
	
 1	

Best Practices in Deploying and Managing
DataStax Enterprise

	
 2	

Table of Contents
Table	
 of	
 Contents	
 ...	
 2	

Abstract	
 ...	
 3	

DataStax	
 Enterprise:	
 The	
 Fastest,	
 Most	
 Scalable	
 Distributed	
 Database	
 Technology	
 for	
 the	
 Internet	

Enterprise	
 ...	
 3	

Best	
 Practices	
 for	
 Apache	
 Cassandra	
 ...	
 3	

Foundational	
 Recommendations	
 ...	
 3	

Data	
 Modeling	
 Recommendations	
 ...	
 3	

Hardware	
 Storage	
 Recommendations	
 ...	
 4	

Secondary	
 Index	
 ..	
 4	

Configuration	
 Parameter	
 Recommendations	
 ...	
 5	

General	
 Deployment	
 Considerations	
 ..	
 5	

Selecting	
 a	
 Compaction	
 Strategy	
 ..	
 6	

Benchmarking	
 and	
 Assessing	
 Throughput	
 Capacity	
 ...	
 7	

Recommended	
 Monitoring	
 Practices	
 ...	
 7	

DSE	
 Performance	
 Service	
 ..	
 7	

Nodetool	
 ..	
 7	

DSE	
 Search:	
 Best	
 Practices	
 ...	
 8	

General	
 Recommendations	
 for	
 Search	
 Nodes	
 ..	
 8	

Sizing	
 Determinations	
 ...	
 9	

Schema	
 Recommendations	
 ...	
 9	

Monitoring	
 and	
 Troubleshooting	
 Recommendations	
 for	
 Search	
 ...	
 9	

DSE	
 Analytics:	
 Best	
 Practices	
 ..	
 10	

General	
 Recommendations	
 for	
 Analytics	
 Nodes	
 ..	
 10	

Monitoring	
 and	
 Tuning	
 Recommendations	
 for	
 Analytics	
 ..	
 11	

Security:	
 Best	
 Practices	
 ..	
 12	

Multi-­‐Data	
 Center	
 and	
 Cloud:	
 Best	
 Practices	
 ...	
 12	

General	
 Recommendations	
 ..	
 12	

Multi-­‐Data	
 Center	
 and	
 Geographic	
 Considerations	
 ...	
 12	

Cloud	
 Considerations	
 ...	
 14	

Backup	
 and	
 Restore:	
 Best	
 Practices	
 ...	
 14	

Backup	
 Recommendations	
 ..	
 15	

Restore	
 Considerations	
 ...	
 15	

Software	
 Upgrades:	
 Best	
 Practices	
 ...	
 16	

About	
 DataStax	
 ...	
 16	

	
 3	

Abstract
This document provides best practice guidelines for
designing, deploying, and managing DataStax
Enterprise (DSE) database clusters. Although each
application is different and no one-size-fits-all set of
recommendations can be applied to every situation,
the information contained in this paper summarizes
techniques proven to be effective for several
DataStax customers who have deployed DataStax
Enterprise in large production environments.

This paper does not replace the detailed information
found in DataStax online documentation. For help
with general installation, configuration, or other
similar tasks, please refer to the most recent
documentation for your specific DSE release. Note
that information and recommendations for hardware
selection, sizing, and architecture design is
contained in the DataStax Enterprise Reference
Architecture white paper.

DataStax Enterprise: The
Fastest, Most Scalable
Distributed Database
Technology for the
Internet Enterprise
DataStax Enterprise (DSE), built on Apache
Cassandra™, delivers what Internet Enterprises
need to compete in today’s high-speed, always-on
data economy. With in-memory computing
capabilities, enterprise-level security, fast and
powerful integrated analytics and enterprise search,
visual management, and expert support, DataStax
Enterprise is the leading distributed database choice
for online applications that require fast performance
with no downtime. DSE also includes DataStax
OpsCenter, which is a visual management and
monitoring tool to manage DSE clusters, as well as
24x7x365 expert support and services.

Best Practices for Apache
Cassandra
Apache Cassandra is an always-on, massively
scalable open source NoSQL database designed to
deliver continuous uptime, linear scale performance,

and operational simplicity for modern online
applications. Cassandra’s distributed database
capabilities and masterless architecture allow it to
easily span multiple data centers and cloud
availability zones, which means customers can write
and read data anywhere and be guaranteed of very
fast performance.

Foundational Recommendations
Success experienced by the vast majority of
Cassandra users can be attributed to:

1. A proper data model
2. An appropriate hardware storage
infrastructure

With Cassandra, modeling data as you would with
an RDBMS and/or selecting a SAN or other shared
storage device for your data versus non-shared
storage on multiple nodes greatly increases chances
of failure. In general, in managing a Cassandra
cluster, you are validating or invalidating its data
model and storage architecture selections.

Data Modeling Recommendations
Cassandra is a wide-row store NoSQL database and
provides a rich and flexible data model that easily
supports modern data types. The importance of a
proper data model for an application cannot be
overemphasized, with success for a new system
nearly always being possible if data is modeled
correctly and the proper storage hardware
infrastructure is selected.

A running instance of Cassandra can have one or
more keyspaces within it, which are akin to a
database in RDBMS’s such as MySQL and
Microsoft SQL Server. Typically, a Cassandra
cluster has one keyspace per application. A
keyspace can contain one or more column families
or tables, which are somewhat similar to an RDBMS
table but much more flexible.

A typical best practice is to rarely, if ever, model
your data in Cassandra as you have modeled it in an
RDBMS. A relational engine is designed for very

“The data gathered by NREL comes in
different formats, at different rates, from a
wide variety of sensors, meters, and control
networks. DataStax aligns it within one
scalable database.”
— Keith Searight, NREL

	
 4	

normalized tables that minimize the number of
columns used where the exact reverse is true in
Cassandra where the best practice is to heavily de-
normalize your data and have tables with many
columns.

Each table requires a primary key as shown below in
Figure 1. The primary key is made up of two parts:
the Partition Key and the Clustering Columns.

Figure 1 – A keyspace housing two tables

Keep in mind that a column value can never exceed
2GB, with a recommended size per column value
being no more than single digit MBs. Also, a row key
cannot exceed the maximum of 64KB.

