22 SAMPLE PROBLEMS WITH SOLUTIONS FROM 555 GEOMETRY PROBLEMS

SOLUTIONS BASED ON "GEOMETRY IN FIGURES" BY A. V. AKOPYAN

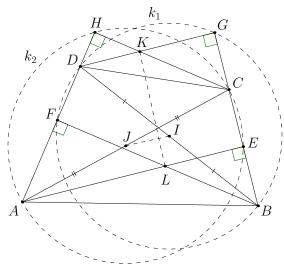
> Stanislav Chobanov Stanislav Dimitrov Lyuben Lichev

Problem 3.9. Let ABCD be a quadrilateral. Let J and I be the midpoints of the diagonals AC and BD, respectively. Let the perpendicular DG to BC ($G \in BC$) intersect the perpendicular CH to AD ($H \in AD$) at the point K. The perpendicular BF to AD ($F \in AD$) intersects the perpendicular AE to BC ($E \in BC$) at the point L. Prove that $KL \perp JI$.

Solution. Consider the circle k_1 with diameter AC and the circle k_2 with diameter BD.

Their centers are I and J, respectively. We have that KG.KD = KC.HK because the quadrilateral DCGH is cyclic. Therefore, the point Klies on the radical axis of k_1 and k_2 .

But the same statement is also true for L because the quadrilateral ABEF is cyclic, leading to LB.LF = LA.LE.



We know that the radical axis of two circles is always perpendicular to the line that connects their centers, and thus $KL \perp JI$.

Problems 3.11 and 3.12. (Simson line) Let ABC be a triangle with circumcircle k. An arbitrary point D is chosen on the arc \widehat{AB} of k which does not contain C. The points E, F and G lie on CA, AB and BC, respectively, and are chosen such that $\angle AED = \angle AFD = \angle BGD = \varphi$. Prove that the points E, F and G are collinear.

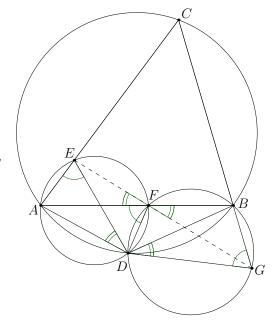
Solution. Using the equal angles, it is easy to show that the quadrilaterals ADBC, ADFE, BFDG and EDGC are cyclic.

Now we have

$$\angle EFG = \angle EFD + \angle DFG$$

=180° - \angle DAE + \angle DBG
=\angle DBC + \angle DBG
=180°.

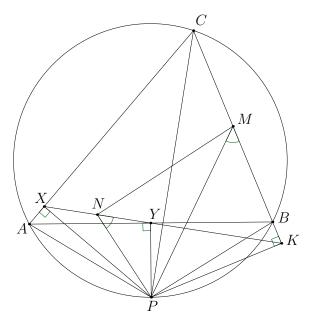
Therefore, the points E, F and G are collinear.



Note. When $\varphi = 90^{\circ}$, the construction represents the classic Simson line. We proved the generalization of 3.11, which is 3.12.

Problem 4.1.4. Let ABC be a triangle. Let P be an arbitrary point on the smaller arc \widehat{AB} of the circumcircle of $\triangle ABC$. The projections of P onto AC and AB are X and Y, respectively. The points M and N are the midpoints of BC and XY, respectively. Prove that $\angle PNM = 90^{\circ}$.

Solution. Let K be the projection of P onto BC. Then the points X, Y and K lie on the Simson line of P (Problem 3.11). It suffices to prove that the quadrilateral PNMK is cyclic.



We show that $\triangle PYX \sim \triangle PBC$. We have $\angle PXY = \angle PAY = \angle PCB$ and $\angle XPY = \angle XAY = \angle CPB$.

Now the similarity follows and hence $\angle PNK = \angle PMK$ because PN and PM are respective medians in these triangles.

