
CH
IN
M
AY

DA
M
LE

Chinmay Damle’s

MATHEMATICS & GUIDANCE

ACADEMY

Understanding Calculus

(Limits, Derivatives and Integration)

. By Chinmay Damle



CH
IN
M
AY

DA
M
LE

1 Calculus

Calculus is the mathematics of change. For instance, calculus is the math-

ematics of velocities, acceleration, tangent lines, slopes, areas, volumes, arc

lengths, centroids, curvatures and a variety of concepts that have enabled sci-

entists and engineers, and economists to model real life situation. Calculus

is introduced to everyone in higher school mathematics.

Although Pre-calculus mathematics which is introduced in schools also

deals with velocities, accleration, slopes, etc. Per-calculus mathematics is

more static, whereas calculus is more dynamic. One way to answer ” What

is Calculus?” is to say that calculus is a ”limit machine” that involves three

stages. The first stage is pre-calculus mathematics, such as the slope of a line

or area of rectangle. The second stage is the limiting process and the third

stage is a new calculus formulation such as derivative or integral.

The concepts we take for granted today were not accepted by the historical

mathematicians. The key ingredient missing in mathematical antiquity was

the hairy notion of infinity. Mathematicians and philosophers of the time had

an extremely hard time conceptualizing infinitely small or large quantities.

Sir Issac Newton and Gottfried Wilhelm Leibniz were the first to individually

introduce and develop the concept of Calculus. The development of calculus

was built on earlier concepts of instantaneous motion and area under the

curve. Although the concept similar to calculus has a long history dating

back to 2nd century BC. In modern world calculus is divided as Differential

calculus (derivatives) and Integral calculus (integration).
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2 Limits

Limit in literal meaning is defined as ’The greatest possible degree of some-

thing’.

Let’s investigate the behaviour of the function f defined by f(x) = x2−1
x−1 for

value of x near 1. The following table gives values of f(x) for values of x close

to 1 but not equal to 1.

x, (x < 1) f(x) x, (x > 1) f(x)

−3 −2 1.00001 2.00001

−2 −1 1.0001 2.0001

−1 0 1.001 2.001

0 1 1.01 2.01

0.5 1.5 1 2

0.9 1.9 1.5 2.5

0.99 1.99 2 3

0.999 1.999 2.5 3.5

0.9999 1.9999 3 4

Limit of a function is denoted as lim
x→a

f(x) = L and said as the limit of

f(x), as x approaches a , equals L.
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Limit is mathematically defined as, for any chosen positive integer ε, how-

ever small, there exists a positive number δ such that, whenever 0 < |x−a| <
δ, then |f(x)− L| < ε.

The laws of Limit: If L,M, k and c are real numbers and

lim
x→c

f(x) = L and lim
x→c

g(x) = M then

1. lim
x→c

[f(x)± g(x)] = L±M

2. lim
x→c

[k · f(x)] = k · L

3. lim
x→c

[f(x) · g(x)] = L ·M

4. lim
x→c

f(x)
g(x) = L/M, M 6= 0

5. lim
x→c

[f(x)]n = Ln, n a positive integer.

6. lim
x→c

[f(x)](1/n) = L(1/n), n a positive integer.

7. lim
x→c

P (x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 = P (c) =

anc
n + an−1c

n−1 + · · ·+ a1c+ a0

8. If P (x) and Q(x) are polynomials and Q(c) 6= 0, then

lim
x→c

P (x)
Q(x) = P (c)

Q(c)

[JAHAAN JAHAAN x WAHAAN WAHAAN c]

Suppose Q(c) = 0, then (x− c) is a factor of Q(x). Thus, if the numerator

and denominator of a rational function of x are both zero at x = c,they have

(x− c) as a common factor common factor.

[While solving Limits first always look at the denominator and make sure

it is not getting zero by cancelling out the common factor.]
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Two sided Limits: To have a limit L as x approaches c, a function f

must be defined on both sides of c and its values f(x) must approach L as

x approaches c from either side. Because of this, ordinary limits are called

two-sided.

If f fails to have a two-sided limit

at c, it may still have a one-sided

limit, that is, a limit if the approach

is only from one side. If the approach

is from the right, the limit is a right-

hand limit. From the left, it is a left-hand limit.

A function f(x) has a limit as x approaches c if and only if it has left-hand

and right-hand limits there and these one-sided limits are equal.

lim
x→c+

f(x) = lim
x→c−

f(x) = lim
x→c

f(x) = L

lim
x→a

K = K lim
x→a

xn = an, n ∈ R

lim
x→a

xn−an
x−a = nan−1, n ∈ Q, a > 0 lim

x→0

(1+x)n−1
x = n

lim
x→0

sinx
x = 1 = lim

x→0

x
sinx = lim

x→0

tanx
x lim

x→0

sin−1 x
x = 1 = lim

x→0

tan−1 x
x

lim
x→0

ax−1
x = loge a, a > 0 lim

x→0

ex−1
x = loge e = 1

lim
x→0

(1 + x)1/x = e lim
x→0

log(1+x)
x = 1

lim
x→0

ex−1
x = 1 lim

x→∞
(1 + 1/x)x = e

lim
x→∞

(1 + a/x)x = ea lim
x→∞

ef(x) = e
lim
x→a

f(x)

Examples:

1. Evaluate lim
x→1

x2 + 6x− 1

Solution: Let L = lim
x→1

x2 + 6x− 1 = 12 + 6(1)− 1 = 6

2. Evaluate : lim
x→1

x2+x−2
x2−x

Page 6



CH
IN
M
AY

DA
M
LE

Solution: (Whenever we are going to solve the problem of Limits always

first look at the denominator, assure that it is not getting zero. If it is

getting zero modify it. That is cancel the cancellation factor which is

present in both numerator and denominator, here (x− 1) is the factor)

Let L = lim
x→1

x2+x−2
x2−x = lim

x→1

(x+2)(x−1)
x(x−1) = lim

x→1

x+2
x = 1+2

1 = 3

3. lim
t→0

√
t2+9−3
t2

Solution: (Tip: Whenever we see square root in the problem first thought

that should come to your mind is to take the conjugate.)

