
[Basic + Advanced - Complete set of DevOps tools - 100% Job

Guaranteed] - By Karthik M(8 years Realtime EXP on Devops)

Devops Introduction:

1. What are the software development models available ?

2. Why Devops ?

3. When to use and when not to use?

4. What are the delivery challenges faced?

5. Types of Source code management?

6. Tools Covered under this course

7. Bonus – Introduction on Kubernetes.

Tools Covered: [Basic + Advanced - Complete set of DevOps tools - 100% Job Guaranteed]

1. SCM - Git

2. Build Tool - Maven

3. Continuous Integration - Jenkins

4. Containerization - Docker

5. Configuration management System - Chef

6. Cloud - AWS - EC2, S3, VPC, IAM, Route53, Queue Services, Auto scaling - Advanced

explanation on each options on these services.

7. Static code analysis - Sonarqube

8. Code Coverage - Jacoco

9. Artifactory - Jfrog

10. Introduction and architecture of Container Orchestration - Kubernetes

11. Linux basic and Scripting Introduction.

12. Introduction to Google Cloud Platform.

13. Introduction to Ruby and Groovy Scripts.

Note: All the above listed software's are open sources. And Practice is done on Google Cloud Platform.

GIT:

 Day 1:

1. What is VCS?

2. Detailed Git Architecture

3. Git Installation

4. Github Account creation.

5. Setting up remote repository

 Day 2:

6. Git initial Configurations.

7. Create Central/remote Repository locally

8. Deep dive – History of verifications of commits

9. Git Basic Commands.

 Day 3:

10. Branching model/Strategy

11. Git advanced Commands

12. Git diff

13. Git show

14. Git push

15. Git checkout

16. Git reset -And its types

17. Git rebase

18. Git revert

19. Git stash

20. Ignoring files

21. Git clean

22. Git log

23. Git tag

 Day 4 :

24. Merging

25. Resolving merge Conflict

26. Hooks

27. Git Pull

28. Git Cherrypick

29. Git Fetch

30. Differences between GIT and SVN

Maven: Build Tool

 Day 1:

1. What is Build Management ?

2. What is Maven?

3. Why build tool is required ?

4. Maven Architecture?

5. Maven Repositories?

6. Maven Installations

 Day 2:

1. Project Name(GAV) and why they are important?

2. Generate sample project structure

3. Maven Build Life cycle

4. Examples on Maven goals

5. Verify Built artifacts

 Day 3:

1. What is POM?

2. Maven Plugin management

3. Different ways of invoking plugins

4. Different command line options

5. What is the importance of Settings.xml?

 Day 4 :

1. Deployment Automation, Dependency declaration,

2. Multi Module Projects

3. Maven update version – for release

4. Documentation – Building own site

5. Software quality

6. Build Types

7. Real-time project deployment

8. Code Coverage

9. Sonarqube – Code quality tool

Jenkins: CICD Tool

 Day 1:

 What is CI and its benefits ?

 Why Jenkins?

 Crontab Syntax

 Jenkins Architecture

 Jenkins Installation

 Day 2:

 Configure Systems

 Configure Global Security

 Global Tool Configuration

 Reload Configurations from disk

 Manage Plugins

 System Information

 System log

 Load Statistics

 Manage Nodes

 Manage Users

 Prepare to Shutdown

 How to change port of Jenkins

 How to change home directory of Jenkins

 How to migrate Jenkins form one server to another

 Real-time scenarios

 Jenkins folder structure

 Day 3:

 Why Job Configuration is required?

 Job Creation in Jenkins

 CI setup – Exercise

 Downstream dependency

 CI and CD

 Alter/create View – Project specific

 Real-time scenarios

 Build Pipeline

 Day 4:

 Jfrog –Artifactory

 Sonarqube – Static code quality analyzer

 Jacoco – Code coverage

 Real time project - Integrate Jfrog, Sonarqube, JaCoCo and Docker in Jenkins.

 Maintenance of jenkins

 Jenkins Best Practices

 Popular Plugins

 Code Review – An Agile process

 Defect Tracking

Docker: Containerization

 Day 1

 Introduction to Docker

 Difference between Physical and Virtual server

 Docker supported platforms

 Installations and verify the Docker.

 Day 2

 Managing Docker Containers.

 Docker run command and understanding the entire command to create a container.

 Inspecting Containers and Various Commands.

 List running containers only

 Show the last container which you have created(stopped/running)

 List all containers(stopped and running)

 Naming the container

 Rename a container

 Deleting a container

 Delete all containers at once.

 Starting a stopped container

 Shortcut Keys - to work with Container

 Attaching to a running container

 Inspecting the container's processes

 Stoping a container from 'host machine'

 Show last 4 containers (stopped/running)

 Find More About The Container

 Create demonized container

 Remove all running containers

 Remove all running/stopped containers

 Day 3

 Deep Dive into Docker Images.

 Listing docker images

 SETTING-UP NGINX SERVER ON UBUNTU MANUALLY: Project

 Images types

 Creating docker image using "docker build" command

 Writing Dockerfile.

 Building docker image

 Listing docker image

 Testing Image

 Data Volumes - Advanced Topic

 Day 4

 Exec - command

 Docker useful commands

 Build image without using existing image/image layers

 To copy a file to docker container from host machine

 Docker logs

 Docker Hub and real-time Project.

 Working with docker-hub images

 Deleting all Images

 Deleting an Image

 Pushing custom images to docker repository

 Searching docker images in docker hub

 Pulling the images

 Docker Benifits

 Real time project

Chef: Configuration management tool

 Day 1

 Why Chef is required?

 What are Chef features ?

 Chef Architecture

 Chef environment – terminologies

 Hosted Chef server setup

 AWS Instances – To setup node and WS – Points to Note

 Day 2

 Workstation Setup - ChefDK Installation

 Connect WS to Server

 Setup Node And connect to Hosted chef

 Chef Recipe Syntax

 Simplest form of Chef recipe code

 What are Resources

 How to do roll back in Chef

 Day 3

 Commonly used Chef resources

 Commands to generate cookbook and Recipe

 Test your recipe locally before applying to PROD

 Real-time Exercise – Write a recipe and upload to server to configure node

 Chef Recipe – File resource

 Chef Recipe – Array

 Setting up Firewall -Multiple ports

 Chef Recipe – User resource

 Chef Recipe – Directory resource

 Chef Recipe – Remote file resource

 Chef Recipe – Execute resource

 Chef Recipe – Template resource

 Real-time –requirement to install apache service

 Ruby has hash

 Login to chef server – to check the hash of node

 Adding the recipe to run_list to execute on nodes

 Day 4

 Optimize chef recipe – using attributes

 Real-time scenario – tomcat install

 Optimize chef recipe – using attributes

 Attributes precedence - Chart

 How does chef-client works

 How to stop executing the recipe in other platforms

 Chef Sample project – In Github

 Chef – Best practices

 Community cookbooks - Supermarket

 ROLES

 Creating Roles

 Exercise – on roles

 CLEANUP

 Chef - Environment

 Databag - concept

