Mr. Nilesh B.Tech(CSE),M.Tech(CSE)

- Working- Assistant Professor Chandigarh University Mohali, Punjab(India)
- Teaching Computer Science, Physics, Mentoring & counselling Experience :3+ years for University 2+ for school

Lecture conducting

- 1. Topic-Introduction
- 2. Real World Demonstration of Topic
- 3. Concept behind Demonstration- Theory
- 4. Examples with Doubt Discussion
- 5. Numerical Questions
- 6. Assignments/Practice Question-Discussion

Prerequisites

- Algebra Basics
- Trigonometry with right angles
- The Pythagorean theorem
- Others- Graphs/Derivation

Study Vs. Learning

Focus on memorization and recall

Copy and read everything Scattered information **Random Trial Error** Time Consuming and hard work Teacher centered Need high focus Routine

Focus on things, Understanding, and making information meaningful Concentrate on key concept Connected and organized information Plan(method or Process) Effective and efficient work Student centered Not boring- fun/exciting Engaging and inspiring

Demo – Lecture Motion

Motion in a straight line

Objects in some kind of motion

Definition:

<u>Motion</u>

Motion is change in position of an object with time.Motion of object along a straight line is called **rectilinear motion**. Examples include flying kite, moving train, earth's rotation etc. Q&A:-Write Down 5 real world examples of motion in straight line.

Frame of Reference

Object(Boll)

Frame of Reference

- To Know the change of position We need a reference point
- Coordinate System

Frame of Reference

Frame of Reference

- Objects changing positions with time with respect to the frame of reference are in motion while those which do not change position are at rest.
- For a moving car, for the frame of reference outside the car, it appears moving. While for the frame of reference inside the car, the car appears stationary.

3-dimesional coordinate system

Frame of Reference

In order to know the change in position of an object, a reference point is required. Point 0 in the figure is the **reference point or Origin** and together with three axes, this system is called the **coordinate system**. A coordinate system with time frame is called **frame of reference**.

Q&A: Can a moving body have relative velocity zero with respect to another body? Give an example.

Distance and displacement

Path Length (Distance) Vs. Displacement

Path Length: It is the distance between two points along a straight line. It is scalar quantity.

<u>Displacement</u>: It is the change in position in a particular time interval. It is **vector** quantity. Change is position is usually denoted by $\Delta x (x_2 - x_1)$ and change in time is denoted by $\Delta t (t_2 - t_1)$.

Q&A: The displacement of a body is zero. Is the distance covered by it is necessarily zero?

Q&A: What is common between the two graphs shown in figs, (a) and (b)?

Units	Topics
Ι	Electrostatics
Chapter 1	Electric Charges and Fields
Chapter 2	Electrostatic Potential and Capacitance
II	Current Electricity
Chapter 3	Current Electricity
III	Magnetic Effect of Current & Magnetism
Chapter 4	Moving Charges and Magnetism
Chapter 5	Magnetism and Matter
IV	Electromagnetic Induction & Alternating Current
Chapter 6	Electromagnetic Induction
Chapter 7	Alternating Current
V	Electromagnetic Waves
Chapter 8	Electromagnetic Waves
VI	Optics
Chapter 9	Ray Optics and Optical Instruments
Chapter 10	Wave Optics
VII	Dual Nature of Matter
Chapter 11	Dual Nature of Radiation and Matter
VIII	Atoms & Nuclei
Chapter 12	Atoms
Chapter 13	Nuclei
IX	Electronic Devices
Chapter 14	Semiconductor Electronics
X	Communication Systems
Chapter 15	Communication Systems