Let L = lim
t→0

√
t2+9−3
t2

L = lim
t→0

√
t2+9−3
t2 ·

√
t2+9+3√
t2+9+3

= lim
t→0

(t2+9)−9
t2
√
t2+9+3

= lim
t→0

t2

t2
√
t2+9+3

= lim
t→0

1√
t2+9+3

. = 1
lim
t→0

√
t2+9+3

= 1√
0+9+3

= 1
6

4. Prove that lim
x→0

|x|
x does not exist.

Solution: Right hand Limit (RHL): lim
x→0+

|x|
x = lim

x→0

x
x = 1

Left hand Limit (LHL): lim
x→0−

|x|
x = lim

x→0

−x
x = −1

Here, LHL 6= RHL so the limit does not exist.
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3 Differentiation( derivatives or rate)

A derivative describes change that is dependent on a variable, such as the

change of temperature in a month or the change in price of an item based

on the quantity sold. The concept of rate is studied throughout mathematics

in different forms. Rates can also be used to describe changes in an environ-

ment or physical setting. For example, two hundred additional employees are

needed for every 8 per- cent increase in demand for the companys products.

When driving along a mountain terrain, a road sign that mentions a 5 percent

grade means that there is a change in elevation of five vertical feet for every

one hundred horizontal feet. Many scientific, engineering, and human mea-

sures are rates. Density is a weight-per-volume measure such as pounds per

cubic foot or grams per cubic centimeter. Sound frequencies, such as those

associated with musical notes, are expressed as rates in cycles per second.

Air pressure, such as tire pressure, is expressed as pounds per square inch.

Rate, in mathematics courses through algebra, is often presented as having

a constant value. When you read about the speed of an object or a persons

work wages, it is assumed that there will not be any change in these values.

In such cases, the rate can be represented as the slope of a linear function

that describes a total amount.

Realistically, rates are often variable, meaning that they change. A car on

the highway will not always travel 55 miles per hour because of varying road

conditions. If traffic is heavy due to rush hour or an accident, the car will

likely slow down at times. Therefore the average rate is sometimes stated

in reports. The average (mean) rate can be calculated by finding the slope

between beginning and ending points on the graph that represents a total

amount. For example, if a car is traveling at a constant speed of 55 miles

per hour, then the total distance travelled as a function of time would be
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a linear function with a slope of 55. However, if the car varies its speed,

the total distance function will now look like a curve that does not have a

constant slope. If a car travels for three hours on the highway, the average

speed can be determined by finding the slope of the line that time equals 0

and 3 hours. According to the slope between the endpoints in the graph in

the figure below, the average speed during the three hours is 49 miles per

hour, since the change in distance was 147 miles over three hours.

The Tangent Line to the curve y = f(x)

at the point P (a, f(a)) is the line through P

with the slope m = lim
x→a

f(x)−f(a)
x−a provided the

limit exists.

In general, suppose an object moves along

a straight line according to an equation of motion s = f(t), where s

is the displacement (directed distance) of the object from the origin at

time t . The function f that describes the motion is called the posi-

tion function of the object. In the time interval from t = a to t =

a + h the change in position is f(a + h) − f(a) The average velocity

over this time interval is average velocity = displacement
time = f(a+h)−f(a)

h .

Now suppose we compute the average ve-

locities over shorter and shorter time inter-

vals [a,a+h]. In other words, we let h ap-

proach 0. As in the example of the falling

ball, we define the velocity (or instantaneous

velocity) v(a) at time t = a to be the limit of these average velocities:

v(a) = lim
h→0

f(a+h)=f(a)
h . This means that the velocity at time t = a is equal to

the slope of the tangent line at P .

Calculating the derivatives:
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The derivative of the function f(x) with respect to the variable x is the func-

tion f ′ whose value at x is

. f ′(x) = lim
h→0

f(x+h)−f(x)
h

provided the limit exists.

A function y = f(x) is differentiable on an open interval (finite or infinite) if

it has a derivative at each point of the interval. It is differentiable on a closed

interval [a, b] if it is differentiable on the interior (a, b) and if the limits

Right hand Derivative at a: lim
h→0+

f(a+h)−f(a)
h

Left hand Derivative at a: lim
h→0−

f(a+h)−f(a)
h

exists at the end points.

i.e The derivative exist if and only if

f ′(x) = Left hand derivative = Right hand derivative

Example: The function y = |x| is differentiable on (−∞, 0) and (0,∞) but

has no derivative at x = 0.

Solution: If x > 0 then |x| = x and we can

choose h small enough that x + h > 0 and

hence |x+h| = x+h. Similarly for x < 0 then

|x| = −x and we can choose h small enough

that x+h < 0 and hence |x+h| = −(x+h).

Right hand derivative :

lim
h→0+

f(x+h)−f(x)
h = lim

h→0+

|(x+h)|−|(x)|
h = lim

h→0

(x+h)−(x)
h = lim

h→0

h
h = 1

Left hand derivative :

lim
h→0−

f(x+h)−f(x)
h = lim

h→0−

|(x+h)|−|(x)|
h = lim

h→0

−(x+h)−[−(x)]
h = lim

h→0

−h
h = −1

If a graph contains a sharp point (also known as a cusp), then the function

has no derivative at that point.
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Rules of Differentiation

1. If y = f(x)± g(x) then dy/dx = f ′(x)± g′(x)

If y = cf(x) then dy/dx = cf ′(x)

2. If y = f(x)g(x) then dy/dx = f(x)g′(x) + f ′(x)g(x)

3. If y = f(x)/g(x) then dy/dx = g(x)f ′(x)−f(x)g′(x)
g(x)2

4. Composite Functions / Chain Rule.

If y = f(u) and u = g(x) then dy/dx = dy/du× du/dx

5. Parametric form.

If y = f(θ) and x = g(θ) then dy/dx = dy/dθ
dx/dθ

6. Chain Rule:

Let f be a real valued function which is a composite functions u and v;

i.e., f = v o u. Suppose t = u(x) and if both dt
dx and dv

dt exist, we have
df
dx = dv

dt ·
dt
dx .

