive integers m1 and m2 such that

| S2n – S | < e " 2n > m1 and | S2n+1 – S | < e " 2n + 1 > m2

Let m = max. {m1, m2}, then
| S2n – S | < e " n > m and | S2n+1 – S | < e " n > m

fi   | Sn – S | < e " n > m

\ The sequence {Sn} converges to S.
Hence the given series is convergent.
Note. The alternating series will not be convergent if any one of the two conditions is not satisfied.

����	�������������

Example 1. Examine the convergence of the following series :

(i) 1 – 
1 1 1

.......
2 3 4
� � � � . (ii)

( )n1 1 1 1
1 ...... or

2 3 4 n

�
� � � � � �

(P.T.U., May 2004) (P.T.U., May 2010, 2014)
Sol. (i) It is an alternating series

           un = 
1

n
, un + 1 = 

1

1n �

        
1 1

1n n
�

�
 " n \ un > un + 1 " n

\ First condition of Leibnitz’s test is true

 
1

Lt Ltn
n n

u
n� � � �

�  = 0
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Second condition of Leibnitz’s test is also true.
\ Both the conditions of Leibnitz’s test are satisfied.
\ The given series is convergent.

(ii) It is an alternating series

           un = 
1

n
 ; un+1 = 

1

1n �

           
1 1

1n n
�

�
" n

\            un > un+1 " n
\ First condition of Leibnitz’s test is true and satisfied

Now,  Lt
n ��

 un = Lt
n ��

 
1

n
 = 0

\ Second condition of Leibnitz’s test is also satisfied
\ Given series is convergent.
Example 2. Examine the convergence of the series :

(a) 2 – 
3 4 5

2 3 4
� �  + ...... (b) 

3 3 3

1 1 1
( 1 2 )

2 3 4
� � �  (1 + 2 + 3) – 

3

1

5
 (1 + 2 + 3 + 4) + ......

Sol. (a) It is an alternating series

(i)            un = 
1n

n

�
,  un+1 = 

2

1

n

n

�
�

un – un+1 = 
21 2 ( 1) ( 2) 1

1 ( 1) ( 1)

n n n n n

n n n n n n

� � � � �
� � �

� � �
 > 0 " n

fi            un > un+1 " n

(ii)  
1 1

Lt Lt Lt 1n
n n n

n
u

n n�� �� ��

� � �� � �	 
� �
 = 1 π 0.

Since the second condition of Leibnitz’s Test is not satisfied, the series is not convergent.

(b) It is an alternating series.

(i)             un = 
3

1

( 1)n �
 [1 + 2 + 3 + ...... + n] = 

3 2

1 ( 1) 1

2 2( 1) ( 1)

n n n

n n

�� � �
� �

        un+1 = 
2

1 1

2 ( 2)

n

n

��
�

un – un+1 = 
2 3

2 2 2 2

1 1 1 ( 2) ( 1)

2 2( 1) ( 2) ( 1) ( 2)

n n n n n

n n n n

 �� � � �
� �� �

� � � �� �� �

= 
2

2 2

1 1

2 ( 1) ( 2)

n n

n n

� ��
� �

 > 0 " n

fi            un > un+1 " n
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(ii)  
2 2

1

Lt Lt Lt
2( 1) 1

2 1
n

n n n

n nu
n

n

�� �� ��
� �

� � ��	 
� �

 = 0.

Since both the conditions of Leibnitz’s Test are satisfied, the given series is convergent.

Example 3. Test the convergence of the following series : 
n 1

n 1

( 1 ) . n

2n 1

� �

�

�
�� .

Sol. The given series is
1

1

( 1) 1 2 3 4

2 1 1 3 5 7

n

n

. n

n

� �

�

�
� � � �

��  + ......

It is an alternating series

(i)            un = 
2 1

n

n �
, un+1 = 

1

2 1

n

n

�
�

un – un+1 = 
2

1

4 1n �
 > 0 " n fi un > un+1 " n

(ii)   
1 1

Lt Lt Lt
12 1 22

n
n n n

n
u

n
n

�� �� ��
� � �

� �
 π 0.

Here the second condition of Leibnitz’s Test is not satisfied. Hence the given series is not convergent.
Example 4. Examine the convergence of the series

1 + 
2 2 2 2 2 2 2

1 1 1 1 1 1 1

2 3 4 5 6 7 8
� � � � � � � �� .

Sol. The given series can be rearranged in the form

2 2 2 2 2 2

1 1 1 1 1 1
1

3 5 7 2 4 6

� � � �� � � ��� � � � ��	 
 	 
� � � �
= S (– 1)n – 1 un + S (– 1)n–1 vn

Consider S(–1)n–1 un , which is an alternating series

where un = 
2

1

(2 1)n �

(� 1, 3, 5, … are in A.P. and its nth term = 2n – 1)

             
2 2

1 1

(2 1) (2 1)n n
"

� �
\ un > un+1

and  Lt
n ��

 un = Lt
n ��

 
2

1

(2 1)n �
 = 0

\ Both conditions of Leibnitz’s test are satisfied
\ S (–1)n–1 un is convergent.

Now,            for S (– 1)n–1 vn ; vn = 
2

1

(2 )n
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As 
2 2

1 1

(2 ) (2 2)n n
"

�
\ vn > vn+1 and Lt

n ��
 vn = Lt

n ��
 

2

1

(2 )n
 = 0

\ Both conditions of Leibnitz’s test are satisfied by S (– 1)n–1 vn. Therefore, both  S (– 1)n–1 un and
S (–1)n–1

 vn are convergent \ Their sum is also convergent.
Hence given series is convergent.

Example 5. The series 
1 1 1 1 1 1

......
3 2 9 4 27 8
� � � � � � � , does not meet one of the conditions of Leibnitz’s

test which one ? Find the sum of this series. (P.T.U., Dec. 2004)
Sol. The given series is

1 1 1 1 1 1 1 1
.... ....

3 2 9 4 27 8 3 2n n

� � � � � � � �� � � � � � � � � �	 
 	 
 	 
 	 
� � � � � � � �

Here            un = 
1 1

3 2n n
�

       un + 1 = 
1 1

1 1

3 2n n� �
�

              un – un + 1 = 
1 1 1 1

1 1 1 1 2 1

3 3 2 2 3 2n n n n n n� � � �

� � � �� � � � �	 
 	 
� � � �

= 
2 1

1

2 3

6

n n

n

� �

�

�
 < 0 " n

\            un < un + 1 " n i.e., un |�  un + 1 " n
\ First condition of Leibnitz’s test is not satisfied

whereas second condition i.e., 
1 1

Lt Lt
3 2

n n nn n
u

�� ��
� �  = 0 is satisfied.

Now sum of the series

= 
1 1 1 1 1 1

..... .....
3 9 27 2 4 8

� � � �� � � � � � � � �	 
 	 
� � � �

both are infinite G.Ps and sum of an infinite G.P. = 
1

a

r�

\ Sum of the given series = 

1 1
1 13 2 1

1 1 2 21 1
3 2

� � � � �
� �

.

��������	�
�������

Examine the convergence of the following series :

1. 1 – 
1 1 1

2 3 4
� 	  + ......  • 2.  1 – 

2 2 2

1 1 1

2 3 4
� �  + ...... to •

3. 1 – 
1 1 1

–
2 2 3 3 4 4

�  + ...... to • 4.
1 1 1 1

2 3a a b a b a b
	 � 	

� � �
 + ...... to • (a > 0, b > 0)

5.
1 1 1 1

log 2 log 3 log 4 log 5
� � �  + ...... to • 6.

1

1

( 1)

!

n

n
n

� �

�

��
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7.
1

1

( 1)

3 – 2

n

n
n

� �

�

�� 8.
1

1

( 1)

5

n

n
n

n
� �

�

��

9.
1 1 1 1

2 1 3 1 4 1 5 1
	 � 	

� � � �
 + ......  to • 10. 1

2
1

( 1)
1

n

n

n

n

�
�

�

�
��

11.
2

1

cos

1
n

n

n

�

�

 
�� [Hint: cos np = (– 1)n] (P.T.U., May 2012)

�����	�

1. Convergent 2. Convergent 3.  Convergent 4. Convergent

5. Convergent 6. Convergent 7.  Convergent 8. Convergent

9. Convergent 10. Convergent 11. Convergent.

�������������	������������������������ (P.T.U., Dec. 2003, 2011)

Def. If a convergent series whose terms are not all positive, remains convergent when all its terms are
made positive, then it is called an absolutely convergent series, i.e.,

The series Sun is said to be absolutely convergent if S | un | is a convergent series.

����� ������!����������������������������� (P.T.U., Dec. 2011)

A series is said to be conditionally convergent if it is convergent but does not converge absolutely.

Example 1. Test whether the following series are absolutely convergent or conditionally convergent.

(a) 1 – 
2 2 2

1 1 1

2 3 4
� �  + ...... (P.T.U., Dec. 2006) (b)

n 1

n 1

( 1)

2n 1

� �

�

�
��  . (P.T.U., Dec. 2012)

Sol. (a) The series is 1 – 
2 2 2

1 1 1

2 3 4
� �  + ......

(i) In this alternating series, each term is less than the preceeding term numerically.

(ii) Moreover un = 
2

1

n
, which Æ 0 as n Æ •.

Hence the series satisfies both the conditions of the test on alternating series and so the given series
converges.
Again when all the term of the series are made positive, the series becomes

     � | un | = 1 + 
2 2 2 2

1 1 1 1
......

2 3 4 n
� � � � * , which is a p-series, where p = 2 > 1

    \ S | un | is a convergent series.
Thus the given series converges absolutely.

(b)
1

1

( 1)

2 1

n

n
n

� �

�

�
��  = S (– 1)n–1 un (say), where un = 

1

2 1n �

Putting n = 1, 2, 3, ......, the series becomes 1 – 
1 1 1

3 5 7
� �  + ......
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The series is clearly an alternating series.
The terms go on decreasing numerically and

 
1

Lt Lt
2 1n

n n
u

n�� ��
�

�
 = 0

\ By Leibnitz’s Test, the series converges.
But when all terms are made positive, the series becomes,

� | un | = 1 + 
1 1 1

3 5 7
� �  + ......

Here            un = 
1

2 1n �
 . Take vn = 

1

n
.

\  
1

Lt Lt Lt
12 1 2

n

n n nn

u n

v n
n

�� �� ��

� 	� � 
 �� �
 �
� 

 = 
1

2
 = finite π 0

Hence by comparison test series Sun  and Svn behave alike.

But Svn = S 
1

n
 is a divergent series (� here p = 1), \ Sun also diverges.

Hence the given series converges, and the series of absolute terms diverges, therefore the given series
converges conditionally.

���������	
���������
������	������	����������	������	����
�

�

�
�

� �
�

�

�

������ �������	����������
�

�

�
�

�

�

� � �������	����

Proof. Let 
1

n

n

u
�

�
�  be an absolutely convergent series.

\
1

| |n

n

u
�

�
�  is convergent.

By Cauchy’s general principle of convergence, given e > 0, $s a positive integer m such that
   || um+1 | + | um+2 | ...... | un || < e " n > m

or          | um+1 | + | um+1 | + ...... + | un | < e " n > m ...(1)
Now, by triangle inequality, we have

     | um+1 + um+2 + ...... + un | £ | um+1 | + | um+2 | + ...... + | un | < e " n > m [Using (1)]

\ By Cauchy’s general principle of convergence, the series 
1

n

n

u
�

�
�  is convergent.

Hence � | un | is convergent fi Sun is convergent.

Note 1. Absolute convergence fi Convergence, but convergence need not imply absolute convergence i.e., the
converse of above theorem need not be true.

For example, consider the series 
1( 1) 1 1 1

1
2 3 4

n

n

��
� � � ��  + ......

It is convergent. [See Example 1 with Leibnitz’s Test]



322 A TEXTBOOK OF ENGINEERING MATHEMATICS

But the series 
1( 1) 1n

n n

��
�� �  is divergent.

Note 2. The divergence of S | un | does not imply the divergence of Sun.

For example, 
1( 1) 1n

n n

��
�� �  is divergent whereas 

1( 1)n

n

��
�  is convergent.

����������	��	��

Def. A series of the form a0 + a1x + a2x
2 + … + anx

n + … •, where a’s are independent of x, is called a power
series in x. Such a series may converge for some or all values of x.

Interval of Convergence. If the power series is 
0

n
n

n

a x
�

�
� , then take un = anxn

\ Series become 
0

n

n

u
�

�
� , where un = anxn.

As in power series a’s can be +ve as well as –ve \ for convergence of S un we test the convergence
of S | un | � every absolutely convergent series is a convergent series.

\  1

1 1 1 1

1 1
. .

n
nn n n n

n n n n

u a x a a
x

u a a x a x
�

� � � �

� � �
� �

Let        
0 1

Lt n

n n

a

a� �

 = l

\             Lt 
1

n

n

u l

u x�

�
� �

\       S |un| converges if 
l

x� �
 > 1 (By Ratio test) 

\       S un converges for | x | < l i.e., for – l < x < l
\       The power series converges in the interval (– l, l) and diverges outside this interval.
Interval (– l, l) is called the Interval of Convergence of the power series.

Example 2. Prove that the series 
3 3 3

sin x sin 2x sin 3x

1 2 3
� �  – ...... converges absolutely.

Sol. The given series is 
1

3
1 1

( 1) sinn

n

n n

nx
u

n

� � �

� �

�
�� �

Since | un | = 
3 3

| sin | 1nx

n n
�  " n and 

3

1

n
�  converges by p-series test � here p = 3 > 1.

\ By comparison test, the series � | un | converges.

fi The given series converges absolutely.

Example 3. For what value of x does the series n n

n 0

( 1) ( 4x 1)
�

�

� ��  converges absolutely.

(P. T.U., May 2003)
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Sol. The series is   
0 = 0

= ( 1) (4 1)n n
n

n n

u x
� �

�

� �� �
         | un | = | (– 1)n (4x + 1)n | = | (4x + 1)n |

and     | un + 1 | = | (– 1)n + 1 (4x + 1)n + 1 | = | (4x + 1)n + 1 |

 

1

| |

| |
n

n

u

u �

 = 
1

| (4 1) | 1

| 4 1|| (4 1) |

n

n

x

xx �

�
�

��

       
1

1
Lt

| 4 1|
n

n n

u

u x�� �

�
�

\ By ratio test S | un | converges if 
1

| 4 1|x �
 > 1

i.e.,  | 4x + 1 | < 1 or | 4x – (– 1) | < 1
or    – 1 – 1 < 4x < – 1 + 1
or           – 2 < 4x < 0 |�� | x – a | < l fi a – l < x < a + l

or        – 
1

2
 < x < 0

Hence the given series converges absolutely for – 
1

2
 < x < 0 i.e., when x Œ 

1
, 0

2
� ��� �� �

.

Example 4. Test the absolute convergence of the series 
( )

( )

n

2
n= 2

– 1

n log x

�

� . (P.T.U., May 2012)

Sol. Here un =  
� �

2

( 1)

log

n

n x

�

| un | =
2

1
( )

(log )
f x

n x
�  say

Apply Cauchy’s Integral test

2

( )f x dx
�

�  =
2

2

1

(log )
dx

x x

�

�  = 2

2

1
(log )x dx

x

�
� � �

� �� ��

=
1

2

(log )

1

x
��

�
 = 

2

1

log x

�

�

=
1 1

0
log 2 log 2

� �  which is finite

\

2

( )f x dx

�

�  is convergent

\ By Cauchy’s Integral test
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2
n

n

u
�

�
�  and  

2

( )f x dx
�

� converge or diverge together and

�  
2

( )f x dx
�

� converges

\  
2

n

n

u
�

�
� converges

\ Sun converges absolutely

Example 5. Prove that the series x – 
2 3 4x x x

2 3 4
� �  + … • is convergent for – 1 < x £ 1.  Also write the

interval of convergence. (P.T.U., Dec. 2013)
Sol. The given series is

        S un = S (– 1)n–1 
nx

n

        | un | = 
n nx x

n n

� �
� ; | un+1 | = 

1

1

nx

n

�� �
�

  
1

1

1 1 1
. .

n
n

n
n

u x n n

u n n xx �
�

� � � � � �
� �

� � � �� �

         
1

1 1 1
Lt Lt 1 .n

n nn

u

u n x x�� ���

� � � �� � �	 
� �� � � � � �

By Ratio test S | un | converges when

        
1

x� �
 > 1 i.e., | x | < 1 i.e., – 1 < x < 1

and diverges when         
1

x� �
 < 1 i.e., | x | > 1 i.e., for x > 1 or x < – 1

Ratio test fails when | x | = 1 i.e., when x = ± 1.

\ When x = 1, the series becomes 1 – 
1 1 1

2 3 4
� �  + … •, which is an alternating series and is convergent.

(see S.E. 1 art. 5.28)
When x = – 1, the series becomes

  – 1 – 
1 1 1

2 3 4
� �  + … •

= – 
1 1 1

1
2 3 4

� �� � � ��� �� �
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= – 
1

n� , which is of the type 
1
pn

� , where p = 1

\ by p-series test; it is divergent.

\ Given series converges for – 1 < x £ 1 and diverges for x > 1 or x £ – 1

\ The Interval of convergence (– 1, 1].

Example 6. For what value of x the power series

1 – 
1

2
 (x – 2) + 

1

4
 (x – 2)2 – 

1

8
 (x – 2)3 + ..... + � �

n
n1

x 2 .....
2

� �� � � � �� �

converges ? What is its sum ? (P.T.U., May 2002)
Sol. The given series is an alternating series

Here            un = � �
1

2
2

n
n

x
� �� �� �� �

        | un | = � �
1

| 2 |
2

n

n
x �  ; | un + 1 | = 

1

1

2n �
 | (x – 2)n + 1 |

 
1

1
1

1 2 2
( 2) .

| 2 |2 ( 2)

n
nn

n n
n

u
x

u xx

�

�
�

� � �
��

       
1

2
Lt

| 2 |
n

n n

u

u x�� �

�
�

\ By Ratio’s test the series S | un |  is convergent

if  
2

| 2 |x �
 > 1 or | x – 2 | < 2 or 2 – 2 < x < 2 + 2 or 0 < x < 4

\ S| un | is convergent for 0 < x < 4.

As every absolutely convergent series is convergent

\   
1

2

n

nu
� �� �� �� �� �  (x – 2)n is convergent for 0 < x < 4

Now sum of the series = 1 – 
1

2
(x – 2) + 

1

4
 (x – 2)2 + ...... • is an infinite G.P. with first term 1 and common

ratio – 
1

2
 (x – 2) and | C . R | = 

1
( 2)

2
x� �  < 

1

2
 | x – 2 | < 1

\  Sum of the series = 
1 1

21
11 ( 2)

22

x
x

�
�� � �� � �� �� �

S
1

a

r

� 	
�
 ��� 

= 
2 2

2 2x x
�

� �
for 0 < x < 4.
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��������	�
�������

1. Prove that the series 
1 2

1

( 1) cosn

n

nx

n n

� �

�

��   converges absolutely.

[Hint: See S.E.1]
2. For what values of x are the following series convergent?

(i) x – 
2 3 4

2 3 4

x x x
� �  + ...... (ii) 1 + x + 

2 3

2 ! 3!

x x
�  + ......

(P.T.U., Jan. 2010)
1

1
1

( ) , ; Lt
! ( 1) ! n

n n
n

n n
u n

ux x
ii u u

n n u

�

�
�� �

�
� �


�
�
Hint :  Æ irrespective of the values of x�

\
1

Lt 1n
n

n

u
x u

u �
� � � �  converges for all values of x

�
�
��

(iii) x – 
3 5 7

......
3 5 7

x x x
� � � (iv) x – 

2 3 4

2 2 22 3 4

x x x
� �  + ......

3. Discuss the convergence of the series 
1

2
1

tan
( 1)

1
n

n

n

n

� �

�

�
�� (P.T.U., May 2003)

[Hint: Consult S.E. 4]

�����	�

2.   (i) – 1 < x £ 1 (ii) all x (iii) – 1 < x < 1 (iv)  – 1 < x £ 1.

3. Convergent.

�����������	�������	����������	��������������
(P.T.U., May 2004, 2005)

Let un(x) be a real valued function defined on an interval I and for each n  Œ  N. Then

u1(x) + u2(x) + u3(x) +..... = 
1

( )n

n

u x
�

�
�  is called an infinite series of functions each of which is defined on the

interval I.

Let Sn (x) = u1(x) + u2(x) + ....... + un (x) be the nth partial sum of ( )nu x� .

Let a Œ I and lim
n��

 Sn(a) = S(a), then the series ( )nu x�  is said to converge to S(a) at x = a.

Thus, given e > 0, there exists a positive integer m such that
| Sn (a) – S (a) | < e " n > m.

The positive integer m depends on a Œ I and the given value of e > 0, i.e. m = m(a, e). It is not always
possible to find an m which works for each x Œ I. If we can find an m which depends only on e and not on

x Œ I, we say ( )nu x�  is uniformly convergent.

Definition. A series 
1

( )n

n

u x
�

�
�  converges uniformally to  a function S(x) if for a given e > 0, there exists

a positive integer m depending only on e  and independent of x such that for every

x Œ I,  | Sn (x) – S (x) |  < e " n > m.
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Note. The method of testing the uniform convergence of a series ( )nu x� , by definition, involves finding Sn (x)

which is not always easy. The following test avoids Sn (x).

����������	�	�������� (P.T.U., May 2003)

Statement. A series n

n 1

u ( x )
�

�
�  of functions converges uniformly and absolutely on an interval I if there

exists a convergent series n

n 1

M
�

�
�  of positive constants such that un (x) | £ Mn " n Œ N and " x Œ I.

Proof. Since 
1

Mn

n

�

�
�  is convergent, by Cauchy’s general principle of convergence, for each e > 0, there

exists a positive integer m such that
| Mm + 1 + Mm + 2 + ...... + Mn | < e " n > m

or  Mm + 1 + Mm + 2 + ...... + Mn  < e " n > m …(1)
Now, for all  x Œ I, | un (x) | £ Mn …(2)
\ | um + 1 (x) + um + 2 (x) + ...... + un (x) |

£ | um + 1 (x) | + | um + 2 (x) |   + ...... + | un (x) |
£  Mm + 1  + Mm + 2 + ...... + Mn [by (2)]
<  e " n > m [by (1)]

fi By Cauchy’s criterion,  the series 
1

( )n

n

u x
�

�
�  is uniformly convergent on I.

Also, | um + 1 (x) | + | um + 2 (x) | + ...... + | un (x) | < e " n > m
fi || um + 1 (x) | + | um + 2 (x) | + ...... + | un (x) || < e " n > m

fi The series 
1

( )n

n

u x
�

�

� ��  is uniformly convergent on I.

Hence the series 
1

( )n

n

u x
�

�
�  converges uniformly and absolutely on I.

Example 1. Show that the following series are uniformly convergent :

(i)
2

n 1

sin ( x nx )

n( n 2 )

�

�

�
��  for  all real x. (ii)

p
n 1

cos nx

n

�

�
�  for all real x and p > 1.

(P.T.U., May 2009) (P.T.U., Dec. 2005)

(iii)
p q 2

n 1

1

n n x

�

� ��  for all real x and p > 1.

Sol. (i) Here  un (x) = 
2sin ( )

( 2)

x nx

n n

�
�

\ | un (x) | = 
2sin ( )

( 2)

x nx

n n

�
�

 = 
2sin ( )

( 2)

x nx

n n

� � �
�

 £ 
1

( 2)n n �
 < 

2

1

n
 ( = Mn) " x Œ R
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Since 
2

1 1

1
Mn

n n n

� �

� �

�� �  is convergent, therefore, by M-test, the given series is uniformly convergent for

all real x.

(ii) Here       un (x) = 
cos

p

nx

n

\   | un (x) | = 
cos

p

nx

n
 = 

cos
p

nx

n

� �
 £ 

1
pn

 (= Mn) " x Œ R.

Since 
1 1

1
Mn p

n n n

� �

� �

�� �  is convergent for p > 1, therefore, by M-test, the given series is uniformly

convergent for all real x and p > 1.

(iii) Here      un (x) = 
2

1
p qn n x�

Since x2 ≥ 0 for all real x

\        nqx2 ≥ 0 fi np + nqx2 ≥ np fi
2

1
p qn n x�

 £ 
1
pn

\   | un (x) | = 
2

1
p qn n x�

 £ 
1
pn

 (= Mn) " x Œ R.

Since 
1 1

1
Mn p

n n n

� �

� �

�� �  is convergent for p > 1.

Therefore, by M-test, the given series is uniformly convergent for all real x and p > 1.

��������	�
�������

Test for uniform convergence the series :

1.
2 2 2 2

sin sin 2 sin 3 sin 4

1 2 3 4

x x x x
� � �  + ...... 2. sin x – 

sin 2 sin 3 sin 4
–

2 2 3 3 4 4

x x x
�  + ......

(P.T.U., May 2003)
[Hint: See S.E.1. (ii)]

3.
2 2

2
1

cos ( )

( 2)
n

x n x

m n

�

�

�

�� 4. 4 3 2
1

1

n
n n x

�

�
��

5. Show that if 0 < r < 1, then each of the following series is uniformly convergent on R:

(i)
1

cosn

n

r nx
�

�
� (ii)

1

sinn

n

r nx
�

�
�

(iii) 2

1

cosn

n

r n x
�

�
� (iv)

1

sinn n

n

r a x
�

�
� .

�����	�

1. Uniformly convergent for all real x 2. Uniformly convergent for all real x

3. Uniformly convergent for all real x 4. Uniformly convergent for all real x.
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��� ����������������	�����	������	�����!

We have four types of infinite series,
(1) Positive term series
(2) Geometric series
(3) Alternating series
(4) Power series

(i) For positive terms series first find un and if possible evaluate Lt
n��

 un. If limit of un is π 0, the series is

divergent. If limit of un = 0, then compare nu�  with nv� , where vn is always of the type 
1
pn

; compare

nu�  with 
1
pn

�  and

apply comparison test ; if comparison test fails
apply Ratio Test ; if ratio test fails
apply Raabe’s Test ; if Raabe’s test fails
apply logarithmic Test ; If logarithmic test fails
apply Gauss Test

Special cases : (a) If in Ratio test 
1

n

n

u

u �

 involves e, we directly apply logarithmic test.

(b) If in Ratio test it is possible to expand 
1

n

n

u

u �

 in powers of 
1

n
, then directly apply Gauss Test.

(ii) For alternating series apply Leibnitz’s rule.
(iii) The geometric series 1 + x + x2 ..... •

converges if – 1 < x < 1 i.e., | x | < 1
diverges if x ≥ 1
oscillates finitely if x = – 1
oscillates infinitely if x < – 1

(iv) For power series apply the Ratio test. If Ratio test fails, then apply the same tests as applied in (i) case.

	�������������������	

1. A sequence {an} is said to be bounded if $s two real numbers, k and K such that

k £ an £ K " n Œ N.

2. A sequence {an} is said to be:

(i) convergent if Lt
n��

 an is finite

(ii) divergent if Lt
n��

 an is not finite i.e., Lt
n��

 an = + • or – •

(iii) oscillary if {an} neither converges to a finite number nor diverges to + • or – •.

3. A sequence {an} is said to:

(i) monotonic increasing if an+1 ≥ an " nŒN

(ii) monotonic decreasing if an+1 £ an " nŒN

(iii) a sequence is said to be monotonic if it is either monotonic increasing or monotonic decreasing.

4. Every convergent sequence is bounded.
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5. Necessary and sufficient condition for the convergence of monotonic sequence is that it is bounded.

6. (i) A monotonic increasing sequence which is bounded above converges and if it is not bounded above it
diverges to + •.

(ii) A monotonic decreasing sequence which is bounded below converges and if it not bounded below diverges
to – •.

7. Infinite series: If {un} is a sequence of real numbers, then the expression 
1

n

n

u
�

�
�  = u1 + u2 + …+ un + … • is

called an infinite series.

8. Behaviour of infinite series: An infinite series S un converges, diverges or oscillates (finitely or infinitely)
according as the sequence {Sn} of its partial sums converges, diverges or oscillates.

Thus (i) If series 
1

n

n

u
�

�
�  is convergent, then Lt

n��
un = 0 but converse is not true.

(ii) If Lt
n ��

 un π 0, then 
1

n

n

u
�

�
�  is not convergent. But if 

1

n

n

u
�

�
�  is a +ve term series, then if Lt

n ��
un π 0, then

1

n

n

u
�

�
�  diverges to + • � a +ve term series either converges or diverges to + •.

9. Cauchy’s general principle of convergence: The necessary and sufficient condition for the convergence of
infinite series is that given e > 0, however small $s a +ve integer m such that | Sn+p – Sn | < e for n ≥ m and pŒN.
i.e., | un+1 + un+2 … un+p | < e for n ≥ m and pŒN.

10. Comparison tests: If S un and S vn are two +ve term series, then:

Test 1. (a) If un £ K vn (K > 0) " n > m and S vn is convergent, then S un is also convergent

(b) un ≥ k vn (k > 0) " n > m and S vn is divergent, then S un is also divergent.

Test 2. h < n

n

u

v
 < k (h, k > 0) " n > m both S un and S vn converge and diverge together.

Test 3. (i) If Lt n

n n

u

v��
 = l (finite and non-zero), then S un and S vn both converge and diverge together.

(ii) If Lt n

n n

u

v��
 = 0 and S vn converges, then S un also converges.

(iii) If Lt n

n n

u

v��
 = • and S vn diverges, then S un also diverges.

(iv) If Lt n

n n

u

v��
 = • and S un converges, then S vn also converges.

Test 4. (i) If 
1 1

n n

n n

u v

u v� �
�  for n > m and S vn is convergent, then S un is also convergent.

(ii) If 
1 1

n n

n n

u v

u v� �

�  for n > m and S vn is divergent, then S un is also divergent.
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11. P-Series or Hyper-Harmonic Series: The series of the type 
1
pn�  is known as p-series of hyper harmonic

series and it converges if p > 1 and diverges if p £ 1.

12. D’ Alembert’s Ratio Test: If S un is a +ve term series and 
1

Lt n

n n

u

u�� �

 = l. Then  S un is convergent if l > 1 and

divergent if l < 1 when l = 1 ; Ratio test fails.

13. Raabe’s Test: If S un is a +ve terms series and 
1

Lt 1n

n n

u
n

u�� �

	 

�� �

 �
 = l, then S un converges if l > 1 and diverges if

l < 1 Raabe’s test fails when l = 1.

14. Logarithmic Test: If S un is a +ve term series and Lt
n��

 n log 
1

n

n

u

u �

 = l, then S un converges if l > 1 and diverges

if l < 1

Logarithmic test fails when l = 1.

15. Gauss Test: If  S un is a +ve term series 
1

n

n

u

u �

 can be expressed as
1

n

n

u

u �

= 1 + 
2

1
0

n n

� � �� � �� �
, then S un

converges if l > 1 and diverges if l £ 1.

16. Cauchy’s root Test: If S un is a +ve term series and � �
1

Lt nn
n

u
��

 = l, then S un is a convergent series if l < 1 and

divergent if l > 1. Cauchy’s root test fails where l = 1.

17. Cauchy’s Integral Test: If f(x) is a non-negative, monotonic decreasing function of x such that f(n) = un for all

positive integral values of n, then S un and 
1

( )f x
�

�  dx converge or diverge together.

18. Leibnitz’s Test on Alternating Series: The alternating series 1

1

( 1)n
n

n

u
�

�

�

��  converges if

(i) un > un+1 (ii) Lt
n��

 un = 0.

19. Absolute Convergence of a series:
S un is absolutely convergent if S | un | is convergent

20. Conditional Convergence of a series:

S un is conditionally convergent if it is convergent but does not converge absolutely
21. Every absolutely convergent series is convergent.

22. If in power series 
11

; Ltn n
n

n nn

a
a x

a

�

� � ��
�  = l, then interval of convergence of the power series is (– l, l).

23. Uniform Convergence of Series of functions: A series 
1

( )n

n

u x
�

�
�  converges uniformly to a function S(x) if for

e > 0; $s a +ve integer m depending on e and independent of x such that for every x Œ I, | Sn (x) – S (x) | < e "
n > m.

24. Weierstrass’s M-test: A series S un (x) of functions converges uniformly and absolutely on an interval I if $s a

convergent series 
1

Mn

n

�

�
�  of +ve constants such that, | un (x) | £ Mn " n Œ N and " x Œ I
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���	�������	���������������

1. Prove that every convergent sequence is bounded.

[Hint: See art. 5.9]

2. Define monotonic increasing and decreasing sequence.

[Hint: See art. 5.7]

3. Give an example of a monotonic increasing sequence which is (i) convergent, (ii) divergent.

[Hint: S.E. 1 art. 5.10]

4. Give an example of a monotonic decreasing sequence which is (i) convergent, (ii) divergent.

[Hint: S.E. 2 art. 5.10]

5. Define convergence, divergence, oscillation of an infinite series. (P.T.U., Dec. 2007)

[Hint: See art. 5.15]

6. Prove that a positive term series either converges or diverges to + •. [Hint: See art. 5.18]

7. State Cauchy’s general principle of convergence. [Hint: See art. 5.19(b)]

8. Prove that sequence {an}, where an = 1 + 
2

1 1 1

2 2 2n
� ��  + … • is convergent.

[Hint: S.E. 3(iii) art. 5.10]

9. If 
1

n

n

a
�

�
�  is convergent, then Lt 0n

n
a

��
� . Give an example to show that converse is not true.

[Hint: See art. 5.17] (P.T.U., Dec. 2003, May 2004, Jan. 2009, May 2011)

10. Show that 
1

2( 1)
n

n

n

�

�
��  is divergent. [Hint: S.E. 11(ii) art. 5.21]

11. Test the convergence of the following series:

(i)
1

( 1)n n �� [Hint: S.E. 8 (iii) art. 5.21]

(ii)
1

logn n� [Hint: S.E. 12 (ii) art. 5.21]

(iii)
2

3

1

1

n

n

�

�� [Hint: S.E. 13 (ii) art. 5.21] (P.T.U., May 2006)

(iv)
1

1
sin

n
n

�

�
� (P.T.U., Dec. 2010)

1 1
sin sin1 1 1

Let sin ; ; ; Lt Lt 1 and diverges
1 1

0

n n
n n n

n nn n

u un nu v v
n n v v n

n n
�� � �

�



� � � � � �


 �

�

� �Hint :

divergesnu 	� �	
(v)

1
p

n

n

�	  [Hint: S.E. 10 (ii) art. 5.21]
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(vi)
2 3 4

1 1 1 1

2 3 2 3
� � �  + … •.

3 2 4

1 1 1 1

2 2 3 3

� � �� �
� ��� � � ���
 � � � �� � � ��

Hint :  both and G.Ps with C.R. < 1 \ convergent]

(vii)
1 1 1

1.4 2.5 3.6
� �  + … •. 2

2

1 1 1
. Take which is convergent

3( 3)
1

n nu v
n n nn

n

� 	� � � �
 �� � �
 ��� �� �
 �� 

	Hint :

(viii)
3

5

2 5

4 1

n

n

�

�� . 
2

1
Take nv

n

	 

�� �

� �
Hint :

(ix)
1

1

( 1)p p
n

n n

�

�
�� . 

2
2

1 1
. Take

1
1

n np p
p

u v
n

n
n

� �� �� �
	 
� ��� � �� �� �

Hint :

(x)
1

1

(2 1)
n

n

n n

�

�

�
�� . [Hint: 

2

1 11 11
;

11 22
n

n
n nu

n
n

nn

	 
� �� � �
� �

	 
 ��� � �

 Take v = 
1

n
]

12. If S un and S vn are two +ve term series then

(i) If Lt n

n n

u

v��
 = l (finite and non-zero), then S un and S vn both converge and diverge together.

[Hint: See art. 5.20 Test III(i)]

(ii) If Lt n

n n

u

v��
 = • and S vn diverges, then S un also diverges. [Hint: See art. 5.20 Test III(iii)]

(iii) Lt n

n n

u

v��
 = 0 and S vn  converges, then S un also converges. [Hint: See art. 5.20 Test III(ii)]

13. Suppose an > 0, bn > 0 " n Œ N. If Lt n

n n

a

b��
 = • and S an converges. Can anything be said about S bn ? Give

reason for your answer.  [Hint: See art. 5.20 Test III (iv)]. (P.T.U., Dec. 2004)

14. Test for convergence of the series:

(i)
2

3

1

1

n

n

�

�� (P.T.U., May 2006) (ii)
1

1n n� �� (P.T.U., Dec. 2003)

[Hint: S.E. 13 (ii) art. 5.21] [Hint: S.E. 11 (i) art. 5.21]

(iii)
1

logn n� (P.T.U., Dec. 2002) (iv) 33 33 1n n� �� (P.T.U., May 2007)

[Hint: S.E. 12(ii) art. 5.21] [Hint: S.E. 16 (ii) art. 5.21]

15. Test the convergence/divergence of the series 4 4

1

1 1
n

n n
�

�

� � �� . (P.T.U., Dec. 2012)

[Hint: S.E. 16(i) art 5.21]

16. Discuss the convergence of the series 
1

2 !

n

n

x

n

�

�
� (P.T.U., May 2012)

[Hint: S.E. 4(iii) art 5.22]
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17. Show that 
1 2 n

n
���  is divergent.

Lt 0 and  is +ve term series divergent
1 01 2

nnn

n
u���

� 	�
� � � � � �
 �

��
 �� 
Hint :

18. Show that 
1

n
n

n

	 

� �� ��  is divergent.

1 1
Lt Lt 0. Also is +ve

1 1
1

term series  is divergent

n

nnn n

n

n
u

n e

n

u

�� ��

� 	� �
 �� � � �� �
 ��� � � ��
 �� �� �
 �

 �� �� 

Hint :
.

19. Is the series 1 + 
2 3

1 1 1

2 2 2
� �  + … •. summable ? If so find its sum. [Hint: See S.E. 3 (iii) art. 5.10]

20. State Cauchy’s root test and prove the following:

(i)
1
nn�  is convergent

(ii) ( 1)5
nn� � ��  is convergent

� �
1

1

( 1)

1 1 1 ( 1)
Lt 5 1 1 convergent Lt 0

5 5
5

n

n

nn
n n

n

u
n

�
��� � �

� 	
� �
 ��

� � � � � � � �
 �� �
� �
 �

� 

�Hint :

(iii)
1

3

n
n

n

�� �
� �� ��  is convergent

(iv)

3/2

1
1

n

n

�
� �

�� �� ��  is convergent. [Hint: S.E. 3 (ii) art. 5.26] (P.T.U., May 2008)

(v)
2

1

(log )n
n

n

�

�
� . [Hint: S.E. 1 (iii) art. 5.26] (P.T.U., Dec. 2002)

(vi)

2

1

n
n

n

� �
� ��� �	 . [Hint: S.E. 1 (i) art. 5.26] (P.T.U., May 2009, Dec. 2012)

21. State Cauchy’s Integral test and prove the following:

(i)
2

1

1n ��  is convergent. [Hint: See S.E. 1 art. 5.27] (P.T.U., Dec. 2002)

(ii)
1

2

8 tan

1

n

n

�

��  is convergent. [Hint: See S.E. 7 art. 5.27] (P.T.U., May 2002, Dec. 2005)



INFINITE SERIES 335

22. Apply Cauchy’s Integral test to test the convergence of the series 
1

1/ p

n

n
�

�
� . [Hint: S.E. 3 art. 5.27]

23. Test the convergence of the series 
1

( 1)

nx

n n

�

�� . [Hint: S.E. 10 art. 5.22]

24. The series 
1 1 1 1 1 1 1 1

3 2 9 4 27 8 3 2n n
� � � � � �� �  + … • does not meet one of the conditions of Leibnitz’s test,

which one ? Find the sum of the series. [Hint: S.E. 5 art. 5.28] (P.T.U., Dec. 2004)

25. Examine the convergence of the following series:

(i) 1 – 
1 1 1

2 3 4
� �  + … •. [Hint: S.E. 1 (ii) art. 5.28] (P.T.U., May 2010)

(ii) 1 – 
1 1 1

2 3 4
� �  + … •. [Hint: S.E. 1 (i) art. 5.28]

(iii) 2 – 
3 4 5

2 3 4
� �  + … •. [Hint: S.E. 2 (i) art. 5.28]

(iv) 1 + 
2 2 2 2 2 2 2

1 1 1 1 1 1 1

2 3 4 5 6 7 8
� � � � � �  + … •. [Hint: S.E. 4 art. 5.28]

(v)
1

1

( 1)

2 1

n

n

n

n

� �

�

�
�� . [Hint: S.E. 3 art. 5.28]

(vi)
1

1

log ( 1)
n

n

�

�
��

1

1

1 1 1 1
, , log ( 1) log ( 2);

log ( 1) log ( 2) log ( 1) log ( 2)

1
Lt Lt 0. Convergent.

log ( 1)

n n

n n n
n n

u u n n
n n n n

u u n u
n

�

�
�� � �

� �� � � � � �� �� � � �� �
� �

� � � � �� �
�� �

Hint :

(vii) 1
2

1

( 1)
1

n

n

n

n

�
�

�

�
�� (viii)

1

1

( 1)

5

n

n
n

n
� �

�

�� .

26. Explain (i) absolutely convergent infinite series. (P.T.U., Dec. 2011)

(ii) conditional convergence of a series by giving some examples.

27. (a) Prove that every absolutely convergent series is convergent. [Hint: See art. 5.30]

(b) Give an example of the series which is convergent but not absolutely convergent. Justify your statement.

