22 SAMPLE PROBLEMS WITH SOLUTIONS

 FROM
555 GEOMETRY PROBLEMS

SOLUTIONS BASED ON "GEOMETRY IN FIGURES" BY A. V. AKOPYAN

Stanislav Chobanov
Stanislav Dimitrov
Lyuben Lichev

Problem 3.9. Let $A B C D$ be a quadrilateral. Let J and I be the midpoints of the diagonals $A C$ and $B D$, respectively. Let the perpendicular $D G$ to $B C(G \in B C)$ intersect the perpendicular $C H$ to $A D(H \in A D)$ at the point K. The perpendicular $B F$ to $A D(F \in A D)$ intersects the perpendicular $A E$ to $B C(E \in B C)$ at the point L. Prove that $K L \perp J I$.

Solution. Consider the circle k_{1} with diameter $A C$ and the circle k_{2} with diameter $B D$.

Their centers are I and J, respectively. We have that $K G \cdot K D=K C . H K$ because the quadrilateral $D C G H$ is cyclic. Therefore, the point K lies on the radical axis of k_{1} and k_{2}.

But the same statement is also true for L because the quadrilateral $A B E F$ is cyclic,
 leading to $L B \cdot L F=L A . L E$.

We know that the radical axis of two circles is always perpendicular to the line that connects their centers, and thus $K L \perp J I$.

Problems 3.11 and 3.12. (Simson line) Let $A B C$ be a triangle with circumcircle k. An arbitrary point D is chosen on the arc $\widehat{A B}$ of k which does not contain C. The points E, F and G lie on $C A, A B$ and $B C$, respectively, and are chosen such that $\angle A E D=\angle A F D=\angle B G D=\varphi$. Prove that the points E, F and G are collinear.

Solution. Using the equal angles, it is easy to show that the quadrilaterals $A D B C, A D F E$, $B F D G$ and $E D G C$ are cyclic.

Now we have

$$
\begin{aligned}
\angle E F G & =\angle E F D+\angle D F G \\
& =180^{\circ}-\angle D A E+\angle D B G \\
& =\angle D B C+\angle D B G \\
& =180^{\circ} .
\end{aligned}
$$

Therefore, the points E, F and G are collinear.

Note. When $\varphi=90^{\circ}$, the construction represents the classic Simson line. We proved the generalization of 3.11 , which is 3.12 .

Problem 4.1.4. Let $A B C$ be a triangle. Let P be an arbitrary point on the smaller arc $\widehat{A B}$ of the circumcircle of $\triangle A B C$. The projections of P onto $A C$ and $A B$ are X and Y, respectively. The points M and N are the midpoints of $B C$ and $X Y$, respectively. Prove that $\angle P N M=90^{\circ}$.

Solution. Let K be the projection of P onto $B C$. Then the points X, Y and K lie on the Simson line of P (Problem 3.11). It suffices to prove that the quadrilateral $P N M K$ is cyclic.

We show that $\triangle P Y X \sim \triangle P B C$. We have $\angle P X Y=\angle P A Y=$ $\angle P C B$ and $\angle X P Y=\angle X A Y=\angle C P B$.

Now the similarity follows and hence $\angle P N K=\angle P M K$ because $P N$ and $P M$ are respective medians in these triangles.

Therefore, the quadrilateral $P N M K$ is cyclic.

Problem 4.3.21. Let $A B C$ be a triangle with angle bisectors $A M$ and $B N$, intersecting at the point I. Points L and K are chosen on the line $A B$, such that $L N$ and $C N$ are symmetric with respect to $B N$, and such that $C M$ and $K M$ are symmetric with respect to $A M$. Let $D=L N \cap K M$. Prove that $D I \perp A B$.

Solution. The symmetry with respect to $B N$ gives $\angle B L N=\angle B C N$, and the symmetry with respect to $A M$ gives $\angle A K M=\angle A C M$. Therefore, $\triangle L K D$ is isosceles.

