Determinants

Wednesday, April 5, 2023 8:04 PM
Determinant: Determinant is the numerical value of the square matrix. So, to every square matrix $\mathrm{A}=$ [aid] of order n , we can associate a number (real or complex) called determinant of the square matrix A. It is denoted by $\operatorname{det} \mathrm{A}$ or $|\mathrm{A}|$.
Note
(i) Read $|A|$ as determinant A not absolute value of A.
(ii) Determinant gives numerical value but matrix do not give numerical value.

- (iii) A determinant always has an equal number of rows and columns, ie. only square matrix have determinants.
set ole order 2×2

Ex. $H_{A B}=\left[\begin{array}{cc}3 & -1 \\ -2 & -4\end{array}\right]$
find $|B|=$?
Ex: $H^{2}\left|\begin{array}{cc}-3 & x \\ 4 & 8\end{array}\right|=12$ find x.
dec. \&

Expand R_{1}

$$
\begin{aligned}
& +1\left|\begin{array}{cc}
-1 & 4 \\
0 & 2
\end{array}\right|-4\left|\begin{array}{ll}
0 & 4 \\
1 & 2
\end{array}\right|+2\left|\begin{array}{cc}
3 & -1 \\
1 & 0
\end{array}\right| \\
& 1(-2-0)-4(6-4)+2(0+1) \\
& -2-4(2)+2 \\
& -\not 2-8+2 \\
& -8
\end{aligned}
$$

Expand C3
$+2\left|\begin{array}{cc}2 & -1 \\ 1 & 0\end{array}\right|-4\left|\begin{array}{cc}1 & 4 \\ 1 & 0\end{array}\right|+2\left|\begin{array}{cc}1 & 4 \\ 3 & -1\end{array}\right|$
$2(0+1)-4(0-4)+2(-1-12)$
$2+16-26$
$18-26$
-8

Evaluate the determinants in Exercises 1 and 2.

1. $\left|\begin{array}{rr}2 & 4 \\ -5 & -1\end{array}\right|$

S01.3 $A=\left[\begin{array}{ll}1 & 2 \\ 4 & 2\end{array}\right]$
\sim
(i) $\left|\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right|$
(ii) $\left|\begin{array}{cc}x^{2}-x+1 & x-1 \\ x+1 & x+1\end{array}\right|$
$2 A=\left[\begin{array}{ll}2 & 4 \\ 8 & 4\end{array}\right]$
3. If $A=\left[\begin{array}{ll}1 & 2 \\ 4 & 2\end{array}\right]$, then show that $|2 A|=4|A|$
4. If $A=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4\end{array}\right]$, then show that $|3 \mathrm{~A}|=27|\mathrm{~A}|$

$$
\begin{aligned}
& \text { L.4. }|2 A|=8-32=-24 \\
& \text { utc } 4\left|\frac{1}{\cdots}\right|=4(2-8)=4(-1)=-24
\end{aligned}
$$

4. If $\mathrm{A}=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4\end{array}\right]$, then show that $|3 \mathrm{~A}|=27|\mathrm{~A}|$
5. Evaluate the determinants

$$
\text { R.1.S } 4\left|\begin{array}{ll}
1 & 2 \\
4 & 2
\end{array}\right|=4(2-8)=4(-6)=-24
$$

(i) $\left|\begin{array}{rrr}3 & -1 & -2 \\ 0 & 0 & -1 \\ 3 & -5 & 0\end{array}\right|$
(ii) $\left|\begin{array}{rrr}3 & -4 & 5 \\ 1 & 1 & -2 \\ 2 & 3 & 1\end{array}\right|$
$\downarrow \quad 3\left|\begin{array}{rr}1 & -2 \\ 3 & 1\end{array}\right|+4\left|\begin{array}{cc}1 & -2 \\ 2 & 1\end{array}\right|+5\left|\begin{array}{ll}1 & 1 \\ 2 & 3\end{array}\right|$
Expanding R_{2}

$$
3(1+6)+4(1+4)+5(3-2)
$$

$\underbrace{-0|+0|+1\left|\begin{array}{r}\mid+1\end{array}\right| \begin{array}{l}21+20+5 \\ 41+5=46\end{array}}_{1(-15+3)}$
-12