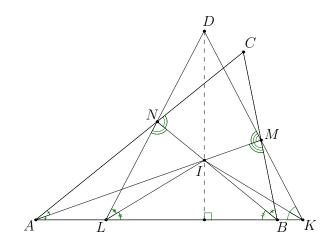
Therefore, the quadrilateral PNMK is cyclic.

Problem 4.3.21. Let ABC be a triangle with angle bisectors AM and BN, intersecting at the point I. Points L and K are chosen on the line AB, such that LN and CN are symmetric with respect to BN, and such that CM and KM are symmetric with respect to AM. Let $D = LN \cap KM$. Prove that $DI \perp AB$.

Solution. The symmetry with respect to BN gives $\angle BLN = \angle BCN$, and the symmetry with respect to AM gives $\angle AKM = \angle ACM$. Therefore, $\triangle LKD$ is isosceles.

Since I is the K-excenter of $\triangle BKM$, we deduce that KI is the angle bisector of $\angle LKD$.

Analogously, LI is the angle bisector of $\angle KLD$. Therefore, I is the incenter of the isosceles $\triangle LKD$, which implies that $DI \perp AB$.



Problem 4.5.7. Let ABC be a triangle. Let its incircle touch the sides BC, CA and AB at the points F, E and D, respectively. Let its C-excircle touch the lines BC, CA and AB at the points Q, P and M, respectively. Let $MN \ (N \in PQ)$ be an altitude in $\triangle PMQ$, and let $DH \ (D \in EF)$ be an altitude in $\triangle EDF$. Prove that $\angle ACN = \angle BCH$.

C

D

М

Ŀ

А

Solution. It is enough to prove that

$$\frac{\sin \angle PCN}{\sin \angle NCQ} = \frac{\sin \angle FCH}{\sin \angle HCE}.$$

We have that

$$\angle DEF = 90^{\circ} - \frac{\beta}{2}, \ \angle DFE = 90^{\circ} - \frac{\alpha}{2}.$$

Hence, $\angle EDH = \frac{\beta}{2}$ and $\angle HDF = \frac{\alpha}{2}.$
Observe that $\angle MPN = \frac{\beta}{2}$ and
 $\angle MQN = \frac{\alpha}{2}.$ Hence, $\angle PMN = 90^{\circ} - \frac{\beta}{2}, \ \angle NMQ = 90^{\circ} - \frac{\alpha}{2}$ and
by the law of sines we get

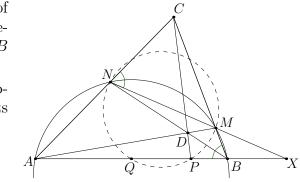
$$\frac{\sin \angle PCN}{\sin \angle NCQ} = \frac{PN}{NQ} \cdot \frac{CQ}{CP} = \frac{PN}{NM} \cdot \frac{MN}{NQ}$$
$$= \cot \frac{\beta}{2} \operatorname{tg} \frac{\alpha}{2} = \frac{DH}{HE} \cdot \frac{HF}{DH} = \frac{HF}{HE} \cdot \frac{EC}{FC} = \frac{\sin \angle FCH}{\sin \angle HCE}.$$

Problem 4.8.14 Let ABC be a triangle. The points N and M are chosen on the sides AC and BC, respectively, so that ABMN is cyclic. Let $AM \cap BN = D$ and $CD \cap AB = P$. Denote the midpoint of the segment AB by Q. Prove that the quadrilateral MNQP is cyclic.

Solution. Without loss of generality, let AC > BC. Denote $AB \cap MN = X$. Then B is between X and A.

Menelaus' Theorem, applied to $\triangle ABC$ and the points N, M and X, gives

$$\frac{AX}{BX} = \frac{AN}{NC} \cdot \frac{CM}{MB}.$$



Ceva's Theorem, applied to

 $\triangle ABC$ and the points P, M and N, gives $\frac{AP}{BP} = \frac{AN}{NC} \cdot \frac{CM}{MB} = \frac{AX}{BX}$. Note that since $\frac{AX}{BX} > 1$, the inequality $\frac{AP}{BP} > 1$ holds, and so P is between Q and B.