[Hint: Example art. 5.31] (P.T.U., May 2014)

28. For what value of x does the series 
0

( 1) (4 1)n n

n

x
�

�

� ��  converges absolutely? (P.T.U., May 2003)

[Hint: S.E. 3 art. 5.31]

29. Discuss the convergence of the series 
1

2
1

( 1) tan

1

n

n

n

n

� �

�

�

��  [Hint: S.E. 4 art. 5.30] (P.T.U.,  May 2003)

30. Test whether the following series are absolutely convergent or conditionally convergent.
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(i) 1 – 
2 2 2

1 1 1

2 3 4
� �  + … •. [Hint: S.E. 1(a) art. 5.29] (P.T.U., Dec. 2006)

(ii)
1

1

( 1)

2 1

n

n
n

� �

�

�
�� . [Hint: S.E. 1(b) art. 5.29] (P.T.U., Dec. 2012)

(iii) 1
2

1
( 1)n n

n
� �

�� . (P.T.U., Dec. 2010)

31. Test the absolute convergence of 
2

2

( 1)

(log )

n

n
n n

�

�

��   [Hint: S.E. 4 art. 5.31] (P.T.U., May 2012)

32. Prove that 1 + x + 
2 3

2 ! 3!

x x
�  + … • converges "x

1

1
1 1

( 1)
, ; ; Lt converges

! ( 1) !

n n
n n

n n n
nn n

u ux x n
u u x u n

n n u x u

�

�
��� �

� ��
� � � � � � � � �� �

�� �� �
Hint : .

33. Find the interval of convergence of x – 
2 3 4

2 3 4

x x x
� �  + … •.

[Hint: S.E. 5 art. 5.31] (P.T.U., Dec. 2013)

34. For what values of x, the power series 1 – 
1

2
 (x – 2) + 

1

4
 (x – 2)2 … + 

1
2

n�� �
� �� �

 (x – 2)n + … • converges ?

[Hint: S.E. 6 art. 5.31]

35. What do you understand by uniform convergence of a series ? Explain with the help of an example.

[Hint: See art. 5.32] (P.T.U., May 2004, 2005)

36. State Weierstrass’s M-Test for uniform convergence of S un (x) in an interval and apply it to show that 
1

sin
p

n

nx

n

�

�
�

(p > 1) converges uniformly for all values of x. [Hint: S.E. 1 (ii) art. 5.33] (P.T.U., May 2003)

37. State the following:

(i) p-series test or Hyper Harmonic test

(ii) D’Alembert’s Ratio test (P.T.U., Dec. 2004)

(iii) Raabe’s test (P.T.U., May 2007)

(iv) Logarithmic test (P.T.U., May 2007)

(v) Gauss test

(vi) Cauchy’s root test (P.T.U., Dec. 2002)

(vii) Cauchy’s Integral test (P.T.U., May 2003, Dec. 2005, Jan. 2009, May 2014)

(viii) Leibnitz’s test on alternating series (P.T.U., Dec. 2007, May 2014)

(ix) Power series

(x) Absolute convergence of a series (P.T.U., Dec. 2003)

(xi) Uniform convergence of a series of functions (P.T.U., May 2004, 2005)

(xii) Weierstrass’s M-test.
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�����	�

11. (i) Convergent (ii) Divergent (iii) Divergent

(iv) Divergent (v) Convergent for p > 2, divergent for p £ 2

(vi) Convergent (vii) Convergent (viii) Convergent

(ix) Convergent for p > 
1

2
; Divergent for p £ 

1

2
(x) Divergent

14. (i) Divergent (ii) Divergent (iii) Divergent (iv) Convergent

15. Convergent

16. Convergent

19. Convergent

23. Convergent for x £ 1; Divergent for x > 1

25. (i) Convergent (ii) Convergent (iii) not Convergent (iv) Convergent

(v)  not Convergent (vi) Convergent (vii) Convergent (viii) Convergent

27. (b)
1( 1)n

n

��� 28. x Œ 
1

, 0
2

� ��� �� �
29. Convergent

30. (i) Converges absolutely (ii) Converges conditionally (iii) Converges conditionally

31. Converges absolutely

33. (–1, 1) 34. 0 < x < 4.
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6
Complex Numbers and Elementary

Functions of Complex Variable

��������	
���	�����������
����������

Students have already studied complex numbers in lower classes and are familiar with the basic concepts
of the subject but still we would like to revise the main principles and methods of complex numbers for the
benefit of students.

��������
����������

(i) Definition of a Complex Number

A number of the form x + iy, where x and y are real numbers and i = 1�  , is called a complex number.

The set of complex numbers is denoted by C.

If z = x + iy is a complex number, then

x is called the real part of z and we write Re(z) = x

y is called the imaginary part of z and we write Im(z) = y

If x = 0 and y ≠  0, then z = 0 + iy = iy is called a purely imaginary number.

If y = 0, then z = x + i.0 = x is a real number.

If x = 0 and y = 0, then z = 0 + i . 0 = 0 is called the zero complex number.

(ii) Conjugate of a  Complex Number

If z = x + iy, then z x iy= −  is called conjugate of z

(iii) Properties of  Complex Numbers

(a) The sum, difference, product and quotient of two complex numbers is a complex number.

(b) If a complex number is equal to zero, then its real and imaginary parts are separately equal to zero.

Thus, x + iy = 0 ⇒  x = 0 and y = 0

(c) If two complex numbers are equal, then their real and imaginary parts are separately equal.

Thus, x + iy = a + ib ⇒ x = a and y = b

(d) If two complex numbers are equal, then their conjugates are also equal.

Thus, a + ib = c + id ⇒  a – ib = c – id

In general     f(x + iy) = g(x + iy) ⇒     f(x – iy) = g(x – iy) (on changing i to – i)

(iv) Polar-form of a Complex Number

Let P represents a non-zero complex number z = x + iy in xy-plane. Then  the  ordered  pair  (x, y)
represents z. Let (r , θ) be polar coordinates of P. Then OP = r, ∠ XOP = θ

∴ x = r cos θ, y = r sin θ
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and z = r cos θ + i r sin θ
= r (cos θ + i sin θ)

is polar representation of z.
Squaring and adding the values of x and y, we get

              r2 = x2 + y2

then OP = r = 2 2x y�  is called Modulus or Norm or

Absolute Value of z and is represented by | z |.

 Dividing y by x, we get tan θ = 
y

x
 or θ = tan–1 

y

x

‘θ’ is called Amplitude or Argument of z. The value of θ lying in the interval – π < θ ≤  π is called Principal
Value of amplitude.

(v) If z1 and z2 are Two Complex Numbers, then
(a) | z1 z2 | = | z1 | | z2 |

(b) 1

2

z

z
 = 1

2

| |

| |

z

z

(c) arg (z1 z2) = arg z1 + arg z2

(d ) arg 1

2

z

z

� �
� �� �

 = arg z1 – arg z2 (z2 π 0)

(e) z z z z1 2 1 2+ ≤ +| | | |

( f ) z z z z1 2 1 2− ≥ −| | | |

(g) | z1 + z2 |
2 + | z1 – z2 |

2 = 2 | z1 |
2 + 2 | z2 |

2

(h) | z |2 = 2| |z zz	

(i) arg arg 0z z� 	

��������	
���������
�	

(P.T.U., May 2002, 2004, Dec., 2005, May 2007, 2008, 2010, 2014)

Statement. (i) If n is any integer, positive or negative, then

(cos θ + i sin θ)n = cos nθ + i sin nθ
and (ii) If n is a fraction, positive or negative, then one of the values of

(cos θ + i sin θ)n is cos nθ + i sin nθ.

Proof. Case I. When n is a positive integer.

We shall prove the theorem by induction method.

When n = 1, the theorem becomes

(cos θ + i sin θ)1 = cos 1 θ + i sin 1 θ
⇒ cos θ + i sin θ = cos θ + i sin θ which is true.

Y

X

r

P(x, y)
(r, )�

�

O x

y
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Let us suppose the theorem is true for n = m

i.e., let  (cos θ + i sin θ)m = cos mθ  + i sin mθ ...(1)

Now, (cos θ + i sin θ)m+1 = (cos θ + i sin θ)m (cos θ + i sin θ)

= (cos mθ + i sin mθ)(cos θ + i sin θ) [Using (1)]

= (cos mθ cos θ – sin mθ sin θ) + i(sin m θ cos θ + cos mθ sin θ)

= cos (mθ + θ) + i sin (mθ + θ) = cos (m + 1)θ  + i sin (m + 1) θ
⇒ The theorem is true for n = m + 1.

Hence by the Principle of Mathematical Induction, the theorem is true for all positive integers n.

Case II. When n is a negative integer.

Let n = – m, where m is a positive integer.

∴    (cos θ + i sin θ)n = (cos θ + i sin θ)–m

= 
1 1

cos sin(cos sin )m m i mi
�

� � �� � �
 [by Case I]

= 
1 cos sin

cos sin cos sin

m i m

m i m m i m

� � �
�

� � � � � �

= 2 2 2 2 2

cos sin cos sin

cos sin cos sin

m i m m i m

m i m m m

� � � � � �
�

� � � � � �  [� i2 = – 1]

= cos mθ – i sin mθ = cos (– m)θ + i sin (– m)θ
[� cos (– θ) = cos θ ; sin (– θ) = – sin θ]

= cos nθ + i sin nθ. [� – m = n]

Case III. When n is a fraction, positive or negative.

Let n = 
p
q

 , where q is a positive integer and p is any integer, positive or negative. It follows from case I, that

cos sin cos sin
q

i q i q
q q q q

� � � � � �� � � �
� � � � �� 	 � 	 � 	
 � 
 � 
 �

 = cos θ + i sin θ

Taking qth root of both sides, cos 
q

�
+ i sin 

q

�
 is one of the values of (cos θ + i sin θ)1/q

Raising to pth power, cos sin
p

i
q q

� �� �
�� 	
 �

 is one of the values of (cos θ + i sin θ)p/q

or cos 
p

q θ + i sin 
p

q
θ is one of the values of (cos θ + i sin θ)p/q.

Since 
p
q

 = n, cos nθ + i sin nθ is one of the values of (cos θ + i sin θ)n

Hence De-Moivre’s Theorem is completely established.

Cor. 1. (cos θ + i sin θ)–n = cos (– nθ) + i sin (– nθ) = cos nθ – i sin nθ
Cor. 2.  (cos θ – i sin θ)n = [cos (– θ) + i sin(– θ)]n = cos (– nθ) + i sin (– nθ) = cos nθ – i sin nθ
Cor. 3. (cos θ – i sin θ)– n = [cos (– θ) + i sin (– θ)]–n = cos nθ + i sin nθ

Cor. 4. 
1

cos sini� � �
 = (cos θ + i sin θ)–1 = cos θ – i sin θ.
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Caution. For the application of De-Moivre’s Theorem
1. Real part must be with cos and imaginary part with sin i.e., De-Moivre’s Theorem cannot be directly

applied to (sin θ + i cos θ)n.

Procedure to find the (sin θ + i cos θ)n

(sin θ + i cos θ)n = cos sin cos sin
2 2 2 2

n

i n i n
 �� � � �� � � � � � � �� � � � � � � � � � �� �� 	 � 	 � 	 � 	
 � 
 � 
 � 
 �� �

2. The  angle  with  sin  and  cos  must  be  the  same i.e., De-Moivre’s Theorem cannot be applied to
(cos α + i sin β)n.

Note. (cis θ1)(cis θ2) ..... (cis θn) = cis (θ1 + θ2 + ..... + θn).

����������	
�
����
�

Example 1. (a) Is (sin θ + i cos θ)n = sin nθ + i cos nθ ? If not justify it. (P.T.U., Dec. 2006)

(b) Simplify : 
5 3

7 5

(cos 3 i sin 3 ) (cos i sin )

(cos 5 i sin 5 ) (cos 2 i sin 2 )

� � � � � �
� � � � � �

 .

Sol. (a) (sin θ + i cos θ)n ≠  sin nθ + i cos nθ

� (sin θ + i cos θ)n = cos sin
2 2

n

i
 �� �� � � �� � � � �� �� 	 � 	
 � 
 �� �

= cos 
2

n
n

�� �� �� �� 	
 + i sin 

2

n
n

�� �� �� �� 	
 ≠  sin nθ + i cos nθ.

(b) 
5 3 3 5 1 3

7 5 5 7 2 5

(cos 3 sin 3 ) (cos sin ) [(cos sin ) ] [(cos sin ) ]

(cos 5 sin 5 ) (cos 2 sin 2 ) [(cos sin ) ] [(cos sin ) ]

i i i i

i i i i

�

�

� � � � � � � � � � � �



� � � � � � � � � � � �

= 
15 3

35 10

(cos sin ) (cos sin )

(cos sin ) (cos sin )

i i

i i

�

�

� � � � � �

� � � � � �
 = (cos θ + i sin θ)15–3–35+10

= (cos θ + i sin θ)–13 = cos 13θ – i sin 13θ.

Example 2. Simplify :  
4

cos i sin

sin i cos

� �� � �
� �� � �� 	

.

Sol.
4 4

4

cos sin (cos sin )

sin cos
cos sin

2 2

i i

i
i

� �� � � � ��

� �� � �	 
 � �� �� � � �� � � � �� �� � � �� 	 � 		 


= 
4 4(cos sin ) (cos sin )

cos (2 4 ) sin (2 4 )
cos 4 sin 4

2 2

i i

i
i

� � � � � �
�

� � � � � � �� � �  �� � � � �� � � �� � � �

= 
4 4

4

(cos sin ) (cos sin )

cos 4 sin 4 (cos sin )

i i

i i �

� � � � � �



� � � � � �
 = (cos θ + i sin θ)8 = cos 8θ + i sin 8θ.
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Example 3. (i) If x = cos α + i sin α, y = cos β + i sin β, prove that 
x y

x y

�
�

 = i tan 
2

� � �
.

(P.T.U., Dec. 2012)

(ii)
(x y) (xy 1) sin sin

(x y) (xy 1) sin sin

� � � � �



� � � � �
.

Sol. (i)  LHS = 
(cos sin ) (cos sin )

(cos sin ) (cos sin )

x y i i

x y i i

� � � � � � � �



� � � � � � � �

= 
(cos cos ) (sin sin )

(cos cos ) (sin sin )

i

i

� � � � � � �
� � � � � � �

= 
2 sin sin 2 cos sin

2 2 2 2

2 cos cos 2 sin cos
2 2 2 2

i

i

 � � � � � � � � � � �� � �

� � � � � � � � � � � �� �

= 

2 sin sin cos sin
2 2 2 2

cos cos sin cos
2 2 2 2

i i

i

� � � � � � � � � � � �
�

� � � � � � � � � � � �
�

[� i2 = – 1]

= 

sin sin cos
2 2 2

tan
2

cos cos sin
2 2 2

i i

i

i

� � � � � � � � �� �
�	 
 � � �� � 


� � � � � � � � �� �
�	 


� �

 = RHS

(ii) LHS = 
[(cos sin ) (cos sin )] [(cos sin ) (cos sin ) 1]

[(cos sin ) (cos sin )] [(cos sin ) (cos sin ) 1]

i i i i

i i i i

� � � � � � � � � � � � � �
� � � � � � � � � � � � � �

= 
[(cos cos )] (sin sin )] [cos ( ) sin ( ) 1]

[(cos cos ) (sin sin )] [cos ( ) sin ( ) 1]

i i

i i

� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �

= 

2 cos cos 2 sin cos [(1 cos ( )] sin ( )]
2 2 2 2

2 sin sin 2 cos sin [1 cos ( )] sin ( )
2 2 2 2

i i

i i

� � � � � � � � � � � �� � � �� � � � � � � � � �	 
 � �� �
� � � � � � � � � � � �� � � �� � � � � � � � � �	 
 � �� �

= 

2

2

2 cos cos sin 2 sin 2 sin cos
2 2 2 2 2 2

2 sin cos sin 2 cos 2 sin cos
2 2 2 2 2 2

i i

i i i

� � � � � � � � � � � � � � � � � �� � � �
� � �	 
 	 


� � � �
� � � � � � � � � � � � � � � � � �� � � �

� �	 
 	 

� � � �

= 

2 sin cos sincos 2 2 22

sin 2 cos cos sin
2 2 2 2

i i

i i

� � � � � � � � �� �� � � �	 

� �

� � � � � � � � � � � �� �
�	 


� �

= 
2 sin cos sin sin2 2

sin sin
2 cos sin

2 2

� � � � � �
� � �



� � � � � � � � �

 = RHS
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Example 4. If ‘a’ denotes cos 2α + i sin 2α with similar expressions for b, c, d, prove that

(i)
1

abcd
abcd

�  = 2 cos (α + β + γ  + δ) (ii)
ab cd

cd ab
�  = 2 cos (α + β – γ  – δ).

Sol. (i) a = cos 2α + i sin 2α, b = cos 2β + i sin 2β
c = cos 2γ  + i sin 2γ , d = cos 2δ + i sin 2δ

 abcd = (cos 2α + i sin 2α)(cos 2β + i sin 2β)(cos 2γ  + i sin 2γ )(cos 2δ + i sin 2δ)

= cos (2α + 2β + 2γ  + 2δ) + i sin (2α + 2β + 2γ  + 2δ)

abcd  = (abcd)1/2 = [cos (2α + 2β + 2γ  + 2δ) + i sin (2α + 2β + 2γ  + 2δ)]1/2

= cos (α + β + γ  + δ) + i sin (α + β + γ  + δ)

1

abcd
 = 1( )�abcd  = [cos (α + β + γ  + δ) + i sin (α + β + γ  + δ)]–1

= cos (α + β + γ  + δ) – i sin (α + β + γ  + δ)

∴ 1
abcd

abcd
�  = 2 cos (α + β + γ  + δ).

(ii) 
(cos 2 sin 2 )(cos 2 sin 2 ) cos (2 2 ) sin (2 2 )

(cos 2 sin 2 )(cos 2 sin 2 ) cos (2 2 ) sin (2 2 )

� � � � � � � � � � � � �
� �

� � � � � � � � � � � � �
ab i i i

cd i i i

= cos (2α + 2β – 2γ  – 2δ) + i sin (2α + 2β – 2γ  – 2δ)

∴
1/2

ab ab

cd cd

	 
� � � �
 = [cos (2α + 2β – 2γ  – 2δ) + i sin (2α + 2β – 2γ  – 2δ)]1/2

= cos (α + β – γ  – δ) + i sin (α + β – γ  – δ)

  

1
cd ab

ab cd

�
� �

� � �� �
 = [cos (α + β – γ  – δ) + i sin (α + β – γ  – δ)]–1

= cos (α + β – γ  – δ) – i sin (α + β – γ  – δ)

∴ ab cd

cd ab
�  = 2 cos (α + β – γ  – δ).

Example 5. If sin α + sin β + sin γ  = cos α + cos β + cos γ  = 0, prove that

(i) cos 3α + cos 3β + cos 3γ  = 3 cos (α + β + γ ) (P.T.U., Dec. 2002)

(ii) sin 3α + sin 3β + sin 3γ  = 3 sin (α + β + γ )

(iii) cos (β + γ ) + cos (γ  + α) + cos (α + β) = 0
(iv) sin (β + γ ) + sin (γ  + α) + sin (α + β) = 0
(v) cos 2α + cos 2β + cos 2γ  = 0 (vi) sin 2α + sin 2β + sin 2γ  = 0

(vii) Σ cos 4α = 2 Σ cos 2(β + γ ) (viii) Σ sin 4α = 2 Σ sin 2(β + γ )

(ix) sin2 α + sin2 β + sin2 γ  = cos2 α + cos2 β + cos2 γ  = 3/2. (P.T.U., May 2003)

Sol. Let a = cos α + i sin α ; b = cos β + i sin β ; c = cos γ  + i sin γ .

 a + b + c = (cos α + cos β + cos γ ) + i(sin α + sin β + sin γ )

= (0) + i(0) = 0

∴ a + b + c = 0
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⇒ a + b = – c

Cubing both sides (a + b)3 = – c3

or a3 + b3 + 3ab (a + b) = – c3

or a3 + b3 – 3abc = – c3

or a3 + b3 + c3 = 3abc

⇒ (cos α + i sin α)3 + (cos β + i sin β)3 + (cos γ  + i sin γ )3

= 3(cos α + i sin α)(cos β + i sin β)(cos γ  + i sin γ )

⇒ (cos 3α + i sin 3α) + (cos 3β + i sin 3β) + (cos 3γ  + i sin 3γ )

= 3[cos (α + β + γ ) + i sin (α + β + γ )]

⇒ (cos 3α + cos 3β + cos 3γ ) + i (sin 3α + sin 3β + sin 3γ )

= 3 cos (α + β + γ ) + i ◊ 3 sin (α + β + γ )

Equating the real and imaginary parts on both sides,

cos 3α + cos 3β + cos 3γ  = 3 cos (α + β + γ )

sin 3α + sin 3β + sin 3γ  = 3 sin (α + β + γ )

∴ Parts (i) and (ii) are proved.

Now,
1 1 1

a b c
� �  = a–1 + b–1 + c–1

= (cos α + i sin α)–1 + (cos β + i sin β)–1 + (cos γ  + i sin γ )–1

= (cos α – i sin α) + (cos β – i sin β) + (cos γ  – i sin γ )

= (cos α + cos β + cos γ ) – i(sin α + sin β + sin γ )

= 0 – i(0) [From given conditions]

∴    
1 1 1

a b c
� �  = 0 ⇒  bc + ca + ab = 0 or Σbc = 0

⇒ Σ(cos β + i sin β)(cos γ  + i sin γ ) = 0 ⇒ Σ[cos (β + γ ) + i sin (β + γ )] = 0

Equating the real and imaginary parts on both sides

  Σ cos (β + γ) = 0

Σ sin (β + γ ) = 0

∴ Parts (iii) and (iv) are proved.

Since a + b + c = 0

Squaring a2 + b2 + c2 + 2(ab + bc + ca) = 0

But ab + bc + ca = 0 [Proved above]

∴ a2 + b2 + c2 = 0 i.e., Σa2 = 0

⇒ Σ(cos α + i sin α)2 = 0

⇒ Σ(cos 2α + i sin 2α) = 0

Equating the real and imaginary parts on both sides

   
Σ
Σ

cos
sin

2 0
2 0

α
α

=
=
�
�
�

∴ Parts (v) and (vi) are proved

� a + b + c = 0
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∴ a + b = – c

Squaring   a2 + b2 + 2ab = c2 or a2 + b2 – c2 = – 2ab

Squaring again   a4 + b4 + c4 + 2a2b2 – 2b2c2 – 2c2a2 = 4a2b2

⇒  Σa4 = 2Σb2c2

⇒ Σ(cos α + i sin α)4 = 2Σ(cos β + i sin β)2(cos γ  + i sin γ )2

⇒ Σ(cos 4α + i sin 4α) = 2Σ(cos 2β + i sin 2β)(cos 2γ  + i sin 2γ )

⇒ Σ(cos 4α + i sin 4α) = 2Σ[cos (2β + 2γ ) + i sin (2β + 2γ )]

Equating the real and imaginary parts on both sides,

cos 4� �  = 2 cos 2( )� � � �

sin 4� �  = 2 sin 2( )� � � �

Parts (vii) and (viii) are proved

Now, sin2 α + sin2 β + sin2 γ  =
1 cos 2 1 cos 2 1 cos 2

2 2 2

� � � � � �
� �

=
3 1 3 1

(cos 2 cos 2 cos 2 ) 0
2 2 2 2
� � � � � � � � �  from part ‘v’

=
3

2

Similarly, cos2 α + cos2 β + cos2 γ  =
1 cos 2 1 cos 2 1 cos 2

2 2 2

� � � � � �
� �

=
3 1 3 1

(cos 2 cos 2 cos 2 ) 0
2 2 2 2
� � � � � � � � �  from part ‘v’

=
3

2
.

Hence (ix) part is proved.

Example 6. If cos α + 2 cos β + 3 cos γ  = 0 ; sin α + 2 sin β + 3 sin γ  = 0 prove that

(i) cos 3 α + 8 cos 3β + 27 cos 3γ  = 18 cos (α + β + γ )

(ii) sin 3α + 8 sin 3β + 27 sin 3γ  = 18 sin (α + β + γ )

(iii) cos (2α – β – γ ) + 8 cos (2β – γ  – α) + 27 cos (2γ  – α – β) = 18

(iv) sin (2α – β – γ ) + 8 sin (2β – γ  – α) + 27 sin (2γ  – α – β) = 0.

Sol. Let  a = cos α + i sin α, b = cos β + i sin β, c = cos γ  + i sin γ
By given conditions a + 2b + 3c = (cos α + 2 cos β + 3 cos γ ) + i(sin α + 2 sin β + 3 sin γ ) = 0

∴ a + 2b = – 3c …(1)

Cubing both sides

(a + 2b)3 = – 27c3

or  a3 + 8b3 + 6ab (a + 2b) = – 27c3

a3 + 8b3 + 6ab (– 3c) = – 27c3 [Using (1)]

or a3 + 8b3 + 27c3 = 18abc …(2)

�
�
�
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(cos α + i sin α)3 + 8 (cos β + i sin β)3 + 27 (cos γ  + i sin γ )3

= 18 (cos α + i sin α) (cos β + i sin β) (cos γ  + i sin γ )

[cos 3α + 8 cos 3β + 27 cos 3γ ] + i [sin 3α  + 8 sin 3β + 27 cos 3γ ]

= 18 [cos (α + β + γ ) + i sin (α + β + γ )]

Comparing real and imaginary parts

cos 3α + 8 cos 3β + 27 cos 3γ  = 18 cos (α + β + γ ) ; part (i) is proved

sin 3α + 8 sin 3β + 27 sin 3γ  = 18 sin (α + β + γ ) ; part (ii) is proved

Now, from (2) a3 + 8b3 + 27c3 = 18 abc

Divide by abc;
2a

bc
 + 8 

2b

ac
 + 27 

2c

ab
 = 18

∴
2(cos sin )

(cos sin ) (cos sin )

i

i i

� � �
� � � � � �

 + 8 
2(cos sin )

(cos sin ) (cos sin )

i

i i

� � �
� � � � � �

+ 27 
2(cos sin )

(cos sin ) (cos sin )

i

i i

� � �
� � � � � �

 = 18

∴
cis 2

cis ( )

�
� � �

 + 8 
cis 2

cis ( )

�
� � �

 + 27 
cis 2

cis ( )

�
� � �

 = 18

or  cis (2α – β – γ ) + 8 cis (2β – γ  – α) + 27 cis (2γ  – α – β) = 18
Comparing real and Imaginary parts on both sides

 cos (2α – β – γ ) + 8 cos (2β – γ  – α) + 27 cos (2γ  – α – β) = 18

sin (2α – β – γ ) + 8 sin (2β – γ  – α) + 27 sin (2γ  – α – β) = 0 (iii) and (iv) are proved.

Example 7. Find the general value of θ which satisfies the equation

(cos θ + i sin θ)(cos 3θ + i sin 3θ) ....... [cos (2r – 1)θ + i sin (2r – 1)θ]  = 1.

Sol.   (cos θ + i sin θ)(cos 3θ + i sin 3θ) ..... [cos (2r – 1)θ + i sin (2r – 1)θ] = 1

⇒ cos [θ + 3θ + ..... + (2r – 1)θ] + i sin [θ + 3θ + ..... + (2r – 1)θ] = 1

⇒ cos [1 + 3 + ..... + (2r – 1)]θ + i sin [1 + 3 + ..... + (2r – 1)] θ = 1

⇒ cos r
2

 (1 + 2r – 1)θ + i sin 
r
2

 (1 + 2r – 1) θ = 1

[� 1, 3, 5, ....., 2r – 1 form an A.P. with r terms.

Their sum = 
Number of terms

(First term Last term)
2

	
� 


�
⇒  cos (r2 θ) + i sin (r2 θ) = 1.

Equating the real and imaginary parts on both sides,

cos ( )
sin ( )

r
r

2

2
1
1

θ
θ

=
=
�
�
�

⇒ r2 θ = 2n π

Hence θ = 
2

2n

r

�
 , where n is any integer.
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Example 8. (a) If xr = cos 
r2

�
 + i sin 

r2

�
 , prove that x1 x2 x3 ...... • = – 1.

(b) If xr = 
r r

cos i sin
3 3

� �
� , show that x1 x2 x3 ... xn = n n

1 1
cos 1 – i sin 1 –

2 23 3

	 
 	 
� � �  ��� � � �� � � �� � � � �  �
.

Hence show that x1 x2 x3 ... • = i. (P.T.U., May 2003)

Sol. (a) xr = cos sin
2 2

� �
�

r r
i

Putting r = 1, 2, 3, ...., we have

x1 = 2 2 2

� �
cos sin , sin

2 2 2 2
i x i

� �
� � �

x3 =
3 3

cos sin
2 2

� �
� i  and so on.

\ x1 x2 x3 .... to •

=
2 2 3 3

cos sin cos sin cos sin
2 2 2 2 2 2

� � � � � � �  �  �� � �� � � � � �� � � � � �
i i i  .... to •

=
2 3 2 3

cos ..... to sin ..... to
2 22 2 2 2

� � � � � � �  �� � � � � � � � �� � � �� � � �
i

 = 2 2cos sin
1 1

1 1
2 2

� �

�
� �

i �
2 32 2 2

� � �
� �  ..... • is infinite G.P.

and sum of infinite G.P. = 
1

a

r�
= cos p + i sin p = – 1.

(b) xr = cos sin cos
3 3 3r r r

i
� � �

� �

Put r = 1, 2, 3, ..., n

x1 x2  x3 ... xn =
2 3

cis cis cis ... cis
3 3 3 3

� � � �
n

=
2 3

cis ...
3 3 3 3

� � � �	 
� �� � �n
 = 

2

1 1 1
cis 1 ...

3 3 3 3 1

	 
�
� �� �

�� � �
n

which is a G.P. with C.R. = 
1

3

= cis 

1
1 1

3
13

1
3

n

	 

�� ��  �

�
 = cis 

1
1

2 3n

� � 	
�� 


� �
(1 )

  for a G.P. S
1

n

n
a r

r

��
�

�

= cis 
1

1
2 3n

� � �
�� �

	 

 + i sin 

1
1

2 3n

� � �
�� �
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When n Æ •, 1

3n
 Æ 0 i.e.,

 x1x2x3 ... • = Lt
n � �

cis 
1

1
2 3n

� � �
�� �

	 

 = cis 

2

�

= cos 
2

�
 + i sin 

2

�
 = 0 + i. 1 = i

Example 9. If x + 
1

x
 = 2 cos θ, y + 

1

y
 = 2 cos φ, prove that one of the values of

(i)
nm

n m

yx

y x
�  is 2 cos (mθ – nφ) (ii) xmyn + 

m n

1

x y
 is 2 cos (mθ + nφ).

Sol. x + 
1
x

 = 2cos θ

⇒ x2 + 1 = 2x cos θ ⇒ x2 – 2x cos θ + cos2θ + sin2 θ = 0

⇒ (x – cos θ)2 = – sin2 θ ⇒ x – cos θ = ±  i sin θ ⇒ x = cos θ ±  i sin θ
∴ One of the values of x is cos θ + i sin θ.

Similarly, one of the values of y is cos φ + i sin φ.

(i) One  of  the  values  of  
(cos sin ) cos sin

cos sin(cos sin )

mm

n n

i m i mx

n i ny i

� � � � � �
� �

� � �� � �
  =  cos  (mθ – nφ) + i sin (mθ – nφ)

One of the values of 
n

m

y

x
, i.e., 

1m

n

x

y

�
	 

� �
� � �

= [cos (mθ – nφ) + i sin (mθ – nφ)]–1 = cos (mθ – nφ) – i sin (mθ – nφ).

Hence one of the values of 
m n

n m

x y

y x
�  is 2 cos (mθ – nφ).

(ii) One of the values of xmyn

= (cos θ + i sin θ)m (cos φ + i sin φ)n = (cos mθ + i sin mθ) (cos nφ + i sin nφ)
= cos (mθ + nφ) + i sin (mθ + nφ)

One of the values of 
1

m nx y
, i.e. (xmyn)–1

= [cos (mθ + nφ) + i sin (mθ + nφ)]–1 = cos (mθ + nφ) – i sin (mθ + nφ).

Hence one of the values of xmyn + 
1

m nx y
 is 2 cos (mθ + nφ).

Example 10. (a) If 2 cos θ = x + 
1

x
, prove that 

2n

2n 1

x 1 cos n

cos (n 1)x x�

� �
�

� ��
.

(b) If x2 – 2x cos θ + 1 = 0 show that x2n – 2xn cos nθ + 1 = 0.

(c) Find an equation whose roots are the nth powers of the roots of the equation x2 – 2x cos θ + 1 = 0.
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Sol. (a)   2 cos θ = x + 
1

x
or x2 – 2x cos θ + 1 = 0

Solve for x; x =
22 cos 4 cos 4

2

� � � �

or x =
2 cos 2 sin

2

i� � �
 = cos θ ±  i sin θ …(1)

∴ Two values of x are cos θ + i sin θ and cos θ – i sin θ
Choose any one of the two values

Let x = cos θ + i sin θ

Then
2

2 1

1n

n

x

x x�

�
�

 =
2

2 1

(cos sin ) 1

(cos sin ) (cos sin )

n

n

i

i i�

� � � �
� � � � � � �

=
cos 2 sin 2 1

cos (2 1) sin (2 1) cos sin

n i n

n i n i

� � � �
� � � � � � � � �

=  
(1 cos 2 ) sin 2

[cos (2 1) cos ] [sin (2 1) sin ]

n i n

n i n

� � � �
� � � � � � � � �

=  
22 cos 2 sin cos

2 cos cos ( 1) 2 sin cos ( 1)

n i n n

n n i n n

� � � �
� � � � � � �

=  
2 cos [cos sin ] cos

2 cos ( 1) [cos sin ] cos ( 1)

n n i n n

n n i n n

� � � � �
�

� � � � � � �

Part (a) is proved.

(b) Solving  x2 – 2x cos θ + 1 = 0 we get x = cos θ ±  i sin θ  from (1)
Let x = cos θ + i sin θ

x2n – 2xn cos nθ + 1 = (cos θ + i sin θ)2n – 2 (cos θ + i sin θ)n cos nθ + 1
= cos 2nθ + i sin 2nθ – 2 cos nθ [cos nθ + i sin nθ] + 1
= cos 2nθ + i sin 2nθ – 2 cos2 nθ – 2 i sin nθ cos nθ + 1
= [cos 2nθ – 2 cos2 nθ + 1] + i [sin 2nθ – 2 sin nθ cos nθ]
= [(1 + cos 2nθ) – 2 cos2 nθ] + i [sin 2nθ – sin 2nθ]
= [2 cos2 nθ – 2 cos2 nθ] + i [sin 2nθ – sin 2nθ]
= 0 + i . 0 = 0 = RHS

(c) Roots of x2 – 2x cos θ + 1 = 0 are
cos θ + i sin θ and cos θ – i sin θ  from (1)

Let   α = cos θ + i sin θ, β = cos θ – i sin θ (Proved in part a)
We want to form an equation whose roots are αn and βn.
∴ Quadratic equation is x2 – (αn + βn) x + (αn βn) = 0 | � x2 – Sx + P = 0

αn + βn = (cos θ + i sin θ)n + (cos θ – i sin θ)n

= cos nθ + i sin nθ + cos nθ – i sin nθ = 2 cos nθ
αn βn = (cos θ + i sin θ)n (cos θ – i sin θ)n = [cos2 θ + sin2 θ]n = 1

∴ Required equation is x2 – 2 cos nθ x + 1 = 0
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Example 11. Prove that: (1 + sin θ + i cos θ)n + (1 + sin θ – i cos θ)n = � � � � � �  �� �� � � �� � � �
n 1 n n n

2 cos cos
4 2 4 2

.

(P.T.U., May 2008)
Sol. (1 + sin θ + i cos θ)n + (1 + sin θ – i cos θ)n

= 1 cos sin 1 cos sin
2 2 2 2

n n

i i
� � � �� � � �� � � � � � � �� � � � � � � � � � � � �� � � �� � � � � � � �� � � � � � � �	 
 	 


= 22 cos 2 sin cos
4 2 4 2 4 2

n

i
� �� � � � � �� � � � � �� � � �� �� � � � � �� � � � � �	 


22 cos 2 sin cos
4 2 4 2 4 2

n

i
� �� � � � � �� � � � � �� � � � �� �� � � � � �� � � � � �	 


= 2 cos cos sin
4 2 4 2 4 2

n
n n i

	 �� � � � � � �  �  ��� � � �! �� � � � � �� � � � � ��" �
 cos sin

4 2 4 2

n

i

 �� � � � �  � �� � � �! �� � � �� � � � �" � �

= 2 cos cos sin cos sin
4 2 4 2 4 2 4 2 4 2

n n n n n n n n n n
i i

	 
� � � � � � � � � � �  �  �  �  �� � � � � � � �� �� � � � � � � � � �� � � � � � � � � � �

= 2 cos 2 cos
4 2 4 2

n n n n� � � � �  �� �� � � �� � � �
 = 12 cos cos

4 2 4 2
n n n n� � � � � �  �� �� � � �� � � �

Example 12. Prove that 
n

1 sin i cos

1 sin i cos

 �� � � �
� �� � � �� �

 = cos 
n

n
2

� �� �� �� �
 + i sin 

n
n

2

� �� �� �� �
 .

Sol. (sin θ + i cos θ)(sin θ – i cos θ) = sin2 θ – i2 cos2 θ
= sin2 θ + cos2 θ [� i2 = – 1]

= 1 …(1)

∴
1 sin cos

1 sin cos

	 
� � � �
� �� � � � �

n
i

i
= 

(sin cos )(sin cos ) sin cos

1 sin cos

	 
� � � � � � � � � �
� �� � � � �

n
i i i

i
[Using (1)]

[Note the step]

=
(sin cos ) (sin cos 1)

1 sin cos

n
i i

i

	 
� � � � � � �
� �� � � � �

 = (sin θ + i cos θ)n

= cos sin
2 2

n

i
� �� �� � � �� � � � �� �� � � �� � � �	 


= cos 
2

n
n

� �� �� �� �
 + i sin 

2

n
n

� �� �� �� �
.
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Example 13. (i) Prove that 
m m m

2 2 1n n 2n m b
(a ib) (a ib) 2(a b ) cos tan

n a
� �� � � � � � �� �

(ii) n n n 1 n
( 3 i) ( 3 i) 2 cos

6
� �

� � � � (P.T.U., May 2004)

(iii) (1 + i)n + (1 – i)n = 
n

1
2 n

2 cos
4

� �
. (P.T.U., May 2003)

Sol. (i) Let a = r cos θ and b = r sin θ

Squaring and adding, r2 = a2 + b2 ∴ r = 2 2a b�

Dividing tan θ =
b

a
∴ θ = tan–1 

b

a

( ) ( )� � �
m m

n na ib a ib  = [ (cos sin )] [ (cos sin )]� � � � � � �
m m

n nr i r i

= (cos sin ) (cos sin )
m m m m

n n n nr i r i� � � � � �

= cos sin cos sin
m m

n nm m m m
r i r i

n n n n

 �  �� � � � � � �� � � �� � � �

= 2 2 12 cos ( ) . 2 cos tan
m m

n nm m b
r a b

n n a
� �  �� � �� � � �� � � �

= 2 2 2 12( ) cos tan
m

n m b
a b

n a
� �� � �� �

.

(ii) Let  3 = r cos θ and 1 = r sin θ

Squaring and adding 4 = r2 ∴ r = 2

cos θ =
3

2
, sin θ =

1

2

∴ θ =
6

�

Now, ( 3 )ni�  + ( 3 )ni�  = (r cos θ + ir sin θ)n + (r cos θ – ir sin θ)n

= rn (cos θ + i sin θ)n + rn (cos θ – i sin θ)n

Apply De-Moivre’s theorem

= rn 
cos sin

cos sin

n i n

n i n

� � � �
! �� � � �" �

= rn ◊ 2 cos nθ

= 2n ◊ 2 cos n ◊ 
6

�
 = 2n + 1 cos n 

6

�
.
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(iii) Put 1 =  r cos θ and 1 = r sin θ.

Squaring and adding 2 = r2 ∴ r = 2

Dividing tan θ = 1 ∴ θ = 
4

�

∴ (1 + i)n + (1 – i)n = (r cos θ + i r sin θ)n + (r cos θ – i r sin θ)n

= rn [cos nθ + i sin nθ + cos nθ – i sin nθ]

= � �2
n

 . 2 cos nθ = 2 . 2n/2 cos 
4

n�
 = 

1
22
n �

 cos 
4

n�
.

Example 14. If (a1 + ib1)(a2 + ib2 ) ...... (an + ibn ) = A + iB, prove that,

(i) (a1
2 + b1

2) (a2
2 + b2

2) ..... (an
2 + bn

2) = A2 + B2.

(ii) tan–1 1

1

b

a
 + tan–1 2

2

b

a
 + ..... + tan–1 n

n

b

a
 = tan–1 

B

A
 .

Sol. Let a1 + ib1 = r1 (cos θ1 + i sin θ1).
Equating real and imaginary parts on both sides r1 cos θ1 = a1 ; r1 sin θ1 = b1

Squaring and adding, r1
2 = a1

2 + b1
2

Dividing, tan θ1 =
1

1

b

a
 or θ1 = tan–1 1

1

b

a

Similarly, r2
2 = a2

2 + b2
2, θ2 = tan–1 2

2

b

a

r3
2 = a3

2 + b3
2, θ3 = tan–1 3

3

b

a

........................................................................