y = f(x) dy/dx = f ′(x) y = f(x) dy/dx = f ′(x)

xn nxn−1 ex ex

ax ax log a c(constant) 0

loge x 1/x
√
x 1/2

√
x

sinx cosx cosx − sinx

cscx − cscx cotx secx secx tanx

tanx sec2 x cotx − csc2 x

sin−1 x/a 1/
√
a2 − x2 cos−1 x/a −1/

√
a2 − x2

tan−1 x/a a/a2 + x2 cot−a x/a −1/a2 + x2

csc−1 x/a −a/x
√
x2 − a2 sec−1 x/a a/x

√
x2 − a2

For solving the derivatives problem one must learn by heart all the formu-

las of Trigonometry and derivatives. Every example of derivative is always
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based on some formulas. Here are few sample examples for understanding

the technique of problem solving

Example: Find the derivative of the function f(x) = e4x · sin(x2)

Solution: Here we have f1(x) = u = e4x and f2(x) = v = sin(x2)

By seeing the functions we must recall the formulas related to
d
dx sinx = cosx and d

dxe
x = ex.

Considering, f1(x), f2(x) we have 4x and x2 instead of x in both the functions

so we should calculate the derivatives of these and multiply to the derivatives

of ex and sin x. i.e We are going to apply the chain rule.

f ′1(x) = du
dx = d

dx [sin(x2)] = d
dx [sin(x2)] · ddx [(x2)] = cos(x2) · 2x

f ′2(x) = dv
dx = d

dx [e4x] = d
dx [e4x] · ddx [(4x)] = e4x · 4

d
dxf(x) = d

dx [f1(x) · f2(x)] = f1(x)f ′2(x) + f ′1(x)f2(x)

. = d
dx(u · v) = udvdx + v dudx

. = e4x · 2x cos(x2) + 4e4x · sin(x2) = 2xe4x cos(x2) + 4e4x sin(x2)

. = 2e4x[x cos(x2) + 2 sin(x2)]

Example: Find the derivative of sin(e2x)
x2 .

Solution: Consider f1(x) = u = sin(e2x), f2(x) = v = x2.

f ′1(x) = du
dx = cos(e2x) · e2x2 = 2e2x cos e2x, f ′2(x) = dv

dx = 2x.
d
dx [f1(x)f2(x)

] = d
dx(uv ) = f2(x)f

′
1(x)−f1(x)f ′2(x)
[f2(x)]2

=
v·dudx−u·

dv
dx

v2

d
dx [ sin(e

2x)
x2 ] = x2·2e2x cos (e2x)−sin(e2x)·2x

(x2)2 = 2x2e2x cos (e2x)−2x sin(e2x)
x4 = 2x[xe2x cos (e2x)−sin(e2x)]

x4

. = 2[xe2x cos (e2x)−sin(e2x)]
x3

Example: (Implicit function)

When a relationship between x and y is expressed in a way that it is easy to

solve for y and write y = f(x), we say that y is given as an explicit function

of x.

In the latter case it is implicit that y is a function of x and we say that the
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relationship of the second type, above, gives function implicitly. i.e y cannot

be written in terms of x.

Find the derivative of x+ sinx = cos y.

Solution: d
dx [x+ sinx = cos y] =⇒ d

dxx+ d
dx sinx = d

dx cos y

=⇒ 1 + cos x = (− sin y)dydx =⇒ dy
dx = 1+cosx

(− sin y)

Example: (Parametric form)

Sometimes the relation between two variables is neither explicit nor implicit,

but some link of a third variable with each of the two variables, separately,

establishes a relation between the first two variables. In such a situation, we

say that the relation between them is expressed via a third variable. The

third variable is called the parameter. More precisely, a relation expressed

between two variables x and y in the form x = f(t), y = g(t) is said to be

parametric form with t as a parameter. In order to find derivative of function

in such form, we have by chain rule dy
dt = dy

dx ·
dx
dt or dy

dx =
dy
dt
dx
dt

.

Find dy/dx, if x = a cos θ, y = a sin θ.
dx
dθ = −a sin θ, dydθ = a cos θ
dy
dx =

dy
dθ
dx
dθ

= −a cos θ
a sin θ = − cot θ.

Here dy/dx is expressed in terms of the parameter only without directly in-

volving the main variables x and y.

Second Order Derivative:

Let y = f(x). Then dy
dx = f ′(x) . If f ′(x) is differentiable further, we may

differentiate again w.r.t. x. Then, the left hand side becomes d
dx

dy
dx which is

called the second order derivative of y w.r.t. x and is denoted by d2y
dx2 . The

second order derivative of f(x) is denoted by f ′′(x). It is also denoted by

D2y or y′′ or y2 if y = f(x).
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Example: Find d2y
dx2 , if y = x3 + tanx.

Solution: dy
dx = 3x2 + sec2 x.

d
dx(dydx) = d2y

dx2 = d
dx(3x2 + sec2 x) = 6x+ 2 secx · secx tanx

. = 6x+ 2 sec2 x tanx

3.1 Application of Derivatives

Velocity, density, current, power, and temperature gradient in physics, rate of

reaction and compressibility in chemistry, rate of growth and blood velocity

gradient in biology, marginal cost and marginal profit in economics, rate of

heat flow in geology, rate of improvement of performance in psychology, rate

of spread of a rumor in sociologythese are all special cases of a single math-

ematical concept, the derivative. This is an illustration of the fact that part

of the power of mathematics lies in its abstractness. A single abstract math-

ematical concept (such as the derivative) can have different interpretations

in each of the sciences. When we develop the properties of the mathematical

concept once and for all, we can then turn around and apply these results

to all of the sciences. This is much more efficient than developing proper-

ties of special concepts in each separate science. The French mathematician

Joseph Fourier put it succinctly: Mathematics compares the most diverse

phenomena and discovers the secret analogies that unite them.

Increasing and Decreasing functions (First Derivative test) :

Let f be continuous on [a, b] and differentiable on the open interval (a, b).

Then

(a) f is strictly increasing in [a, b], if f ′(x) > 0 for each x ∈ (a, b).

(b) f is strictly decreasing in [a, b], if f ′(x) < 0 for each x ∈ (a, b).