While RDBMS’s are designed in a typical Codd-Date
fashion of creating entities, relationships, and
attributes that are very normalized per table, the
Cassandra data model differs in that it is based on
the application’s query needs and user traffic
patterns. This oftentimes means that some tables
may have redundancies. Cassandra’s built-in data
compression manages this redundancy to minimize
storage overhead and incur no performance penalty.

Cassandra performs best when data needed to
satisfy a given query is located in the same partition
key. The data model can be planned so that one row
in a single table is used to answer each query.
Denormalization via the use of many columns
versus rows helps the query performing as one read.
This sacrifices disk space in order to reduce the
number of disk seeks and the amount of network
traffic.

Data modeling is high priority for a Cassandra-based
system; hence, DataStax has created a special set
of visual tutorials designed to help understand how
data modeling data in Cassandra differs from
modeling data in an RDBMS. It is recommended that
you visit the DataStax data modeling web page to
review each tutorial.

Hardware Storage Recommendations
DataStax recommends using SSDs for Cassandra
as it provides extremely low-latency response times
for random reads while supplying ample sequential
write performance for compaction operations.

SSDs are usually not configured optimally by default
by the majority of Linux distributions.

The following steps ensures best practice settings
for SSDs:

• Ensure that the SysFS rotational flag is set
to false (zero) as the initial first step. This
overrides any detection that the operating
system (OS) might do to ensure the drive is
definitely considered an SSD by the OS.
Also do the same for any block devices
created from SSD storage, such as
mdarrays.

• Set the IO scheduler to either deadline or
noop. The noop scheduler is an appropriate
choice if the target block device is an array
of SSDs behind a high-end IO controller that
will do its own IO optimization. The deadline
scheduler will optimize requests to minimize
IO latency. If in doubt, use the deadline
scheduler.

• Set the read-ahead value for the block
device to 0 (or 8 for slower SSDs). This tells
the OS not to read extra bytes, which can
increase the time an IO requires and also
pollutes the cache with bytes that weren’t
actually requested by the user.

The table below shows how to implement these
settings in an /etc/rc.local file.

For more information on proper storage selection,
please refer to the DataStax Reference Architecture
paper.

Secondary Index
It is best to avoid using Cassandra's built-in
secondary indexes where possible. Instead, it is
recommended to denormalize data and manually
maintain a dynamic table as a form of an index
instead of using a secondary index. If and when
secondary indexes are to be used, they should be
created only on columns containing low-cardinality
data (for example: fields with less than 1000 states).

	
 5	

Configuration Parameter
Recommendations
This section contains best practice advice for some
of the most important Cassandra configuration
parameter options.

Data Distribution Parameters
Data distribution inside a Cassandra database
cluster is determined by the type of partitioner
selected. There are different types of partitioners in
Cassandra that can be configured via Cassandra’s
configuration file: cassandra.yaml.

The Murmur3Partitioner and RandomPartitioner
partitioners uniformly distribute data to each node
across the cluster. Read and write requests to the
cluster are evenly distributed while using these
partitioners. Load balancing is further simplified as
each part of the hash range receives an equal
number of rows on average. The Murmur3Partitioner
is the default partitioner in Cassandra 1.2 and
above. It provides faster hashing and better
performance compared to RandomPartitioner and is
recommended for your DSE deployments.

The ByteOrderedPartitioner keeps an ordered
distribution of data lexically by key bytes and is not
recommended except in special circumstances. It is
only useful during key range queries, but note that
you will lose the key benefits of load balancing and
even distribution of data, and so much more manual
maintenance may be necessary.

To help automatically maintain a cluster’s data
distribution balance when nodes are added or
subtracted from a cluster, a feature called virtual
nodes or vnodes was introduced in Cassandra 1.2.
Enabling vnodes on Cassandra will allow each node
to own a large number of small data ranges (defined
by tokens) distributed throughout the cluster. The
recommended value for the vnodes configuration
value (num_tokens) is 256 and must be set before
starting a cluster for the first time.

Virtual nodes are recommended because they save
time and effort where manually generating and
assigning tokens to nodes is concerned. Vnodes are
enabled by default in Cassandra 2.0 and higher
versions. Vnodes should not be used if your DSE
cluster contains nodes devoted to analytics
(integrated/external Hadoop) or enterprise search.
Those node types do not perform well with vnodes.

Memory Parameters

General Memory Recommendations
JVM heap settings are a potential source of trouble
for Cassandra and DSE deployments. While
administrators may be tempted to use large JVM
footprints when DRAM is plentiful on the available
nodes, but this can lead to serious problems. JVM
uses a garbage collector (GC) to free up unused
memory. Large heaps can introduce GC pauses that
can lead to latency, or even make a Cassandra
node appear to have gone offline. Proper heap
settings can minimize the impact of the GC in the
JVM.The minimum recommendation for DRAM is
16GB and the heap should be set to 8GB, but note
that the minimum recommended by DataStax for
production deployments is 32GB of DRAM.

Data Caches
Cassandra supports two types of data caches: a key
and row cache. The key cache is essentially a cache
of the primary key index data for a Cassandra table.
It helps save CPU time and memory over just relying
on the OS page cache for key data. Enabling just
the key cache will still result in disk (or OS page
cache) activity to actually read the requested data
rows.

It is best to aim for a hit rate of 95% when using the
key cache. If your hit rate is higher than 95%, then
the cache might be too large.
The row cache is more similar to a traditional cache
in other databases: when a row is accessed, the
entire row is pulled into memory (merging from
multiple SStables, if necessary) and cached so that
further reads against that row can be satisfied
without accessing disk. It is best used when you
have a small subset of data to keep hot and you
frequently need most or all of the columns returned.
DataStax recommends not to use row cache unless
your use case is > 95% read oriented.
Note that the row cache can decrease performance
in some situations such as when you have tables
that are not cacheable at all.

General Deployment Considerations
The following sections contain recommendations for
various Cassandra deployment scenarios.
	