4-1

$$
\text { (iii) }\left|\begin{array}{ccc}
0 & 1 & 2 \\
-1 & 0 & -3 \\
-2 & 3 & 0
\end{array}\right| \quad \text { (in) }\left|\begin{array}{rrr}
2 & -1 & -2 \\
0 & 2 & -1 \\
3 & -5 & 0
\end{array}\right|
$$

(4W) If $\mathrm{A}=\left[\begin{array}{lll}1 & 1 & -2 \\ 2 & 1 & -3 \\ 5 & 4 & -9\end{array}\right]$, find $|\mathrm{A}|$
7. Find values of x, if
(i) $\left|\begin{array}{ll}2 & 4 \\ 5 & 1\end{array}\right|=\left|\begin{array}{cc}2 x & 4 \\ 6 & x\end{array}\right| \quad$ (ii) $\left|\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right|=\left|\begin{array}{ll}x & 3 \\ 2 x & 5\end{array}\right| \rightarrow \begin{array}{rl}\text { Sol. } \\ = & -12 \\ -2 & 5 x-6 x \\ -2 & -x\end{array}$
*8. If $\left|\begin{array}{cc}x & 2 \\ 18 & x\end{array}\right|=\left|\begin{array}{cc}6 & 2 \\ 18 & 6\end{array}\right|$, then x is equal to
$\begin{array}{ll}\text { (C) }-6 & \text { (D) } 0\end{array}$

$$
\begin{array}{lr}
x^{2}-36=36-36 & 2-20=2 x^{2}-24 \\
x^{2}=36 & -18=2 x^{2}-24 \\
x= \pm \sqrt{36} & 2 x^{2}=-18+24 \\
x= \pm 6 & 2 x^{2}=6 \\
x^{2}=3 \\
x & = \pm \sqrt{3}
\end{array}
$$

Singular Matrix

In any Matrix whose tet is 0 then that Matrix will be a Singular Matrix

Ex: $A=\left[\begin{array}{ll}4 & 1 \\ 12 & 3\end{array}\right]$

$$
\begin{aligned}
&|A|=12-12=0 \\
& A \rightarrow \text { Singular Matrix }
\end{aligned}
$$

Ex- $\operatorname{Eh} A$ is Singular Matrix

$$
\text { and } A=\left[\begin{array}{ll}
3 & x \\
4 & 5
\end{array}\right]
$$

$$
\text { and } \begin{array}{r}
A=\left[\begin{array}{ll}
3 & x \\
4 & 5
\end{array}\right] \\
\text { find } x=?
\end{array}
$$

Ex Let $B=\left[\begin{array}{ccc}y & 4 & y \\ 3 & -2 & 6 \\ 4 & 1 & 2\end{array}\right]$

$$
\begin{gathered}
\text { find } y \text { is } B \text { is singular Matrix. } \\
y(-4-6)-4(6-24)+y(3+8)=0 \\
-10 y-72+3 y+8 y=0 \\
-10 y+11 y=72 \\
-\frac{10}{2}, \quad y=72
\end{gathered}
$$

(1)

(2)

$$
\left|\begin{array}{ccc}
2 & -1 & 3 \\
4 & 2 & 0 \\
1 & 2 & 1
\end{array}\right|
$$