(a) f is strictly constant in [a, b], if f ′(x) = 0 for each x ∈ (a, b).
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Example: Find the intervals in which the function f given by

f(x) = 4x3 − 6x2 − 72x+ 30 is strictly increasing and strictly decreasing.

Solution: We have f(x) = 4x3 − 6x2 − 72x+ 30.

f ′(x) = 12x2 − 12x− 72 = 12(x2 − x− 6) = 12(x− 3)(x+ 2).

Therefore, f ′(x) = 0 =⇒ (x− 3) = 0 or (x+ 2) = 0 =⇒ x = 3 or x = −2..

The points −2 and 3 divides the real line in the intervals

(−∞,−2), (−2, 3), (3,∞).

f ′(−5) = 12(−5− 3)(−5 + 2) = 288 > 0;

f ′(0) = 12(0− 3)(0 + 2)− 72 < 0;

f ′(5) = 12(5− 3)(5 + 2) = 168 > 0

f is increasing for x > 3 upto infinity and x < −2 upto minus infinity.

f is decreasing for x < 3 and x > −2.

Second Derivative Test:

Let f be a function defined on the interval I and c ∈ I. Let f be twice

differentiable at c. Then

1. x = c is a point of local maxima if f ′(c) = 0 and f ′′(c) < 0

The value f(c) is local maximum value of f .

2. x = c is a point of local minima if f ′(c) = 0 and f ′′(c) > 0

In this case, f(c) is local minimum value of f .

3. The test fails if f ′(c) = 0 and f ′′(c) = 0.

Example: You have been asked to design a one-liter can shaped like a right

circular cylinder . What dimensions will use the least material?

Solution: r = radius and h = height is measured in centimeters.

Volume of can = Volume of cylinder = πr2h = 1000, 1 liter = 1000cm3

Surface Area of can: A = 2πr2h+ 2πrh is the material required.

Here we will ignore the thickness of the material .
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We need to optimise the function A for that we express it in one variable say

r by h = 1000/πr2

A = 2πr2 + 2πrh = 2πr2 + 2πr(1000/r2h) = 2πr2 + 2000/r

Our goal is to find thevalue of r > 0 that minimizes the value of A.

Since A is differentiable on r > 0, an interval with no endpoints, it can have

a minimum value only where its first derivative is zero.
dA
dr = 4πr − 2000/r2 = 0 =⇒ 4πr3 = 2000 =⇒ r = (500π )1/3

=⇒ r ≈ 5.42

The second derivative : d2A
dr2 = 4π + 4000/r3

For the value of r the second derivative is greater than zero. So according to

the second derivative test the value of r is (500π )1/3.

The value of h = 1000/πr2 = 1000/[π{(500π )1/3)}2] = 2(500π )1/3 = 2r

The one-liter can that uses the least material has height equal to twice the

radius, here with r ≈ 5.42cm and h ≈ 10.84cm.

Example: The measured radius of the ball bearing is 0.7in. If the mea-

surement is correct to within 0.01in, estimate the propagated error in the

Volume V of the ball bearing.

Solution: The formula for the volume of the sphere is V = 4
3πr

3, where r is

the radius of the sphere.

r = 0.7in; possible error (∆r), −.001 ≤ ∆r ≤ 0.01

To approximate the propagated error in the volume, differentiate V w.r.tr to

obtain dV/dr = 4πr2

∆V ≈ dV = 4πr2 dr = 4π(0.7)2(±0.01) ≈ ±0.06158 cubic inch

So the volume has a propagated error of about 0.06 cubic inch

The relative error = dV
V = 4πr2 dr

4πr3 = 3 dr
r ≈

3
0.7(±0.01) ≈ ±0.0429

The corresponding percent error is approximately 4.29%.

Newton-Raphson method is a technique to approximate the solution to an
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equation f(x) = 0. A value of x where f is zero is a root of the function f

and a solution of the equation f(x) = 0.

The formula for calculation of the root is xn+1 = xn − f(xn)
f ′(x) , f

′(x) 6= 0

(It’s a iterative process i.e we start with some initial root and then go on to

get the approx root of the function)

Example: Find the the approximate root of the equation

f(x) = x2 − 2 = 0. (Solution of the equation: x =
√

2 = 1.41421356237309)

Solution: f(x) = x2 − 2; f ′(x) = 2x. Using the above formula

xn+1 = xn − f(xn)
f ′(xn)

= xn − x2n−2
2xn

= xn
2 + 1

xn

We will start here with x = 1 for this corresponding function i.e x0 = 1.

x1 = x0
2 + 1

x0
= 1/2 + 1/1 = 1.5

x2 = x1
2 + 1

x1
= 1.5/2 + 1/1.5 = 1.416667

x3 = x2
2 + 1

x2
= 1.416667/2 + 1/1.416667 = 1.414216

Error Number of correct digits

x0 = 1 −0.414213 1

x1 = 1.5 0.085786 1

x2 = 1.416667 0.002454 3

x3 = 1.414216 0.000003 5
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4 Integration (Anti-derivative) (Summation)

Integration is used to determine a total amount based on a predictable rate

pattern, such as a population based on its growth rate, or to represent an

accumulation of something such as volume in a tank. It is usually introduced

in calculus, but its use and computation can be performed by many calcu-

lators or computer programs without taking calculus. Understanding the

utility of an integral does not require a background in calculus, but instead

a conceptual understanding of rates and area. Many realistic applications of

integration that occur in science, engineering, business, and industry cannot

be expressed with simple linear functions or geometric formulas. Integration

is powerful in such circumstances, because there is not a reliance on constant

rates or simple functions to find answers. For example, in many algebra

courses, students learn that distance = rate× time. This is true only if the

rate of an object always remains the same. In many real-world instances, the

rate of an object changes, such as the velocity of an automobile on the road.

Cars speed up and slow down according to traffic signals, incidents on the

road, and attention to driving. If the velocity of the car can be modelled with

a non-linear function, then an integral could help you represent the distance

as a function of time, or tell you how far the car has moved from its original

position, even if the rate has changed.