Node Addition/Removal Practices
Cassandra provides linear scale performance with
elastic expansion capabilities so adding capacity to
a database cluster is straightforward and easy.
General guidelines for adding new nodes to an
existing cluster-

● If you are not using virtual nodes (vnodes),

	
 6	

set the inital_token value of the new node in
the cassandra.yaml file and ensure it
balances the ring without token conflicts.
This step is not necessary with vnodes.

● Change the cassandra.yaml setting of
auto_bootstrap to True

● Point the seed_list parameter of the new
node to the existing seed_list that exists
within the cluster.

● Set the listen_address and,
broadcast_address parameters to the
appropriate addresses of the new node.

● Start the new Cassandra node(s) two
minutes apart. Upon bootstrapping, nodes
will join the cluster and start accepting new
writes, but not reads, while the data these
nodes will be responsible for is streamed to
them from new nodes.

● Later, the cleanup command can be used on
each node to remove stale data. This step is
not immediately required.

In the rare instance that existing nodes are removed
and capacity of other systems is increased to handle
the workload (scaling up versus scaling out), the
same steps above are required. The only additional
step is removing the old nodes with the
decommission operation, one at a time, to lessen
impact of the operations on the cluster. When the
decommission command is called on a node, the
node streams all data for which it is responsible to
the new nodes that are taking over responsibility.
	

Avoiding Downtime by Using Rack Awareness
Cassandra provides the ability to distribute and
replicate data among different hardware racks,
which helps keep a database cluster online should a
particular rack fail while another stays operational.
While defining one rack for an entire cluster is the
simplest and most common implementation, there
are times when data replication between different
racks to help ensure continuous database
availability is required.	

A rack aware snitch ensures high availability within a
single datacenter. A snitch is configured at the
cluster level and controls the placement of replicas
within the cluster.
With the use of a rack-aware snitch, Cassandra
gains knowledge of the physical location of each
node within the cluster. Cassandra leverages this
information to ensure replicas of each row exist in
multiple server racks to ensure that rack loss due to
fire, mechanical problems, or routine maintenance

does not impact availability. Please refer to
DataStax documentation for a list of rack-aware
snitches and their configuration information.
The following are some general principles that can
be followed for using multiple racks:

● Designate nodes in an alternating and equal
pattern in your data centers. Doing so allows
you to realize the benefits of Cassandra's
rack feature, while allowing for quick and
fully functional expansions.

● Once a cluster is deployed, you can swap
nodes and make the appropriate moves to
ensure that nodes are placed in the ring in
an alternating fashion with respect to the
racks, as shown in Figure 2 below.

Figure 2 – Multi-data center deployments with multiple
racks

Selecting a Compaction Strategy
Compaction is a process in Cassandra where
multiple data files (SSTables) are combined to
improve the performance of partition scans and to
reclaim space from deleted data. Compaction issues
can degrade performance in Cassandra so the
selection of a proper compaction plan is important.
When considering a compaction strategy, the
general rule of thumb is that size-tiered compaction
(which is the default in Cassandra 2.0 and above) is
good when write performance is of primary
importance or when rows are always written entirely
at once and are never updated. This type of
compaction strategy triggers a minor compaction
whenever there are a number of similar sized
SSTables on disk. Read workloads can suffer due to
factors such as compaction getting behind and
multiple compactions running simultaneously.

A leveled compaction strategy is worth considering
when read performance is of primary importance
and is also the recommended strategy if you are
using SSDs. It is also useful if the following
conditions are present in your database cluster-

	
 7	

● A high read/write ratio
● Rows are frequently updated
● Heavy delete workloads or you have

TTL columns in wide rows

More information on compaction strategies can be
found in a technical article on the DataStax Tech
Blog.

Benchmarking and Assessing Throughput
Capacity
The approach taken to benchmarking and testing
the capacity of a new database cluster will depend
on the type of application it is targeting. Benchmarks
such as YCSB and the Cassandra stress tool can be
utilized to gain a general idea of how well your
initially configured cluster will perform.

When first beginning to work with and test DSE, a
general approach is to:

● Run a sample workload against 3 nodes
● Make a note of the point when

throughput maxes out and latency
becomes an issue for the application

● Run the same workload against 6 nodes
in order to get a second interpolation
point

Since Cassandra scales linearly, assessing the
improvements is typically quite easy (the transaction
per second rate doubles, etc.) For examples on
benchmarking DataStax Enterprise using YCSB,
either standalone or in comparison to other NoSQL
databases, see the DataStax Benchmarking Top
NoSQL Databases white paper. For
recommendations on how not to benchmark
Cassandra, see this article on the DataStax Tech
Blog.

Recommended Monitoring Practices
This section contains general tips for monitoring and
troubleshooting Cassandra performance.
	

Key Monitoring Tools and Metrics
The primary tools recommended for monitoring
Cassandra performance are:

1. CQL Performance Objects
2. DataStax OpsCenter
3. The nodetool utility’s tpstats and

cfhistograms options

DSE Performance Service
DataStax Enterprise 4.5 and beyond includes a new
performance data dictionary containing various
diagnostic objects that can be queried from any
CQL-based utility. It provides granular details on
user activities and other statistics that helps DBAs
and operational team to monitor database
performance and respond to issues immediately.

There are a number of settings in dse.yaml that
need to be enabled for the collection of specific
statistics, with the objects being stored in the
“dse_perf” keyspace.

For example: - enabling “CQL slow log” will record
any CQL statement in a table that takes longer than
the certain “set” threshold. A best practice is to
monitor this table for any slow queries that affects
the performance and take necessary steps to tune it
for better performance.

In addition, there are also various performance
objects that collect system info, summary stats,
histogram and also latency tracking of users/objects.

A sample query is shown below when a query is
executed on the “user_io” table that is used to track
per node read/write metrics, broken down by client
connection and aggregated for all keyspaces and
tables.

DataStax OpsCenter enables the visual
management of key metrics and setting proactive
alerts that notify the operator when performance on
a database cluster is beginning to degrade. With
OpsCenter, administrators can drill into a node and
graphically view information from utilities like tpstats.

Nodetool
While several Cassandra statistics are available,
those contained in the tpstats (thread pool status)
and cfhistograms utilities provide the shortest route
in determining whether a database cluster is
performing well or not. For detailed information on

	
 8	

how to use both utilities, please see the online
documentation for the version of Cassandra you are
using.

