$$
a_{n}=n^{n^{\text {th }} \text { tum }}
$$

am (some function of ' $n$ ')
En

$$
\begin{aligned}
& a_{1}=1^{2}=1 \\
& a_{2}=2^{2}=4 \\
& a_{3}=3^{2}=9
\end{aligned}
$$

Sum of $n$ terms

$$
\begin{aligned}
& S_{n}=a_{1}+a_{2}+a_{3}+\cdots \cdots+a_{n} \\
& S_{n}=\sum_{\gamma=1}^{n} a_{\gamma}^{\gamma}
\end{aligned}
$$

Ens $\quad a_{n}=2 n+5$, Find First 3 terms

$$
\begin{aligned}
& a_{n}=\frac{a n+b}{\sqrt{A P}} \\
& a_{n}=a_{n}+(n-1) d \\
& a+n d-d \\
& a_{n}=a-d+n d \\
& a_{n}=A+B n
\end{aligned}
$$

Ex .3-

$$
\begin{array}{lr}
a_{1}=1 & a_{n}=a_{n-1}+2 \\
a_{2}=a_{1+2} & n=3 \\
a_{2}=1+2 & a_{3}=a_{2}+ \\
a_{2}=3 & a_{3}=3 \\
a_{3}=5
\end{array}
$$

Sequence

$$
3,11,35,107,323
$$

$\qquad$
Q14. Fibonacci.. (Naturally occuring series) Youtuke $\rightarrow \rightarrow$ Golden Raction $\underset{\text { Pisneys }}{ }$

$$
\left.\begin{array}{rlrl}
a_{1}=1 & a_{2}=1 & a_{n} & =a_{n-1}+a_{n-2}
\end{array}\right)
$$

$$
1,1,2,3,5,8,13,21,84,55, \ldots \ldots
$$

term.

$$
\begin{aligned}
& a_{m}=n \\
& \text { Ap … } a, d \text { variables } \\
& a_{p}=a+(p-1) d ? ?
\end{aligned}
$$

$$
\begin{aligned}
& a_{3}=(-1)^{2} 5^{4}=625 \\
& a_{4}=-3125 \\
& a_{5}=\quad+15,625 \\
& \text { Q } 8 \rightarrow \\
& \text { Q11 } \quad a_{1}=3 \quad a_{n}=3 a_{n-1}+2 \quad n>1 \\
& a_{2}=3 a_{1}+2 \\
& =3(3)+2 \\
& =11 \\
& a_{3}=3(1)+2 \quad a_{4}=3(35)+2 \\
& =35=107 \\
& a_{5}=3(107)+2 \\
& =323
\end{aligned}
$$

$$
\begin{align*}
& a_{m}=n  \tag{1}\\
& a_{n}=m
\end{aligned} \quad \begin{aligned}
& a+(m-1) d=n \\
& \frac{a d-(n-1) d-n d+d}{}=m=n-m \\
& \frac{(m-n)}{d=-1}-(m-n)
\end{align*}
$$

$$
\begin{equation*}
a_{p}=a+(p-1) d ? ? \tag{2}
\end{equation*}
$$

(1)-(2) from (1) \& (3)

$$
\begin{aligned}
& a+(m-1)(-1)=n \\
& a-m+1=n \\
& a=m+n-1
\end{aligned}
$$

$$
\begin{aligned}
p^{\text {th }} \text { ferm } & a_{p}=a_{+}(p-1) d \\
& =(n+n-1)+(p-1)(-1) \\
& =m+n+1-p+4 \\
a_{p} & =m+n-p
\end{aligned}
$$

Ex6
where PeQ are some constants...

$$
\begin{aligned}
& S_{1}=a_{1}=1(p)+\frac{1}{2}(1)(0) Q \\
& S_{1}=a_{1}=P-(1)
\end{aligned}
$$

$$
\begin{align*}
& S_{2}=a_{1}+a_{2}=2 P+\frac{1}{2} Q(1) Q \\
& S_{2}=a_{1}+a_{2}=2 P+Q(2)  \tag{2}\\
& S_{3}=a_{1}+a_{2}+a_{3}=3 P+\frac{1}{2} \cdot 3 \cdot 2 \cdot Q=3 P+3 Q
\end{align*}
$$

from (1) \& (2)

$$
a_{1}, a_{2}, a_{3}, \quad a=P
$$

$$
\begin{array}{ll}
a_{1}, a_{2}, a_{3}, & a=P \\
P, P+Q, P+2 Q & d=Q
\end{array}
$$

AHennate.... (Method of differences)

$$
\begin{array}{lll}
s_{1}=P & \Rightarrow a_{1}=s_{1}=P & d=a_{2}-a_{1}=Q \\
s_{2}=2 P+Q & a_{2}=s_{2}-s_{3}=P+Q & d=a_{3}-a_{2}=Q \\
s_{3}=3 P+3 Q & a_{3}=s_{3}-s_{2}=P+2 Q & \\
s_{4}=Q+6 Q & a_{4}=s_{4}-s_{3}=P+3 Q & d=a_{4}-a_{3}=Q
\end{array}
$$