........................................................................

rn
2 = an

2 + bn
2, θn = tan–1 n

n

b

a

Now it is given that (a1 + ib1)(a2 + ib2) ....... (an + ibn) = A + iB
⇒ r1(cos θ1 + i sin θ1) r2 (cos θ2 + i sin θ2) ...... rn (cos θn + i sin θn) = A + iB
⇒ r1r2 ...... rn[(cos θ1 + i sin θ1)(cos θ2 + i sin θ2) ..... (cos θn + i sin θn)] = A + iB

⇒ r1r2 ...... rn [cos (θ1 + θ2 + ...... + θn) + i sin (θ1 + θ2 + ...... + θn)] = A + iB.
Equating real and imaginary parts on both sides,

r1r2 ....... rn cos (θ1 + θ2 + ...... + θn) = A …(1)

r1r2 ....... rn sin (θ1 + θ2 + ...... + θn) = B …(2)
Squaring and adding (1) and (2),

r1
2 r2

2 ....... rn
2 [cos2(θ1 + θ2 + ...... + θn) + sin2 (θ1 + θ2 + ...... + θn)] = A2 + B2

⇒ r1
2 r2

2 ....... rn
2 = A2 + B2

⇒ (a1
2 + b1

2) (a2
2 + b2

2) ..... (an
2 + bn

2) = A2 + B2 …(I)
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Dividing (2) by (1), tan (θ1 + θ2 + ...... + θn) = 
B

A

⇒ θ1 + θ2 + ..... + θn = tan–1 
B

A

⇒ tan–1 1

1

b

a
 + tan–1 2

2

b

a
 + ... + tan–1 n

n

b

a
 = tan–1 

B

A
…(II)

Example 15. If (1 + x)n = p0 + p1x + p2 x
2 + p3 x

3 + .... show that

(i) p0 – p2 + p4 ..... = 
n

2 n
2 cos

4

�
(ii) p1 – p3 + p5 ..... = 

n

2 n
2 sin

4

�
 .

Sol. (1 + x)n = p0 + p1x + p2x2 + p3x3.....

Put x = i on both sides, (1 + i)n = p0 + p1i + p2i2 + p3i3 + p4i4 + p5i
5 + ..... = p0 + ip1 – p2 – ip3 + p4 + ip5 + .....

[� i2 = – 1, i3 = i.i2 = – i, i4 = (i2)2 = 1, i5 = i i4 = i]

∴ (1 + i)n = (p0 – p2 + p4 ......) + i (p1 – p3 + p5 .....) …(1)
Let 1 + i = r (cos θ + i sin θ)
Equating real and imaginary parts r cos θ = 1, r sin θ = 1 …(2)

Squaring and adding,     r2 = 1 + 1 = 2 ∴ r = 2

From (2), cos θ = 
1 1

2r
�  , sin θ = 

1 1

2r
�

Both these equations are satisfied when θ = 
4

�

∴  1 + i = 2 cos sin
4 4

i
� � ��� �� �

⇒   (1 + i)n = 2( 2) cos sin 2 cos sin
4 4 4 4

nn
n n n

i i
� � � � �  �� � �� � � �� � � �

∴ From (1), 22 cos sin
4 4

n
n n

i
� � ��� �� �

 = (p0 – p2 + p4 ....) + i (p1 – p3 + p5 .....)

Equating real and imaginary parts on both sides,

p0 – p2 + p4 ..... = 22 cos
4

n
n�

…(I)

p1 – p3 + p5 ..... = 22 sin
4

n
n�

…(II)

Example 16. If x = cos θ + i sin θ and 21 c�  = nc – 1. Show that 1 + c cos θ = 
2

c

n
 (1 + nx) 

n
1

x
 ��� �� �

 .

Sol. Given 21 c�  = nc – 1 ...(1)

and x = cos θ + i sin θ

∴
1
x

 = cos θ – i sin θ

RHS =
2

c

n
 (1 + nx) 1

n

x
 ��� �� �

 = 
2

c

n
 21

1 n x n
x

	 
 �� � �� �� �� � �



354 A TEXTBOOK OF ENGINEERING MATHEMATICS

=
2

c

n
 [1 + n ◊ 2 cos θ + n2] = 

1
2 cos

2

c
n

n

	 
 �� � �� �� �� � �
…(2)

From (1), n =
21 1 c

c

� �

Eliminate n from (2),

RHS =
2

2

1 1
2 cos

2 1 1

cc c

c c

� �� �� �� � � �
� �� �� 	

 =
� �
� �

2
2 2

2

1 1
2 cos

2 1 1

c c
c

c c

	 

� � �� �

� �� �
� �� �� � �

=

� �

2 2 2

2

1 1 2 1
2 cos

2 1 1

c c cc

c c

	 

� � � � �� �

� �� �
� �� �
 �

 =
� �
� �

2

2

2 1 1
2 cos

2 1 1

c
c

c c

	 
� �� �
� �� �

� �� �
 �

=
2

2 cos
2

c

c
	 
� �� � �

 = 1 + c cos θ = LHS

Example 17. If sin y = i tan θ, prove that cos θ + i sin θ = tan 
4 2

� #
 ��� � �
 .

Sol.  i tan θ = sin y ⇒ sin sin cos 1

cos 1 sin sin

i

i

� # �
� $ �

� � #

By componendo and dividendo,
cos sin 1 sin

cos sin 1 sin

i

i

� � � � #
�

� � � � #

or  (cos θ + i sin θ)(cos θ – i sin θ)–1 =

2 2

2 2

cos sin 2 cos sin
2 2 2 2

cos sin 2 cos sin
2 2 2 2

# # ## � �

# # # #
� �

or (cos θ + i sin θ)(cos θ + i sin θ) =

2

cos sin
2 2

cos sin
2 2

# #	 
�� �
� �# #� ��
� � �

or  cos θ + i sin θ  =
cos sin

2 2

cos sin
2 2

# #
�

# #
�

Dividing the numerator and denominator on RHS by cos 
2

�
, we get

 cos θ + i sin θ = 
1 tan

2

1 tan
2

#�

#�
 = tan 

4 2

� #
 ��� � �
 .



COMPLEX NUMBERS AND ELEMENTARY FUNCTIONS OF COMPLEX VARIABLE 355

Example 18. If α, β are the roots of x2 – 2x + 2 = 0, then prove that:

(i)
n n

n

(t ) (t ) sin n

sin

� � � � � �
�

� � � �

(ii)
n n

n

(t ) (t ) cos n

sin

� � � � � �
�

� � � �
, where t + 1 = cot φ.

Sol.  x2 – 2x + 2 = 0

x =
2 4 8 2 2

2 2

i� � �
�  = 1 ±  i

∴ α = 1 + i, β = 1 – i

(i) ( ) ( ) ( ) ( )t t t i t i
i i

n n n n+ − +
−

= + + − + −
+ − +

α β
α β

1 1
1 1

= 
(cot ) (cot )

2

n ni i

i

� � � � �
given t + 1 = cot φ

= 
(cos sin ) (cos sin )

2 (sin )

n n

n

i i

i

� � � � � � �

�

= 
(cos sin ) (cos sin )

2 sinn

n i n n i n

i

� � � � � � �

�

= 
2 sin sin

2 sin sinn n

i n n

i

� �
�

� �
(ii) Do it yourself.

Example 19. If   a = cis a, b = cis b, c = cis g, prove  that

( ) ( ) ( )b c c a a b

abc

� � �
 = 8 cos 

2

� � �
 cos 

2

� � �
 cos 

2

� � �
.

Sol. 
( ) ( ) ( )b c c a a b

abc

� � �
 =

b c c a a b

a b c

� � �� � � � � �
� � � � � �� � � � � �

...(1)

Now,
b c

a

�
 =

cis cis

cis cis

b c

a a

	 
� �
 �� � �� �� � � � � �
= cis (β – α) + cis (γ  – α)

= cos (β – α) + i sin (β – α) + cos (γ  – α) + i sin (γ  – α)

= 2 cos 
2

2

� � � � �
 cos 

2

� � �
 + 2i sin 

2

2

� � � � �
 cos 

2

� � �

= 2 cos 
2 2

cos sin
2 2 2

i
� � � � � � � � � � � � �� �

�� �
� �

= 2 cos 
2

� � �
 cis 

2

2

� � � � �
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Similarly,  
c a

b

�
 = 2 cos 

2

� � �
 cis 

2

2

� � � � �

and
a b

c

�
 = 2 cos 

2

� � �
 cis 

2

2

� � � � �

∴ From (1),

 
( ) ( ) ( )b c c a a b

abc

� � �
 = 2 cos 

2

� � �
 cis 

2

2

� � � � �
 2 cos 

2

� � �
 cis 

2

2

� � � � �

2 cos 
2

� � �
 cis 

2

2

� � � � �

= 8 cos 
2

� � �
 cos 

2

� � �
 cos 

2

� � �
 cis 

2 2 2

2

� � � � � � � � � � � � � � � � �

= 8 cos 
2

� � �
 cos 

2

� � �
 cos 

2

� � �
 cis 0

= 8 cos 
2

� � �
 cos 

2

� � �
 cos 

2

� � �
. |�� cis 0 = 1

��������	�
�������

1. Prove that

(i)
5 3

9 9

(cos 3 sin 3 ) (cos 2 sin 2 )

(cos 4 sin 4 ) (cos 5 sin 5 )

i i

i i�
� � � � � �
� � � � � �

 = 1 (ii)
4

5

(cos sin )

(sin cos )

i

i

� � �
� � �

 = sin (4α + 5β) – i cos (4α + 5β).

2. If a = cis α, b = cis β and c = cis γ , prove that

(i)
ab c

c ab
� = 2 cos (α + β – γ ) (ii) apbqcr + 

1
p q ra b c

 = 2 cos (pα + qβ + rγ ).

3. If p = cis 2θ and q = cis 2φ, prove that 
p q

q p
�  = 2i sin (θ – φ).

4. If cos α + cos β + cos γ  = 0 = sin α + sin β + sin γ , show that

sin2 α + sin2 β + sin2 γ  = cos2 α + cos2 β + cos2 γ  = 
3

2
.

5. If x = cos α + i sin α, y = cos β + i sin β, z = cos γ  + i sin γ  and x + y + z = 0, then prove that
x–1 + y–1 + z–1 = 0.

6. Prove that the general value of θ which satisfies the equation

 (cos θ + i sin θ) (cos 2θ + i sin 2θ) ..... (cos nθ + i sin nθ) = 1 is 
4

( 1)

m

n n

�
�

 , where m is any integer.

7. If 2 cos θ = a + 
1
a

 , 2 cos φ = b + 
1
b

 , prove that one of the values of

(i) ab + 
1

ab
 is 2 cos (θ + φ) (ii) apbq + 

1

a bp q  is 2 cos (pθ + qφ)

8. Prove that

(i) [(cos θ + cos φ)  +  i(sin θ + sin φ)]n  +  [(cos θ + cos φ)  –  i(sin θ + sin φ)]n

=  2n+1 cosn 
2

� � �� �
� �	 


 cos
( )

2

n � � �

(ii) [(cos θ  –  cos φ)  +  i(sin θ – sin φ)]n + [(cos θ – cos φ) – i(sin θ – sin φ)]n



COMPLEX NUMBERS AND ELEMENTARY FUNCTIONS OF COMPLEX VARIABLE 357

 =  2n+1  sinn 
2

� � �
  cos 

( )

2

n � � � � �

(iii) (1 + cos θ + i sin θ)n + (1 + cos θ – i sin θ)n = 2n+1 cosn 
2

�
 cos 

2

n�

(iv)
1 cos sin

1 cos sin

n
i

i

� �� � � �
� �� � � �	 


 = cos nθ + i sin nθ.

9. If 1 1 1
x x x

i i i
a b c

� � � � � �� � �� � � � � �	 
 	 
 	 

  ...... = A + iB, prove that

(i)
2 2 2

2 2 21 1 1
x x x

a b c

� � � � � �
� � �� 	 � 	 � 	
 � 
 � 
 �

 ...... = A2 + B2

(ii) tan–1 
x

a
 + tan–1 

x

b
 + tan–1 

x

c
 + ..... = tan–1 

B

A
 .

10. If α, β be the roots of x2 – 2x + 4 = 0, prove that αn + βn = 2n+1 cos .
3

n�

���������	��
���������������

As already discussed in De-Moivre’s Theorem that when n is a rational number (i.e., fraction positive or
negative) then cos nq + i sin nq is one of the values of (cos q + i sin q)n. Now we shall find all the values of

(cos q + i sin q)n, where n = 
p

q ; p, q are both integers; (p, q) = 1 and q π 0

������� 	����������������������������������	�����������	��


� � �

�

���� ��� �
�� �������� �����	���������� ��

By De-Moivre’s Theorem, we know that cos 
q

�
 + i sin 

q

�
 is one of the values of 

1

(cos sin )qi� � � .

Let us find all the values of 
1

(cos sin )qi� � �
1

(cos sin )qi� � �  = 

1

[cos (2 ) sin (2 )]qn i n� � � � � � �  = cos 
2n

q

� � �
 + i sin 

2n

q

� � �

Putting n = 0, 1, 2, ......, q – 1 in succession, we obtain the following q values of 

1

(cos sin )qi� � �

cos sin when 0

2 2
cos sin when 1

4 4
cos sin when 2

......................................................................

.............................................................

i n
q q

i n
q q

i n
q q

� �
� �

� � � � � �
� �

� � � � � �
� �

.........

2( 1) 2( 1)
cos sin when 1

q q
i n q

q q



�
�
�
�
�
�
�
�
�
�
�
�� � � � � � � �

� � � �
��

...(I)
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Since no two of the angles in the q values in (I) are equal or differ by a multiple of 2π, therefore, their sines
and cosines cannot be equal simultaneously.

∴ All the q values obtained in (I) are distinct.
If we put n = q, we get

cos 
2q

q

� � �
 + i sin 

2q

q

� � �
 = cos 2

q

� ��
� �� �	 


 + i sin 2
q

� ��
� �� �	 


 = cos 
q

�
 + i sin 

q

�

This value is the same as the one obtained by putting n = 0.
Similarly, if we put n = q + 1, q + 2, ......., we will get the same values as obtained in (I) by putting n = 1, 2, .....

Hence 

1

(cos sin )qi� � �  has q and only q distinct values obtained by putting n = 0, 1, 2, ......, q – 1 in

cos 
2n

q

� � �
 + i sin 

2n

q

� � �
.

Working Rule for finding the qth roots of x + iy
Let   x + iy = r(cos θ + i sin θ)

∴   
1 1

( )q qx iy r� �
1 1 1

(cos sin ) [cos (2 ) sin (2 )]q q qi r n i n� � � � � � � � � � �

= 

1
2 2

cos sinq n n
r i

q q

	 
� � � � � �
�� �

 �

Putting n = 0, 1, 2, ......., q – 1, the q values of 

1

( )qx iy� are obtained.

����!�� 	������������	�qqqqq�"���	���qqqqq��#����	����������������	�����
�����	�������������� ����� ��	�������������������

(cos sin )

p

qi� � � = 

1

[(cos sin ) ]p qi� � �

= 

1

(cos sin )qp i p� � � [� p is an integer]

= 

1

[cos (2 ) sin (2 )]qn p i n p� � � � � � �  = cos 
2n p

q

� � �
 + i sin 

2n p

q

� � �

To find all the values of the given expression, putting n = 0, 1, 2, ......, (q – 1) in succession, we obtain the

following q values of (cos sin )

p

qi� � �

cos sin when 0

2 2
cos sin when 1

4 4
cos sin when 2

......................................................................

.......................................................

p p
i n

q q

p p
i n

q q

p p
i n

q q

� �
� �

� � � � � �
� �

� � � � � �
� �

...............

2( 1) 2( 1)
cos sin when 1

q p q p
i n q

q q



�
�
�
�
�
�
�
�
�
�
�
�� � � � � � � �

� � � �
��

...(I)
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Since no two of the angles in the q values in (I) are equal or differ by a multiple of 2π, therefore, their sines
and cosines cannot be equal simultaneously.

∴ All the q values obtained in (I) are distinct.

If we put n = q, we get

 cos 
2q p

q

� � �
 + i sin 

2q p

q

� � �
 = cos 2

p

q

� ��
� �� �	 


 + i sin 2
p

q

� ��
� �� �	 


 = cos 
p

q

�
 + i sin 

p

q

�

This value is the same as the one obtained by putting n = 0.

Similarly, if we put n = q + 1, q + 2, ......., we will get the same values as obtained in (I) by putting n = 1, 2, .....

Hence (cos θ + i sin θ)p/q has q and only q distinct values obtained by putting n = 0, 1, 2, ......, q – 1 in

cos 
2n p

q

� � �
 + i sin 

2n p

q

� � �
 .

Note 1. To find the distinct values of (cos qqqqq + i sin qqqqq)p/q, p and q must be co-prime i.e., p and q should have
no common factor > 1.

e.g., (cos q + i sin q)9/12 does not have 12 distinct values but only 4, since (cos q + i sin q)9/12 = (cos q + i sin q)3/4 ,
here         q = 4.

Note 2. The q distinct values of (cos q + i sin q) p/q are obtained by putting n = 0, 1, 2, ....., q – 1 in

   cos 
2n p

q

� � �
 + i sin 

2n p

q

� � �
 = cos 

2p n

q q

� �� �
�� �	 


 + i sin 
2p n

q q

� �� �
�� �	 


= cos sin
p p

i
q q

� �� �
�� �	 


 
2 2

cos sin
n n

i
q q

� �� �
�� �	 


= cis 
p

q

�
 cis 

2n

q

�
 = cis 

p

q

�
 ◊ 

2
cis

n

q

� ��
� �	 


= arn, where a = cis 
p

q

�
, r = cis 

2

q

�
.

Thus, the q distinct values of (cos q + i sin q)p/q are a, ar, ar2, ......., arq – 1

Their product = a . ar . ar2 ....... arq–1 = aq . r1 + 2 + ...... + (q –1)

= aq 
1

(1 1)
2

q
q

r
�

� �
 = aq . 

( 1)
( 1)

2
2 2

cis cis

q q
q q q

p
r

q q

�
� � � � �� �

� � � � �	 
 	 


= cis pq . 

1/2
2

cis

qq

q

�	 
� ��� �� �� �	 
 �
 = cis pq . (cis p)q – 1

= (cos pq + i sin pq)(cos p + i sin p)q–1 = (– 1)q – 1 (cos pq + i sin pq).
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����$�� 	��������������������	��
����	�qqqqq�"���	���qqqqq��#��
����� ���������
��� ��		�������	��	�� �	�%������������� ���� � ���� ��	�����

���������������
����	�qqqqq�"���	���qqqqq��#�

Proceeding as in 6.4(b), the sum of q values of (cos q + i sin q)p/q is

= a + ar + ar2 + ..... + arq – 1 = 
(1 )

1

qa r

r

�
�

2
cis 1r

q

	 
�
� %� �

 �

= 

2
1 cis

(1 cis 2 ) [1 (cos 2 sin 2 )] [1 (1 0)]

1 1 1 1

q

a
q a a i a

r r r r

	 
� ��� �� � �	 
� � � � � � � � � � � � � �
� � � �

 = 0.

����	�������������

Example 1. (a) Find nth roots of unity and prove that these form a geometrical progession. Also show that
the sum of these n roots is zero and their product is (–1)n–1. (P.T.U., Dec. 2013)

(b) Solve x7 = 1 and prove that the sum of the nth powers of the roots is 7 or zero, according as n is or is
not a multiple of 7.

Sol. (a) We have to evaluate (1)1/n

  (1)1/n = (cos 0 + i sin 0)1/n = (cos 2kπ + i sin 2kπ)1/n

= cos 
2k

n

�
 + i sin 

2k

n

�
, where k = 0, 1, 2, ....., (n – 1)

∴ nth roots of unity are

1, cos 
2 2 4 4 6 6

sin , cos sin , cos sini i i
n n n n n n

� � � � � �
� � � , .....,

cos 
2( 1) 2( 1)

sin
n n

i
n n

� � � �
�

Let cos 
2

n

�
 + i sin 

2

n

�
 = λ

∴ nth roots of unity are
1, λ, λ2, λ3 ....., λn – 1, which forms a G.P. with first term = 1 and C.R. = λ

Now sum of  these roots = 1 + λ + λ2 + ...... + λn – 1

= 
1(1 )

1

n� &
� &

, where λ ≠  1 sum of G.P. = 
(1 )

1

na r

r

�
�

Now,     λn = 
2 2

cos sin
n

i
n n

� �� ��� �	 

 = cos 2π + i sin 2π = 1

∴ Sum = 
1 1

1

�
� &

 = 0

Their product = 1 ◊ λ ◊ λ2 ...... λn–1 = λ1 + 2 + 3 ......  (n – 1) = 
( 1)

2

n n�
&  = 

( 1)
22 2

cos sin

n n

i
n n

�

� �� ��� �� �

= cos 
2 ( 1) 2 ( 1)

. sin .
2 2

n n n n
i

n n

� � � �� � � ��� � � �	 
 	 

 = cos (n – 1) π + i sin (n – 1)π

= (–1)n – 1 + 0 = (–1)n–1.
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(b) We have to evaluate (1)1/7

(1)1/7 = (cos 0 + i sin 0)1/7 = [cos (2nπ + 0) + i sin (2nπ + 0)]1/7

= cos 
2

7

n�
 + i sin 

2

7

n�
, where n = 0, 1, 2, 3, 4, 5, 6

∴ The seventh roots of unity are

cos 0 + i sin 0; cos 
2

7

�
 + i sin 

2

7

�
; cos 

4

7

�
+ i sin 

4

7

�
 cos 

6

7

�
 + i sin 

6

7

�
;

cos 
8

7

�
 + i sin 

8

7

�
; cos 

10

7

�
 + i sin 

10

7

�
; cos 

12

7

�
 + i sin 

12

7

�
.

The nth powers of the roots are

1; cos 
2

7

n�
 + i sin 

2

7

n�
; cos 

4

7

n�
 + i sin 

4

7

n�
; cos 

6

7

n�
 + i sin 

6

7

n�
; cos 

8

7

n�
 + i sin 

8

7

n�
;

 cos 
10

7

n�
 + i sin 

10

7

n�
; cos 

12

7

n�
 + i sin 

12

7

n�

or 1, x, x2, x3, x4, x5, x6, where x = cos 
12

7

n�
 + i sin 

12

7

n�

If n is not a multiple of 7, x ≠  1

∴  Reqd. sum = 1 + x + x2 + ..... + x6 = 
771(1 ) 1 2 2

1 cos sin
1 1 7 7

x n n
i

x x

 �� � �� �� � �� �� �� �� � � �� �

=
1

1 x�
 [1 – (cos 2nπ + i sin 2nπ)] = 

1

1 x�
 [1 – 1] = 0

If n is a multiple of 7, let n = 7 m, where m is an integer.

x = cis 
2

7

n�
 = cis 2mπ = 1.

∴ Required sum = 1 + x + x2 + ..... + x6 = 1 + 1 + 1 + 1 + 1 + 1 + 1 = 7.
Example 2. Find the values of (– 1)1/6.
Sol. – 1 = cos π + i sin π
∴ (– 1)1/6 = (cos π + i sin π)1/6 = [cos (2nπ + π) + i sin (2nπ + π)]1/6

= cos 
(2 1)

6

n � �
 + i sin 

(2 1)

6

n � �
, where n = 0, 1, 2, 3, 4, 5

Putting n = 0, 1, 2, 3, 4, 5, the required values are

cos 
6

�
 + i sin 

6

�
 ; cos 

2

�
 + i sin 

2

�
 ; cos 

5

6

�
 + i sin 

5

6

�
;

cos 
7

6

�
 + i sin 

7

6

�
 ; cos 

3

2

�
 + i sin 

3

2

�
 ; cos 

11

6

�
 + i sin 

11

6

�

or
3

2
 + i . 

1

2
 ; 0 + i ◊ 1 ; cos 

6

�� �� �� �	 

 + i sin 

6

�� �� �� �	 

 ;

cos 
6

�� �� �� �	 

 + i sin 

6

�� �� �� �	 

 ; 0 + i(– 1) ; cos 2

6

�� �� �� �	 

 + i sin 2

6

�� �� �� �	 


or
3

2

i�
 ; i ; – cos 

6

�
 + i sin 

6

�
 ; – cos 

6

�
 – i sin 

6

�
 ; – i ; cos 

6

�
 – i sin 

6

�

or
3

2

i�
 ; i ; 

3

2

i� �
 ; 

3

2

i� �
 ; – i ; 

3

2

i�
or ±  i ; 

3

2

i�
 ; 

3

2

i� �
.
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Example 3. Find all the values of 

3/4
1 3 i

2 2

� �
�� �� �

 and show that their continued product is 1.

(P.T.U., Dec. 2011, 2012)

Sol. Let     
1 3

.
2 2

i�  = r (cos θ + i sin θ)

Equating real and imaginary parts r cos θ = 
1

2
 , r sin θ = 

3

2
. . .(1)

Squaring and adding, r2 = 
1 3

4 4
�  = 1 ∴ r = 1

From (1),    cos θ = 
1 1

2 2r
	  ; sin θ = 

3 3

2 2r
�

Both these equations are satisfied when θ = 
3




∴
1

2
 + i ◊ 

3

2
 = cos 

3

�
 + i sin 

3

�

3/4
1 3

2 2

i� �
�� �� �

=  

1/43

cos sin
3 3

i
� �
 
� �� �� �	 
 �� �

 = (cos π + i sin π)1/4

=  [cos (2nπ + π) + i sin (2nπ + π)]1/4 = cos 
(2 1)

4

n � �
 + i sin 

(2 1)

4

n � �

Putting n = 0, 1, 2, 3, the required values are

cos 
4



+ i sin 

4



 ; cos 

3

4



 + i sin 

3

4



 ; cos 

5

4



 + i sin 

5

4



 ; cos 

7

4



 + i sin 

7

4




i.e.,
1 1 1 1

, , ,
2 2 2 2

i i i i� � � � � �
i.e.,

1 1
,

2 2

i i� � �
 .

The required  product = cos  
3 5 7

4 4 4 4


 
 
 
� �� � �� �	 

 + i sin 

3 5 7

4 4 4 4


 
 
 
� �� � �� �	 

= cos 4π + i sin 4 π = 1.

Example 4. Prove that 

n n
1 i 3 1 i 3

2 2

� � � �� � � �
�� � � �� � � �

 has the value –1, if n = 3k ±  1 and the value 2, if

n = 3k, where k is an integer.

Sol. Let
1

2
�  = r cos θ,

3

2
 = r sin θ

Squaring and adding
1 3

4 4
�  = r2 ∴ r = 1

∴ cos θ =
1

2
� , sin θ = 

3

2
⇒ θ = 

2

3

�
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∴ 1 3 1 3

2 2

n n
i i� � � �� � � �

�� � � �� � � �
 = (r cos θ + i r sin θ)n + (r cos θ – i r sin θ)n

= rn [cos nθ + i sin nθ + cos nθ – i sin nθ] = 2rn cos nθ

= 2 cos 
2

3

n�

If n = 3k ±  1

Then
1 3 1 3

2 2

n n
i i� � � �� � � �

�� � � �� � � �
 = 2 cos 

2

3

�
 (3k ± 1) = 2 cos 

2
2

3
k

�� �� �� �	 


= 2 cos 
2

3

�
 = 2 

1

2
� ��� �	 


 = – 1

If n = 3k

Then
1 3 1 3

2 2

n n
i i� � � �� � � �

�� � � �� � � �
 = 2 cos 

2

3

�
 (3k)

= 2 cos 2kπ = 2.1 = 2

Hence
1 3 1 3

2 2

n n
i i� � � �� � � �

�� � � �� � � �
 = – 1 if n = 3k ±  1 i.e., n is not a multiple of 3

= 2 if n = 3k i.e., n is a multiple of 3.

Example 5. Prove that 
1

n(a ib)�  + 
1

n(a ib)�  has n real values and find those of  (1 + i 3 )1/3 + (1 – i 3 )1/3.

Sol. Let  a = r cos θ, b = r sin θ

Squaring and adding,  a2 + b2 = r2 ∴ r = 2 2a b�

Dividing, tan θ =
b

a
∴ θ = tan–1 

b

a

∴
1 1

( ) ( )n na ib a ib� � �  = 
1 1

[ (cos sin )] [ (cos sin )]n nr i r i� � � � � � �

=
1 1 1 1

[cos (2 ) sin (2 )] [cos (2 ) sin (2 )]n n n nr r i r r r i r� � � � � � � � � � � � � � �

=
1

2 2 2 2
cos sin cos sinn r r r r

r i i
n n n n

� � � � � � � � � � � �	 
� � �� � �

=
1

nr   . 2 cos 
2r

n

� � �
 = 2 

1
2 2 1/2[( ) ]na b�  cos 

2r

n

� � �	 

� � �

= 2
1

2 2 2( ) na b�  cos 11
2 tan

b
r

n a
�	 
� �� �� �� �	 
 �

which is real and will give n real values corresponding to r = 0, 1, 2, ......, (n – 1).

Putting a = 1, b = 3  and n = 3, the three required values of (1 + i 3 )1/3 + (1 – i 3 )1/3 are
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2(1 + 3)1/6 cos 11 3
2 tan

3 1
r �� �� �
� �	 
� � �	 
� �

, where r = 0, 1, 2

i.e., 2 ◊ (22)1/6 cos 
1

2
3 3

r
� ��� �� �� 	
 �� � �

, where r = 0, 1, 2

i.e., 2.21/3 cos 
6

9

r� � �
, where r = 0, 1, 2

i.e., 24/3 ◊ cos 
9

�
 ; 24/3 ◊ cos 

7

9

�
 ; 24/3 ◊ cos 

13

9

�

i.e., 24/3 ◊ cos 
9

r�
, where r = 1, 7, 13

Example 6. If a = cos 
2

7

�
 + i sin 

2

7

�
, b = a + a2 + a4, c = a3 + a5 + a6, show that b and c are the roots of

the equation x2 + x + 2 = 0.

Sol. a7 =
7

2 2
cos sin

7 7
i

� �� ��
 �� 
 = cos 2π + i sin 2π = 1

Now,   b + c = a + a2 + a3 + a4 + a5 + a6 = (1 + a + a2 + a3 + a4 + a5 + a6) – 1

=
71(1 )

1

a

a

�
�

 – 1
(1 )

S
1

n

n
a r

r

� ��
�� 	

�� 	� �

=
1

1 a�
 [1 – 1] – 1  = – 1 [� a7 = 1]

and bc = (a + a2 + a4)(a3 + a5 + a6) = a4 + a6 + a7 + a5 + a7 + a8 + a7 + a9 + a10

= a4 + a6 + 1 + a5 + 1 + a + 1 + a2 + a3

[� a7 = 1 ∴ a8 = a7 . a = a etc.]
= (1 + a + a2 + a3 + a4 + a5 + a6) + 2

=
71(1 )

1

a

a

�
�

 + 2 = 
1

1 a�
 (1 – 1) + 2 = 2

∴ The equation whose roots are b and c is
x2 – (b + c)x + bc = 0 or x2 – (– 1)x + 2 = 0 or x2 + x + 2 = 0.

Example 7. Solve the following equations:
(a) x6 + x5 + x4 + x3 + x2 + x + 1 = 0
(b) x4 – x3 + x2 – x + 1 = 0 (P.T.U., May 2003, 2005)
(c) x7 + x4 + x3 + 1 = 0 (P.T.U., Dec., 2010)
(d) x9 – x5 + x4 – 1 = 0.
Sol. (a) Given equation is x6 + x5 + x4 + x3 + x2 + x + 1 = 0 …(1)
Multiplying both sides by (x – 1), we have x7 – 1 = 0 …(2)
⇒ x7 = 1

∴ x = (1)1/7 = (cos 0 + i sin 0)1/7 = (cos 2nπ + i sin 2nπ)1/7 = cos 
2

7

n�
 + i sin 

2

7

n�

Putting n = 0, 1, 2, 3, 4, 5, 6 the seven roots of (2) are

cos 0 + i sin 0 ; cos 
2

7

�
 + i sin 

2

7

�
 ; cos 

4

7

�
 + i sin 

4

7

�
 ;
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cos 
6

7

�
 + i sin 

6

7

�
 ; cos 

8

7

�
 + i sin 

8

7

�
 ;

cos 
10

7

�
 + i sin 

10

7

�
 ; cos 

12

7

�
 + i sin 

12

7

�
.

But  cos 
8

7

�
 + i sin 

8

7

�
 = cos 

6
2

7

�� �� �
 �� 
 + i sin 

6
2

7

�� �� �
 �� 
 = cos 

6

7

�
 – i sin 

6

7

�

cos 
10

7

�
 + i sin 

10

7

�
 = cos 

4
2

7

�� �� �
 �� 
 + i sin 

4
2

7

�� �� �
 �� 
 = cos 

4

7

�
 – i sin 

4

7

�

cos 
12

7

�
 + i sin 

12

7

�
 = cos 

2
2

7

�� �� �
 �� 
 + i sin 

2
2

7

�� �� �
 �� 
 = cos 

2

7

�
 – i sin 

2

7

�

∴ Roots of (2) are 1, cos 
2

7

�
 ±  i sin 

2

7

�
 ; cos 

4

7

�
 ±  i sin 

4

7

�
 ; cos 

6

7

�
 ±  i sin 

6

7

�

or 1, cos 
7

r�
 ±  i sin 

7

r�
, where r = 2, 4, 6.

The root 1 corresponds to x – 1 = 0
∴ The remaining six roots are those of the given equation.

Hence the roots of (1) are given by cos 
7

r�
 ±  i sin 

7

r�
 , where r = 2, 4, 6.

(b) Given equation is x4 – x
3 + x2 – x + 1 = 0

Multiply both sides by x + 1 we have (x + 1) (x4 – x3 + x2 – x + 1) = 0
i.e., x5 + 1 = 0 i.e.,  x5 = – 1 = cos π + i sin π

∴ x5 = cos (2nπ + π) + i sin (2nπ + π)
x = (cos (2n + 1) π + i sin (2n + 1) π)1/5

x = cos 
(2 1)

5

n � �
 + i sin 

(2 1)
,

5

n � �
 where n = 0, 1, 2, 3, 4.

Putting n = 0, 1, 2, 3, 4 five roots of x5 + 1 = 0 are

cos 
5

�
 + i sin 

5

�
, cos 

3

5

�
 + i sin 

3

5

�
, cos π + i sin π,

cos 
7

5

�
 + i sin 

7

5

�
, cos 

9

5

�
 + i sin 

9

5

�

or cos 
5

�
 + i sin 

5

�
, cos 

3

5

�
 + i sin 

3

5

�
, – 1,

cos 
3

5

�
 – i sin 

3

5

�
, cos 

5

�
 – i sin 

5

�

or the roots are – 1, cos 
5

�
 ±  i sin 

5

�
, cos 

3

5

�
 ±  i sin 

3

5

�
.

root x = – 1 corresponds to x + 1 = 0

∴ The remaining four roots i.e., cos 
5

�
 ±  i sin 

5

�
, cos 

3

5

�
 ±  i sin 

3

5

�
 are roots of the given equation.

(c) Given equation is x7 + x4 + x3 + 1 = 0 i.e., x4(x3 + 1) + (x3 + 1) = 0
i.e.,  (x4 + 1)(x3 + 1) = 0 …(1)
either   x4 + 1 = 0 or x3 + 1 = 0
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Now, x4 = – 1 ⇒ x = (– 1)1/4 x3 = – 1 ⇒ x = (– 1)1/3

∴ x = (cos π + i sin π)1/4 ∴ x = (cos π + i sin π)1/3

= [cos (2nπ + π) + i sin (2nπ + π)]1/4  = [cos (2nπ + π) + i sin (2nπ + π)]1/3

= cos 
(2 1) (2 1)

sin
4 4

n n
i

� � � �
� = cos 

(2 1) (2 1)
sin

3 3

n n
i

� � � �
�

Putting n = 0, 1, 2, 3, the four roots of Putting n = 0, 1, 2 ; the three roots of
x4 + 1 = 0 are x3 + 1 = 0 are

cos 
4

�
 + i sin 

4

�
 ; cos 

3

4

�
 + i sin 

3

4

�
 cos 

3

�
 + i sin 

3

�
 ; cos π + i sin π ;

cos 
5

4

�
 + i sin 

5

4

�
 ; cos 

7

4

�
 + i sin 

7

4

�
cos 

5

3

�
 + i sin 

5

3

�

i.e., cos 
4

�
 + i sin 

4

�
 ; cos 

3

4

�
 + i sin 

3

4

�
 ; i.e., cos 

3

�
 + i sin 

3

�
 ; – 1 ; cos 

3

�
 – i sin 

3

�

cos 
3

4

�
 – i sin 

3

4

�
 ; cos 

4

�
 – i sin 

4

�

i.e.,
1 1

;
2 2

i i� � �
i.e.,

1 3

2

i�
 ; – 1

Hence the roots of (1) are – 1, 
1 1 1 3

; ;
22 2

i i i� � � �
 .

(d) Given equation is x9 – x5 + x4 – 1 = 0
 x5 (x4 – 1) + (x4 – 1) = 0 or (x5 + 1) (x4 – 1) = 0

∴    x5 + 1 = 0 or x4 – 1 = 0
x5 = – 1 x4 = 1 = cos 0 + i sin 0 = cos 2kπ + i sin 2kπ

x5 = cos π + i sin π ∴ x = cos 
2

4

k�
 + i sin 

2

4

k�

x5 = cos (2kπ + π) + i sin (2kπ + π)  k = 0, 1, 2, 3

∴ x = cos 
2 1

5

k � π + i sin 
2 1

5

k � π = cos 
2

k�
 + i sin 

2

k�

where k = 0, 1, 2, 3, 4 where k = 0, 1, 2, 3

∴ x = cos 
5

�
 + i sin

5

�
, cos

3

5

�
 + i sin 

3

5

�
, ∴   x = cos 0 + i sin 0,

cos 
5

5

�
 + i sin 

5

5

�
, cos 

7

5

�
 + i sin 

7

5

�
, cos 

2

�
 + i sin 

2

�
,

cos 
9

5

�
 + i sin 

9

5

�
cos π + i sin π,

x = cos 
5

�
 + i sin 

5

�
, cos 

3

5

�
 + i sin 

3

5

�
, cos 

3

2

�
 + i sin 

3

2

�

cos π + i sin π, cos 
3

5

�
 – i sin 

3

5

� ∴ x = 1, i, – 1, – i

cos 
5

�
 – i sin 

5

�
= ±  1, ±  i

∴ x = cos 
5

�
 ±  i sin 

5

�
, cos 

3

5

�
 ±  i sin 

3

5

�
, – 1, ±  1, ±  i
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Example 8. Solve x12 – 1 = 0 and find which of its roots satisfy the equation x4 + x2 + 1 = 0.
Sol.  x12 – 1 = 0 ∴ x12 = 1

x12 = cos 0 + i sin 0 = cos 2nπ + i sin 2nπ

∴ x = cos 
2

12

n�
 + i sin 

2

12

n�
; n = 0, 1, 2, 3, ...,11

∴ x = cos 
6

n�
 + i sin 

6

n�
; n = 0, 1, 2, 3, ..., 11

∴ x = cis 0, cis 
6

�
, cis 

2

6

�
, cis 

3

6

�
, cis 

4

6

�
, cis 

5

6

�
,

cis 
6

6

�
, cis 

7

6

�
, cis 

8

6

�
, cis 

9

6

�
, cis 

10

6

�
, cis 

11

6

�

= 1, cis 
π
6

, cis 
3

�
, i, cis 

2

3

�
, cis 

5

6

�
, – 1, cis 

5

6

�� ��
 �� 
,

cis 
2

3

�� ��
 �� 
, – i, cis 

3

�� ��
 �� 
, cis 

6

�� ��
 �� 

= ± 1, ±  i, cis 
6

�� ��
 �� 
, cis 

3

�� ��
 �� 
, cis 

2

3

�� ��
 �� 
, cis 

5

6

�� ��
 �� 

= ± 1, ±  i, 
3

2

i�
, 

1 3

2

i�
, 

1 3

2

i� �
, 

3

2

i� �

= ± 1, ±  i, ±  
3

2

i�
, ±  

1 3

2

i�

Now,  x4 + x2 + 1 = 0

x2 = 
1 3

2

i� �
 = cos 

2

3

�
 ±  i sin 

2

3

�

= cos 
2

2
3

k
�� �� �
 �� 

 ±  i sin 
2

2
3

k
�� �� �
 �� 

∴ x = cos 
1 2

2
2 3

k
�� �� �
 �� 

 ±  i sin 
1 2

2
2 3

k
�� �� �
 �� 

, where k = 0, 1

∴ x = cos 
3

�
 ±  i sin 

3

�
, cos 

4

3

�
 ±  i sin 

4

3

�

= 
1 3

2

i�
, 

1 3

2

i� �

 = 
1 3

2

i�
, – 

1 3

2

i�
 = ±

1 3

2

i�

∴ Last four roots of x12 – 1 = 0 are the roots of x4 + x2 + 1 = 0.
Example 9. Prove  by  the  use  of  De-Moivre’s  Theorem  that the roots of the equation (x – 1)n = xn

(n being a +ve integer) are 
1 r

1 i cot
2 n

�� ��� 	� �
 , where r has the values 1, 2, ......, (n – 1).

Sol. (x – 1)n = xn ∴
1

n
x

x

�� �

 �� 

 = 1

or
1

n
x

x

�� �

 �� 

 = cos 0 + i sin 0 = cos 2rπ + i sin 2rπ
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Taking the nth root of both sides

1x

x

�
 =

1

(cos 2 sin 2 ) nr i r� � �  = cos 
2r

n

�
 + i sin 

2r

n

�

1 – 
1
x

 = cos 
2r

n

�
 + i sin 

2r

n

�
r = 0, 1, 2, ....., (n – 1)

When r = 0, we have 
1x

x

�
 = cis 0 = 1 or x – 1 = x or – 1 = 0, which is impossible

Actually the given equation is of degree (n – 1) and not n since xn cancels on both sides.
∴   r = 1, 2, 3, ......, (n – 1)

Putting
2r

n

�
 = θ, it becomes

 
1

x
 = 1 – cos θ – i sin θ

 x =
2

1 1 1

1 cos sin 2 sin . 2 sin cos 2 sin sin cos
2 2 2 2 2 2

i i i

� �
� � � � � �� � � � � �� �� � �

=
2 2 2

sin cos sin cos 12 2 2 2 1 cot
2 22 sin2 sin sin cos

22 2 2

i i
i

i

� � � �
� � �� �� � �� ��� � �	 
 � �� �� �

Hence x =
1

1 cot
2

r
i

n

�� ��� �� �
, where r = 1, 2, ......, (n – 1).