Since I is the K-excenter of $\triangle B K M$, we deduce that $K I$ is the angle bisector of $\angle L K D$.

Analogously, $L I$ is the angle bisector of $\angle K L D$. Therefore, I is the incenter of the isosceles $\triangle L K D$, which implies that $D I \perp A B$.

Problem 4.5.7. Let $A B C$ be a triangle. Let its incircle touch the sides $B C, C A$ and $A B$ at the points F, E and D, respectively. Let its C-excircle touch the lines $B C, C A$ and $A B$ at the points Q, P and M, respectively. Let $M N(N \in P Q)$ be an altitude in $\triangle P M Q$, and let $D H(D \in E F)$ be an altitude in $\triangle E D F$. Prove that $\angle A C N=\angle B C H$.

Solution. It is enough to prove that

$$
\frac{\sin \angle P C N}{\sin \angle N C Q}=\frac{\sin \angle F C H}{\sin \angle H C E}
$$

We have that
$\angle D E F=90^{\circ}-\frac{\beta}{2}, \angle D F E=90^{\circ}-\frac{\alpha}{2}$.
Hence, $\angle E D H=\frac{\beta}{2}$ and $\angle H D F=\frac{\alpha}{2}$.
Observe that $\angle M P N=\frac{\beta}{2}$ and
$\angle M Q N=\frac{\alpha}{2}$. Hence, $\angle P M N=90^{\circ}-\frac{\beta}{2}, \angle N M Q=90^{\circ}-\frac{\alpha}{2}$ and by the law of sines we get

$$
\begin{aligned}
\frac{\sin \angle P C N}{\sin \angle N C Q} & =\frac{P N}{N Q} \cdot \frac{C Q}{C P}=\frac{P N}{N M} \cdot \frac{M N}{N Q} \\
& =\cot \frac{\beta}{2} \operatorname{tg} \frac{\alpha}{2}=\frac{D H}{H E} \cdot \frac{H F}{D H}=\frac{H F}{H E} \cdot \frac{E C}{F C}=\frac{\sin \angle F C H}{\sin \angle H C E}
\end{aligned}
$$

Problem 4.8.14 Let $A B C$ be a triangle. The points N and M are chosen on the sides $A C$ and $B C$, respectively, so that $A B M N$ is cyclic. Let $A M \cap B N=D$ and $C D \cap A B=P$. Denote the midpoint of the segment $A B$ by Q. Prove that the quadrilateral $M N Q P$ is cyclic.

Solution. Without loss of generality, let $A C>B C$. Denote $A B \cap M N=X$. Then B is between X and A.

Menelaus' Theorem, applied to $\triangle A B C$ and the points N, M and X, gives

$$
\frac{A X}{B X}=\frac{A N}{N C} \cdot \frac{C M}{M B} .
$$

Ceva's Theorem, applied to
$\triangle A B C$ and the points P, M and N, gives $\frac{A P}{B P}=\frac{A N}{N C} \cdot \frac{C M}{M B}=\frac{A X}{B X}$.
Note that since $\frac{A X}{B X}>1$, the inequality $\frac{A P}{B P}>1$ holds, and so P is between Q and B.

We have that $X A . X B=X M . X N$, and so it suffices to show that $X A . X B=X P . X Q$.

Let $A Q=a+b, Q P=a, P B=b$ and $X B=c$. Then we have $\frac{2 a+b}{b}=\frac{2 a+2 b+c}{c}$, which implies $a c=a b+b^{2}$.

Equivalently, $(b+c)(a+b+c)=c(2 a+2 b+c)$. Therefore, $X P \cdot X Q=$ XA.XB.

Problem 4.11.4. Let $A B C$ be a triangle with circumcenter O and $\angle A C B=60^{\circ}$. Let $A A_{1}\left(A_{1} \in B C\right)$ and $B B_{1}\left(B_{1} \in A C\right)$ be altitudes in the triangle, intersecting at the point H. The line $O H$ intersects the lines $A C$ and $B C$ at the points P and Q. Prove that $\triangle P Q C$ is equilateral.