A definite integral of a function f(t) is an integral that finds a value based

on a set of boundaries. A definite integral can help you determine the total

production of textiles based on a specific period of time during the day. For

example, suppose a clothes manufacturer recognized that its employees were

gradually slowing down as they were sewing clothes, perhaps due to fatigue

or boredom. After collecting data on a group of workers, the manufacturer

determined that the rate of production of blue jeans, f , can be modelled by

Page 18



CH
IN
M
AY

DA
M
LE

the function f(t) = 6.37e−0.04t, where t is the number of consecutive hours

worked. For the first two hours of work, an expected production amount

can be determined by the definite integral, written as
∫ 2

0 6.37e−0.04t dt This

information can help managers determine when employees should take breaks

so that they can optimize their performance, because they would likely feel

more productive when they returned to work.

The definite integral is the key tool in calculus for defining and calculat-

ing quantities important to mathematics and science, such as areas, volumes,

lengths of curved paths, probabilities, and the weights of various objects,

just to mention a few. The idea behind the integral is that we can effec-

tively compute such quantities by breaking them into small pieces and then

summing the contributions from each piece. We then consider what happens

when more and more, smaller and smaller pieces are taken in the summation

process.

Example: Use rectangles to estimate the area under the parabola y = x2

from 0 to 1.

Solution: Let the area under the parabola be A

We first notice that the area of S must be somewhere between 0 and 1

because S is contained in a square with side length 1, but we can certainly

do better than that. Suppose we divide S into four strips S1, S2, S3 and S4
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by drawing the vertical lines x = 1/4, x = 1/2, x = 3/4 respectively as shown

in (a).

We can approximate each strip by a rectangle whose base is the same as the

strip and whose height is the same as the right edge of the strip figure (b).

In other words, the heights of these rectangles are the values of the function

f(x) = x2 at the right end points of the sub-intervals [0, 14 ], [14 ,
1
2 ], [12 ,

3
4 ], [34 , 1].

Each rectangle has the width of 1
4 and height are (14)2, (12)2, (34)2 and 12.

Summation of the areas of the rectangle be

A1 = 1
4 · (

1
4)2 + 1

4 · (
1
2)2 + 1

4 · (
3
4)2 + 1

4 · (1)2 = 15
32 = 0.46875

Actually the area of the region under the curve A < 15
32 .

Instead of using the rectangles in the figure (b) if we use some smaller rect-

angles as per figure (c).

B1 = 1
4 · 0

2 + 1
4 · (

1
4)2 + 1

4 · (
1
2)2 + 1

4 · (
3
4)2 = 7

32 = 0.21875.

Here the area of the region under the curve A > 7
32 .

∴ 0.21875 < A < 0.46875

n An Bn

10 0.2850000 0.3850000

50 0.3234000 0.3434000

100 0.3283500 0.3383500

1000 0.3328335 0.3338335

Now, if we make n partitions i.e rect-

angle of the area under the curve and

as n approaches infinite we get the ex-

act area under the curve. Let area of the

region with n partitions be An. here the

width of the rectangles is 1
n and height is

( 1n)2.

Now, An = 1
n · (

1
n)2 + 2

n · (
2
n)2 + 3

n · (
3
n)2 + · · ·+ 1

n · (
n
n)2

. = 1
n ·

1
n2 [1

2 + 22 + 32 + · · ·+ n2] = 1
n3 [

n(n+1)(2n+1)
6 ] = (n+1)(2n+1)

6n2

Area of the region R = lim
n→∞

An = lim
n→∞

(n+1)(2n+1)
6n2 = lim

n→∞
1
6(n+1

n )(2n+1
n )

. = lim
n→∞

1
6(1 + 1

n)(2 + 1
n) = 1

6 · 1 · 2 = 1
3

Similarly it can be proved for Bn = 1
3
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Now, if we are going to use the formula
∫
xn dx = xn+1/(n + 1) + c to

calculate the integral of the above function y = f(x) = x2. The limits for x

are from 0 to 1.∫ 1

0 x
2 dx = [ x

2+1

(2+1) ]
1
0 = [x

3

3 ]10 = [13 −
0
3 ] = 1

3 .

Considering, the above calculations and from the table we see that the integral

is reaching 1/3.

Properties of Integrals.

1.
∫

[f(x)± g(x)] dx =
∫
f(x) dx±

∫
g(x) dx.

2.
∫
k f(x) dx = k

∫
f(x) dx

3. Fundamental theorem Calculus:

Let f be a continuous real-valued function defined on a closed interval

[a, b]. Let F be the function defined, for all x in [a, b], by

F (x) =
∫
f(t) dt.

F (x) is continuous on [a, b], differentiable on the open interval (a, b), and

F ′(x) = f(x) for all x in (a, b)

4. Second Fundamental theorem of Calculus:

Let f be a real-valued function defined on a closed interval [a, b] that

admits an anti derivative F on [a, b]. That is, f and F are functions such

that for all x in [a, b], f(x) = F ′(x).

If f is integrable on [a, b] then∫ b
a f(x) dx = F (b)− F (a)
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∫
exdx = ex + c