Example 10. Use De-Moivre’s Theorem to solve the equation (z – 1)5 + z5 = 0. (P.T.U., Dec. 2012)

Sol. (z – 1)5 =  – z5

5
1z

z

�	 

 �� �

 = – 1 = cos p + i sin p

 = cos (2k + 1) p + i sin (2k + 1) p

1z

z

�
 =

2 1 2 1
cos sin

5 5
1

k k
i

� �
� � �

 where, 0, 1, 2, 3, 4k �

 By componendo dividendo
1z z

z

� �
 =

2 1 2 1
cos sin 1

5 5
1

k k
i

� �
� � � �

\ z =
1

2 1 2 1
1 cos sin

5 5
k k

i
� �

� � � �
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=
2

1
2 1 2 1 2 1

2 sin 2 sin cos
10 10 10
k k k� � �

� � � �

=
2

1

2 1 2 1
2 sin 1 cot

10 10

k k
i

� �� �� � �	 
� �

=
2 2

2 1
1 cot

10
2 1 2 1

2 sin cosec
10 10

k
i

k k

�
� �

� �
� �

\ z =
1 2 1

1 cot
2 10

k
i

�	 
� � �� �
, where k = 0, 1, 2, 3, 4

Put z = 0, 1, 2, 3, 4, we get

z =
1 1 3

1 cot , 1 cot
2 10 2 10

i i
� �	 
 	 
� � �  �� � � �

,

1 5 1 7 1 9
1 cot , 1 cot , 1 cot

2 10 2 10 2 10
i i i

� � �	 
 	 
 	 
� � � �  �  �� � � � � �

9
cot

10

�
 = cot cot

10 10

� �	 
� � � � �� �

7
cot

10

�
 =

3 3
cot cot

10 10

� �	 
� � � � �� �
5

cot
10

�
 = cot 0

2

�
�

\ z =
1 1 3

1 cot , 1 cot , 0
2 10 2 10

i i
� �	 
 	 
� � �  �� � � �

Hence  z = 0, 
1 1 3

1 cot , 1 cot
2 10 2 10

i i
� �	 
 	 
� � �  �� � � �

.

Example 11. If (3 + x)3 – (3 – x)3 = 0, then prove that x = 3i tan 
r

3

�
, r = 0, 1, 2. (P.T.U., May 2010)

Sol. Given (3 + x)3 – (3 – x)3 = 0

or
3

3

3

x

x

	 
�
 ��� �

= 1 = cis 2rp

or
3

3

x

x

�
�

 = � �

1
3cis 2 �r  = cis 

2

3

r�
; r = 0, 1, 2

or
3

3

x

x

�
�

=

2
cis

3
1

r�

Apply componendo dividendo

3 3

3 3

x x

x x

� � �
� � �

= 

2
cis 1

3
2

cis 1
3

r

r

�
�

�
�
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6

2x
= 

2
1 cis

3
2

1 cis
3

r

r

�
�

�� �� �� �	 


3

x
� = 

2 2
1 cos sin

3 3
2 2

1 cos sin
3 3

r r
i

r r
i

� �
� �

� �
� �

 = 

2

2

2 cos 2 sin cos
3 3 3

2 sin 2 sin cos
3 3 3

r r r
i

r r r
i

� � �
�

� � �
�

= 
2 cos cos sin

3 3 3

2 sin sin cos
3 3 3

r r r
i

r r r
i

� � �� �� �� �
� � �� �� �� �

 = 
cot cis

3 3.
sin cos

3 3

� �

� �� � �� �� �

r r

r ri
i

or
3

x
� = 

cot cis
3 3

cis
3

r r

ri

� �

��
 = i cot 

3

r�

or x = – 
3

tan
3

r

i

�

or x = 3i tan 
3

r�
, where r = 0, 1, 2 .

Example 12. Show that the roots of (x + 1)6 + (x – 1)6 = 0 are ±  i cot 
2k 1

12

�
 π , (k = 0, 1, 2) and deduce that

(i) (x + 1)6 + (x – 1)6 = 2 
2

2 2

k 0

2k 1
x cot

12�

�� �� �� �	 
�

(ii) cot 
12

�
 cot 

3

12

�
 cot 

5

12

�
 = 1 (iii) sin 

12

�
 sin 

3

12

�
 sin 

5

12

�
 = 

1

4 2
 .

Sol. The given equation is (x + 1)6 = – (x – 1)6

⇒
6

1

1

x

x

� ��
� ��	 


 = – 1 = cis π

⇒ 1

1

x

x

�
�

 = (cis π)1/6 = [cis (2nπ + π)]1/6 = cis 
2 1

6

n �
 π, where n = 0, 1, 2, ......, 5

= cos θ + i sin θ, where θ = 
2 1

6

n �
 π

By componendo and dividendo 
1 1 cos sin 1

1 1 cos sin 1

x x i

x x i

� � � � � � �
�

� � � � � � �

 x = 
2

2

(1 cos ) sin 2 cos /2 2 sin /2 cos /2

(1 cos ) sin 2 sin /2 2 sin /2 cos /2

i i

i i

� � � � � � � �
�

� � � � � � � � � �

= 
cos /2 sin /2

cot
2 sin /2 cos /2

i

i

� � � �
� � � �

 = 
1

cot
2i

�
 
cos /2 sin /2

cos /2 sin /2

i

i

� � �
� � �
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= 
1

i
 cot 

22

i

i

�
�  cot 

2 1

12

n �
 π = – i cot 

2 1

12

n �
 π , where n = 0, 1, 2, 3, 4, 5.

when n = 0, x = – i cot 
12

�
when n = 1, x = – i cot 

3

12

�

when n = 2, x = – i cot 
5

12

�
when n = 3, x = – i cot 

7

12

�
 = – i cot 

5

12

�� �� �� �	 

 = i cot 

5

12

�

when n = 4, x = – i cot 
9

12

�
 = – i cot 

3

12

�� �� �� �	 

 = i cot 

3

12

�

when n = 5, x = – i cot 
11

12

�
 = – i cot 

12

�� �� �� �	 

 = i cot 

12

�

∴ The roots of the given equation are

±  i cot 
12

�
, ±  i cot 

3

12

�
 , ±  i cot 

5

12

�
or ±  i cot 

2 1

12

k �
 π, where k = 0, 1, 2.

(i) Since the roots of (x + 1)6 + (x – 1)6 = 0 are ±  i cot 
12

�
, ±  i cot 

3

12

�
, ±  i cot 

5

12

�

∴   (x + 1)6 + (x – 1)6 = λ cot cot
12 12

x i x i
� �� � � �� �� � � �	 
 	 


× 
3 3 5 5

cot cot cot cot
12 12 12 12

x i x i x i x i
� � � �� � � � � � � �� � � �� � � � � � � �	 
 	 
 	 
 	 


= λ 2 2 2 2 2 2 2 2 23 5
cot cot cot

12 12 12

� � �� � � � � �� � �� � � � � �	 
 	 
 	 

x i x i x i

= λ 2 2 2 2 2 23 5
cot cot cot

12 12 12
x x x

� � �� � � � � �� � �� � � � � �	 
 	 
 	 


Equating co-efficients of x6, 1 + 1 = λ ⇒ λ = 2

∴     (x + 1)6 + (x – 1)6 = 2 2 2 2 2 2 23 5
cot cot cot

12 12 12
x x x

� � �� � � � � �� � �� � � � � �	 
 	 
 	 

…(1)

= 2 
2

2 2

0

2 1
cot

12
k

k
x

�

�� �� �� �	 
�  .

Note. Just as Σ represents sum, II represents product.

(ii) Putting x = 0 in (1), 1 + 1 = 2 cot2 
12

�
 cot2 

3

12

�
 cot2 

5

12

�

⇒ cot 
12

�
 cot 

3

12

�
 cot 

5

12

�
 = 1

taking ve sign with square root since all the angles involved are less than
2

�� ��� �	 


(iii) Putting x = 1 in (1), 26 = 2 2 2 23 5
1 cot 1 cot 1 cot

12 12 12

� � �� � � � � �� � �� � � � � �	 
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⇒ cosec2 
12

�
 cosec2 

3

12

�
 cosec2 

5

12

�
 = 25 = 32

⇒ sin2 
12

�
 sin2 

3

12

�
 sin2 

5

12

�
 = 

1

32
⇒ sin 

12

�
 sin 

3

12

�
 sin 

5

12

�
 = 

1 1

32 4 2
� .

��������	�
�������

1. Find all the values of
(i) (1)1/4 (ii) (– 1)1/5 (iii) (i)1/3

(iv) (– i)1/6 (v) (32)1/5 (vi) (– 8i)1/3 (P.T.U., May 2012)

(vii) 1/4( 1)� (P.T.U., Dec. 2003)

2. Find the 5th roots of unity and prove that the sum of their nth powers always vanishes unless n be a multiple
of 5, n being an integer, and then the sum is 5.

3. Find all the values of
(i) (–1 + i)2/5 (ii) 1/3(1 3)i�

(iii) (1 + i)1/4 (P.T.U., Dec. 2010) (iv) 3/2( 1 3)i� � .

4. Find all the values of (1 + i 3 )3/4 and show that their continued product is 8.

5. If w is a complex cube root of unity, prove that 1 + w + w2 = 0. (P.T.U., May 2011)

6. Express r = 
( 3 1) ( 3 1)

2 2

i� � �
 in the form r (cos q + i sin q) and derive all the values of r1/4.

7. Find all the values of (1 + i)1/3 and obtain their product.
8. Use De-Moivre’s theorem to solve the following equations:

(i) x5 – 1 = 0 (ii)  x7 + 1 = 0
(iii) x4 + x3 + x2 + x + 1 = 0 (iv) x4 + x2 + 1 = 0.

9. Solve the following equations:
(i) (1 + x)n = (1 – x)n (ii) (5 + x)5 – (5 – x)5 = 0

(iii) z4 – (1 – z)4 = 0
[Hint: Consult S.E. 9] (P.T.U., May 2012)

(iv) (1 + x)3 = i(1 – x)3.

10. Show that the roots of the equation (1 + x)2n + (1 – x)2n = 0 are given by ± i tan 
(2 1)

4

r

n

� �
, where

r = 1, 2, 3, ....., n.

�����	�

1. (i) ±1, ± i (ii) – 1, cos 
5

�
± i sin 

5

�
 , cos 

3

5

�
 ± i sin 

3

5

�

(iii) – i, 
3

2

i� �
(iv) ± cos sin

12 12

r r
i

� �� ��� �	 

 , r = 3, 7, 11

(v) 2, 2 
2 2

cos sin
5 5

i
� �� ��� �	 


 , 2 
4 4

cos sin
5 5

i
� �� ��� �	 


(vi) 2i, ± 3  – i

(vii)
1 1

,
2 2

i i� � �
.

2. 1, cis 
2

5

�
, cis 

4

5

�
, cis 

6

5

�
, cis 

8

5

�
or 1, 

2 2
cos sin ,

5 5
i

� �
�  

4 4
cos sin

5 5
i

� �
�
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3. (i) 21/5 cis 
(4 3)

10

n � �
, n = 0, 1, 2, 3, 4 (ii) 21/3 cos sin

9 9

r r
i

� �� ��� �	 

 , r = 1, 7, 13

(iii) ± 21/8 cis 
16

r�
, where r = 1, 9 (iv) ± 2 2

4.
3

4 1
2 .

2

i�
,

3

4 1
2 .

2

i� �
6. r = cis 

5

12

�
 ; ± cis 

48

r�
, where r = 5, 29

7. 21/6  cis ; 1, 9,17 ;
12

r
r

�
�  product = 1 + i

8. (i) 1, cos 
2

5

�
 ± i sin 

2

5

�
, cos 

4

5

�
 ± i sin 

4

5

�
(ii) – 1, cos 

7

r�
 ± i sin 

7

r�
, where r = 1, 3, 5

(iii) cos 
5

r�
 ± i sin 

5

r�
, where r = 2, 4 (iv)

1 3 1 3
,

2 2

i i� � �

9. (i) i tan 
r

n

�
 , where r = 0, 1, 2, ......, (n – 1) (ii) 5i tan 

5

r�
, where r = 0, 1, 2, 3, 4

(iii) 
1 1 1

, 1
2 2 2

i
� �

�� �	 

(iv) i tan 

(4 1)

12

r � �
, where r = 0, 1, 2.

������� �	
��������θ�����������������������
�����θ��������


������� ��������

Let x = cos θ + i sin θ, ∴ xn = cos nθ + i sin nθ

then
1

x
 = cos θ – i sin θ, ∴ 1

nx
 = cos nθ – i sin nθ

Adding x + 
1

x
 = 2 cos θ ; xn + 

1
nx

 = 2 cos nθ

∴ (2 cos θ)n =
1

n

x
x

� ��� �	 

 = nC0xn + nC1xn–1 ◊ 

1

x
 + nC2 x

n–2 ◊ 
2

1

x
 + ....

+ nCn–2 x
2 ◊ 

2

1
nx �

 + nCn–1x
1 ◊ 

1

1
nx �

 + nCn ◊ 
1
nx

Since in a binomial expansion co-efficients of terms equidistant from the beginning and end are equal i.e.,
nCn = nC0 ; nCn–1 = nC1 etc. we combine the first term with the last, the second with the last but one and so on.

Case I. If n is even

Number of terms = n + 1 i.e., odd

There is only one middle term which is left by itself as the last term after grouping in pairs.

The middle term =
1

2

Tn
�

 = nCn/2
2

/2

1
n

n

nx
x

�
�  = nCn/2 x

n/2 ◊ 
/2

1
nx

 = nCn/2

∴ (2 cos θ)n = nC0

1n
nx

x

� ��� �� �
 + nC1 2

2

1n
nx

x
�

�
� ��� �� �

 + nC2 
4

4

1n
nx

x
�

�
� ��� �� �

 + ...... + nCn/2
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But xn + 
1
nx

 = 2 cos nθ, xn–2 + 
2

1
nx �

 = 2 cos (n – 2) θ etc.

∴ 2n cosn θ = nC0 ◊ 2 cos nθ + nC1 ◊ 2 cos (n – 2)θ + nC2 ◊ 2 cos (n – 4)θ + .... + nCn/2
Hence if n is even

cosn θ =
1

1

2n�
 �
�
�

nC0 cos nθ + nC1 cos (n – 2) θ + nC2 cos (n – 4) θ + .... /2
1

C
2

n
n
	
 ��

If  n is even

Last term of cosn θ =
2

1
C

2

n
nn

=
2

1 1 !
C

2 2 ! !
2 2

n
nn n

n
n n

n
�  �

� � � ��� � � � �  �

!
C

! ( ) !
n

r
n

r n r

� 	
�� ��� �

�

=
2

1 !

2
!

2

n

n

n
�
 �� �
� �� �� 	
 �

Case II. If n is odd

Number of terms = n + 1 i.e., even

There are two middle terms 1
2

Tn �  and 3
2

Tn �

1

2

Tn�  = 1
1

2

Tn �
�

 = 
1 1

2 2
1 1 11 1

2 2 22 2

1 1
C . . C . C

n n
nn n n

n n nn nx x

x x

� �
�

� � �� �� � x.

3

2

Tn �  = 
1

2
1 1 11

2 2 2

1
T C . .

n
nn

n n nx

x

�
�

� � ��
�  = 

1

2
1 11

2 22

1 1
C . C .

n
n n

n nnn
x

x
x

�

� ���
�

Using C Cn n
r n r��  we have 1 1

2 2

C C� �
�

�n n
n n

n

∴ The two middle terms pair up together

∴ (2 cos θ)n = nC0 
1n
nx

x

� ��� �� �
 + nC1 2

2

1n
nx

x
�

�
� ��� �� �

 + nC2 4
4

1n
nx

x
�

�
� ��� �� �

 + ....... + 1
2

1
Cn

n x
x�

� ��� �� �

or 2n cosn θ = nC0 . 2 cos nθ + nC1 . 2 cos (n – 2)θ + nC2. 2 cos (n – 4)θ + ..... + 1

2

Cn
n�  . 2 cos θ

Hence if n is odd

cosn θ = 
1

1

2n�
 [nC0 cos nθ + nC1 cos (n – 2)θ + nC2 cos (n – 4)θ + ...... + 1

2

Cn
n�  cos θ]
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If n is odd

Last term of cosn q = 11
2

1
C cos

2
n

nn ��
�

= 11
2

1
. C

2
n

nn ��  cos θ = 
1

1 !
.

1 12 ! !
2 2

n

n

n n
n

� � �� � � ��� � � �� 	 � 	

 . cos θ

=
1

1 !
.

1 12 ! !
2 2

n

n

n n� � 
� � � �
� � � �� � � �

 . cos θ

Note 1. The expansion of cosn θ is in terms of cosines of multiples of θ.
Note 2. Pascal’s Rule to write the binomial co-efficients.

Note 3. We see that cosn q will contain factors of the type 
1

n

x
x

� �	� �� 	
. To find coefficients of various powers of x we

will use Pascals rule of binomial coefficients which is as follow:

 The series of co-efficients in successive powers of x + 
1

x
 beginning with the power unity are as follows :

  Index (Power) Binomial Co-efficients
1 1 1
2 1 2 1
3 1 3 3  1
4 1 4 6  4  1
5 1 5 10 10  5  1
6 1 6 15 20 15  6  1
7 1 7 21 35 35 21  7 1
8 1 8 28 56 70 56 28 8  1

and so on.
Each figure is obtained by adding the figure just above it to the figure preceeding the latter (i.e., upper + left hand)

e.g., 5 + 10 35 + 21
↓ ↓
15 56

It may be observed that the expansion of 
1

n

x
x

� �	� �� 	
 starts with xn, the powers decreasing by 2 every time.

Thus 
5

1
x

x
� �	� �� 	

 = x5 + 5x3 + 10x + 
3 5

10 5 1

x x x

 
 ; binomial co-efficients being written by Pascal’s Rule.

����������	
�
����
�

Example 1. Express cos8 q in terms of cosines of multiples of q. (P.T.U., May 2006, 2014)

Sol. Let x = cos q + i sin q, then 
1

x
 = cos q – i sin q

So that    x + 
1

x
 = 2 cos q and xm + 

1
mx

 = 2 cos mq, where m is a +ve integer …(1)

From (1) we have

(2 cos q)8 =
8

1
x

x
� �	� �� 	
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By Pascal’s Rule
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1

∴ (2 cos θ)8 = x8 + 8x6 + 28x4 + 56x2 + 70 + 56 
2

1

x
 + 28

4

1

x
 + 8

6

1

x
 + 

8

1

x

= 8
8

1
x

x

� �	� �� 	
 + 8 6

6

1
x

x

� �	� �� 	
 + 28 4

4

1
x

x

� �	� �� 	
 + 56 2

2

1
x

x

� �	� �� 	
 + 70

28 cos8 θ = 2 cos 8θ + 8 . 2 cos 6θ + 28 . 2 cos 4θ + 56 . 2 cos 2θ + 70

∴ cos8 θ =
7

1

2
 [cos 8θ + 8 cos 6θ + 28 cos 4θ + 56 cos 2θ + 35]

=
1

128
[cos 8θ + 8 cos 6θ + 28 cos 4θ + 56 cos 2θ + 35]

������� �	
��������θ��������������������������������
�����

θ��������������������������������

Let x = cos θ + i sin θ ; then 
1

x
 = cos θ – i sin θ

∴    x – 
1

x
 = 2i sin θ

Also,  xn + 
1
nx

 = 2 cos nθ and xn – 
1
nx

 = 2i sin nθ

Case I. When n is even.

  (2i sin θ)n = 
1

n

x
x

� �� �� �
 = nC0 xn – nC1 xn–1 . 

1

x
 + nC2 x

n–2 . 
2

1

x
 – ......

+ nCn–2 x
2 . 

2

1
nx �

 – nCn–1 x . 
1

1
nx �

 + nCn 
1
nx

Number of terms = n + 1, i.e., odd
There is only one middle term which is left by itself as the last term after grouping in pairs.

Middle term =
/2

2

1
2 2

1
T C

n n
nn

n n x
x

�

�

� �� �� �� 	

= 2 2 2
/2

2 2

1
( 1) . C ( 1) . C

n n n
n n

n nn
x

x
� � �

∴ (2i sin θ)n = nC0 
1n
nx

x

� �	� �� 	
 – nC1 

2
2

1n
nx

x
�

�
� �	� �� 	

 + nC2 4
4

1n
nx

x
�

�
� �	� �� 	

 – ... + 2

2

( 1) . C
n

n
n�

⇒ 2n . 2( 1)
n

�  sinn θ =  nC0 . 2 cos nθ – nC1 . 2 cos (n – 2)θ  + nC2 . 2 cos (n – 4)θ –  ...... + 2

2

( 1) . C
n

n
n�

2 2 2[ ( ) ( 1) ]
n n

ni i� � ��
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⇒ sinn θ =
2

1

2 ( 1)
n

n �

 . 2[nC0 cos nθ – nC1 cos (n – 2)θ + nC2 cos (n – 4)θ – ...... + 2

2

1
( 1) . C

2

n
n

n

�
��
��

= 
2

2
0 1 21

2

( 1) 1
C cos C cos ( 2) C cos ( 4) ..... ( 1) . C

22

n
n

n n n n
nn n n n�

� ��
� �	 � � 	 
 � 	 � 
 �
� �
 �

2

2 2

1 ( 1)
is even ( 1) 1, ( 1)

( 1) ( 1)

nn
n

n n
n

� �
 ��

� � � � � � �
 �� �� �

�

Case II. When n is odd.

Number of terms = n + 1 i.e., even

There are two middle terms 1
2

Tn �  and 3
2

Tn �

 

1
1

2
2

1 1 1
1

2 2 2

1
T T C .

n
n

nn
n n n x

x

��
�

� � �
�

� � � �� �� �

= 

1 1 1

2 2 2
1 11

2 22

1
C . . ( 1) ( 1) C .

n n n
n n

n nnx x

x

� � �

� ��� � �

 

1
1

2
2

3 1 1
1

2 2 2

1
T T C .

n
n

nn
n n n x

x

�
�

�

� � �
�

� �� � �� �� 	

= 

1 1 1

2 2 2
1 11

2 22

1 1
C . . ( 1) . ( 1) C .

n n n
n n

n nnn
x

x
x

� � �

� ���
� � �

= 
1

2
1

2

1
( 1)( 1) C .

n
n

n x

�

�� �

∴ The two middle terms pair up together.

∴ (2i sin θ)n = nC0 xn – nC1 xn –1 ◊ 
1

x
 + nC2 . x

n –2 ◊ 
2

1

x
 – ......– nCn–2 x

2 ◊ 
2

1
nx �

 + nCn–1 x ◊ 
1

1
nx �

 – nCn ◊ 
1
nx

= nC0 
1n
nx

x

� ��� �� 	
 – nC1 2

2

1n
nx

x
�

�
� ��� �� 	

 + nC2 4
4

1n
nx

x
�

�
� ��� �� 	

 – ...... + 
1

2( 1)
n�

�  ◊ 1

2

1
Cn

n x
x

�
� ��� �� 	

Since xm – 
1
mx

 = 2i sin mθ

∴ 2n ◊ i ◊ 
1

2( 1)
n�

�  sinn θ = nC0 ◊ 2i sin nθ – nC1 ◊ 2i sin (n – 2)θ

 + nC2 ◊ 2i sin (n – 4)θ – ...... + 
1

2
1

2

( 1) C
n

n
n

�

�� �  . 2i sin θ

1 1
1 2 2 2( ) ( 1)

n n
n ni i i i i i

� �
�

� �
� �� � � � �
� �
 �
�

⇒ sinn θ = 0 11

2

1
2 C sin C sin ( 2)

2 ( 1)

n n
n

n

n n�

�
� � � � �

�� �

+ nC2 sin (n – 4)θ – ...... + 
1

2
1

2

( 1) C sin
n

n
n

�

�

�
�� 	
��
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= 0 11
1 2

1
C sin C sin ( 2)

2 . ( 1)

n n
n

n

n n�
�

�
� � � �

��

+n nC2 4sin ( )− θ
1

2
1

2

...... ( 1) C sin
n

n
n

�

�

�
�� � 	
��

=

1

2

0 1 21

( 1)
C sin C sin ( 2) C sin ( 4)

2

n

n n n
n

n n n

�

�

��
� � � � 	 � �

�
 – ...... + 

1
2

1
2

( 1) C sin
n

n
n

�

�

�
�� 	
��

[� n is odd, n – 1 is even ∴ (– 1)n–1 = 1, 
11

2
1 1

2 2

1 ( 1)
( 1)

( 1) ( 1)

nn

n n

��

� �

�
��

� � � �
�� � �

Example 2. Express sin8 θ in a series of cosines of multiples of θ.

Sol. Let x = cos θ + i sin θ ; then 
1

x
 = cos θ – i sin θ

so that  x – 
1

x
 = 2i sin θ, x + 

1

x
 = 2 cos θ and xm + 

1
mx

 = 2 cos mθ

(2i sin θ)8 =
8

1
x

x
� ��� �� 	

 = x8 – 8x6 + 28x4 – 56x2 + 70 – 
2 4 6 8

56 28 8 1

x x x x

 � 
 | By Pascal’s Rule

= 8 6 4 2
8 6 4 2

1 1 1 1
8 28 56x x x x

x x x x

� � � � � � � �	 � 	 	 	 � 	� � � � � � � �� 	 � 	 � 	 � 	
⇒  28 ◊ i8 sin8 θ = 2 cos 8θ – 8 ◊ 2 cos 6θ + 28 ◊ 2 cos 4θ – 56 ◊ 2 cos 2θ + 70

∴  sin8 θ =
7 8

1

2 i�
 [cos 8θ – 8 cos 6θ + 28 cos 4θ – 56 cos 2θ + 35]

=
1

128
 [cos 8θ – 8 cos 6θ + 28 cos 4θ – 56 cos 2θ + 35].

Expansion of sinm θ cosn θ : We see that sinm θ cosn θ will contain factors of the type 
1 1

m n

x x
x x

� � � �� 	� � � �� 	 � 	
.

To find coefficients of various powers of x we consider the following example :

For example. To obtain the coefficients of various powers of x in the product 
4

1
x

x
� ��� �� 	

 
2

1
x

x
� �	� �� 	

,

we have the following rule:

First write the coefficients of 
4

1
x

x
� ��� �� 	

 in a row � out of the two indices 4 is greater coefficient of

4
1

x
x

� ��� �� 	
 are 1, – 4, 6, – 4, 1 | By Pascal’s Rule

Then to find coefficients of 
4

1 1
x x

x x
� � � �� 	� � � �� 	 � 	

 add in the upper number its proceeding number in the same

line. First coefficient is always one. Repeat the process, the same number of times as is the index of 
1

x
x

� �	� �� 	
.
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1 – 4 6 – 4 1
I

1 – 4 + 1 6 – 4 – 4 + 6 1 – 4 0 + 1
i.e., 1 – 3  2 2 – 3 1

II
1 – 3 + 1 2 – 3 2 + 2 – 3 + 2 1 – 3 0 + 1

i.e., 1 – 2 – 1 4 – 1 – 2 1

Similarly to multiply 
4

1
x

x
� �	� �� 	

 by 
3

1
x

x
� ��� �� 	

, we have the following rule. Write coefficients of 
4

1
x

x
� �	� �� 	

and then to find coefficients of 
4

1 1
x x

x x

� � � �	 �� � � �� 	 � 	
, subtract in the upper number its proceeding number in the

same line. First coefficient is always one. Repeat the process the same number of times as is the index of

1
x

x
� ��� �� 	

.

1 4 6 4 1
I

1 4 – 1 6 – 4 4 – 6 1 – 4 0 – 1

i.e., 1 3 2 – 2 – 3 – 1
II

1 3 – 1 2 – 3 – 2 – 2 – 3 + 2 – 1 + 3 0 + 1
i.e., 1 2 – 1 – 4 – 1 2 1

III
1 2 – 1 – 1 – 2 – 4 + 1 – 1 + 4 2 + 1 1 – 2 0 – 1

i.e., 1 1 – 3 – 3 3 3 – 1 – 1
Example 3. Show that 25 sin4 θ cos2 θ = cos 6θ – 2 cos 4θ – cos 2θ + 2. (P.T.U., May 2011)

Sol. Let x = cos θ + i sin θ ; then 
1

x
 = cos θ – i sin θ

So that x + 
1

x
 = 2 cos θ,    x – 

1

x
 = 2i sin θ,   xm + 

1
xm  = 2 cos mθ.

We have (2i sin θ)4 (2 cos θ)2 = 
4 2

1 1
x x

x x
� � � �� 	� � � �� 	 � 	

...(1)

The co-efficients of the various powers of x in 
4

1
x

x
� ��� �� 	

 are (by Pascal’s Table) 1, –4, 6, – 4, 1.

Multiplying 
4

1
x

x
� ��� �� 	

 by 
1

x
x

� �	� �� 	
 twice in succession as shown in the following scheme:

1 – 4 6 – 4 1

I 1 – 3 2 2 – 3 1

II 1 – 2 – 1 4 – 1 – 2 1
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∴
4 2

1 1
x x

x x
� � � �� 	� � � �� 	 � 	

 = x6 – 2x4 – x2 + 4 – 
1 2 1
2 4 6x x x

− +

= 6 4 2
6 4 2

1 1 1
2x x x

x x x

� � � � � �	 � 	 � 	� � � � � �� 	 � 	 � 	
 + 4

= 2 cos 6q – 2 ◊ 2 cos 4q – 2 cos 2q + 4
∴ From (1), 26. i4 sin4 q cos2 q = 2 [cos 6q – 2 cos 4q – cos 2q + 2]
∴   25 sin4 q cos2 q = cos 6q – 2 cos 4q – cos 2q + 2.
Example 4. Expand cos5 q sin7 q in a series of sines of multiples of q.

Sol. Let  x = cos q + i sin q ; 
1

x
 = cos q – i sin q

So that   x + 
1

x
 = 2 cos q, x – 

1

x
 = 2i sin q,  xm – 

1
mx

 = 2i sin mq.

We have (2i sin q)7 ◊ (2 cos q)5 =
7 5

1 1
x x

x x
� � � �� 	� � � �� 	 � 	

...(1)

The co-efficients of the various powers of x in 
7

1
x

x
� ��� �� 	

 are (by Pascal’s Table)

1 – 7 21 – 35 35 – 21 7 – 1

Multiplying 
7

1
x

x
� ��� �� 	

 by 
1

x
x

� �	� �� 	
 five times in succession, as shown in the following scheme.

1 – 7 21 – 35 35 – 21 7 – 1

I 1 – 6 14 – 14 0 14 –14 6 – 1
II 1 – 5 8 0 – 14 14 0 – 8 5 – 1

III 1 – 4 3 8 – 14 0 14 – 8 – 3 4 – 1
IV 1 –  3 –  1 11 –  6 –  1 4 14 6 –  1 1 1 3 –  1
V 1 –  2 –  4 10 5 – 20 0 20 –  5 –  1 0 4 2 – 1

∴
7 5

1 1
x x

x x
� � � �� 	� � � �� 	 � 	

= x12 – 2x10 – 4x8 + 10x6 + 5x4 – 20x2 + 0 + 
2 4 6 8 10 12

20 5 10 4 2 1

x x x x x x
� � 
 
 �

= 12 10 8 6 4 2
12 10 8 6 4 2

1 1 1 1 1 1
2 4 10 5 20x x x x x x

x x x x x x

� � � � � � � � � � � �� � � � � 	 � 	 � � � �  �  �  �  �  �� � � � � � � � � � � �
.

= 2i sin 12q – 2 . 2i sin 10q – 4 . 2i sin 8q + 10 . 2i sin 6q + 5 . 2i sin 4q – 20 . 2i sin 2q.
∴ From (1),

 212 . i7 . sin7 q cos5 q = 2i [sin 12q – 2 sin 10q – 4 sin 8q + 10 sin 6q + 5 sin 4q – 20 sin 2q]

sin7 q cos5 q = 11 6

1

2 . i
 [sin 12q – 2 sin 10q – 4 sin 8q + 10 sin 6q + 5 sin 4q – 20 sin 2q]

= – 
11

1

2
 [sin 12q – 2 sin 10q – 4 sin 8q + 10 sin 6q + 5 sin 4q – 20 sin 2q].
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Example 5. In sin4 q cos3 q = A1cos q + A3cos 3q + A5cos 5q + A7cos 7q, prove that

A1 + 9 A3 + 25 A5 + 49 A7 = 0.

Sol. Let x = cos q + i sin q ; 
1

x
 = cos q – i sin q

∴ x + 
1
x

 = 2 cos q ; x – 
1

x
 = 2i sin q

(2 i sin q)4 (2 cos q)3 =
4 3

1 1
x x

x x
� � � �� 	� � � �� 	 � 	

By Pascal’s Table coefficients of various powers of x in 
4

1
x

x
� ��� �� 	

 are 1, – 4, 6, – 4, 1

Multiplying 
4

1
x

x
� ��� �� 	

 by 
1

x
x

� �	� �� 	
 three times in succession as shown below:

1 – 4 6 – 4 1

I 1 – 3 2 2 – 3 1
II 1 – 2 – 1 4 – 1 – 2 1

III 1 – 1 – 3 3 3 – 3 – 1 1

∴   
4 3

1 1
x x

x x
� � � �� 	� � � �� 	 � 	

 = x7 – x5 – 3x3 + 3x + 
3 5 7

3 3 1 1

x x x x
� � 


(2i sin q)4 (2 cos q)3 = 7 5
7 5

1 1
x x

x x

� � � �	 � 	� � � �� 	 � 	
 – 3 3

3

1
x

x

� �	� �� 	
 + 3 

1
x

x
� �	� �� 	

  27 sin4 q cos3 q = 2 cos 7q – 2 cos 5q – 3 . 2 cos 3q + 3 . 2 cos q

∴ sin4 q cos3 q =
6

1

2
 [cos 7q – cos 5q – 3 cos 3q + 3 cos q]

=
3

64
 cos q – 

3

64
 cos 3q – 

1

64
 cos 5q + 

1

64
cos 7q

= A1 cos q + A3 cos 3q + A5 cos 5q + A7 cos 7q (given)

∴ A1 =
3

64
, A3 = 

3

64
� , A5 = 

1

64
� , A7 = 

1

64

A1 + 9A3 + 25 A5 + 49 A7 =
3

64
 – 

27

64
 – 

25

64
 + 

49

64
 = 

52 52

64

�
 = 0.

�
�������������
��


Prove that :

1. cos7 q = 
1

64
 (cos 7q + 7 cos 5q + 21 cos 3q + 35 cos q). (P.T.U., Dec. 2011)

2. cos6 q = 
1

32
 [cos 6q + 6 cos 4q + 15 cos 2q + 10].

3. sin6 q = 
1

32
 (10 – 15 cos 2q + 6 cos 4q – cos 6q.
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4. 26 sin7 θ = 35 sin θ – 21 sin 3θ + 7 sin 5θ – sin 7θ.

5. 64 (cos8 θ + sin8 θ) = cos 8θ + 28 cos 4θ + 35.

6. sin7 θ cos3 θ = – 
9

1

2
 (sin 10θ – 4 sin 8θ + 3 sin 6θ + 8 sin 4θ – 14 sin 2θ).

7. sin6 θ cos2 θ = 7

1

2
 (5 – 4 cos 2θ – 4 cos 4θ + 4 cos 6θ – cos 8θ).

8. cos5 θ sin3 θ = – 
7

1

2
 (sin 8θ + 2 sin 6θ – 2 sin 4θ – 6 sin 2θ).

9. cos6 θ sin4 θ = 
9

1

2
 (cos 10θ + 2 cos 8θ – 3 cos 6θ – 8 cos 4θ + 2 cos 2θ + 6).

���� �	
������������θ�������θ�������������������

We know, from De-Moivre’s Theorem, that cos nθ + i sin nθ = (cos θ + i sin θ)n

Expanding the right hand side by Binomial Theorem, we have

 cos nθ + i sin nθ = (cos θ)n + nC1(cos θ)n–1 (i sin θ) + nC2(cos θ)n–2(i sin θ)2

+ nC3(cos θ)n–3 (i sin θ)3 + nC4(cos θ)n–4(i sin θ)4 + ...

+ nCn–1(cos θ)(i sin θ)n–1 + nCn(i sin θ)n

Now, i2 = – 1, i3 = i2 . i = – i, i4 = (i2)2 = 1 and so on.
nCn–1 =

nC1 = n, nCn = nC0 = 1

∴ cos nθ + i sin nθ = cosn θ + i nC1 cosn–1 θ sin θ – nC2 cosn–2 θ sin2 θ – i nC3 cosn–3 θ sin3 θ +
nC4 cosn–4 θ sin4 θ + ....... + in–1 . n cos θ sinn–1

 θ + in sinn θ
Two cases arise, according as n is odd or even.

Case I. If n is odd, (n – 1 is even)
 cos nθ + i sin nθ = cosn θ + i nC1 cosn–1 θ sin θ – nC2 cosn–2 θ sin2 θ – inC3 cosn–3 θ sin3 θ

+ nC4 cosn–4 θ sin4 θ + ...... + 
1

2.( 1)
n

n
�

�  cos θ sinn–1 θ + 
1

2.( 1)
n

i
�

�  sinn θ

1 1 1
1 2 12 2 2  ( ) ( 1) ; . ( 1)

n n n
n n ni i i i i i

� � �
� �

� �
� �� � � � � �
� �
 �
�

Equating real and imaginary parts, we get
cos nθ = cosn θ – nC2 cosn–2 θ sin2 θ + nC4 cosn–4 θ sin4 θ + .......

+ 
1

2( 1)
n

n
�

�  cos θ sinn–1
 θ ...(1)

and sin nθ = nC1 cosn–1 θ sin θ – nC3 cosn–3 θ sin3 θ + ....... + 
1

2( 1)
n �

�  sinn θ …(2)

Case II. If n is even, [(n – 1) is odd, (n – 2) is even]

cos nθ + i sin nθ = cosn θ + i .nC1 cosn–1 θ sin θ – nC2 cosn–2 θ sin2 θ – i .nC3 cosn–3 θ sin3 θ

 + nC4 cosn–4 θ sin4 θ + ...... + 
2

( 1)
n

ni
�

�  n cos θ sinn–1 θ + 2( 1)
n

�  sinn θ

2 2
1 2 2 22 2 2 2  . ( ) ( 1) ; ( ) ( 1)

n n n n
n n ni i i i i i i i

� �
� �

� �
� �� � � � � � �
� �
 �
�
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Equating real and imaginary parts, we get

cos nq = cosn q – nC2 cosn–2 q sin2 q + nC4 cosn–4 q sin4 q – ....... + 2( 1)
n

�  sinn
 q …(3)

and sin nq = nC1 cosn–1 q sin q – nC3 cosn–3 q sin3 q + ....... + 
2

2( 1)
n �

�  n cos q sinn–1 q …(4)

����������	
�
����
�

Example 1. (a) Expand cos 7q in descending powers of cos q. (P.T.U., Dec. 2013)

(b) Expand sin 7q in ascending powers of sin q.

Sol. We have (cos 7q + i sin 7q) = (cos q + i sin q)7.

Expanding the RHS by Binomial Theorem, we have

cos 7q + i sin 7q = (cos q)7 + 7C1 (cos q)6 (i sin q) + 7C2 (cos q)5 (i sin q)2 + 7C3 (cos q)4 (i sin q)3 + 7C4
(cos q)3 (i sin q)4 + 7C5 (cos q)2 (i sin q)5 + 7C6 (cos q) (i sin q)6 + 7C7 (i sin q)7

Now, i2 = – 1, i3 = i . i2 = – i, i4 = 1, i5 = i, i6 = – 1

i7 = i3 . i4 = – i, 7C7 = 1, 7C6 = 7C1 = 7, 7C5 = 7C2 = 
7.6

1.2
 = 21,

  7C4 = 7C3 = 
7.6.5.

1.2.3
 = 35

∴ cos 7θ + i sin 7θ = cos7 θ + 7i cos6 θ sin θ – 21 cos5 θ sin2 θ – 35i cos4 θ sin3 θ
+ 35 cos3 θ sin4 θ + 21i cos2 θ sin5 θ – 7 cos θ sin6 θ – i sin7 θ

Equating real and imaginary parts,

(a) cos 7θ = cos7 θ – 21 cos5 θ sin2 θ  + 35 cos3 θ sin4 θ – 7 cos θ sin6 θ
= cos7 θ – 21 cos5 θ (1 – cos2 θ) + 35 cos3 θ (1 – cos2 θ)2 – 7 cos θ (1 – cos2 θ)3

= cos7 θ – 21 cos5 θ + 21 cos7 θ + 35 cos3 θ (1 – 2 cos2 θ + cos4 θ) – 7 cos θ (1 – 3 cos2 θ
+ 3 cos4 θ – cos6 θ)

= 64 cos7 θ – 112 cos5 θ + 56 cos3 θ – 7 cos θ
(b)  sin 7θ = 7 cos6 θ  sin θ – 35 cos4 θ sin3 θ + 21 cos2 θ sin5 θ – sin7 θ

= 7(1 – sin2 θ)3 sin θ – 35(1 – sin2 θ)2 sin3 θ + 21(1 – sin2 θ) sin5 θ – sin7 θ
= 7(1 – 3 sin2 θ + 3 sin4 θ – sin6 θ) sin θ – 35(1 – 2 sin2 θ + sin4 θ) sin3 θ + 21 sin5 θ – 21 sin7 θ – sin7 θ
= 7 sin θ – 56 sin3 θ + 112 sin5 θ – 64 sin7 θ.

