MATHEMATICS

Chapter 6: Triangles

Triangles

1. Congruent figures:

Two geometrical figures are called congruent if they superpose exactly on each other, that is, they are of the same shape and size.

2. Similar figures:

Two figures are similar, if they are of the same shape but not necessarily of the same size.

Group 1

Group 2

Group 3
3. All congruent figures are similar but the similar figures need not to be congruent.
4. Two polygons having the same number of sides are similar if
i. their corresponding angles are equal and
ii. their corresponding sides are in the same ratio (or proportion).

Note: Same ratio of the corresponding sides means the scale factor for the polygons.
5. Important facts related to similar figures are:
i. All circles are similar.
ii. All squares are similar.
iii. All equilateral triangles are similar.
iv. The ratio of any two corresponding sides in two equiangular triangles is always same.
6. Two triangles are similar (~) if
i. Their corresponding angles are equal.
ii. Their corresponding sides are in same ratio.
7. If the angles in two triangles are:
i. Different, the triangles are neither similar nor congruent.
ii. Same, the triangles are similar.
iii. Same and the corresponding sides are of the same size, the triangles are congruent. In the given figure, $A \leftrightarrow D, B \leftrightarrow E$ and $C \leftrightarrow F$, which means triangles $A B C$ and DEF are similar which is represented by $\triangle A B C \sim \triangle D E F$

MATHEMATICS TRIANGLES

8. If $\triangle A B C \sim \triangle P Q R$, then
i. $\Delta A=\Delta P$
ii. $\Delta B=\Delta Q$
iii. $\Delta C=\Delta R$
iv. $\frac{A B}{P Q}=\frac{B C}{Q R}=\frac{A C}{P R}$
9. Equiangular triangles:

Two triangles are equiangular if their corresponding angles are equal. The ratio of any two corresponding sides in such triangles is always the same.
10.Basic Proportionality Theorem (Thales Theorem):

If a line is drawn parallel to one side of a triangle to intersect other two sides in distinct points, the other two sides are divided in the same ratio.

11.Converse of BPT:

If a line divides any two sides of a triangle in the same ratio then the line is parallel to the third side.
12.A line drawn through the mid-point of one side of a triangle which is parallel to another side bisects the third side. In other words, the line joining the mid-points of any two sides of a triangle is parallel to the third side.

13.AAA (Angle-Angle-Angle) similarity criterion:

If in two triangles, corresponding angles are equal, then their corresponding sides are in the same ratio (or proportion) and hence the two triangles are similar.

14.AA (Angle-Angle) similarity criterion:

If two angles of a triangle are respectively equal to two angles of another triangle, then by the angle sum property of a triangle their third angles will also be equal.

Thus, AAA similarity criterion changes to AA similarity criterion which can be stated as follows:

If two angles of one triangle are respectively equal to two angles of other triangle, then the two triangles are similar.

15. Converse of AAA similarity criterion:

If two triangles are similar, then their corresponding angles are equal.

16.SSS (Side-Side-Side) similarity criterion:

If in two triangles, sides of one triangle are proportional to (i.e., in the same ratio of) the

MATHEMATICS TRIANGLES

sides of the other triangle, then their corresponding angles are equal and hence the two triangles are similar.

17.Converse of SSS similarity criterion:

If two triangles are similar, then their corresponding sides are in constant proportion.

18.SAS (Side-Angle-Side) similarity criterion:

If one angle of a triangle is equal to one angle of the other triangle and the sides including these angles are proportional, then the two triangles are similar.

19.Converse of SAS similarity criterion:

If two triangles are similar, then one of the angles of one triangle is equal to the corresponding angle of the other triangle and the sides including these angles are in constant proportion.

20.RHS (Right angle-Hypotenuse-Side) criterion:

If in two right triangles, hypotenuse and one side of one triangle are proportional to the hypotenuse and one side of another triangle, then the two triangles are similar. This criteria is referred as the RHS similarity criterion

21.Pythagoras Theorem:

In a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

Thus, in triangle $A B C$ right angled at $B, A B^{2}+B C^{2}=A C^{2}$

22.Converse of Pythagoras Theorem:

If in a triangle, square of one side is equal to the sum of the squares of the other two sides, then the angle opposite the first side is a right angle.
23.The ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides.
Thus, if $\triangle A B C \sim \triangle P Q R$, then $\frac{\operatorname{ar} \triangle A B C}{\operatorname{ar} \triangle P Q R}=\left(\frac{A B}{P Q}\right)^{2}=\left(\frac{B C}{Q R}\right)^{2}=\left(\frac{C A}{R P}\right)^{2}$
Also, the ration of the areas of two similar triangles is equal to the ration of the squares of the corresponding medians.
24.Some important results of similarity are:

In an equilateral or an isosceles triangle, the altitude divides the base into two equal parts.

If a perpendicular is drawn from the vertex of the right triangle to the hypotenuse then triangles on both sides of the perpendicular are similar to the whole triangle and to each other.

The area of an equilateral triangle described on one side of a square is equal to half the area of the equilateral triangle described on one of its diagonal.

Sum of the squares of the sides of a rhombus is equal to the sum of the squares of its

MATHEMATICS TRIANGLES

diagonals.
In an equilateral triangle, three times the square of one side is equal to four times the square of one of its altitudes.

25.Triangle

A triangle can be defined as a polygon which has three angles and three sides. The interior angles of a triangle sum up to 180 degrees and the exterior angles sum up to 360 degrees. Depending upon the angle and its length, a triangle can be categorized in the following types-

- Scalene Triangle - All the three sides of the triangle are of different measure
- Isosceles Triangle - Any two sides of the triangle are of equal length
- Equilateral Triangle - All the three sides of a triangle are equal and each angle measures 60 degrees
- Acute angled Triangle - All the angles are smaller than 90 degrees
- Right angle Triangle - Anyone of the three angles is equal to 90 degrees
- Obtuse-angled Triangle - One of the angles is greater than 90 degrees

26.Similarity Criteria of Triangles

To find whether the given two triangles are similar or not, it has four criteria. They are:
Side-Side- Side (SSS) Similarity Criterion - When the corresponding sides of any two triangles are in the same ratio, then their corresponding angles will be equal and the triangle will be considered as similar triangles.