∫
axdx = ax/ log a+ c∫

1/x dx = log x+ c
∫
xndx = xn+1

n+1 + c∫
C1(constant)dx = C1x+ c

∫
(ax+ bn) = (ax+b)n+1

(n+1)a + c∫
sinx dx = − cosx+ c

∫
cosx dx = sinx+ c∫

tanx dx = ln | secx|+ c
∫

cotx dx = − ln | cscx|
= − ln | cosx|+ c = ln | sinx|+ c∫

cscx dx = ln | cscx− cotx|+ c
∫

secx dx = ln | secx+ tanx|+ c

= ln | tan x
2 |+ c = ln | tan(π/4 + x/2)|+ c∫

sec2 x dx = tan x+ c
∫

csc2 x dx = − cotx+ c∫
tanx secx dx = sec x+ c

∫
cscx cotx dx = − cscx+ c∫

1√
1−x2 dx = sin−1 x+ c

∫
1√
1−x2 dx = − cos−1 x+ c∫

1
x
√
x2−1 dx = − csc−1 x+ c

∫
1

x
√
x2−1 dx = sec−1 x+ c∫

1
1+x2 = tan−1 x+ c

∫
1

1+x2 = − cot−1 x+ c∫
1√

a2−x2 dx = sin−1 x+ c
∫

1√
x2−a2 dx = ln |x+

√
x2 − a2|+ c∫

1√
x2+a2

dx = ln |x+
√
x2 + a2|+ c

∫
1

x2+a2 dx = 1
a tan−1(xa) + c∫

1
x2−a2 dx = 1

2a ln |x−ax+a|+ c
∫

1
a2−x2 dx = 1

2a ln |a+xa−x|+ c∫ √
a2 + x2 dx = x

2

√
a2 + x2 +

∫ √
x2 − a2 dx = x

2

√
x2 − a2 +

a2

2 ln |x+
√
a2 + x2|+ c a2

2 ln |x+
√
x2 − a2|+ c

∫ √
a2 − x2 dx = x

2

√
a2 − x2 +

∫
dx

x
√
x2−a2 = 1

a sec−1(xa) + c

a2

2 sin−1(xa) + c∫ f ′(x)
f(x) dx = ln |f(x)|+ c

∫ f ′(x)√
f(x)

dx = 2
√
f(x) + c∫

f ′(x)[f(x)]n dx = [f(x)]n+1

n+1 + c
∫
ex[f(x) + f ′(x)] dx = exf(x) + c
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No. Type Method

1.
∫

ax+b
cx+d dx By adjusting the Numerator try to get cx+ d

where a, b, c, d ∈ R in place of ax+ b and then separate and integrate.

2.
∫

(ax+ b)(cx+ d)n dx By adjusting the coefficient try to get cx+ d

n ∈ Q in place of ax+ b then separate and integrate

3.
∫ P (x)

ax+b dx, where P (x) Divide P (x) by ax+ b and separate and integrate.

is a polynomial of

degree ≥ 2

4.
∫

ax+b
(cx+d)n dx BY adjusting the coeff. of x try to get cx+ d in

n ∈ Q place of ax+ b, then separate and integrate

5. The integrals which Using suitable Trignometric formula reduce

contain a single the degree of trignometric terms to degree 1

trigonometric term like and then integrate

sin2 x, cos3 x... etc

or after simplification

single trignometric

term is obtained

6. Substitution:

In this type locate a Substitute the function whose derivative is present

fn whose derivative as t make required changes and then integrate

is present or hidden in

the problem itself.

7.
∫
p(x)(ax+ b)n dx Put ax+ b = t make required changes and integrate

8.
∫ sin(x±a)

cos(x±a) dx By adjusting the constant try to get the

denominator angle in numerator

then separate and integrate.
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9.
∫

1
sin(x±a) cos(x±b) dx Multiply and divide by cos(a± b) = cos(x± a− (x± b))∫

1
cos(x±a) cos(x±b) dx Multiply and divide by sin(a± b) = sin(x± a− (x± b))∫

1
sin(x±a) sin(x±b) dx Multiply and divide by sin(a± b) = sin(x± a− (x± b))

10.
∫

1
a sinx+b cosx dx Put a = r cosα, b = r sinα

11.
∫

1
ax2+bx+c dx or By adjusting the constant express ax2 + bx+ c as sum∫

1√
ax2+bx+c

dx or difference of two terms, then using suitable formulas

integrate.
∫

dx
a2+x2 ,

∫
dx

a2−x2 ,
∫

dx
x2−a2 ,∫

dx√
a2+x2

,
∫

dx√
a2−x2 ,

∫
dx√
x2−a2

12.
∫

ax+b
px2+qx+r dx or Let ax+ b = A+B d

dx(px2 + qx+ r)—– (i)∫
ax+b√
px2+qx+r

dx Find A and B then divide eq.(i) by denominator then

separate and integrate.

13.
∫ P (x)

ax2+bx+c dx, Divide P(x) by denominator, separate and integrate.

degree of P (x) ≥ 2

14.
∫

dx
c+a sin2 x+b cos2 x

or Divide Numerator and Denominator by either cos2 x∫
dx

a sin2 x+b cos2 x
or sin2 x and put tanx = t or cot x = t make the

required changes and integrate.

15.
∫

dx
a+b sinx ,

∫
dx

a+b cosx Put tan x
2 = t

or
∫

dx
a+b sinx+c cosx

16.
∫ √

x
a±x dx or Multiply Nr and Dn by Nr then it reduces to∫ √
a±x
x dx or

∫
ax+b√
px2+qx+r

or
∫

ax+b
px2+qx+r and hence can be∫ √

a±x
a±x dx solved by known method (12)

17.
∫

a sinx+b cosx
c sinx+d cosx dx Let Numerator(Nr), Denominator (Dn)

or
∫

aex+b
cex+d Nr = A(Dn) +B( d

dxDn). By comparing find

A and B then separate and integrate.
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18. Integration by parts
∫
uv dx = u

∫
v dx−

∫
[ ddxu(

∫
v dx)] dx

[Product Rule] L-Logarithmic, I-Inverse, A-Algebraic,

If u and v are integrable T-Trigonometric, E-Exponential.

functions of x Choose u and v according to hierarchy LIATE

19.
∫ √

px2 + qx+ r dx By adjusting the coefficient express px2 + qx+ r

as
∫ √

x2 − a2 dx,
∫ √

x2 + a2 dx,
∫ √

a2 − x2 dx
20.

∫
(px+ q)

√
ax2 + bx+ c dx Let px+ q = A+B d

dx(ax2 + bx+ c). Find A

B multiply both sides by
√
ax2 + bx+ c

then separate and integrate

21. Integrals involving odd Express it as product of even and odd power

powers of cos x, sinx, tanx, Ex. cos3 x = cos2 x cosx, sin5 x = (sin2 x)2 sinx

cotx, cscx, sec or directly use the formula for sinn x, cosn x

22.
∫

x1/a

x1/b+x1/a
dx, Put x = tn where n is LCM of a and b∫ (px+q)1/a

(px+q)1/b+(px+q)1/a
dx

23.
∫

dx
(px+q)(ax+b)1/n

Put (ax+ b) = tn

Partial Fractions.