We have that XA.XB = XM.XN, and so it suffices to show that XA.XB = XP.XQ.

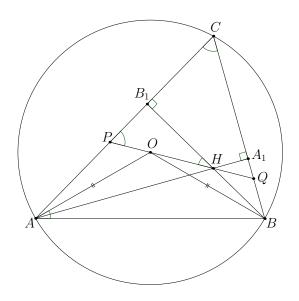
Let AQ = a + b, QP = a, PB = b and XB = c. Then we have $\frac{2a+b}{b} = \frac{2a+2b+c}{c}$, which implies $ac = ab + b^2$.

Equivalently, (b+c)(a+b+c) = c(2a+2b+c). Therefore, XP.XQ = XA.XB.

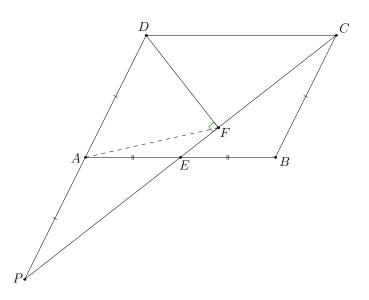
Problem 4.11.4. Let ABC be a triangle with circumcenter O and $\angle ACB = 60^{\circ}$. Let AA_1 ($A_1 \in BC$) and BB_1 ($B_1 \in AC$) be altitudes in the triangle, intersecting at the point H. The line OH intersects the lines AC and BC at the points P and Q. Prove that $\triangle PQC$ is equilateral.

Solution. We have that $\angle AOB = \angle AHB = 120^\circ$, so the quadrilateral ABHO is cyclic. Also, $\angle BAO = 30^\circ$, thus $\angle AHO = 30^\circ$.

Note that $\angle AHB_1 = 60^\circ$. Therefore, $\angle B_1HP = 30^\circ$, which implies that $\angle QPC = 60^\circ$ and that $\triangle PQC$ is equilateral.

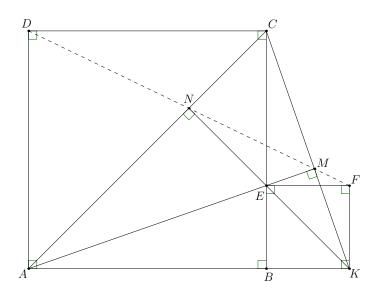


Problem 5.1.1. Let ABCD be a parallelogram. Let E be the midpoint of AB and let F be the foot of the perpendicular from D to the line EC. Prove that AF = AD.



Solution. Let $CE \cap DA = P$. Since DC = 2AE and $DC \parallel AE$, we have that AE is a midsegment in $\triangle PCD$. Hence, AP = AD and thus AF is the median to the hypotenuse in the right-angled $\triangle PFD$. We deduce that AF = AP = AD.

Problem 5.3.1. Let ABCD be a square and let E be a point on the segment BC. The square BKFE is constructed, such that it is external to ABCD. Let $AE \cap CK = M$ and $KE \cap AC = N$. Prove that the points D, N, M and F are collinear.



Solution. We have AB = BC and BE = BK. Hence, $\triangle ABE \cong \triangle CBK$. Thus, $\angle BCK = \angle BAM$. This implies that the quadrilateral ABMC is cyclic, which yields $\angle AMK = \angle CBA = 90^{\circ}$.