Solution. We have that $\angle A O B=\angle A H B=120^{\circ}$, so the quadrilateral $A B H O$ is cyclic. Also, $\angle B A O=30^{\circ}$, thus $\angle A H O=30^{\circ}$.

Note that $\angle A H B_{1}=60^{\circ}$. Therefore, $\angle B_{1} H P=30^{\circ}$, which implies that $\angle Q P C=60^{\circ}$ and that $\triangle P Q C$ is equilateral.

Problem 5.1.1. Let $A B C D$ be a parallelogram. Let E be the midpoint of $A B$ and let F be the foot of the perpendicular from D to the line $E C$. Prove that $A F=A D$.

Solution. Let $C E \cap D A=P$. Since $D C=2 A E$ and $D C \| A E$, we have that $A E$ is a midsegment in $\triangle P C D$. Hence, $A P=A D$ and thus $A F$ is the median to the hypotenuse in the right-angled $\triangle P F D$. We deduce that $A F=A P=A D$.

Problem 5.3.1. Let $A B C D$ be a square and let E be a point on the segment $B C$. The square $B K F E$ is constructed, such that it is external to $A B C D$. Let $A E \cap C K=M$ and $K E \cap A C=N$. Prove that the points D, N, M and F are collinear.

Solution. We have $A B=B C$ and $B E=B K$. Hence, $\triangle A B E \cong$ $\triangle C B K$. Thus, $\angle B C K=\angle B A M$. This implies that the quadrilateral $A B M C$ is cyclic, which yields $\angle A M K=\angle C B A=90^{\circ}$.

Also, $\angle E F K=\angle E M K=90^{\circ}$, so the quadrilateral $E M F K$ is cyclic. Since $C E \perp A K$ and $A E \perp C K$, the point E is the orthocenter of $\triangle A K C$, which yields $\angle A N K=90^{\circ}$. Consequently, the quadrilateral $A K M N$ is cyclic.

Now, $\angle N M A=\angle N K A=45^{\circ}=\angle E K F=180^{\circ}-\angle E M F$ implies that the points N, M and F are collinear. We have that $N M$ is the radical axis of the circumcircles of $A K M N$ and $M E N C$.

It suffices to show that D also lies on this radical axis. We have $\angle D C N=45^{\circ}=\angle B E K=\angle N E C=\angle C M N$. Thus, $D C$ touches the circumcircle of $\triangle C N M$.

Also, $\angle D A N=45^{\circ}=\angle N K A$ and $D A$ touches the circumcircle of $\triangle N K A$. Therefore, the point D has equal powers with respect to these two circles.

Problem 5.4.12. Let $A B C D$ be a circumscribed quadrilateral with incircle k with center I. Let $A B C D$ be also inscribed in a circle k_{1}. Let k touch $A B, B C, C D$ and $D A$ at the points M, N, P and Q, respectively. Prove that $M P \perp N Q$.

Solution. We have

$$
\begin{aligned}
& \angle(M P, N Q)= \\
= & \frac{\widehat{P N}+\widehat{Q M}}{2} \\
= & \frac{\angle P I N+\angle Q I M}{2} \\
= & \frac{360^{\circ}-\angle D A B-\angle D C B}{2} .
\end{aligned}
$$

But we know that

$$
\angle D C B+\angle D A B=180^{\circ} .
$$

Hence, $\angle(M P, N Q)=90^{\circ}$.

Problem 5.7.4. Let $A B C D$ be a cyclic quadrilateral. Let M, N, P and Q be the midpoints of $A B, B C, C D$ and $D A$, respectively. The points H_{1}, H_{2}, H_{3} and H_{4} are the feet of the perpendiculars from M, N, P and Q to $C D, D A, A B$ and $B C$, respectively. Prove that the lines $\mathrm{MH}_{1}, \mathrm{NH}_{2}, \mathrm{PH}_{3}$ and $Q H_{4}$ are concurrent.