Example 6 ...

$$
\left.\begin{array}{rl}
\frac{S_{n}^{1}}{S_{n}^{2}} & =\frac{3 n+8}{7 n+15} \\
\frac{n\left(2 a_{1}+(n-1) d_{1}\right)}{\frac{n}{2}\left(2 a_{2}+(n-1) d_{2}\right)} & =\frac{3 n+8}{7 n+15} \\
\frac{n=23}{7}
\end{array}\right) \$ \$
$$

To find Ratio of

$$
\frac{a_{12}^{1}}{a_{12}^{2}}=\frac{a_{1}+11 d_{1}}{a_{2}+11 d_{2}}
$$

$$
\frac{2 a_{1}+22 d_{1}}{2 a_{2}+22 d_{2}}=\frac{3(23)+8}{7(23)+15}
$$

$$
\begin{aligned}
& A P_{2}=a_{2} \& d_{2} \\
& S_{n}=\frac{n}{2}(2 a+(n-1) d)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{a_{1}+11 d_{1}}{a_{2}+11 d_{2}}=\frac{77}{16}+\frac{\frac{15}{161}}{16}
\end{aligned}
$$

Extra

$$
\begin{array}{lr}
\frac{a_{17}^{\prime}}{a_{17}^{2}}=? ? & \text { w. have } \\
\frac{a_{1}+16 d_{1}}{a_{2}+16 d_{2}} & \text { put }
\end{array}
$$

Ex8 lnsert $G$ number b/w $3224^{-x} \rightarrow A^{x} \rightarrow a, d$

$$
\begin{aligned}
& 3, A_{1}, A_{2}, \ldots, A_{6}, 24 \\
& a_{1}=3 \\
& a_{8}=24 \\
& a_{2}=A_{1}=6 a+d=3+3=6 \\
& a=3 \\
& a_{3}=A_{2}=a+2 d=3+2(3)=9 \\
& a+7 d=24-(2) \\
& A_{3}=12 \\
& 7 d=21 \\
& d=3 \\
& A_{4}=15 \\
& A_{5}=18 \\
& A_{6}=21
\end{aligned}
$$

Encerase 9.2
$A P \rightarrow a, d$
$Q_{5} \rightarrow \quad a_{p}=\frac{1}{q}$

$$
S_{p q}=\frac{1}{2}(p q+1)
$$

$\frac{G i v e n . .}{p \neq q}$
from (3) (1)

$$
a_{q}=\frac{1}{p}
$$

$$
\begin{aligned}
& \text { from (b) e(1) } \\
& a+(p-1) \frac{1}{p q}=\frac{1}{q} \\
& a=\frac{1}{q}-\frac{(p-1)}{p q} \\
& a=\frac{k-k+1}{p q} \\
& a=\frac{1}{P q} \quad-(u) \\
& a)+(q-1) d=\frac{1}{p} \\
& p d-\alpha-q d+\alpha=\frac{1}{q}-\frac{1}{p} \\
& d(p-q)=\frac{(p-q)}{p q} \\
& d=\frac{1}{p q} \\
& S_{n}=\frac{D}{2}(2 a+(n-1) d) \\
& S_{p q}=\frac{p q}{2}\left(2\left(\frac{1}{p q}\right)+(p q-1) \frac{1}{p q}\right) \\
& s_{p q}=\frac{p q}{2}\left(\frac{2}{p q}+1-\frac{1}{p q}\right) \\
& S_{p q}=\frac{p q}{2}\left(\frac{1}{p q}+1\right) \\
& S_{p q}=\frac{1}{2}(1+p q)=\frac{1}{2}(p q+1) \\
& Q 6 \rightarrow \text { AP: } 25,22,19, \cdots \Leftrightarrow a=25 \\
& S_{n}=116 \\
& d=-3 \\
& n=? ? \quad \frac{n}{2}(2 a+(n-1) d)=116 \\
& \frac{n}{2}(2(25)+(n-1)(-3))=116 \\
& \frac{n}{2}(50-3 n+3)=116 \\
& n(53-3 n)=232 \\
& 53 n-3 n^{2}=232 \\
& 3 n^{2}-53 n+232=0 \\
& n=8 \\
& \varepsilon_{x} \\
& 4,2,0,-2 \text {, } \\
& \left.\begin{array}{l}
S_{1}=4 \\
S_{4}=4
\end{array}\right\} \\
& n=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& n=\frac{(-5) \pm \sqrt{(-53)^{2}-4(3)(322)}}{2(3)} \\
& n=\frac{53 \pm \sqrt{2809-2784}}{6}
\end{aligned}
$$

$$
\begin{aligned}
& n=8 \\
& a_{8}=a+7 d \\
&=25+7(-3) \\
&=25 e-2) \\
&=4
\end{aligned}
$$

$$
\begin{aligned}
& \frac{6}{6} \quad \frac{n=\frac{58}{6} \text { or }}{\frac{n=98}{6}} \frac{\frac{48}{6}}{x} \\
& \\
&
\end{aligned}
$$