Example 2. Prove that 2(1 + cos 8θ) = (x4 – 4x2 + 2)2 , where x = 2 cos θ.

Sol. 2(1 + cos 8θ) = 2 . 2 cos2 4θ = (2 cos 4θ)2 …(1)

Now, cos 4θ = cos4 θ – 4C2 cos2 θ sin2 θ + 4C4 sin4 θ
= cos4 θ – 6 cos2 θ (1 – cos2 θ) + (1 – cos2 θ)2 = 8 cos4 θ – 8 cos2 θ + 1

∴ From (1), we have

2(1 + cos 8θ) = (16 cos4 θ – 16 cos2 θ + 2)2

= [(2 cos θ)4 – 4(2 cos θ)2 + 2]2 = (x4 – 4x2 + 2)2, where x = 2 cos θ.

Example 3. Prove that 
1 cos 7

1 cos

	 �
	 �

 = (x3 – x2 – 2x + 1)2, where x = 2 cos θ.
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Sol.
1 cos 7

1 cos

	 �
	 �

 =

2 2 2

2 2 2

7 7
2 cos 2 cos 2 sin

2 2 2

2 cos 2 cos 2 sin
2 2 2

� � �

� �
� � �

=

2

2
7

2 cos sin sin 4 sin 32 2
sin2 cos sin

2 2

� �� �
� �� � �� �

�� � � �� � �� 	� �� 	

...(1)

Now, sin 4θ = 4C1 cos3 θ sin θ – 4C3 cos θ sin3 θ = 4 cos3 θ sin θ – 4 cos θ sin3 θ
and sin 3θ = 3 sin θ – 4 sin3 θ

∴ From (1), we have
1 cos 7

1 cos

	 �
	 �

 = (4 cos3 θ – 4 cos θ sin2 θ – 3 + 4 sin2 θ)2

= [4 cos3 θ – 4 cos θ (1 – cos2 θ) – 3 + 4(1 – cos2 θ)]2

= (8 cos3 θ – 4 cos2 θ – 4 cos θ + 1)2

= (x3 – x2 – 2x + 1)2, where x = 2 cos θ.

���� ���	
������������θ

tan nθ =
1 3 3 5 5

1 3 5
2 2 4 4

2 4

C cos sin C cos sin C cos sin ...sin

cos cos C cos sin C cos sin ...

n n n n n n

n n n n n

n

n

� � �

� �

� � � � � 	 � ��
�

� � � � � 	 � �
Dividing the numerator and denominator by cosn θ

tan nθ =
3 5

1 3 5
2 4

2 4

C tan C tan C tan ...

1 C tan C tan ...

n n n

n n

� � � 	 � �

� � 	 � �

��������	
������������θ
!
�θ

"
�θ

#
��������θ

�
�

We know that
cos (θ1 + θ2 + θ3 + ... + θn) + i sin (θ1 + θ2 + θ3 + ..... + θn)

= (cos θ1 + i sin θ1) (cos θ2 + i sin θ2) (cos θ3 + i sin θ3) ...... (cos θn + i sin θn) ...(1)

Now, cos θ1 + i sin θ1 = cos θ1 
1

1

sin
1

cos
i

� ��
	� ��� 	

 = cos θ1(1 + i tan θ1)

cos θ2 + i sin θ2 = cos θ2(1 + i tan θ2)
cos θ3 + i sin θ3 = cos θ3 (1 + i tan θ3)
...........................................................
...........................................................
cos θn + i sin θn = cos θn (1 + i tan θn)

∴ (1) may be written as

cos (θ1 + θ2 + θ3 + ...... + θn) + i sin (θ1 + θ2 + θ3 + ...... + θn)

= cos θ1 cos θ2 cos θ3 ...... cos θn(1 + i tan θ1)(1 + i tan θ2) ...... (1 + i tan θn)

= cos θ1 cos θ2 ...... cos θn [1 + is1 + i2s2 + i3s3 + i4s4 + i5s5 + ......]

where sr denotes the sum of the products of the tangents of the angles θ1, θ2 ......, θn taken r at a time.
i.e., s1 = Σ  tan θ1, s2 = Σ tan θ1 tan θ2 and so on.
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= cos θ1 cos θ2 ...... cos θn[1 + is1 – s2 – is3 + s4 + is5 – ......]

= cos θ1 cos θ2 ...... cos θn[(1 – s2 + s4 – ......) + i(s1 – s3 + s5 – ......)]

Equating the real and imaginary parts

cos (θ1 + θ2 + ...... + θn) = cos θ1 cos θ2 ...... cos θn(1 – s2 + s4 ......) …(2)

sin (θ1 + θ2 + ...... + θn) = cos θ1 cos θ2 ...... cos θn(s1 – s3 + s5 ......) …(3)

Dividing (3) by (2), tan (θ1 + θ2 + ...... + θn) = 1 3 5

2 4

– + – ...

1 – + – ...
s s s

s s

Example 4. If  α,  β,  γ  be  the  roots  of  equation   x3  +  px2  +  qx  +  p = 0   prove  that  tan–1 α + tan–1

β + tan–1 γ  = nπ radians, except in one particular case and point it out. (P.T.U., May 2002)

Sol. Let α = tan θ1, β = tan θ2, γ  = tan θ3, then θ1 = tan–1 α, θ2 = tan–1 β, θ3 = tan–1 γ
Given equation is x3 + px2 + qx + p = 0

Its roots are α, β, γ  i.e., tan θ1, tan θ2, tan θ3.

∴ s1 = Σα = Σ tan θ1 = – p

s2 = Σαβ = Σ tan θ1 tan θ2 = q

s3 = αβγ = tan θ1 tan θ2 tan θ3 = – p

Now, tan (θ1 + θ2 + θ3) =
0

1 1

p p

q q

� 	
� �

� �
1 3

2

–

1 –
s s

s
 = 0

Unless q = 1 in which case the fraction takes the indeterminate form 
0

0
.

Leaving out the exceptional case, we have tan (θ1 + θ2 + θ3) = 0

∴ θ1 + θ2 + θ3 = nπ radians.

Hence tan–1 α + tan–1 β + tan–1 γ  = nπ radians except when q = 1.

Example 5. If tan–1x + tan–1y + tan–1z = 
2

�
; prove that xy + yz + zx = 1. (P.T.U., May 2003)

Sol. Let  tan–1x = θ1, tan–1y = θ2, tan–1z = θ3

given   θ1 + θ2 + θ3 = 
2

�

∴   tan (θ1 + θ2 + θ3) = tan 
2

�
 = ∞

∴ 1 3

21 s

�
�

s s
 = ∞ ∴ 1 – s2 = 0 or s2 = 1

or tan θ1 tan θ2 + tan θ2 tan θ3 + tan θ3 tan θ1 = 1

or xy + yz + zx = 1.

Example 6. If α, β, γ , δ are the roots of the equation x4 – x3 sin 2θ + x2 cos 2θ – x cos θ – sin θ = 0, prove that

tan–1 α + tan–1 β + tan–1 γ  + tan–1 δ = nπ + 
2

�
 – θ.
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Sol. Let tan–1 α = θ1, tan–1 β = θ2, tan–1 γ  = θ3, tan–1 δ = θ4

∴    tan θ1 = α, tan θ2 = β, tan θ3 = γ , tan θ4 = δ
Given = n is x4 – x3 sin 2θ + x2 cos 2θ – x cos θ – sin θ = 0

Its roots are α, β, γ , δ i.e., tan θ1, tan θ2, tan θ3, tan θ4

∴ s1 = Σα = Σ tan θ1 = sin 2θ
s2 = Σαβ = Σ tan θ1 tan θ2 = cos 2θ
s3 = Σαβγ = Σ tan θ1 tan θ2 tan θ3 = cos θ
s4 = αβγδ = tan θ1 tan θ2 tan θ3 tan θ4 = – sin θ

Now, tan (θ1 + θ2 + θ3 + θ4) =
sin 2 cos

1 1 cos 2 sin

� � � �
�

� 	 � � � �
1 3

2 4

s s

s s

=
2

2 sin cos cos cos (2 sin 1)

sin (2 sin 1)1 (1 2 sin ) sin

	 	 � 	 	 	 �
�

	 	 �� � 	 � 	
 = cot θ

∴ tan (θ1 + θ2 + θ3 + θ4) = tan 
2

�� �� �� �� 	

∴ θ1 + θ2 + θ3 + θ4 = nπ + 
2

�
 – θ.

Example 7. If q1, q2, q3 be the three values of q which satisfy the equation tan 2q = l tan (q + a) and be
such that no two of these differ by a multiple of p, prove that q1 + q2 + q3 + a is a multiple of p.

(P.T.U., Dec. 2002)

Sol. The given equation is tan 2q = l tan (q + a)

or  
2

2 tan tan tan
.
1 tan tan1 tan

	 	 
 �
� �

� 	 �� 	

⇒ 2 tan θ(1 – tan θ tan α) = λ(1 – tan2 θ) (tan θ + tan α)

⇒ 2 tan θ – 2 tan2 θ tan α = λ(tan θ + tan α – tan3 θ – tan2 θ tan α)

or λ  tan3 θ – (2 – λ) tan α tan2 θ + (2 – λ) tan θ – λ tan α = 0.
This equation is a cubic in tan θ and as such, its roots are tan θ1, tan θ2, tan θ3

  s1 = Σ tan θ1 = 
(2 ) tan� � �

�
, s2 = Σ tan θ1 tan θ2 = 

2 � �
�

,

   s3 = tan θ1 tan θ2 tan θ3 = 
tan� �
�

 = tan α

Now,   tan (θ1 + θ2 + θ3) = 

(2 ) tan
tan

2
1

� � �
� �

��
� �

�
�

1 3

2

s – s

1 – s

= 
(2 ) tan tan 2 (1 ) tan

2 2(1 )

� � � � � � � � �
�

� � 	 � � � �
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= – tan α, except when λ = 1 in, which case the fraction takes the indeterminate form 
0

0
.

⇒ tan (θ1 + θ2 + θ3) =  tan (– α)

∴ θ1 + θ2 + θ3 = nπ – α or θ1 + θ2 + θ3  + α = nπ, a multiple of π.

In  case  λ = 1,  the  given  equation  becomes tan 2θ = tan (θ + α) which gives

2θ = nπ + (θ + α) or θ = nπ + α so that the values of θ differ by multiples of π.

Example 8. Prove that the equation ah sec θ – bk cosec θ = a2 – b2 has four roots and that the sum of the
four values of θ which satisfy it is equal to an odd multiple of π radians.

Sol. Let  tan
2



 = t

Now, cos q =  

2
2

2
2

1 tan 12
11 tan

2

t

t

�
� �

�
� ��

∴ sec q = 
2

2

1

1

t

t

�

�

sin q =
2

2

2 tan 22
11 tan

2

t

t

�

�
� ��

∴ cosec q = 
21

2

t

t

�

Making these substitutions in the given equation, we have

ah . 
2 2

2

1 1
.

21

t t
bk

tt

� �
�

�
 = a2 – b2

Multiplying both sides by 2t(1 – t2)

2aht(1 + t2) – bk(1 – t2)(1 + t2) = 2(a2 – b2) (1 – t2) t

or 2aht + 2aht3 – bk(1 – t4) = 2(a2 – b2)(t – t3)

or bkt4 + (2ah + 2a2 – 2b2)t3 + (2ah – 2a2 + 2b2)t – bk = 0 …(1)

It is a biquadratic in t and hence has four roots.

Let θ1, θ2, θ3, θ4 be the four values of θ  satisfying the given equation then the roots of (1) are

tan 1

2

�
, 2tan

2

�
, 3tan

2

�
, 4tan

2

�
.

Let us denote them by t1, t2, t3, t4.

s1 = Σt1 = 
2 2

1 2 2 2
tan

2

ah a b

bk

� � �
� � � , s2 = Σ t1t2 = 1 2tan tan

2 2

� �
�  = 0

s3 = Σt1t2t3 = 
2 2

31 2 2 2 2
tan tan tan

2 2 2

ah a b

bk

�� � � �
� � �

s4 = t1t2t3t4 = 31 2 4tan tan tan tan
2 2 2 2

bk

bk

�� � � �
�  = – 1
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Now, 31 2 4tan
2 2 2 2 1

	 �	 	 	� 

 
 
 �� �� � � 


1 3

2 4

s s

s s

= 

2 2 2 2 2 22 2 2 2 2 2 4 4

1 0 1 0

ah a b ah a b b a

bk bk bk

	 � � 	 �
� 	

�
� �

 = • = tan
2

�

∴ 31 2 4

2 2 2 2 2
n

�� � � �
	 	 	 � � 	

or   θ1 + θ2 + θ3 + θ4 = 2nπ + π = (2n + 1)π = an odd multiple of π.

Example 9. Prove that the equation sin 3θ = a sin θ + b cos θ + c has six roots and that the sum of the six
values of θ which satisfy it is equal to an odd multiple of π radians.

Sol. sin 3θ = a  sin θ + b cos θ + c

3 sin θ – 4 sin3 θ = a sin θ + b cos θ + c

∴ 4 sin3 θ + (a – 3) sin θ + b cos θ + c = 0

or 4 

3

2

2 tan / 2

1 tan / 2

� 	
� �
 	� �

 + (a – 3) 
2

2 2

2 tan / 2 1 tan / 2

1 tan / 2 1 tan / 2
b

� � �
	

	 � 	 �
 + c = 0

Let tan θ/2 = t

∴  
3 2

2 3 2 2

32 2 1
( 3)

(1 ) 1 1

t t t
a b

t t t

�
	 � 	

	 	 	
 + c = 0

or 32t3 + (2a – 6) t (1 + t2)2 + b(1 – t2) (1 + t2)2 + c (1 + t2)3 = 0
or   32t3 + (2a – 6) (t + 2t3 + t5) + b(1 – t2) (1 + 2t2 + t4) + c (1 + 3t2 + 3t4 + t6) = 0

or 32t3 + (2a – 6) t + (4a – 12) t3 + (2a – 6) t5 + b + bt2 – bt4 – bt6 + c + 3ct2 + 3ct4 + ct6 = 0
or (c – b) t6 + (2a – 6) t5 + (3c – b) t4 + (32 + 4a – 12) t3 + (b + 3c) t2 + (2a – 6) t + (b + c) = 0.

It is sixth degree in t ∴ it has six roots.

Roots of this equation are tan 1

2

	
, tan 2

2

	
, tan 3

2

	
, tan 4

2

	
, tan 5

2

	
, tan 6

2

	
 i.e., t1, t2, t3, t4, t5, t6

∴ s1 = Σ t1 = Σ tan  1

2

�
 = – 

2 6a

c b

�
�

s2 = Σ t1t2 = 
3c b

c b

�
�

 ; s3 = Σ t1t2t3 = – 
20 49

c b

	
�

s4 = Σ t1t2t3t4 = 
3b c

c b

	
�

, s5 = Σt1t2t3t4t5 = – 
2 6a

c b

�
�

, s6 = 
b c

c b

	
�

∴ tan 1 2 3 4 5 6

2

	 
 	 
 	 
 	 
 	 
 	� 
�� �� �

1 3 5

2 4 6

– +

1 – + –
s s s

s s s
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= 

(2 ) 20 4 2 6

3 3
1

a b a a

c b c b c b
c b b c c b

c b c b c b

� 	 �
� 	 �

� � �
� 	 	

� 	 �
� � �

= 
2 6 20 4 2 6 32

3 3 0

a a a

c b c b b c c b

� 	 	 	 � 	
�

� � 	 	 	 � �
 = • = tan 

2

�

∴  1 2 3 4 5 6

2

	 
 	 
 	 
 	 
 	 
 	
 =

2

�
� 
n

or θ1 + θ2 + θ3 + θ4 + θ5 + θ6 = 2nπ + π = (2n + 1) π = odd multiple of π.

�
�������������
��


1. Prove that cos 6q = 32 cos6 q – 48 cos4 q + 18 cos2 q – 1. (P.T.U., May 2012)

2. (a) Express 
sin 6

sin

�
�

 as a polynomial in cos q.

(b) Prove that 
sin 7

sin

�
�

 = 7 – 56 sin2 q + 112 sin4 q – 64 sin6 q.

3. Prove that:
(i) cos 8q = 128 cos8 q – 256 cos6 q + 160 cos4 q – 32 cos2 q + 1.

(ii)
sin 8

sin

�
�

 = 128 cos7 q – 192 cos5 q + 80 cos3 q – 8 cos q.

(iii) tan 5q = 
3 5

2 4

5 10

1 10 5

t t t

t t

� 	
� 	

, where t = tan q.

(iv) tan 7q = 
3 5 7

2 4 6

7 tan 35 tan 21 tan tan

1 21 tan 35 tan 7 tan

� � � 	 � � �
� � 	 � � �

.

4. Prove that :

(i) 2n/2 cos 
4

n�
 = 1 – nC2 + nC4

 – nC6 + ... •

(ii) 2n/2 sin 
4

n�
 = nC1 – nC3 + nC5 – ... •

Put in 1.5( ) .
4

�� �� � �� �
cHint :

5. Express tan 5q in terms of powers of tan q and deduce that 5 tan4 
10

�
 – 10 tan2 

10

�
 + 1 = 0.

6. Prove that 1 + cos 9A = (1 + cos A)(16 cos4 A – 8 cos3 A – 12 cos2 A  + 4 cos A + 1)2.

1 + cos 9 A
Find the value of see solved example 3

1 cos A

� �
 �	� �
Hint :

7. Prove that the equation a2 cos2 q + b2 sin2 q + 2ga cos q + 2 fb sin q + c = 0 has four roots and that the sum of the
values of q which satisfy it is an even multiple of p radians.

����
��

2. (a) 32 cos5 q – 24 cos3 q + 6 cos q 5. tan 5q = 
3 5

2 4

5 tan 10 tan tan

1 10 tan 5 tan

� � � 	 �
� � 	 �

.
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��$�������������%�������

We explain this method by examples given below :

����������	
�
����
�

Example 1. Form an equation whose roots are cos 
2

9

�
, cos 

4

9

�
, cos 

6

9

�
, cos 

�8

9
.

(a) Also form an equation whose roots are sec 
2

9

�
, sec 

4

9

�
, sec 

6

9

�
, sec 

8

9

�
.

(b) Also form an equation whose roots  are sec2 
2

9

�
, sec2 

4

9

�
, sec2 

6

9

�
, sec2 8

9

�
 and prove that

tan2 
2

9

�
 + tan2 

4

9

�
 +  tan2 

6

9

�
 + tan2 

8

9

�
 = 36.

Sol. Let q = 
2

9

n�
, where n is an integer  (zero, positive or negative)

Now give values to q as 0, 1, 2, 3, 4, 5, 6, 7, 8, we see that

for n = 0, cos q = cos 0 = 1

for n = 1, cos q = cos 
2

9

�

for n = 2, cos q = cos 
4

9

�

for n = 3, cos q = cos 
6

9

�

for n = 4, cos q = cos 
8

9

�

for n = 5, cos q = cos 
10

9

�
 = cos 

8 8
2 cos

9 9

� �� �� � �� �� 	

for n = 6, cos q = cos 
12

9

�
 = cos 

6 6
2 cos

9 9

� �� �� � �� �� 	

for n = 7, cos q = cos 
14

9

�
 = cos 

4 4
2 cos

9 9

� �� �� � �� �� 	

for n = 8, cos q = cos 
16

9

�
 = cos 

2 2
2 cos

9 9

� �� �� � �� �� 	

We see that for n = 5, 6, 7, 8, we do not get any new value of cos q.

\ The only distinct values of cos q are 1, cos 
2

9

�
, cos 

4

9

�
, cos 

6

9

�
, cos 

8

9

�

Consider   9q = 2np (Resolve 9q into 5q and 4q)

(� There are 5 distinct values of cos q)
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or  5q + 4q = 2np

or  5q = 2np – 4q

or  cos 5q = cos (2np – 4q)

or  cos (4q + q) = cos 4q

 cos 4q cos q – sin 4q sin q  = cos 4q.

or cos 4q (cos q – 1) – 2 sin 2q cos 2q sin q = 0

or (cos q – 1) (2 cos2 2q – 1) – 4 sin2 q cos q (2 cos2 q – 1) = 0

or (cos q – 1) [2 (2 cos2 q – 1)2 – 1] – 4 cos q (1 – cos2 q) (2 cos2 q – 1) = 0

or (cos q – 1) [2 (4 cos4 q – 4 cos2 q + 1) – 1] – 4 cos q (2 cos2 q – 1 – 2 cos4 q + cos2 q) = 0

or (cos q – 1) [8 cos4 q – 8 cos2 q + 1] – 4 cos q [– 2 cos4 q + 3 cos2 q – 1] = 0

or 8 cos5 q – 8 cos3 q + cos q – 8 cos4 q + 8 cos2 q – 1 + 8 cos5 q – 12 cos3 q + 4 cos q = 0

or 16 cos5 q – 8 cos4 q – 20 cos3 q + 8 cos2 q + 5 cos q – 1 = 0

Put cos q = x

16x5 – 8x4 – 20x3 + 8x2 + 5x – 1 = 0

x = 1 satisfies this equation

\ (x – 1)(16x4 + 8x3 – 12x2 – 4x + 1) = 0

\ x = 1 corresponds to cos q = 1

i.e., the value of cos 
2

9

n�
 for n = 0

\ If we delete x – 1, then the remaining equation 16x4 + 8x3 – 12x2 – 4x + 1 = 0 will have the roots

cos 
2

9

�
, cos 

4

9

�
, cos 

6

9

�
, cos 

8

9

�
…(1)

(a) Take x = 
1

y
 in (1)

The equation changes to

 
4 3 2

16 8 12 4

yy y y
	 � �  + 1 = 0 and roots change to 

1
2

cos
9
�

, 
1
4

cos
9
�

, 
1
6

cos
9
�

, 
1
8

cos
9
�

\ The equation whose roots are sec 
2

9

�
, sec 

4

9

�
, sec 

6

9

�
, sec 

8

9

�
 is

 y4 – 4y3 – 12y2 + 8y + 16 = 0 …(2)

Change y to x.

The required equations is

  x4 – 4x3 – 12x2 + 8x + 16 = 0

(b) In (2) put y2 = t

t2 – 4yt – 12 t + 8y + 16 = 0

or (t2 – 12t + 16)2 = (4t – 8)2 y2

or (t2 – 12t + 16)2 = (4t – 8)2 . t
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or t4 + 144t2 + 256 – 24t3 – 384t + 32t2 = t(16t2 – 64t + 64)

t4 – 40t3 + 240t2 – 448t + 256 = 0

Its roots are sec2 
2

9

�
, sec2 

4

9

�
, sec2 

6

9

�
, sec2 

8

9

�

Sum of the roots  = sec2 
2

9

�
 + sec2 

4

9

�
 + sec2 

6

9

�
 + sec2 

8

9

�
 = 40

\  1 + tan2 
2

9

�
 + 1 + tan2 

4

9

�
 + 1 + tan2 

4

9

�
 + 1 + tan2 

8

9

�
 = 40

\    tan2 
2

9

�
 + tan2 

4

9

�
 +  tan2 

6

9

�
 + tan2 

8

9

�
 = 36.

Example 2. Form an equation whose roots are cos 
7

�
, cos 

3

7

�
, cos 

5

7

�
 and hence evaluate

sec 
7

�
 + sec 

3

7

�
 + sec 

5

7

�
. Also obtain the equation whose roots are tan2 

7

�
, tan2 

3

7

�
, tan2 

5

7

�
 and hence

evaluate cot2 
7

�
 cot2 

3

7

�
 cot2 

5

7

�
.

Sol.  Let q = 
(2 1)

7

n 
 �
, where n = 0, 1, 2, 3, 4, 5, 6

for n = 0, cos q = cos 
7

�

for n = 1, cos q = cos 
3

7

�

for n = 2, cos q = cos 
5

7

�

for n = 3, cos q = cos 
7

7

�
 = – 1

for n = 4, cos q = cos 
9

7

�
 = cos 

5 5
2 cos

7 7

� �� �� � �� �� 	

for n = 5, cos q = cos 
11

7

�
 = cos 

3 3
2 cos

7 7

� �� �� � �� �� 	

for n = 6, cos q = cos 
13

7

�
 = cos 2 cos

7 7

� �� �� � �� �� 	

We see that for n = 4, 5, 6, we are not getting different values of cos q.

∴ Distinct values of cos q are obtained for

n = 0, 1, 2, 3 i.e., cos 
7

�
, cos 

3

7

�
, cos 

5

7

�
, cos 

7

7

�
 = – 1

∴ 7q = (2n + 1)p

(� There are only four distinct values of cos q ∴ Resolve 7q into 4q and 3q)
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∴   4q + 3q = (2n + 1)p

4q = (2n + 1)p – 3q

cos 4q = cos {(2n + 1)p – 3q} = – cos 3q

or 2 cos2 2q – 1 = – (4 cos3 q – 3 cos q)

or 2 [2 cos2 q – 1]2 – 1 = – 4 cos3 q + 3 cos q

or 2 [4 cos4 q – 4 cos2 q + 1] – 1 = – 4 cos3 q + 3 cos q

or 8 cos4 q – 8 cos2 q + 2 – 1 = – 4 cos3 q + 3 cos q

or 8 cos4 q + 4 cos3 q – 8 cos2 q – 3 cos q + 1 = 0

Put cos q = x

8x4 + 4x3 – 8x2 – 3x + 1 = 0 …(1)

x = – 1 satisfies (1)
∴ (x + 1)(8x3 – 4x2 – 4x + 1) = 0

x = – 1 corresponds to cos q = cos 
(2 1)

7

n 
 �
 for n = 3 i.e., cos 

7

7

�
.

∴    8x3 – 4x2 – 4x + 1 = 0 has roots

cos 
7

�
, cos 

3

7

�
, cos 

5

7

�

Change x to 
1

y

3 2

8 4 4

yy y
� �  + 1 = 0

or 8 – 4y – 4y2 + y3 = 0
or y3 – 4y2 – 4y + 8 = 0 …(2)

Its roots are 
1

cos
7
�

, 
1
3

cos
7
�

, 
1

5
cos

7
�

 i.e., sec 
7

�
, sec 

3

7

�
, sec 

5

7

�

sec 
3 5

sec sec
7 7 7

� � �
	 	  = sum of the roots = 4

Put y2 = t in (2)
∴ ty – 4t – 4y + 8 = 0

or (t – 4)2 y2 = (4t – 8)2

(t2 – 8t + 16)t = 16t2 – 64t + 64
or t3 – 24t2 + 80t – 64 = 0 …(3)

It has roots sec2 
7

�
, sec2 

3

7

�
, sec2 

5

7

�
 here t = sec2 

7

�
 = 1 + tan2 

7

�
 or tan2 

7

�
 = t – 1.

Put z = t – 1 or t = z + 1 in (3)
(z + 1)3 – 24(z + 1)2 + 80(z + 1) – 64 = 0

 z3 + 3z2 + 3z + 1 – 24z2 – 48z – 24 + 80z + 80 – 64 = 0

or z3 – 21z2 + 35z – 7 = 0 …(4)
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It has roots tan2 
7

�
, tan2 

3

7

�
, tan2 

5

7

�

Now, tan2 
7

�
 tan2 

3

7

�
 tan2 

5

7

�
 = Product of the roots = 7

\ cot2 
7

�
 cot2 

3

7

�
 cot2 

5

7

�
 = 

1

7
. Proved.

�
�������������
��


1. (a) Prove that cos 
2

7

�
, cos 

4

7

�
, cos 

6

7

�
 are the roots of 8x3 + 4x2 – 4x – 1 = 0. Hence form an equation whose

roots are sec 
2

7

�
, sec 

4

7

�
, sec 

6

7

�
.

(b) Also form an equation whose roots are sec2 
2

7

�
, sec2 4

7

�
, sec2 

6

7

�
 and prove that

tan2 
2

7

�
 + tan2 

4

7

�
 + tan2 

6

7

�
 = 21.

2. Form an equation whose roots are cos 
11

�
, cos 

3

11

�
, cos 

5

11

�
, cos 

7

11

�
, cos 

9

11

�
.

Hence evaluate :

(i) cos 
11

�
 + cos 

3

11

�
 + cos 

5

11

�
 + cos 

7

11

�
 + cos 

9

11

�
.

(ii) sec 
11

�
 + sec 

3

11

�
 + sec 

5

11

�
 + sec 

7

11

�
 + sec 

9

11

�
.

����
��

1. (a) x3 + 4x2 – 4x – 8 = 0. (b) x3 – 24x2 + 80x – 64 = 0.

2. 32x5 – 16x4 – 32x3 + 12x2 + 6x – 1 = 0 (i) 
1

2
 (ii) 6.

��&��	
����������������������
��	��������

Def. The exponential function of the complex variable z = x + iy, where x and y are real,  is defined as
Exp. (z) = ex+iy = ex (cos y + i sin y) = ex cis y

Note. When x = 0, eiy = cos y + i sin y = cis y
Changing i to – i, e–iy = cos y – i sin y = cis (– y).

Prove that ez is a periodic function, where z is a complex variable. (P.T.U., May 2008)
Proof. Let   z = x + iy
Then, by definition ez = ex+iy = ex (cos y + i sin y) = ex [cos (2nπ + y) + i sin (2nπ + y)]

= ex+i(2nπ+y) = e(x+iy)+2nπi = ez+2nπi

i.e., ez remains unchanged when z is increased by any multiple of 2πi.
⇒ ez is a periodic function with period 2πi.
Example 1. Split up into real and imaginary parts:

(i)  
23xy 4iye � (P.T.U., May 2014) (ii) e(5+3i)2.
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Sol. (i)
23 4xy iye �  =

23 4 3 2 2. (cos 4 sin 4 )xy i y xye e e y i y� 


23 4R( )xy iye �  = 3 2cos 4xye y

23 4Im ( )xy iye �  = 3 2sin 4xye y

(ii) (5 + 3i)2 = 25 + 9i2 + 30i = 16 + 30i [� i2 = – 1]

∴ e i( )5 3 2+  = e16+30i = e16 (cos 30 + i sin 30)

∴ Re [
2(5 3 )ie � ] = e16 cos 30, Im [

2(5 3 )ie � ] = e16 sin 30.

Example 2. Prove that [sin (α – θ) + e–iα sin θ]n = sinn–1 α [sin (α – nθ) + e–iα sin nθ].

Sol. LHS = [(sin α cos θ – cos α sin θ) 7+ (cos α – i sin α) sin θ]n

= (sin α cos θ – i sin α sin θ)n = [sin α (cos θ – i sin θ)]n

= [sin α . e–iθ]n = sinn α . e–inθ

 RHS = sinn–1 α [(sin α cos nθ – cos α sin nθ) + (cos α – i sin α) sin nθ]

= sinn–1 α [sin α cos nθ – i sin α sin nθ] = sinn α [cos nθ – i sin nθ]

= sinn α . e–inθ

∴ LHS = RHS

��!'������������������������
��	��������

1. Definitions. For all real values of x, we know that

eix = cos x + i sin x and e–ix = cos x – i sin x

Adding and subtracting, we get cos x = 
2

ix ixe e�	
; sin x = 

2

ix ixe e

i

��

These are called Euler’s Exponential values of sin x and cos x, where x ∈  R.

If z = x + iy the circular functions of z are defined as follows :

cos z = 
2

iz ize e�	
, sin z = 

2

iz ize e

i

��
,   tan z = 

sin

cos ( )

iz iz

iz iz

z e e

z i e e

�

�

�
�

	

cot z = 
cos ( )

sin

iz iz

iz iz

z i e e

z e e

�

�
	

�
�

, sec z = 
1 2

cos iz izz e e�
�



, cosec z = 

1 2

sin iz iz

i

z e e�
�

�

2. Euler’s Theorem.

For all values of q, real or complex, eiq = cos q + i sin q.

For all values of q, real or complex cos q = 
2

i ie e� � �	
 and sin q = 

2

i ie e

i

� � ��

∴ cos q + i sin q = 
2

2 2 2

i i i i ie e e e e� � � � � � �	 �
	 �  = eiq.

Hence,  eiq = cos q + i sin q for all values of q.
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3. Periodicity of Circular Functions.

(a) To prove that sin z and cos z are periodic functions with period 2π.

We know that  sin z = 
2

iz ize e

i

��

If n is any integer, then

   sin (z + 2np) = 
( 2 ) ( 2 )

2

i z n i z ne e

i

� � � � ��

= 
2 2. .

2 2

iz n i iz n i iz ize e e e e e

i i

� � � � �� �
� [� e2npi = 1 = e–2npi]

= sin z

⇒ sin z remains unchanged when z is increased by any multiple of 2p.

∴ sin z is a periodic function with period 2p.

Similarly, cos z can be shown to be a periodic function with period 2p.

(b) To prove that tan z is a periodic function with period ppppp.

We know that tan z =
( )

iz iz

iz iz

e e

i e e

�

�

�
�

If n is any integer, tan (z + np) =
( ) ( )

( ) ( )

. .

[ ] [ . . ]

i z n i z n iz in iz in

i z n i z n iz in iz n

e e e e e e

i e e i e e e e

� � � � � � � � �

� � � � � � � � �

� �
�

� �

Multiplying the numerator and denominator by einp

=
2

2

.

[ . ] ( )

iz n i iz iz iz

iz n i iz iz iz

e e e e e

i e e e i e e

� � �

� � �
� �

�
� �

 = tan z | � e2npi = 1 = e–2npi

⇒ tan z remains unchanged when z is increased by any multiple of p.
∴ tan z is a periodic function with period p.

���������	
�
���������
�������
���
��������������

If z is a complex quantity, prove that
(i) sin2 z + cos2 z = 1  (ii) sin 2z = 2 sin z cos z

(iii) cos 2z = cos2 z – sin2 z = 2 cos2 z – 1 = 1 – 2 sin2 z

(iv) tan 2z = 
2

2 tan z

1 tan z�
(v) sin (– z) = – sin z

(vi) sin 3z = 3 sin z – 4 sin3 z  (vii) tan 3z = 
3

2

3 tan z tan z

1 3 tan z

�
�

Proof. (i)  LHS = sin2 z + cos2 z = 

2 2

2 2

iz iz iz ize e e e

i

� �� � � �� �
�� 	 � 	
 � 
 �

  = – 1
4  (e2iz + e–2iz – 2) + 1

4  (e2iz + e–2iz + 2) = 1 1
2 2�  = 1 = RHS
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(ii) RHS = 2 sin z cos z = 2. 
2 2

.
2 2 2

iz iz iz iz iz ize e e e e e

i i

� � �� � �
�  = sin 2z = LHS

(iii) cos2 z – sin2 z = 

2 2

2 2

iz iz iz ize e e e

i

� �� � � �� �
�� 	 � 	
 � 
 �

  = 
1

4
 [(e2iz + e–2iz + 2) + (e2iz + e–2iz – 2)] = 

2 2

2

iz ize e��
 = cos 2z

   2 cos2 z – 1 = 2 

2
1

1
2 2

iz ize e�� ��
� �� 	
 �

 (e2iz + e–2iz + 2) – 1 = 
2 2

2

iz ize e��
 = cos 2z

 1 – 2 sin2 z = 1 – 2 

2
1

1
2 2

iz ize e

i

�� ��
� �� 	
 �

 (e2iz + e–2iz – 2) = 
2 2

2

iz ize e��
 = cos 2z

Hence the result.

(iv)  RHS = 
2 2 2 2

2 .
2 tan 2( )( )( )

1 tan [( ) ( ) ]
1

( )

iz iz

iz iz iz iziz iz

iz iz iz iziz iz

iz iz

e e

z e e e ei e e

z i e e e ee e

i e e

�

� ��

� ��

�

�
� ��

� �
� � � �� �

� � �
�� �� �

  = 
2 2 2 2

2 2 2 2

2( )

.2( ) ( )

iz iz iz iz

iz iz iz iz

e e e e

i e e i e e

� �

� �
� �

�
� �

 = tan 2z = LHS

(v)  sin (– z) = 
( ) ( )

2 2 2

i z i z iz iz iz ize e e e e e

i i i

� � � � �� � �
� � �  = – sin z.

(vi)  sin 3z = 
3 3 3 3

2 2

iz ize e x y

i i

�� �
� , where x = eiz, y = e–iz

=  
3( ) 3 ( ) 1

2 2

x y xy x y

i i

� � �
�  [(eiz – e–iz)3 + 3 . eiz . e–iz (eiz – e–iz)]

=
1

2i
 [(2i sin z)3 + 3(2i sin z)] = 

1

2i
 [– 8i sin3 z + 6i sin z] = 3 sin z – 4 sin3 z.

(vii)  RHS =
3

2

3 tan tan

1 3 tan

z z

z

�
�

=

3 3

2 2

1
3 . 3 .

( ) ( ) ( )

1 3 . 1 3 .
( )

iz iz iz iz iz iz iz iz

iz iz iz iz iz iz iz iz

iz iz iz iz

iz iz iz iz

e e e e e e e e

ii e e i e e i e e e e

e e e e

i e e e e

� � � �

� � � �

� �

� �

� � � � � � � �� � � �
� �� � � � � � � �

� � � �� � � � � � � �	 
 	 
 	 
 	 
�
� � � �� �

� �� � � �
� �� � � �	 
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= 

3

2

1
3 .

1 3

x x

iy i y

x

y

� �
� � 	
 �

� �
� � 	
 �

, where x = eiz – e–iz, y = eiz + e–iz

= 
2 3 2 2 2 2 2 2 2

3 2 2 2 2 2 2 2 2

3 (3 ) (3 3 6 2)
.

3 ( 3 ) ( 2 3 3 6)

iz iz iz iz

iz iz iz iz

xy x y x y x x e e e e

iy y x iy y x iy e e e e

� �

� �

� � � � � � �
� �

� � � � � � �

= 
2 2 2 2

2 2 2 2

(4 4 4) ( )( 1)

(4 4 4) ( )( 1)

iz iz iz iz iz iz

iz iz iz iz iz iz

x e e e e e e

iy e e i e e e e

� � �

� � �
� � � � �

�
� � � � �

= 
3 3

3 3( )

iz iz

iz iz

e e

i e e

�

�
�
�

2 2 3 3

2 2 3 3

( )( )

( )( )

a b a b ab a b

a b a b ab a b

� � � � � �
� �

� � � � �� �� �

�

= tan 3z.
Example 3. If α, β are the imaginary cube roots of unity prove that

   aeax + bebx
 = – e–x/2 

3 3
cos x 2 sin x

2 2

� �
� �� �

.

Sol. We know that imaginary cube roots of unity are w and w2, where

w = 21 3 1 3
,

2 2

i i� � � �
� � .

Here α =
1 3

2

i� �
, β = 

1 3

2

i� �

aeax + bebx
 = α

1 3 1 3

2 2 2 2
i x i x

e e

� � � �
� � � �� � � �� 	 � 	� �

= αe–x/2. 
3

2
i x

e  + βe–x/2, 
3

2
i x

e
�

 = e–x/2 
3 3

2 2
i x i x

e e
�� �� �� � �� �

� �� �

= e–x/2 
3 3 3 3

cos sin cos sin
2 2 2 2

x i x x i x
� �� � � �� �� � � � �� �� 	 � 	
 � 
 �� �� �

= e–x/2 
3 3

( ) cos ( ) sin
2 2

x i x
� �� �� � � � � � �� �
� �� �

α + β = – 1, α – β = i 3

∴    aeax + bebx = e–x/2 
3 3

cos ( 3) sin
2 2

x i i x
� �� �� �� �
� �� �

= – e–x/2 
3 3

cos 3 sin
2 2

x x
� �� ��� �
� �� �

.
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��������	�
�������

1. If z = x + iy, find the real and imaginary parts of exp (z2).

2. Prove that:
(i) sin (a + nq) – eia sin nq = e–inq sin a (ii) [sin (a + q) – eia sin q]n = sinn a . e–inq

3. If z is a complex number, prove that:
(i) cos (– z) = cos z  (ii) tan (– z) = – tan z

(iii) cos 3z = 4 cos3 z – 3 cos z (iv) tan z = 
sin 2

1 cos 2

z

z�
 .

4. If z1, z2 are complex numbers, show that:
(i) sin (z1 + z2) = sin z1 cos z2 + cos z1 sin z2 (ii) cos (z1 – z2) = cos z1 cos z2 + sin z1 sin z2

(iii) tan (z1 + z2) = 1 2

1 2

tan tan

1 tan tan

z z

z z

�
�

(iv) sin z1 + sin z2 = 2 sin 1 2 1 2cos
2 2

z z z z� �

(v) cos z1 – cos z2 = 2 sin 1 2 2 1sin
2 2

z z z z� �

5. Show that:

(i) cos (a + ib) = 
1

2
 (e–b + eb) cos a + 

2

i
 (e–b + eb) sin a

(ii) sin (a + ib) = 
1

2
 (e–b + eb) sin a + 

2

i
 (e–b + eb) cos a.

������

1.
2 2 2 2

cos 2 ,x y x ye xy e� �  sin 2xy.

�������
	��������
���
�����������

Definition. If w = ez, where z and w are complex numbers, then z is called a logarithm of w to the base e.
Thus loge w = z.

1. Prove that loge w is a many-valued function.
We know that e2nπi = cos 2nπ + i sin 2nπ = 1
Let ez = w, then ez+2nπi = ez . e2nπi = ez. 1 = ω
∴ by definition loge w = z + 2nπi, where n is zero, or any +ve or –ve integer.
Thus if z be a logarithm of w, so is z + 2nπi.
Hence the logarithm of a complex number has infinite values and is thus a many-valued function.
Note. The value z + 2nπi is called the general value of loge w and is denoted by Loge w.
Thus    Loge w = z + 2nπi = 2nπi + loge w

If w = x + iy, then  Log (x + iy) = 2nπi + log (x + iy).