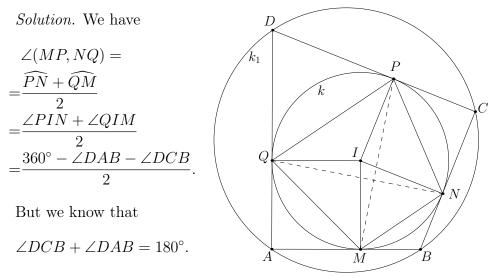
Also, $\angle EFK = \angle EMK = 90^\circ$, so the quadrilateral EMFK is cyclic. Since $CE \perp AK$ and $AE \perp CK$, the point E is the orthocenter of $\triangle AKC$, which yields $\angle ANK = 90^\circ$. Consequently, the quadrilateral AKMN is cyclic.

Now, $\angle NMA = \angle NKA = 45^{\circ} = \angle EKF = 180^{\circ} - \angle EMF$ implies that the points N, M and F are collinear. We have that NM is the radical axis of the circumcircles of AKMN and MENC.

It suffices to show that D also lies on this radical axis. We have $\angle DCN = 45^{\circ} = \angle BEK = \angle NEC = \angle CMN$. Thus, DC touches the circumcircle of $\triangle CNM$.

Also, $\angle DAN = 45^\circ = \angle NKA$ and DA touches the circumcircle of $\triangle NKA$. Therefore, the point D has equal powers with respect to these two circles.

Problem 5.4.12. Let ABCD be a circumscribed quadrilateral with incircle k with center I. Let ABCD be also inscribed in a circle k_1 . Let k touch AB, BC, CD and DA at the points M, N, P and Q, respectively. Prove that $MP \perp NQ$.



Hence,
$$\angle(MP, NQ) = 90^{\circ}$$
.

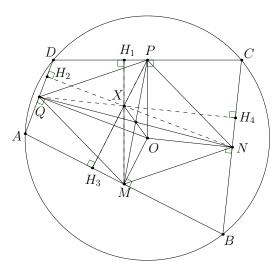
Problem 5.7.4. Let ABCD be a cyclic quadrilateral. Let M, N, P and Q be the midpoints of AB, BC, CD and DA, respectively. The points H_1 , H_2 , H_3 and H_4 are the feet of the perpendiculars from M, N, P and Q to CD, DA, AB and BC, respectively. Prove that the lines MH_1 , NH_2 , PH_3 and QH_4 are concurrent.

Solution. Midsegments give that PN is parallel and equal to MQ.

Therefore, the quadrilateral PNMQ is a parallelogram. Denote the circumcenter of ABCD by O.

Now we have that $OP \perp CD$, $ON \perp BC$, $OM \perp AB$ and $OQ \perp AD$.

If $MH_1 \cap PH_3 = X$, then the quadrilateral POMX is a parallelogram. Thus, the mid-



point of OX coincides with the midpoint of PM, which coincides with the midpoint of NQ. Hence, the quadrilateral ONXQ is also a parallelogram. Consequently, $NX \perp AD$ and $QX \perp BC$, which gives $QH_4 \cap NH_2 = X$.

Problem 6.1.8. Let k_1 and k_2 be circles that touch another circle k internally at the points A and B, respectively. Let $k_1 \cap k_2 = \{C, D\}$. Prove that the intersection point L of the angle bisectors of $\angle CAD$ and $\angle CBD$ lies on CD.

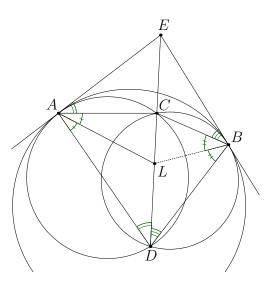
Solution. The angle bisector theorem, applied to $\triangle ACD$ and $\triangle BCD$, yields that it suffices to show that $\frac{AC}{AD} = \frac{BC}{BD}$.

Let E be the intersection point of the tangent lines to k at A and B. Observe that E lies on the radical axis of k_1 and k_2 . Hence, $E \in CD$.

Note that $\triangle EAC \sim \triangle EDA$ and $\triangle EBC \sim \triangle EDB$.