When reviewing the output of both utilities, general
monitoring rules-of-thumb to keep in mind include
the following:

For tpstats:

● Any blocks seen for Flushwriters indicates
that the disk is getting behind in writes and
that Cassandra is trying to flush memtable
data to disk but cannot.

For cfhistograms:

● Check to see how many SStable
seeks/SStables were accessed (first column
in the output). Seeing larger numbers after 1
in the Offset column indicate potential read
I/O slowdown’s because more SSTables
have to be accessed to satisfy a read
request.

● Seeing large numbers of operations in the
read and write latency columns that are far
down in the list (i.e. the Offset column for
these statistics equals microseconds, so
large Offset values with many operations is
usually bad) indicate read and/or write
bottlenecks.

These and other key metrics can be monitored
visually in OpsCenter. In general, the following
characteristics indicate degrading performance for a
node or cluster:

● Increasing number of blocked flushwriters
● Many requests for multiple SSTable seeks

(as opposed to just one)
● Increasing number of pending compactions
● Increasing number and time of garbage

collection operations

Using OpsCenter’s built-in auto failover option
(available in version 5.1) is recommended where
monitoring and managing critical data without any
interruption is a requirement. Auto failover option
enables users to have multiple instances of
OpsCenter with an active-passive setup (only one
OpsCenter can be active at a time). This addresses
the HA needs by automatically failing over to the
standby OpsCenter should a failure in the primary
occur. The failover will be transparent to the user
with zero interruption in most of the services.

Monitoring and Tuning Garbage Collection
JVM uses a garbage collector (GC) process to free

up unused memory. Very large heaps can introduce
GC pauses that can increase wait times or even
make a Cassandra node look like it is down.
Additionally, JVM can throw out of memory
exceptions due to heap size being too small or GC
not being able to keep up with the workload to free
memory quickly enough to be reused by Cassandra.

Basic recommendations for monitoring/tuning
garbage collection:

1. Ensure the JVM heap has the correct
setting, which at most times equates to 8GB
of RAM.

2. Edit cassandra-env.sh, and set
heap_newsize parameter to a minimum of
100MB * number of cores (200MB is
becoming common).

3. Set up a method to monitor a number of key
GC statistics, which can easily be done in
DataStax OpsCenter. These statistics
include JVM ParNew collection count, JVM
CMS collection time and JVM ParNew
collection time.

Tuning involves adjusting the heap_newsize
parameter in the following way:

● If the GC collection/pause times are a
problem, reduce heap_newsize

● If the GC events are too frequent and/or
CMS collection time is too expensive, then
increase heap_newsize

DSE Search: Best
Practices
DataStax Enterprise includes an integrated
enterprise search component powered by Apache
Solr. This allows you to easily search your line-of-
business data stored in Cassandra.

General Recommendations for Search
Nodes
Several Cassandra best practices can be applied to
nodes in a DSE cluster devoted to search. Key
differences for properly configuring and deploying
DSE-search/Solr nodes include:

● Do not enable virtual nodes/vnodes for a
cluster containing Solr nodes.

● If using traditional spinning disks, set up at
least 4 volumes with a set of dedicated
heads for the operating system, commit log,
SSTables, and Solr data. SSDs over
spinning disks are strongly encouraged.

	
 9	

● Set the JVM heap size to 14GB.
● Set the heap_newsize parameter to 200MB

per cpu ore, with maximum not to exceed
1600MB.

● Disable the Cassandra row cache, and
leave the Cassandra key cache at default
value.

● Set the Solr soft autocommit max time to
10s.

● DSE 3.1 and higher uses a custom per-
segment filter implementation that uses the
filter cache. The filter cache is the only
meaningful cache for Solr nodes; all others
should be disabled. Start with a filter cache
setting of 128. Note that 512 is often too big
for a 14G heap and will cause GC pressure.
Don’t enable auto warming unless you have
frequently used filters.

● Ensure the document and query result
caches are disabled.

● Set merge factor to 10. This is a good
compromise value for most situations. For
read only use cases this value may be
lowered to 5 or 2, while for write heavy or
balanced use cases leave it at 10.

● Ensure that the Lucene version is set to the
most recent version supported by the
release.

● Set DSE type mapping to the most recent
version supported by the release (currently
1). If this value is changed, the Solr
metadata must be removed and Solr must
be re-enabled. It is recommended that this
value remain unchanged unless absolutely
necessary.

Sizing Determinations
To determine whether a proposed DSE-search/Solr
configuration is sized properly, run through the
following steps:

● Install DSE and create a cluster with a Solr
node.

● Create a column family with the Solr schema
and configuration.

● Load one thousand mock/sample records.
● Get the index size for the Solr core:

(example:
http://localhost:8983/solr/admin/cores?action
=STATUS&memory=true).

● Extrapolate from those numbers the index
size for the expected total record count.

For example, if the index size is 1GB, and you
expect one million records, then the index size will
be 1000GB. The database cluster must be large
enough so that the total cluster memory is large
enough to cache the total index size, and hot
dataset, subtracting for the JVM heap and operating

system overhead. Assume 1GB of memory for the
operating system and 14 GB of memory for the JVM
heap, or an overhead of 15GB.

A useful sizing equation is:
((Nodes * Memory Per Node) - (15GB * Nodes)) /
(Index Size * (Expected Rows / 1000))

If the value is less than 1 then you can expect
problems (e.g. you won’t have enough memory to
cache the index, let alone cache the rows; every
query will hit the disk multiple times, etc.)

Schema Recommendations
General recommendations for schema design and
practice:

● The schema version is defined in the root
node of the XML document. Avoid specifying
a schema version if possible, and avoid
specifying an older version as it may result
in undesirable behavior.

● Avoid or limit the use of dynamic fields.
Lucene allocates memory for each unique
field (column) name, which means if you
have a row with columns A,B,C, and another
row with D,E, Lucene will allocate 5 chunks
of memory. If this were done for millions of
rows, it is fairly easy to blow up your heap.

● Instead of using dynamic fields, copy field
contents using the CopyField directive, and
perform queries against the combined field.