Angle Angle Angle (AAA) Similarity Criterion - When the corresponding angles of any two triangles are equal, then their corresponding side will be in the same ratio and the triangles are considered to be similar.
Angle-Angle (AA) Similarity Criterion - When two angles of one triangle are respectively equal to the two angles of the other triangle, then the two triangles are considered as similar.

Side-Angle-Side (SAS) Similarity Criterion - When one angle of a triangle is equal to one angle of another triangle and the sides including these angles are in the same ratio (proportional), then the triangles are said to be similar.

27.Proof of Pythagoras Theorem

Statement: As per Pythagoras theorem, "In a right-angled triangle, the sum of squares of two sides of a right triangle is equal to the square of the hypotenuse of the triangle."

Proof -
Consider the right triangle, right-angled at B.
Construction-
Draw BD \perp AC

Now, $\triangle A D B \sim \triangle A B C$
So, $A D / A B=A B / A C$
or $A D . A C=A B^{2}$
Also, $\triangle B D C \sim \triangle A B C$
So, $C D / B C=B C / A C$
or, $C D . A C=B C^{2}$
Adding (i) and (ii),
$A D \cdot A C+C D \cdot A C=A B^{2}+B C^{2}$
$A C(A D+D C)=A B^{2}+B C^{2}$
$A C(A C)=A B^{2}+B C^{2}$
$\Rightarrow A C^{2}=A B^{2}+B C^{2}$
Hence, proved.

28.Problems Related to Triangles

A girl having a height of 90 cm is walking away from a lamp-post's base at a speed of 1.2 m / s. Calculate the length of that girl's shadow after 4 seconds if the lamp is 3.6 m above the ground.
S and T are points on sides $P R$ and $Q R$ of triangle $P Q R$ such that angle $P=$ angle RTS. Now, prove that triangle RPQ and triangle RTS are similar.
E is a point on the side $A D$ produced of a parallelogram $A B C D$ and $B E$ intersects $C D$ at F. Show that triangles ABE and CFB are similar.

29.Pythagoras Theorem Statement

Pythagoras theorem states that "In a right-angled triangle, the square of the hypotenuse side is equal to the sum of squares of the other two sides". The sides of this triangle have been named as Perpendicular, Base and Hypotenuse. Here, the hypotenuse is the longest side, as it is opposite to the angle 90°. The sides of a right triangle (say a, b and c) which have positive integer values, when squared, are put into an equation, also called a Pythagorean triple.

MATHEMATICS TRIANGLES

History

The theorem is named after a greek Mathematician called Pythagoras.
Pythagoras Theorem Formula
Consider the triangle given above:
Where " a " is the perpendicular,
"b" is the base,
" c " is the hypotenuse.
According to the definition, the Pythagoras Theorem formula is given as:
Hypotenuse $^{2}=$ Perpendicular ${ }^{2}+$ Base 2
$c^{2}=a^{2}+b^{2}$
The side opposite to the right angle $\left(90^{\circ}\right)$ is the longest side (known as Hypotenuse) because the side opposite to the greatest angle is the longest.

Consider three squares of sides $\mathrm{a}, \mathrm{b}, \mathrm{c}$ mounted on the three sides of a triangle having the same sides as shown.

By Pythagoras Theorem -
Area of square "a" + Area of square " b " = Area of square " c "

MATHEMATICS TRIANGLES

Pythagoras Theorem Proof

Given: A right-angled triangle $A B C$, right-angled at B.
To Prove- $A C^{2}=A B^{2}+B C^{2}$
Construction: Draw a perpendicular BD meeting AC at D.

Proof:
We know, $\triangle A D B \sim \triangle A B C$
Therefore,
$\frac{A D}{A B}=\frac{A B}{A C}$
(corresponding sides of similar triangles)
Or, $A B^{2}=A D \times A C$
Also, $\triangle B D C \sim \triangle A B C$
Therefore,
$\frac{C D}{B C}=\frac{B C}{A C}$
(corresponding sides of similar triangles)
Or, $B C^{2}=C D \times A C$
Adding the equations (1) and (2) we get,
$A B^{2}+B C^{2}=A D \times A C+C D \times A C$
$A B^{2}+B C^{2}=A C(A D+C D)$
Since, $A D+C D=A C$
Therefore, $A C^{2}=A B^{2}+B C^{2}$
Hence, the Pythagorean theorem is proved.
SIMPLE
$\frac{{ }_{2}^{2}}{\frac{1}{2}}$ MAP: LEARNING MIND

Statement	Figure	
1. If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio.	If, $\mathrm{DE} \\| \mathrm{BC}$	
then $\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}}$		

MATHEMATICS TRIANGLES

Important Questions

Multiple Choice questions-

1. If in triangles $A B C$ and $D E F, \frac{A B}{E F}=\frac{A C}{D E}$, then they will be similar when
(a) $\angle A=\angle D$
(b) $\angle A=\angle E$
(c) $\angle B=\angle E$
(d) $\angle C=\angle F$
2.A square and a rhombus are always
(a) similar
(b) congruent
(c) similar but not congruent
(d) neither similar nor congruent
2. If $\triangle A B C \sim \triangle D E F$ and $E F=\frac{1}{3} B C$, then $\operatorname{ar}(\triangle A B C):(\triangle D E F)$ is
(a) $3: 1$.
(b) $1: 3$.
(c) $1: 9$.
(d) $9: 1$.
3. If a triangle and a parallelogram are on the same base and between same parallels, then what is the ratio of the area of the triangle to the area of parallelogram?
(a) $1: 2$
(b) $3: 2$
(c) $1: 3$
(d) $4: 1$
4. D and E are respectively the points on the sides $A B$ and $A C$ of a triangle $A B C$ such that $A D=2 \mathrm{~cm}, B D=3 \mathrm{~cm}, B C=7.5 \mathrm{~cm}$ and $D E \| B C$. Then, length of $D E(i n c m)$ is
(a) 2.5