Thus,

$$\frac{AC}{AD} = \frac{AE}{ED} = \frac{BE}{ED} = \frac{BC}{BD}$$

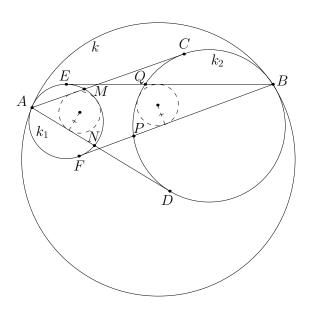


Problem 6.2.2. Let k, k_1 and k_2 be circles with radii r, r_1 and r_2 , respectively. The circles k_1 and k_2 do not intersect each other and they touch k internally at the points A and B, respectively. The tangent lines AC and AD from A to k_2 $(C, D \in k_2)$ intersect k_1 at the points M and N, respectively. The tangent lines BE and BF from B to k_1 $(E, F \in k_1)$ intersect k_2 at the points Q and P, respectively. Let r' be the radius of the circle that touches the segments AM and AN, and the arc \widehat{MN} of k_1 . Let r'' be the radius of the circle that touches the segments BP and BQ, and the arc \widehat{PQ} of k_2 . Prove that r' = r''.

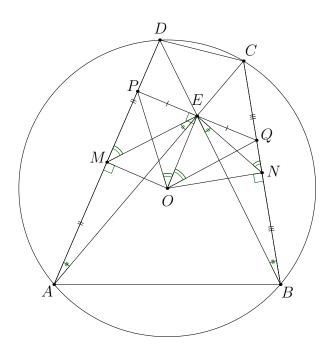
Solution. Consider the homothety centered at Athat sends k_1 to k. It sends the incircle of the curvilinear triangle ANM to k_2 and hence $\frac{r'}{r_2} = \frac{r_1}{r}$, so $r' = \frac{r_1 \cdot r_2}{r}$.

Analogously, considering the homothety centered at B that sends k_2 to k, we get

$$r'' = \frac{r_1 \cdot r_2}{r} = r'.$$



Problem 6.4.3. (The butterfly theorem) Let ABCD be a quadrilateral inscribed in a circle with center O. The diagonals of ABCD intersect at the point E. A line perpendicular to EO at E intersects AD and BC at the points P and Q, respectively. Prove that PE = QE.



Solution. Note that $\angle DAE = \angle CBE$ and $\angle AED = \angle BEC$. Hence, $\triangle AED \sim \triangle BEC$. Denote the midpoints of AD and BC by M and N, respectively. Then EM and EN are the corresponding medians of the similar triangles $\triangle ADE$ and $\triangle BCE$. Thus, $\angle EMD = \angle ENC$.

On the other hand, $OM \perp AD$. Hence, OMPE is cyclic and $\angle DME = \angle PME = \angle POE$. Analogously, $\angle EOQ = \angle CNE$. We have $\angle DME = \angle CNE$ and thus $\angle POE = \angle QOE$.

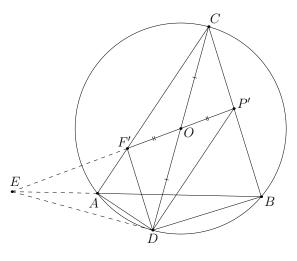
We obtained that the line OE is both an altitude and an angle bisector in $\triangle POQ$. Hence, it is a median as well.

Problem 6.4.5. Let ABC be a triangle. Let k(O) be the circumcircle of the triangle and let D be the reflection of C with respect to O. The tangent line to k at the point D intersects AB at the point E. Let OE intersect AC and BC at the points F and P, respectively. Prove that FO = OP.

Solution. Let $F' \in AC$ be a point, such that $F'D \parallel BC$. Let $P' \in BC$ be a point, such that $DP' \parallel AC$. Then clearly the quadrilateral DF'CP' is a parallelogram and the point Obisects its diagonals.

Let $F'P' \cap AB = E'$.