Minoos Minor of Plimet $2=\underset{\substack{ \\M_{11}}}{ }=\left|\begin{array}{ll}2 & 0 \\ 2 & 1\end{array}\right|=\left(\begin{array}{ll}2 & -0)=2\end{array}\right.$

$$
\begin{aligned}
& 111111-1=M_{12}=\left|\begin{array}{ll}
4 & 0 \\
1 & 1
\end{array}\right|=(4-0)=4 \begin{aligned}
A_{11}=+2 & A_{12}=-4 \\
=2 & =-4
\end{aligned} \begin{aligned}
& A_{13}=+6 \\
&=6
\end{aligned} \\
& M_{13}=6 \\
& M_{21}=-6 \\
& M_{22}=-1 \\
& M_{23}=S \\
& M_{31}=-6 \\
& \begin{aligned}
M_{32} & =-12 \\
M_{33} & =8
\end{aligned} \\
& A_{21}=-(-6) A_{22}=+(-1) \quad A_{23}=-5 \\
& A_{1+t}(-6) A_{32}=-(-12) A_{3 y}=+8 \\
& \text { Cofactromatoix }=\left[\begin{array}{ccc}
2 & -4 & 6 \\
6 & -1 & -5 \\
-6 & 12 & 8
\end{array}\right] y
\end{aligned}
$$

Q.

$$
\operatorname{gh} A=\left[\begin{array}{ccc}
4 & -2 & 3 \\
-1 & 2 & 6 \\
1 & 2 & -3
\end{array}\right]
$$

find refactor Matrix?

$$
\left.\begin{array}{rlrl}
A_{11}=+(-6-12) & A_{12}= & -(3-6) & A_{13}= \\
& =-18 & & (-2-2) \\
A_{21}=-(6-0) & & A_{22} & =-4 \\
0 & & =-12-3) & A_{23}
\end{array}\right)=-(8+2)
$$

Area of \triangle

$$
\begin{aligned}
& \quad \text { Area of } \Delta=\frac{1}{2} \\
& \text { 1. Find area of the triangle wit } \\
& \text { (i) }(1,0),(6,0),(4,3) \\
& \text { (ii) }(2,7),(1,1),(10,8) \\
& \text { (iii) }(-2,-3),(3,2),(-1,-8) \\
& \downarrow \\
& \frac{1}{2}\left[\begin{array}{ccc}
-2 & -3 & 1 \\
3 & 2 & 1 \\
-1 & -8 & 1
\end{array}\right]
\end{aligned}
$$

(i) $(1,0),(6,0),(4,3)$
$\begin{array}{ll}\frac{1}{2}\left[\begin{array}{ccc}-2 & -3 & 1 \\ 3 & 2 & 1 \\ -1 & -8 & 1\end{array}\right] & \begin{array}{l}\frac{1}{2}[1(0 \\ \frac{1}{2}(-3+1\end{array} \\ \frac{1}{2}[-2(2+8)+3(3+1)+1(-24+2)]\end{array}$

$$
\frac{1}{2}[-20+12-22]=\frac{1}{2}|(-30)|=15
$$

$$
\left[\begin{array}{ccc}
1 & 2 & 1 \\
3 & 4 & 5 \\
-1 & 0 & 8
\end{array}\right]
$$

$$
\left.\begin{aligned}
& \frac{1}{2}\left[x _ { 1 } \left[y_{2}-\right.\right. \\
& \longrightarrow \text { Arc } \\
& \text { in each of the f } \\
& 0 \\
& 1 \\
& 0 \\
& 3 \\
& 3
\end{aligned} \right\rvert\,
$$

\longrightarrow Area always positive.

$$
\frac{1}{2}\left[\frac{x_{1}\left(y_{2}-y_{2}\right)}{}\right.
$$

angle with vertices at the point given in each of the following :

Minors \&
Cofactors
$\left|\begin{array}{ccc}4 & 3 & -1 \\ 2 & 1 & 9 \\ 3 & 1 & 4\end{array}\right|$

$$
\begin{aligned}
& \text { Cofartoos }=A_{i j}=\operatorname{Sion} M_{j j} \\
& \left|\begin{array}{cc}
+ & - \\
- & + \\
t & +
\end{array}\right|
\end{aligned}
$$