Provided that the numerator f(x) is of less degree than the relevant denom-

inator, the following identities are typical examples of the form of partial

fractions used:
f(x)

(x+a)(x+b)(x+c) = A
x+a + B

x+b + C
x+c

f(x)
(x+a)3(x+b)(x+c) = A

x+a + B
(x+a)2 + C

(x+a)3 + E
x+b + F

x+c
f(x)

(ax2+bx+c)(x+d) = Ax+B
(ax2+bx+c) + C

(x+d)

Example:
∫
x2 sinx dx

Solution: We are going to solve this integral by using the integration by parts

method [type 18].
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x2 is algebraic and sinx is trigonometric. So according to the method mention

in [type 18] first term should be algebraic i.e u = x2 and second trigonometric

v = sinx

I =
∫
uv dx = u

∫
v dx−

∫
[ ddxu(

∫
v dx)] dx

[
∫

sinx dx = − cosx+ c, d
dxx

2 = 2x]

I = x2
∫

sinx dx−
∫

[ ddxx
2(
∫

sinx dx)] dx

I = x2[− cosx]−
∫

[2x{− cosx}]dx
I = x2[− cosx] + 2

∫
[x cosx]dx ... [1]

Let I1 = x
∫

cosx dx−
∫

[ ddxx(
∫

cosx dx)] dx

I1 = x sinx−
∫

1 · sinx dx = x sinx− [− cosx] = x sinx+ cosx

I = x2[− cosx] + 2[x sinx+ cosx] + c... from 1

∴ I =
∫
x2 sinx dx = −x2 cosx+ 2x sinx+ 2 cosx+ c.

Example:
∫

3x−2
(x+1)2(x+3) dx [Partial Fractions]

Solution: Let I =
∫

3x−2
(x+1)2(x+3) dx.

Here, we seperate the functions into two functions and then integrate i.e

Let, 3x−2
(x+1)2(x+3) = A

x+1 + B
(x+1)2 + C

x+3

We take LCM on both sides and solve it further by equating the corresponding

coefficients and calculate the values of A,B,C.
3x−2

(x+1)2(x+3) = A(x+1)(x+3)
(x+1)2(x+3) + B(x+3)

(x+1)2(x+3) + C(x+1)2

(x+3)(x+1)2

3x− 2 = A(x2 + 4x+ 3) +B(x+ 3) + C(x2 + 2x+ 1)

3x− 2 = (A+ C)x2 + (4A+B + 2C)x+ (3A+ 3B + C)

=⇒ A+ C = 0; 4A+B + 2C = 3; 3A+ 3B + C = −2,

=⇒ A = −C; 4(−C) +B + 2C = 3; 3(−C) + 3B + C = −2

=⇒ B − 2C = 3; 3B − 2C = −2 =⇒ B = −5/2; C = −11/4; A = 11/4

∴ 3x−2
(x+1)2(x+3) = (11/4)

x+1 + (−5/2)
(x+1)2 + −11/4

x+3

I =
∫

[ (11/4)x+1 + (−5/2)
(x+1)2 + −11/4

x+3 ] dx =
∫ (11/4)

x+1 dx+
∫ (−5/2)

(x+1)2 dx+
∫ −11/4

x+3 dx
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= (11/4)
∫

1
x+1 dx+ (−5/2)

∫
1

(x+1)2 dx+ (−11/4)
∫

1
x+3 dx

= (11/4) log |x+ 1|+ (−5/2) (x+1)−2+1

−2+1 + (−11/4) log |x+ 3|+ c

= (11/4) log |x+ 1| − (11/4)log|x+ 3|+ 4/2
x+1 + c

= (11/4) log |x+1
x+3 |+

5/2
x+1 + c.

Definite Integrals

1.
∫ b
a f(x) dx = −

∫ a
b f(x) dx

2.
∫ b
a f(x) dx =

∫ b
a f(t) dt

3.
∫ b
a f(x) dx =

∫ c
a f(x) dx+

∫ b
c f(x) dx, a < c < b

4.
∫ b
a f(x) dx =

∫ b
a f(a+ b− x) dx

5.
∫ a
−a f(x)dx = 0 if f(x) is odd.

. =
∫ a
−a f(x)dx if f(x) is even.

6.
∫ 2a

0 f(x)dx =
∫ a
0 f(x) dx+

∫ a
0 f(2a− x) dx

4.1 Application of Integration:

Area of region between two curves:
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If f and g are two continuous functions on [a,b] and g(x) ≤ f(x) for all

x ∈ [a, b], then the area of the region bounded by the graphs of f and g and

the vertical lines x = a and x = b is
∫ b
a [f(x)− g(x) dx] .

Length of the curve:

If f ′ is continuous on [a, b], then the length (arc length) of the curve y = f(x)

from the point A = (a, f(a)) to the point B = (b, f(b)) is the value of the

integral L =
∫ b
a

√
1 + [f ′(x)]2 =

∫ b
a

√
1 + [dy/dx]2

Area of the surface: If the function f(x) ≥ 0 is continuously differentiable

on [a, b], the area of the surface generated by revolving the graph of y = f(x)

about the x− axis is S =
∫ b
a 2πf(x)

√
1 + [f ′(x)]2 =

∫ b
a 2πy

√
1 + [dy/dx]2

Work done: The work done by a variable force F (x) in the direction of

motion along the xaxis from x = a to x = b is W =
∫ b
a F (x) dx

Newton’s Equation of Motion:

[v = final velocity, u = initial velocity, a = acceleration, s = displacement,

t = time]

1. v = u+ at

2. s = ut+ 1
2at

2

3. v2 = u2 + 2as

instantaneous velocity = v = ds
dt · · · (I)

acceleration = a = dv
dt = d

ds(
ds
dt ) = d2s

dt2 · · · (II)

from I and II: a
v = dv/dt

ds/dt = dv
ds

By cross multiplying we get v dv = a ds · · · (III)
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Now, a = dv
dt = Final velocity−initial velocity

time = v−u
t

Cross multiplying we get at = v − u =⇒ v = u+ at

Now, if we consider the 2 i.e s = ut + 1
2at

2 and differentiate with respect

to t then we get ds
dt = u+ 1

2a (2t) from I; v = u+ at

Now, the last equation can be obatined by using III as v dv = a ds

Integrating on both sides with respect to v and s and taking limits as u and

v for velocity and 0 and s for displacement∫ v
u v dv =

∫ s
0 a ds =⇒ [v2/2]vu = a[s]s0 =⇒ v2

2 −
u2

2 = a[s− 0]