Solution. Midsegments give that $P N$ is parallel and equal to $M Q$.

Therefore, the quadrilateral $P N M Q$ is a parallelogram. Denote the circumcenter of $A B C D$ by O.

Now we have that $O P \perp$ $C D, O N \perp B C, O M \perp A B$ and $O Q \perp A D$.

If $M H_{1} \cap P H_{3}=X$, then the quadrilateral $P O M X$ is a
 parallelogram. Thus, the midpoint of $O X$ coincides with the midpoint of $P M$, which coincides with the midpoint of $N Q$. Hence, the quadrilateral $O N X Q$ is also a parallelogram. Consequently, $N X \perp A D$ and $Q X \perp B C$, which gives $Q H_{4} \cap N H_{2}=X$.

Problem 6.1.8. Let k_{1} and k_{2} be circles that touch another circle k internally at the points A and B, respectively. Let $k_{1} \cap k_{2}=\{C, D\}$. Prove that the intersection point L of the angle bisectors of $\angle C A D$ and $\angle C B D$ lies on $C D$.

Solution. The angle bisector theorem, applied to $\triangle A C D$ and $\triangle B C D$, yields that it suffices to show that $\frac{A C}{A D}=\frac{B C}{B D}$.

Let E be the intersection point of the tangent lines to k at A and B. Observe that E lies on the radical axis of k_{1} and k_{2}. Hence, $E \in C D$.

Note that $\triangle E A C \sim \triangle E D A$ and $\triangle E B C \sim \triangle E D B$.

Thus,

$$
\frac{A C}{A D}=\frac{A E}{E D}=\frac{B E}{E D}=\frac{B C}{B D} .
$$

Problem 6.2.2. Let k, k_{1} and k_{2} be circles with radii r, r_{1} and r_{2}, respectively. The circles k_{1} and k_{2} do not intersect each other and they touch k internally at the points A and B, respectively. The tangent lines $A C$ and $A D$ from A to $k_{2}\left(C, D \in k_{2}\right)$ intersect k_{1} at the points M and N, respectively. The tangent lines $B E$ and $B F$ from B to $k_{1}\left(E, F \in k_{1}\right)$ intersect k_{2} at the points Q and P, respectively. Let r^{\prime} be the radius of the circle that touches the segments $A M$ and $A N$, and the arc $\widehat{M N}$ of k_{1}. Let $r^{\prime \prime}$ be the radius of the circle that touches the segments $B P$ and $B Q$, and the arc $\widehat{P Q}$ of k_{2}. Prove that $r^{\prime}=r^{\prime \prime}$.

Solution. Consider the homothety centered at A that sends k_{1} to k. It sends the incircle of the curvilinear triangle $A N M$ to k_{2} and hence $\frac{r^{\prime}}{r_{2}}=\frac{r_{1}}{r}$, so $r^{\prime}=$ $\frac{r_{1} \cdot r_{2}}{r}$.

Analogously, considering the homothety centered at B that sends k_{2} to k, we get

$$
r^{\prime \prime}=\frac{r_{1} \cdot r_{2}}{r}=r^{\prime}
$$

Problem 6.4.3. (The butterfly theorem) Let $A B C D$ be a quadrilateral inscribed in a circle with center O. The diagonals of $A B C D$ intersect at the point E. A line perpendicular to $E O$ at E intersects $A D$ and $B C$ at the points P and Q, respectively. Prove that $P E=Q E$.

Solution. Note that $\angle D A E=\angle C B E$ and $\angle A E D=\angle B E C$. Hence, $\triangle A E D \sim \triangle B E C$. Denote the midpoints of $A D$ and $B C$ by M and N, respectively. Then $E M$ and $E N$ are the corresponding medians of the similar triangles $\triangle A D E$ and $\triangle B C E$. Thus, $\angle E M D=\angle E N C$.