$\left.1 \begin{array}{lll}3 & 1 & 4\end{array} \right\rvert\,$
$\begin{aligned} M_{11} & =\left|\begin{array}{ll}1 & 9 \\ 1 & 4\end{array}\right| \begin{array}{rlr}M_{12} & =8-27 & M_{11} \\ & -4-9 & \end{array} & =-19 & \\ & =-1 & A_{11} & =+(-5)\end{aligned} \quad A_{12}-\left|\begin{array}{ll}2 & 9 \\ 3 & 4\end{array}\right|$

$$
\begin{aligned}
& =4-9 \\
& =-5
\end{aligned}
$$

$M_{21}=12+1 \quad M_{22}=16+3 \quad M_{23}=4-9$

$$
=13
$$

$=19$
$=-5$
$\left|\begin{array}{ll}+- & + \\ -+ & - \\ +- & +\end{array}\right|$

$$
\begin{aligned}
M_{31} & =27+1 & M_{32} & =36+2 & M_{33} & =4-6 \\
& =28 & & =38 & & =-2
\end{aligned}
$$

3. Using Cofactors of elements of second row, evaluate $\Delta=\left|\begin{array}{lll}1 & 3 & 8 \\ R_{2} & \swarrow \\ \text { determinate } & & 1 \\ 1 & 2 & 1 \\ 1 & 2\end{array}\right|$.

$$
\begin{aligned}
& \frac{R_{2}}{a_{21} A_{21}}+a_{22} A_{23}+a_{23} A_{23} \\
& \text { element Gfactor. }
\end{aligned}
$$

4. Using Cofactors of elements of third column, evaluate $\Delta=\left|\begin{array}{lll}1 & x & y z \\ 1 & y & z x \\ 1 & z & x y\end{array}\right|$.

$$
\text { Adjoint ohaMatoix }=[\text { ropacts- Matrix }]^{T / J}=\operatorname{adj}(A)
$$

Q in $A=\left[\begin{array}{ccc}4 & 2 & -1 \\ 3 & 1 & 2 \\ 1 & 0 & 3\end{array}\right]$

$$
\begin{aligned}
|A| & =4(3)-2(9-2)-1(0-1) \\
& =12-14+1=+(3)=-1
\end{aligned}
$$

Copactors

$$
|A|=-1 \quad A^{-1} \text { dues purist }
$$

$$
\begin{aligned}
& A_{11}=3 \quad A_{12}=-7 \quad A_{13}=-1 \\
& A_{21}=-6 \quad A_{22}=13 \quad A_{23}=1 \quad A d j(A) \quad=\left[\begin{array}{ccc}
3 & -7 & -1 \\
-6 & 13 & 1 \\
3 & -11 & -2
\end{array}\right]^{\prime} \\
& A_{31}=3 \quad A_{32}=-11 \quad A_{33}=-2 \quad \underline{A d j[A)}=\left[\begin{array}{ccc}
3 & -6 & 3 \\
-7 & 13 & -11 \\
-1 & 1 & -2
\end{array}\right] \\
& \text { Inverse de Matrix }=A^{-1} \\
& \left\{\begin{array}{l}
A^{-1}=\frac{1}{|A|} \operatorname{adj}(A)^{2} \text { th }|A|=0 \text { then } A^{-1} \text { doegn't exist } \\
\text { and in }|A| \neq 0 \text { thin } A^{-1} \text { dee exist }
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { JA| }=-1 \quad A^{-1} \text { dues pxigty } \\
& A^{-1}=\frac{1}{|A|} \cdot \operatorname{ddj}(A)=\frac{1}{-1}\left[\begin{array}{ccc}
3 & -6 & 3 \\
-7 & 13 & -11 \\
-1 & 1 & -2
\end{array}\right]^{-}=\left[\begin{array}{ccc}
-3 & 6 & -3 \\
7 & -13 & 11 \\
1 & -1 & 2
\end{array}\right]
\end{aligned}
$$

Find adjoint of each of the matrices in Exercises 1 and 2.