Monitoring and Troubleshooting
Recommendations for Search
With Search/Solr response times, a general rule of
thumb is that search execution times of 20ms or less
are considered good. Anything less than 10ms is
considered very good. Under heavy load with large
datasets, it is not uncommon to see search latencies
of 100ms to 200ms. The most common causes for
slow queries include:

● The disk/file system is laid out incorrectly.
● There is not enough memory to cache Solr

index files and the hot dataset. To verify on
Linux, you can check IOwait metrics in
top/vmstat/iostat.

● GC pressure can result in high latency
variance.

● Un-tuned queries.

Other troubleshooting advice for Solr includes the
following:

● If slow startup times are experienced,
decrease the commit log and/or SSTable
sizes.

● If inconsistent query results are seen, this is

	
 10	

likely due to inconsistent data across the
nodes. Either script repair jobs or use the
DSE automatic repair service to ensure data
consistency across the cluster.

● If manually running repair, and a high
system load is experienced during repair
operations, then repair is not being run often
enough. Switch to using the DSE automatic
repair service.

● If dropped mutations are seen in the tpstats
utility, then it is likely that the system load is
too high for the configuration and additional
nodes should be added.

● If read/socket timeouts are experienced,
then decrease the
max_solr_concurrency_per_core parameter
in the dse.yaml configuration file to 1 per
CPU core.

DSE 4.6 includes a new performance data dictionary
for Search containing various diagnostic objects that
can be queried from any CQL-based utility.
There are a number of settings in dse.yaml that
need to be enabled for the collection of specific
statistics, with the objects being stored in the
“dse_perf” keyspace.

For example: - enabling “solr slow query log” will
record any search statement in a table that takes
longer than the certain “set” threshold. A best
practice is to monitor this table for any slow queries
that affect the performance and to tune for better
performance.

In addition, there are also various performance
objects that collect latency of
query/update/commit/merge, indexing error, index
stats and so on.

DSE Analytics: Best
Practices
DataStax Enterprise delivers three options for
running analytics on Cassandra data:

1. Integrated real-time analytics including in-
memory processing, enabled via certified
Apache Spark. Included is a Hive-
compatible SQL-like interface for Spark

2. Integrated batch analytics using built-in
MapReduce, Hive, Pig, Mahout, and Sqoop

3. Integration with external Hadoop vendors
(Cloudera and HortonWorks) merging
operational information in Cassandra with
historical information stored in Hadoop using
Hive, Pig etc.

General Recommendations for Analytics
Nodes
To properly configure and deploy DSE-Analytics
nodes, DataStax makes the following
recommendations:

● Enable vnodes while using Spark/Shark on
analytic nodes.

● Both integrated and external Hadoop cannot
be run on the same node.

● DSE’s Spark Streaming capability takes
executor slots just like any other spark
application. This means that batch Spark
jobs cannot be run on the same Spark
cluster that is running streaming unless you
are manually limiting the resources both
applications can use. Because of this
limitation it is advised to run streaming
applications on a different datacenter
(workload isolation) from the datacenter,
running batch jobs. All nodes/DC belonging
to the same cluster.

● The minimum number of streaming nodes is
one although it must have at least two
executors (cores) available. If you want
redundancy you'll need to have a storage
option like MEMORY_ONLY_2 that will
duplicate partitions and at least two nodes
for this type of configuration.

● It is recommended not to enable vnodes on
analytics nodes when using integrated
Hadoop or external Hadoop, unless data
size is very large and increased latency is
not a concern.

● Always start nodes one at a time. The first
node started is automatically selected as a
JobTracker (JT).

● Set up a reserve JobTracker on a node
different than the primary JobTracker (use
dsetool movejt for it). Therefore, if the
primary JT node goes down, it will
automatically fail over to the reserve JT.

● Verify settings in dse-mapred-default.xml
and dse-core-default.xml. DSE tries its best

DSE
Analytics
Option

Data
Size
Range

Performance

Integrated Spark Terabytes
(TB)

High

External Hadoop
Integration

Petabytes
(PB)

Low

Integrated
Hadoop

Terabytes
(TB)

Low

	
 11	

to auto detect hardware settings and adapt
parameters appropriately, but they might
need further tuning. Please refer to DSE-
Hadoop documentation for more
information.

● Avoid putting millions of small files into
Cassandra File System (CFS). CFS is best
optimized for storing files sizes of at least 64
MB (1 block of default size).

● Do not lower the consistency level on CFS
from the default values. Using CL.ONE for
writes or reads won't increase throughput,
but may cause inconsistencies and may
lead to incorrect results or job failures.

● Ensure that map tasks are large enough. A
single map task should run for at least a few
seconds. Adjust the size of the splits
(cassandra.input.split.size) that controls the
amount of rows read by single map task if
necessary. Too many small splits, and too
short map tasks, will cause task scheduling
overhead that dominates other work.

● Running small jobs which processes tiny
data or setting cassandra.input.split.size too
high will spawn only a few mappers and may
cause hot spots (e.g. one node executing
more mappers than another one).

Monitoring and Tuning Recommendations
for Analytics
Analytics-enabled nodes (integrated Hadoop)
include additional JobTracker and/or TaskTracker
threads and CFS operations can increase memtable
usage for column-families in the CFS keyspace.
Monitor Cassandra JVM memory usage and adjust
accordingly if low memory conditions arise. Also,
Map/Reduce tasks will be running as separate JVM
processes and you’ll need to keep some memory in
reserve for them as well.

DSE’s Spark analytics is much lighter on memory
than Hadoop as it does not use separate JVMs per
every task. Allow at least 50% more memory or even
2x more for Spark alone than the size of the data
planned to cache in order to fully leverage Spark’s
in-memory caching. Monitor the heap size as larger
heaps can introduce GC pauses/issues that can
increase wait times.

Spark needs memory for heavy operators like joins.
In case of joins, large amounts of RAM must be
allocated to ensure one of the sides of the join fits in
memory. Additionally, if you plan to run several
different Spark applications at the same time, then
allocate enough RAM for all of them.

For Shark, a Hive-compatible system built on Spark
can store the result of a query in memory.

Administrators must plan on allocating additional
memory when in-built caching is enabled.