On the other hand, $O M \perp A D$. Hence, $O M P E$ is cyclic and $\angle D M E=$ $\angle P M E=\angle P O E$. Analogously, $\angle E O Q=\angle C N E$. We have $\angle D M E=$ $\angle C N E$ and thus $\angle P O E=\angle Q O E$.

We obtained that the line $O E$ is both an altitude and an angle bisector in $\triangle P O Q$. Hence, it is a median as well.

Problem 6.4.5. Let $A B C$ be a triangle. Let $k(O)$ be the circumcircle of the triangle and let D be the reflection of C with respect to O. The tangent line to k at the point D intersects $A B$ at the point E. Let $O E$ intersect $A C$ and $B C$ at the points F and P, respectively. Prove that $F O=O P$.

Solution. Let $F^{\prime} \in A C$ be a point, such that $F^{\prime} D \| B C$. Let $P^{\prime} \in B C$ be a point, such that $D P^{\prime} \| A C$. Then clearly the quadrilateral $D F^{\prime} C P^{\prime}$ is a parallelogram and the point O bisects its diagonals.

Let $F^{\prime} P^{\prime} \cap A B=E^{\prime}$.
We will prove that the point E coincides with the point E^{\prime}, which will lead us to $P \equiv P^{\prime}$ and $F \equiv F^{\prime}$, so the
 desired statement will follow.

We have that $C D=2 R, \angle F^{\prime} C D=\angle C D P^{\prime}=90^{\circ}-\beta, \angle P^{\prime} C D=$ $\angle C D F^{\prime}=90^{\circ}-\alpha$ and by the law of sines,

$$
C F^{\prime}=\frac{2 R \cos \alpha}{\sin \gamma}, C P^{\prime}=\frac{2 R \cos \beta}{\sin \gamma}
$$

Therefore,

$$
\begin{aligned}
& A F^{\prime}=b-C F^{\prime}=\frac{2 R}{\sin \gamma}(\sin \beta \sin \gamma-\cos \alpha)=\frac{2 R \cos \beta \cos \gamma}{\sin \gamma} \\
& B P^{\prime}=a-C P^{\prime}=\frac{2 R}{\sin \gamma}(\sin \alpha \sin \gamma-\cos \beta)=\frac{2 R \cos \alpha \cos \gamma}{\sin \gamma}
\end{aligned}
$$

Menelaus' Theorem, applied to $\triangle A B C$ and the line $P^{\prime} F^{\prime}$, yields

$$
\frac{B E^{\prime}}{E^{\prime} A}=\frac{\frac{2 R \cos \alpha \cos \gamma}{\sin \gamma}}{\frac{2 R \cos \beta}{\sin \gamma}} \cdot \frac{\frac{2 R \cos \alpha}{\sin \gamma}}{\frac{2 R \cos \beta \cos \gamma}{\sin \gamma}}=\frac{\cos ^{2} \alpha}{\cos ^{2} \beta}
$$

On the other hand, we have that $\angle E A D=\angle E D B=90^{\circ}+\alpha$. Also, $\angle A B D=\angle A D E=90^{\circ}-\beta$. The law of sines, applied to $\triangle E A D$ and $\triangle E B D$, yields

$$
\frac{B E}{E A}=\frac{\sin \angle B D E}{\sin \angle A D E} \cdot \frac{\sin \angle E A D}{\sin \angle A B D}=\frac{\cos ^{2} \alpha}{\cos ^{2} \beta}=\frac{B E^{\prime}}{E^{\prime} A}
$$

Hence, $E \equiv E^{\prime}$, as required.
Problem 6.7.2. The points A, B, C and D lie on a circle with diameter $A B$. The tangent lines to the circle at the points C and D intersect each other at the point F. Let $E=A C \cap B D$. Prove that $F E \perp A B$.

Solution. Let $H=F E \cap$ $A B$.