MATHEMATICS TRIANGLES

(b) 3
(c) 5
(d) 6
6. Which geometric figures are always similar?
(a) Circles
(b) Circles and all regular polygons
(c) Circles and triangles
(d) Regular
7. $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}, \angle \mathrm{B}=50^{\circ}$ and $\angle \mathrm{C}=70^{\circ}$ then $\angle \mathrm{P}$ is equal to
(a) 50°
(b) 60°
(c) 40°
(d) 70°
8. In triangle DEF,GH is a line parallel to EF cutting DE in G and and $D F$ in H. If $D E=$ $16.5, \mathrm{DH}=5, \mathrm{HF}=6$ then $\mathrm{GE}=$?
(a) 9
(b) 10
(c) 7.5
(d) 8
9. In a rectangle Length $=8 \mathrm{~cm}$, Breadth $=6 \mathrm{~cm}$. Then its diagonal $=\ldots$
(a) 9 cm
(b) 14 cm
(c) 10 cm
(d) 12 cm
10. In triangle $A B C, D E \| B C A D=3 \mathrm{~cm}, D B=8 \mathrm{~cm} \mathrm{AC}=22 \mathrm{~cm}$. At what distance from A does the line $D E$ cut $A C$?
(a) 6
(b) 4
(c) 10
(d) 5

Very Short Questions:

1. Two sides and the perimeter of one triangle are respectively three times the corresponding sides and the perimeter of the other triangle. Are the two triangles similar? Why?
2. A and B are respectively the points on the sides $P Q$ and $P R$ of a $\triangle P Q R$ such that $P Q=12.5 \mathrm{~cm}, P A=5 \mathrm{~cm}, B R=6 \mathrm{~cm}$, and $P B=4 \mathrm{~cm}$. Is $A B|\mid Q R$? Give reason.
3. If $\triangle \mathrm{ABC} \sim \triangle \mathrm{QRP}, \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{9}{4}, \mathrm{AB}=18 \mathrm{~cm}$ and $\mathrm{BC}=15 \mathrm{~cm}$, then find the length of PR.
4. If it is given that $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$ with $\frac{B C}{Q R}=\frac{1}{3}$, then find $\frac{\operatorname{ar}(\triangle P Q R)}{\operatorname{ar}(\triangle A B C)}$
5. $\triangle D E F \sim \triangle A B C$, if $D E: A B=2: 3$ and $\operatorname{ar}(\triangle D E F)$ is equal to 44 square units. Find the area ($\triangle A B C$).
6. Is the triangle with sides $12 \mathrm{~cm}, 16 \mathrm{~cm}$ and 18 cm a right triangle? Give reason.
7. In triangles PQR and TSM, $\angle P=55^{\circ}, \angle Q=25^{\circ}, \angle M=100^{\circ}$, and $\angle S=25^{\circ}$. Is $\triangle \mathrm{QPR} \sim \Delta \mathrm{TSM}$? Why?
8. If $A B C$ and $D E F$ are similar triangles such that $\angle A=47^{\circ}$ and $\angle E=63^{\circ}$, then the measures of $\angle C=70^{\circ}$. Is it true? Give reason.
9. Let $\triangle A B C \sim \triangle D E F$ and their areas be respectively $64 \mathrm{~cm}^{2}$ and 121 cm 2 . If $E F=$ 15.4 cm , find $B C$.
10. $A B C$ is an isosceles triangle right-angled at C. Prove that $A B^{2}=2 A C^{2}$.

Short Questions :

1. In Fig. 7.10, $D E \| B C$. If $A D=x, D B=x-2, A E=x+2$ and $E C=x-1$, find the value of x.

Fig. 7.10
2. E and F are points on the sides $P Q$ and $P R$ respectively of a $\triangle P Q R$. Show that $E F$ $\| Q R$ if $P Q=1.28 \mathrm{~cm}, P R=2.56 \mathrm{~cm}, P E=0.18 \mathrm{~cm}$ and $P F=0.36 \mathrm{~cm}$.
3. A vertical pole of length 6 m casts a shadow 4 m long on the ground and at the same time a tower casts a shadow 28 m long. Find the height of the tower.
4. In Fig. 7.13, if $\mathrm{LM}|\mid \mathrm{CB}$ and LN$| \mid \mathrm{CD}$, prove that $\frac{A M}{A B}=\frac{A N}{A D}$
5. In Fig. 7.14, DE || OQ and DF || OR Show that EF || QR.
6. Using converse of Basic Proportionality Theorem, prove that the line joining the mid-points of any two sides of a triangle is parallel to the third side.
7. State which pairs of triangles in the following figures are similar. Write the similarity criterion used by you for answering the question and also write the pairs of similar triangles in the symbolic form.

8. In Fig. 7.17, $\frac{A O}{O C}=\frac{B O}{O D}=\frac{1}{2}$ and $A B=5 \mathrm{~cm}$. Find the value of $D C$.
9. E is a point on the side $A D$ produced of a parallelogram $A B C D$ and $B E$ intersects $C D$ at F. Show that $\triangle A B E \sim \Delta C F B$.
10. S and T are points on sides $P R$ and $Q R$ of $\triangle P Q R$ such that $\angle P=\angle R T S$. Show that $\Delta R P Q \sim \Delta R T S$.