DSE’s new Spark Streaming can require high CPU
or memory depending on the application workload. If
the job requires a high amount of processing of a
small amount of data, high CPU (16 cores or more)
should be the goal. If the job requires holding a large
amount of data in memory and high-performance
analytics, then high memory (64GB or more) should
be the aim. We also recommend a minimum of 8
cores on each node that runs DSE Spark Streaming.

One key thing to note about Spark streaming setup
in DSE is that it requires a minimum of 2 executors
to run streaming applications. Also it is important to
ensure that no growing backlog of batches waiting to
be processed occurs. This can be seen on the spark
UI.

A general guideline is to monitor network bandwidth
because streaming when writing to Cassandra will
require a significant amount of network IO. To
lessen this burden more nodes should be added so
the load can be distributed over more machines.
Also monitor “Processing Time” and “Scheduling
Delay” metrics in the Spark web UI. The first metric
is the time to process each batch of data, and the
second metric is the time a batch waits in a queue
for the processing of previous batches to finish. If
the batch processing time is consistently more than
the batch interval and/or the queuing delay keeps
increasing, then it indicates the application is not
able to process the batches as fast as they are
being generated and falling behind. Reduce the
batch processing time during these situations.

DataStax Enterprise 3.1 and beyond include an
auto-tuning capability for common integrated
Hadoop configuration parameters for good out-of-
the-box performance. Depending on the use case
and workload, the following areas can be further
tuned.

● Set the Dfs.block.size to 128MB or 256MB.
The larger the size of data being processed,
the larger the data block size should be. The
number of map tasks depends on the input
data size and the block size; a larger block
size will result in fewer map tasks. A larger
block size will also reduce the number of
partitions stored in the CFS ‘sblocks’ column
family resulting in a smaller footprint for
partition-dependent structures, e.g. key
cache, bloom filter, index.

● Set mapred.local.dir to a separate physical
device(s) from Cassandra data files and
commit log directories. Map/reduce tasks

	
 12	

process a lot of data and are I/O intensive,
so the location for this data should be
isolated as much as possible, especially
from Cassandra commit log and data
directories. A list of directories can be
specified to further spread the I/O load.

● Use 80% or higher for the
mapred.reduce.slowstart.completed.maps
value. With the default value, after 5% of the
map tasks have completed, reduce tasks will
start to copy and shuffle intermediate output;
however, the actual reduce won’t start until
the mappers are all completed, so a low
value tends to occupy reducer slots. Using
higher values decreases the overlap
between mappers and reduces and allows
reducers to wait less before starting.

Auto-tuned parameters and other information can be
found in this DataStax Technical blog article.

Security: Best Practices
Establishing a SSL connection when clients (CQL,
Spark, Shark etc.) are connecting to DSE nodes (as
the username and password will be in plain text) and
also during node-node communication is
recommended.

DSE 4.6 integrates with the industry standard LDAP
and Active Directory servers.
There are certain settings in dse.yaml config file under
“LdapAuthenticator” section that one can tune- the
search cache and the credentials cache. The search
cache can be kept for a long time because you
wouldn't normally expect a user to be moved within a
directory server. The credentials cache settings in
DSE is configurable and it depends on internal
IT/security policies.

Plan to use PermissiveTransitionalAuthenticator or
TransitionalAuthenticator if a directory server admin
does not allow the creation of a 'cassandra' user in the
directory server. In this case the DSE admin could use
the TransitionalAuthenticator to create a super user
with a name available in the directory server. After
doing this you can switch over to using the
LdapAuthenticator. The problem being that you can't
create users in cassandra if the AllowAllAuthenticator
(default) is being used.

Ensure passwords are encrypted in the config file by
running the command “bin/dsetool encryptconfigvalue”

that can encrypt “search_password” and
“truststore_password” in dse.yaml file.

OpsCenter 5.0 offers granular based security with user
creation and role based permission control. This is
very useful for organizations dealing with compliance
and strict internal security requirements.

Multi-Data Center and
Cloud: Best Practices
Cassandra delivers strong support for replicating
and synchronizing data across multiple data centers
and cloud availability zones. Additionally, Cassandra
supports active-active deployments. Several
DataStax customers deploy Cassandra across 2 or
more data centers and/or availability zones on cloud
providers like Amazon to ensure (1) data is kept
close to customers in various geographic locations,
and (2) their database remains online should a
particular data center or cloud availability zone fail.

The sections that follow outline best practices when
deploying DSE across multiple data centers (DCs)
and the cloud.

General Recommendations
Cassandra replication is configured on a per
keyspace and per DC level. The replication factor
(RF) used should not exceed the number of nodes in
a data center. If this occurs, writes can be rejected
(dependent on the consistency level used), but
reads are served as long as the desired consistency
level is met.

As a general rule, DataStax recommends a
replication factor of 3 within a single data center.
This protects against data loss due to single
machine failure once the data has been persisted to
at least two machines. When accessing data, a
consistency level of QUORUM is typically used in a
single datacenter deployment. The recommended
replication strategy for multiple datacenter is
“NetworkTopologyStrategy”.

Multi-Data Center and Geographic
Considerations
Best practice for serving customers in multiple
geographies is to deploy a copy of data in a data
center closest to the customer base. This ensures
faster performance for those users.

As an example, consider one DC in the United
States and one DC in Europe. This can be either two
physical datacenters with each having a virtual data

	
 13	

center (if required) or two data centers in the cloud
as shown below.

Figure 3 – Using multiple data centers in different
geographic regions (cloud)

Best practices for these two data centers:

● Ensure that LOCAL_QUORUM is being
used for requests and not EACH_QUORUM
since the latter’s latency will negatively
impact the end user’s performance
experience.

● Ensure that the clients to which users
connect can only see one data center,
based on the list of IPs provided to the
client.

● Run repair operations (without the -pr
option) more frequently than the required
once per gc_grace_seconds. You could also
use the automated repair service available
in DataStax Enterprise to do this.

Natural disasters such as hurricanes, typhoons, and
earthquakes can shut down data centers, and cause
rolling power outages in a geographic area. When a
data center becomes unavailable, there are a
number of tasks you may need to perform.