If we put n = 0, in the general value, we get the principal value of z, i.e., loge w.

2. Prove that  log (– N) = πi + log N, where N is positive.

Proof.  – N = N(– 1) = N(cos π + i sin π) = N . eiπ

∴  log (– N) = log (N . eiπ) = log N + log eiπ = log N + πi.

3. Separate log (α + iβ) into real and imaginary parts.

Proof. Let α + iβ = r(cos θ + i sin θ) so that r = 2 2� � � , θ = tan–1 
�
�
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∴ Log (α + iβ) = 2nπi + log (α + i β) = 2nπi + log [r(cos θ + i sin θ)]

= 2nπi + log (r eiθ) = 2nπi + log r + log eiθ = 2nπi + log r + iθ

 = 2nπi + log 2 2� � �  + i tan–1 
�
�

 = 2nπi + 
1

2
 log (α2 + β2) + i tan–1 

�
�

 = 2 2 11
log ( ) 2 tan

2
i n � �� �� � � � � �	 
�� �

∴ Re[Log (α + iβ)] = 1
2

 log (α2 + β2)

Im[Log (α + iβ)] = 2 nπ + tan–1 
�
�

Note. Putting n = 0, the principal value of log (α + iβ) = 1
2 log (α2 + β2) + i tan–1 



�

.

�		
�������������	��

Example 1. Prove that log (1 + reiθ) = 
1

2
 log (1 + 2r cos θ + r2) + i tan–1 

r sin

1 r cos

�
� �

.

Deduce that log (1 + cos θ + i sin θ) = log 2 cos i
2 2

� � � �� �� �
Sol. log (1 + reiθ) = log [1 + r(cos θ + i sin θ)] = log [(1 + r cos θ) + i(r sin θ)]

=
1

2
 log [(1 + r cos θ)2 + (r sin θ)2] + i tan–1 

sin

1 cos

r

r

�
� �

=
1

2
 log [1 + 2r cos θ + r2 cos2 θ + r2 sin2 θ] + i tan–1 

sin

1 cos

r

r

�
� �

=
1

2
 log [1 + 2r cos θ + r2] + i tan–1 

sin

1 cos

r

r

�
� �

…(1)

Putting r = 1 in (1),

log (1 + eiθ) =
1

2
 log (1 + 2 cos θ + 1) + i tan–1 

sin

1 cos

�
� �

i.e.,  log (1 + cos θ + i sin θ) =
1

2
 log [2(1 + cos θ)] + i tan–1 

2

2 sin cos
2 2

2 cos
2

� �

�

=
2

2 11 1
log 2 . 2 cos tan tan log 2 cos

2 2 2 2 2 2
i i� � � � � ��  � � � �� � �� �� 	 � 	� � 
 � 
 �� � � �� �

=
1

. 2 log 2 cos . log 2 cos .
2 2 2 2 2

i i
� � � � �  �� � �� � � �� � � �

Example 2. (a) Find the general value of log � �1+ i 3� . (P.T.U., May 2012)

(b) Prove that log (– 4) = 2 log 2 + (2n + 1) π i. (P.T.U., May 2007)

Sol. (a)  1 3i� �  = r (cos q + i sin q)

r cos q = – 1 and  r sin q = 3
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Squaring and adding
r2 = 1 + 3 = 4

\ r = 2

cos q =
1 2

cos cos
2 3 3

� � �� � � � �� �� �

sin q =
3 2

sin sin
2 3 3

� �� �� � � �� 	
 �

\ q =
2

3

�

1 3i� �  =
2 2

2 cos sin
3 3

i
� � ��� �� �

=
2

32
i

e
�

General value of 1 3i� �

= � �2 log 1 3n i i� � � �

=
2
32 log 2

i

n i e
�� �

� � � 	

 �

=
2

32 log 2 log
i

n i e
�

� � �

=
2

2 log 2
3

n i i
�

� � �

=
1

log 2 2
3

i n
� �� � �� �� 	

=
3 1

log 2 2
3

n
i

�� �

(b)  – 4 = 4 (– 1) = 4 (cos π + i sin π) = 4eiπ

Log (– 4) = Log (4eiπ) = 2nπi + log (4e iπ)
= 2nπi + log 4 + log eiπ

= 2nπi + log 4 + iπ
= log 4 + (2n + 1) πi

= log 22 + (2n + 1) πi

= 2 log 2 + (2n + 1) πi.
Example 3. Separate into real and imaginary parts Log (4 + 3i).
Sol. Let  4 + 3i = r(cos θ + i sin θ)
Equating real and imaginary parts r cos θ = 4 ; r sin θ = 3
Squaring and adding, r2 = 16 + 9 = 25 ∴ r = 5

Dividing,  tan θ = 
3

4
∴ θ = tan–1 

3

4
∴ log (4 + 3i) = Log [r(cos θ + i sin θ)] = Log (reiθ) = 2nπi + log (reiθ)

= 2nπi + log r + log eiθ = 2nπi + log 5 + iθ = log 5 + 2nπi + i tan–1 
3

4
∴ Re[log (4 + 3i)] = log 5

 Im[log (4 + 3i)] = 1 3
2 tan

4
n �� �� �� �� 	

.
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Example 4. (a) Prove that tan 
2 2

a ib 2ab
i log

a ib a b

� �

�� ��� 	 


(b) Prove that sin 
i

i

1 ie
i log

1 ie

� �

�

� ��� �
� �

�� �� �
 is wholly real.

Sol. (a) Let a + ib = r (cos θ + i sin θ)
Equating real and imaginary parts r cos θ = a, r sin θ = b

Dividing, tan θ =
b

a
...(1)

Also, a – ib = r (cos θ – i sin θ)

   L.H.S. = tan 
(cos sin )

log tan log
(cos sin )

i

i

r i e
i i

r i e

� �

�

� � � � �
� � �� �� � � � �� � � �

= tan [i log e–2iθ] = tan [i(– 2iθ) log e] | log e = 1

= tan 2θ = 
2 2

2

22 tan

1 tan
1

b

a
b

a

�
�


 �



[Using (1)]

=
2 2

2ab

a b

.

(b) sin 
1 (cos sin

log
1 (cos sin )

i i
i

i i

� �� � 
 �
� �
 � � �� �

= sin 
(1 sin ) cos

log
(1 sin ) cos

i
i

i

� �� � � �
� �� � 
 �� �

= sin 
1 cos sin

2 2
log

1 cos sin
2 2

i

i

i

� �� �� � � �� 
 � � 
 �� � � �� �� 	 � 	� �
� �� �� � � �� �� 
 � 
 
 �� � � �� 	 � 	� �� �

= sin 

2

2

2 cos 2 sin cos
4 2 4 2 4 2

log
2 cos 2 sin cos

4 2 4 2 4 2

i

i

� �� � � � � �� � � � � �
 � 
 
� � � � � �� �� 	 � 	 � 	� �
� �� � � � � �� � � � � �� �
 
 
 
� � � � � �� 	 � 	 � 	� �� �

= sin 

cos sin
4 2 2 2

log
cos sin

4 2 4 2

i

i

i

� �� � � �� � � �
 � 
� � � �� �� 	 � 	� �
� �� � � �� � � �� �
 
 
� � � �� 	 � 	� �� �

 = sin 
4 2

4 2

log

i

i

e
i

e

� �� ��� �� 	

� �� �� �� �� 	

� �
� �� �
� �
� �
� �� �

= sin 
2

4 2log
i

i e

� �� ��� �� 	
� �� �
� �
� �� �

 = sin 2

2
i
� ��� �
 �� �� �� 	� �

 = – sin
2

�� �
 �� �� 	
 = – cos θ

which is wholly real.
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Example 5. Express log (log i) in the form A + iB.

Sol.   i = cos 
2

�
 + i sin 

2

�
 = eiπ/2

∴   Log i =  2nπi + log eiπ/2 = 2nπi + i 
2

�
 = i(4n + 1) 

2

�

∴ Log (Log i) = Log (4 1)
2

i
�� � �� �� �

 = 2mπi + log (4 1)
2

i
�� � �� �� �

= 2mπi + log i + log (4n + 1) 
2

�

= 2mπi + log eiπ/2 + log (4n + 1) 
2

� 2cos sin
2 2

i
i i e

�� �� �
� � �� 	


 �
�

= 2mπi + i 
2

�
 + log (4n + 1) 

2

�
 = log (4n + 1) 

2

�
 + i(4m + 1) 

2

�
.

Example 6. (a) Show that log 1x iy y
2i tan

x iy x
��

�
�

.

(b) Prove that    tan–1 x = 
1

2i
 log 

1 ix

1 ix

�



. (P.T.U., May 2007)

Sol. (a) Let  x = r cos θ, y = r sin θ

∴  x2 + y2 = r2 and tan θ = 
y

x

  log 
(cos sin )

log
(cos sin )

x iy r i

x iy r i

� � � �
�


 � 
 �
 =  log 

i

i

e

e

�

� �
 = log e2iθ = 2iθ

= 2i tan–1 
y

x
.

(b) Let 1 = r sin θ, x = r sin θ ∴ r2 = 1 + x2, tan θ = x.

R.H.S. =
1 1

log
2 1

ix

i ix

�



=
1 cos sin 1 cos sin

log log
2 cos sin 2 cos sin

r i r i

i r i r i i

� � � � � �
�

� 
 � � 
 �

=
1 1

log
2 2

i

i

e

i ie

�

� � �  log e2iθ = 
1

2i
 2iθ = θ = tan–1 x.

������	�������
������� ������
�

The exponential function az is defined by the equation az = ez log a, where a and z are any numbers, real or
complex.

Since Log a = 2nπi + log a
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∴ The general exponential function az = ez log a

∴  az = ez(2nπi + log a)

Hence az is a many valued function and its principal value is obtained by putting n = 0.

Example 7. (a) Prove that ii is wholly real and find its principal value. Also show that the values of ii form
a G.P. (P.T.U., Dec. 2007, May 2010, Dec. 2013)

(b) Prove that log ii = – 
1

2n
2

� ��� �� 	
 π. (P.T.U., Dec. 2002)

Sol. (a)  ii = ei Log i [By definition]

= ei[2nπi + log i] = ei[2nπi + log (cos π/2 + i sin π/2)]

= 
/2 2[2 log ] [2 /2] (4 1) /2 (4 1) /2ii n i e i n i i i n ne e e e

�� � � � � � � � � �� � �

which is wholly real.

The principal value of ii
 = e–π/2 (putting n = 0)

Putting n = 0, 1, 2, ....... the values of ii are e–π/2, e–5π/2, e–9π/2,.....

which form a G.P. whose common ratio is e–2π.

(b)  Log ii = i log i

= i[2nπ  i + log i]  = 2 log cos sin
2 2

i n i i
� � �� �� � �� �� �� 	� �

= i 22 log
i

n i e
�� 

� �� �
� �� �

 =  i 2
2

n i i
�� �� � �� 	�

 = i2 π 
1

2
2

n
� ��� �� 	

= – 
1

2
2

n
� �� �� �� 	

.

Example 8. If iα+iβ = α + iβ, prove that α2 + β2 = ( )4n 1e� �  πβ.

Sol.  α + iβ = ia + ib = log ( ) logi i i ie e� � � �� ��

 = e(α  + iβ)[2nπi + log i] = e(α  + iβ)[2nπi + log (cos π/2 + i sin π/2)]

 = e(α + iβ)[2nπi + log /eiπ 2 ] = e(α + iβ)[2nπi + iπ/2] = e–β(4n + 1)π/2 + iα(4n + 1)π/2

 = e–β(4n + 1)π/2 . eiα(4n + 1)π/2 = e–β(4n + 1)π/2 cos (4 1) sin (4 1)
2 2

n i n
�� ��� �� � �� 	
 �

[� eiθ = cos θ + i sin θ]

Equating real and imaginary parts

 α = e–(4n + 1)βπ/2 . cos (4n + 1) 
2

��
 ; β = e–(4n + 1)βπ/2 . sin (4n + 1) 

2

��

Squaring and adding,

  α2 + β2 = e–(4n + 1)βπ 2 2cos (4 1) sin (4 1)
2 2

n n
�� ��� �� � �� 	
 �

 =  e–(4n + 1)βπ.
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Example 9. Considering only the principal value, prove that the real part of

1 i 3(1 i 3 ) ��  is 32e cos 3 log 2
3

�� �� �� �� �
.

Sol.  1 3(1 3) ii �� =
11

2(1 3)[ log(1 3) tan 3](1 3) log (1 3) i ii ie e
�� � �� � �

=
1 1
2 2

(1 3)[ log 4 /3] (1 3)( .2log2 /3)i i i i
e e

� � � � � ��

=
(log2 / 3) ( /3 3 log2) log 2 / 3 ( /3 3 log2).i ie e e�� � � � �� � ��

= log 2 / 3 cos 3 log 2 sin 3 log 2
3 3

e e i�� � �� �� � � �� � �	 
� � � � �  �� �

= / 32 cos 3 log 2 sin 3 log 2
3 3

e i�� � �� �� � � �� � �	 
� � � � �  �� �
[� elog f(x) = f(x)]

⇒ Real part of 1 3(1 3) ii ��  is / 32 cos 3 log 2
3

e��
�� ��� � �

.

Example 10. If 
......... .i ad inf.ii  = A + iB and only principal values are considered, prove that

(a) tan 
A B

2 A

�
� (b) A2 + B2 = e–Bπ.

Sol.     iii ad inf.......... .

 = A + iB ⇒ iA + iB = A + iB
Now, A + iB = iA + iB = e(A + iB) log i (Taking principal values only)

= 
/2(A B) log (cos /2 sin /2) (A B) log ( )ii i i ee e

�� � � � ��
= e(A + iB)(iπ/2) = e–(Bπ/2) + i . (Aπ/2)

= B /2 A /2 B /2 A A
. cos sin

2 2
ie e e i� � � � � � �� �� �� � �

Equating real and imaginary parts

 A = e– B(π/2) cos 
A

2

�
…(1)

 B = e–B(π/2) sin 
A

2

�
…(2)

Dividing (2) by (1), tan 
A B

2 A

�
� …(I)

Squaring and adding (1) and (2), A2 + B2 = e–Bπ 2 2A A
cos sin

2 2

� �� ��� � �
 = e–Bπ …(II)

Example 11. If (a + ib)p = mx+iy, then prove that 

1

2 2

b
2 tan

y a

x log (a b )

� � �
� � �

�
�

 when only principal values are

considered. (P.T.U., Dec. 2006)
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Sol. (a + ib)p = mx+iy

Taking log of both sides, log (a + ib)p = log mx+iy

or p log (a + ib) = (x + iy) log m

or p 2 2 11
2

log ( ) tan
b

a b i
a

�� �� �	 
� �
 = x log m + iy log m

(Considering only the principal values)

Equating real and imaginary parts x log m = 1
2  p log (a2 + b2) …(i)

y log m =  p tan–1 
b

a
…(ii)

Dividing (ii) by (i),
y

x
 =  

1 1

2 2 2 21
2

tan 2 tan

log ( ) log ( )

� �

�
� �

b b
p

a a
p a b a b

.

Example 12. If tan log (x + iy) = a + ib and a2 + b2 ≠  1, then prove that tan log (x2 + y2) = 
2 2

2a

1 a b� �
.

Sol. tan log (x + iy) = a + ib …(i)

⇒ tan log (x – iy) = a – ib …(ii)

Now, tan log (x2 + y2) = tan log (x + iy)(x – iy)

= tan [log (x + iy) + log (x – iy)] = 
tan log ( ) tan log ( )

1 tan log ( ) . tan log ( )

x iy x iy

x iy x iy

� � 


 � 


=
2 2

2

1 ( )( ) 1

a ib a ib a

a ib a ib a b

� � �
�

� � � � �
, where a2 + b2 ≠  1.

Example 13. Show that � �
i

4 2i e cos i sin
4 2 4 2

�
� � �� �

� �� � �

Sol. � � � �log
ii i

i e�  =
1

loglog 2
i ii ie e�

We know that   i = cis 2

2

i
e

��
�

∴ � �
i

i  =

1

2
2

11 cis .log 2 2 22

� � �� � � �
� � � �� 	 � 	�

i
ii e

e e

=
cos sincis 4 4 44 4

i
ii

e e

� � �� �� � �� �� 	�

=
1

( 1)
4 2 4 2 4 2 4 2.

i
i i i

e e e e

� � � � �
� �

� �

= 4 2 4 2cis cos sin
4 2 4 2 4 2

e e i

� �
� � � � � �

� �� �
� �� �

.
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Example 14. If 
x iy

x iy

(1 i)

(1 i)

�

�

�
�

 = α + i β, prove that one of the values of tan–1 
�
�

 = 
1

2
 πx + y log 2.

Sol. First take (1 + i)x + iy

(1 + i)x+ iy = e i x iylog ( )1 + +

 = e (x + iy) log (1 + i)

One of the values of

 log (1 + i) = log | 1 + i | + i tan–1 
1

1
2 2 1log tan

y
x y i

x
�� �� �	 
� �

= log 2
4

i
�

�

∴  (1 + i)x+iy =
( ) log 2

4
x iy i

e

�� �� �� �� �  = 
log 2 log 2

4 4
x y i y x

e

	 	� � 
 �� � �� �  �� � � �

(1 + i)x+iy =
log 2 log 2

4 4
y x

x i y
e

	 	� � 
 �� � �� �  �� � � �

Changing i to – i

(1 – i)x–iy =
log 2 log 2

4 4

y x
x i y

e

� �� � � � � �� � � �� 	 � �

(1 )

(1 )

�

�
�
�

x iy

x iy

i

i
 =

log 2 log 2
4 4

log 2 log 2
4 4

� �� � � � � �� � � �� 	 � �

� �� � � � � �� � � �� 	 � �

y x
x i y

y x
x i y

e

e

 = 
2 log 2

4
x

i y
e

	
 �� �� �

=
1/22 log 2 log 2

2 2
x x

i y i y
e e

� ��  � � �� � � �� � � ��

∴ α + i β = cos log 2
2

x
y

�� ��� � �
 + sin log 2

2

x
i y

�� ��� � �

∴ α  = cos log 2
2

x
y

�� ��� � �
and β = sin log 2

2

x
y

�� ��� � �

∴ �
�

 = tan log 2
2

�� ��	 
� �

x
y

tan–1 
�
�

 =
1

2
 πx + y log 2 is one of the values.

Example 15. Find modulus and argument of (1 + i)1– i. (P.T.U., May 2003)

Sol.  (1 + i)1–i =
1log(1 ) iie
��  = e(1–i) log (1 + i)

=

1 1 1
(1 ) log 1 1 tan (1 ) log 2

1 2 4
i i i i

e e
� ��  � � � � � �� � � �� � � ��

=
1 1 1 1

log 2 log2 log2 log2
2 4 4 2 2 4 4 2.

i i
e e e

� � � �� � � � � � � �� � � � �� � � � � � � �� 	 � 	 � 	 � 	�

=

1
log 2

2 4 1 1
cos log 2 sin log 2

4 2 4 2
e i

�� ��� �� 	 � �� �� � � �
 � 
	 
� � � �� 	 � 	� �
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Real part of (1 + i)1–i =

1
log 2

2 4e

�� ��� �� 	  cos 
1

log 2
4 2

�� �
� � �

Img. part of (1 + i)1–i =

1
log 2

2 4e

�� ��� �� 	  sin 
1

log 2
4 2

�� �
� � �

Modulus of (1 + i)1–i = 2 2(Re) (Im)�

=

1
2 log2

2 4e

�� ��� �� 	  2 21 1
cos log 2 sin log 2

4 2 4 2

� �� �� � � �
 � 
	 
� � � � �  �� �

=
1 12 log2 log 2
2 4 2 4.1e e

�� � �� �� �� 	 �  = log 2 4 4. 2e e e
� �

�

Argument of (1 + i)1–i = tan–1 
Img. part

Real part
 = tan–1 

1
sin log 2

14 2
1 4 2

cos log 2
4 2

�� �
� � � �
� 


�� �
� � �

 log 2.

Example 16. Prove that Logi i = 
4m 1

4n 1

�
�

, where m, n are integers.

Sol. Logi i =
Log

Log
e

e

i

i

We know that   i = cis 2

2

i

e
��

�

∴ Loge i = 2mπ i + Log i = 2m ��i + Log 2

i

e
	

= 2m πi + i 
2

�

= (4m + 1) 
i π
2

, where m is any integer

Similarly, Loge i in the denominator

= 2nπ i + Log i = (4n +1) 
2

i �
, where n is any integer

∴ Logi i =
(4 1) 4 12

4 1(4 1)
2

i
m m

i nn

�
� �

�
� ��

.

������
�����	����

1. Find the general value of
(i) log (– i) (ii)  log (1 + i).

(iii) log (– 3) (P.T.U., Dec. 2002)
2. Prove that

(i) i log 
x i

x i

� �

� �� �

 = p – 2 tan–1 x (ii) cos 
2 2

2 2log
a ib a b

i
a ib a b

� �� �� 

�	 
� �
 � �	 
� �

(iii) ii = 
(4 1)

2
n

e
�

� �
(iv) Log ii = – 

1
2

2
n

� ��� �� �
 p.
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3. Show that

(i) log (1 + i tan a) = log sec a + i a (ii) Loge 
13 1

2 tan
3 3

i
i n

i
�� 	� � 	� 
 �� �� � 	 
�	 


4. Prove that sin (log ii) = – 1.

5. If log log (x + iy) = p + iq, show that y = x tan [tan q log 2 2x y� ].

6. Prove that the principal value of 
( )

( )

p iq

p iq

a ib

a ib

�

�
�
�

 is cos 2 (pa + q log r) + i sin 2 (pa + q log r), where

r = 2 2a b�  and a = tan–1 
b

a
.

7. Prove that 
1

1

(1 )

(1 )

i

i

i

i

�

�
�
�

 = sin (log 2) + i cos (log 2).

8. Prove that the real part of the principal value of ilog (1+i) is 

2

8e
�

�
 cos log 2

4

�� �
� �� �

.

�������

1. (i) (4n – 1) 
2

i

, (ii)

1

2
 log 2 + i(8n + 1) 

4



.

(iii) log 3 + i(2n + 1) p

���������������
����������
��

(i) For all values of x, real or complex. The quantity 
2

x xe e��
 is called hyperbolic sine of x and is

written as sinh x and

(ii) The quantity 
2

x xe e�	
 is called hyperbolic cosine of x and is written as cosh x.

Thus  sinh x = 
2

x xe e��
 ; cosh x = 

2

x xe e�	

The other hyperbolic functions are defined in terms of hyperbolic sine and cosine as follows :

 tanh x = 
sinh

cosh

x x

x x

x e e

x e e

�

�
�

�
	

 ;  coth x = 
cosh

sinh

x x

x x

x e e

x e e

�

�
	

�
�

 sech x = 
1 2

cosh x xx e e�



�
 ;  cosech x = 

1 2

sinh x xx e e�



�

Note.  sinh 0 = 
0 0 1 1

2 2

e e�� �
�  = 0 ;  cosh 0 = 

0 0 1 1

2 2

e e�	 	
�  = 1

 cosh x + sinh x = 
2 2

x x x xe e e e� �	 �
	  = ex ;

cosh x – sinh x = 
2 2

x x x xe e e e� �	 �
�  = e–x.
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����� ��� �����
�����!�������
������"����������������
��

cos θ = 
2

i ie e� � �	
 ; sin θ = 

2

i ie e

i

� � ��

Putting θ = ix in these equations, we get

cos (ix) =
( ) ( )

2 2

i ix i ix x xe e e e� �	 	
�  = cosh x

sin (ix) =
( ) ( ) 2( ) ( )

.
2 2 2 2 2

i ix i ix x x x x x x x xe e e e e e i e e e e
i

i i i i

� � � � �� � � � � �
� � � � = i sinh x

tan (ix) =
sin ( ) sinh

cos ( ) cosh

ix i x

ix x
�  = i tanh x

cot (ix) =
2

cos ( ) cosh cosh

sin ( ) sinh sinh

ix x i x

ix i x i x

 
  = – i coth x

sec (ix) =
1 1

cos ( ) coshix x
�  = sech x

cosec (ix) =
2

1 1

sin ( ) sinh sinh

i

ix i x i x

 
  = – i cosech x.

By definition, sinh θ = 
2

e e� ���
 ; cosh θ = 

2

e e� ��	
 ; tanh θ = 

e e

e e

� ��

� ��

�
	

Putting θ = ix, we get

  sinh (ix) = .
2 2

ix ix ix ixe e e e
i

i

� �� �
�  = i sin x ; cosh (ix) = 

2

ix ixe e��
 = cos x

 tanh (ix) =
sin2. .
cos

2

ix ix

ix ix

ix ix ix ix

e e
e e xii i

xe e e e

�

�

� �

�
�

� �
	 	

 = i tan x.

�����#�� ��
$�����������
����������
���������
"�����"����"

����� ���
"�

(i) We know that sinh x = 
2

x xe e��

∴ sinh (x + 2nπi) =
2 ( 2 )

2

x n i x n ie e� � � � ��
, where n is any integer

= 1
2  [ex . e2nπi – e–x . e–2nπi] = 

1

2
 [ex . 1 – e–x . 1] = 

2

x xe e��
 = sinh x

Thus sinh x remains unchanged when x is increased by any multiple of 2πi.
Hence sinh x is a periodic function and its period is 2πi.

(ii)  cosh x = 
2

x xe e�	

 cosh (x + 2nπi) =
2 ( 2 )

2

x n i x n ie e� � � � ��
, where n is any integer

= 1
2  [ex . e2nπi + e–x . e–2nπi] = 1

2  [ex . 1 + e–x . 1] = 
2

x xe e�	
 = cosh x
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Thus cosh x remains unchanged when x is increased by any multiple of 2πi.
Hence cosh x is a periodic function and its period is 2πi.

(iii)  tanh x = 
x x

x x

e e

e e

�

�
�
	

 tanh (x + nπi) =
( )

( )

x n i x n i

x n i x n i

e e

e e

� � � � �

� � � � �

�
�

, where n is any integer

=
. .

. .

x n i x n i

x n i x n i

e e e e

e e e e

� � � �

� � � �
�
	

Multiplying the numerator and denominator by enπi

=
2

2

.

.

x n i x x x

x n i x x x

e e e e e

e e e e e

� � �

� � �

� �
�

	 	
 = tanh x [� e2nπi = cos 2nπ + i sin 2nπ = 1]

Thus tanh x remains unchanged when x is increased by any multiple of πi.
Hence tanh x is a periodic function and its period is πi.
Note. cosech x, sech x and coth x being reciprocals of sinh x, cosh x and tanh x respectively, are also periodic functions

with periods 2πi, 2πi and πi respectively.

���%���
������
�������
����������
��

1. Prove that (a) cosh2 x – sinh2 x = 1, (b) sech2 x + tanh2 x = 1, (c) coth2 x – cosech2 x = 1
Proof. (a) For all values of θ,   cos2 θ + sin2 θ = 1
Putting θ = ix, we get   cos2 (ix) + sin2 (ix) = 1

or (cosh x)2 + (i sinh x)2 = 1 [� cos ix = cosh x ; sin (ix) = i sinh x]
or  cosh2 x – sinh2 x = 1 [� i2 = – 1]

(b) We know that cosh2 x – sinh2 x = 1

Dividing both sides by cosh2 x, we have
   1 – tanh2 x = sech2 x ⇒ sech2 x + tanh2 x = 1

(c) We know that cosh2 x – sinh2 x = 1

Dividing both sides by sinh2 x, we have
 coth2 x – 1 = cosech2 x ⇒ coth2 x – cosech2 x = 1

2. Prove that (a) sinh (x ±  y) = sinh x cosh y ±  cosh x sinh y

(b) cosh (x ±  y) = cosh x cosh y ±  sinh x sinh y

(c) tanh (x ±  y) = 
tanh tanh

1 tanh tanh

x y

x y

�
�

Proof. (a) sinh (x ±  y) = 
1

i
 sin i (x ±  y)

1
sinh sinx ix

i
� �� �� �
�

= 
1

i
 (sin ix cos iy ±  cos ix sin iy)

= 
1

i
 (i sinh x cosh y ±  cosh x . i sinh y)

[� sin iθ = i sinh θ ; cos iθ = cosh θ]
Hence sinh (x ±  y) = sinh x cosh y ±  cosh x sinh y
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(b) cosh (x ±  y) = cos i (x ±  y) [� cosh x = cos ix]
= cos ix cos iy � sin ix sin iy = cosh x cosh y � i sinh x . i sinh y
= cosh x cosh y � (– sinh x. sinh y) [� i2 = – 1]

Hence cosh (x ±  y) = cosh x cosh y ±  sinh x sinh y

(c) tanh (x ±  y) = 
sinh ( ) sinh cosh cosh sinh

cosh ( ) cosh cosh sinh sinh

x y x y x y

x y x y x y

� �
�

� �
Dividing the numerator and denominator by cosh x cosh y

\ tanh (x ± y) = 
�

�
tanh tanh

1 tanh tanh
x y

x y

3. Prove that (a) sinh 2x = 2 sinh x cosh x = 
2

2 tanh

1 tanh

x

x�

(b) cosh 2x = cosh2 x + sinh2 x = 2 cosh2 x – 1 = 1 + 2 sinh2 x = 
2

2

1 tanh

1 tanh

x

x

	
�

(c) tanh 2x =
2

2 tanh

1 tanh

x

x�
Proof. (a) We know that sin 2θ = 2 sin θ cos θ
Putting  θ = ix, we get sin (2ix) = 2 sin (ix) cos (ix) or i sinh 2x = 2 . i sinh x. cosh x

or sinh 2x = 2 sinh x cosh x

Also, sin 2θ =
2

2 tan

1 tan

�
� �

Putting θ = ix, we get sin (2ix) =
2 2

2 tan 2 . tanh

1 tan 1 ( tanh )

ix i x

ix i x



� �

or i sinh 2x =
2

2 tanh

1 tanh

i x

x�
or sinh 2x = 

� 2

2 tanh

1 tanh

x

x

(b) We know that cos 2θ = cos2 θ – sin2 θ
Putting θ = ix, we get cos (2ix) = cos2(ix) – sin2 (ix) or cosh 2x = (cosh x)2 – (i sinh x)2

or cosh 2x = cosh2 x + sinh2 x
We know that cos 2θ = 2 cos2 θ – 1
Putting θ = ix, we get cos (2ix) = 2 cos2 (ix) – 1 or cosh 2x = 2 cosh2 x – 1

Cor. cosh2 x =
cosh 2 1

2

x 	

We know that cos 2θ = 1 – 2 sin2 θ
Putting θ = ix, we get cos (2ix) = 1 – 2 sin2 (ix)

or cosh 2x = 1 – 2 (i sinh x)2 = 1 + 2 sinh2 x

Cor. sinh2 x =
cosh 2 1

2

x �

We know that cos 2θ =
2

2

1 tan

1 tan

� �
	 �

Putting θ = ix, we get cos (2ix) =
2 2

2 2

1 tan ( ) 1 ( tanh )

1 tan ( ) 1 ( tanh )

ix i x

ix i x

� �
�

	 	
or cosh 2x = 

	
�

2

2

1 tanh

1 tanh

x

x
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(c) We know that tan 2θ =
2

2 tan

1 tan

�
� �

Putting θ = ix, we get tan (2ix) =
2

2 tan ( )

1 tan ( )

ix

ix�

i tanh 2x =
2 2

2 tanh 2 tanh

1 ( tanh ) 1 tanh

i x i x

i x x
�

� 	

∴ tanh 2x =
	 2

2 tanh

1 tanh

x

x
.

4. Prove that (a) sinh 3x = 3 sinh x + 4 sinh3 x.

(b) cosh 3x = 4 cosh3 x – 3 cosh x (c) tanh 3x = 
3

2

3 tanh tanh

1 3 tanh

x x

x

	
	

.

Proof. (a) We know that sin 3θ = 3 sin θ – 4 sin3 θ
Putting θ = ix, we get sin (3ix) = 3 sin (ix) – 4 sin3 (ix)

or i sinh 3x = 3i sinh x – 4 (i sinh x)3

or i sinh 3x = 3i sinh x + 4 i sinh3 x [� i3 = – i]
or sinh 3x = 3 sinh x + 4 sinh3 x

(b) We know that cos 3θ = 4 cos3 θ – 3 cos θ
Putting θ = ix, we get cos (3ix) = 4 cos3 (ix) – 3 cos (ix)

or cosh 3x = 4 cosh3 x – 3 cosh x

(c) We know that tan 3θ =
3

2

3 tan tan

1 3 tan

� � �
� �

Putting θ = ix, we get tan (3ix) =
3

2

3 tan ( ) tan ( )

1 3 tan ( )

ix ix

ix

�
�

or i tanh 3x =
3

2

3 tanh ( tanh )

1 3 ( tanh )

i x i x

i x

� �
�

or i tanh 3x =
3

2

3 tanh tanh

1 3 tanh

i x i x

x

� �
�

or tanh 3x = 
	

	

3

2

3 tanh tanh

1 3 tanh

x x

x
 .

5. Prove that:

(i) 2 sinh A cosh B = sinh (A + B) + sinh (A – B)

(ii) 2 cosh A sinh B = sinh (A + B) – sinh (A – B)

(iii) 2 cosh A cosh B = cosh (A + B) + cosh (A – B)

(iv) 2 sinh A sinh B = cosh (A + B) – cosh (A – B)
Proof. We shall prove only the last result.
The first three are left as an exercise for the student.
We know that 2 sin x sin y = cos (x – y) – cos (x + y)
Putting x = iA ; y = iB, we get 2 sin (iA) . sin (iB) = cos i (A – B) – cos i (A + B)

or 2 . i sinh A . i sinh B = cosh (A – B) – cosh (A + B)
or – 2 sinh A sinh B = cosh (A – B) – cosh (A + B) [� i2 = – 1]
or  2 sinh A sinh B = cosh (A + B) – cosh (A – B)
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6. Prove that:

(i) sinh C + sinh D = 2 sinh 
C D

2

�
 cosh 

C D

2

�

(ii) sinh C – sinh D = 2 cosh 
C D

2

�
 sinh 

C D

2

�

(iii) cosh C + cosh D = 2 cosh 
C D

2

�
 cosh 

C D

2

�

(iv) cosh C – cosh D = 2 sinh 
C D

2

�
 sinh 

C D

2

�

Proof. We shall prove only the last result. The first three are left as an exercise for the student.

We know that cos x – cos y = 2 sin 
2

x y�
 sin 

2

y x�

Putting x = iA and y = iB, we get

cos (iA) – cos (iB) = 2 sin 
A B

2
i

�� �
� �� 	

 sin 
B A

2
i

�� �
� �� 	

⇒ cosh A – cosh B = 2i sinh 
A B

2

�
 . i sinh 

B A

2

�

= – 2 sinh 
A B

2

�
 sinh 

B A

2

�
 = 2 sinh 

A B

2

�
 sinh 

B A

2

�

[� sinh (– x) = – sinh x]
7. Prove that:

tanh (x + y + z) =
tanh tanh tanh tanh tanh tanh

1 tanh tanh tanh tanh tanh tanh

x y z x y z

x y y z z x

� � �

� � �

Proof. We know that,  tan (α + β + γ ) = 
tan tan tan tan tan tan

1 tan tan tan tan tan tan


 � � � � � 
 � �
� 
 � � � � � � 


Putting α = ix ; β = iy ; γ  = iz, we get

     tan i (x + y + z) =
tan ( ) tan ( ) tan ( ) tan ( ) tan ( ) tan ( )

1 tan ( ) tan ( ) tan ( ) tan ( ) tan ( ) tan ( )

� � �

� � �

ix iy iz ix iy iz

ix iy iy iz iz ix

   i tanh (x + y + z) =
tanh tanh tanh tanh . tanh . tanh

1 tanh . tanh tanh . tanh tanh . tanh

i x i y i z i x i y i z

i x i y i y i z i z i x

� � �

� � �

or tanh (x + y + z) =
tanh tanh tanh tanh tanh tanh

1 tanh tanh tanh tanh tanh tanh

x y z x y z

x y y z z x

� � �

� � �

.

����������	
�
����
�

Example 1. Separate into real and imaginary parts
(a) sin (x + iy) (b) cos (x + iy) (P.T.U., Dec. 2004)
(c) tan (x + iy) (d ) cot (x + iy)
(e) sec (x + iy) (P.T.U., May 2004) ( f ) cosec (x + iy).
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Sol. (a)   sin (x + iy) = sin x cos iy + cos x sin iy
= sin x cosh y + cos x ◊ i sinh y = sin x cosh y + i ◊ cos x sinh y

(b)   cos (x + iy) = cos x cos iy – sin x sin iy
= cos x cosh y – sin x ◊ i sinh y = cos x cosh y – i ◊ sin x sinh y

(c) tan (x + iy) =
sin ( ) 2 sin ( ) cos ( )

cos ( ) 2 cos ( ) cos ( )

x iy x iy x iy

x iy x iy x iy

� � �


� � �

=
sin 2 sin 2

cos 2 cos 2

x iy

x iy

�

�

2 sin A cos B sin (A B) sin (A B)

2 cos A cos B cos (A B) cos (A B)

 � � �� �
� � � � �� �

�

=
sin 2 sinh 2 sin 2

cos 2 cosh 2 cos 2 cosh 2

x i y x

x y x y

� � �
� �

 + i ◊ 
sinh 2

cos 2 cosh 2

y

x y�

 .

(d) cot (x + iy) =
cos ( ) 2 cos ( ) sin ( )

sin ( ) 2 sin ( ) sin ( )

x iy x iy x iy

x iy x iy x iy

� � �


� � �

=
sin 2 sin 2

cos 2 cos 2

x iy

iy x

�
�

2 cos A sin B sin (A B) sin (A B)

2 sin A sin B cos (A B) cos (A B)

 � � �� �
� � � � �� �

�

=
sin 2 . sinh 2 sin 2

cosh 2 cos 2 cosh 2 cos 2

x i y x

y x y x

�


� �
 – i . 

sinh 2

cosh 2 cos 2

y

y x�

(e) sec (x + iy)  =
1 2 cos ( )

cos ( ) 2 cos ( ) cos ( )

x iy

x iy x iy x iy

�


� � �

=
2(cos cos sin sin ) 2(cos cosh sin sinh )

cos 2 cos 2 cos 2 cosh 2

x iy x iy x y x i y

x iy x y

� � ��
� �

=
2 cos cosh

cos 2 cosh 2

x y

x y�

 + i ◊ 
2 sin . sinh

cos 2 cosh 2

x y

x y�

( f ) cosec (x + iy)  =
1 2 sin ( )

sin ( ) 2 sin ( ) sin ( )

x iy

x iy x iy x iy

�


� � �

=
2(sin cos cos sin ) 2(sin cosh cos sinh )

cos 2 cos 2 cosh 2 cos 2

x iy x iy x y x i y

iy x y x

� �


� �

=
2 sin cosh

cosh 2 cos 2

x y

y x�
 – i . 

2 cos sinh

cosh 2 cos 2

x y

y x�
.

Example 2. Separate the following into real and imaginary parts :
(a) sinh (x + iy) (b) cosh (x + iy)

(c) tanh (x + iy) (d) coth (x + iy)

(e) sech (x + iy) ( f ) cosech (x + iy).

Sol. (a) sinh (x + iy) =
1

i
 sin i (x + iy) [� i sinh θ = sin iθ]

= 2

i

i
 sin (ix – y) = – i (sin ix cos y – cos ix sin y)

= – i (i sinh x cos y – cosh x sin y) = sinh x cos y + i cosh x sin y
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(b) cosh (x + iy) = cos i (x + iy) [� cosh θ = cos iθ]
= cos (ix – y) = cos ix cos y + sin ix sin y = cosh x cos y + i sinh x sin y

(c) tanh (x + iy) =
1

i
 tan i (x + iy) [� i tanh θ = tan iθ]

= 2

i

i
 tan (ix – y) = – i 

sin ( )

cos ( )

ix y

ix y

�
�

 = – i ◊ 
2 sin ( ) cos ( )

2 cos ( ) cos ( )

ix y ix y

ix y ix y

� �

� �

= – i . 
sin 2 sin 2

cos 2 cos 2

ix y

ix y

�
�

 = – i ◊ 
sinh 2 sin 2

cosh 2 cos 2

i x y

x y

�
�

=
sinh 2

cosh 2 cos 2

x

x y�

 + i ◊ 
sin 2

cosh 2 cos 2

y

x y�

.

(d) coth (x + iy) =
cosh ( ) cos ( )

1sinh ( ) sin ( )

x iy i x iy

x iy i x iy
i

� �


�
�

 = i ◊ 
cos ( )

sin ( )

ix y

ix y

�
�

= i ◊ 
2 sin ( ) cos ( )

2 sin ( ) sin ( )

ix y ix y

ix y ix y

� �
� �

 = i ◊ 
sin 2 sin 2

cos 2 cos 2

ix y

y ix

�

�
 = i ◊

sinh 2 sin 2

cos 2 cosh 2

i x y

y x

�

�

=
sinh 2

cos 2 cosh 2

x

y x

�
�

 + i ◊ 
sin 2

cos 2 cosh 2

y

y x�

=
sinh 2

cosh 2 cos 2

y

x y�
 – i ◊ 

sin 2

cosh 2 cos 2

y

x y�
 .

(e) sech (x + iy) =
1 1

cosh ( ) cos ( )x iy i x iy


� �

=
1 2 cos ( ) 2(cos cos sin sin )

cos ( ) 2 cos ( ) cos ( ) cos 2 cos 2

ix y ix y ix y

ix y ix y ix y ix y

� �
 

� � � �

=
2(cosh cos sinh sin ) 2 cosh cos

cosh 2 cos 2 cosh 2 cos 2

x y i x y x y

x y x y

�


� �

 – i ◊ 
2 sinh sin

cosh 2 cos 2

x y

x y�

 .