We will prove that the point E coincides with the point E', which will lead us to $P \equiv P'$ and $F \equiv F'$, so the desired statement will follow.



We have that CD = 2R, $\angle F'CD = \angle CDP' = 90^\circ - \beta$, $\angle P'CD = \angle CDF' = 90^\circ - \alpha$ and by the law of sines,

$$CF' = \frac{2R\cos\alpha}{\sin\gamma}, \ CP' = \frac{2R\cos\beta}{\sin\gamma}.$$

Therefore,

$$AF' = b - CF' = \frac{2R}{\sin\gamma} (\sin\beta\sin\gamma - \cos\alpha) = \frac{2R\cos\beta\cos\gamma}{\sin\gamma},$$

$$BP' = a - CP' = \frac{2R}{\sin\gamma} (\sin\alpha \sin\gamma - \cos\beta) = \frac{2R\cos\alpha \cos\gamma}{\sin\gamma}$$

Menelaus' Theorem, applied to $\triangle ABC$ and the line P'F', yields

$$\frac{BE'}{E'A} = \frac{\frac{2R\cos\alpha\cos\gamma}{\sin\gamma}}{\frac{2R\cos\beta}{\sin\gamma}} \cdot \frac{\frac{2R\cos\alpha}{\sin\gamma}}{\frac{2R\cos\beta\cos\gamma}{\sin\gamma}} = \frac{\cos^2\alpha}{\cos^2\beta}.$$

On the other hand, we have that $\angle EAD = \angle EDB = 90^\circ + \alpha$. Also, $\angle ABD = \angle ADE = 90^\circ - \beta$. The law of sines, applied to $\triangle EAD$ and $\triangle EBD$, yields

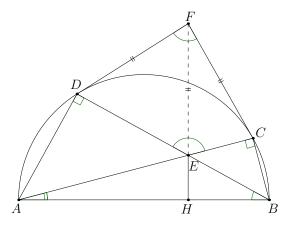
$$\frac{BE}{EA} = \frac{\sin \angle BDE}{\sin \angle ADE} \cdot \frac{\sin \angle EAD}{\sin \angle ABD} = \frac{\cos^2 \alpha}{\cos^2 \beta} = \frac{BE'}{E'A}.$$

Hence, $E \equiv E'$, as required.

Problem 6.7.2. The points A, B, C and D lie on a circle with diameter AB. The tangent lines to the circle at the points C and D intersect each other at the point F. Let $E = AC \cap BD$. Prove that $FE \perp AB$.

Solution. Let $H = FE \cap AB$.

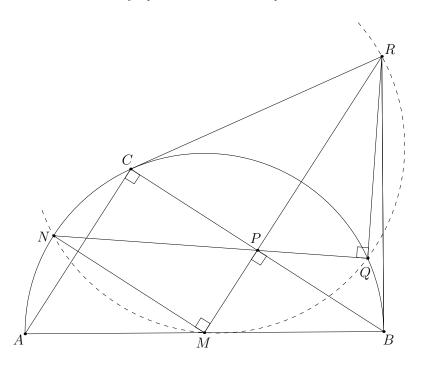
Denote $\angle ABD = \alpha$ and $\angle BAC = \beta$. Observe that $\angle ADB = \angle ACB = 90^{\circ}$ and $\angle BAD = 90^{\circ} - \alpha = \angle BDF$. Analogously, $\angle ACF = 90^{\circ} - \beta$. We obtain $\angle CED = \angle AEB =$ $180^{\circ} - \alpha - \beta$. It follows from the quadrilateral DECF that $\angle DFC = 2\alpha + 2\beta$, which means that



$$2(180^{\circ} - \angle CED) = \angle DFC.$$

Hence, E lies on the circle centered at F with radius FD. Thus, FD = FE. Therefore, $\angle HEB = \angle DEF = \angle EDF = 90^{\circ} - \alpha$, $\angle HBD = \alpha$ and $FE \perp AB$.