1. $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right] \quad$ 2. $\left[\begin{array}{ccc}1 & -1 & 2 \\ 2 & 3 & 5 \\ -2 & 0 & 1\end{array}\right]$
2. $\left[\begin{array}{ccc}1 & 0 & 0 \\ 3 & 3 & 0 \\ 5 & 2 & -1\end{array}\right] \quad$ 9. $\left[\begin{array}{ccc}2 & 1 & 3 \\ 4 & -1 & 0 \\ -7 & 2 & 1\end{array}\right] \quad 10 .\left[\begin{array}{ccc}1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4\end{array}\right]$
$\operatorname{Let} A=\left[\begin{array}{ccc}2 & 1 & 3 \\ 4 & -1 & 0 \\ -7 & 2 & 1\end{array}\right] \quad A^{-1}=\frac{1}{|A|} \cdot \operatorname{adj}(A)$

$$
\begin{aligned}
|A| & =2(-1)-1(4)+3(8-7) \\
& =-2-4+3 \\
& =-6+3=-3
\end{aligned}
$$

14. For the matrix $\mathrm{A}=\left[\begin{array}{ll}3 & 2 \\ 1 & 1\end{array}\right]$, find the numbers a and b such that $\mathrm{A}^{2}+a \mathrm{~A}+b \mathrm{I}=\mathrm{O}$.

$$
\begin{aligned}
& A^{2}+a A+b I=0 \\
& A^{2}=\left[\begin{array}{cc}
\left.\left.\left(\begin{array}{ll}
3 & 2 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
3 \\
1
\end{array}\right)\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{ll}
11 & 8 \\
4 & 3
\end{array}\right] .\right] .\right] ~
\end{array}\right. \\
& {\left[\begin{array}{ll}
11 & 8 \\
4 & 0
\end{array}\right]+\left[\begin{array}{cc}
3 a & 2 a \\
a & a
\end{array}\right]+\left[\begin{array}{ll}
b & 0 \\
0 & b
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]} \\
& 11+3 a+b=u \\
& 3 a+b=-11 \quad 8+2 a+0=v \\
& 3 x(-4)+b=-11<8+2 a=0 \\
& \begin{aligned}
-12+b & =-11 \\
b & =-11+12
\end{aligned} \begin{aligned}
2 a & =-8 \\
a & =-4
\end{aligned} \\
& b=1
\end{aligned}
$$

Q.

Let $A=\left[\begin{array}{cc}2 & -2 \\ 4 & 3\end{array}\right]$

$$
A^{-1}=\frac{1}{|A|} \cdot a d j(A)
$$

$$
A^{-1}=\frac{1}{|A|} \cdot \operatorname{adj}(A)
$$

$$
|A|=\left|\begin{array}{rr}
2 & -2 \\
4 & 3
\end{array}\right|=6+8=14
$$

Cofactors

$$
\begin{array}{rlrl}
A_{11}=+3 & & A_{12} & =-4 \\
& =-4 & & \\
A_{21} & =-(-2) & A_{22} & =+2 \\
& =2 & & A^{-1}=\frac{1}{|A|} \cdot d d j(A) \\
& =\left[\begin{array}{cc}
3 &
\end{array}\right. & A^{-1}=\frac{1}{14}\left[\begin{array}{cc}
3 & 2 \\
-4 & 2
\end{array}\right] \\
& &
\end{array}
$$

$$
\left[\begin{array}{ccc}
2 & 1 & 3 \\
4 & -1 & 0 \\
-7 & 2 & 1
\end{array}\right]
$$

$$
|A|=2
$$

$$
\begin{aligned}
& =2\left(-1 \frac{\swarrow}{\downarrow} 0\right)-4+3 \\
& =\quad \text { fixed. }
\end{aligned}
$$

$$
=-2^{\text {fixed. }}-4+3
$$

$$
=-3
$$

Cofactoos

$$
A_{11}=+\left|\begin{array}{cc}
-1 & 0 \\
2 & 1
\end{array}\right|=+(-1-0)=-\frac{1}{-}
$$