( f ) cosech (x + iy) =
1 1

1sinh ( ) sin ( )sin ( )

i

x iy ix yi x iy
i

� �

� ��

= i ◊ 
2 sin ( )

2 sin ( ) sin ( )

ix y

ix y ix y

�

� �

= i ◊ 
2 (sin cos cos sin )

cos 2 cos 2

ix y ix y

y ix

�

�
 = i ◊ 

2 ( sinh cos cosh sin )

cos 2 cosh 2

i x y x y

y x

�

�

= – 
2 sinh cos

cos 2 cosh 2

x y

y x�
 + i ◊ 

2 cosh sin

cos 2 cosh 2

x y

y x�

=
2 sinh cos

cosh 2 cos 2�
x y

x y
 – i ◊ 

2 cosh sin

cosh 2 cos 2

x y

x y�
 .
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Example 3. If u = log tan 
4 2

� �� �
�� �� 	

 , then prove that:

(i) tanh 
u

2
 = tan 

2

�
(P.T.U., May 2006) (ii) cosh u = sec θ

(iii) tanh u = sin θ (iv) sinh u = tan θ. (P.T.U., Dec. 2005)

(v) θ = – i log 
u

tan i
4 2

�� �
�� �� 	

. (P.T.U., May 2003)

Sol. u = log tan 
4 2

� �� �
�� �� 	

(i)  eu = tan 
4 2

� �� �
�� �� 	

⇒ eu/2 . eu/2 = 
1 tan

2

1 tan
2

�
�

�
�

 ⇒
/2

/2

1 tan
2

1 tan
2

u

u

e

e�

�
�


�

�

By componendo and dividendo

/2 /2

/2 /2

�

�
�
�

u u

u u

e e

e e
 =

1 tan 1 tan
2 2

1 tan 1 tan
2 2

� �� � � �� � �� � � �� 	 � 	
� �� � � �� � �� � � �� 	 � 	

⇒ tanh 
2

u
 = tan 

2

�

(ii)    cosh u =

2 2

2 2

1 tanh 1 tan
2 2

1 tanh 1 tan
2 2

u

u

�
� �


�

� �
[Using part (i)]

=
1

cos �
 = sec θ.

(iii) We know that tanh u =
2

2

2 tanh 2 tan /22
1 tan /21 tanh

2

u

u
�


� ��

[Using part (i)]

= sin θ.

(iv) We know that sinh u =
2

2

2 tanh 2 tan /22
1 tan /21 tanh

2

u

u
�


� ��

[Using part (i)]

= tan θ.

(v) From (i) part tanh 
2

u
 = tan

2

�
 (prove it)

1
tan

2

i u

i
 =

/2 /2

/2 /2

/2 /2 /2 /2

12

2

� � �

� � �

� � � � � �

�
�

�
� �

i i

i i

i i i i

e e

e ei

ie e e e
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or
tan

2
1

i u

 =
/2 /2

/2 /2

� � �

� � �

�

�

i i

i i

e e

e e
(By componendo-dividendo)

1 tan
2

1 tan
2

�

�

i u

i u
 =

/2 /2 /2 /2

/2 /2 /2 /2

� � � � � �

� � � � � �
� � �
� � �

i i i i

i i i i

e e e e

e e e e

  tan 
4 2

i u�� ��� �� 	
 =

/2

/2

2

2

i

i

e

e

�

� �
 = ei θ

∴ i θ = log tan 
4 2

u
i

�� ��� �� 	

∴ θ =
1
i

 log tan 
4 2

u
i

�� ��� �� 	

∴ θ = – i log tan 
4 2

u
i

�� ��� �� 	
.

Example 4. If sin (A + iB) = x + iy, prove that

(i)
2 2

2 2

x y

cosh B sinh B
�   = 1 (P.T.U., Dec. 2002)

(ii) x2 cosec2 A – y2 sec2 A = 1.

Sol. (i) x + iy = sin (A + iB) = sin A cos iB + cos A sin iB = sin A cosh B + i cos A sinh B

Equating real and imaginary parts on both sides

x = sin A cosh B ; y = cos A sinh B …(1)

From (1),
cosh B

x
 = sin A ;

sinh B

y
 = cos A

Squaring and adding, 
2 2

2 2cosh B sinh B

x y
�  = sin2 A + cos2 A = 1

(ii) Also from (1),   
sin A

x
 = cosh B ; 

cos A

y
 = sinh B

Squaring and subtracting, 
2 2

2 2sin A cos A

x y
�  = cosh2 B – sinh2 B = 1

or x2 cosec2 A – y2 sec2 A = 1.

Example 5. If x + iy = cosh (u + iv), show that

(i)
2 2

2 2

x y

cosh u sinh u
�  = 1 (ii) x2 sec2 v – y2 cosec2 v = 1. (P.T.U., Jan. 2010)

Sol. x + iy = cosh (u + iv)

= cos i(u + iv) [� cosh θ = cos iθ]

= cos (iu – v) = cos iu cos v + sin iu sin v = cosh u cos v + i sinh u sin v
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Equating real and imaginary parts, x = cosh u cos v ; y = sinh u sin v …(1)

(i) From (1),
cosh

x

u
 = cos v, 

sinh

y

u
 = sin v

Squaring and adding,
2 2

2 2cosh sinh

x y

u u
�  = cos2 v + sin2 v = 1

(ii) From (1),
cos

x

v
 = cosh u ; 

sin

y

v
 = sinh u

Squaring and subtracting, x2 sec2 v – y2 cosec2 v = cosh2 u – sinh2 u = 1.
Example 6. If x + iy = tan (A + iB) ; prove that

(i) x2 + y2 + 2x cot 2A = 1

(ii) x2 + y2 – 2y coth 2B + 1 = 0

Sol. (i) x + iy = tan (A + iB)

Changing i into – i, we get x – iy = tan (A – iB)
Now tan 2A = tan [(A + iB) + (A – iB)]

=
2 2

tan (A B) tan (A B) ( ) ( ) 2

1 tan (A B) tan (A B) 1 ( ) ( ) 1 ( )

i i x iy x iy x

i i x iy x iy x y

� � � � � �
� �

� � � � � � � �

or
1

cot 2A
 =

2 2

2

1 ( )� �
x

x y
or 1 – (x2 + y2) = 2x cot 2A

or x2 + y2 + 2x cot 2A = 1
(ii) tan (2iB) = tan [(A + iB) – (A – iB)]

=
2 2

tan (A B) tan (A B) ( ) ( ) 2

1 tan (A B) tan (A B) 1 ( ) ( ) 1

i i x iy x iy iy

i i x iy x iy x y

� � � � � �
� �

� � � � � � � �

or      i tanh 2B =
2 2

2

1

iy

x y� �
or

2 2

1 2

coth 2B 1

y

x y
�

� �
or     1 + x2 + y2 = 2y coth 2B

Hence x2 + y2 – 2y coth 2B + 1 = 0.

Example 7. If tan (θ + iφ) = cos α + i sin α = eiα, prove that θ = 
n

2 4

� �
�  and φ = 

1

2
 log tan 

4 2

� 
� ��� �� 	
 .

(P.T.U., Dec. 2007)
Sol.  tan (θ + iφ) = cos α + i sin α …(1)
Changing i into – i, we get

   tan (θ – iφ) = cos α – i sin α …(2)

Now, tan 2θ = tan [(θ + iφ) + (θ – iφ)] = 
tan ( ) tan ( )

1 tan ( ) tan ( )

i i

i i

� � � � � � �
� � � � � � �

=
(cos sin ) (cos sin )

1 (cos sin ) (cos sin )

i i

i i


 � 
 � 
 � 

� 
 � 
 
 � 


=
2 2 2 2 2

2 cos 2 cos

1 (cos sin ) 1 (cos sin )i

� �
�

� � � � � � � �
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=
2 cos 2 cos

1 1 0


 



�
 = • = tan 

2

�

∴       2θ = nπ + 
2

�
[� tan θ = tan α ⇒ θ = nπ + α]

or θ =
2 4

n� �
�

Also tan 2iφ = tan [(θ + iφ) – (θ – iφ)]

=
tan ( ) tan ( ) (cos sin ) (cos sin )

1 tan ( ) tan ( ) 1 (cos sin ) (cos sin )

i i i i

i i i i

� � � � � � � 
 � 
 � 
 � 



� � � � � � � � 
 � 
 
 � 


=
2 2

2 sin 2 sin

1 11 (cos sin )

i i� �
�

�� � � �
 = i sin α

      i tanh 2φ = i sin α or tanh 2φ = sin α

or   
2 2

2 2

� � �

� � �

�

�

e e

e e
 =

sin

1



or

2 2

2 2

1

sin

e e

e e

� � �

� � �

�



�
By componendo and dividendo

2

2

2

2

�

� �

e

e
 =

1 sin

1 sin

� 

� 


or e4φ = 
1 sin

1 sin

� 

� 


or e4φ =

2
2 2

2 2

cos sin 2 cos sin cos sin
2 2 2 2 2 2

cos sin 2 cos sin cos sin
2 2 2 2 2 2


 
 
 
 
 
� �� � �� �
 � �
 
 
 
 
 
� �� � �
� �� �

or e2φ =
cos sin 1 tan

2 2 2

cos sin 1 tan
2 2 2


 
 

� �



 
 


� �
 = tan 

4 2

� 
� ��� �� 	

Taking logarithms of both sides log e2φ = log tan 
4 2

� 
� ��� �� 	
 or 2φ = log tan 

4 2

� 
� ��� �� 	

∴ φ =
1

2
 log tan 

4 2

� 
� ��� �� 	
 .

Example 8. Separate into real and imaginary parts log sin (x + iy).
Sol. Log sin (x + iy) = log (sin x cos iy + cos x sin iy)

= log (sin x cosh y + i cos x sinh y)
= log (α + iβ), where α = sin x cosh y, β = cos x sinh y

= 
1

2
 log (α2 + β2) + i tan–1 

	
�

= 
1

2
 log (sin2 x cosh2 y + cos2 x sinh2 y) + i tan–1 

cos sinh

sin cosh

x y

x y

� �
� �� 	

= 
1

2
 log 

1 cos 2 cosh 2 1 1 cos 2 cosh 2 1
. .

2 2 2 2

x y x y� � � �� ��� �� �
 + i tan–1 (cot x tanh y)
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= 
1

2
 log 

1
(2 cosh 2 2 cos 2 )

4
y x

� ��� �� �
 + i tan–1 (cot x tanh y)

= 
1

2
 log 

1
(cosh 2 cos 2 )

2
y x

� ��� �� �
 + i tan–1 (cot x tanh y).

Example 9. (a) Find all values of z such that sinh z = 
i
3e
�

(b) Find all the roots of sinh z = i. (P.T.U., May 2003)

(c) Find all values of z such that 2 sin z = cosh β + i sinh β ; β real.
Sol. (a) Let  z = x + iy

sinh (x + iy) = 3
i

e
�

 sinh x cos y + i cosh x sin y = cos 
3

�
 + i sin 

3

�
 = 

1 3

2 2
i�

Equating real and imaginary parts,

sinh x cos y =
1

2
 ⇒ sinh x = 

1

2 cos y
…(1)

cosh x sin y =
3

2
⇒ cosh x = 

3

2 sin y
…(2)

Squaring and subtracting (1) from (2),

cosh2 x – sinh2 x =
2 2

3 1

4 sin 4 cos
�

y y

1 =
2 2

3 1 1
.

4 sin 4 cos
�

y y
or 4 sin2 y cos2 y = 3 cos2 y – sin2 y

4 sin2 y – 4 sin4 y = 3 – 4 sin2 y

4 sin4 y – 8 sin2 y + 3 =  0

sin2 y =
8 64 48 8 4

8 8

� � �


sin2 y =
12 3

8 2
�  ; sin2 y = 

4 1

8 2
�

sin2 y =
3

2
 is impossible � for real y ; sin2 y ≤  1

∴  sin2 y =
1

2
∴ sin y = ±  

1

2

sin y ≠ – 
1

2
� If sin y is –ve, then from (2) cosh x is also –ve which is impossible

∴ sin y =
1

2
 = sin 

4

�

∴ general value of y = nπ + (– 1)n 
4

�
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Case I. If n is even

Then y = nπ + 
4

�
, cos y is +ve � when n is even cos (nπ + θ) = cos θ and cos y = 

1

2
From (1) and (2)

sinh x =
1

2
∴ x = sinh–1 

1 1 1 3 1
log 1 log

22 2 2

� � �
 � � � �� 	

cosh x =
3 3
1 22 .
2

 ∴ x = cosh–1 
3

2
 = log 

3 3
1

2 2

� �
� �� �� 	

 = log 
3 1

2

�

∴ z = x + iy = log 
3 1

2

�
 + i 

4
n

�� �� �� �� 	

Case II. If n is odd, y = nπ – 
π
4

, cos y is –ve �  if n is odd. ∴ cos (nπ – θ) = – cos θ  and

cos y = cos 
4

n
�� �� �� �� 	

 = – cos 
4

�
 = – 

1

2

From (1) and (2) sinh x = – 
1

2
, cosh x = 

3

2

∴ x = sinh–1 
1

2


 �
�� � �

 = log 
1 1

1
22

� �
� � �� �� 	

 = 
3 1

log
2

�

∴ z = x + iy = log 
3 1

2

�
 + i 

4
n

�� �� �� �� 	
.

(b)  sinh z = i

1

i
 sin iz = i or sin iz = i2 = – 1

or sin i(x + iy) = – 1 or sin (ix – y) = – 1
    sin ix cos y – cos ix sin y = – 1

or i sinh x cos y – cosh x sin y = – 1
Comparing real and imaginary parts

 sinh x cos y = 0 ...(1)
cosh x sin y = 1 ...(2)

From (1) either sinh x = 0 or cos y = 0

i.e., x = 0
Substitute in (2), we get

sin y = 1 = sin 
2

�
∴ y = 2nπ ± 

2

�

i.e.,  y = nπ + (– 1)n 
2

�
But y π 2nπ – 

2

�

Case I. If n is even

y = nπ + 
2

�
� If y = 2nπ – 

2

�
then  from (2) cosh x = – 1

which is impossible

∴ z = 0 + i 
2 1

2 2

n
n i

� �� � � �� �  �� � � �� 	 � 	
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Case II. If n is odd

   y = nπ – 
2

�
∴ y = 2nπ + 

2

�

∴ z = i 
2

n
�� �� �� �� 	

∴ From (2) cosh x = 1

=
2 1

2

n
i

�� ��� �� 	
∴ x = 0

∴ z = i 2
2

n
�� �� �� �� 	

 = 
2

i m
�� �� �� �� 	

, where m is even

which is same as in case I.

Hence, z = i 
2 1

2

n �
 π if n is even

= i 
2 1

2

n �
 π if n is odd.

(c)   2  sin z =  cosh β + i sinh β

sin z =
1

2
  cosh β + 

1

2
 sinh β {� cos iβ = cosh β, sin i β = i sinh β}

= sin 
4

�
 cos i β + cos 

4

�
 sin i β

= sin 
4

i
�� �� �� �� 	

∴ z = nπ + (– 1)n 
4

i
�� �� �� �� 	

= ( 1)
4

nn
�� �� � �� �� �

 + iβ (– 1)n ; n ∈  I.

Example 10. If tan (x + iy) = sin (u + i v) prove that 
sin 2x tan u

sinh 2y tanh v
 . (P.T.U., Dec. 2003)

Sol. tan (x + i y) = sin (u + i v) = sin u cosh v + i cos u sinh v
Change i to – i

tan (x – i y) = sin u cosh v – i cos u sinh v
Adding    tan (x + i y) + tan (x – i y) = 2 sin u cosh v
Subtracting tan (x + i y) – tan (x – i y) = 2 i cos u sinh v

Dividing the two
tan ( ) tan ( )

tan ( ) tan ( )

x i y x i y

x i y x i y

� � �
� � �

 =
tan

tanh

u

i v

sin ( ) sin ( )
cos ( ) cos ( )
sin ( ) sin ( )
cos ( ) cos ( )

x i y x i y

x i y x i y
x i y x i y

x i y x i y

� �
�

� �
� �

�
� �

 =
1 tan

tanh

u

i v



424 A TEXTBOOK OF ENGINEERING MATHEMATICS

or  
sin ( )

sin ( )

x i y x i y

x i y x i y

� � �
� � �

 =
1 tan

tan

u

i v
or

sin (2 )

sin (2 )

x

i y
 =

1 tan

tanh

u

i v

or
sin 2

sinh 2

x

i y
 =

1 tan

tanh

u

i v
 or

sin 2

sinh 2

x

y
 =

tan

tanh

u

v

������ ���	
�	��
�����	�
����� ���������

As for a real variable x, we define inverse sine function as y = sin–1 x when x = sin y
Similarly we define inverse sine function for a complex variable z as

ω = sin–1 z when z = sin ω

Now, z = sin ω = 
2

i ie e

i

� � ��
(by def. of sin w)

or 2iz = eiω – e–iω

Solve for eiω 2iz = eiω – 
1
ie �

or (2iz) eiω = ei2ω – 1
or e2iω – (2iz) eiω – 1 =  0

∴ eiω =
2 22 4 4

2

iz i z� �
 = iz ±  21 z�

∴ iω = log (iz ± 21 z� )

iω = log (iz + 21 z� )
2

2

only ve sign is taken 1 is

covered by double value function 1

� �� � �� �
� ��� �

� z

z

∴ ω =
1
i

 log (iz + 21 z� )

∴ ω = sin–1 z = – i log (iz + 21 z� )

sin–1 z is defined for all values of z except

      iz + 21 z�  = 0 i.e.,    iz = – 1 2− z
or (iz)2 = 1 – z2 or  – z2 = 1 – z2 or 0 = 1 , which is impossible

∴    sin–1 z = – i log (iz + 21 – z )

Similarly other complex inverse functions are defined by the following :

cos–1 z = – i log (z + 21 – z )

tan–1 z =
1

log
2 1

i iz

iz

�
�

�
 = 

�
�

log
2
i i z

i z
 ; z ≠  ± i

cosec–1 z = sin–1 
1

z
 = – 

� �� �
� �
� �� 	

2 1
log

i z
i

z
 ; z ≠  0
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sec–1 z = cos–1 
1

z
 = – i log 

� �� �
� �
� �� 	

21 1 z

z
 ; z ≠  0

cot–1 z = tan–1 
1

z
 = 

�
�

�
log

2
i z i

z i
 , z ≠  ±  i

We will give proofs of  tan–1 z and cosec–1 z
Remaining three i.e., cos–1 z, sec–1 z, cot–1 z students can easily prove themselves

Let   tan–1 z = ω ∴ z = tan ω = 
sin

cos

�
�

z =
( )

i i

i i

e e

i e e

� � �

� � �
�
�

or
1

i i

i i

iz e e

e e

� � �

� � �
�


�

.

Apply componendo-dividendo

1

1

�
�

iz

iz
 =

2

2

�

� �

i

i

e

e
 = e2iω

Taking log of both sides

∴   2iω = log 
1

1

iz

iz

�
�

∴ ω =
1 1 1

log log
2 1 2 1

iz i iz

i iz iz

� � �


� �
| When  iz ≠  1 or z ≠  – i

or ω =
( )

log
2 ( )

i i i z

i i z

� � �
� �

 = – log
2

i i z

i z

�
�

 = log
2

i i z

i z

�
�

, where z ≠  i

Hence, tan–1 z = – 
1

log
2 1

i iz

iz

�
�

or log
2

i i z

i z

�
�

, z ≠  ±  i

To prove        cosec–1 z = – i log 
2 1i z

z

� �
, z ≠  0

Let cosec–1 z = ω  ∴ z = cosec w = 
1

sin �

∴  z =
1

2

i ie e

i

� � ��
or z = 

2
i i

i

e e� � ��

or   zeiω – ze–iω – 2i = 0 Multiply by eiω

or  zei2ω – z – 2i eiω = 0 or ze2(iw) – 2i e(iw) – z = 0

Solve for eiω ;  eiω =
2 22 4 4

2

i i z

z

� �
, z ≠  0 or eiw  = 

2 1i z

z

� �

Taking +ve sign eiω =
2 1i z

z

� �

Taking log of both sides,

iω = log 
2 1i z

z

� �
, z ≠  0
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∴ ω =
2 11

log
i z

i z

� �

or ω = – i log 
2 1i z

z

� �
, z ≠  0. Proved.

������ ���	
�	����	
������ ��������

For a complex variable z:

(a) To prove sinh–1 z = � �2log + + 1z z

Let sinh–1 z = ω ∴ z = sinh ω

∴ z =
2

e e� ���
or 2z = eω – 

1

e�

or e2ω – 2zeω – 1 = 0

Solve for eω      eω =
22 4 4

2

z z� �
 = z + 2 1z � (Taking +ve sign only)

∴ ω = log (z + 2 1z � ) or sinh–1 z = log (z + 2 + 1z )

(b) To prove cosh–1 z = log (z + 2 1z � )

Let cosh–1 z = ω ∴ z = cosh ω

∴  z =
2

e e� ���
or 2z = eω + 

1
�e

or      e2ω – 2z eω + 1 = 0

Solve for eω, eω =
2

22 4 4
1

2

z z
z z

� �
 � � (Taking +ve sign only)

∴ ω = log (z + 2 1z � )

or cosh–1 z = log (z + �2 1z ).

(c) To prove tanh–1 z =
1
2

 log 
�

1
1

+ z
z

 ; z ≠  ± 1

Let tanh–1 z = ω ∴ z = tanh ω = 
e e

e e

� ��

� ��
�
�

∴  
1

z
 =

� ��

� ��

�

�

e e

e e

Apply componendo-dividendo.

 
1

1

�
�

z

z
 =

2

2

�

��

e

e
 = e2ω
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∴  e2ω =
1

1

z

z

�
�

or 2w = log 
1

1

z

z

�
�

, where z ≠  1

∴ w =
1 1

log
2 1

z

z

�
�

, z ≠  1

We can also be put in the form – 
1 1

log
2 1

z

z

�
�

, where z ≠  – 1

∴ w =
1 1

log
2 1

z

z

�
�

, where z ≠  ± 1

∴ tanh–1 z =
1 1

log
2 1

z

z

�
�

, where z ≠  ±  1

Readers can easily prove the remaining inverse hyperbolic functions

i.e.,  cosech–1 z = sinh–1 
1

z
 = log 

� � 21 1 z

z
 ; z ≠  0

sech–1 z = cosh–1 
1

z
 = log 

� � 21 1 z

z
 ; z ≠  0

coth–1 z = tanh–1 
1

z
 = 

1
2

 log 
�
�

1
1

z

z
 ; z ≠  ±  1.

Example 11. Separate into real and imaginary parts

(i) tan–1 (x + iy). (P.T.U., May 2006)

(ii) cos–1 (eiθ) ; θ is an acute angle (P.T.U., May 2002, 2003, Dec. 2010)

Sol. (i) Let tan–1 (x + iy) = u + iv …(1)

then tan–1 (x – iy) = u – iv …(2)

Adding (1) and (2), we have

2u = tan–1 (x + iy) + tan–1 (x – iy) = tan–1 
( ) ( )

1 ( ) ( )

x iy x iy

x iy x iy

� � �
� � �

 = tan–1 
2 2

2

1

x

x y� �

∴  Real part u =
1

2
 tan–1 

2 2

2

1

x

x y� �
Subtracting (2) from (1), we have

2iv = tan–1 (x + iy) – tan–1 (x – iy)

= tan–1 
( ) ( )

1 ( ) ( )

x iy x iy

x iy x iy

� � �
� � �

 = tan–1 
2 2

2

1

iy

x y� �

⇒ tan 2iv =
2 2

2

1

iy

x y� �
⇒ i tanh 2v = 

2 2

2

1

iy

x y� �

⇒ Imaginary part  v = 
1

2
 tanh–1 

2 2

2

1

y

x y� �
.

Hence, tan–1 (x + iy) = 1 1
2 2 2 2

1 2 2
tan tan

2 21 1

x i y

x y x y
� ��

� � � �
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(ii) Let   cos–1 (eiθ) = x + iy

eiθ = cos (x + iy) = cos x cosh y – i sin x sinh y

∴ cos θ + i sin θ = cos x cosh y – i sin x sinh y

Comparing real and imaginary parts, we get

cos x cosh y = cos θ …(1)

sin x sinh y = – sin θ …(2)

Squaring and adding cos2 x cosh2 y + sin2 x sinh2 y = 1

(1 – sin2 x) cosh2 y + sin2 x sinh2 y = 1

or cosh2 y – sin2 x (cosh2 y – sinh2 y) = 1

or 1 + sinh2 y – sin2 x = 1 ∴ sin2 x = sinh2 y …(3)

Squaring (2), we get sin2 x sinh2 y = sin2 θ
sin2 x . sin2 x = sin2 θ [From (3)]

(sin2 x)2 = sin2 θ ∴ sin2 x = sin θ [+ve sign only � θ is acute]

∴ sin x = sin � ∴ x = sin–1 ( sin � )

From (2)  sin x sinh y = – sin θ

sin �  sinh y = – sin θ ∴ sinh y = – sin � ∴ y = sinh–1 (– sin � )

∴  y = log [– sin θ  + 1 sin� � ] = log [ 1 sin� �  – sin � ]

∴  real part = sin–1 ( sin � )

Imaginary part    = log [ 1 sin sin� � � � ].

Hence cos–1 (eiθ)  = sin–1 ( sin ) log ( 1 sin sin )i� � � � � � .

Example 12. If sin–1 (u + iv) = α + iβ, prove that sin2 α and cosh2 β are the roots of the equation
x2 – (1 + u2 + v2) x + u2 = 0. (P.T.U., May 2004)

Sol. sin–1 (u + iv) = α + iβ
u + iv = sin (α + iβ) = sin α cos (iβ) + cos α sin (iβ) = sin α cosh β + i cos α sinh β

Comparing real and imaginary parts,
sin α cosh β = u …(1)
cos α sinh β = v …(2)

   1 + u2 + v2 = 1 + sin2 α cosh2 β + cos2 α sinh2 β
= 1 + sin2 α cosh2 β + (1 – sin2 α) (cosh2 β – 1)
= 1 + sin2 α cosh2 β + cosh2 β – 1 – sin2 α cosh2 β + sin2 α
= cosh2 β + sin2 α …(3)

Equation whose roots are sin2 α, cosh2 β is
x2 – x (sin2 α + cosh2 β) + sin2 α cosh2 β = 0 [Using x2 – 5x + P = 0]

or x2 – x(1 + u2 + v2) + u2 = 0 | � of (1) and (3)
Hence sin2 α, cosh2 β are the roots of

x2 – x(1 + u2 + v2) + u2 = 0.
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Example 13. Find all the values of sin–1 2 treating 2 as a complex number. (P.T.U., Dec. 2004)

Sol. We have

sin–1 z = – i log (iz + 21 z� )

For z = 2 ; sin–1 2 = – i log (2i + 1 4� )

∴ sin–1 2 = – i log (2i + 3i ) = – i log (2 + 3 )i = – i {log (2 + 3 ) + log i}

We know that
 log i =  log | i | + i [2nπ + arg i], where n is an integer

= log 1 + i 2
2

n
�� �� �� �� �

 = i 
1

2
2

n
� ��� �� �

 π

∴ sin–1 2 = – i 
4 1

log (2 3)
2

n
i

�� �� � �� �
� �

= – i log (2 + 3 ) – 
4 1

2

n �
 πi2

= – i cosh–1 2 + 
4 1

2

n �
π | � cosh–1 2 = log [2 + 22 1� ] = log (2 + 3 )

by def.

Hence sin–1 2 = 
4 1

2

n �
�  – i cosh–1 2.

����� ���	� 
�������

1. Prove that
(i) (cosh x + sinh x)n = cosh nx + sinh nx ;  n being a positive integer.

(ii)
3

1 tanh

1 tanh

x

x

� ��
� ��� 	

 = cosh 6x + sinh 6x.

2. If y = log tan x, show that sinh ny = 
1

2
 (tann x – cotn x).

3. If tan y = tan α tanh β and tan z = cot α tanh β, prove that tan (y + z) = sinh 2β cosec 2α.

4. If tan θ = tanh x cot y and tan φ = tanh x tan y, prove that 
sin 2 cosh 2 cos 2

sin 2 cosh 2 cos 2

x y

x y

� �
�

� �
 .

5. If c cosh (θ + iφ) = x + iy, prove that
(i) x2 sech2 θ + y2 cosech2 θ = c2 (ii) x2 sec2 φ – y2 cosec2 φ = c2.

6. If tan (x + iy) = A + iB, show that
A sin 2

B sinh 2

x

y
�   .

7. If sin (θ + iφ) = ρ(cos α + i sin α), prove that

(i) ρ2 = 
1
2

 (cosh 2φ – cos 2θ) (ii) tan α = tanh φ cot θ.

8. If sin (θ + iφ) = cos α + i sin α, prove that cos2 θ = ±  sin α.
9. If cos (θ + iφ) = cos α + i sin α, prove that

(i) sin2 θ = ±  sin α (ii) cos 2θ + cosh 2φ = 2.
10. If sin (θ + iφ) = tan α + i sec α, show that cos 2θ cosh 2φ = 3.

11. If cos (θ + iφ) = R(cos α + i sin α), prove that e2φ = 
sin ( )

sin ( )

� � 

� � 


 .
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12. If tan (θ + iφ) = tan α + i sec α, show that e2φ = ±  cot 
α
2

 and 2θ = 
1

2
n
� ��� 	
 �

 π + α.

13. Prove that: tan 
sin sinh

.
2 cos cosh

u i v u i v

u v

� �


�
14. If tan (x + iy) = cosh (α + iβ), prove that tanh α tan β = cosec 2x sinh 2y.

15. If C tan (x + iy) = A + iB, prove that tan 2x = 
2 2 2

2CA

C A B� �
.

16. Prove that (1 + cosh x + sinh x)n= 2n coshn cos sinh
2 2 2

x nx nx� ��� �� 	
.

17. If cosh x = sec θ, prove that

(i) tanh2 
2

x
 = tan2 

2

�
(ii) x = log tan 

4 2

� � ��� 	
 �
 .

18. If tan 
2

x
 = tanh 

2

u
 , prove that

(i) cos x cosh u = 1 (ii) tan x = sinh u (iii) u = log tan 
4 4

x�� ��� �� 	
.

[Hint: see S.E. 3 (i), (ii), (iv) parts].

19. If x = 2 cos α cosh β, y = 2 sin α sinh β, prove that sec (α + iβ) + sec (α – iβ) = 
2 2

4x

x y�
.

20. If sin [log (A + iB)] = x + iy, show that
2 2

2 2sin cos

x y

u u
�  = 1, where A2 + B2 = e2u.

21. Separate into real and imaginary parts :
(i) ecosh (x + iy) (ii) sin2 (x + iy) (iii) log cos (x + iy).

22. If tan (x + iy) = θ + iφ, prove that θ2 + φ2 = 
2 2

2 2

cosh cos

cosh sin

y x

y x

�
�

.

23. If x + iy = cos (u + iv), show that
(i) (1 + x)2 + y2 = (cosh v + cos u)2 (ii) (1 – x)2 + y2 = (cosh v – cos u)2.

24. If cos–1 (u + iv) = α + iβ, prove that cos2 α and cosh2 β are the roots of the equation

x2 – (1 + u2 + v2) x + u2 = 0.

25. Prove that (i) tan–1 (eiθ) = 
2 4 2

n i� �
� �  log tan 

4 2

� � ��� 	
 �
.

(ii) sin–1 (cos θ + i sin θ) = cos–1 ( sin ) log ( sin 1 sin ) ; 0
2

i
�

� � � � � �  �  

(P.T.U., Dec. 2006, 2012, May 2014)

[Hint: sin–1 (cos θ + i sin θ) = sin–1 (eiθ) ; consult S.E. 11(ii)]

26. Find tanh x if 5 sinh x – cosh x = 5.

[Hint: Divide both sides by cosh x, square, replace sech2 x by (1 – tanh2 x) and solve for tanh x]

27. If cos–1 (x + iy) = α + iβ, show that

(i) x2 sec2 α – y2 cosec2 α = 1 (ii) x2 sech2 β + y2 cosech2 β = 1.
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����
��

21. (i) ecosh x cos y [cos (sinh x sin y) + i sin (sinh x sin y)]

(ii)
1

2
 [(1 – cos 2x cosh 2y) + i sin 2x sinh 2y]

(iii)
1

2
 log 11

(cos 2 cosh 2 )] tan (tan tanh )
2

x y i x y�� �� �� �� �
 .

26. 4

5
 , – 

3

5
 .

���������� ����	�����������������

This method can be applied in finding out the sums of the series of the form
a0 cos α + a1 cos (α + β) + a2 cos (α + 2β) + ......

and a0 sin α + a1 sin (α + β) + a2 sin (α + 2β) + ......
only when the sum of the series  a0 + a1x + a2x2 + ...... is known. The above series may be finite or infinite.

Method. Let C = a0 cos α + a1 cos (α + β) + a2 cos (α + 2β) + ......
and S = a0 sin α + a1 sin (α + β) + a2 sin (α + 2β) + ......

If we want to find the sum of the sine series, the series of cosines is called the companion or auxiliary
series. In case, the sum of the cosine series is required, the series of sines is called the companion or auxiliary
series.

Multiplying the series of sines by i and adding to the sum of cosines, we get the series of complex numbers as
C + iS = a0 (cos α + i sin α) + a1 [cos (α + β) + i sin (α + β)] + a2 [cos (α + 2β) + i sin (α + 2β)] + ...

= a0 eiα + a1ei(α + β) + a2ei(α + 2β) + ...... [� cos θ + i sin θ = eiθ]

= eiα [a0 + a1 eiβ + a2 ei2β + ......]
=  eiα [a0 + a1x + a2x2 + ......], where x = eiβ

= eiα . f(x)

The series represented by f(x) can be summed up if it is in any one of the following forms :
(i) series in G.P. or its modification.

(ii) Binomial series or one which can be reduced to it.

(iii) exponential series, i.e., depending on the expansion of ex or e–x

(iv) series which take the form of the expansions of either sin x, cos x, cosh x or sinh x.

(v) logarithmic series depending on the expansion of log (1 + x) or log (1 – x).

(vi) Gregory’s series.

The sum so obtained can be expressed in the form X + iY, where X and Y are real. Equating the real and
imaginary parts, we get C and S.

The following results will be frequently used:
1. Sum to n terms of an A.P.

a + (a + d) + (a + 2d) + ...... + [a + (n – 1)d] = 
2

n
 [2a + (n – 1)d].

2. Sum to n terms of a G.P. a + ar + ar2 + ...... + arn–1 = 
(1 )

1

na r

r

�
�

Sum to infinity of a G.P. (when r < 1 numerically) = 
1

a

r�
.

3. eiθ = cos θ + i sin θ 4. e–iθ = cos θ – i sin θ
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5. ex = 1 + x + 
2 3

2 ! 3!

x x
�  + ...... • 6. e–x = 1 – x + 

2 3

2 ! 3!

x x
�  + ...... •

7. sin x = x – 
3 5

3! 5!

x x
�  – ...... • 8. cos x = 1 – 

2 4

2 ! 4 !

x x
�  – ...... •

9. sinh x = x + 
3 5

3! 5!

x x
�  + ...... • 10. cosh x = 1 + 

2 4

2 ! 4 !

x x
�  + ...... •

11. log (1 + x) = x – 
2 3 4

2 3 4

x x x
� �  + ...... • 12. log (1 – x) = – 

2 3 4

......
2 3 4

x x x
x

� �
� � � � !� �� 	

13. tan–1 x = x – 
3 5 7

3 5 7

x x x
� �  + ...... •

14. tanh–1 x = x + 
3 5 7

3 5 7

x x x
� �  + ...... • = 

1

2
 log 

1

1

x

x

�
�

15. (1 + x)n = 1 + nx + 
( 1)

2 !

n n �
 x2 + 

( 1) ( 2)

3!

n n n� �
 x3 + ...... + xn  when n is a +ve integer.

(1 + x)n = 1 + nx + 
( 1)

2 !

n n �
 x2 + 

( 1) ( 2)

3!

n n n� �
 x3 + ...... • when n is a negative integer or a fraction and | x | < 1

(1 + x)–n = 1 – nx + 
( 1)

2 !

n n �
 x2 – 

( 1) ( 2)

3!

n n n� �
 x3 + ......

(1 – x)–n = 1 + nx + 
( 1)

2 !

n n �
 x2 + 

( 1) ( 2)

3!

n n n� �
 x3 + ......

(1 – x)–1 = 1 + x + x2 + x3 + ......

Note. The students should bear in mind that in forming auxiliary series, sines or cosines of multiple angles (i.e.,
of the form sin nθ, cos nθ) should be replaced by cosines or sines respectively whereas sines or cosines with powers, if
any, will remain the same.

����������	
�
����
�

1. Series depending on expansion of ex, e–x

Example 1. Sum the following series 1 + 
2 3

cos cos 2 cos 3

cos 2 ! cos 3 ! cos


 
 

� �


 
 

  + ...... •.

Sol. Let C = 1 + 
2 3

cos cos 2 cos 3

cos 2 ! cos 3 ! cos


 
 

� �


 
 

 + ...... •

∴ S = 0 + 
2 3

sin sin 2 sin 3

cos 2 ! cos 3 ! cos


 
 

� �


 
 

 + ...... • (See Note above)

∴   C + iS = 1 + 
1

cos 

 (cos α + i sin α) + 

2

1

2 !cos 

 × (cos 2α + i sin 2α)

+ 
3

1

3! cos 

 (cos 3α + i sin 3α) + ...... •
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= 1 + 
1

cos �
 . eiα + 

2

1

2 ! cos �
 e2iα + 

3

1

3! cos �
 e3iα + ...... •   [� cos θ + i sin θ = eiθ]

= 1 + sec α eiα + 
1

2 !
 sec2 α . e2iα + 

1

3 !
 sec3 α . e3iα + ...... •

= 1 + (sec α . eiα) + 
1

2 !
 (sec α . eiα)2 + 

1

3 !
 (sec α . eiα)3 + ...... •

= 1 + z + 
2 3

2 ! 3!

z z
�  + ....... •, where z = sec α . eiα

= ez = e eisec .α α

 = e
isec (cos sin )α α α+

= e1 + i tan α = e . ei . tan α = e [cos (tan α) + i sin (tan α)] [� eiθ = cos θ + i sin θ]
Equating real parts, we get C = e cos (tan α).
Example 2. Sum to infinity

(i) sin α + x sin (α + β) + 
2x

2 !
 sin (α + 2β) + .....

(ii) cos α + x cos (α + β) + 
2x

2 !
 cos (α + 2β) + ......

(iii) 1 + x cos θ + ......
2 3x cos 2 x cos 3

2 ! 3 !

� �
� � (P.T.U., Dec. 2003)

(iv) cos θ + sin θ  cos 2θ + 
2sin

1 . 2

�
 cos 3θ + ...... (P.T.U., Dec. 2002)

Sol.  Let  S = sin α + x sin (α + β) + 
2

2 !

x
 sin (α + 2β) + .....

and C = cos α + x cos (α + β) +
2

2 !

x
 cos (α + 2β) + ......

∴ C + iS = (cos α + i sin α) + x [cos (α + β) + i sin (α + β)] + 
2

2 !

x
 [cos (α + 2β) + i sin (α + 2β)] + .....

= eiα + xei(α + β) + 
2

2 !

x
 ei( α + 2β) + ....... = eiα 

2
21 . ......

2 !
i ix

x e e� �� �
� � �� 	

� 	
 �

= eiα 
2

1 ..........
2 !

z
z

� �
� � �� 	

� 	
 �
, where z = xeiβ

= eiα . ez = eiα . exeiβ
 = eiα . ex (cos β + i sin β)

= eiα + x cos β + ix sin β = ex cos β . ei(α + x sin β)

= ex cos β[cos (α + x sin β) + i sin (α + x sin β)]
Equating imaginary parts S = ex cos β . sin (α + x sin β) …(1)

Equating real parts C = ee cos β . cos (α + x sin β).
(i) and (ii) parts are proved.
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(iii) Let C = 1 + x cos θ + 
2 3cos 2 cos 3

2 ! 3 !

x x� �
�  + ...... •

  S = x sin θ + 
2 3sin 2 sin 3

2 ! 3 !

x x� �
�  + ...... •

C + iS = 1 + x (cos θ + i sin θ) + 
2

2 !

x
 (cos 2θ + i sin 2θ) + 

3

3!

x
 (cos 3θ + i sin 3θ) + .....

= 1 + x eiθ + 
2

2 !

x
 ei2θ  + 

3

3!

x
 ei3θ + ..... •

= 1 + t + 
2 3

2 ! 3 !

t t
�  + ..... •, where xeiθ = t

= et = exeiθ
= ex(cos θ + i sin θ) = ex cos θ . eix sin θ

= ex cos θ [cos (x sin θ) + i sin (x sin θ)]
Equating real part, we get C = ex cos θ cos (x sin θ).

(iv) Let C = cos θ + sin θ cos 2θ + 
2sin cos 3

1 2

� �

�
 + ..... •

   S = sin θ + sin θ sin 2θ + 
2sin sin 3

1 2

� �

�
 + ...... • (See Note art. 6.18)

C + iS  = (cos θ + i sin θ) + sin θ (cos 2θ + i sin θ) + 
2sin

2 !

�
 (cos 3θ + i sin 3θ) + ..... ∞

= eiθ + sin θ . ei 2θ + 
2sin

2 !