One of the first things to do is to stop client writes to
the downed data center. The next task is to add new
nodes to the remaining data centers, to handle any
increase in load that comes from traffic previously
served at the downed data center. When a downed
data center is brought back online, a repair
operation should be performed to ensure that all
data is consistent across all active nodes. If
necessary, additional nodes can be decommission
and additional nodes added to other DCs to handle
the user traffic from the once-downed DC.

Cassandra and DSE are data center aware,
meaning that multiple DCs can be used for remote
backups or as a failover site in case of a disaster.
Note, though, that such an implementation does not
guard against situations such as a table mistakenly
being dropped or a large amount of data being
deleted in error.

An example of using multiple data centers for
failover/backup might be the following: an architect
may use Amazon EC2 to maintain a primary DC in
the U.S. East Coast and a failover DC on the West
Coast. The West Coast DC could have a lower RF to
save on data storage. As shown in the diagram
below, a client application sends requests to EC2′s
US-East-1 region at a consistency level (CL) of
LOCAL_QUORUM. EC2′s US-West-1 region will
serve as a live backup. The replication strategy can
reflect a full live backup ({US-East-1: 3, US-West-1:
3}) or a smaller live backup ({US-East-1: 3, US-
West-1: 2}) to save costs and disk usage for this
regional outage scenario. All clients continue to write
to the US-East-1 nodes by ensuring that the client’s
pools are restricted to just those nodes, to minimize
cross data center latency.

Figure 4 – Setting up a multiple DC configuration for
backup or disaster recovery

To implement a better cascading fallback, initially
the client’s connection pool can be restricted to
nodes in the US-East-1 region. In the event of client
errors, all requests can retry at a CL of
LOCAL_QUORUM, for X times, then decrease to a
CL of ONE while escalating the appropriate
notifications. If the requests are still unsuccessful,
using a new connection pool consisting of nodes
from the US-West-1 data center, requests can begin
contacting US-West-1 at a higher CL, before
ultimately dropping down to a CL of ONE.
Meanwhile, any writes to US-West-1 can be
asynchronously tried on US-East-1 via the client,
without waiting for confirmation and logging any
errors separately.

More details on these types of scenarios are

	
 14	

available in this DataStax Tech blog article.Cloud	

Considerations
This section provides general best practices
specifically for the Amazon Web Services (AWS)
environment. Any other sizing information (data and
instance size) on cloud can be found in DataStax
Reference Architecture.

For Apache Cassandra installations in Amazon Web
Services' (AWS) Elastic Compute Cloud (EC2), an
m1.large is the smallest instance that DataStax
recommends for development purposes. Anything
below that will have too small a vCPU count, small
memory allocation, along with lighter network
capacity, all of which are below recommended
Cassandra requirements. Also, m1.xlarge is the
minimum recommended for low-end production
usage, as the stress on an m1.large machine’s Java
Virtual Machine (JVM) is high during garbage
collection (GC) periods.

Another attribute to consider is the number of CPUs.
Multiple CPUs are also important if heavy write
loads are expected, but ultimately Cassandra is
limited by disk contention. Also, one of the most
critical attributes to include in your cluster instances
are SSDs, and c3.2xlarge would be the best
upgrade in such cases. With 2x vCPUs,
approximately 4x EC2 Compute Units, and 2x160
SSDs, the c3.2xlarge will be more performant than
the m1.xlarge. This option is ideal if your data size
isn’t too large and latency is more important than
cost.

Choosing the right AMI with an official image, up-to-
date kernels and EC2 fixes are important factors to
consider in a cloud deployment. DataStax
recommends using Amazon Linux AMI as it is the
most accurately configured AMI for EC2. For i2
instances, use the Amazon Linux AMI 2013.09.02 or
any Linux AMI with a version 3.8 or newer kernel for
the best I/O performance.

The DataStax AMI uses an Ubuntu 12.04 LTS image
and can be found in this link: http://cloud-
images.ubuntu.com/locator/ec2.
http://cloud-images.ubuntu.com/locator/ec2
DataStax recommends against EBS devices for
storing your data, as Cassandra is a disk-intensive
database typically limited by disk I/O. EBS is a
service similar to that of legacy Network Attached
Storage (NAS) devices, and is not recommended for
Cassandra for the following reasons:

● Network disks are a single point of failure
(SPOF). Within the NAS infrastructure, you
can have multiple layers of redundancy and
ways of validation. But ultimately, you will
never really know how reliable that is until

disks start failing. With Cassandra, nodes
may come and go frequently within the ring
and you must know that your choice for
storage redundancy works as expected.

● If the network goes down, disks will be
inaccessible, and thus your database will go
offline. Using networked storage for
Cassandra data, stored on one device,
circumvents the innate, tangible redundancy
that a distributed database grants by default.
Granted, the network connection between
your application and your database can be
severed, but this is independent of your
database.

● Local disks are faster than NAS. Eliminating
the need to traverse the network and stream
data across a data center will reduce the
latency of each Cassandra operation

EC2 network performance can be inconsistent, so a
general recommendation is to increase your
phi_convict_threshold to 12, in the cassandra.yaml
file. Otherwise, you may see issues with flapping
nodes, which occur when Cassandra’s gossip
protocol doesn’t recognize a node as being UP
anymore and periodically marks it as DOWN before
getting the UP notification. Leave the
phi_convict_threshold at its default setting, unless
you see flapping nodes.

Clock skew will happen, especially in a cloud
environment, and cause timestamps to get offset.
Because Cassandra relies heavily on reliable
timestamps to resolve overwrites, keeping clocks in
sync is of utmost importance to your Cassandra
deployment. If you’re handling timestamps in the
application tier as well, keeping it in sync there is
also highly recommended. You can do this by
installing and ensuring the NTP service is active and
running successfully.

More details on making good choices for hosting
Cassandra on the Amazon Web Services (AWS)
environment can be found in this DataStax Tech
blog article.

Backup and Restore: Best
Practices
Proper backup and restore practices are a critical
part of a database maintenance plan, protecting the
database against data loss. Cassandra provides
snapshot backup capabilities, while OpsCenter
Enterprise supplies visual, scheduled backups,
restores (including object-level restores), and
monitoring tools. Users can also take a table level

	
 15	

backup or backup to a remote location like Amazon
S3, perform compression on the backup files or
restore to a specific point using point in time restore
capabilities (available in OpsCenter 5.1 and
beyond).