Q8 $\quad S_{n}=p n+q n^{2}$
M)

$$
\begin{aligned}
& s_{1}=p+q \\
& \left.\left.\begin{array}{l}
s_{2}=2 p+4 q \\
s_{3}=3 p+9 q
\end{array}\left\{\begin{array}{l}
a_{1}=p+q \\
a_{2}=s_{2}-s_{1}=p+3 q \\
a_{3}=s_{3}-s_{2}=p+5 q
\end{array}\right\} \begin{array}{l}
d_{1}=a_{2}-a_{1}=2 q \\
S_{4}=4 p+16 q \\
s_{5}=5 p+25 q
\end{array}\right\} \begin{array}{l}
a_{4}=s_{4}-s_{3}=p+70 q
\end{array}\right\} d_{2}=a_{3}-a_{2}=2 q \\
& \vdots
\end{aligned} \begin{aligned}
& d=2 q
\end{aligned}
$$

Q10... $\quad A P \rightarrow a, d$
Sum of $p$ terms of an AP $=$ Sum of $q$ terms on an AP

$$
\begin{align*}
& S_{p}=S_{q} \\
& \frac{p}{2}(2 a+(p-1) d)=\frac{q}{2}(2 a+(q-1) d) \quad\left(\begin{array}{ll}
a>0 \\
d<0
\end{array}\binom{a<0}{d>0}\right. \\
& 2 a p+p(p-1) d=2 a q+q(q-1) d \\
& 2 a(p-q)=\left(q^{2}-q-p^{2}+p\right) d \\
& 2 a(p-q) \Rightarrow-\left(p^{2}-q^{2}+p-q\right) d \\
& s_{p+q}=? ? \quad 2 a(p-q)=-((p-q)(p+q)+(p-q)) d \underline{y} \\
& 2 a(p q)=-(p q)\{p+1\} d \\
& \frac{2 a=-(p q+1) d}{-1-1} \tag{1}
\end{align*}
$$

$$
\begin{aligned}
& S_{n}=\frac{n}{2}(2 q+(n-1) d) \\
& S_{p+q}=\frac{p+q}{2}\{(-1+q) d+(p+q-y) d\} \\
& S p+q=0
\end{aligned}
$$

$$
\begin{aligned}
& a_{p}=a \\
& a_{q}=b \\
& \text { (3) (1) } \Rightarrow\left\{\begin{array}{l}
A+(p-1) D=a \\
A+(q-p) D=(-a) D=b \quad(2)(p-q) D=a-b \\
p-q=\frac{a-b}{D}
\end{array}\right. \\
& a_{r}=c \quad(\gamma-p)=\frac{c-a}{D}-(B+(r-1) D=C \\
& \text { (3) }\}(q-\gamma) \frac{D=b-c}{q-\gamma=\frac{b-c}{b}} \\
& \text { LHS }=\frac{\text { Prove }}{\frac{a}{p}(q-\gamma)}+\frac{b}{q}(\gamma-p)+\frac{c}{\gamma}(p-q)
\end{aligned}
$$

from (1)(2) 8 (b)

$$
\left.\left.\% \frac{A+(p-1) D}{p}\right)(q-\gamma)+\frac{(A+(q-1) D}{q}\right)(\gamma-p)+\left(\frac{A+(\gamma-1) D)}{\gamma}(p-q)\right.
$$

Atermate.... $=$ from (1) $(2)$ \& $(3)$

$$
\frac{a}{P} \frac{(b-c)}{D}+\frac{b}{q} \frac{(c-a)}{D}+\frac{c}{\gamma}\left(\frac{(a-b)}{D}\right.
$$

(1) $A+(p-1) D=a$

$$
\begin{aligned}
& (p-1) D=a-A \\
& (P-1)=\frac{a-A}{D} \\
& P=\frac{a-A}{D}+1
\end{aligned}
$$

Q15-

$$
\begin{array}{cr}
A M=\frac{a^{n}+b^{n}}{a^{n-1}+b^{n 1}} & \text { for } a \& b
\end{array} \quad n=? ?
$$

AM of $a \& b$ is $\frac{a+b}{2}$

$$
\begin{aligned}
& \frac{a^{n}+b^{n}}{a^{n-1}+b^{n-1}}=\frac{a+b}{2} \\
& 2 a^{n}+2 b^{n}=(a+b)\left(a^{n-1}+b^{n-1}\right) \\
& 2 a^{n}+2 b^{n}=a^{n}+a^{n-1} b+b^{n-1} a+b^{n} \\
& a^{n}+b^{n}=a^{n-1} b+b^{n-1} a \\
& a^{n}-a^{n-1} b \\
& a^{n-1}(a-b)=b^{n-1} a-b^{n} \\
& \left(\frac{a^{n-1}}{b}\right)^{n-1}=b^{n-1}=1 \\
& \left(\frac{a}{b}\right)^{n-1} \\
& \left(\frac{a}{b}\right)^{n-1}=1
\end{aligned} \quad \begin{aligned}
& \text { a } \\
& \left.a^{n}\right)^{0}
\end{aligned}
$$