Long Questions :

1. Using Basic Proportionality Theorem, prove that a line drawn through the midpoint of one side of a triangle parallel to another side bisects the third side.
2. $A B C D$ is a trapezium in which $A B \| D C$ and its diagonals intersect each other at the point O. Show that $\frac{A O}{B O}=\frac{C O}{D O}$.

MATHEMATICS TRIANGLES

3. If $A D$ and $P M$ are medians of triangles $A B C$ and $P Q R$ respectively, where $\triangle A B C$ $\sim \triangle \mathrm{PQR}$, prove that $\frac{A B}{P Q}=\frac{A D}{P M}$
4. In Fig. 7.37, $A B C D$ is a trapezium with $A B|\mid D C$. If $\triangle A E D$ is similar to $\triangle B E C$, prove that $A D=B C$.
5. Prove that the area of an equilateral triangle described on a side of a rightangled isosceles triangle is half the area of the equilateral triangle described on its hypotenuse.
6. If the areas of two similar triangles are equal, prove that they are congruent.
7. Prove that the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding medians.
8. In Fig. 7.41,0 is a point in the interior of a triangle $A B C, O D \perp B C, O E \perp A C$ and $O F \perp A B$. Show that
(i) $O A^{2}+O B^{2}+O C^{2}-O D^{2}-O E^{2}-O F^{2}=A F^{2}+B D^{2}+C E^{2}$
(ii) $A F^{2}+B D^{2}+C E^{2}=A E^{2}+C D^{2}+B F^{2}$
9. The perpendicular from A on side $B C$ of a $\triangle A B C$ intersects $B C$ at D such that $D B$ $=3 C D$ (see Fig. 7.42). Prove that $2 A B^{2}=2 A C^{2}+B C^{2}$
10. In an equilateral triangle, prove that three times the square of one side is equal to four times the square of one of its altitudes.

Case Study Questions:

1. Rahul is studying in X Standard. He is making a kite to fly it on a Sunday. Few questions came to his mind while making the kite. Give answers to his questions by looking at the
figure.

i. Rahul tied the sticks at what angles to each other?
a. 30 ㅇ
b. 60
c. 900
d. $60{ }^{\circ}$
ii. Which is the correct similarity criteria applicable for smaller triangles at the upper part of this kite?
a. RHS
b. SAS
c. SSA
d. AAS
iii. Sides of two similar triangles are in the ratio 4:9. Corresponding medians of these triangles are in the ratio:
a. $2: 3$
b. $4: 9$
c. $81: 16$
d. $16: 81$
iv. In a triangle, if the square of one side is equal to the sum of the squares of the other two sides, then the angle opposite the first side is a right angle. This theorem is called.
a. Pythagoras theorem
b. Thales theorem
c. The converse of Thales theorem
d. The converse of Pythagoras theorem
v. What is the area of the kite, formed by two perpendicular sticks of length 6 cm and 8 cm ?
a. $48 \mathrm{~cm}^{2}$
b. $14 \mathrm{~cm}^{2}$
c. $24 \mathrm{~cm}^{2}$
d. $96 \mathrm{~cm}^{2}$
2. There is some fire incident in the house. The fireman is trying to enter the house from the window as the main door is locked. The window is 6 m above the ground. He places a ladder against the wall such that its foot is at a distance of 2.5 m from the wall and its top reaches the window.

i. Here, \qquad be the ladder and \qquad be the wall with the window.
a. $C A, A B$
b. $A B, A C$
c. $A C, B C$
d. $A B, B C$
ii. We will apply Pythagoras Theorem to find length of the ladder. It is:
a. $A B^{2}=B C^{2}-C A^{2}$
b. $C A^{2}=B C^{2}+A B^{2}$
c. $B C^{2}=A B^{2}+C A^{2}$
d. $A B^{2}=B C^{2}+C A^{2}$
iii. The length of the ladder is \qquad .
a. 4.5 m
b. 2.5 m
c. 6.5 m
d. 5.5 m
iv. What would be the length of the ladder if it is placed 6 m away from the wall and the window is 8 m above the ground?
a. 12 m
b. 10 m
c. 14 m
d. 8 m
v. How far should the ladder be placed if the fireman gets a 9 m long ladder?
a. 6.7 m (approx.)
b. 7.7 m (approx.)
c. 5.7 m (approx.)
d. 4.7 m (approx.)

Assertion Reason Questions-

1. Directions: In the following questions, a statement of assertion (A) is followed by a statement of reason (R). Mark the correct choice as:
a. Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
b. Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
c. Assertion (A) is true but reason (R) is false.
d. Assertion (A) is false but reason (R) is true.

Assertion: If two sides of a right angle are 7 cm and 8 cm , then its third side will be 9 cm .

Reason: In a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.
2. Directions: In the following questions, A statement of Assertion (A) is followed by a statement of Reason (R). Mark the correct choice as.
a. Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
b. Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
c. Assertion (A) is true but reason (R) is false.
d. Assertion (A) is false but reason (R) is true.

Assertion: If $\triangle A B C$ and $\triangle P Q R$ are congruent triangles, then they are also similar triangles.

Reason: All congruent triangles are similar but the similar triangles need not be congruent.

Answer Key-

Multiple Choice questions-

1. (b) $\angle A=\angle E$
2. (d) neither similar nor congruent
3. (c) $1: 9$.
4. (a) $1: 2$
5. (b) 3
6. (b) Circles and all regular polygons
7. (b) 60°
8. (a) 9
9. (c) 10 cm
10. (a) 6

Very Short Answer :

1. Since the perimeters and two sides are proportional
\therefore The third side is proportional to the corresponding third side.
i.e., The two triangles will be similar by SSS criterion.
2.

Yes, $\quad \frac{P A}{A Q}=\frac{5}{12.5-5}=\frac{5}{7.5}=\frac{2}{3}$

$$
\frac{P B}{B R}=\frac{4}{6}=\frac{2}{3}
$$

Since $\frac{P A}{A Q}=\frac{P B}{B R}=\frac{2}{3}$
$\therefore \quad A B \| Q R$

Fig. 7.4
3.