Denote $\angle A B D=\alpha$ and $\angle B A C=\beta$. Observe that $\angle A D B=\angle A C B=90^{\circ}$ and $\angle B A D=90^{\circ}-\alpha=\angle B D F$. Analogously, $\angle A C F=90^{\circ}-\beta$. We obtain $\angle C E D=\angle A E B=$ $180^{\circ}-\alpha-\beta$. It follows from the quadrilateral $D E C F$ that
 $\angle D F C=2 \alpha+2 \beta$, which means that

$$
2\left(180^{\circ}-\angle C E D\right)=\angle D F C
$$

Hence, E lies on the circle centered at F with radius $F D$. Thus, $F D=$ $F E$. Therefore, $\angle H E B=\angle D E F=\angle E D F=90^{\circ}-\alpha, \angle H B D=\alpha$ and $F E \perp A B$.

Problem 6.7.9. Let $A B C$ be a triangle with $\angle A C B=90^{\circ}$. The tangent lines to the circumcircle of $\triangle A B C$ at B and C intersect each other at the point R. Let P and N be the midpoints of $B C$ and the arc $\widehat{A C}$, respectively. Denote the second intersection point of $N P$ and the circumcircle of $\triangle A B C$ by Q. Prove that $\angle N Q R=90^{\circ}$.

Solution. Denote the midpoint of $A B$ by M. Hence, M is the center of the circumcircle of $\triangle A B C$, and the points M, P and R are collinear. On the other hand, $M N$ contains the midpoint of $A C$.

Hence, $M N \| B C$ and $M P \| A C$, which means that $\angle N M P=90^{\circ}$.
It suffices to show that the quadrilateral $N M Q R$ is cyclic.
Consider the inversion $I(M, M C)$. We will prove that the images of N, Q and R are collinear. Observe that $I(N)=N, I(Q)=Q$ and $I(R)=P$.

Since the points N, Q and P are collinear, we conclude that the points N, Q and R lie on a circle that contains the center of the inversion M.

Problems 6.10.7. Let k_{1} and k_{2} be circles that intersect each other at the points A and B. The tangent lines to k_{1} and k_{2} at A and B, respectively, intersect at the point O. Let $D \in k_{1}$ and $C \in k_{2}$ are points, such that $O D$ and $O C$ are the other tangent lines to k_{1} and k_{2}, respectively. Prove that $\angle C O A=\angle D O B$.

Solution. Let the mapping φ be a composition of inversion $I(O, \sqrt{O A . O B})$ and symmetry with respect to the angle bisector of $\angle A O B$.

Then $\varphi(A)=B, \varphi(B)=A$, $\varphi\left(k_{1}\right)=k_{2}$ and $\varphi\left(k_{2}\right)=k_{1}$, because k_{1} gets transformed into a circle that touches $O B$ at B and that passes through A.

Thus, $\varphi(O C)=O D$, and so the lines $O C$ and $O D$ are symmetric with respect to the angle bisector of $\angle A O B$, implying that $\angle C O A=\angle D O B$.

Problem 8.12. Let $A B C D E F$ be a regular hexagon. The points M and N are the midpoints of $A B$ and $D F$, respectively. Prove that $\triangle M C N$ is equilateral.

Solution. It is clear that $\triangle A C E$ is equilateral. We have

$$
2 \overrightarrow{M C}=\overrightarrow{A C}+\overrightarrow{B C}
$$

A $+60^{\circ}$ rotation of all vectors in the above equality gives

$$
2 \vec{a}=\overrightarrow{A E}+\overrightarrow{A F}
$$

where \vec{a} is the image of the vector $\overrightarrow{M C}$ under a $+60^{\circ}$ rotation. Since $\overrightarrow{A E}=\overrightarrow{B D}$, we obtain $2 \vec{a}=\overrightarrow{B D}+\overrightarrow{A F}=2 \overrightarrow{M N}$, whence $\vec{a}=\overrightarrow{M N}$.

Therefore, $\triangle C M N$ is equilateral.
Another possible approach uses the fact that $\triangle C A M \cong \triangle C E N$.

Problem 8.1.14. Let $A B C$ be an equilateral triangle and let l be an arbitrary line through the vertex C. Let P and Q be the feet of the perpendiculars from A and B to l, respectively. If S is the midpoint of $A B$, prove that $\triangle P Q S$ is equilateral.