Problem 6.7.9. Let ABC be a triangle with $\angle ACB = 90^{\circ}$. The tangent lines to the circumcircle of $\triangle ABC$ at B and C intersect each other at the point R. Let P and N be the midpoints of BC and the arc \widehat{AC} , respectively. Denote the second intersection point of NP and the circumcircle of $\triangle ABC$ by Q. Prove that $\angle NQR = 90^{\circ}$.



Solution. Denote the midpoint of AB by M. Hence, M is the center of the circumcircle of $\triangle ABC$, and the points M, P and R are collinear. On the other hand, MN contains the midpoint of AC.

Hence, $MN \parallel BC$ and $MP \parallel AC$, which means that $\angle NMP = 90^{\circ}$. It suffices to show that the quadrilateral NMQR is cyclic.

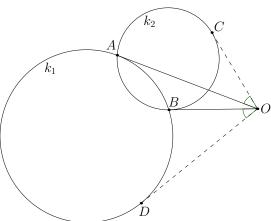
Consider the inversion I(M, MC). We will prove that the images of N, Q and R are collinear. Observe that I(N) = N, I(Q) = Q and I(R) = P.

Since the points N, Q and P are collinear, we conclude that the points N, Q and R lie on a circle that contains the center of the inversion M.

Problems 6.10.7. Let k_1 and k_2 be circles that intersect each other at the points A and B. The tangent lines to k_1 and k_2 at A and B, respectively, intersect at the point O. Let $D \in k_1$ and $C \in k_2$ are points, such that OD and OC are the other tangent lines to k_1 and k_2 , respectively. Prove that $\angle COA = \angle DOB$.

Solution. Let the mapping φ be a composition of inversion $I(O, \sqrt{OA.OB})$ and symmetry with respect to the angle bisector of $\angle AOB$.

Then $\varphi(A) = B$, $\varphi(B) = A$, $\varphi(k_1) = k_2$ and $\varphi(k_2) = k_1$, because k_1 gets transformed into a circle that touches OB at B and that passes through A.



Thus, $\varphi(OC) = OD$, and so the lines OC and OD are symmetric with respect to the angle bisector of $\angle AOB$, implying that $\angle COA = \angle DOB$. **Problem 8.12.** Let ABCDEF be a regular hexagon. The points M and N are the midpoints of AB and DF, respectively. Prove that $\triangle MCN$ is equilateral.

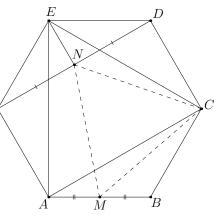
F

Solution. It is clear that $\triangle ACE$ is equilateral. We have

$$2\overrightarrow{MC} = \overrightarrow{AC} + \overrightarrow{BC}.$$

A $+60^{\circ}$ rotation of all vectors in the above equality gives

$$2\overrightarrow{a} = \overrightarrow{AE} + \overrightarrow{AF}$$



where \overrightarrow{a} is the image of the vector \overrightarrow{MC} under a +60° rotation. Since $\overrightarrow{AE} = \overrightarrow{BD}$, we obtain $2\overrightarrow{a} = \overrightarrow{BD} + \overrightarrow{AF} = 2\overrightarrow{MN}$, whence $\overrightarrow{a} = \overrightarrow{MN}$.

Therefore, $\triangle CMN$ is equilateral.

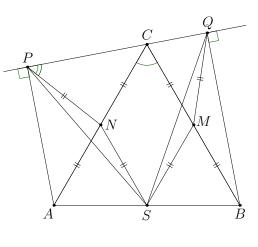
Another possible approach uses the fact that $\triangle CAM \cong \triangle CEN$.

Problem 8.1.14. Let ABC be an equilateral triangle and let l be an arbitrary line through the vertex C. Let P and Q be the feet of the perpendiculars from A and B to l, respectively. If S is the midpoint of AB, prove that $\triangle PQS$ is equilateral.