MATHEMATICS TRIANGLES

$$
\begin{aligned}
& \frac{\text { Area of } \triangle A B C}{\text { Area of } \triangle Q R P}=\frac{B C^{2}}{R P^{2}} \Rightarrow \frac{9}{4}=\frac{(15)^{2}}{R P^{2}} \\
& \therefore \quad R P^{2}=\frac{225 \times 4}{9}=\frac{900}{9}=100 \Rightarrow R P=10 \mathrm{~cm}
\end{aligned}
$$

4.

$$
\begin{equation*}
\frac{B C}{Q R}=\frac{1}{3} \tag{Given}
\end{equation*}
$$

$$
\left.\begin{array}{rl}
\frac{\operatorname{ar}(\triangle P Q R)}{\operatorname{ar}(\triangle A B C)}=\frac{(Q R)^{2}}{(B C)^{2}} & {[\because \mathrm{R}} \\
\text { is eq } \\
\text { corr }
\end{array}\right]
$$

$$
[\because \text { Ratio of area of similar triangles }
$$ is equal to the ratio of square of its corresponding sides]

5.

Since $\quad \triangle D E F \sim \triangle A B C$

$$
\frac{\operatorname{ar}(\triangle D E F)}{\operatorname{ar}(\triangle A B C)}=\frac{(D E)^{2}}{(A B)^{2}}
$$

[\because Ratio of area of similar triangles is equal to the ratio of square of its

$$
\frac{44}{\operatorname{ar}(\triangle A B C)}=\left(\frac{2}{3}\right)^{2} \quad \Rightarrow \quad \operatorname{ar}(\triangle A B C)=\frac{44 \times 9}{4}
$$

So, $\operatorname{ar}(\triangle A B C)=99 \mathrm{~cm}^{2}$
6. Here, $12^{2}+16^{2}=144+256=400 \neq 182$
\therefore The given triangle is not a right triangle.
7. Şince, $\angle R=180^{\circ}-(\angle P+\angle Q)$
$=180^{\circ}-\left(55^{\circ}+25^{\circ}\right)=100^{\circ}=\angle \mathrm{M}$
$\angle \mathrm{Q}=\angle \mathrm{S}=25^{\circ}$ (Given)
$\Delta \mathrm{QPR} \sim \Delta \mathrm{STM}$
i.e., $\triangle Q Q P R$ is not similar to $\triangle T S M$.
8. Since $\triangle A B C \sim \triangle D E F$
$\therefore \angle \mathrm{A}=\angle \mathrm{D}=47^{\circ}$
$\angle B=\angle E=63^{\circ}$
$\therefore \angle C=180^{\circ}-(\angle A+\angle B)=180^{\circ}-\left(47^{\circ}+63^{\circ}\right)=70^{\circ}$

MATHEMATICS TRIANGLES

\therefore Given statement is true.
9.

We have, $\quad \frac{\text { area of } \triangle A B C}{\text { area of } \triangle D E F}=\frac{B C^{2}}{E F^{2}}=($ as $\triangle A B C \sim \triangle D E F)$

$$
\begin{array}{ll}
\Rightarrow & \frac{64}{121}=\frac{B C^{2}}{E F^{2}} \Rightarrow \frac{64}{121}=\frac{B C^{2}}{(15.4)^{2}} \\
\Rightarrow & \frac{B C}{15.4}=\frac{8}{11} \\
\therefore & B C=\frac{8}{11} \times 15.4=11.2 \mathrm{~cm}
\end{array}
$$

Fig. 7.5
10. $\triangle A B C$ is right-angled at C.
$\therefore A B^{2}=A C^{2}+B C^{2}[B y$ Pythagoras theorem $]$
$\Rightarrow A B^{2}=A C^{2}+A C^{2}$
$[\because A C=B C]$
$\Rightarrow A B^{2}=2 A C^{2}$

Short Answer :

1. In $\triangle A B C$, we have

DE || BC,
$\therefore \frac{A D}{D B}=\frac{A E}{E C}$ [By Basic Proportionality Theorem]
$\Rightarrow \frac{x}{x-2}=\frac{x+2}{x-1}$
$\Rightarrow \mathrm{x}(\mathrm{x}-1)=(\mathrm{x}-2)(\mathrm{x}+2)$
$\Rightarrow x^{2}-x=x^{2}-4$
$\Rightarrow x=4$
2.

Fig. 7.11
We have, $\mathrm{PQ}=1.28 \mathrm{~cm}, \mathrm{PR}=2.56 \mathrm{~cm}$
$P E=0.18 \mathrm{~cm}, \mathrm{PF}=0.36 \mathrm{~cm}$
Now, $E Q=P Q-P E=1.28-0.18=1.10 \mathrm{~cm}$ and
$F R=P R-P F=2.56-0.36=2.20 \mathrm{~cm}$
Now, $\quad \frac{P E}{E Q}=\frac{0.18}{1.10}=\frac{18}{110}=\frac{9}{55}$
and, $\quad \frac{P F}{F R}=\frac{0.36}{2.20}=\frac{36}{220}=\frac{9}{55} \quad \therefore \quad \frac{P E}{E Q}=\frac{P F}{F R}$
Therefore, EF || QR [By the converse of Basic Proportionality Theorem]
3. Let $A B$ be a vertical pole of length $6 m$ and $B C$ be its shadow and $D E$ be tower and EF be its shadow. Join AC and DF.

Now, in $\triangle A B C$ and $\triangle D E F$, we have

$\Rightarrow \quad \frac{6}{h}=\frac{1}{7} \quad \Rightarrow h=42$
$h=42$ Hence, height of tower, $D E=42 \mathrm{~m}$
4.