Applications of Determinants and Matrices

A. Solution of system of linear equations using inverse of a matrix

$$
a_{1} x+b_{1} y+c_{1} z=d_{1}
$$

$$
a_{2} x+b_{2} y+c_{2} z=a_{2}
$$

$$
a_{3} x+b_{3 y}+c_{3} z=d_{3}
$$

$A=\left[\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right]$

$$
x=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \quad B=\left[\begin{array}{l}
d_{1} \\
d_{2} \\
d_{3}
\end{array}\right]
$$

$C X=A^{-1} \cdot B$

Solve the following system of equations by matrix method.

$$
\begin{aligned}
& \begin{array}{rc}
3 x-2 y+3 z=8 & 3 \times 1-2 \times 2+3 \times 3 \\
2 x+y-z=1 & 3-4+9
\end{array}\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c \\
& 4 x-3 y+2 z=4 \\
& \begin{aligned}
3 & -4 \\
-1 & +9 \\
-1 & =8
\end{aligned} \\
& A=\left[\begin{array}{ccc}
3 & -2 & 3 \\
2 & 1 & -1 \\
4 & -3 & 2
\end{array}\right] \quad X=\left[\begin{array}{l}
x \\
y \\
2
\end{array}\right] \quad B=\left[\begin{array}{l}
8 \\
1 \\
4
\end{array}\right] \\
& x=A^{-1} \cdot B-(1) \\
& A^{-1}=\frac{1}{|A|} \cdot \operatorname{adj}(A \mid \\
& |A|=3(2-3)+2(4+4)+3(-6-4) \\
& \begin{array}{l}
=-3+16-30 \\
=-17
\end{array} \\
& \text { colactor } \\
& \begin{aligned}
A_{11}=+(2-3) A_{12}=-(4+4) A_{13}=+ & (-6-4) \\
=-1 & =-8 \quad-10
\end{aligned} \\
& \operatorname{Adj}(A)=\left[\begin{array}{ccc}
-1 & -8 & -10 \\
-5 & -6 & 1 \\
-1 & 9 & 7
\end{array}\right]^{\prime}=\left[\begin{array}{ccc}
-1 & -5 & -1 \\
-8 & -6 & 9 \\
-10 & 1 & 7
\end{array}\right] \\
& A^{-1}=\frac{1}{-17}\left[\begin{array}{ccc}
-1 & -5 & -1 \\
-8 & -6 & 9 \\
-10 & 1 & 7
\end{array}\right] \\
& \text { form } 1 \\
& {\left[\begin{array}{l}
4 \\
y \\
z
\end{array}\right]=-\frac{1}{17}\left[\begin{array}{ccc}
-1 & -5 & -1 \\
-8 & -6 & 4 \\
-10 & 1 & 7
\end{array}\right]\left[\begin{array}{l}
8 \\
-\times 3 \\
1 \\
4
\end{array}\right]} \\
& =-\frac{1}{17}\left[\begin{array}{l}
-8-5-4 \\
-64-6+36 \\
-80+1+28
\end{array}\right] \\
& \begin{array}{rlrl}
A_{21}=- & (-4+9) & A_{22} & =+(6-12) \\
= & A_{23} & =-(-9+8) \\
& =-6 & =1
\end{array} \\
& \begin{array}{rlrl}
A_{31}=+(2-3) & A_{32}= & (-3-6) A_{33}= & +(3+4) \\
= & =-9 & =7
\end{array} \\
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\frac{1}{-17}\left[\begin{array}{c}
-17 \\
-34 \\
-51
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]} \\
& y=2-z=3 \circlearrowleft
\end{aligned}
$$