=⇒ v2−u2
2 = as =⇒ v2 − u2 = 2as =⇒ v2 = u2 + 2as

Isaac Newton (1643-1727), staunch English Puritan and the Englands

champion of math and physics, developed the fundamental concepts of cal-

culus in 1665 and 1666. He organized his ideas into a manuscript in late

1666 and showed it to a few other English mathematicians, but did not pub-

lish it. In 1672 to 1676, a German mathematician named Gottfried Leibniz

(1646-1716), who started college at 15 and graduated at 17, worked privately

on the same problems and came up with similar answers. Leibniz had not

heard of Newtons work, and he developed notation and methods that were

different from Newtons, but his ideas were essentially the same. Leibniz first

published his results in 1684 and 1686; Newton, in 1687. The math debate

arose in the late 1690s, when followers of Newton began to accuse Leibniz

of having stolen his calculus ideas from Newton. The fact that Leibniz had

published first and Newton second might have made this impossible, but

Newton and Leibniz had exchanged letters in 1676 and Leibniz had visited

London in both 1673 and 1676, so it was not impossible that Leibniz had

stolen Newtons ideas merely untrue. Newton and Leibniz actually invented
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calculus independently, not an uncommon event in science and mathematics.

But sharing the accomplishment was not on anyones agenda, especially in

a question of national pride. Newton became so angry that he deleted all

references to Leibnizs work from his scientific books (except insults). New-

ton and his followers publicly accused Leibniz of stealing. Leibniz asked the

Royal Society of London, the major English scientific club or society of its

day, to investigate this damning charge. Newton secretly stage-managed the

societys investigation and Leibniz was found guilty. Newton was buried in a

cathedral with royal honors and thousands of mourners; Leibnizs funeral was

attended only by his secretary. Leibnizs ultimate revenge, however, is that

his calculus notation, not Newtons, is used today.
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5 Trigonometry Formula

1. sin2 θ + cos2 θ = 1 1 + tan2 θ = sec2 θ 1 + cot2 θ = csc2 θ

2. sin(A+B) = sinA cosB + cosA sinB

sin(A−B) = sinA cosB − cosA sinB

cos(A+B) = cosA cosB − sinA sinB

cos(A−B) = cosA cosB + sinA sinB

3. tan(A+B) = tanA+tanB
1−tanA tanB tan(A−B) = tanA−tanB

1+tanA tanB

4. sin(−θ) = − sin θ cos(−θ) = cos θ

5. sin 2θ = 2 sin θ cos θ = 2 tan θ
1+tan2 θ

tan 2θ = 2 tan θ
1−tan2 θ

cos 2θ = cos2θ − sin2 θ = 2 cos2 θ − 1 = 1− 2 sin2 θ = 1−tan2 θ
1+tan2 θ

6. cos2 θ = 1+cos 2θ
2 sin2 θ = 1−cos 2θ

2 tan2 θ = 1−cos 2θ
1+cos 2θ

7. sin 3θ = 3 sin θ − 4 sin3 θ cos 3θ = 4 cos3 θ − 3 cos θ

tan 3θ = 3 tan θ−tan3θ
1−3 tan2 θ

8. 2 sinA cosB = sin(A+B) + sin(A−B)

2 sinB cosA = sin(A+B)− sin(A−B)

2 cosA cosB = cos(A+B) + cos(A−B)

2 sinA sinB = cos(A−B)− cos(A+B)

9. sinC + sinD = 2 sin(C+D2 ) cos(C−D2 )

sinC − sinD = 2 sin(C−D2 ) cos(C+D2 )

cosC + cosD = 2 cos(C+D2 ) cos(C−D2 )

cosC − cosD = −2 sin(C+D2 ) sin(C−D2 )

10. sin(nπ) = 0 cos(nπ) = (−1)n sin(2nπ) = 0, cos(2nπ) = 1

11. πc = 180o Radian to degrees conversion
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θ 0 30o 45o 60o 90o 120o 135o 150o 180o

θ 0 π/6 π/4 π/3 π/2 2π/3 3π/4 5π/6 π

sin 0 1
2

1√
2

√
3
2 1

√
3
2

1√
2

1
2 0

cos 1
√
3
2

1√
2

1
2 0 −1

2 − 1√
2
−
√
3
2 −1

tan 0 1√
3

1
√

3 ∞ −
√

3 −1 − 1√
3

0

cot ∞
√

3 1 1√
3

0 − 1√
3
−1 −

√
3 ∞

csc ∞ 2
√

2 2√
3

1 2√
3

√
2 2 ∞

sec 1 2√
3

√
2 2 ∞ −2 −

√
2 − 2√

3
0

13. Domain and Range of Trignometric functions.

T-Ratio Domain Range

sin θ R [−1, 1]

cos θ R [−1, 1]

tan θ R− [(2n+ 1)π2 , n ∈ Z] R
cot θ R− [(n)π, n ∈ Z] R
csc θ R− [(n)π, n ∈ Z] [−∞,−1] ∪ [1,∞]

sec θ R− [(2n+ 1)π2 , n ∈ Z] [−∞,−1] ∪ [1,∞]

14. Trignometric Transformations

T-Ratio π
2 − θ

π
2 + θ π − θ π + θ 3π

2 − θ
3π
2 + θ 2π − θ 2π + θ

90− θ 90 + θ 180− θ 180 + θ 270− θ 270 + θ 360− θ 360 + θ

sin cos θ cos θ sin θ − sin θ − cos θ − cos θ − sin θ sin θ

cos sin θ − sin θ − cos θ − cos θ − sin θ sin θ cos θ cos θ

tan cot θ − cot θ − tan θ tan θ cot θ − cot θ − tan θ tan θ

cot tan θ − tan θ − cot θ cot θ tan θ − tan θ − cot θ cot θ

csc sec θ sec θ csc θ − csc θ − sec θ − sec θ − csc θ csc θ

sec csc θ − csc θ − sec θ − sec θ − csc θ csc θ sec θ sec θ
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