MATHEMATICS TRIANGLES

Fig. 7.13
Firstly, in $\triangle A B C$, we have
LM || CB (Given)
Therefore, by Basic Proportionality Theorem, we have
$\frac{A M}{A B}=\frac{A L}{A C}$

Again, in $\triangle A C D$, we have

$$
L N \| C D \quad \text { (Given) }
$$

$\therefore \quad$ By Basic Proportionality Theorem, we have

$$
\begin{equation*}
\frac{A N}{A D}=\frac{A L}{A C} \tag{ii}
\end{equation*}
$$

Now, from (i) and (ii), we have $\frac{A M}{A B}=\frac{A N}{A D}$.
5. In $\triangle P O Q$, we have

DE || OQ (Given)
\therefore By Basic Proportionality Theorem, we have

$$
\begin{equation*}
\frac{P E}{E Q}=\frac{P D}{D O} \tag{i}
\end{equation*}
$$

Similarly, in $\triangle P O R$, we have

$$
\begin{align*}
& D F \| O R \\
& \frac{P D}{D O}=\frac{P F}{F R} \tag{ii}
\end{align*}
$$

(Given)

Fig. 7.14

Now, from (i) and (ii), we have

$$
\frac{P E}{E Q}=\frac{P F}{F R} \quad \Rightarrow \quad E F \| Q R
$$

[Applying the converse of Basic Proportionality Theorem in $\triangle P Q R$]
6.

Fig. 7.15
Given: $\triangle A B C$ in which D and E are the mid-points of sides $A B$ and $A C$ respectively.

To prove: DE || BC
Proof: Since D and E are the mid-points of $A B$ and $A C$ respectively
$\therefore A D=D B$ and $A E=E C$

$$
\begin{aligned}
& \Rightarrow \quad \frac{A D}{D B}=1 \quad \text { and } \quad \frac{A E}{E C}=1 \\
& \Rightarrow \quad \frac{A D}{D B}=\frac{A E}{E C}
\end{aligned}
$$

DB EC Therefore, DE || BC (By the converse of Basic Proportionality Theorem)
7. (i) In $\triangle A B C$ and $\triangle Q R P$, we have

$$
\frac{B C}{R P}=\frac{2.5}{5}=\frac{25}{50}=\frac{1}{2}
$$

Hence, $\frac{A B}{Q R}=\frac{A C}{Q P}=\frac{B C}{R P}$
$\therefore \triangle A B C \sim \triangle Q R P$, by SSS criterion of similarity.
(ii) In $\triangle L M P$ and $\triangle F E D$, we have

$$
\frac{L P}{F D}=\frac{3}{6}=\frac{1}{2}, \quad \frac{M P}{E D}=\frac{2}{4}=\frac{1}{2}, \quad \frac{L M}{F E}=\frac{2.7}{5}
$$

Hence, $\frac{L P}{F D}=\frac{M P}{E D} \neq \frac{L M}{F E}$
$\therefore \triangle L M P$ is not similar to $\triangle F E D$.
(iii) In $\triangle N M L$ and $\triangle P Q R$, we have

$$
\angle M=\angle Q=70^{\circ}
$$

Now, $\quad \frac{M N}{Q P}=\frac{2.5}{6}=\frac{5}{12} \quad$ and $\quad \frac{M L}{Q R}=\frac{5}{10}=\frac{1}{2}$

MATHEMATICS TRIANGLES

Hence, $\frac{M N}{Q P} \neq \frac{M L}{Q R}$
$\triangle N M L$ is not similar to $\triangle P Q R$.
8.

In $\triangle A O B$ and $\triangle C O D$, we have

$$
\angle A O B=\angle C O D \quad[\text { Vertically opposite angles }]
$$

$\Rightarrow \quad \frac{A O}{O C}=\frac{B O}{O D}$
[Given]
So, by $S A S$ criterion of similarity, we have

Fig. 7.17
$\Rightarrow \quad \frac{A O}{O C}=\frac{B O}{O D}=\frac{A B}{D C} \quad \Rightarrow \quad \frac{1}{2}=\frac{5}{D C} \quad[\because A B=5 \mathrm{~cm}]$
$\Rightarrow D C=10 \mathrm{~cm}$.
9.

In $\triangle A B E$ and $\triangle C F B$, we have
$\angle A E B=\angle C B F$ (Alternate angles)
$\angle A=\angle C$ (Opposite angles of a parallelogram)
$\therefore \triangle \mathrm{ABE} \sim \triangle \mathrm{CFB}$ (By AA criterion of similarity)
10.

In $\triangle R P Q$ and $\triangle R T S$, we have

MATHEMATICS TRIANGLES

$\angle R P Q=\angle R T S$ (Given)
$\angle P R Q=\angle T R S=\angle R$ (Common)
$\therefore \triangle R P Q \sim \Delta R T S ~(B y ~ A A ~ c r i t e r i o n ~ o f ~ s i m i l a r i t y) ~$

Long Answer :

1.

Given: $A \triangle A B C$ in which D is the mid-point of $A B$ and $D E$ is drawn parallel to $B C$, which meets $A C$ at E.

To prove: $\mathrm{AE}=\mathrm{EC}$
Proof: In $\triangle A B C, D E| | B C$
\therefore By Basic Proportionality Theorem, we have
$\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AAND}}{\text { ANDC }} \ldots$ (i)
Now, since D is the mid-point of $A B$
$\Rightarrow A D=B D$
From (i) and (ii), we have
$\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AAND}}{\mathrm{ANDC}}$
$\Rightarrow 1=\frac{A A N D}{A N D C}$
Hence, E is the mid-point of AC .
2. Given: $A B C D$ is a trapezium, in which $A B|\mid D C$ and its diagonals intersect each other at point O .