�
 ei 3θ + ...... •

= eiθ 
2 2sin

1 sin .......
2 !

i
i e

e
�

�� ��
� � � � � 	

� 	
 �

= eiθ 
2

1 ......
2 !

t
t

� �
� � � � �� �

, where t = sin θeiθ

= eiθ . et = ei eiθ θ θ+ sin

= eiθ + sin θ (cos θ + i sin θ)  = e isin cos ( sin )θ θ θ θ+ + 2

 = e eisin cos ( sin ).θ θ θ θ+ 2

= esin θ cos θ [cos (θ + sin2 θ) + i sin (θ + sin2 θ)]

Comparing real parts on both sides

 C = esin θ cos θ cos (θ + sin2 θ).

2. Series depending on expansion of sin x, cos x and sinh x, cosh x

Example 3. Sum the series sin α – 
sin ( 2 ) sin ( 4 )

2 ! 4 !

� � � � � �
�  – ..... • . (P.T.U., May 2004)

Sol. Let S = sin α – 
sin ( 2 ) sin ( 4 )

2 ! 4 !

� � � � � �
�  – ......
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C = cos α – 
cos ( 2 ) cos ( 4 )

2 ! 4 !

� � � � � �
�  – .....

∴  C + iS = (cos α + i sin α) – 
1

2 !
 [cos (α + 2β) + i sin (α + 2β)]

+ 
1

4 !
 [cos (α + 4β) + i sin (α + 4β)] – .......

= eiα – 
1

2 !
 . ei( α + 2β) + 

1

4 !
 . ei(α + 4β) .....

= eiα 
2 4

1 .........
2 ! 4 !

i ie e� �� �
� � �� 	

� 	
 �
 = eiα 

2 4

1 .........
2 ! 4 !

x x� �
� � �� 	

� 	
 �
, where x = eiβ

= eiα . cos x = (cos α + i sin α) . cos (eiβ)
= (cos α + i sin α) cos (cos β + i sin β)
= (cos α + i sin α)[cos (cos β) cos (i sin β) – sin (cos β) sin (i sin β)]

[� cos (A + B) = cos A cos B – sin A sin B]
= (cos α + i sin α)[cos (cos β) cosh (sin β) – sin (cos β) . i sinh (sin β)]
= [cos α cos (cos β) cosh (sin β) + sin α sin (cos β) sinh (sin β)]

+ i[sin α cos (cos β) cosh (sin β) – cos α sin (cos β) sinh (sin β)]
Equating imaginary parts

 S = sin α cos (cos β) cosh (sin β) – cos α sin (cos β) sinh (sin β).

Example 4. Find the sum to infinity of the following series 1 + 
x cos 2

2 !
x cos 4

4 !

2 4θ θ+ + .....

Sol. Let  C = 1 + 
2 4cos 2 cos 4

2 ! 4 !

x x� �
�  + ..... ;

S =
2 4sin 2 sin 4

2 ! 4 !

x x� �
�  + ......

 C + iS = 1 + 
2

2 !

x
 (cos 2θ + i sin 2θ) + 

4

4 !

x
 (cos 4θ + i sin 4θ) + ......

= 1 + 
2

2 !

x
 e2iθ + 

4

4 !

x
 . e4iθ + ..... = 1 + 

2 4

2 ! 4 !

y y
�  + ....., where y = xeiθ

= cosh y = cosh (xeiθ) = cosh [x (cos θ + i sin θ)]
= cos i [x (cos θ + i sin θ)] = cos [i x cos θ – x sin θ]

= cos (i x cos θ) cos (x sin θ) + sin (i x cos θ) sin (x sin θ)
= cosh (x cos θ) cos (x sin θ) + i sinh (x cos θ) sin (x sin θ)

Equating real parts C = cosh (x cos θ) cos (x sin θ).

3. Series depending upon Binomial Series

Example 5. Sum the series 1 – 
1

2
 cos θ + 

1 . 3

2 . 4
 cos 2θ – 

1 . 3 . 5

2 . 4 .6
 cos 3θ + ..... •.

(P.T.U., Dec. 2011, May 2012)
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Sol. Let C = 1 – 
1

2
 cos θ + 

1 3

2 4

�
�

 cos 2θ – 
1 3 5

2 4 6

� �
� �

 cos 3θ + .....

S = – 
1

2
 sin θ + 

1 3

2 4

�
�

 sin 2θ – 
1 3 5

2 4 6

� �
� �

 sin 3θ + .......

∴ C + iS = 1 – 
1

2
 (cos θ + i sin θ) + 

1 3

2 4

�
�

 (cos 2θ + i sin 2θ) – 
1 3 5

2 4 6

� �
� �

 (cos 3θ + i sin 3θ) + .....

= 1 – 
1

2
 eiθ + 

1 3

2 4

�
�

 . e2iθ – 
1 3 5

2 4 6

� �
� �

  e3iθ + .....

= 1 – 
1

2
 x + 

1 3

2 4

�
�

 x2 – 
1 3 5

2 4 6

� �
� �

 x3 + ........, where x = eiθ

= (1 + x)–1/2 = (1 + eiθ)– 1/2 = (1 + cos θ + i sin θ )– 1/2

=
1/2 1/2 1/2

22 cos 2 sin cos 2 cos cos sin
2 2 2 2 2 2

i i
� � �� � � � � �� � � � � �� � � � �� � � � � �� � � � � �

=
1/2

2 cos cos sin
2 4 4

i
�� � �� � � �

�� � � �� � � � [De-Moivre’s Theorem.]

Equating real parts, C = 
cos

4

2 cos
2

�

�
.

Example 6. Sum the following series n sin α + 
n(n 1)

1 . 2

�
 sin 2α + 

n(n 1) (n 2)

1 . 2 . 3

� �
 sin 3α + ....... •.

(P.T.U., Dec. 2004, 2013)

Sol. Let S = n sin α + 
( 1)

1 2

n n �
�

 sin 2α + 
( 1) ( 2)

1 2 3

n n n� �
� �

 sin 3α + ........ •

Let C = 1 + n cos α + 
( 1)

1 2

n n �
�

 cos 2α + 
( 1) ( 2)

1 2 3

n n n� �
� �

 cos 3α + ....... •

   C + iS = 1 + n eiα + 
( 1)

1. 2

n n �
 ei2α + 

( 1) ( 2)

1. 2 . 3

n n n� �
 ei3α + ...... •

 = (1 – eiα)–n = 
1

1
1
1( )

( )
( )−

× −
−

−

−e
e
ei n

i n

i nα

α

α

=
[1 (cos sin )] [(1 cos ) sin ]

(1 1) (2 2 cos )

n n

i i n n

i i

e e� � �

� � � � � � � �
�

� � � � �

=
2

2

[2 sin /2 2 sin /2 cos /2]

2 (2 sin /2)

n

n n

i� � � �
�

=
2 . sin /2 [sin /2 cos /2]

(2 sin /2) (2 sin /2)

n n n

n n n

i� � � �
� �
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=
� �cos /2 /2 sin ( /2 /2)

2 sin /2

n

n n

i� 	� � � � � � �� �
�

=
1 ( )

cos sin
2 22 sin /2n n

n
n i

� �� � � � � �� � � ��� 	� � � �� � � �� 
 �
Comparing imaginary parts on both sides

S  =

( )
sin

2
2 sin /2n n

n � � �

�
.

4. Series depending on G.P.
Example 7. Sum the series 1 + x cos α + x2 cos 2α + x3 cos 3α + .... to n terms where x is less than unity. Also

find the sum to infinity.
Sol. Let C = 1 + x cos α + x2 cos 2α + .... + xn–1 cos (n – 1) α

S = 0 + x sin α + x2 sin 2α + ...... + xn–1 sin (n–1)α
∴      C + iS = 1 + x(cos α + i sin α) + x2 (cos 2α + i sin 2α) + .....

...... + xn–1 [cos (n – 1)α + i sin (n – 1) α]
= 1 + xeiα + x2e2iα + ...... + xn–1 . ei(n–1)α

= 1 + y + y2 + ...... + yn–1 , where y = xeiα

=
1 (1 ) 1 1 1

1 1 1 1

n n ni n ni i

i i i

y x e x e xe

y xe xe xe

� � � �

� � � �
� � � � � �� � �

� � � �

=
1 ( 1)

2

1

1 ( )

i n ni n i n

i i i i

xe x e x e

x e e x e e

� � � � � �

� � � � � �
� � � �
� � � � �

=
1

2

1 (cos sin ) (cos sin ) [cos ( 1) sin ( 1) ]

1 2 cos

n nx i x n i n x n i n

x x

�� � � � � � � � � � � � � �
� � � �

Equating real parts C =
1

2

1 cos cos cos ( 1)

1 2 cos

n nx x n x n

x x

�� � � � � � �
� � �

� x is numerically less than 1
∴ xn, xn+1 → 0 as n → •,

∴ For sum to infinity C + iS =
2

1 (cos sin )

1 2 cos

x i

x x

� � � �
� � �

Equating real parts, C =
2

1 cos

1 2 cos

x

x x

� �
� � �

.

Example 8. Solve the series : sin α + sin (α + β) + sin (α + 2β) + sin (α + 3β) + ... sin (α + �n 1 β)

(P.T.U., May 2008, Jan. 2010)

Sol. Let S = sin α + sin (α + β) + sin (α + 2β) + ... sin (α + 1n � β)

  C = cos α + cos (α + β) + cos (α + 2β) + ... cos (α + 1n � β)

C + iS = (cos α + i sin α) + [cos (α + β) + i sin (α + β)] + [cos (α + 2β) + i sin (α + 2β)]

+ ... [cos (α + 1n � β) + i sin  (α + 1n � β)]
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= eiα + ei (α + β) + ei (α + 2β) + ... ( 1 )i ne � � � �

= eiα 2 ( 1)1 ...i i i ne e e� � � �� �� � �
 �
which is a G.P series with first term 1, common ratio eiβ and number of terms = n

∴ C + iS =
1 (1 )

1

in
i

i

e
e

e

�
�

�
�
�

(1 )
Using S

1

n

n
a r

r

� ��
�	 


�	 
� �

Multiply and divide by 1 – e–iβ

C + iS =
(1 ) (1 )

(1 ) (1 )

i in i

i i

e e e

e e

� � � �

� � �

� �

� �

 = 
( 1)1

1 1

i i in i n

i i

e e e e

e e

� � � � � �

� � �

� �� � �� �
� � �

=
( ) ( ) ( 1 )

2 2 cos

i i i n i ne e e e� � � � � � � � � � �
� � �

� �

=  
2

cos sin cos ( ) sin ( ) cos ( ) sin ( )

cos ( 1 ) sin ( 1 )

4 sin /2

i i n i n

n i n

� � � � � � � � � � � � � � � � � � �

� � � � � � � � � �

�
Comparing imaginary parts

S =
2

sin sin ( ) sin ( ) sin ( 1 )

4 sin /2

n n� � � � � � � � � � � � � �
�

=
2

2 2 (2 1)
2 cos sin 2 cos sin /2

2 2 2

4 sin /2

n� � � � � � � �� � � �� �� �

�

=
2

2 1
2 sin cos cos

2 2 2

4 sin /2

n� �� � �� � � �� � � � � �� � � �� 	� � � �
 �
�

=

1
2 sin sin

2 2

2 sin /2

n n�� �� � � �� �� �
�

 = 

1
sin sin

2 2

sin
2

n n� �� �� � �� �� �
�

5. Series depending upon the expansion of log (1 + x) or log (1 – x) or tan–1 x.
Example 9. Sum the series

(a) cos θ – 1
2

 cos 2θ + 1
3

 cos 3θ – ...... ∞(b) sin θ – 1
2

 sin 2θ + 1
3

 sin 3θ – ...... •

Sol.  Let  C = cos θ – 1
2  cos 2θ + 1

3  cos 3θ – ...... •

S = sin θ – 1
2  sin 2θ + 1

3  sin 3θ – ...... •

C + iS = (cos θ + i sin θ) – 1
2  (cos 2θ + i sin 2θ) + 1

3  (cos 3θ + i sin 3θ) – ..... •

= eiθ – 1
2  e2iθ + 1

3  e3iθ – ...... • = x – 
2 3

2 3

x x
�  – ...... •, where x = eiθ
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= log (1 + x) = log (1 + eiθ) = log (1 + cos θ + i sin θ)

=
1

2
 log [(1 + cos θ)2 + sin2 θ] + i sin–1 

sin

1 cos

�
� �

2 2 11
2

log ( ) log ( ) tan . Here 1 cos ; sin
y

x iy x y i x y
x

�� �� � � � � � � � �� 	
 �
�

=
1

2
 log [1 + 2 cos θ + cos2 θ + sin2 θ] + i tan–1 

2

2 sin cos
2 2

2 cos
2

� �

�

=
1

2
 log 2(1 + cos θ) + i tan–1 tan

2

�� �
� �� �

=
1

2
 log 22 2 cos

2

�� �� �� �
 + i 

θ
2

 = log 2 cos
2

�� �
� �� �  + i 

2

�

Equating real and imaginary parts

       C = log 2 cos
2

�� �
� �� �

...(1) S = 
2

�
…(2)

Example 10. Sum the series sin α cos β – 1
2  sin2 α cos 2β + 1

3  sin3 α cos 3β – ..... • (P.T.U., May 2003)

Sol. Let C = sin α cos β – 1
2  sin2 α cos 2β + 1

3  sin3 α cos 3β – ......

S = sin α sin β – 1
2  sin2 α sin 2β + 1

3  sin3 α sin 3β – .......

C + iS = sin α . eiβ – 1
2  sin2 α . e2iβ + 1

3  sin3 α. e3iβ – ......

= x – 
2 3

2 3

x x
�  – ..... where x = sin α . eiβ

= log (1 + x) = log (1 + sin α . eiβ) = log [1 + sin α (cos β + i sin β)]

= log (1 + sin α cos β + i sin α sin β)

=
1

2
 log [(1 + sin α cos β)2 + sin2 α sin2 β] + i tan–1 

sin sin

1 sin cos

� �� �
� �� � �� �

=
1

2
 log [1 + 2 sin α cos β + sin2 α (cos2 β + sin2 β)] + i tan–1 

sin sin

1 sin cos

� �� �
� �� � �� �

=
1

2
 log (1 + 2 sin α cos β + sin2 α) + i tan–1 

sin sin

1 sin cos

� �� �
� �� � �� �

Equating real parts C = 
1

2
 log (1 + 2 sin α cos β + sin2 α).

Example 11. If C = cos2 θ – 
1

3
 cos3 θ cos 3θ + 

1

5
 cos5 θ cos 5θ – ..... • show that tan 2C = 2 cot2 θ.

Sol. C = cos θ . cos θ – 
1

3
 cos3 θ cos 3θ + 

1

5
 cos5 θ cos 5θ – .....
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Let S = cos θ . sin θ – 
1

3
 cos3 θ . sin 3θ + 

1

5
 cos5 θ . sin 5θ – .....

  C + iS = cos θ . eiθ – 
1

3
 cos3 θ . e3iθ + 

1

5
 cos5 θ . e5iθ – ........... = x – 

3 5

3 5

x x
�  – ..........

where x = cos θ . eiθ

= tan–1 x = tan–1 (cos θ . eiθ)

∴ C + iS = tan–1 [cos θ (cos θ + i sin θ)] …(1)

Changing i into – i,

  C – iS = tan–1 [cos θ (cos θ – i sin θ)] …(2)

Adding (1) and (2)

2C = tan–1 [cos θ (cos θ + i sin θ)] + tan–1 [cos θ (cos θ – i sin θ)]

= tan–1 
� �

cos (cos sin ) cos (cos sin )

1 cos cos sin . cos (cos sin )

i i

i i

� � � � � � � � �
� � � � � � � � �

= tan–1 
2

2 2 2

2 cos

1 cos (cos sin )

� ��
� �� � � � �� �

 = tan–1 
2

2

2 cos

1 cos

�

� �

= tan–1 
2

2

2 cos

sin

� ��
� ��� �

 = tan–1 (2 cot2 θ)

Hence tan 2C = 2 cot2 θ.

Example 12. Sum the series : eα cos β – 
3e

3

�

 cos 3β + 
5e

5

�

 cos 5β ....... • (P.T.U., Dec. 2005)

Sol. Let C = eα cos β – 
3

3

e �

 cos 3β + 
5

5

e �

 cos 5β....... •

S = eα sin β – 
e3

3

α
 sin 3β + 

5

5

e �

 sin 5β ....... •

C + iS = eα (cos β + i sin β) – 
3

3

e �

 (cos 3β + i sin 3β) + 
5

5

e �

 (cos 5β + i sin 5β) ....... •

= eα . eiβ – 
3

3

e �

 ei3β + 
5

5

e �

 ei5β.......•

= e(α + iβ) – 
3( ) 5( )

3 5

i ie e� � � � � �

� ....... •

= x – 
3 5

3 5

x x
�  ........ ∞, where x = eα + iβ

= tan–1 x = tan–1 (eα + iβ) = tan–1 [eα (cos β + i sin β)]
= tan–1 (eα cos β + i eα sin β)

We know that tan–1 (x + iy) = 
1

2
 tan–1 

2 2

2 1

21

x
i

x y
�

� �
 tanh–1 

2 2

2

1

y

x y� �
[Proved in example 11 (i) art. 6.17]
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=
1

2
 tan–1 

2 2 2 2

2 cos

1 cos sin

e

e e

�

� �

�
� � � �

 + i 
1

2
 tanh–1 

2 2 2

2 sin

1 (cos sin )

e

e

�

�

�
� � � �

=
1

2
 tan–1 

2

2 cos

1

e

e

�

�

�

�
 + i ◊ 

1

2
 tanh–1 

2

2 sin

1

e

e

�

�

�

�

Comparing real part C = 
1
2

 tan–1 
2

2 cos

1

e

e

�

�

�

�

or C  =
1

2
 tan–1 

2 cos

e e�� �
�

�

= – 
1

2
 tan–1 

cos

2
e e� ��

�
�

 = – 
1

2
 tan–1 

cos

sinh

�
�

= – 
1

2
 tan–1 (cosech α cos β).

6. Method of Hyperbolic Series
In Hyperbolic series, C + iS method is not applied. To sum up a series of hyperbolic sines or cosines.

(i) Replace sinh x by 
2

x xe e��
 and cosh x by 

2

x xe e��
.

(ii) Separate the series in ex and e–x.
(iii) Sum up each of these series by using results of standard series.

(iv) Put the result in terms of hyperbolic sines or cosines.
Example 13. Sum the series

(a) sinh α – 1
2  sinh 2α + 1

3  sinh 3α – ..... •

(b) 1 + x cosh α + x2 cosh 2α + x3 cosh 3α + ...... to n terms.

Sol. (a) sinh α – 1
2  sinh 2α + 1

2  sinh 3α ........ •

= 
2 2 3 31 1

. .
2 2 2 3 2

e e e e e e� �� � � � � � �
� � �

� �  ....... •

= 1
2  (eα – 1

2  e2α + 1
3  e3α ...... •) – 1

2  (e–α – 1
2  e–2α + 1

3  e–3α ...... •)

= 1
2  log (1 + eα) – 1

2  log (1 + e–α)

= 
1

2
 log 

1 1

21

e

e

�

��

�
�

�
 log 

2 2 2

2 2 2

e e e

e e e

� � �
�

� � �
� �

� �
�� �

� �
� �

�� �
� �

 = 1
2  log eα = 

2

�
 .

(b) 1 + x cosh α + x2 cosh 2α + x3 cosh 3α + ...... to n terms.

= 1 + x 
2

e e� ��� ��
� �� �

 + x2 
2 2

2

e e� � �� ��
� �� �

 + x3 
3 3

2

e e� � �� ��
� �� �

 + ...... to n terms.
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= 1
2  . [2 + x(eα + e–α) + x2(e2α + e–2α) + x3(e3α + e–3α) + ..... to n terms]

= 1
2  [(1 + xeα + x2e2α + ..... to n terms) + (1 + ex–α + x2e–2α + ...... to n terms)]

= 
1 1(1 ) 1(1 )

2 1 1

n n n nx e x e

xe xe

� � �

� ��

� �� �
�� 	

� �� 	
 �
(each series being a G.P.)

= 
1 (1 )(1 ) (1 )(1 )

.
2 (1 )(1 )

� �� � � �

� ��

� � � � �

� �

n n n nx e xe x e xe

xe xe

= 
1 ( 1) ( 1)

2

1 2 ( ) ( ) [ ]
.

2 1 ( )

n n n n n nx e e x e e x e e

x e e x

� �� � � � � � � � � �

� ��

� � � � � �

� � �

= 
1

2

1 2 . 2cosh . 2 cosh . 2 cosh ( 1)
.

2 1 . 2 cosh

n nx x n x n

x x

�� � � � � � �

� � �

= 
1

2

1 cosh cosh cosh ( 1)

1 2 cosh

n nx x n x n

x x

�� � � � � � �
� � �

.

��������	�
�������

Sum of the following series :

1. sin a + 
sin 2 sin 3

2 ! 3!

� �
�  + ..... •.

2. cos a + 
cos

1!

�
 cos 2 a + 

2cos

2 !

�
 cos 3a + 

3cos

3!

�
 cos 4a + ..... •.

3. cos q + 
sin

1!

�
 cos 2q + 

2sin

2 !

�
 cos 3q + ..... •. 4. cos a – 

cos ( 2 ) cos ( 4 )

3 ! 5 !

� � � � � �
�  – ...... •.

5. 1 + 
cos 2 cos 4

2 ! 4 !

� �
�  + ..... •. 6. sin q – 

sin 3 sin 5

3! 5 !

� �
�  – ..... •.

7.
1

2
 sin a + 

1 3

2 4
�
�

 sin 2a + 
1 3 5

2 4 6

� �
� �

 sin 3a + ...... •.

8. x sin a + x2 sin 2a + x3 sin 3a + ...... •, | x | < 1.

9. cos2 a + cos2 a cos 2a + cos3a cos 3a + ..... •.

10. sin a cos a + sin2 a cos 2a + sin3 a cos 3a + ...... •.

11. sin a sin b + sin 2a sin2 b + sin 3a sin3 b + ...... •.

12. sin a + 
1

2
 sin 2a + 2

1

2
 sin 3a + 3

1

2
 sin 4a + ..... •.

13. c cos q + 
2

2

c
 cos 2q + 

3

3

c
 cos 3q + ...... •.
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14. c sin a – 
2

2

c
 sin 2a + 

3

3

c
 sin 3a – ...... •.

15. cos2 a – 
1

2
 cos2 a cos 2a + 

1

3
 cos3 a cos 3a – ...... •.

16. sin2 q – 
1

2
 sin 2q sin2 q + 

1

3
 sin 3q sin3 q – ..... •.

17. c cos a + 
3

3

c
 cos 3a + 

5

5

c
 cos 5a + ..... •.

18. c sin a + 
3

3

c
 sin 3a + 

5

5

c
 sin 5a + ..... •.

19. ea cos b – 
3

3

e �

 cos 3b + 
5

5

e �

 cos 5b – ...... •.

20. cosh a – 
1 1

cosh 2 cosh 3
2 3

� � �  + ...... •.

21. 2 3sinh sinh 2 sinh 3x x x� � � � �  + ...... •.

�����	�

1. ecos a sin (sin a) 2.
2cose �  cos (a + sin a cos a) 3. esin q cos q cos (q + sin2 q)

4. cos (a – b) sin (cos b) cosh (sin b) – sin (a – b) cos (cos b) sinh (sin b) 5. cosh (cos q) cos (sin q)

6. cos (cos q) sinh (sin q) 7.
sin

4

2 sin
2

� � �

�
8.

2

sin

1 2 cos

x

x x

�
� � �

9. 0 10.
2

sin (cos sin )

1 2 sin cos sin

� � � �
� � � � �

11.
2

sin sin

1 2 cos sin sin

� �
� � � � �

12.
4 sin

5 4 cos

�
� �

13. – 
1

2
 log (1 – 2 c cos q + c2) 14. tan–1 

sin

1 cos

c

c

� ��
� �� �� �

15.
1

2
 log (1 + 3 cos2 a) 16. tan–1 

2sin

1 sin cos

� �	

 �� 	 	� 

17.
1

4
 log 

2

2

1 2 cos

1 2 cos

c c

c c

� �� � �

 �� � �� 

18.
1

2
 tan–1 

2

2 sin

1

c

c

� ��

 ��� 

19. – 
1

2
 tan–1 (cosech a cos b) 20. log 2 cosh

2

�� �

 �� 

21.
2

sinh

1 2 cosh

x

x x

�
� � �

.

	�������������������	

1. De-Moivre’s theorem: (i) If n is any integer, positive or negative, then (cos θ + i sin θ)n = cos nθ + i sin nθ
and (ii) if n is a fraction +ve or –ve, then one of the values of (cos θ + i sin θ)n is cos nθ + i sin nθ

Note: (i) cos θ + i sin θ is represented by cis θ
(ii) (sin θ + i cos θ)n ≠  sin nθ + i cos n θ
(iii) (cis θ1) (cis θ2) … (cis θn) = cis (θ1 + θ2 + … + θn)
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2. (cos θ + i sin θ)p/q, where (p, q) = 1 has q and only q distinct values and the q values form a G.P. whose
sum is zero (p, q being integers).

3. To express cosn θ in terms of cosines of multiples of θ, take x = cos θ + i sin θ ;

1

x
 = cos θ – i sin θ, x + 

1

x
 = 2 cos θ ∴ (2 cos θ)n = 

1
n

x
x

� ��� �� �
; Expand 

1
n

x
x

� ��� �� �
 by Binomial

Theorem and collect the terms equidistant from beginning and end and use 
1

2 cosn
n

x n
x

� � � .

4. To express sinn θ in terms of cosines or sines of the multiples of θ

Take x = cos θ + i sin θ, 
1

x
 = cos θ – i cos θ

x – 
1

x
 = 2 i sin θ and (2 i sin θ)n = 

1
n

x
x

� ��� �� �
. Expand 

1
n

x
x

� ��� �� �
 by Binomial theorem and collect the

terms equidistant from beginning and end. Also use xn – 
1
nx

 = 2 i sin nθ.

5. To express cos nθ and sin nθ in terms of powers of sin θ and cos θ use De-Moivre’s theorem cos nθ + i sin nθ
= (cos θ + i sin θ)n ; Expand by Binomial theorem and compare real and imaginary parts, we get cos
nθ and sin nθ.

6. (i) tan nθ = 
3 5

1 3 5
2 4

2 4

tan tan tan

1 tan tan

n n n

n n

c c c

c c

� � � � ��

� � � ��

(ii) tan (θ1 + θ2 + … + θn) = 1 3 5

2 41

s s s

s s

� � �
� � �

, where sr denotes the sum of the products of the tangents

of the angles θ1, θ2, …, θn taken r at a time.

7. Exponential function of a complex number: Exp z  = ez  = e x + i y = ex.eiy  = ex (cos y + i sin y) = ex cis y.
Period of ez is 2π i .

8. Circular functions of a complex number: If z = x + iy, then circular functions of z are:

cos z =
2

iz ize e��
, sin z = 

2

iz ize e

i

��
, tan z = 

sin

cos( )

iz iz

iz iz

e e z

zi e e

�

�

�
�

�

cot z =
cos ( )

sin

iz iz

iz iz

z i e e

z e e

�

�
�

�
�

, sec z =
1 2

cos iz izz e e�
�

�

  cosec z =
1 2

sin iz iz

i

z e e��
�

.

9. Euler’s theorem: ∀  θ, real or complex eiθ = cos θ + i sin θ
Period of sin z and cos z is 2π
Period of tan z is π.

10. Logarithms of complex numbers: (i) If w = ez, where z and w are complex numbers, then z is called
logarithm of ω i.e., z = loge w. It is many valued function. The general value of loge w is z + 2nπi and
is denoted by loge w. Thus loge w = 2nπi + log w.

(ii) loge (α + iβ) = 
1

2
 log (α2 + β2) + i [2nπ + tan–1 β/α].
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11. General exponential function: The general exponential function az is defined by az = ez log a, where a
and z are any numbers real or complex.
∴ az = ez(2nπ i + log a).

12. Hyperbolic functions: For all values of x, real or complex ;

sinh x =
2

x xe e��
, cosh x =

2

x xe e��

tanh x =
sinh

cosh

x x

x x

x e e

x e e

�

�

�
�

�
, coth x =

cosh

sinh

x x

x x

x e e

x e e

�

�

�
�

�

sech x =
1 2

cosh x xx e e�
�

�
,  cosech x =

2
x xe e��

Period of sinh x and cosh x is 2πi

Period of tanh x is πi

13. Relation between hyperbolic and circular functions:
sin (ix) = i sinh x sinh (ix) = i sin x
cos (ix) = cosh x cosh (ix) = cos x
tan (ix) = i tanh x tanh (ix) = i tan x

cot (ix) =  – i coth x coth (ix) = – i cot x
sec (ix) = sech x sech (ix) = sec x

cosec (ix) = – i cosech x cosech (ix) = – i cosec x.

14. Inverse trigonometrical functions:
If z is a complex number, then

 sin–1 z =– i log � �21i z z� �  cot–1 z = tan–1 log
2

i i z i
z i

z z i

�
� � � �

�

cos–1 z = – i log � �21z z� �  sec–1 z = cos–1 
21 11

log
z

i
z z

� �� �
� �� �
� �� �

; z π 0

tan–1 z = – 
1

log log
2 1 2

i i z i i z

iz i z

� �
�

� �
; z π ± i cosec–1 z = sin–1 

1

z
 = – i log 

2 1i z

z

� �� �
� �
� �� �

, z π 0.

15. Inverse hyperbolic functions: If z is a complex number, then

sinh–1 z = log � �2 1z z� � cosech–1 z = sinh–1 
21 11

log
z

z z

� �
� ; z π 0

cosh–1 z = log � �2 1z z� � sech–1 z = cosh–1 
21 11

log
z

z z

� �
� ; z π 0

tanh–1 z =
1 1 2

log
2 1 2

�
�

; z π ± 1 coth–1 z = tanh–1 
1 1 1

log
2 1

z

z z

�
�

�
 ; z π ± 1.
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16. Summation of series:
To find sum of the series of the form

a0 cos α + a1 cos (α + β) + a2 cos (α + 2 β) + …
and a0 sin α + a1 sin (α + β) + a2 sin (α + 2 β) + …
Take  C = a0 cos α + a1 cos (α + β) + a2 cos (α + 2 β) + …

 S = a0 sin α + a1 sin (α + β) + a2 sin (α + 2 �) + …
Write    C + i S = a0 ei α + a1 ei (α+β) + a2 ei (α  + 2β) + …

= eiα [ a0 + a1 e
iβ + a2 e

i 2β + …]

= eiα [a0 + a1x + a2x2 + …], where x = eiβ

= e iα f (x)
The series f(x) can be summed up by following methods (i) G.P. series, (ii) Binomial series, (iii) Exponential
series, (iv) expansions of sin x, cos x, tan x, sinh x, cosh, (v) logarithmic series, and (vi) Gregory’s
series.

���	�������	���������������

1. (a) State De-Moivre’s theorem and prove it for the most fundamental case.
      [Hint: See Art. 6.3] (P.T.U., May 2004, Dec. 2005, May 2014)

(b) If x = cis q, y = cis f, show that tan
2

x y
i

x y

� 	 � �
�

�
(P.T.U., Dec 2012)

[Hint: S.E . 3(i) art 6.3]

2. Prove that (1 + i)n + (1 – i)n = 
1

22 cos
4

n
n� �

. (P.T.U., May 2003)

[Hint: (i) S.E. 13 (iii) art. 6.3]
3. Solve the following equations using De-Moivre’s theorem

(i) x4 – x3 + x2 – x + 1 = 0  (P.T.U., Dec. 2002, May 2003, 2005)
[Hint: Solved Example 8 (b) art. 6.4]
(ii) x7 + x4 + x3 + 1 = 0
[Hint: S.E. 8 (c) art. 6.4]
(iii) x6 + x5 + x4 + x3 + x2 + x + 1 = 0
[Hint: Solved Example 2 (a) art. 6.4]

4. If sin a + sin b + sin g = 0 = cos a + cos b + cos g, then prove that
(i) cos2 a + cos2 b + cos2 g = 3/2 (P.T.U., May 2003)
[Hint: Solved Example 5 (ix) art. 6.3]
(ii) cos 3a + cos 3b + cos 3g = 3 cos (a + b + g) (P.T.U., Dec. 2002)
[Hint: Solved Example 5 (i) art. 6.3]

5. Prove that � � � � 13 3 2 cos
6

n n
n n

i i � �
� � � � (P.T.U., May 2004)

[Hint: Solved Example 13 (ii) art. 6.3]
6. Use De-Moivre’s Theorem to find roots of z5 + 1 = 0.

 [Hint: z5 = – 1 = cis p = cis (2np + p), z = cis 
2 1

5

n �
 p, where n = 0, 1, 2, 3, 4]

7. If 2 cos q = x + 
1

x
, prove that 

2

2 1

1 cos

cos ( 1)

n

n

x n

nx x�
� �

�
� ��

.

[Hint: Solved Example 10 (a) art. 6.3]
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8. If xr = cos sin
3 3r r

i
� �

�  show that  x1 x2 x3 … xn = cos 
1 1

1 sin 1
2 23 3

� � � �� �� � � �
� � �� 	 � 	� � � �� � � �
 � 
 �n n

i

Hence show that x1 x2 x3 … • = i. (P.T.U., May 2003)
[Hint:Solved Example 8 (b) art. 6.3]

9. Prove that (1 + cos q + i sin q)n + (1 + cos q – i sin q)n = 2n+1 cosn 
2

�
 cos 

2

n�
.

[Hint: Consult Solved Example 10 art. 6.3]
10. If w is the complex cube root of unity prove that 1 + w + w2 = 0. (P.T.U., May 2011)

11. Find all the values of (i) 
1
4(1 )i� (P.T.U., Dec. 2010)

(ii) � �
1

38i� . (P.T.U., May 2012)

[Hint: Consult Solved Examples 4, 5 art. 6.4]

(iii) 

3
41 3

2 2
i

� �
�� �� �

(P.T.U., Dec. 2011, 2012)

[Hint: S.E. 3 art. 6.4]
12. (a) Find nth roots of unity and prove that these form a G.P. Also show that the sum of these n roots is zero and

their product is (– 1)n–1.
[Hint: Solved Example 1(a) art. 6.4]

 (b) If (3 + x)3 – (3 – x)3 = 0; Prove that x = 3i tan 
3

r�
; r = 0, 1, 2 (P.T.U., May 2010)

[Hint: S.E. 10(a) art. 6.4]

13. Find all the values of 
1

4( 1)� . (P.T.U., May 2003)
[Hint: Consult Solved Example 2 art. 6.4]

14. Find all the values of (– 1 + i)2/5.

[Hint: – 1 + i = r sin q + i r sin q \ r = 2 , q = 
3

4

�

(– 1 + i)2/5 = r2/5 (cos q + i sin q)2/5 = 21/5 
2/5

3
cis 2

4

� ��� �� �� 	� �� �
 �
n

 = 21/5 cis 
2

5
 

3
2

4

�� �� �� �	 

n , n = 0, 1, 2, 3, 4]

15. (a) Prove that (cos7 q = � �
1

cos7 7cos5 21cos 3 35 cos 5
64

� � � � � � � (P.T.U., Dec. 2011)

(b) Express cos8 q in terms of cosines of multiples of q (P.T.U., May 2006, 2014)
[Hint: Solved Example 1 (ii) art. 6.5]

16. (a) Prove that cos 6q = 32 cos6 q – 48 cos4 q + 18 cos2 q – 1. (P.T.U., May 2012)
(b) Expand sin 7q is powers of sin q. [Hint: S.E. 1 (b) art. 6.6] (P.T.U., Dec. 2013)

17. If u = log tan 
4 2

� �� ��� �	 

; prove that (i) tanh tan

2 2

u �
� (P.T.U., May 2006)

[Hint: Solved Example 3 (i) art. 6.15]

(ii) q = – i log tan 
4 2

u
i

�� ��� �	 

(P.T.U., May 2003)

[Hint: Solved Example 3(v) art. 6.15]

18. (a) Find the general value of ( 1 3)i� � (P.T.U., May 2012)

[Hint: S.E. 2(a) art. 6.12]
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(b) Prove that Log (– 4) = 2 log 2 + (2n + 1) pi. (P.T.U., May 2007)
[Hint: Solved Example 2(b) art. 6.12]

19. Solve the equation e2z–1 = 1 + i (P.T.U., Dec. 2012)
1 1

2 1 = log (1 ) log 2 log 2
4 2 2 8

i i z i
� �� � � � � � � � �� �� �

�Hint:

20. Prove that (cosh x + sinh x)n = cosh nx + sinh nx (P.T.U., May 2007)

� �LHS cosh sinh
2 2

RHS cosh sinh
2 2

nx x x x
n nx

nx nx nx nx
nx

e e e e
x x e

e e e e
nx nx e

� �

� �

� � �� �� �� � � �� �� �	 

� �
� �� �

� � � �� �� �

Hint:

21. (a) What is ii ? (P.T.U., May 2010, Dec. 2013)
[Hint: S.E. 7(a) art. 6.13]

(b) Find the value of logi i (P.T.U., Dec. 2002)

[Hint: Solved Example 16 art. 6.12]

22. Find all the roots of sinh z = i (P.T.U., May 2003)
[Hint: Solved Example 9(b) art. 6.15]

23. Find all values of sin–1 2 treating 2 as complex number (P.T.U., Dec 2004)
[Hint: Solved Example 13 art. 6.15]

24. Separate real and Imaginary parts of the following :

(i)
23 4xy iye � [Hint: Solved Example 1(ii) art. 6.9] (P.T.U., May 2014)

(ii) log [log i] [Hint: Solved Example 5 art. 6.12]
(iii) sec (x + i y) (P.T.U., May 2004)

(iv) cos (x + i y) [Hint: Solved Example 1 art. 6.15] (P.T.U., Dec. 2004)

(v) sin (x + i y)

(vi) sinh (x + i y)

(vii) cosech (x + i y) [Hint: Solved Example 2 art. 6.15]

(viii) log sin (x + i y)

(ix) cos–1 (eiq) [Hint: Solved Example 8 art. 6.15] (P.T.U., May 2003)

(x) tan–1 (x + i y) [Hint: Solved Example 11 art. 6.17] (P.T.U., May 2006)

(xi) log(4 + 3 i) (P.T.U., Dec. 2010)

(xii) sin–1 (eiq), where q is acute. (P.T.U., Dec. 2006, 2012, May 2014)

25. Prove that the following:

(i) sinh–1 z = log � �2 1z z� �   [Hint: Solved Example art. 6.17] (P.T.U., Dec. 2002)

(ii) tanh–1 z = 
1 1

log
2 1

z

z

�
�

 ; z π ± 1 [Hint: Solved Example art. 6.17]

(iii) sin–1 z = – i log � �21iz z� � (iv) tan–1 z = log
2

i i z

i z

�
�

; z π ± i. [Hint: See art. 6.15]

26. Find modulus and argument of (1 + i)1–i

[Hint: Solved Example 15 art. 6.13]
27. (i) Prove that ez is periodic function, z is complex number. (P.T.U., May 2008)

[Hint: Consult art. 6.9]

(ii) Prove that sin z, cos z, tan z are periodic functions and hence find their respective periods.

[Hint: See art. 6.10]
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ANSWERS

3. (i) cos sin ,
5 5

i
� �
�  

3 3
cos sin

5 5
i

� �
� (ii) – 1, 

1
,

2

i�
 

1
,

2

i� �
 
1 3

2

i�

(iii) 1, cos sin
7 7

r r
i

� �
� ; r = 2, 4, 6

6. – 1, cos sin ,
5 5

i
� �
�  

3 3
cos sin

5 5
i

� �
�

11. (i) 
1

82 cis ;
16

r�
�  r = 1, 9 (ii) 2 , 3i i� � (iii)  

1

2

i�
 , 

1

2

i� �

12.
2( 1)

cis
r

n

� �
; r = 1, 2, 3, ..., n 13.

1

2

i�
, 

1

2

i� �

14.
1
5 (4 3)

2 cis
10

n � �
; n = 0, 1, 2, 3, 4 15. (b) 

1

128
[cos 8q + 8 cos 6q + 28 cos 4q + 56 cos 2q + 35]

16. (b) 7 sin q – 56 sin3 q + 112 sin5 q – 64 sin7 q]

18. (a) 
2(3 1)

log 2
3

n
i

�
� � 19.

1 1
log 2

2 4 8
i
�

� �

21. (a) 
4 1

2

n

e
�

� 	
(b) 

4 1

4 1

m

n

�
�

 ; m, n are integers

22. z =
2 1

2

n
i

�
�  if n is even 23. 14 1

cosh 2
2

n
i ��

� �

=
2 1

2

n
i

�
�  if n is odd.

24. (i) R =  e3xy cos 4y2; Img = e3xy sin 4y2

(ii) R = log (4n + 1) 
2

�
 ; Img = (4n + 1) 

2

�

(iii) R = 
2 cos cosh 2 sin sinh

; Img
cos 2 cosh 2 cos 2 cosh 2

x y x y

x y x y
�

� �

(iv) R = cos x cosh y ; Img = – sin x sinh y

(v) R = sin x cosh y ; Img = cos x sinh y

(vi) R = sinh x cos y ; Img = cosh x sin y

(vii) R = 
2 sinh cos 2 cosh sin

; Img
cosh 2 cos 2 cosh 2 cos 2

x y x y

x y x y

�
�

� �

(viii) R = 
1 1 1

log cosh 2 cos 2
2 2 2

y x
�� �

� �	 

 ; Img = tan–1 (cot x tanh y)

(ix) R = sin–1 sin �  ; Img = log 1 sin sin� �� � � �
 �

(x) R = 1 1
2 2 2

1 2 1 2
tan ; Img tanh

2 21 1

x y

x y x y
� ��

� � � �
 

(xi) R = log 5; I = 2np + tan–1 
3

4

(xii) R = cos–1 sin ; Img log ( sin 1+ sin )� � � � �

26. 4 1
2 ; log 2

4 2
e
	

	
� .
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