Backup Recommendations
Disk space is a key consideration when backing up
database systems. It is recommended to have
enough disk space on any node to accommodate
making snapshots of the data files. Snapshots can
cause disk usage to grow more quickly over time
because a snapshot prevents obsolete data files
from being deleted.

OpsCenter’s capacity planning services helps
monitor and forecast the disk usage for such
situations. For example, the graph below shows
20% disk usage cluster-wide with plenty of space for
backup files. One could predict the disk usage
(including backups) for coming months using the
Capacity Service’s forecasting feature, as shown in
the right side of Figure 5.

Figure 5 – An example of using OpsCenter to
monitor and forecast used disk space
Old snapshot files should be moved to a separate
backup location and then cleared on the node as
part of your maintenance process. The nodetool
clearsnapshot command removes all existing
snapshot files from the snapshot directory of each

keyspace. A suggestion is for you to move/clear old
snapshot files before creating new ones.

As with snapshots, Cassandra does not
automatically clear incremental backup files.
DataStax recommends setting up a process to clear
incremental backup hard-links each time a new
snapshot is created. One way to automate this
process is to use OpsCenter. OpsCenter comes with
an option to cleanup old backup data, with options
for you to specify how long backups should be kept.

Figure 6 – OpsCenter’s automatic backup purge
utility

Scheduling backups at regular intervals is also a
good practice; this can easily be done through
OpsCenter. The frequency of backups will depend
on how static or dynamic your data is.

An alternative backup storage strategy to consider is
to use Amazon’s Simple Storage Service. S3 is an
AWS storage service that has configurable security
(using Access Control Lists (ACLs)) and tunable
redundancy. There are independent S3 services for
each region, providing good redundancy, if needed.
Note that you can customize OpsCenter’s backup
utility to store backup data on S3.

Restore Considerations
Restoring data from a backup in the event of data
loss or other failure can be accomplished in a
number of different ways. OpsCenter’s visual restore
utility makes the process easy and error-free, and it
is recommended you use OpsCenter to do either full
or object-level restores when possible.

You can now restore data if stored in Amazon S3 to
an existing or a different cluster (available in
OpsCenter 5.1 and beyond).

Outside of OpsCenter, either re-create the schema
before restoring a snapshot, or truncate tables being
targeted for restore. Cassandra can only restore
data from a snapshot when the table schema exists.

A snapshot can be manually restored in several
ways:

● Use the sstableloader tool.

● Copy the snapshot SSTable directory (see
Taking a snapshot) to the data directory
(/var/lib/cassandra/data/keyspace/table/),
and then call the JMX method

	
 16	

loadNewSSTables() in the column family
MBean for each column family through
JConsole. Instead of using the
loadNewSSTables() call, users can also use
nodetool refresh.

● Use the Node Restart Method.

Software Upgrades: Best
Practices
The procedures for upgrading an existing software
installation depend on several things such as the
current software version used, how far behind it is,
and similar considerations. General practices to
follow when upgrading an installation include the
following:

● Take a snapshot of all keyspaces before the
upgrade. Doing so allows you to rollback to
the previous version if necessary.
Cassandra is able to read data files created
by the previous version, but the inverse is
not always true. Taking a snapshot is fast,
especially if JNA is installed, and takes
effectively zero disk space until you start
compacting the live data files again.

● Check NEWS.txt and CHANGES.txt for of
the target software version any new
information about upgrading. Note that the
News.txt is on the Apache Cassandra github
site.

The order of a node upgrade (taking the node down
and restarting it) matters. To help ensure success,
you can follow these guidelines:

● Upgrade an entire datacenter before moving
on to a different datacenter.

● Upgrade DSE Analytics data centers first,
then Cassandra data centers and finally
DSE Search datacenters.

● Upgrade the Spark Master/ Job Tracker
node in all Analytics datacenters first.

● Upgrade seed nodes before non-seed
nodes.

To perform an upgrade with zero downtime,
DataStax recommends performing the upgrade as a
rolling restart. A rolling upgrade involves performing
upgrades to the nodes one at a time without
stopping the database.The process for rolling
upgrade on each node is as follows:

1. Backup data by taking a snapshot of the
node to be upgraded.

2. Run “nodetool drain” on the node. This puts
the node into a read-only state and flushes
the memtable to disk in preparation for

shutting down operations.
3. Stop the node.
4. Install the new software version.
5. Configure the new software (use the

yaml_diff tool that filters differences between
two cassandra.yaml files).

6. Start the node.
7. Check the logs for warnings, errors and

exceptions. Frequent specific errors in the
logs are expected and may even provide
additional steps that need to be run. You
must refer to the documentation for the
target version to identify these kinds of
errors.

8. DataStax recommends waiting at least 10
minutes after starting the node before
moving on to the next node. This allows the
node to fully start up, receive hints, and
generally become a fully participating
member of the cluster.

9. Repeat these steps (1- 8) for each node in
the cluster.

Upgrading from DataStax Community (DSC) or
Apache Cassandra to DataStax Enterprise is similar
to upgrading from one version to another. Before
upgrading to DataStax Enterprise, it is
recommended to upgrade to the version Cassandra
supported in the DSE release you are targeting. The
only additional step is configuring the cluster (step 4
above), the snitch needs to move from being
specified in the cassandra.yaml file to being
specified in the dse.yaml file. Details can be found
here. Frequently, upgrades from major versions of
Solr, Hadoop, or Cassandra require special steps to
be followed during the upgrade process. Please
review the recommendations mentioned in the
documentation of the version you are targeting.

About DataStax
DataStax, the leading distributed database
management system, delivers Apache Cassandra to
the world’s most innovative enterprises. Datastax is
built to be agile, always-on, and predictably scalable
to any size.

DataStax has more than 500 customers in 45
countries including leaders such as Netflix,
Rackspace, Pearson Education and Constant
Contact, and spans verticals including web, financial
services, telecommunications, logistics, and
government. Based in Santa Clara, Calif., DataStax
is backed by industry-leading investors including
Lightspeed Venture Partners, Meritech Capital, and
Crosslink Capital. For more information, visit
DataStax.com or follow us @DataStax.