To prove: $\quad \frac{A O}{B O}=\frac{C O}{D O}$
Construction: Through O, draw $O E \| A B$ i.e., $O E \| D C$.
Proof: In $\triangle A D C$, we have $O E \| D C$ (Construction)
$\therefore \quad$ By Basic Proportionality Theorem, we have

$$
\begin{equation*}
\frac{A E}{E D}=\frac{A O}{C O} \tag{i}
\end{equation*}
$$

Now, in $\triangle A B D$, we have $O E \| A B \quad$ (Construction)
$\therefore \quad$ By Basic Proportionality Theorem, we have

Fig. 7.35

$$
\begin{equation*}
\frac{E D}{A E}=\frac{D O}{B O} \Rightarrow \frac{A E}{E D}=\frac{B O}{D O} \tag{ii}
\end{equation*}
$$

From (i) and (ii), we have

$$
\frac{A O}{C O}=\frac{B O}{D O} \Rightarrow \frac{A O}{B O}=\frac{C O}{D O}
$$

3. In $\triangle A B D$ and $\triangle P Q M$ we have
$\angle B=\angle Q(\because \triangle A B C \sim \triangle P Q R) \ldots$ (i)

$$
\begin{align*}
& \frac{A B}{P Q}=\frac{B C}{Q R} \\
\Rightarrow \quad & \frac{A B}{P Q}=\frac{\frac{1}{2} B C}{\frac{1}{2} Q R} \tag{ii}
\end{align*}
$$

Fig. 7.36
[Since $A D$ and $P M$ are the medians of $\triangle A B C$ and $\triangle P Q R$ respectively]
From (i) and (ii), it is proved that

$$
\begin{array}{ll}
& \triangle A B D \sim \triangle P Q M \\
\Rightarrow \quad & \frac{A B}{P Q}=\frac{B D}{Q M}=\frac{A D}{P M} \quad \Rightarrow \quad \frac{A B}{P Q}=\frac{A D}{P M}
\end{array} \quad \text { (By SAS criterion of similarity) }
$$

4. In $\triangle E D C$ and $\triangle E B A$ we have
$\angle 1=\angle 2$ [Alternate angles]
$\angle 3=\angle 4$ [Alternate angles]
$\angle C E D=\angle A E B$ [Vertically opposite angles]
$\therefore \Delta \mathrm{EDC} \sim \triangle \mathrm{EBA}$ [By AA criterion of similarity]

$$
\begin{equation*}
\Rightarrow \quad \frac{E D}{E B}=\frac{E C}{E A} \Rightarrow \frac{E D}{E C}=\frac{E B}{E A} \tag{i}
\end{equation*}
$$

It is given that $\triangle A E D \sim \triangle B E C$

$$
\begin{equation*}
\therefore \quad \frac{E D}{E C}=\frac{E A}{E B}=\frac{A D}{B C} \tag{ii}
\end{equation*}
$$

From (i) and (ii), we get

Fig. 7.37

$$
\frac{E B}{E A}=\frac{E A}{E B} \quad \Rightarrow \quad(E B)^{2}=(E A)^{2} \quad \Rightarrow \quad E B=E A
$$

Substituting $E B=E A$ in (ii), we get

$$
\frac{E A}{E A}=\frac{A D}{B C} \quad \Rightarrow \quad \frac{A D}{B C}=1 \quad \Rightarrow \quad A D=B C
$$

5.

Given: $A \triangle A B C$ in which $\angle A B C=90^{\circ}$ and $A B=B C$.
$\triangle \mathrm{ABD}$ and $\triangle \mathrm{CAE}$ are equilateral triangles.
To Prove: $\operatorname{ar}(\triangle A B D)=\frac{1}{2} \times \operatorname{ar}(\triangle C A E)$
Proof: Let $A B=B C=x$ units.
\therefore hyp. $C A=\sqrt{ } x^{2}+\sqrt{ } x^{2}=x \sqrt{ } 2$ units.
Each of the $A B D$ and $\triangle C A E$ being equilateral has each angle equal to 60°.
$\therefore \triangle \mathrm{ABD} \sim \triangle \mathrm{CAE}$
But, the ratio of the areas of two similar triangles is equal to the ratio of the squares of their corresponding sides.

$$
\therefore \quad \frac{\operatorname{ar}(\triangle A B D)}{\operatorname{ar}(\triangle C A E)}=\frac{A B^{2}}{C A^{2}}=\frac{x^{2}}{(x \sqrt{2})^{2}}=\frac{x^{2}}{2 x^{2}}=\frac{1}{2}
$$

Hence, $\operatorname{ar}(\triangle A B D)=\frac{1}{2} \times \operatorname{ar}(\triangle C A E)$
6.

MATHEMATICS TRIANGLES

Given: Two triangles $A B C$ and $D E F$, such that
$\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$ and area $(\triangle \mathrm{ABC})=\operatorname{area}(\triangle \mathrm{DEF})$
To prove: $\triangle A B C \cong \triangle D E F$
Proof: $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$
$\Rightarrow \angle A=\angle D, \angle B=\angle E, \angle C=\angle F$
and $\quad \frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F}$
Now, $\quad \operatorname{ar}(\triangle A B C)=\operatorname{ar}(\triangle D E F) \quad$ (Given)
$\therefore \quad \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D E F)}=1$
and

$$
\frac{A B^{2}}{D E^{2}}=\frac{B C^{2}}{E F^{2}}=\frac{A C^{2}}{D F^{2}}=\frac{a r(\triangle A B C)}{\operatorname{ar}(\triangle D E F)} \quad(\because \triangle A B C \sim \triangle D E F)
$$

From (i) and (ii), we have

$$
\frac{A B^{2}}{D E^{2}}=\frac{B C^{2}}{E F^{2}}=\frac{A C^{2}}{D F^{2}}=1 \quad \Rightarrow \quad \frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F}=1
$$

$A B=D E, B C=E F, A C=D F$
$\triangle A B C \cong \triangle D E F$ (By SSS criterion of congruency)
7. Let $\triangle A B C$ and $\triangle P Q R$ be two similar triangles. $A D$ and $P M$ are the medians of $\triangle A B C$ and $\triangle P Q R$ respectively.