Solution. Let M and N be the midpoints of BC and AC, respectively. Considering the midsegments and the fact that $\triangle BQC$ and $\triangle APC$ are right-angled, we get that MQ = MB = MC =MS = SN = AN = NC = NP.

Moreover,

$$\angle CMQ = 180^{\circ} - 2\angle MCQ$$
$$= 180^{\circ} - 2(120^{\circ} - \angle PCN)$$
$$= 2\angle PCN - 60^{\circ}$$
$$= 120^{\circ} - \angle PNC.$$

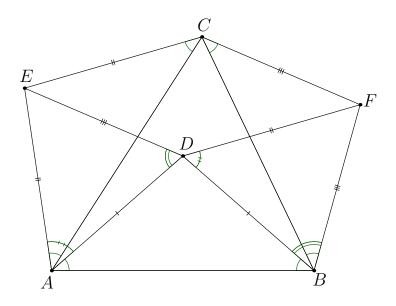


Hence, $\angle SMQ = 120^{\circ} + \angle CMQ = 240^{\circ} - \angle PNC = \angle PNS$. We deduce that $\triangle PNS \cong \triangle QMS$ and PS = SQ. But $\angle PSQ = \angle NSM = \angle NCM = 60^{\circ}$ and therefore $\triangle PQS$ is equilateral.

Problem 9.21. Let ABC be a triangle. The isosceles triangles BCF (BF = CF) and AEC (AE = CE) are constructed externally, such that $\angle ACE = \angle BCF$. The point D lies inside of $\triangle ABC$, such that AD = BD and $\angle BAD = \angle CAE$. Prove that DF = EA and DE = BF.

Solution. The problem conditions imply that $\triangle ABD \sim \triangle BCF \sim \triangle ACE$. Then $\frac{AE}{AD} = \frac{AC}{AB}$.

On the other hand, we have $\angle DAE = \angle BAC$, which implies that $\triangle ABC \sim \triangle ADE$.



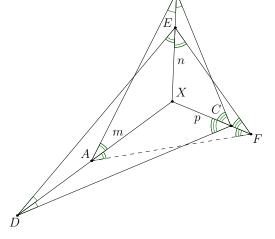
Analogously, $\triangle DBF \sim \triangle ABC$. Hence, $\triangle DBF \sim \triangle ADE$. This and the equality AD = BD imply that actually $\triangle DBF \cong \triangle ADE$. Therefore, DF = EA and DE = BF.

Problem 10.6. Let m^{\rightarrow} , n^{\rightarrow} and p^{\rightarrow} be three rays with a common origin X. Let $A \in m$ and $B \in n$. The line symmetric to AB with respect to n intersects p at the point C. The line symmetric to BC with respect to p intersects m at the point D. The line symmetric to CD with respect to m intersects n at the point E. Finally, the line symmetric to DE with respect to n intersects p at the point F. Prove that the line AF is symmetric to both EF with respect to p and to AB with respect to m.

Solution. Let the line symmetric to AB with respect to m intersect p at the point F'. It suffices to show that $F' \equiv F$.

Recall that a point on an angle bisector is equidistant from the arms of the angle. We have

dist(X, AF') = dist(X, AB)= dist(X, BC) = dist(X, CD)= dist(X, DE) = dist(X, EF)



Let the projections of X onto the lines EF and AF' be H_1 and H_2 , respectively. Then $XH_2 = XH_1$. We have

$$\angle H_1 FX = \angle XCB + \angle XBC - \angle XEF$$

$$= \angle XCD + \angle XBA - \angle XED$$

$$= \angle XCD + \angle XDE - \angle XAB$$

$$= \angle XCD + \angle XDC - \angle XAF'$$

$$= \angle H_2F'X.$$

Therefore, $\triangle XH_1F \cong \triangle XH_2F'$, which means that XF' = XF, or $F \equiv F'$.