Solution. Let M and N be the midpoints of $B C$ and $A C$, respectively. Considering the midsegments and the fact that $\triangle B Q C$ and $\triangle A P C$ are right-angled, we get that $M Q=M B=M C=$ $M S=S N=A N=N C=N P$.

Moreover,

$$
\begin{aligned}
\angle C M Q & =180^{\circ}-2 \angle M C Q \\
& =180^{\circ}-2\left(120^{\circ}-\angle P C N\right) \\
& =2 \angle P C N-60^{\circ} \\
& =120^{\circ}-\angle P N C .
\end{aligned}
$$

Hence, $\angle S M Q=120^{\circ}+\angle C M Q=240^{\circ}-\angle P N C=\angle P N S$. We deduce that $\triangle P N S \cong \triangle Q M S$ and $P S=S Q$. But $\angle P S Q=\angle N S M=$ $\angle N C M=60^{\circ}$ and therefore $\triangle P Q S$ is equilateral.

Problem 9.21. Let $A B C$ be a triangle. The isosceles triangles $B C F$ $(B F=C F)$ and $A E C(A E=C E)$ are constructed externally, such that $\angle A C E=\angle B C F$. The point D lies inside of $\triangle A B C$, such that $A D=B D$ and $\angle B A D=\angle C A E$. Prove that $D F=E A$ and $D E=B F$.

Solution. The problem conditions imply that $\triangle A B D \sim \triangle B C F \sim$ $\triangle A C E$. Then $\frac{A E}{A D}=\frac{A C}{A B}$.

On the other hand, we have $\angle D A E=\angle B A C$, which implies that $\triangle A B C \sim \triangle A D E$.

Analogously, $\triangle D B F \sim \triangle A B C$. Hence, $\triangle D B F \sim \triangle A D E$. This and the equality $A D=B D$ imply that actually $\triangle D B F \cong \triangle A D E$. Therefore, $D F=E A$ and $D E=B F$.

Problem 10.6. Let $m^{\rightarrow}, n^{\rightarrow}$ and p^{\rightarrow} be three rays with a common origin X. Let $A \in m$ and $B \in n$. The line symmetric to $A B$ with respect to n intersects p at the point C. The line symmetric to $B C$ with respect to p intersects m at the point D. The line symmetric to $C D$ with respect to m intersects n at the point E. Finally, the line symmetric to $D E$ with respect to n intersects p at the point F. Prove that the line $A F$ is symmetric to both $E F$ with respect to p and to $A B$ with respect to m.

Solution. Let the line symmetric to $A B$ with respect to m intersect p at the point F^{\prime}. It suffices to show that $F^{\prime} \equiv F$.

Recall that a point on an angle bisector is equidistant from the arms of the angle. We have

$$
\begin{aligned}
& \operatorname{dist}\left(X, A F^{\prime}\right)=\operatorname{dist}(X, A B) \\
&=\operatorname{dist}(X, B C)=\operatorname{dist}(X, C D) \\
&=\operatorname{dist}(X, D E)=\operatorname{dist}(X, E F)
\end{aligned}
$$

Let the projections of X onto the lines $E F$ and $A F^{\prime}$ be H_{1} and H_{2}, respectively. Then $X H_{2}=X H_{1}$. We have

$$
\begin{aligned}
\angle H_{1} F X & =\angle X C B+\angle X B C-\angle X E F \\
& =\angle X C D+\angle X B A-\angle X E D \\
& =\angle X C D+\angle X D E-\angle X A B \\
& =\angle X C D+\angle X D C-\angle X A F^{\prime} \\
& =\angle H_{2} F^{\prime} X .
\end{aligned}
$$

Therefore, $\triangle X H_{1} F \cong \triangle X H_{2} F^{\prime}$, which means that $X F^{\prime}=X F$, or $F \equiv F^{\prime}$.

