SET - 2

I B. Tech I Semester Regular Examinations, January, 2015 **Engineering Mechanics** (Common to ME and CE)

Time: 3 hours

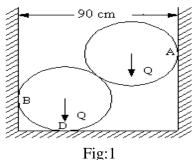
Max Marks: 70

PART – A

Answer ALL questions. All questions carry equal marks

2 * 10 = 20 Marks

1). a	What is meant by Free Body Diagram? What are its advantages?	[2]
b	State Laws of Static Friction.	[2]
с	Describe the various methods of finding out the centre of gravity of a body.	[2]
d	Where does the centre of gravity of the following section lies?	[2]
	(i). Semicircle, (ii) Trapezium, (iii) Hemisphere and (iv) Right Circular Solid Cone	
e	Define the terms: moment of inertia and radius of gyration.	[2]
f	Explain the parallel axis theorem, as applied to moment of inertia.	[2]
g	Write an expression for the moment of inertia of a circular ring of uniform cross section of radius 'R' about its diametrical axis	[2]
h	Define angle repose and Show that the angle of repose is equal to the angle of friction.	[2]
i	What is the Truss? State the difference between a perfect and an imperfect Trusses.	[2]
j	What are the applications of the principle of virtual work.	[2]

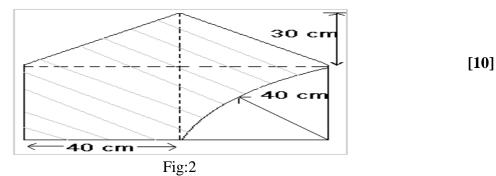

the applications of the principle of virtual work.

PART – B

Answer any FIVE questions. All questions carry equal marks *****

10 * 5 = 50 Marks

a). Two spheres, of each of weight 1000 N and radius of 25 cm rest in horizontal 2. channel of width 90 cm as shown in fig 1. Find the reactions on the points of contact A, B and D



b).State and explain the theorem of Varignon.

[2]

[8]

Find the centroid of the shaded figure shown in Fig:2 3.

SET - 2

CODE: GR14A1012

4. Find the moment inertia of the section shown in fig.3 about the centroidal axis perpendicular to the web

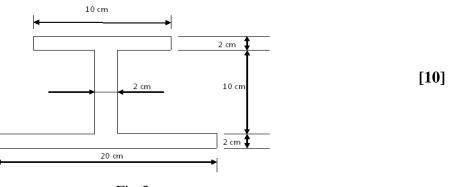
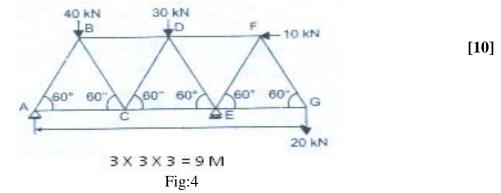
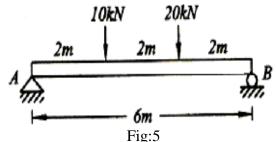




Fig:3

- a).Find the Mass moment of inertia of a circular plate of radius "R' and thickness't" [5] about its centroidal axis.
 - b).Find the Mass moment of inertia of a rectangular plate of size **a** x **b** and thickness [5] 't' about its centroidal axis.
- 6. A truss of span 9 m is loaded as shown in fig 4. Find the reactions and forces in the members of the truss.

7. Determine the vertical reaction developed at a supports A & B in the beam as shown [7] fig.5

[3]

[4]

- b). State the principle of virtual work and explain how it can be used in solving the problems.
- **8.** a). Explain the following terms:
 - (i) Angle of Friction, (ii) Co-efficient of Friction and (iii) Cone Friction
 - b). Find the force required to drag a body of weight W, placed on a rough inclined [6] plane having inclination ' α ' to the horizontal. The force P is applied to the body horizontally and the body is (a) on the point of motion up the plane, and (b) on the point of motion down the plane.