To prove: $\quad \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{A D^{2}}{P M^{2}}$
Proof: Since $\triangle A B C \sim \triangle P Q R$

$$
\begin{equation*}
\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{A B^{2}}{P Q^{2}} \tag{i}
\end{equation*}
$$

Fig. 7.40

MATHEMATICS TRIANGLES

In $\triangle A B D$ and $\triangle P Q M$

$$
\frac{A B}{P Q}=\frac{B D}{Q M} \quad\left(\because \frac{A B}{P Q}=\frac{B C}{Q R}=\frac{\frac{1}{2} B C}{\frac{1}{2} Q R}\right)
$$

and

$$
\angle B=\angle Q \quad(\because \quad \triangle A B C \sim \triangle P Q R)
$$

Hence, $\triangle A B D \sim \triangle P Q M$

$$
\begin{equation*}
\frac{A B}{P Q}=\frac{A D}{P M} \tag{ii}
\end{equation*}
$$

(By SAS similarity criterion)

From (i) and (ii), we have

$$
\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{A D^{2}}{P M^{2}}
$$

8.

Fig. 7.41
Join OA, OB and OC.
(i) In right Δ^{\prime} 's OFA, ODB and OEC, we have
$O A^{2}=A F^{2}+O F^{2}$
WHETHER2 $=$ BD $^{2}+$ FROM 2
and $\mathrm{C}^{2}=\mathrm{EC}^{2}+\mathrm{OE}^{2}$
Adding (i), (ii) and (iii), we have

$$
\begin{aligned}
& \Rightarrow O A^{2}+O B^{2}+O C^{2}=A F^{2}+B D^{2}+E C^{2}+O F^{2}+F R O M^{2}+O E^{2} \\
& \Rightarrow O A^{2}+O B^{2}+O C^{2}-I P^{2}-O E^{2}-O F^{2}=A F^{2}+B D^{2}+E C^{2}
\end{aligned}
$$

(ii) We have, $O A^{2}+O B^{2}+O C^{2}-I P 2-O E^{2}-O F^{2}=A F 2+B D^{2}+E C^{2}$
$\Rightarrow\left(O A^{2}-O E^{2}\right)+\left(O B^{2}-O F^{2}\right)-\left(O C^{2}-I P^{2}\right)=A F^{2}+B D^{2}+E C^{2}$
$\Rightarrow A E^{2}+C D^{2}+B F^{2}=A P^{2}+B D^{2}+E C^{2}$
[Using Pythagoras Theorem in $\triangle \mathrm{AOE}, \triangle \mathrm{BOF}$ and $\triangle C O D$]
9.

Fig. 7.42
We have, $D B=3 C D$
Now,

$$
\begin{aligned}
& B C=B D+C D \\
& \Rightarrow B C=3 C D+C D=4 C D(\text { Given } D B=3 C D) \\
& \therefore C D=\frac{1}{4} B C \\
& \text { and } D B=3 C D=\frac{1}{4} B C
\end{aligned}
$$

Now, in right-angled triangle ABD using Pythagoras Theorem we have

$$
\begin{equation*}
A B^{2}=A D^{2}+D B^{2} \tag{i}
\end{equation*}
$$

Again, in right-angled triangle $\triangle A D C$, we have

$$
\begin{equation*}
A C^{2}=A D^{2}+C D^{2} \tag{ii}
\end{equation*}
$$

Subtracting (ii) from (i), we have

$$
A B^{2}-A M^{2}=D B^{2}-C D^{2}
$$

$$
\begin{aligned}
& \Rightarrow \quad A B^{2}-A C^{2}=\left(\frac{3}{4} B C\right)^{2}-\left(\frac{1}{4} B C\right)^{2}=\left(\frac{9}{16}-\frac{1}{16}\right) B C^{2}=\frac{8}{16} B C^{2} \\
& \Rightarrow \quad A B^{2}-A C^{2}=\frac{1}{2} B C^{2}
\end{aligned}
$$

$\therefore 2 A B^{2}-2 A M^{2}=B C^{2}$

$$
\Rightarrow 2 \mathrm{AB}^{2}=2 \mathrm{AM}^{2}+\mathrm{BC}^{2}
$$

10.

MATHEMATICS TRIANGLES

Let $A B C$ be an equilateral triangle and let $A D \perp B C$.
$\therefore \mathrm{BD}=\mathrm{DC}$
Now, in right-angled triangle ADB, we have
$A B^{2}=A D^{2}+B D^{2}$ [Using Pythagoras Theorem]

$$
\begin{aligned}
& \Rightarrow \quad A B^{2}=A D^{2}+\left(\frac{1}{2} B C\right)^{2} \Rightarrow \quad A B^{2}=A D^{2}+\frac{1}{4} B C^{2} \\
& \Rightarrow \quad A B^{2}=A D^{2}+\frac{A B^{2}}{4} \quad[\because A B=B C] \\
& \Rightarrow \quad A B^{2}-\frac{A B^{2}}{4}=A D^{2} \quad \Rightarrow \quad \frac{3 A B^{2}}{4}=A D^{2} \quad \Rightarrow \quad 3 A B^{2}=4 A D^{2}
\end{aligned}
$$

Case Study Answers:

1. Answer:

i	c	90ϱ
ii	b	SAS
iii	b	$4: 9$
iv	d	The converse of Pythagoras theorem
v	a	$48 \mathrm{~cm}^{2}$

2. Answer:

i	b	$A B, A C$
ii	d	$A B^{2}=B C^{2}+C A^{2}$
iii	c	6.5 m
iv	b	10 m
v	a	6.7 m (approx)

Assertion Reason Answer-

1. (d) Assertion (A) is false but reason (R) is true
2. (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
